WO2018225601A1 - 洗浄液 - Google Patents

洗浄液 Download PDF

Info

Publication number
WO2018225601A1
WO2018225601A1 PCT/JP2018/020724 JP2018020724W WO2018225601A1 WO 2018225601 A1 WO2018225601 A1 WO 2018225601A1 JP 2018020724 W JP2018020724 W JP 2018020724W WO 2018225601 A1 WO2018225601 A1 WO 2018225601A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
liquid
static
dynamic
fine bubbles
Prior art date
Application number
PCT/JP2018/020724
Other languages
English (en)
French (fr)
Inventor
隆 井合
Original Assignee
大同メタル工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大同メタル工業株式会社 filed Critical 大同メタル工業株式会社
Priority to CN201880037631.7A priority Critical patent/CN110709178A/zh
Priority to US16/618,966 priority patent/US20200164413A1/en
Priority to GB1919437.2A priority patent/GB2578248A/en
Priority to DE112018002906.9T priority patent/DE112018002906T5/de
Publication of WO2018225601A1 publication Critical patent/WO2018225601A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • B08B3/102Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration with means for agitating the liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/02Cleaning by the force of jets or sprays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B5/00Cleaning by methods involving the use of air flow or gas flow
    • B08B5/02Cleaning by the force of jets, e.g. blowing-out cavities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/04Cleaning by methods not provided for in a single other subclass or a single group in this subclass by a combination of operations
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/08Liquid soap, e.g. for dispensers; capsuled
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/02Inorganic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B2203/00Details of cleaning machines or methods involving the use or presence of liquid or steam
    • B08B2203/007Heating the liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B2203/00Details of cleaning machines or methods involving the use or presence of liquid or steam
    • B08B2203/02Details of machines or methods for cleaning by the force of jets or sprays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B2205/00Details of machines or methods for cleaning by the use of gas or air flow

Definitions

  • the present invention relates to a cleaning liquid containing a group of fine bubbles in a liquid.
  • Patent Document 1 discloses a microbubble generator. A gas is blown into the liquid when generating the fine bubbles. The gas is heated to a higher temperature than the liquid. Based on the temperature difference, heat is taken from the gas to the liquid, the temperature inside the bubble is lowered, and as a result, the bubble is reduced.
  • Fine bubbles are used for water treatment.
  • the fine bubbles are expected to have a solid separation and sterilization effect.
  • Patent Document 1 does not mention the cleaning effect of the fine bubbles.
  • the object of the present invention is to provide a cleaning solution that exhibits a significantly better cleaning effect than before.
  • the static liquid having the first temperature, the dynamic liquid flowing toward the object held in the static liquid, and the flow of the dynamic liquid being involved in the flow of the dynamic liquid A cleaning liquid comprising a group of fine bubbles formed of a gas having a second temperature different from the first temperature flowing toward the object is provided.
  • a static liquid having a first temperature and a second liquid having a second temperature different from the first temperature and flowing toward an object held in the static liquid.
  • a cleaning liquid is provided that includes a liquid and a group of fine bubbles that are entrained in the flow of the dynamic liquid and flow toward the object.
  • the surface of the object comes into contact with the static liquid and thus approaches the first temperature.
  • the temperature locally changes in the fine bubbles due to the difference between the first temperature and the second temperature.
  • the local temperature change causes a local volume fluctuation in the fine bubbles, and as a result, the fine bubbles are distorted as compared with the normal case, and the fine bubbles are largely changed to a non-spherical shape.
  • a non-spherical microbubble tends to enter a boundary (interface contour) between a substance (for example, a contaminant) adhering to the surface of an object and the surface of the object, as compared to a spherical microbubble.
  • nonspherical microbubbles have a chemical binding force with a substance (for example, a contaminant) that adheres to the surface of an object due to uneven distribution of local surface energy due to nonspherical shape, compared with spherical microbubbles. It is also considered large. As a result, the fine bubbles form an adsorbent with the substance to be fixed, and promote peeling from the surface of the object. In this way, the material peels off the surface of the object. The material is separated from the object.
  • a substance for example, a contaminant
  • the static liquid at the first temperature and the dynamic liquid at the second temperature are mixed to generate a temperature distribution.
  • the microbubbles are exposed to the temperature distribution.
  • the local temperature change causes a local volume fluctuation in the fine bubbles, and as a result, the fine bubbles are distorted as compared with the normal case, and the fine bubbles are largely changed to a non-spherical shape.
  • a non-spherical microbubble tends to enter a boundary (interface contour) between a substance (for example, a contaminant) adhering to the surface of an object and the surface of the object, as compared to a spherical microbubble.
  • nonspherical microbubbles have a chemical binding force with a substance (for example, a contaminant) that adheres to the surface of an object due to uneven distribution of local surface energy due to nonspherical shape, compared with spherical microbubbles. It is also considered large. As a result, the fine bubbles form an adsorbent with the substance to be fixed, and promote peeling from the surface of the object. In this way, the material peels off the surface of the object. The material is separated from the object.
  • a substance for example, a contaminant
  • FIG. 1 is a conceptual diagram showing an overall image of a cleaning apparatus according to an embodiment of the present invention.
  • FIG. 2 is a graph showing the relationship between the temperature condition and the weight of the remaining chips.
  • FIG. 3 is a graph showing the relationship between temperature conditions and the concentration of oil recovered in the solvent.
  • FIG. 1 shows an overall view of a cleaning apparatus according to a first embodiment of the present invention.
  • the cleaning device 11 includes a liquid tank 12.
  • a liquid (hereinafter referred to as “static liquid”) 13 is provided in the liquid tank 12.
  • the static liquid 13 a liquid in which an electrolyte, a surfactant, a gas, or the like is dissolved using pure water or an organic solvent as a solvent can be used.
  • the static liquid 13 natural convection based on the temperature distribution is allowed, but it is desirable that forced liquid movement due to power is eliminated.
  • a first temperature control device 14 is connected to the liquid tank 12.
  • the first temperature adjusting device 14 includes, for example, a heat exchanger immersed in the static liquid 13.
  • the first temperature adjustment device 14 adjusts the temperature of the static liquid 13 in the liquid tank 12. In adjusting the temperature, thermal energy is applied (or taken away) from the first temperature adjusting device 14 to the static liquid 13. Thermal energy (plus or minus) may be transferred to the static liquid 13 in any way.
  • the temperature of the static liquid 13 is maintained at the first temperature by the action of the first temperature adjusting device 14. It is desirable that the first temperature is set to 80 degrees Celsius or less.
  • the static liquid 13 is pure water or an aqueous solution
  • the temperature of the pure water or aqueous solution exceeds 80 degrees Celsius, the bubbles cannot stably maintain a high number density.
  • the first temperature is set to 25 degrees Celsius. If the first temperature is set close to room temperature, the energy expended in maintaining the first temperature can be minimized.
  • a liquid flow generator 15 is connected to the liquid tank 12.
  • the liquid flow generator 15 has a supply port 15 a that opens into the static liquid 13.
  • the liquid flow generator 15 pours liquid into the static liquid 13 from the supply port 15a.
  • the flow rate (flow rate) is set to 3.0 to 30.0 [L / min].
  • a liquid flow (hereinafter referred to as “dynamic liquid”) 16 is generated in the static liquid 13.
  • the dynamic liquid 16 includes liquid that forces relative movement with the static liquid 13. Such forced relative movement may be achieved in the form of an impeller jet.
  • a liquid source 17 is connected to the liquid flow generator 15.
  • the liquid source 17 supplies liquid to the liquid flow generator 15.
  • the liquid may be the same liquid as the static liquid 13.
  • a second temperature adjusting device 18 is connected to the liquid source 17.
  • the second temperature adjusting device 18 adjusts the temperature of the liquid in the liquid source 17. In adjusting the temperature, thermal energy is applied (or taken away) from the second temperature adjusting device 18 to the liquid. Thermal energy (plus or minus) may be transferred to the liquid in any way.
  • the temperature of the dynamic liquid 16 is set to the first temperature equal to the temperature of the static liquid 13 by the action of the second temperature adjusting device 18.
  • a bubble generator 21 is connected to the liquid tank 12.
  • the bubble generating device 21 has a supply port 21 a that opens into the static liquid 13.
  • the bubble generating device 21 blows fine bubbles into the static liquid 13 from the supply port 21a.
  • a flow of the fine bubble group 22 is formed in the static liquid 13.
  • Microbubbles include microbubbles and nanobubbles.
  • the fine bubble group 22 may be an aggregate of bubbles having an average diameter equal to or less than a specified value.
  • the diameter of the bubbles can be set based on the diameter of the micropores installed in the supply port 21a.
  • the diameter of the micropore is set to 50 ⁇ m or less.
  • the bubble diameter is 1 ⁇ m or less.
  • the concentration of bubbles having a diameter of 1 ⁇ m or less is desirably 1 ⁇ 10 6 or more per milliliter.
  • a gas source 23 is connected to the bubble generating device 21.
  • the gas source 23 supplies gas to the bubble generating device 21.
  • the gas is not limited to air, nitrogen, hydrogen, or the like, and may be any kind of gas.
  • a third temperature adjusting device 24 is connected to the gas source 23.
  • the third temperature adjustment device 24 adjusts the temperature of the gas from the gas source 23. In adjusting the temperature, heat energy is applied (or taken away) from the third temperature adjusting device 24 to the gas. Thermal energy (plus or minus) may be transferred to the gas in any way.
  • the temperature of the gas is set to a second temperature higher than the first temperature by the action of the third temperature adjusting device 24.
  • the second temperature is set to 60 degrees Celsius, for example.
  • the cleaning device 11 has a holder 25 that holds the workpiece W.
  • the holder 25 is immersed in the static liquid 13.
  • An object to be cleaned W is fixed to the tip of the holder 25.
  • the article to be cleaned W is held in the static liquid 13.
  • the supply port 15 a of the liquid flow generator 15 is directed to the article W to be cleaned on the holder 25.
  • a liquid flow is generated toward the object to be cleaned W.
  • the supply port 21 a of the bubble generating device 21 is directed to the object to be cleaned W on the holder 25. In this way, a flow of the fine bubble group 22 toward the object to be cleaned W is generated.
  • the vector indicating the direction of the liquid flow and the vector indicating the direction of the flow of the fine bubble group 22 intersect on the workpiece W at an acute angle. More preferably, the angle ⁇ of both vectors is less than 90 °. According to such an angle ⁇ , the fine bubble group 22 can be easily caught in the liquid flow and reach the article to be cleaned W.
  • the angle ⁇ may be set to a numerical value that realizes the entrainment of the fine bubble group 22 with respect to the liquid flow.
  • the flow of the fine bubble group 22 may be set upward in the vertical direction (opposite to the direction of gravity).
  • the positioning mechanism 26 may be connected to the holder 25.
  • the positioning mechanism 26 exhibits a driving force that generates movement of the holder 25 along a horizontal plane, for example.
  • the dynamic liquid 16 and the fine bubble group 22 can be directed to the target position on the workpiece W.
  • a wide range of cleaning of the cleaning surface can be realized.
  • the liquid tank 12 instead of driving the holder 25, the liquid tank 12 may move relative to the fixed holder 25.
  • the orientation of the supply ports 15 a and 21 a may be changed with respect to the holder 25 and the liquid tank 12 to be fixed.
  • the liquid flow generating device 15 When the cleaning device 11 is activated, the liquid flow generating device 15 generates a liquid flow at the first temperature toward the object W to be cleaned. A dynamic liquid 16 is generated in the static liquid 13.
  • the bubble generating device 21 blows the fine bubble group 22 having a second temperature higher than the first temperature toward the object W to be cleaned.
  • the blown microbubbles 22 are entrained in the flow of the dynamic liquid 16.
  • the cleaning liquid according to the present embodiment is generated according to the combination of the static liquid 13, the dynamic liquid 16, and the fine bubble group 22.
  • the first temperature is set to 25 degrees Celsius
  • the second temperature is set to 60 degrees Celsius.
  • the surface (cleaning surface) of the workpiece W comes into contact with the static liquid 13, it approaches the first temperature. Due to the difference between the first temperature and the second temperature, the temperature locally changes in the fine bubbles, and the fine bubbles in the fine bubble group 22 come into contact with the surface of the article W to be cleaned.
  • the local temperature change causes a local volume fluctuation in the fine bubbles, and as a result, the fine bubbles are distorted as compared with the normal case, and the fine bubbles are largely changed to a non-spherical shape.
  • the non-spherical fine bubbles are likely to enter the boundary (outline of the interface) between the substance (for example, a contaminant) that adheres to the surface of the article W to be cleaned and the surface of the article W to be cleaned, as compared to the spherical fine bubbles. In this way, peeling is promoted at the interface. As the separation progresses, the gas enters the inside from the contour. The material peels off the surface of the object. The substance is separated from the object to be cleaned W.
  • the non-spherical fine bubbles are chemically different from the substances (for example, contaminants) adhering to the surface of the object W to be cleaned due to the uneven distribution of the local surface energy due to the non-spherical shape compared to the spherical fine bubbles. It is thought that the binding force is large. As a result, the fine bubbles form an adsorbent with the substance to be fixed, and promote peeling from the surface of the object W to be cleaned. In this way, the substance is peeled off from the surface of the article W to be cleaned. The substance is separated from the object to be cleaned W.
  • the cleaning device according to the second embodiment has the same device configuration as the cleaning device 11 according to the first embodiment.
  • the dynamic liquid 16 is set to a second temperature different from the first temperature of the static liquid 13, and the gas in the fine bubble group 22 is set to the first temperature equal to the static liquid 13.
  • the second temperature is set to a temperature higher than the first temperature.
  • the first temperature may be set to 25 degrees Celsius as described above, and the second temperature may be set to 60 degrees Celsius similarly.
  • the static liquid 13 having the first temperature and the dynamic liquid 16 having the second temperature are mixed to generate a temperature distribution.
  • the microbubble group 22 is exposed to a temperature distribution.
  • the local temperature change causes a local volume fluctuation in the fine bubbles, and as a result, the fine bubbles are distorted as compared with the normal case, and the fine bubbles are largely changed to a non-spherical shape.
  • the non-spherical fine bubbles are likely to enter the boundary (outline of the interface) between the substance (for example, a contaminant) that adheres to the surface of the article W to be cleaned and the surface of the article W to be cleaned, as compared to the spherical fine bubbles. In this way, peeling is promoted at the interface. As the separation progresses, the gas enters the inside from the contour. The substance peels from the surface of the article W to be cleaned. The substance is separated from the object to be cleaned W.
  • the non-spherical fine bubbles are chemically different from the substances (for example, contaminants) adhering to the surface of the object W to be cleaned due to the uneven distribution of the local surface energy due to the non-spherical shape compared to the spherical fine bubbles. It is thought that the binding force is large. As a result, the fine bubbles form an adsorbent with the substance to be fixed, and promote peeling from the surface of the object W to be cleaned. In this way, the substance is peeled off from the surface of the article W to be cleaned. The substance is separated from the object to be cleaned W. (3) Verification
  • the inventor performed verification following the cleaning apparatus 11 according to the first embodiment and the second embodiment described above.
  • the temperature conditions of the static liquid 13, the dynamic liquid 16, and the fine bubble group 22 were observed.
  • Pure water was used as the static liquid 13.
  • 50 liters of pure water was stored in the liquid tank 12.
  • Pure water was supplied from the liquid source 17 to the liquid flow generator 15.
  • the temperature of pure water (first temperature TD) was adjusted.
  • the flow rate of the dynamic liquid 16 was set to 20.0 [L / min].
  • Air bubbles were supplied from the gas source 23 to the bubble generating device 21.
  • the temperature of the air (second temperature TB) was adjusted.
  • the amount of fine bubbles was set to about 1 ⁇ 10 6 per milliliter.
  • the diameter of the fine bubbles was set to 500 nm or less, and the average diameter was approximately 200 nm.
  • a film having a through-hole having a diameter of 500 nm or less was used for forming fine bubbles.
  • the fine bubble group 22 was continuously blown into the static liquid 13 for 10 minutes.
  • a basket was used for the holder 25.
  • a machine part is mounted on the basket as a cleaning object W.
  • the mechanical part was composed of 10 cubic metal bodies each having a side of 50 [mm]. Chips at the time of cutting were adhered to the surface of the machine parts together with oil. After washing for 10 minutes, the amount of chips and oil remaining on the surface of the machine part was measured. In measuring the amount of chips, the machine parts after washing were subjected to high pressure washing. The washed chips were collected with filter paper. The weight [milligram] of the collected chips was measured using an electronic balance. On the other hand, the machine parts after washing were immersed in a solvent when measuring the amount of oil. The concentration [ppm] of the oil dissolved in the solvent was measured.
  • the bubble temperature TB was set higher than the temperature TD of the dynamic liquid 16. At this time, the temperature TD of the dynamic liquid 16 was set to the first temperature. The bubble temperature TB was set to two different second temperatures. In condition 1, a temperature difference of 15 degrees Celsius was set between the temperature TD of the dynamic liquid 16 and the temperature TB of the bubbles. In condition 2, a temperature difference of 35 degrees Celsius was set between the temperature TD of the dynamic liquid 16 and the temperature TB of the bubbles.
  • the bubble temperature TB was set lower than the temperature TD of the dynamic liquid 16. At this time, the temperature TB of the bubbles was set to the first temperature. In condition 3, a temperature difference of 15 degrees Celsius was set between the temperature TD of the dynamic liquid 16 and the temperature TB of the bubbles. In condition 4, a temperature difference of 35 degrees Celsius was set between the temperature TD of the dynamic liquid 16 and the temperature TB of the bubbles.
  • the temperature TL of the static liquid 13 the temperature TD of the dynamic liquid 16, and the temperature TB of the bubbles were set to different temperatures.
  • a temperature difference of 20 degrees Celsius was set between the temperature TD of the dynamic liquid 16 and the temperature TB of the bubbles.
  • the temperature TD of the dynamic liquid 16 was set higher than the bubble temperature TB.
  • the bubble temperature TB was set higher than the temperature TD of the dynamic liquid 16.
  • the present inventor set two kinds of comparison conditions. Under any of the comparison conditions, the temperature TL of the static liquid 13, the temperature TD of the dynamic liquid 16, and the bubble temperature TB were set to be equal in any case. In comparison condition 1, all the temperatures TL, TD, TB were set equal at 25 degrees Celsius, and in comparison condition 2, any temperature TL, TD, TB was set equal at 50 degrees Celsius.
  • Condition 5 the temperature TB of the bubble deviates in the increasing direction from the temperature TL of the static liquid 13 as compared with Condition 4, and the temperature TL of the static liquid 13, the temperature TD of the dynamic liquid 16, and It was confirmed that the removal of chips was further promoted when the bubble temperature TB was different.
  • condition 6 compared to condition 2
  • the temperature TD of the dynamic liquid 16 deviates from the temperature TL of the static liquid 13 in the increasing direction, and the temperature TL of the static liquid 13 and the dynamic liquid 16 It was confirmed that when both the temperature TD and the bubble temperature TB are different, the removal of chips is further promoted.
  • Condition 5 the temperature TB of the bubble deviates in the increasing direction from the temperature TL of the static liquid 13 as compared with Condition 4, and the temperature TL of the static liquid 13, the temperature TD of the dynamic liquid 16, and It was confirmed that oil removal was further promoted when the bubble temperature TB was different.
  • condition 6 compared to condition 2
  • the temperature TD of the dynamic liquid 16 deviates from the temperature TL of the static liquid 13 in the increasing direction, and the temperature TL of the static liquid 13 and the dynamic liquid 16 It was confirmed that when both the temperature TD and the bubble temperature TB are different, oil removal is further promoted.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Detergent Compositions (AREA)

Abstract

洗浄液は、第1温度の静的液体(13)と、静的液体(13)中に保持される対象物に向かって流れる動的液体(16)と、動的液体(16)の流れに巻き込まれて対象物に向かって流れる第1温度から相違する第2温度の気体で形成される微細気泡群(22)とを備える。これにより、これまでに比べて飛躍的に良好な洗浄効果を発揮する洗浄液を提供することができる。

Description

洗浄液
 本発明は、液体中に微細気泡群を含有する洗浄液に関する。
 特許文献1は微細気泡発生装置を開示する。微細気泡の生成にあたって液体中に気体が吹き出される。気体は液体よりも高温に加熱される。温度差に基づき気体から液体に熱が奪われ、気泡内の温度が低下し、その結果、気泡は縮小する。
日本特開2008-168221号公報
 微細気泡は上水の処理に用いられる。微細気泡には固形物の分離や殺菌効果が期待される。特許文献1では微細気泡群の洗浄効果は言及されていない。
 本発明は、これまでに比べて飛躍的に良好な洗浄効果を発揮する洗浄液を提供することを目的とする。
 本発明の第1側面によれば、第1温度の静的液体と、前記静的液体中に保持される対象物に向かって流れる動的液体と、前記動的液体の流れに巻き込まれて前記対象物に向かって流れる前記第1温度から相違する第2温度の気体で形成される微細気泡群とを備える洗浄液は提供される。
 本発明の第2側面によれば、第1温度の静的液体と、前記第1温度から相違する第2温度を有し、前記静的液体中に保持される対象物に向かって流れる動的液体と、前記動的液体の流れに巻き込まれて前記対象物に向かって流れる微細気泡群とを備える洗浄液は提供される。
 第1側面によれば、対象物の表面は静的液体に接触することから、第1温度に近づく。微細気泡が対象物の表面に接触すると、第1温度および第2温度の相違から微細気泡内で局所的に温度が変化する。局所的な温度変化は微細気泡内で局所的な体積変動を引き起こし、その結果、通常に比べて微細気泡にゆがみが発生し、微細気泡は非球形に大きく変化する。非球形の微細気泡は、球形の微細気泡に比べて、物体の表面に固着する物質(例えば汚染体)と物体の表面との境界(界面の輪郭)に進入しやすい。こうして界面で剥離が促進される。剥離の進行に伴って輪郭から内側に気体は進入していく。物質は物体の表面から剥離する。物質は物体から分離される。また、非球形の微細気泡は、球形の微細気泡に比べて、非球形ゆえの局所的な表面エネルギーの偏在により、物体の表面に固着する物質(例えば汚染体)との化学的な結合力が大きいとも考えられる。その結果、微細気泡は固着する物質との間で吸着体を形成し、物体の表面から剥離を促進する。こうして物質は物体の表面から剥離する。物質は物体から分離される。
 第2側面によれば、対象物の表面近傍では第1温度の静的液体と第2温度の動的液体とが混ざり合い、温度分布が生じる。微細気泡群は温度分布に曝される。その結果、微細気泡内で局所的に温度が変化する。局所的な温度変化は微細気泡内で局所的な体積変動を引き起こし、その結果、通常に比べて微細気泡にゆがみが発生し、微細気泡は非球形に大きく変化する。非球形の微細気泡は、球形の微細気泡に比べて、物体の表面に固着する物質(例えば汚染体)と物体の表面との境界(界面の輪郭)に進入しやすい。こうして界面で剥離が促進される。剥離の進行に伴って輪郭から内側に気体は進入していく。物質は物体の表面から剥離する。物質は物体から分離される。また、非球形の微細気泡は、球形の微細気泡に比べて、非球形ゆえの局所的な表面エネルギーの偏在により、物体の表面に固着する物質(例えば汚染体)との化学的な結合力が大きいとも考えられる。その結果、微細気泡は固着する物質との間で吸着体を形成し、物体の表面から剥離を促進する。こうして物質は物体の表面から剥離する。物質は物体から分離される。
図1は本発明の一実施形態に係る洗浄装置の全体像を示す概念図である。 図2は温度条件と、残留する切粉の重量との関係を示すグラフである。 図3は温度条件と、溶剤中に回収された油の濃度との関係を示すグラフである。
11…洗浄装置
13…静的液体
16…動的液体
22…微細気泡群
 以下、添付図面を参照しつつ本発明の一実施形態を説明する。
(1)第1実施形態に係る洗浄装置
 図1は本発明の第1実施形態に係る洗浄装置の全体像を示す。洗浄装置11は液槽12を備える。液槽12には液体(以下「静的液体」という)13が湛えられる。静的液体13には、純水のほか、水や有機溶剤を溶媒として電解質、界面活性剤、気体などが溶解している液体が用いられることができる。静的液体13では、温度分布に基づく自然な対流は許容されるものの、動力による強制的な液体の動きは排除されることが望まれる。
 液槽12には第1温度調整装置14が接続される。第1温度調整装置14は例えば静的液体13中に浸される熱交換器を含む。第1温度調整装置14は液槽12内の静的液体13の温度を調整する。温度の調整にあたって静的液体13には第1温度調整装置14から熱エネルギーが加えられる(あるいは奪われる)。熱エネルギー(プラスであってもマイナスであっても)はいかなる方法で静的液体13に伝達されてもよい。ここでは、第1温度調整装置14の働きで静的液体13の温度は第1温度に維持される。第1温度は摂氏80度以下に設定されることが望まれる。静的液体13が例えば純水または水溶液の場合には、純水または水溶液の温度が摂氏80度を超えると、気泡は安定的に高い個数密度を維持できない。ここでは、第1温度は摂氏25度に設定される。第1温度が室温に近く設定されれば、第1温度の維持にあたって費やされるエネルギーは最小化されることができる。
 液槽12には液流発生装置15が接続される。液流発生装置15は静的液体13中に開口する供給口15aを有する。液流発生装置15は供給口15aから静的液体13中に液体を流し込む。流速(流量)は3.0~30.0[L/min]に設定される。こうして静的液体13中に液流(以下「動的液体」という)16は生成される。動的液体16は強制的に静的液体13との間に相対移動を生み出す液体を含む。そういった強制的な相対移動はインペラーによる噴流といった形で達成されればよい。
 液流発生装置15には液体源17が接続される。液体源17は液流発生装置15に液体を供給する。液体は静的液体13と同じ液体であればよい。液体源17には第2温度調整装置18が接続される。第2温度調整装置18は液体源17の液体の温度を調整する。こうした温度の調整にあたって液体には第2温度調整装置18から熱エネルギーが加えられる(あるいは奪われる)。熱エネルギー(プラスであってもマイナスであっても)はいかなる方法で液体に伝達されてもよい。ここでは、第2温度調整装置18の働きで動的液体16の温度は静的液体13の温度に等しく第1温度に設定される。
 液槽12には気泡発生装置21が接続される。気泡発生装置21は静的液体13中に開口する供給口21aを有する。気泡発生装置21は供給口21aから静的液体13中に微細気泡を吹き込む。静的液体13中には微細気泡群22の流れが形成される。微細気泡はマイクロバブルおよびナノバブルを含む。微細気泡群22は規定値以下の平均径の気泡の集合体であればよい。気泡の径は供給口21aに設置される微細孔の直径に基づき設定されることができる。微細孔の直径は50μm以下に設定される。好ましくは、気泡の径は1μm以下であるとよい。直径1μm以下の気泡濃度は1ミリリットル当たり1x10個以上であることが望まれる。
 気泡発生装置21には気体源23が接続される。気体源23は気泡発生装置21に気体を供給する。気体は空気や窒素、水素などに限られずいかなる種類の気体であってもよい。気体源23には第3温度調整装置24が接続される。第3温度調整装置24は気体源23の気体の温度を調整する。こうした温度の調整にあたって気体には第3温度調整装置24から熱エネルギーが加えられる(あるいは奪われる)。熱エネルギー(プラスであってもマイナスであっても)はいかなる方法で気体に伝達されてもよい。ここでは、第3温度調整装置24の働きで気体の温度は第1温度よりも高い第2温度に設定される。第2温度は例えば摂氏60度に設定される。
 洗浄装置11は、被洗浄物Wを保持する保持具25を有する。保持具25は静的液体13中に浸される。保持具25の先端に被洗浄物Wは固定される。被洗浄物Wは静的液体13中で保持される。液流発生装置15の供給口15aは保持具25上の被洗浄物Wに向けられる。こうして被洗浄物Wに向かって液流は生成される。気泡発生装置21の供給口21aは同様に保持具25上の被洗浄物Wに向けられる。こうして被洗浄物Wに向かって微細気泡群22の流れは生成される。ここでは、液流の方向を示すベクトルと、微細気泡群22の流れの方向を示すベクトルとは鋭角で被洗浄物W上で交差することが望まれる。さらに好ましくは、両ベクトルの角度αは90°未満であることが望まれる。こうした角度αによれば、微細気泡群22は容易に液流に巻き込まれて被洗浄物Wに到達することができる。その他、液流の流速および微細気泡群22の流速に応じて角度αは液流に対する微細気泡群22の巻き込みを実現する数値に設定されればよい。微細気泡群22の流れは鉛直方向に上向き(重力方向の反対向き)に設定されるとよい。
 保持具25には位置決め機構26が接続されてもよい。位置決め機構26は例えば水平面に沿って保持具25の移動を生み出す駆動力を発揮する。こうした保持具25の移動に応じて、被洗浄物W上の目標位置に動的液体16および微細気泡群22は向けられることができる。広い範囲で洗浄面の洗浄は実現されることができる。その他、保持具25の駆動に代えて、固定される保持具25に対して相対的に液槽12が移動してもよい。あるいは、固定される保持具25および液槽12に対して供給口15a、21aの向きが変更されてもよい。
 洗浄装置11が作動すると、液流発生装置15は被洗浄物Wに向かって第1温度の液流を生成する。静的液体13中で動的液体16が生成される。気泡発生装置21は被洗浄物Wに向かって第1温度よりも高い第2温度の微細気泡群22を吹き込む。吹き込まれた微細気泡群22は動的液体16の流れに巻き込まれる。こうして静的液体13、動的液体16および微細気泡群22の組み合わせに応じて本実施形態に係る洗浄液は生成される。ここでは、例えば第1温度は摂氏25度に設定され、第2温度は摂氏60度に設定される。
 被洗浄物Wの表面(洗浄面)は静的液体13に接触することから、第1温度に近づく。第1温度および第2温度の相違から微細気泡内で局所的に温度が変化し、微細気泡群22の微細気泡が被洗浄物Wの表面に接触する。局所的な温度変化は微細気泡内で局所的な体積変動を引き起こし、その結果、通常に比べて微細気泡にゆがみが発生し、微細気泡は非球形に大きく変化する。非球形の微細気泡は、球形の微細気泡に比べて、被洗浄物Wの表面に固着する物質(例えば汚染体)と被洗浄物Wの表面との境界(界面の輪郭)に進入しやすい。こうして界面で剥離が促進される。剥離の進行に伴って輪郭から内側に気体は進入していく。物質は物体の表面から剥離する。物質は被洗浄物Wから分離される。また、非球形の微細気泡は、球形の微細気泡に比べて、非球形ゆえの局所的な表面エネルギーの偏在により、被洗浄物Wの表面に固着する物質(例えば汚染体)との化学的な結合力が大きいとも考えられる。その結果、微細気泡は固着する物質との間で吸着体を形成し、被洗浄物Wの表面から剥離を促進する。こうして物質は被洗浄物Wの表面から剥離する。物質は被洗浄物Wから分離される。
(2)第2実施形態に係る洗浄装置
 第2実施形態に係る洗浄装置は第1実施形態に係る洗浄装置11と同じ装置構成を有する。ただし、動的液体16は静的液体13の第1温度から相違する第2温度に設定され、微細気泡群22の気体は静的液体13に等しく第1温度に設定される。ここでは、第2温度は第1温度よりも高い温度に設定される。第1温度は前述と同様に摂氏25度に設定されればよく、第2温度は同様に摂氏60度に設定されればよい。
 この場合には、被洗浄物Wの表面近傍では第1温度の静的液体13と第2温度の動的液体16とが混ざり合い、温度分布が生じる。微細気泡群22は温度分布に曝される。その結果、微細気泡内で局所的に温度が変化する。局所的な温度変化は微細気泡内で局所的な体積変動を引き起こし、その結果、通常に比べて微細気泡にゆがみが発生し、微細気泡は非球形に大きく変化する。非球形の微細気泡は、球形の微細気泡に比べて、被洗浄物Wの表面に固着する物質(例えば汚染体)と被洗浄物Wの表面との境界(界面の輪郭)に進入しやすい。こうして界面で剥離が促進される。剥離の進行に伴って輪郭から内側に気体は進入していく。物質は被洗浄物Wの表面から剥離する。物質は被洗浄物Wから分離される。また、非球形の微細気泡は、球形の微細気泡に比べて、非球形ゆえの局所的な表面エネルギーの偏在により、被洗浄物Wの表面に固着する物質(例えば汚染体)との化学的な結合力が大きいとも考えられる。その結果、微細気泡は固着する物質との間で吸着体を形成し、被洗浄物Wの表面から剥離を促進する。こうして物質は被洗浄物Wの表面から剥離する。物質は被洗浄物Wから分離される。
(3)検証
 本発明者は前述の第1実施形態および第2実施形態に係る洗浄装置11に倣って検証を実施した。検証では静的液体13、動的液体16および微細気泡群22の温度条件が観察された。静的液体13には純水が用いられた。観察にあたって液槽12には50リットルの純水が溜められた。純水の温度(=TL)は摂氏25度に設定された。液流発生装置15には液体源17から純水が供給された。純水の温度(第1温度TD)は調整された。動的液体16の流量は20.0[L/min]に設定された。
 気泡発生装置21には気体源23から大気(空気)が供給された。空気の温度(第2温度TB)は調整された。微細気泡の量は1ミリリットル当たり1x10個程度に設定された。微細気泡の径は500nm以下に設定され、平均径は概ね200nmであった。微細気泡の形成にあたって直径500nm以下の貫通孔を有するフィルムが用いられた。10分間にわたって継続的に微細気泡群22は静的液体13中に吹き込まれた。
 保持具25にはカゴが用いられた。カゴ上に機械部品が洗浄対象物Wとして搭載された。機械部品は1辺50[mm]の立方体の金属体10個で構成された。機械部品の表面には切削加工時の切粉が油とともに付着していた。10分間の洗浄後、機械部品の表面に残留した切粉の量および油の量を測定した。切粉の量の測定にあたって洗浄後の機械部品には高圧洗浄が施された。そうして洗い流された切粉を濾紙で採取した。電子天秤を用いて、採取した切粉の重量[ミリグラム]を測定した。一方で、油の量の測定にあたって洗浄後の機械部品は溶剤中に浸漬された。溶剤中に溶解した油の濃度[ppm]が測定された。
 温度条件の観察にあたって、以下の通り、6通りの条件が設定された。
Figure JPOXMLDOC01-appb-T000001
 
いずれの条件でも静的液体13の温度TLは摂氏25度(=第1温度)に設定された。
 条件1および条件2では動的液体16の温度TDに比べて気泡の温度TBは高く設定された。このとき、動的液体16の温度TDは第1温度に設定された。気泡の温度TBは2通りの第2温度に設定された。条件1では動的液体16の温度TDおよび気泡の温度TBの間に摂氏15度の温度差が設定された。条件2では動的液体16の温度TDおよび気泡の温度TBの間に摂氏35度の温度差が設定された。
 条件3および条件4では動的液体16の温度TDに比べて気泡の温度TBは低く設定された。このとき、気泡の温度TBは第1温度に設定された。条件3では動的液体16の温度TDおよび気泡の温度TBの間に摂氏15度の温度差が設定された。条件4では動的液体16の温度TDおよび気泡の温度TBの間に摂氏35度の温度差が設定された。
 条件5および条件6では静的液体13の温度TL、動的液体16の温度TDおよび気泡の温度TBはそれぞれ相違する温度に設定された。動的液体16の温度TDおよび気泡の温度TBの間に摂氏20度の温度差が設定された。条件5では気泡の温度TBに比べて動的液体16の温度TDは高く設定された。条件6では動的液体16の温度TDに比べて気泡の温度TBは高く設定された。
 温度条件の観察にあたって本発明者は2通りの比較条件を設定した。比較条件ではいずれの場合にも静的液体13の温度TL、動的液体16の温度TDおよび気泡の温度TBは等しく設定された。比較条件1ではいずれの温度TL、TD、TBも摂氏25度で等しく設定され、比較条件2ではいずれの温度TL、TD、TBも摂氏50度で等しく設定された。
Figure JPOXMLDOC01-appb-T000002
 観察の結果、図2に示されるように、動的液体16の温度TDおよび気泡の温度TBのいずれかが静的液体13の温度TLから相違する温度条件1~4では比較条件1および2に比べて切粉の除去は大幅に促進されることが確認された。特に、条件1および2の比較、並びに、条件3および4の比較から明らかなように、動的液体16の温度TDおよび気泡の温度TBの間で温度差が増大すると、切粉の洗浄効果は高まることが確認された。しかも、条件5から見受けられるように、条件4に比べて静的液体13の温度TLから気泡の温度TBが上昇方向に乖離し、静的液体13の温度TL、動的液体16の温度TDおよび気泡の温度TBがいずれも相違すると、さらに切粉の除去は促進されることが確認された。同様に、条件6から見受けられるように、条件2に比べて静的液体13の温度TLから動的液体16の温度TDが上昇方向に乖離し、静的液体13の温度TL、動的液体16の温度TDおよび気泡の温度TBがいずれも相違すると、さらに切粉の除去は促進されることが確認された。
 図3に示されるように、動的液体16の温度TDおよび気泡の温度TBのいずれかが静的液体13の温度TLから相違する条件1~4では比較条件1および2に比べて油の除去は大幅に促進されることが確認された。特に、条件1および2の比較、並びに、条件3および4の比較から明らかなように、動的液体16の温度TDおよび気泡の温度TBの間で温度差が増大すると、油の洗浄効果は高まることが確認された。しかも、条件5から見受けられるように、条件4に比べて静的液体13の温度TLから気泡の温度TBが上昇方向に乖離し、静的液体13の温度TL、動的液体16の温度TDおよび気泡の温度TBがいずれも相違すると、さらに油の除去は促進されることが確認された。同様に、条件6から見受けられるように、条件2に比べて静的液体13の温度TLから動的液体16の温度TDが上昇方向に乖離し、静的液体13の温度TL、動的液体16の温度TDおよび気泡の温度TBがいずれも相違すると、さらに油の除去は促進されることが確認された。
 

Claims (2)

  1.  第1温度の静的液体と、
     前記静的液体中に保持される対象物に向かって流れる動的液体と、
     前記動的液体の流れに巻き込まれて前記対象物に向かって流れる前記第1温度から相違する第2温度の気体で形成される微細気泡群と
    を備えることを特徴とする洗浄液。
  2.  第1温度の静的液体と、
     前記第1温度から相違する第2温度を有し、前記静的液体中に保持される対象物に向かって流れる動的液体と、
     前記動的液体の流れに巻き込まれて前記対象物に向かって流れる微細気泡群と
    を備えることを特徴とする洗浄液。
     
PCT/JP2018/020724 2017-06-07 2018-05-30 洗浄液 WO2018225601A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880037631.7A CN110709178A (zh) 2017-06-07 2018-05-30 清洗液
US16/618,966 US20200164413A1 (en) 2017-06-07 2018-05-30 Cleaning fluid
GB1919437.2A GB2578248A (en) 2017-06-07 2018-05-30 Cleaning fluid
DE112018002906.9T DE112018002906T5 (de) 2017-06-07 2018-05-30 Reinigungsfluid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-112898 2017-06-07
JP2017112898A JP2018202350A (ja) 2017-06-07 2017-06-07 洗浄液

Publications (1)

Publication Number Publication Date
WO2018225601A1 true WO2018225601A1 (ja) 2018-12-13

Family

ID=64565871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020724 WO2018225601A1 (ja) 2017-06-07 2018-05-30 洗浄液

Country Status (6)

Country Link
US (1) US20200164413A1 (ja)
JP (1) JP2018202350A (ja)
CN (1) CN110709178A (ja)
DE (1) DE112018002906T5 (ja)
GB (1) GB2578248A (ja)
WO (1) WO2018225601A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11904366B2 (en) * 2019-03-08 2024-02-20 En Solución, Inc. Systems and methods of controlling a concentration of microbubbles and nanobubbles of a solution for treatment of a product
JP7500532B2 (ja) 2021-11-25 2024-06-17 株式会社スギノマシン 残留物回収装置および残留物回収方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007083142A (ja) * 2005-09-21 2007-04-05 Mitsubishi Electric Corp 洗浄方法および洗浄装置
JP2007190484A (ja) * 2006-01-19 2007-08-02 Matsushita Electric Ind Co Ltd 微細気泡発生装置
JP2008168221A (ja) * 2007-01-12 2008-07-24 Toshiba Corp 微細気泡発生方法及び微細気泡発生装置
JP2011088979A (ja) * 2009-10-21 2011-05-06 Panasonic Electric Works Co Ltd 洗浄液、洗浄方法、洗浄液製造装置
JP2011173086A (ja) * 2010-02-25 2011-09-08 Toyota Motor Corp 車両等大型製品のマイクロバブルによる脱脂システム
JP2012157789A (ja) * 2011-01-28 2012-08-23 Nitto Seiko Co Ltd 微細気泡発生方法および微細気泡発生装置
JP6252926B1 (ja) * 2016-07-29 2017-12-27 パナソニックIpマネジメント株式会社 微細気泡洗浄装置及び微細気泡洗浄方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6252926A (ja) * 1985-09-02 1987-03-07 Hitachi Ltd 熱処理装置
JP2005214600A (ja) * 2004-02-02 2005-08-11 Kato Denko:Kk 空気調和機の洗浄装置及び洗浄方法
JP5585076B2 (ja) * 2009-12-24 2014-09-10 栗田工業株式会社 洗浄方法
CN103567180A (zh) * 2012-07-27 2014-02-12 日东精工株式会社 微细气泡发生方法及微细气泡发生装置
CN103831269A (zh) * 2012-11-26 2014-06-04 陈建群 节能油污清洗方法
CN106076926B (zh) * 2016-06-20 2018-08-10 北京七星华创电子股份有限公司 气泡清洗系统及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007083142A (ja) * 2005-09-21 2007-04-05 Mitsubishi Electric Corp 洗浄方法および洗浄装置
JP2007190484A (ja) * 2006-01-19 2007-08-02 Matsushita Electric Ind Co Ltd 微細気泡発生装置
JP2008168221A (ja) * 2007-01-12 2008-07-24 Toshiba Corp 微細気泡発生方法及び微細気泡発生装置
JP2011088979A (ja) * 2009-10-21 2011-05-06 Panasonic Electric Works Co Ltd 洗浄液、洗浄方法、洗浄液製造装置
JP2011173086A (ja) * 2010-02-25 2011-09-08 Toyota Motor Corp 車両等大型製品のマイクロバブルによる脱脂システム
JP2012157789A (ja) * 2011-01-28 2012-08-23 Nitto Seiko Co Ltd 微細気泡発生方法および微細気泡発生装置
JP6252926B1 (ja) * 2016-07-29 2017-12-27 パナソニックIpマネジメント株式会社 微細気泡洗浄装置及び微細気泡洗浄方法

Also Published As

Publication number Publication date
GB201919437D0 (en) 2020-02-12
US20200164413A1 (en) 2020-05-28
GB2578248A (en) 2020-04-22
CN110709178A (zh) 2020-01-17
DE112018002906T5 (de) 2020-02-20
JP2018202350A (ja) 2018-12-27

Similar Documents

Publication Publication Date Title
JP7271108B2 (ja) ウルトラファインバブル含有液の製造装置及びウルトラファインバブル含有液の製造方法
Tan et al. Stability of surface and bulk nanobubbles
TWI405622B (zh) 超音波清洗流體、方法及設備
JP7480392B2 (ja) ウルトラファインバブル含有液の製造装置
US8726918B2 (en) Nanofluid generator and cleaning apparatus
KR101934627B1 (ko) 마이크로·나노 버블에 의한 세정 방법 및 세정 장치
WO2018225601A1 (ja) 洗浄液
US10711222B2 (en) Cleaning liquid
JP2010042338A (ja) 液中の粒子の浮上分離方法およびその装置
JP2009098270A (ja) 基板洗浄装置
JP5342156B2 (ja) 水素水及び水素水生成装置
WO2019098117A1 (ja) 洗浄液
JP5053115B2 (ja) 基板の処理装置及び処理方法
JP5989338B2 (ja) 処理液生成装置、処理液生成方法、基板処理装置及び基板処理方法
JP6536884B2 (ja) マイクロ・ナノバブルを利用した金属表面の改質方法及び金属と樹脂との接着方法
JP2019094394A (ja) 洗浄液
JP2019218562A (ja) 洗浄液
JP2009291681A (ja) 微小気泡生成装置、微小気泡生成方法および基板処理装置
JP2006179764A (ja) 基板処理装置およびパーティクル除去方法
JP2019094393A (ja) 洗浄液
JP2019094392A (ja) 洗浄液
JP2019094426A (ja) 洗浄液
Lyubimova et al. Dynamics of vapor-gas bubbles in a liquid near solid surfaces with different properties
CN113318619A (zh) 生产含超微泡液体的设备和方法以及含超微泡液体
JP2013173118A (ja) 微細気泡発生装置、微細気泡発生方法、基板処理装置、および基板処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18813892

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 201919437

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20180530

122 Ep: pct application non-entry in european phase

Ref document number: 18813892

Country of ref document: EP

Kind code of ref document: A1