WO2021210659A1 - 容器詰めラクターゼ溶液 - Google Patents

容器詰めラクターゼ溶液 Download PDF

Info

Publication number
WO2021210659A1
WO2021210659A1 PCT/JP2021/015649 JP2021015649W WO2021210659A1 WO 2021210659 A1 WO2021210659 A1 WO 2021210659A1 JP 2021015649 W JP2021015649 W JP 2021015649W WO 2021210659 A1 WO2021210659 A1 WO 2021210659A1
Authority
WO
WIPO (PCT)
Prior art keywords
lactase
lactase solution
solution
container
packaged
Prior art date
Application number
PCT/JP2021/015649
Other languages
English (en)
French (fr)
Inventor
由美子 比嘉
準季 小笠原
涼子 佐野
将弘 馬場
Original Assignee
合同酒精株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合同酒精株式会社 filed Critical 合同酒精株式会社
Priority to EP21788860.1A priority Critical patent/EP4137569A4/en
Priority to JP2022515442A priority patent/JPWO2021210659A1/ja
Priority to CN202180027891.8A priority patent/CN115443336A/zh
Priority to US17/996,278 priority patent/US20230217976A1/en
Publication of WO2021210659A1 publication Critical patent/WO2021210659A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/06Enzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes
    • A23C9/1203Addition of, or treatment with, enzymes or microorganisms other than lactobacteriaceae
    • A23C9/1206Lactose hydrolysing enzymes, e.g. lactase, beta-galactosidase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D85/00Containers, packaging elements or packages, specially adapted for particular articles or materials
    • B65D85/70Containers, packaging elements or packages, specially adapted for particular articles or materials for materials not otherwise provided for
    • B65D85/72Containers, packaging elements or packages, specially adapted for particular articles or materials for materials not otherwise provided for for edible or potable liquids, semiliquids, or plastic or pasty materials
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01108Lactase (3.2.1.108)

Definitions

  • the present invention relates to a packaged lactase solution that improves clogging of a filtration filter.
  • Lactose intolerance is a condition in which lactose in foods such as dairy products causes various symptoms such as abdominal pain and diarrhea because lactose cannot be decomposed well congenitally. Lactose is a disaccharide composed of galactose and glucose. In order to cope with lactose intolerance, lactose contained in milk and the like is preliminarily decomposed into galactose and glucose by lactase in the food manufacturing industry.
  • the lactase solution used for decomposing lactose contained in milk etc. is obtained by culturing a lactase-producing microorganism, extracting lactase from inside the cell, or obtaining lactase secreted extracellularly, and contaminating the culture. After removing the substance and purifying it, an additive such as a stabilizer is added, and the sterilized product is packed in a container and commercialized.
  • the manufactured packaged lactase solution is stored in a refrigerator (10 ° C or less), sold, and transported.
  • the lactase solution is then added by the user to milk or dairy products such as milk.
  • There are mainly two methods for adding the lactase solution one is to add the milk before sterilization and the other is to add it after sterilization. In the former case, the filtration sterilization step is not always required, whereas in the latter case, the filtration sterilization step of the lactase solution is required. Milk after addition of lactase solution is sold after filling.
  • Patent Document 1 Japanese Patent Publication No. 6-73454 states, for example, a lactase solution before the deterioration product of the protein and the polysaccharide causing clogging is formed. It is described that the lactase solution is filtered and sterilized immediately after the recovery and purification of the lactase solution. This method can be carried out during the production of the lactase solution.
  • Patent Document 2 Japanese Patent Laid-Open No. 2004-534527 describes that the concentrations of polysaccharides and oligosaccharides contained in the lactase solution should be kept below a certain value, and in particular, these substances should be removed by chromatography. ing. However, even if the concentrations of the polysaccharide and the oligosaccharide are below a certain value, the problem of clogging in the filtration after commercialization may occur as described above.
  • Patent Document 3 International Publication No. 2016/060242 has been proposed as a solution to the above problem.
  • lactase solutions are expensive. Users who manufacture dairy products may add the lactase solution in-line to the dairy product after diluting it in order to use the lactase solution without waste.
  • the step of sterilizing the lactase diluted solution with a filtration filter and the step of adding the sterilized lactase solution to the dairy product are continuously performed in-line.
  • the use of the lactase diluted solution may cause clogging of the filtration filter in the filtration step. When clogging occurs, it may be necessary to stop the entire manufacturing process of dairy products and the cost of replacing the filtration filter may be incurred, so improvement has been sought.
  • An object of the present invention is to provide a packaged lactase solution that is less likely to cause clogging of a filtration filter.
  • the present invention solves the problems of the present invention by having the following technical configurations.
  • FIG. It is a figure which showed the result of the filter permeability test in (a) Reference Example 1 and (b) Reference Example 2. It is a figure which showed the result of the filter permeability test in Example 1.
  • FIG. It is a figure which showed the relationship between the head space of the packaged lactase solution and the filter permeability. It is a figure which showed (a) decubitus position or (b) standing position in the packaged lactase.
  • the present invention is a packaged lactase solution in which a lactase solution is present in a container, and is characterized in that the head space in the container is 20 v / v% or less of the total volume in the container.
  • the headspace in the packaged lactase solution of the present invention is preferably 15% or less, more preferably 12% or less of the total volume in the container.
  • the lower limit of the head space in the packaged lactase solution of the present invention may be 0% or more, more than 0%, 1% or more, or 2% or more. These upper limit values and lower limit values can be combined as appropriate.
  • the lactase solution existing in the container may be referred to as an internal lactase solution.
  • the internal lactase solution was excellent in filter permeability even when the packaged lactase solution was transported within the above range.
  • This mechanism can be considered as follows. Since the hydrophobic parts of proteins have the property of adhering and binding to each other, in a normal packaged lactase solution, the stirring force applied to the internal lactase solution is high, so that the proteins come into contact with each other more frequently. The amount of protein aggregates generated increases, and the filter permeability of the internal lactase solution deteriorates. On the other hand, when the packaged lactase solution of the present invention is within the above range, the stirring force applied to the internal lactase solution is reduced and the frequency of contact between proteins is reduced, so that protein aggregates are reduced. The formation is suppressed and the filter permeability of the internal lactase solution can be maintained.
  • the head space in the container means the part occupied by the gas phase in the total volume in the container.
  • the headspace in the container varies depending on the amount of lactase solution to be filled.
  • the headspace may be a gas, and examples thereof include air, oxygen, nitrogen, and noble gas. From the viewpoint of manufacturing cost, air is preferable.
  • the total volume in the container means the part where the liquid can be put through the opening of the container. Do not include parts that cannot contain liquid through the opening of the container (for example, hollow parts).
  • the calculation method of the total volume in the container is as follows. (1) Measure the weight of the empty container. (2) After filling the container with water through the opening of the empty container, the weight is measured. Place the container filled with water on a horizontal table and draw a line at the interface between the water and the headspace (on the container). As a guide, the amount of water filled is 60 to 80% of the container. (3) In the container filled with water in (2), place it on a horizontal table with the top and bottom surfaces of the container when the line is drawn opposite to each other. Adjust the amount of water in the container so that the interface between the water and the headspace is at the part drawn on the container. Measure the weight of the container when the interfaces are matched.
  • the method of calculating the head space in the packaged lactase solution is as described above in detail.
  • a simple method after calculating the total volume in the container, prepare a plurality of packaged lactase solutions in advance so as to have a predetermined headspace (for example, 1%, 5%, 10%, 20%, etc.). By contrasting this, it may be used as an approximate headspace.
  • the surface area at the interface between the internal lactase solution and the headspace it is preferable to reduce the surface area at the interface between the internal lactase solution and the headspace. As the surface area increases, bubbles are more likely to be generated when the packaged lactase solution is transported, and the filtration filter is more likely to be clogged.
  • the activity (or protein concentration) of the internal lactase solution is preferably in the range of 10 to 100,000 NLU / g, more preferably in the range of 100 to 50,000 NLU / g, 1,000 to 11, It is more preferably in the range of 000 NLU / g (FCC4 method).
  • NLU is a Natural Lactase Unit. It is preferable that the packaged lactase solution is included in this range before and after transportation. The lower the activity of the internal lactase solution, the more likely it is that the filtration filter will become clogged after the packaged lactase solution has been transported.
  • the FCC4 method is measured by hydrolysis of the substrate o-nitrophenyl- ⁇ -galactopyranoside (ONPG) to o-nitrophenyl and galactose.
  • the reaction is terminated with the addition of sodium carbonate.
  • the formed o-nitrophenyl turns yellow in an alkaline medium and the change in absorbance is used to measure enzymatic activity (represented by NLU / g).
  • enzymatic activity represented by NLU / g.
  • the lactase solution of the present invention preferably has an acidic lactase activity of 10 to 100,000 ALU / g, more preferably 100 to 50,000 ALU / g, and 1,000 to 11,000 ALU / g. It is even more desirable to have activity.
  • "ALU” is an Acid Lactase Unit.
  • the method for measuring the activity is as follows, for example. Measured by hydrolysis of the substrate o-nitrophenyl- ⁇ -galactopyranoside (ONPG) to o-nitrophenyl and galactose. The reaction is terminated with the addition of sodium carbonate.
  • the formed o-nitrophenyl turns yellow in an alkaline medium and the change in absorbance is used to measure enzymatic activity (represented by ALU / g).
  • enzymatic activity represented by ALU / g.
  • the internal lactase solution of the present invention may be a neutral lactase solution, an acidic lactase solution, or a mixture of the two, which may be a neutral to acidic lactase solution.
  • the internal lactase solution is substantially transparent. This is because when the internal lactase solution contains a large amount of microorganisms such as lactase-producing bacteria, the internal lactase solution becomes turbid and the producing bacteria themselves clog the filter. Substantially transparent means that the internal lactase solution is not turbid when visually observed.
  • the lactase solution may be colored. Specifically, it is a light yellow to light brown solution.
  • the temperature of the packaged lactase solution is preferably more than 0 ° C and 20 ° C or less. As the temperature during storage and transportation increases, aggregates tend to form in the internal lactase solution.
  • the internal lactase solution may contain other proteins in addition to the lactase protein. Other proteins may be included from the standpoint of manufacturing cost.
  • the internal lactase solution does not contain protein aggregates, but the protein aggregates increase as the storage period increases and the transport progresses. Protein aggregates are aggregates of lactase protein molecules, aggregates of lactase protein molecules and other protein molecules, and aggregates of other protein molecules.
  • the lactase solution is filled in the container with a margin in the head space from the following two points.
  • (1) When the lactase solution is filled by a machine, if the filling amount is large, the lactase solution may scatter and adhere to the outside of the container, so that a separate operation of wiping it off is required. Further, in order to increase the filling amount, it is necessary to reduce the filling speed, which causes complicated manufacturing and a long period of time.
  • the lactase solution tends to scatter from the opening of the container, which causes a problem in handleability.
  • the container of the present invention may have an opening in which the lactase solution can be filled, and the opening may be sealed.
  • the shape, capacity, and material of the container may be appropriately adjusted according to the purpose of use.
  • the container may be sealed by, for example, tightening a screw cap.
  • the shape of the container is preferably one that can stand on its own. Plastic containers, drums, containers, etc. can be used. A rectangular parallelepiped or a plastic container or container with rounded corners is preferable because it has excellent loadability.
  • the volume of the container can be in the range of 10 mL to 20,000 kL. It is preferably in the range of 1 L to 10,000 kL.
  • the material of the container is thermoplastic resin, ultraviolet curable resin, thermoplastic resin such as polyethylene, polypropylene, polystyrene, polyvinyl acetate, polyurethane, polyurethane, polytetrafluoroethylene, acrylonitrile butadiene styrene resin, and iron. , Stainless steel and other metals can be used. It is preferably a thermoplastic resin, especially polyethylene and polypropylene. High-density polyethylene can be preferably used as the polyethylene.
  • Lactase has been isolated from a very wide range of organisms, including microorganisms. Lactase is often an intracellular or extracellular component of microorganisms such as Kluyveromyces and Bacillus. Kluyveromyces, especially K. Fragilis and K. cerevisiae. Lactis, as well as yeasts of the genera Candida, Torula and Torulapsis, are common sources of the yeast enzyme lactase, while B. et al. coagulans or B. Circulans is a well-known source of bacterial lactase.
  • Aspergillus niger, Aspergillus oryzae, and Penicillium multicolor produce extracellular lactase
  • US Pat. No. 5,736,374 describes examples of such lactase produced by Aspergillus oryzae.
  • Lactase enzyme properties such as optimum pH and temperature vary from species to species.
  • lactases derived from Bifidobacterium bifidium that act in neutral and acidic (pH 4 to pH 10). It is also possible to produce lactase genes derived from these microorganisms by recombining them with a host.
  • Hosts include, for example, the genus Aspergillus, the genus Kluyveromyces, the genus Trichoderma, the genus Escherichia coli, the genus Pichia, the genus Pichia, the genus Saccharomyes Includes the genus Neurospora, the genus Lactococcus or the genus Bacillus.
  • neutral lactase and acidic lactase it is preferable to use neutral lactase and acidic lactase, and it is particularly preferable to use neutral lactase derived from the genus Kluyveromyces, acidic lactase derived from the genus Aspergillus, and lactase derived from Bifidobacteirum.
  • the lactase solution of the present invention may contain various components, if necessary. Specific examples include metal salts, various sugars, ascorbic acid, glycerin, etc. that contribute to the stabilization of lactase, starch, dextrin, and inorganic salts having a buffering action, which are excipients for improving usability, in the lactase solution. Aggregation inhibitors that make it difficult for the agglomerates to be generated can be mentioned.
  • the amount of the stabilizer contained in the lactase solution is preferably 10% by mass to 90% by mass, more preferably 20% by mass to 80% by mass, and preferably 30% by mass to 70% by mass. Further preferably, it is particularly preferably 40% by mass to 60% by mass.
  • the amount of the stabilizer is equal to or higher than the lower limit, it becomes easy to maintain the lactase activity of the lactase solution for a long period of time. If the amount of the stabilizer exceeds the upper limit, the viscosity of the lactase solution increases, so that the filtration time becomes long and the workability decreases.
  • Stabilizers include, for example, glycerin and sorbitol.
  • Aggregation inhibitors to be contained in the lactase solution include aggregation inhibitors I to III.
  • Aggregation inhibitors I are (Type 1) HLB 12-15 surfactants, (Type 2) Fat-friendly surfactants, (Type 3) Nonionic fat-friendly surfactants, (Type 4) Nonionic surfactants.
  • Surfactants of HLB 12 to 15 are desirable in terms of emulsion stability in an aqueous solution and high dispersion effect of hydrophobic substances. These types are classified according to their physical characteristics, origin, etc., and a component belonging to one type may belong to another type. Further, a plurality of surfactants of the same type may be used in combination, or a plurality of surfactants of different types may be used in combination.
  • agglutination inhibitor II a protective agent having an action of covering the surface of lactase or other proteins can be used.
  • the protective agent polyether and thickening polysaccharide can be used. Examples of the agglutination inhibitor III include metal ions having a salt-dissolving effect or salts thereof.
  • metal ions guanidium ion, calcium ion, Mg ion or a salt thereof is preferable because it is easy to obtain an appropriate ionic strength in the lactase solution.
  • the addition of metal ions or salts thereof makes the ionic strength of the solution appropriate and reduces the hydrophobic interactions between the proteins of lactase and other proteins contained in the lactase solution. As a result, it is understood that proteins are less likely to aggregate and have a reducing effect on the formation of clogging substances.
  • a plurality of metal ions of the same type or salts thereof may be used in combination, or a plurality of metal ions of different types or salts thereof may be used in combination.
  • agglutination inhibitors I to III may be used alone or in combination of different kinds of agglutination inhibitors.
  • agglutination inhibitors I and II, agglutination inhibitors II and III, agglutination inhibitors I and III, and agglutination inhibitors I, II and III may be used in combination.
  • the agglutination inhibitor III alone is slight, it is preferable to use the agglutination inhibitors I and III and the agglutination inhibitors II and III in combination.
  • the aggregation inhibitor I is preferably in the range of 0.001% by mass to 5% by mass, more preferably 0.01% by mass to 1% by mass, still more preferably, based on the total mass of the lactase solution. Can be added in the range of 0.1% by mass to 0.5% by mass.
  • the aggregation inhibitor II is added to the lactase solution, preferably in the range of 0.05% by mass to 15% by mass, more preferably in the range of 0.3% by mass to 10% by mass, based on the total mass of the lactase solution. More preferably, it can be added in the range of 0.5% by mass to 5% by mass.
  • the aggregation inhibitor III has a concentration of 0.1 mM or more and 20 mM or less, more preferably 0.25 mM or more and 15 mM or less, and 0.5 mM or more and 10 mM or less as a metal component in the lactase solution.
  • the concentration is more preferably 1 mM or more and 5 mM or less.
  • Guanidium ion, calcium ion, and magnesium ion are in descending order of salt dissolution effect. Magnesium ions require higher concentrations, while guanidium and calcium ions may be at lower concentrations.
  • the method for producing the lactase solution is, for example, (1) an extraction step of lactase accompanied by destruction of the cell wall after culturing a microorganism such as yeast, and (2) impurities derived from the culture from the extracted lactase. Including a purification step for removing and the like. (3)
  • the above-mentioned lactase (which may be prepared immediately before or a commercially available product) may include a step of adding an additive as necessary and (4) a step of filtering for sterilization. good.
  • a containerized lactase solution can be obtained by filling a predetermined container with a predetermined amount of the filtered lactase solution.
  • lactase solution As a specific usage form of the lactase solution, for example, it is used in the production of fermented milk.
  • the method for producing lactose-decomposed fermented milk is as follows: 2. A method in which lactase is added to milk before sterilization to decompose lactose, and then lactase is inactivated at the same time as heat sterilization of the milk, and then the milk is fermented (Japanese Patent Laid-Open No. 5-501197). 2.
  • a method of fermenting milk after decomposing lactose in milk with immobilized lactase Japanese Patent Laid-Open No. 46-105593, Japanese Patent Application Laid-Open No. 59-162833.
  • the lactase solution of the present invention is used in the production of long-life milk.
  • Long-life milk is long-term storage milk, and the manufacturing process consists of a sterilization process and a continuous aseptic packaging process. Generally, it is processed by an ultra-high temperature short-time sterilization method at 135 to 150 ° C for several seconds. Paper containers that have been sterilized with hydrogen peroxide in advance are filled in a process that allows aseptic packaging.
  • the lactase solution added to long-life milk is generally added after filtration sterilization when filling milk after ultra-high temperature short-time pasteurization.
  • the lactase solution according to the present invention is particularly suitable for the production of dairy products.
  • dairy products refer to milk such as ice cream and long-life milk, yogurt, fresh cream, sour cream, cheese and the like.
  • the lactase solution according to the present invention is suitable for the production of long-life milk.
  • lactase (Use of lactase and its pH profile) Further, when considering the use of lactase, it is roughly classified into two types depending on whether it is neutral lactase or acidic lactase. This depends on the pH profile in the application. Neutral lactase is usually preferred for neutral pH applications, and acidic lactase is more suitable for applications in the acidic range.
  • YNL (trade name: GODO-YNL2 manufactured by Godo Shusei Co., Ltd.) was used as the lactase solution.
  • GODO-YNL2 was a neutral lactase derived from Kluyveromyces, which had an activity of 5,000 NLU / g, a specific density of 1.18 (g / mL), and 50% (v / v) of glycerin.
  • the device was used as a device.
  • the sample permeation portion in the filter holder is configured to include an O-ring, a membrane, a support screen, and an underdrain disk from the entrance side of the measurement sample (in the test of the present invention, the filter of the stainless steel holder with a tank). And the parts of the filter holding part (support screen and its support) were not attached).
  • a membrane a product name DURAPORE (pore diameter 0.22 ⁇ m, ⁇ 25 mm, made of hydrophilic PVDF) manufactured by Merck Millipore was used, and as a support screen, Type 316 stainless steel attached to the above filter holder was used.
  • Reference example 2 The following tests were conducted in parallel with Reference Example 1.
  • the filter permeability test was carried out in the same manner as in Reference Example 1 except that the packaged lactase solution after shaking was allowed to stand until the next day. The results are shown in FIG. 1 (b).
  • the filter permeability deteriorated depending on the standing time after shaking. From the results of Reference Examples 1 and 2, when aggregates are formed in the internal lactase solution by shaking the packaged lactase solution, the aggregates become larger as the storage time of the lactase solution increases. , It was suggested that the filter permeability deteriorated.
  • Example 1 If the lactase activity value of the internal lactase solution is high, it is not easily affected by the filter permeability test by shaking (aggregates are less likely to occur in the internal lactase solution). Therefore, the lactase activity value of the internal lactase solution is diluted for the test.
  • 100 mL eyeboy (wide mouth (manufactured by AS ONE, product number 5-002-02), total volume 128.5 mL) diluted 1,460 NLU / g of lactase solution (YNL 2 with distilled water 3.42 times (weight ratio)) ) was filled with 40 mL to 130 mL to obtain a lactase solution packed in each container.
  • FIG. 2 shows the results from permeate 4.9 to 286.8 after the start of the filter permeability test. However, if flux is less than 7, it shows the result up to that point.
  • the slope of the graph shown in FIG. 2 was calculated from the linear approximation of Excel and used as an index for the filter permeability test. The larger the slope value (negative value), the worse the filter transparency. The results obtained are shown in Table 1.
  • Example 2 Domestic transportation test of packaged lactase solution Headspace is 10 or 28% in a 10 L plastic container (manufactured by Kodama Resin Industry Co., Ltd., Tamakan, product number KM-349, total volume 11.7 L in terms of lactase volume). YNL was filled so as to obtain a lactase solution packed in each container. While storing this packaged lactase solution at 10 ° C. or lower, it was transported by truck to a place about 600 km away by land for 22 hours. The packaged lactase solution after transportation was diluted in the same manner as in Example 1 to obtain a lactase solution of 1,460 NLU / g, and then a filter permeability test was conducted.
  • the results are shown in Table 2.
  • the packaged lactase solution having a filling amount of 10 kg is commercially available from Joint Shusei.
  • the lots of the internal lactase solution used in Example 2 are the same, and the lots of the internal lactase solution used in Example 1 and Example 2 are different.
  • Example 3 Foreign transportation test of packaged lactase solution Headspace is 1.4 to 56 in a 10 L plastic container (manufactured by Kodama Resin Industry Co., Ltd., Tamakan, product number KM-349 lactase volume equivalent, total volume 11.7 L). YNL was filled so as to be%, and each container-packed lactase solution was obtained. While storing this packaged lactase solution at 10 ° C. or lower, it was transported by truck and ship to a place about 10,000 km away by land and sea. The packaged lactase solution after transportation was diluted in the same manner as in Example 1 to obtain a lactase solution of 1,460 NLU / g, and then a filter permeability test was conducted.
  • the results are shown in Table 3.
  • the packaged lactase solution having a filling amount of 10 kg is commercially available from Joint Shusei.
  • the lots of the internal lactase solution used in Example 3 are the same, and the lots of the internal lactase solution used in Examples 1, 2 and 3 are all different.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Nutrition Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Mechanical Engineering (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Dairy Products (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本発明は、ろ過フィルターの目詰まりを起こしにくい容器詰めラクターゼ溶液を提供することを目的とする。本発明の容器詰めラクターゼ溶液は、容器内にラクターゼ溶液が存在する容器詰めラクターゼ溶液であって、当該容器内のヘッドスペースを当該容器内の全容積の20%以下にすることを特徴とする容器詰めラクターゼ溶液。前記ラクターゼ溶液のラクターゼ活性が10~100,000NLU/gの範囲内であることを特徴とする。

Description

容器詰めラクターゼ溶液
 本発明は、ろ過フィルターの目詰まりを改善した容器詰めラクターゼ溶液に関する。
 乳糖(ラクトース)不耐症は、先天的に乳糖をうまく分解することができないため、乳製品などの食品中の乳糖により腹痛や下痢などの諸症状を呈する状態をいう。乳糖は、ガラクトース及びグルコースから構成される二糖である。乳糖不耐症に対応するために、牛乳などに含まれる乳糖を、ラクターゼによってガラクトースとグルコースとに予め分解することが食品製造業において行われている。
 牛乳などに含まれる乳糖を分解するために使用されるラクターゼ溶液は、従来、ラクターゼ産生微生物を培養し、細胞内からラクターゼを抽出、または細胞外に分泌したラクターゼを取得し、培養物由来の夾雑物を除去して精製した後、安定剤等の添加剤を添加し、ろ過除菌したものを容器に詰め製品化される。
 製造された容器詰めラクターゼ溶液は、冷蔵(10℃以下)で保存され、販売され、輸送される。その後、ラクターゼ溶液は、ユーザーにより牛乳などの乳又は乳製品に添加される。このラクターゼ溶液の添加方法には主に、乳等の殺菌前に添加する方法と、殺菌後に添加する方法の2つがある。前者の場合に、ろ過除菌工程を必ずしも必要としないのに対し、後者の場合、ラクターゼ溶液のろ過除菌工程が必要になる。ラクターゼ溶液添加後の乳は充填後、販売される。
 上記のような殺菌後の乳等にラクターゼ溶液を添加する製造プロセスにおいて、ろ過除菌工程でラクターゼ溶液がフィルターの目詰まりを起こしやすく、このことは作業効率を著しく低下させる原因であることが知られている。その問題に対処するために、たとえば、特許文献1(特公平6-73454号公報)には、目詰まりの原因となるタンパク質と多糖類との劣化生成物が形成される前に、たとえばラクターゼ溶液の回収及び精製の直後に、ラクターゼ溶液をろ過除菌することが記載されている。この方法は、ラクターゼ溶液の製造時に行うことができる。しかし、いったん劣化生成物が形成された後においては実施できない。この方法で製造されたラクターゼ溶液を保存又は輸送した後にろ過すると、目詰まりが発生する場合があるからである。例えば、この方法で製造した容器詰めラクターゼ溶液をユーザーに輸送した後、当該ユーザーが乳等にラクターゼ溶液を添加すべく、当該ラクターゼ溶液のろ過除菌工程を行うと、フィルターに目詰まりが発生する場合があった。目詰まりが発生すると、製造工程を止めてフィルターを交換しなければならず、作業効率を著しく低下させる問題があった。特に、乳を製造する個々の製造工程が連続している場合、ろ過除菌工程のみを止めることはできないため、全ての乳の製造工程を止める必要が生じてしまう。その結果、乳の製造効率が著しく減少してしまい、改善が求められていた。
 したがって、特許文献1に記載の方法は、製品化後のラクターゼ溶液のろ過における目詰まりに関しては問題の解決にならない。
 また、特許文献2(特表2004-534527号公報)には、ラクターゼ溶液に含まれる多糖類とオリゴ糖の濃度を一定値以下にすること、特にクロマトグラフィによりこれらの物質を除去することが記載されている。しかし、多糖類とオリゴ糖の濃度を一定値以下にしても同様に上記のように製品化後のろ過における目詰まりの問題が生ずる場合があった。
 上記の問題を解決するものとして、特許文献3(国際公開第2016/060224号)が提案されている。
特公平6-73454号公報 特表2004-534527号公報 国際公開第2016/060224号
 乳製品に使用する原材料のうち、ラクターゼ溶液は高価である。乳製品を製造するユーザーは、ラクターゼ溶液を無駄なく使用するために、ラクターゼ溶液を希釈した後、インラインで乳製品に添加することがある。ラクターゼ希釈溶液をろ過フィルターで除菌する工程及びその除菌したラクターゼ溶液を乳製品に添加する工程はインラインで連続して行われる。
 しかしながら、上記のようにユーザーが市販ラクターゼ溶液を希釈して乳製品に添加する場合、ラクターゼ希釈溶液を使用することでろ過工程におけるろ過フィルターの目詰まりを生ずる場合があった。目詰まりを起こすと、ろ過フィルターの交換コストが生じる点や乳製品の製造工程全体を止める必要が生じる場合もあり、改善が求められていた。
 本発明は、ろ過フィルターの目詰まりを起こしにくい容器詰めラクターゼ溶液を提供することを目的とする。
 本発明は以下の技術的構成を有することにより、本発明の課題を解決したものである。
(1)容器内にラクターゼ溶液が存在する容器詰めラクターゼ溶液であって、当該容器内のヘッドスペースを当該容器内の全容積の20%以下にすることを特徴とする容器詰めラクターゼ溶液。
(2)前記ラクターゼ溶液のラクターゼ活性が10~100,000NLU/gの範囲内であることを特徴とする前記(1)に記載の容器詰めラクターゼ溶液。
(3)前記ラクターゼ溶液が実質的に透明であることを特徴とする前記(1)または(2)に記載の容器詰めラクターゼ溶液。
(4)前記容器の材質が、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ酢酸ビニル、ポリウレタン、ポリウレタン、ポリテトラフルオロエチレン、アクリロニトリルブタジエンスチレン樹脂から選択されることを特徴とする前記(1)~(3)いずれかに記載の容器詰めラクターゼ溶液。
(5)前記ラクターゼ溶液の温度及び前記容器の温度が0℃超20℃以下であることを特徴とする前記(1)~(4)いずれかに記載の容器詰めラクターゼ溶液。
 本発明によれば、ろ過フィルターの目詰まりを起こしにくい容器詰めラクターゼ溶液を提供することができる。
(a)参考例1、(b)参考例2におけるフィルター透過性試験の結果を示した図である。 実施例1におけるフィルター透過性試験の結果を示した図である。 容器詰めラクターゼ溶液のヘッドスペースとフィルター透過性の関係を示した図である。 容器詰めラクターゼにおける(a)臥位または(b)立位を示した図である。
 本発明は、容器内にラクターゼ溶液が存在する容器詰めラクターゼ溶液であって、当該容器内のヘッドスペースを当該容器内の全容積の20v/v%以下にすることを一特徴とする。本発明の容器詰めラクターゼ溶液におけるヘッドスペースは、当該容器内の全容積の15%以下であることが好ましく、12%以下であることがさらに好ましい。本発明の容器詰めラクターゼ溶液におけるヘッドスペースの下限値は0%以上であってもよく、0%超であってもよく、1%以上であってもよく、2%以上であってもよい。これらの上限値及び下限値は適宜組み合わせることができる。以下、容器内に存在するラクターゼ溶液を内部ラクターゼ溶液という場合がある。
 上記範囲内にすることによって、上記容器詰めラクターゼ溶液を輸送したときにおいても、内部ラクターゼ溶液がフィルター透過性に優れることを見出した。
 このメカニズムは次のように考えられる。タンパク質の疎水性部分同士は付着・結合する性質を有するところ、通常の容器詰めラクターゼ溶液においては、内部ラクターゼ溶液に負荷される撹拌力が高いことで、タンパク質同士が接触する頻度が高くなるため、タンパク質の凝集物の発生量が多くなり、内部ラクターゼ溶液のフィルター透過性が悪化する。これに対し、本発明の容器詰めラクターゼ溶液は、上記範囲内にすることによって、内部ラクターゼ溶液に負荷される撹拌力が低減され、タンパク質同士が接触する頻度が低減するため、タンパク質の凝集物の形成が抑制され、内部ラクターゼ溶液のフィルター透過性を維持することができる。
 容器内のヘッドスペースとは、容器内の全容積のうち、気相が占める部分をいう。容器詰めラクターゼ溶液は、容器内の全容積が内部ラクターゼ溶液とヘッドスペースで占められる。容器内のヘッドスペースは、充填するラクターゼ溶液の量によって変動する。
 ヘッドスペースは気体であればよく、空気、酸素、窒素、希ガス等が挙げられる。製造コストの観点からは空気であることが好ましい。
 容器内の全容積とは、容器の開口部から液体を入れることができる部分をいう。容器の開口部から液体を入れることができない部分(例えば中空部分)は含めない。
 容器内の全容積の算出方法は次のとおりである。
(1)空容器の重量を測定する。
(2)空容器の開口部から水を当該容器内に充填した後、重量を測定する。水を充填した容器を水平な台に置き、水とヘッドスペースの界面に線を引く(容器上)。水の充填量は容器の6~8割が目安である。
(3)(2)で水を充填した容器において、線を引いたときの容器の上面と底面を反対にして水平な台に置く。容器上に線を引いた部分に水とヘッドスペースの界面がくるよう、容器内の水の量を調節する。界面を一致させたときの容器の重量を測定する。
(4)(2)の水充填容器重量から(1)の容器重量を引いた値と、(3)の水充填容器重量から(1)の容器重量を引いた値と、の和を算出する。水の比重は1.00とみなせるから、当該和が容器内の全容積(volume)である。
 容器詰めラクターゼ溶液に占めるヘッドスペースの算出方法は次のとおりである。
(1)容器内の全容積を算出する。
(2)充填するラクターゼ溶液の比重を測定する。
(3)空容器の開口部からラクターゼ溶液を当該容器内に所定重量充填する。
(4)(3)の充填した所定重量を(2)の比重で割り、充填したラクターゼ溶液の体積(volume)を算出する。
(5)以下の式に値を当てはめてヘッドスペース(%)を算出する。
 ヘッドスペース(%)=100-((4)の充填したラクターゼ溶液の体積÷(1)の空容器の全容積×100)
 容器詰めラクターゼ溶液に占めるヘッドスペースの算出方法は、詳細には上記の通りである。簡易的な方法として、容器内の全容積を算出した後、所定のヘッドスペース(例えば、1%、5%、10%、20%等)となるよう、予め複数の容器詰めラクターゼ溶液を用意しておき、これと対比することでおおよそのヘッドスペースとしても良い。
 容器詰めラクターゼ溶液において、内部ラクターゼ溶液とヘッドスペースの界面における表面積を小さくすることが好ましい。当該表面積が増えるほど、容器詰めラクターゼ溶液を輸送したときに泡が発生しやすくなり、ろ過フィルターの目詰まりが発生しやすくなる傾向にある。
 内部ラクターゼ溶液の活性(またはタンパク質濃度)が10~100,000NLU/gの範囲内であることが好ましく、100~50,000NLU/gの範囲内であることがより好ましく、1,000~11,000 NLU/g(FCC4法)の範囲内であることがさらに好ましい。「NLU」はNeutral Lactase Unitである。容器詰めラクターゼ溶液を輸送する前及び輸送した後においてもこの範囲に含まれることが好ましい。内部ラクターゼ溶液の活性が低いほど、容器詰めラクターゼ溶液を輸送した後にろ過フィルターの目詰まりが発生しやすくなる傾向にある。
 FCC4法は、基質o-ニトロフェニル-β-ガラクトピラノシド(ONPG)を、o-ニトロフェニル及びガラクトースにする加水分解によって測定される。反応は、炭酸ナトリウムの添加によって終了する。形成されたo-ニトロフェニルは、アルカリ媒体中で黄色になり、吸光度の変化が酵素活性(NLU/gで表される)を測定するのに使用される。この手順は、米国食品化学物質規格集(FCC; Food Chemicals Codex)第4版、1996年7月1日、第801~802頁/ラクターゼ(中性)(β-ガラクトシダーゼ)活性で、公表されている。
 本発明のラクターゼ溶液は、10~100,000ALU/gの酸性ラクターゼ活性を有することが望ましく、100~50,000ALU/gの活性を有することがより望ましく、1,000~11,000ALU/gの活性を有することがさらに望ましい。「ALU」はAcid Lactase Unitである。活性の測定方法は例えば、以下のとおりである。基質o-ニトロフェニル-β-ガラクトピラノシド(ONPG)を、o-ニトロフェニル及びガラクトースにする加水分解によって測定される。反応は、炭酸ナトリウムの添加によって終了する。形成されたo-ニトロフェニルは、アルカリ媒体中で黄色になり、吸光度の変化が酵素活性(ALU/gで表される)を測定するのに使用される。この手順は、米国食品化学物質規格集(FCC; Food Chemicals Codex)第4版、1996年7月1日、第802~803頁/ラクターゼ(酸性)(β-ガラクトシダーゼ)活性で、公表されている。
 本発明の内部ラクターゼ溶液は、中性ラクターゼ溶液であってもよいし、酸性ラクターゼ溶液であってもよいし、両者が混合された中性~酸性で作用するラクターゼ溶液であってもよい。
 内部ラクターゼ溶液は実質的に透明であることが好ましい。内部ラクターゼ溶液にラクターゼ生産菌等の微生物が多量に含まれると、内部ラクターゼ溶液に濁りが生じ、生産菌自体がフィルターを目詰まりさせるためである。実質的に透明とは内部ラクターゼ溶液を目視したときに濁っていなければよい。ラクターゼ溶液は着色していても良い。具体的には淡黄色から淡褐色の溶液である。
 容器詰めラクターゼ溶液の温度は0℃超20℃以下であることが好ましい。保存時及び輸送時の温度が高くなるにつれて、内部ラクターゼ溶液中に凝集物が発生しやすくなる。
 内部ラクターゼ溶液にはラクターゼタンパク以外に他のタンパク質を含んでもよい。製造コストの観点からは他のタンパク質が含むことがある。
 容器詰めラクターゼ溶液を製造した直後には内部ラクターゼ溶液中にタンパクの凝集物が含まれていないが、保存期間が増えることや、輸送を経ることで、タンパクの凝集物が増大する。タンパク質の凝集物は、ラクターゼタンパク分子同士の凝集物、ラクターゼタンパク分子と他のタンパク質分子の凝集物及び他のタンパク質分子同士の凝集物である。
 ここで、従来の容器詰めラクターゼ溶液は、下記の2点から、ヘッドスペースに余裕を持たせてラクターゼ溶液が容器に充填されている。(1)機械によりラクターゼ溶液を充填する場合、充填量が多いと、ラクターゼ溶液が飛散し、容器の外側に付着することがあるため、別途これを拭き取る作業が生じる。また、充填量を多くするには、充填スピードを下げる必要があり、製造の煩雑化、長期化が生じてしまう。(2)使用者が充填量の多い容器詰めラクターゼ溶液を使用するとき、容器の開口部からラクターゼ溶液が飛散しやすくなり、取扱性に問題がある。
 以下、本発明を構成する材料を説明する。
<容器>
 本発明の容器は、容器内にラクターゼ溶液を充填することができる開口部を有するものであって、その開口部を密閉することができるものであればよい。容器の形状、容量、材質は使用の目的によって適宜調整すればよい。容器の密閉は、例えばネジ付きキャップを締めることでよい。
 容器の形状は、自立することができるものであることが好ましい。プラスチック容器、ドラム缶、コンテナ等を使用することができる。直方体や直方体の角に丸みを持たせたプラスチック容器やコンテナが積載性に優れることから好ましい。
 容器の容量は10mL~20,000kLの範囲内とすることができる。1L~10,000kLの範囲内であることが好ましい。
 容器の材質は、熱硬化型樹脂、紫外線硬化型の樹脂の他、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ酢酸ビニル、ポリウレタン、ポリウレタン、ポリテトラフルオロエチレン、アクリロニトリルブタジエンスチレン樹脂等の熱可塑性の樹脂や、鉄、ステンレス等の金属を使用することができる。好ましくは熱可塑性の樹脂であり、特にポリエチレン、ポリプロピレンである。ポリエチレンとして高密度ポリエチレンを好ましく使用することができる。
≪ラクターゼ溶液の構成成分≫
<ラクターゼ>
(原料生物の種類)
 ラクターゼは、微生物を含む、非常に広範囲の生物から単離されている。ラクターゼは、多くの場合、KluyveromycesやBacillusのような微生物の細胞内または細胞外成分である。Kluyveromyces、特にK.fragilis及びK.lactis、並びに、Candida属、Torula属及びTorulopsis属の酵母などは、酵母酵素ラクターゼの一般的なソースであり、一方、B.coagulans又はB.circulansは細菌ラクターゼのよく知られたソースである。それらの生物に由来するラクターゼ調製物がいくつか商業的に入手可能である。これらラクターゼは全て、最適pHがpH=6~pH=8であるため、所謂、中性ラクターゼである。また、Aspergillus nigerやAspergillus oryzae、Penicillium multicolorは、細胞外ラクターゼを産生し、米国特許第5,736,374号明細書には、Aspergillus oryzaeにより産生された、そのようなラクターゼの例が記載されている。最適pHや最適温度などのラクターゼの酵素特性は種によって変化する。一般に、細胞外ラクターゼは、最適pHがpH=3.5~pH=5.0と低い、所謂、酸性ラクターゼである。
 このほかに、中性及び酸性(pH4~pH10)で作用するBifidobacterium bifidum由来のラクターゼもある。
 これらの微生物に由来するラクターゼ遺伝子を宿主に組み替えて生産することも可能である。宿主には、例えば、アスペルギルス属(Aspergillus)、クルイベロミセス属(Kluyveromyces)、トリコデルマ属(Trichoderma)、大腸菌(Escherichia coli)、ピチア属(Pichia)、サッカロミセス属(Saccharomyces)、ヤロウィア属(Yarrowia)、アカパンカビ属(Neurospora)、ラクトコッカス属(Lactococcus)またはバシラス属(Bacillus)が含まれる。
 本発明においては、中性ラクターゼならびに酸性ラクターゼを使用することが好ましく、特にKluyveromyces属由来の中性ラクターゼ、Aspergillus属由来の酸性ラクターゼ、Bifidobacteirum由来のラクターゼを使用することが好ましい。
 本発明のラクターゼ溶液は、必要に応じ、各種成分を含有していてもよい。具体例としては、ラクターゼの安定化に寄与する金属塩類、各種糖類、アスコルビン酸、グリセリン等、使い勝手をよくするための賦形剤である澱粉、デキストリン、緩衝作用を有する無機塩類等、ラクターゼ溶液中の凝集物を発生しにくくする凝集阻害剤を挙げることができる。
(安定化剤)
 ラクターゼ溶液に含有させる安定化剤の量は、10質量%~90質量%であることが好ましく、20質量%~80質量%であることがより好ましく、30質量%~70質量%であることが更に好ましく、40質量%~60質量%であることが特に好ましい。安定化剤の量が下限値以上であると、ラクターゼ溶液のラクターゼ活性を長期にわたって維持することが容易になる。安定化剤の量が上限値超であると、ラクターゼ溶液の粘度が増すことから、ろ過の時間が長くなり、作業性が低下する。
 安定化剤としては、例えば、グリセリン、ソルビトールがある。
(凝集阻害剤)
 ラクターゼ溶液に含有させる凝集阻害剤は、凝集阻害剤I~IIIがある。
 凝集阻害剤Iは、(タイプ1)HLB12~15の界面活性剤、(タイプ2)脂肪親和性界面活性剤、(タイプ3)ノニオン性脂肪親和性界面活性剤、(タイプ4)ノニオン性界面活性剤、(タイプ5)天然物系界面活性剤、である。より好適には、HLB12~15のノニオン性界面活性剤である。このような凝集阻害剤が系に存在することで、タンパク質の疎水性相互作用が低下又は防止される結果、長時間の撹拌や振とう等でも凝集による目詰まり物質の形成が防止できると理解される。水系溶液中における乳化安定性ならびに疎水性物質の分散効果の高さの点でHLB12~15の界面活性剤が望ましい。なお、これらタイプは、物性や由来等で分けたものであり、あるタイプに属している成分が別のタイプに属する場合もある。また、同一種の界面活性剤を複数組み合わせて使用しても、或いは、異なる種の界面活性剤を複数組み合わせて使用してもよい。
 凝集阻害剤IIとして、ラクターゼその他のタンパク質の表面を覆う作用を有する保護剤を使用することができる。保護剤としては、ポリエーテル及び増粘多糖類を使用することができる。
 凝集阻害剤IIIとして、塩溶効果を有する金属イオン又はその塩が挙げられる。ラクターゼ溶液において適切なイオン強度を得やすいという理由から、金属イオンの中でも、グアニジウムイオン、カルシウムイオンもしくはMgイオン又はそれらの塩が好適である。金属イオン又はその塩を添加することで、溶液のイオン強度が適切になり、ラクターゼ溶液に含まれるラクターゼその他のタンパク質のタンパク質間の疎水性相互作用が減少する。その結果、タンパク質が凝集しにくくなり目詰まり物質の形成に対し低減効果を有するものと理解される。また、同一種の金属イオン又はその塩を複数組み合わせて使用しても、或いは、異なる種の金属イオン又はその塩を複数組み合わせて使用してもよい。
 これら、凝集阻害剤I~IIIは、単独で使用してもよく、異なる種の凝集阻害剤を組み合わせて使用してもよい。例えば、凝集阻害剤I及びII、凝集阻害剤II及びIII、凝集阻害剤I及びIII、並びに、凝集阻害剤I、II及びIIIを併用してもよい。また、凝集阻害剤IIIは単独では効果がわずかであることから凝集阻害剤I及びIII、並びに、凝集阻害剤II及びIIIを併用することが好ましい。
 凝集阻害剤Iは、ラクターゼ溶液に、ラクターゼ溶液の全質量を基準として、好適には0.001質量%~5質量%の範囲、より好適には0.01質量%~1質量%、更に好適には0.1質量%~0.5質量%の範囲で添加することができる。
 凝集阻害剤IIは、ラクターゼ溶液に、ラクターゼ溶液の全質量を基準として、好適には0.05質量%~15質量%の範囲、より好適には0.3質量%~10質量%の範囲、更に好適には0.5質量%~5質量%の範囲で添加することができる。
 凝集阻害剤IIIは、ラクターゼ溶液中において、金属成分として、0.1mM以上20mM以下の濃度であることが好ましく、0.25mM以上15mM以下の濃度であることがより好ましく、0.5mM以上10mM以下の濃度であることが更に好ましく、1mM以上5mM以下の濃度であることが最も好ましい。塩溶効果の高い順にグアニジウムイオン、カルシウムイオン、マグネシウムイオンとなる。マグネシウムイオンはより高い濃度が必要となるが、グアニジウムイオン及びカルシウムイオンはそれより低い濃度でよい。
≪ラクターゼ溶液の製造方法≫
 ラクターゼ溶液の製造方法は、例えば、(1)酵母等の微生物の培養を行った後の、細胞壁の破壊を伴うラクターゼの抽出工程と、(2)当該抽出したラクターゼから、培養物由来の夾雑物等を除去するための精製工程と、を含む。(3)上記のラクターゼ(直前に調製したものでも市販品でもよい)に、必要に応じて添加剤を添加する工程と、(4)除菌のためにろ過する工程と、を含んでいても良い。
 ろ過した後のラクターゼ溶液を所定の容器に所定量充填することで、容器詰めラクターゼ溶液を得ることができる。
≪ラクターゼ溶液の使用方法・用途≫
(ラクターゼ溶液の使用方法)
 ラクターゼ溶液の具体的な利用形態としては、例えば、発酵乳の製造において用いられる。乳糖分解した発酵乳の製造方法は、1.殺菌前の乳にラクターゼを添加して乳糖の分解を行なった後、乳の加熱殺菌と同時にラクターゼを失活させてから乳を発酵させる方法(特開平5-501197号公報)、2.殺菌乳にラクターゼを添加して乳糖の分解を行なった後、加熱処理によってラクターゼを失活させてから乳を発酵させる方法、3.固定化したラクターゼで乳中の乳糖を分解した後、乳を発酵させる方法(特開昭46-105593号公報、特開昭59-162833号公報)、4.予め乳糖分解もしくは乳糖除去した原材料を殺菌乳に用いて発酵させる方法等がある。
 さらに、本発明のラクターゼ溶液の具体的な利用形態として、ロングライフミルクの製造において用いられる。ロングライフミルクは、長期保存牛乳のことで、製造工程は殺菌工程と連続式無菌包装工程からなっており、一般的には、135~150℃数秒間の超高温短時間殺菌法で処理され、あらかじめ過酸化水素で殺菌した紙容器を無菌包装できる工程で充填される。
 ロングライフミルクに添加されるラクターゼ溶液は、一般的に超高温短時間殺菌後の牛乳を充填する際、ろ過除菌の後に添加される。
(ラクターゼ溶液の用途)
 本発明に係るラクターゼ溶液は、乳製品製造用として特に適している。ここで、乳製品とは、アイス、ロングライフミルク等の牛乳類、ヨーグルト、生クリーム、サワークリーム、チーズ等をいう。特に、本発明に係るラクターゼ溶液は、ロングライフミルクの製造用に適している。
(ラクターゼの用途とそのpHプロファイル)
 また、ラクターゼの用途を考える場合には、中性ラクターゼであるか、又は酸性ラクターゼであるかにより大きく2つに大別される。これは、用途におけるpHプロファイルに依るものである。中性pHの用途では、通常、中性ラクターゼが好ましく、酸性ラクターゼは、酸性範囲の用途により適しているといえる。
 以下、本発明を実施例を用いて説明するが、本発明はこれに限定されるものではない。
 以下の実施例等では、ラクターゼ溶液としてYNL(合同酒精株式会社製商品名:GODO-YNL2)を使用した。GODO-YNL2は、Kluyveromyces由来の中性ラクターゼであり、活性は5,000NLU/g、比重1.18(g/mL)、グリセリンを50%(v/v)含むものであった。
(フィルター透過性試験)
 フィルター透過性試験の本実施例における詳細な条件について以下に詳述する。
(フィルター透過性測定手順)
 以下の操作は5~15℃の環境下で実施した。
1.測定装置、ラクターゼ溶液サンプル及び蒸留水を試験環境温度に冷却した。
2.ラクターゼ溶液サンプルを、蒸留水にて希釈するか又は限外ろ過濃縮することで、ラクターゼ活性を1,400~1,600 NLU/gに調整し、よく混ぜ合わせた。
3.試験には、47mmタンク付ステンレスホルダー(アドバンテック東洋社製、製品名「KST-47」)に25mmステンレススチール製フィルターホルダー(PALL社製、製品番号1209(有効膜面積3.7cm))を連結させたものを装置として用いた。前記フィルターホルダー内のサンプル透過部分は、測定サンプルの入り口側からO-リング、メンブレン、サポートスクリーン、アンダードレインディスクを備えた構成となっている(本発明の試験においては、タンク付きステンレスホルダーのフィルター及びフィルター保持部分のパーツ(サポートスクリーンとその支持体)は非装着とした)。メンブレンとしてMerck Millipore社製、製品名DURAPORE(孔径0.22μm,φ25mm、親水性PVDF製)を使用し、サポートスクリーンとして上記フィルターホルダー付属のType316ステンレススチールを使用した。また、透過速度を調節するために、サポートスクリーンの上部(測定サンプルの入り口側)に、直径0.9cmの円形のラベルシール(エーワン株式会社製、製品名 A-oneカラーラベル07010)を4枚左右対称となるよう貼り付け(有効膜面積1.26cm)、メンブレンフィルター(孔径0.22μm)をセットした。メンブレンは、50%グリセリン水溶液にてリンスし、ステンレス製フィルターホルダーに取り付けた。
4.2.において希釈したラクターゼ溶液サンプル(サンプル)を、タンク付ステンレスホルダーへ投入した。
5.エアーコンプレッサー(株式会社八重崎空圧社製、製品名「KAPSEL-CON YC-3R」または「PC4-15HLM」)を用いて0.2MPaの圧力をタンク付ステンレスホルダーに付加し、酵素液を圧送した。透過液はビーカーなどの容器に受け、透過液量を10秒毎に記録し、膜1m換算あたりの(1)透過量(permeate(kg/m))と(2)透過速度(flux(kg/min×m))を以下の方法で求めた。また、(1)をx軸、(2)をy軸にプロットしたときに得られる近似曲線 y=ax+bの傾きaを求めた。
計算式(概念式)
(1)permeate(kg/m)=n点における透過した製品の重量(g)/(膜半径(mm))×膜半径(mm)×円周率)(m)×1000
(2)Flux(kg/min×m)=(n点のpermeate-(n-1)点のpermeate)/(n点の透過時間(min)-(n-1)点の透過時間(min))
※nは測定点を示す。10秒毎の透過量を記録するため、例えば、n点が10秒透過時の透過量又はpermeateである場合、(n-1)点は0秒透過時の透過量又はpermeateである。
(参考例1)
 250mLアイボーイ(広口(アズワン社製、品番5-002-03))に5,000NLU/gのラクターゼ溶液を170g充填し、容器詰めラクターゼ溶液を得た(ヘッドスペース60%)。図4に示すように、容器詰めラクターゼを(a)臥位または(b)立位で振とうした。振とう条件は20℃、振幅30mm、100spm、2時間で行った。
 振とう後の容器詰めラクターゼ溶液を5時間静置しフィルター透過性試験を行った。振とうしなかったものをコントロールとした。結果を図1(a)に示した。容器詰めラクターゼ溶液を振とうすることで内部ラクターゼ溶液のフィルター透過性が悪化した。立位の方が臥位よりもフィルター透過性の悪化が抑制された。
 このことから、内部ラクターゼ溶液とヘッドスペースの界面の表面積を少なくすることでフィルター透過性の悪化が抑制されることが示唆された。
(参考例2)
 参考例1と並行して以下の試験を行った。
 振とう後の容器詰めラクターゼ溶液を翌日まで静置した以外は参考例1と同様にしてフィルター透過性試験を行った。結果を図1(b)に示した。振とう後の静置時間依存的にフィルター透過性が悪化した。
 参考例1および2の結果から、容器詰めラクターゼ溶液を振とうすることで内部ラクターゼ溶液中に凝集物が形成されると、ラクターゼ溶液の保存時間が増大することに伴い、当該凝集物が大きくなり、フィルター透過性が悪化することが示唆された。
(実施例1)
 内部ラクターゼ溶液のラクターゼ活性値が高いと、振とうによるフィルター透過性試験の影響を受けにくい(内部ラクターゼ溶液に凝集物が発生しにくい)ことから、内部ラクターゼ溶液のラクターゼ活性値を希釈して試験を行った。
 100mLアイボーイ(広口(アズワン社製、品番5-002-02)、全容積128.5mL)に1,460NLU/gのラクターゼ溶液(YNL 2を蒸留水で3.42倍(重量比)希釈したもの)を40mL~130mL充填し、各容器詰めラクターゼ溶液を得た。各容器詰めラクターゼ溶液を20℃、100spm、振幅30mm、1時間振とうし、10℃で一晩静置した。
 振とうしなかったものをコントロールとし、フィルター透過性試験を行った。結果の一部を図2に示した。図2はフィルター透過性試験開始後、permeate4.9~286.8までの結果を示している。ただし、fluxが7を切ったものは、そこまでの結果を示している。図2に示したグラフの傾きをエクセルの線形近似から算出し、フィルター透過性試験の指標とした。傾きの値(マイナスの値)が大きいほど、フィルター透過性が悪いことを示す。得られた結果を表1に示した。
Figure JPOXMLDOC01-appb-T000001
 表1に示したヘッドスペースと傾きをプロットし、図3を作成した。容器詰めラクターゼ溶液のヘッドスペースが少なくなるほど、フィルター透過性に優れる傾向にあることを確認することができた。
(実施例2)容器詰めラクターゼ溶液の国内輸送試験
 10Lのプラスチック容器(コダマ樹脂工業株式会社製、タマカン、品番KM-349、ラクターゼ体積換算で全容積11.7L)にヘッドスペースが10または28%になるようYNLを充填し、各容器詰めラクターゼ溶液を得た。この容器詰めラクターゼ溶液を10℃以下で保存しながら、約600km離れた場所まで、トラックで22時間かけて陸上輸送した。輸送後の容器詰めラクターゼ溶液を実施例1と同様に希釈して、1,460NLU/gのラクターゼ溶液を得た後、フィルター透過性試験を行った。その結果を表2に示した。なお、充填量10kgの容器詰めラクターゼ溶液は、合同酒精が市販しているものである。実施例2で使用した内部ラクターゼ溶液のロットは同一であり、実施例1と実施例2で使用した内部ラクターゼ溶液のロットは異なる。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、容器詰めラクターゼ溶液のヘッドスペースを少なくすることで、フィルター透過性が改善することが示された。表2で示した結果は内部ラクターゼ溶液を希釈せずに輸送しているため、凝集物質が発生しにくい状況下での試験である。ここで使用したロットにおいては10kgのものもフィルター透過性試験で問題ない結果を示した。しかしながら、内部ラクターゼ溶液は微生物が産生する物質であることから、フィルター透過性試験でロット差が生じやすい。予期せぬフィルター透過性の悪化を防ぐには、容器詰めラクターゼ溶液のヘッドスペースを少なくすることが好ましいことが示された。
(実施例3)容器詰めラクターゼ溶液の外国輸送試験
 10Lのプラスチック容器(コダマ樹脂工業株式会社製、タマカン、品番KM-349ラクターゼ体積換算で全容積11.7L)にヘッドスペースが1.4~56%になるようYNLを充填し、各容器詰めラクターゼ溶液を得た。この容器詰めラクターゼ溶液を10℃以下で保存しながら、約10,000km離れた場所まで、トラックと船で陸上輸送及び海上輸送した。輸送後の容器詰めラクターゼ溶液を実施例1と同様に希釈して、1,460NLU/gのラクターゼ溶液を得た後、フィルター透過性試験を行った。その結果を表3に示した。充填量10kgの容器詰めラクターゼ溶液は、合同酒精が市販しているものである。実施例3で使用した内部ラクターゼ溶液のロットは同一であり、実施例1、実施例2及び実施例3で使用した内部ラクターゼ溶液のロットはいずれも異なる。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、容器詰めラクターゼ溶液のヘッドスペースを少なくすることで、フィルター透過性が改善することが示された。

Claims (5)

  1.  容器内にラクターゼ溶液が存在する容器詰めラクターゼ溶液であって、
     当該容器内のヘッドスペースを当該容器内の全容積の20%以下にすることを特徴とする容器詰めラクターゼ溶液。
  2.  前記ラクターゼ溶液のラクターゼ活性が10~100,000NLU/gの範囲内であることを特徴とする請求項1に記載の容器詰めラクターゼ溶液。
  3.  前記ラクターゼ溶液が実質的に透明であることを特徴とする請求項1または2に記載の容器詰めラクターゼ溶液。
  4.  前記容器の材質が、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ酢酸ビニル、ポリウレタン、ポリウレタン、ポリテトラフルオロエチレン、アクリロニトリルブタジエンスチレン樹脂から選択されることを特徴とする請求項1~3いずれかに記載の容器詰めラクターゼ溶液。
  5.  前記ラクターゼ溶液の温度及び前記容器の温度が0℃超20℃以下であることを特徴とする請求項1~4いずれかに記載の容器詰めラクターゼ溶液。

     
PCT/JP2021/015649 2020-04-17 2021-04-16 容器詰めラクターゼ溶液 WO2021210659A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21788860.1A EP4137569A4 (en) 2020-04-17 2021-04-16 PACKAGED LACTASE SOLUTION
JP2022515442A JPWO2021210659A1 (ja) 2020-04-17 2021-04-16
CN202180027891.8A CN115443336A (zh) 2020-04-17 2021-04-16 容器装乳糖酶溶液
US17/996,278 US20230217976A1 (en) 2020-04-17 2021-04-16 Packaged lactase solution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020074105 2020-04-17
JP2020-074105 2020-04-17

Publications (1)

Publication Number Publication Date
WO2021210659A1 true WO2021210659A1 (ja) 2021-10-21

Family

ID=78083993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015649 WO2021210659A1 (ja) 2020-04-17 2021-04-16 容器詰めラクターゼ溶液

Country Status (5)

Country Link
US (1) US20230217976A1 (ja)
EP (1) EP4137569A4 (ja)
JP (1) JPWO2021210659A1 (ja)
CN (1) CN115443336A (ja)
WO (1) WO2021210659A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59162833A (ja) 1982-12-28 1984-09-13 ユニリ−バ−・ナ−ムロ−ゼ・ベンノ−トシヤ−プ 乳又は乳製品の処理法
JPH05501197A (ja) 1990-07-30 1993-03-11 ザ ヌトラスウィート カンパニー カロリー低減乳ミックス
JPH0673454B2 (ja) 1983-12-02 1994-09-21 ギスト ブロカデス ナームローゼ フエンノートチヤツプ ラクトース分解酵素の無菌溶液の製造方法
US5736374A (en) 1994-06-29 1998-04-07 Genencor International, Inc. Increased production of β-galactosidase in aspergillus oryzae
JP2004534527A (ja) 2001-04-04 2004-11-18 デーエスエム イーペー アセッツ ベスローテン フェンノートシャップ 精製ラクターゼ
WO2016031885A1 (ja) * 2014-08-27 2016-03-03 合同酒精株式会社 ラクターゼ溶液及びそれを用いた乳
WO2016060224A1 (ja) 2014-10-17 2016-04-21 合同酒精株式会社 ラクターゼ溶液及びそれを用いた乳
JP2022105593A (ja) 2014-05-30 2022-07-14 マジック リープ, インコーポレイテッド 仮想または拡張現実装置を用いて仮想コンテンツ表示を生成する方法およびシステム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013084244A1 (en) * 2011-12-05 2013-06-13 Medreich Limited Stable lactase drops
WO2017184880A1 (en) * 2016-04-20 2017-10-26 Coherus Biosciences, Inc. A method of filling a container with no headspace

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59162833A (ja) 1982-12-28 1984-09-13 ユニリ−バ−・ナ−ムロ−ゼ・ベンノ−トシヤ−プ 乳又は乳製品の処理法
JPH0673454B2 (ja) 1983-12-02 1994-09-21 ギスト ブロカデス ナームローゼ フエンノートチヤツプ ラクトース分解酵素の無菌溶液の製造方法
JPH05501197A (ja) 1990-07-30 1993-03-11 ザ ヌトラスウィート カンパニー カロリー低減乳ミックス
US5736374A (en) 1994-06-29 1998-04-07 Genencor International, Inc. Increased production of β-galactosidase in aspergillus oryzae
JP2004534527A (ja) 2001-04-04 2004-11-18 デーエスエム イーペー アセッツ ベスローテン フェンノートシャップ 精製ラクターゼ
JP2022105593A (ja) 2014-05-30 2022-07-14 マジック リープ, インコーポレイテッド 仮想または拡張現実装置を用いて仮想コンテンツ表示を生成する方法およびシステム
WO2016031885A1 (ja) * 2014-08-27 2016-03-03 合同酒精株式会社 ラクターゼ溶液及びそれを用いた乳
WO2016060224A1 (ja) 2014-10-17 2016-04-21 合同酒精株式会社 ラクターゼ溶液及びそれを用いた乳

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"U.S. Food Chemicals Codex (FCC", 1 July 1996, pages: 802 - 803
CLARK J. PETER: "Insights Into Mixing and Blending", THE INSTITUTE OF FOOD TECHNOLOGISTS (IFT), 1 January 2010 (2010-01-01), XP055858031, Retrieved from the Internet <URL:https://www.ift.org/news-and-publications/food-technology-magazine/issues/2010/january/columns/processing> *
See also references of EP4137569A4

Also Published As

Publication number Publication date
US20230217976A1 (en) 2023-07-13
EP4137569A4 (en) 2024-05-15
JPWO2021210659A1 (ja) 2021-10-21
EP4137569A1 (en) 2023-02-22
CN115443336A (zh) 2022-12-06

Similar Documents

Publication Publication Date Title
Teh et al. Biofilm− An unrecognised source of spoilage enzymes in dairy products?
CN106661565B (zh) 乳糖酶溶液及使用其的乳
JP5413545B1 (ja) 過酢酸系殺菌組成液及び容器の殺菌方法
AU2006208823B2 (en) Novel bioactive packages and the closures thereof
JP5959132B1 (ja) ラクターゼ溶液及びそれを用いた乳
NZ503458A (en) The preparation of a stable, aqueous suspension of a starter culture where the propagation of a mother culture into the bulk starter is not required
MX2008013182A (es) Composicion liquida que comprende una proteasa aspartica.
WO2021210659A1 (ja) 容器詰めラクターゼ溶液
JP2004534527A (ja) 精製ラクターゼ
EP0305005B1 (en) Food-grade oxygen scavenger for water containing products
CN104136362B (zh) 在铝制容器中包装葡萄酒
CA2859699A1 (en) Wine packaged in aluminium containers
WO1980001034A1 (en) Process for producing a solution of lactose decomposition product
WO2023106420A1 (ja) ラクターゼ溶液
WO2019039969A1 (ru) Вино с высокой антиоксидантной активностью
CN104169207B (zh) 装有葡萄酒的经灌装的铝容器及其灌装葡萄酒的方法
WO1995001292A1 (en) Packaging of enzymes
Ratanapongleka The enzymatic removal of lactose from skimmed milk using a membrane reactor
GB2444157A (en) Package comprising yeast contained within semi-permeable membrane for use in primary or secondary fermentation process in manufacture of alcoholic beverages

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21788860

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022515442

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021788860

Country of ref document: EP

Effective date: 20221117

NENP Non-entry into the national phase

Ref country code: DE