WO2018219243A1 - 一种虚拟现实设备 - Google Patents

一种虚拟现实设备 Download PDF

Info

Publication number
WO2018219243A1
WO2018219243A1 PCT/CN2018/088586 CN2018088586W WO2018219243A1 WO 2018219243 A1 WO2018219243 A1 WO 2018219243A1 CN 2018088586 W CN2018088586 W CN 2018088586W WO 2018219243 A1 WO2018219243 A1 WO 2018219243A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
virtual reality
reality device
arc
angle
Prior art date
Application number
PCT/CN2018/088586
Other languages
English (en)
French (fr)
Inventor
李刚
张丰学
龙寿伦
Original Assignee
深圳多哚新技术有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710392921.0A external-priority patent/CN107015340A/zh
Priority claimed from CN201710392914.0A external-priority patent/CN107015367A/zh
Priority claimed from CN201710392078.6A external-priority patent/CN107065194A/zh
Priority claimed from CN201710392923.XA external-priority patent/CN106990538A/zh
Application filed by 深圳多哚新技术有限责任公司 filed Critical 深圳多哚新技术有限责任公司
Publication of WO2018219243A1 publication Critical patent/WO2018219243A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0176Head mounted characterised by mechanical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type

Definitions

  • the present application relates to the field of head-mounted display, and in particular to a virtual reality device.
  • VR technology is a technology that uses computer technology to simulate a virtual space and provide an immersive experience in a virtual space.
  • the technology integrates computer graphics, computer simulation, artificial intelligence, Technologies such as display and network parallel processing are advanced analog technologies.
  • VR devices are human-computer interaction devices that use VR technology.
  • Common VR devices, such as virtual reality devices, can isolate the human body from the perception of the outside world, and guide users to create an immersive VR experience.
  • FIG. 23 illustrates a prior art virtual reality device including a scope 200 and a hair band 100. As can be seen from FIG. 23, the mirror body 200 of the virtual reality device shown in FIG. 23 is very thick compared with the ordinary glasses. When the user wears, the weight of the scope 200 is concentrated in front of the user's face, causing the user to wear for a long time. When a virtual reality device is used, a facial pressure is generated, which affects the user experience.
  • the virtual reality device should be as thin and light as possible, and the short-distance optical amplifying module provided by the US invention patent with the application number US20170017078B and the short-range optical amplifying module and the near-eye display optical module using the same is beneficial to the virtual Reality devices have become even thinner.
  • the integration of a large number of components in virtual reality devices including optical components: such as lens barrels, lenses, etc., and electronic components such as display screens, sensors, PCB boards, and the like. These components are mounted in the mirror in an integrated manner, but if the mirror of the virtual reality device is required to be as thin and light as possible, and it is required to accommodate so many components, it will lead to some structural physics of the virtual reality device.
  • the components such as the outer casing of the virtual reality device, become thin, resulting in a decrease in the structural strength of the virtual reality device, and when subjected to an external force, damage such as damage of the outer casing is liable to occur, thereby causing damage to the components.
  • the present application proposes a virtual reality device in the form of glasses, which solves the problem that the virtual reality device in the prior art is large in size, not aesthetically pleasing, and has a high quality.
  • the device of the virtual reality device is housed in In the main body of the glasses, the appearance is beautiful, and the volume is small and the weight is light.
  • a technical solution of a virtual reality device includes a frame surrounded by a front case and a rear case, two temples connected to the back case, and an optical system, a PCBA board, and a light sensing component built in the frame.
  • the front casing is provided with a plurality of snap fasteners for inserting the rear casing;
  • the back of the rear casing is provided with a face support for connecting with the face support, and a groove connected to the temple.
  • the face support comprises a main body fixing portion and a face contact portion; the side contact portion is connected to the main body fixing portion, and the other side is in contact with the human body surface, and the main body fixing portion is provided with
  • the protrusion corresponding to the face support member; the body fixing portion and the face contact portion are both a zigzag structure composed of a centrally located flange and an arc portion extending away from the flange direction.
  • the optical system is coupled to the PCBA board and includes mutually independent left barrel mechanisms, right barrel mechanisms, and left and right display screens respectively mounted behind the two.
  • the PCBA board is vertically connected to the screen of the left and right display screens.
  • the light sensing component is connected to the PCBA board and is perpendicular to the plane of the PCBA board.
  • the left barrel mechanism and the right barrel mechanism each include an outer barrel, an outer optical lens, an inner barrel and an inner optical lens; the outer tube side wall is provided with an inclined groove; The lens barrel is disposed in the outer lens barrel, and the side wall of the inner tube is provided with a positioning feature, and the positioning feature further extends into the inclined groove and slides along the inclined groove.
  • the rear casing is further provided with an adjustment groove for extending the positioning feature.
  • the rear case is provided with a receiving cavity, and the left barrel mechanism and the right barrel mechanism are placed in the receiving cavity.
  • the receiving cavity is provided with a fixing groove for accommodating the PCBA board.
  • a side of the rear case adjacent to the temple is provided with a temple connection portion, and the temple connection portion is provided with the groove, and the two temples are provided with a recess for inserting the groove.
  • the protrusion is provided with a baffle on the outer side of the groove.
  • the virtual reality device comprises: a front shell, a rear shell and a temple, the rear shell is composed of a bottom surface of the rear shell and a frame, and the bottom surface of the rear shell is located at one side of the frame, and The bottom surface of the rear case forms a receiving cavity; the front case is located on the other side of the frame to close the receiving cavity; the temple is disposed on the rear case and extends in the opposite direction of the receiving cavity .
  • the frame includes a rear frame surface and a front frame surface in a direction perpendicular to the bottom surface of the rear case; the front frame surface and the rear frame surface form a ridge-shaped structure at the joint.
  • the frame includes a frame top arc surface, a frame bottom arc surface, and two connecting arc surfaces connecting the frame top arc surface and the frame bottom arc surface in a direction surrounding the bottom surface of the rear case, and the two
  • the connecting arc surface is symmetrical along a central plane of the rear shell; the top arc surface of the frame is provided with an arc bottom, and the bottom surface of the frame is provided with an arc top, and the arc bottom and the arc top are both located in the rear shell a central plane; a connection between the bottom surface of the frame and the connecting arc surface is a low position of the rear shell; a width of the rear frame surface has a minimum value on the top surface of the frame, a low point is a maximum value; a width of the rear frame surface gradually decreases from the lower position to the top surface of the frame on the connecting arc surface; the width of the rear frame surface is at the bottom of the frame The arc surface gradually decreases from the low point to the top of the arc.
  • the rear frame surface extends from the rear case bottom surface toward the front case direction, and the formed expansion angle ⁇ causes the storage cavity to be provided with an opening that expands; the front frame face and the rear frame Forming a ridge line at the joint; a ridge angle ⁇ formed by the front frame surface and the rear frame surface at the ridge top line reduces a tendency of expansion of the opening of the receiving cavity or shrinks .
  • the expansion angle ⁇ gradually decreases from the arc bottom toward both sides of the center plane on the top surface of the frame; the expansion angle ⁇ is from the bottom surface of the frame from the The arc top gradually decreases toward the lower position of the two sides; the expansion angle ⁇ gradually increases from the low position to the top curved surface of the frame on the connecting arc surface.
  • the ridge angle ⁇ gradually increases from the arc bottom toward both sides of the center plane on the top surface of the frame; the ridge angle ⁇ is on the bottom surface of the frame
  • the arc top gradually increases toward the lower position of the two sides; the ridge angle ⁇ gradually decreases from the low position to the top curved surface of the frame on the connecting arc surface.
  • the relationship between the expansion angle ⁇ and the ridge angle ⁇ satisfies: a contour angle ⁇ formed between the bottom surface of the rear shell and the front frame surface is always greater than 90 degrees, and the contour angle ⁇ The range is between 92 ⁇ 2 degrees; or, the contour angle ⁇ formed between the bottom surface of the rear shell and the front frame surface is always less than 90 degrees, and the contour angle ⁇ ranges from 88 ⁇ 2 degrees. Between; or, the bottom surface of the rear case is perpendicular to the front frame surface.
  • the rear case includes a rear case thickness ⁇ 0 in a direction perpendicular to the bottom surface of the rear case, and a width of the rear frame face ranges between 50% and 80% of the thickness of the rear case ⁇ 0.
  • the width of the rear frame surface is fixed to a minimum value ⁇ 1 on the frame top arc surface, and the minimum value ⁇ 1 is between 50% and 55% of the back shell thickness ⁇ 0.
  • the width of the rear frame surface is a maximum value ⁇ 2 at the low position, and the maximum value ⁇ 2 ranges between 75% and 80% of the thickness of the back shell ⁇ 0.
  • the ridge top line is located in a dividing plane extending through the frame, the dividing plane being perpendicular to the center plane.
  • the dividing plane is inclined to the bottom surface of the rear case, and the inclination angle ⁇ is formed such that the width of the rear frame surface ranges between 50% and 80% of the thickness of the rear case ⁇ 0.
  • the front frame surface has a wall thickness greater than a thickness of the rear frame surface, and the front frame surface and the rear frame surface are provided with a smooth transition surface inside the storage cavity.
  • the end of the front frame surface is an open end
  • the front frame surface is provided with a gap at the open end
  • the gap is located inside the storage cavity
  • the cutout is provided with the rear case
  • the bottom surface of the gap parallel to the bottom surface, the distance from the bottom surface of the gap to the open end is less than 20% of the thickness ⁇ 0 of the back shell.
  • connection between the rear frame surface and the bottom surface of the rear case is provided with a first chamfer, the height of the first chamfer does not exceed half of the thickness of the rear case wall; and/or the front A second chamfer is disposed outside the edge of the frame surface, and the height of the second chamfer does not exceed half of the thickness of the rear casing wall.
  • the rear shell is provided with a transition fillet at the top line of the ridge.
  • a virtual reality device provided by the present application includes a rear frame surface and a front frame surface in a direction perpendicular to a bottom surface of the rear case, and the front frame surface and the rear frame surface form a ridge structure at the joint.
  • the ridge structure makes the frame of the virtual reality device form a stable structure with a triangular shape.
  • the frame When the virtual reality device is subjected to an external force, for example, when accidentally falling to the ground, the frame is in collision with the ground, due to the presence of the ridge structure, the frame The direction of the ground impact force forms an angle of less than 90 degrees between the rear frame surface and the front frame surface of the ridge-shaped structure, so that the impact force can be distributed along the rear frame surface and the front frame toward the sides of the virtual reality device. So that the frame will not be damaged due to excessive local stress caused by the force being unable to disperse, and the ridge structure makes the frame of the virtual reality device form a stable structure with a triangular shape, which can keep the frame from being shocked by external force.
  • the original form does not cause breakage due to excessive deformation, and can reduce the micro-vibration of the virtual reality device frame. Conducive to virtual reality equipment to provide a stable 3D stereoscopic imaging effect.
  • the width of the rear frame surface and the front frame surface gradually changes according to the shape of the virtual reality device, so that the ridge structure of the frame has high strength while realizing the thin and light form of the virtual reality device. Therefore, the virtual reality device provided by the present application can realize that the virtual reality device has a thin and light form and has a high outer casing strength, and is not easily damaged even when it is damaged by an external force.
  • FIG. 1 is an exploded view of a virtual reality device according to an embodiment of the present application.
  • FIG. 2 is a structural diagram of a front case of a virtual reality device according to an embodiment of the present application.
  • 3(a) and 3(b) are front and rear views of a rear case of a virtual reality device according to an embodiment of the present application;
  • FIG. 4 is a structural diagram of a face support used in conjunction with a virtual reality device according to an embodiment of the present application
  • FIG. 5 is a structural diagram of a temple of a virtual reality device according to an embodiment of the present application.
  • FIG. 6 is a structural diagram of a shading component of a virtual reality device according to an embodiment of the present application.
  • FIG. 7 is a structural diagram of an optical system and a heat sink of a virtual reality device according to an embodiment of the present application.
  • FIG. 8 is a structural diagram of an optical system of a virtual reality device according to an embodiment of the present application.
  • FIG. 9 is an exploded view of a right lens barrel mechanism, a right display screen, and a right screen bracket of a virtual reality device according to an embodiment of the present application;
  • FIG. 10 is an exploded view of an optical lens focusing assembly according to an embodiment of the present application.
  • FIG. 11 is a cross-sectional view of an optical lens focusing assembly according to an embodiment of the present application.
  • FIG. 12 is a bottom view of an optical lens focusing assembly according to an embodiment of the present application.
  • FIG. 13 is a top plan view of an optical lens focusing assembly according to an embodiment of the present application.
  • FIG. 14 is an exploded view of a face support used in conjunction with a virtual reality device according to an embodiment of the present application
  • FIG. 15 is a schematic structural diagram of a virtual reality device and a face support according to an embodiment of the present application.
  • 16 is an exploded view of a light shielding component of a virtual reality device according to an embodiment of the present application.
  • FIG. 17(a), (b) and (c) are diagrams showing the steps of installing the shading assembly on the virtual reality device according to the embodiment of the present application.
  • FIG. 18 is a structural diagram of a light shielding component shown on an embodiment of the present application installed on a virtual reality device;
  • FIG. 19 is a structural diagram of a data line fixing member according to an embodiment of the present application.
  • 20 is an exploded view of a data line fixing member and a virtual reality device according to an embodiment of the present application
  • 21 is a structural diagram of a data line fixing component installed on a virtual reality device according to an embodiment of the present application.
  • 22(a) and (b) are structural views of a right panel bracket and a left panel bracket according to an embodiment of the present application.
  • FIG. 23 is a schematic structural diagram of a virtual reality glasses according to the prior art.
  • FIG. 24 is a structural disassembly diagram of a virtual reality device according to an embodiment of the present application.
  • 25 is a schematic structural diagram of a back cover of a virtual reality device according to an embodiment of the present application.
  • FIG. 26 is a schematic structural diagram of a virtual reality device frame according to an embodiment of the present disclosure.
  • FIG. 27 is a cross-sectional view of the rear housing of the virtual reality device according to the embodiment of the present application, taken along line A-A; FIG.
  • FIG. 28 is a schematic diagram showing a contour angle of a back cover of a virtual reality device according to an embodiment of the present application.
  • FIG. 29 is a schematic diagram showing a contour angle of a rear casing of another virtual reality device according to an embodiment of the present application.
  • FIG. 30 is a schematic perspective view showing another outline of a rear casing of a virtual reality device according to an embodiment of the present application.
  • FIG. 31 and FIG. 32 are schematic diagrams showing the width of the back ridge of a virtual reality device according to an embodiment of the present application.
  • FIG. 33 is a schematic diagram of a ridge top line and a dividing plane of a virtual reality device according to an embodiment of the present application.
  • the optical system of the virtual reality device is provided in the embodiment of the present application, and solves the technical problem that the virtual reality device is large in the prior art.
  • the virtual reality device in this embodiment includes a housing, an optical system built in the housing, a PCBA board, a heat dissipation board and a light sensing component, a face holder, a hood, and the like for use with the housing.
  • the components will be described in detail below.
  • the housing includes a frame surrounded by the front case 1 and the rear case 3, a left temple 5 and a right temple 4 connected to the frame.
  • the following is a detailed description of the above components:
  • Front case 1 As shown in FIG. 2, the front case 1 is provided with a plurality of snap fixing members 16 for fixing the front case 1 and the rear case 3; and the upper end of the front case 1 is provided with a PCBA fixing member. 18, used to limit and fix the PCBA board 8; a guard column 17 is installed near the two ends of the front case 1 to prevent the front case 1 from being damaged by excessive force on the front case after the installation process or after installation. Further, in order to improve the quality of the front case 1, a plurality of reinforcing stripes may be provided. In order to reduce the weight of the housing of the virtual reality device, the material of the front case 1 is preferably a lightweight plastic, and the entire front case 1 is preferably designed to be integrally formed for the convenience of processing.
  • the rear case 3 includes a housing cavity 46 for housing the optical system of the virtual reality device, the PCBA board 8, the heat sink 9, and the light sensing component. Wait.
  • the lower end of the rear case 3 is provided with an adjustment groove 42 for extending and controlling the focus adjustment key of the optical system (equivalent to the following positioning feature, the protruding control key).
  • the inner casing of the rear casing 3 is provided with a PCBA fixing groove that cooperates with the front casing 1.
  • a plurality of reinforcing strips may be provided, preferably on the side edges of the rear case.
  • a temple connection portion is disposed on the back surface of the rear case 3, and the lens connection portion is provided with a groove 44 connected to the protrusion of the front end of the left temple 5 and the right temple 4, and the outer side of the groove 44 is provided with a baffle 45. . Since the outside of the recess 44 has a baffle 45, when the projection of the temple is fitted into the recess, the temple at this time can only move inward. When the user wears the virtual reality device, the protrusion of the temple is blocked by the shutter 45, preventing it from moving outward, and a force is generated inwardly to allow the temple to clamp the user's head. Face support members 41 and 43 are also provided on the back of the rear case 3 for facilitating the fixation of the face rest 6.
  • the face support 6 includes a main body fixing portion 64 and a face contact portion 63, the side of the face contact portion 63 is connected to the main body fixing portion 64, and the other side is in contact with the human body surface, and the main body fixing portion 64 is attached.
  • the projections 61 and 62 for inserting the face holders 41 and 43 are provided, and the main body fixing portion 64 is fixed to the rear case 3.
  • the main body fixing portion 64 and the face contact portion 63 are each a triangular shape composed of an outwardly convex flange located at the center and an arc portion extending away from the flange direction. structure.
  • the rear case 3 is preferably a lightweight plastic, and the rear case 3 is preferably designed to be integrally formed for ease of processing.
  • Left temple 5 and right temple 4 The left temple 5 and the right temple 4 are collectively referred to as temples, and the structures of the two are not substantially different.
  • a projection 53 for inserting a recess in the connecting portion of the temple on the rear case 3 is provided at the front end of each of the temples.
  • the left temple 5 will be described in detail below as an example.
  • the left temple 5 and the right temple 4 are curved inwardly to facilitate clamping of the user's head.
  • the thickness of the front end of the temple is greater than the thickness of the rear end of the temple.
  • the temples are also provided with hollow grooves 52, and the hollow grooves 52 can also prevent defects on the injection molding surface and affect the appearance.
  • the left temple 5 and the right temple 4 are respectively provided with through holes 51 for fitting the connecting members 71 and 72 of the light shielding unit 7 into the through holes 51 to realize the fixing of the light shielding unit 7.
  • the through hole specifically includes two communicating fixing holes and a connecting hole.
  • the connecting hole has a larger aperture than the maximum width of the connecting member, and the fixing hole has a smaller aperture than the maximum width of the connecting member.
  • the fixing hole is used to fix the protrusion of the light shielding component, and the connection hole is used for positioning the protrusion of the light shielding component.
  • Both the left temple 5 and the right temple 4 can be an integral molding mechanism.
  • the left temple 5 and the right temple 4 are made of flexible plastic (TR90).
  • TR90 flexible plastic
  • First step The optical system of the left barrel mechanism 21 and the right barrel mechanism 23 with the left display 22 and the right display 24 is inserted into the housing chamber 46 of the rear case 3 for fixing, and the specific fixing method is not limited.
  • the positioning features of the left barrel mechanism 21 and the right barrel mechanism 23 simultaneously extend out of the adjustment groove 42 of the rear case 3, so that the user can adjust the focal length;
  • the second step loading the PCBA board 8 into the PCBA fixing slot of the rear case 3, and connecting the PCBA board 8 with the optical system;
  • the third step loading the heat sink 9, specifically bonding one end of the heat sink 9 with the heat generating device on the PCBA board 8, and the other end is respectively attached to the back surface of the left display screen 22 and the right display screen 24, so that the heat sink 9 is The heat radiated from the PCBA board 8 and the left display 22 and the right display 24 can be evenly dispersed;
  • the fourth step the front case 1 is mounted, that is, the front case 1 and the rear case 3 are fixed, and the front case 1 is pressed into the rear case 3, and is fixed by the buckle fixing member 11 of the front case 1;
  • the fifth step the protrusions 53 on the left temple 5 and the right temple 4 are embedded in the groove 44 on the rear shell 3;
  • the sixth step mounting the face support 6 to the rear case 3, specifically fixing the protrusions 61 and 62 on the face support 6 to the face support members 41 and 43 on the rear case 3, respectively;
  • Step 7 The shading assembly 7 is surrounded by the virtual reality device, and the specific connecting members 71 and 72 of the shading assembly are respectively embedded in the through holes 51 of the temples.
  • the virtual reality device includes a front shell, a rear shell and two temples, and has a simple structure and simple assembly. At the same time, other components of the virtual reality device are correspondingly mounted on the storage groove of the rear shell, and the front shell and the connecting temple are covered.
  • the entire virtual reality device has a relatively small structure, takes up less space, and has a shape similar to that of glasses, and is relatively beautiful.
  • the optical system includes a left barrel mechanism 21, a left display screen 22, a right barrel mechanism 23, and a right display screen 24.
  • the left barrel mechanism 21 and the right barrel mechanism 23 have the same structure. , collectively referred to as optical lens focusing components.
  • the left lens barrel mechanism 21 and the left display screen 22 are mounted on the left screen bracket and the left display screen 22 is located behind the left barrel mechanism 21, and the left display screen is entirely located inside the left screen bracket;
  • the right barrel mechanism 23 and The right display screen 24 is mounted on the right screen bracket 13 and the right display screen 24 is located behind the right barrel mechanism 23, and the right display screen 24 is entirely located inside the right screen bracket 13.
  • the side edges of the left display screen 22 and the right display screen 24 have a chamfer angle. As shown in FIG. 1, the right lower corner side of the left display screen 22 has a chamfered angle. The lower left side of the right display 24 has a chamfered corner.
  • the left screen bracket and the right screen bracket 13 are two independent screen brackets, each of which is a hollow ring structure. Since the two screen holders are hollow, it is realized that the contents displayed by the corresponding display screen are viewed through the lenses of the left barrel mechanism 21 and the right barrel mechanism 23.
  • the hollow ring of the screen bracket may be a circular or polygonal shape or an irregular shape, which is determined according to the shape of the optical module and the shape of the virtual reality device housing.
  • each screen bracket that is in contact with the display screen is a screen contact surface
  • the screen contact surface is used to fit the surface of the display screen. Specifically, it can be set as a smooth surface, and the screen contact surface is set as a smooth surface to avoid damage to the display screen.
  • the display and the screen bracket are well fitted.
  • the screen contact surface is not specifically defined as a smooth surface or a rough surface.
  • a soft double-sided adhesive glue may be disposed between the two, and the double-sided adhesive glue may be an annular ring corresponding to the shape of the screen support.
  • the screen holder is pasted with the display through a double-sided adhesive.
  • the screen contact surface Corresponding to the screen contact surface is an optical module contact surface, and the optical module contact surface is respectively attached to the left barrel mechanism 21 and the right barrel mechanism 23.
  • the screen brackets When the screen brackets are assembled with the display screen and the optical module respectively, the screen brackets serve to facilitate the installation, and at the same time, the three form a confined space, which plays a dustproof role.
  • the right side of the 4-panel bracket of the right temple is disposed near the side of the 4-screen contact surface of the right temple, and the right mirror is provided with a 4-frame bracket.
  • a second groove is disposed on one side of the contact surface of the optical module of the right temple 4, and the first groove of the right temple 4 and the second groove of the right temple 4 are used for placing a dustproof ring to realize the screen bracket and the optical There is no gap between the module and the display screen, so as to avoid the entry of dust from the outside and improve the dustproof effect.
  • the display screen and the optical module can be directly fixed on the screen bracket without using a dust seal. Since the installation of the left screen bracket and the right screen bracket is similar, the installation steps of the right display 24, the right barrel mechanism 23 and the right screen bracket 13 are described below. It should be understood that the installation of the left eye display is similar, and the specific installation steps are as follows: :
  • the first step is to fix the left dust ring 12 and the right dust ring 14 respectively on the oppositely disposed screen contact surface of the screen bracket 13 and the optical module contact surface (left and right are only distinguished by reference to the drawings, and have no actual Meaning), the screen bracket 13, the left dust ring 12 and the right dust ring 14 are assembled into a screen bracket assembly.
  • the fixing manner of the left dust ring 12 and the right dust ring 14 can be set according to actual needs, and is not specifically limited.
  • the sticking and fixing, the left dust ring 12 and the right dust ring 14 can be adhesive double-sided film
  • the screen bracket 13 is provided with a first groove and a second groove, and the first groove is located close to the screen.
  • the double-sided film is only a specific material selected for the left dust ring 12 and the right dust ring 14, and any material having adhesiveness and soft shrinkage, such as plastic or a certain softness, may be used. PORON or a certain soft PVC or thin cloth, etc.; of course, in order to reduce the overall weight of the virtual reality device, the left dust ring 12 and the right dust ring 14 are preferably of a light material.
  • the screen bracket 13 can be integrally formed, and the material of the screen bracket 13 can be selected from a lightweight material such as a plastic having a certain hardness.
  • the second step fixing the right barrel mechanism 23 and the right display screen 24 to the screen holder assembly, respectively.
  • the right barrel mechanism 23 is placed on the right dust ring 14.
  • the right barrel mechanism 23 can be placed on the second groove, and the right dust ring 14 is in contact with the screen holder 13 on one side.
  • One side is in contact with the right barrel mechanism 23.
  • the right display screen 24 is placed on the left dust ring 12.
  • the right display screen 24 can be placed on the first groove to fix the right display screen 24 and the screen bracket 13.
  • the left dust ring 12 is in contact with the screen holder 13 on one side and the right display 24 is on the other side.
  • the right lens barrel mechanism 23 and the right display screen 241 are preferably fixed to the first groove and the second groove on both sides of the screen holder 13, the right display screen 24, the screen holder 13 and the right barrel mechanism 23 can be formed.
  • the joints are tightly connected, and the sides with the grooves are dustproof, so that external dust can be prevented from entering the confined space, that is, the outside dust is prevented from adhering to the display screen.
  • the outside dust is prevented from adhering to the display screen.
  • Step 3 After the right lens barrel mechanism 23, the left dust ring 12, the screen holder 13, the right dust ring 14 and the right lens barrel mechanism 23 are assembled, the screen fixing holes on the screen holder 13 correspond to the virtual reality device.
  • the second fixing holes are matched to realize the assembly of the assembled components to the virtual reality device, and the fixing manner is not limited to the screw fixing manner.
  • the screen fixing hole on the screen bracket 13 includes at least one forward hole and at least one reverse hole.
  • the structure of the screen bracket is: the two screen brackets are independent of each other, and the optical module contact surface is provided with an optical module fixing member 111 and a positioning member 113 extending away from the surface thereof.
  • the optical module fixing member 111 When the optical module protrudes into the screen bracket and protrudes from the contact surface of the optical module, the optical module fixing member 111 is in contact with the outermost edge of the optical module, and is used for fixing the optical module on the screen bracket, and the optical module
  • the fixing member 111 may be an L-shaped structure extending toward the center of the screen holder for defining the optical module in the L-shaped structure; the positioning member 113 is located at the periphery of the optical module for ensuring that the optical module is installed at the preset position. For defining the motion trajectory of the optical module, the positioning member 113 is used to prevent the optical module from moving outward.
  • a corresponding receiving fixing groove 114 is protruded on one side of the screen bracket for fixing other small electronic devices.
  • the screen fixing hole 112 on the screen bracket is matched with the second fixing hole corresponding to the virtual reality device to realize the assembled component. Fixed to the virtual reality device, this fixing method is not limited to the screw fixing method. It should be noted that the screen fixing hole 112 on the screen bracket includes at least one forward hole and at least one reverse hole. As shown in FIG. 10 to FIG.
  • the optical lens focusing assembly collectively referred to as the left barrel mechanism and the right barrel mechanism includes an outer barrel 211, an outer optical lens 212, an inner barrel 214, and an inner optical lens 217.
  • the optical lens 212 is fixed on the outer lens barrel 211, and the inner optical lens 217 is fixed on the inner lens barrel 214;
  • the side wall of the outer lens barrel 211 is provided with an inclined groove 213;
  • the inner lens barrel 214 is disposed in the outer lens barrel 211, and the inner lens barrel 214
  • the side wall is provided with a positioning feature, and the positioning feature further extends into the inclined groove 213 and slides along the inclined groove 213; when the inner barrel 214 slides along the outer barrel 211, the outer optical lens fixed on the outer barrel 211
  • the distance between the 212 and the inner optical lens 217 fixed to the inner barrel 214 is adjustable to achieve focusing of the optical assembly.
  • the exploded view of the optical focusing assembly shown in FIG. 10 includes an outer barrel 211, an outer optical lens 212, an inner barrel 214, an inner optical lens 217, two first dustproof members 218, and a first dustproof member. 219, two fixing screws 220, a toggle fixing screw 221 and a sliding silicone head 222.
  • the outer barrel 211 at least one inclined groove 213 is provided on the side wall of the outer barrel 211, and the inclined groove 213 is inclined at an angle with respect to the horizontal plane, and the positioning feature fixed on the side wall of the inner barrel 214 is embedded.
  • the groove 213 is inclined and moved along the inclined groove 213, the distance between the outer optical lens 212 and the inner optical lens 217 is adjustable.
  • the outer lens barrel 211 has a circular cross section, and when the number of the inclined grooves 213 is three or more, the inclined grooves 213 are evenly distributed along the outer circumference of the outer barrel 211.
  • the inclined grooves 213 are not limited to three as shown in the drawing. Preferably, the number of the inclined grooves 213 is three.
  • the inclined grooves 213 are not limited to being uniformly distributed in the circumferential direction of the outer barrel 211, but it is necessary to satisfy that the plurality of inclined grooves 213 are located on the same horizontal plane.
  • the sectional shape of the outer barrel 211 is not limited to the circular shape shown in Fig. 1, and may be elliptical or rhombic or irregular. In order to better adapt to the morphological characteristics of the human body, near the nose bridge of the human body, it can be set to match the shape of the human nose bridge, that is, a simple circular cut portion is formed to have an inclined surface matching the nose bridge. Therefore, in order to accommodate a specific virtual reality device housing, and to reduce the volume of the overall virtual reality device, the cross-sectional shape of the outer barrel 211 may depend on the specific virtual reality housing.
  • the outer optical lens 212 is fixed on the outer lens barrel 211. Specifically, as shown in FIG. 2, the outer optical lens 212 is fixed on the inner top of the outer lens barrel 211, and the inner top portion is away from the inner lens barrel 214. One side.
  • the fixing manner of the outer optical lens 212 and the outer lens barrel 211 may be: fixing the outer optical lens 212 to the inner top of the outer lens barrel 211 by plastic, and fixing the outer optical lens 212 to the outer lens barrel 211 by plastic fixing. And it can effectively prevent dust. It should be noted that the present application does not specifically limit the manner in which the two are fixed. For convenience of explanation, the combined structure of the outer barrel 211 and the outer optical lens 212 is defined as the first assembly.
  • Endoscope barrel 214 The inner barrel 214 is built in the outer barrel 211, and the inner barrel 214 is movable in the direction of approaching or away from the outer optical lens 212, and thus the outer optical lens 212 and the inner optical lens 217 The spacing is adjustable. Specifically, the inner lens barrel 214 can be moved along the outer lens barrel 211 in such a manner that at least one positioning feature is disposed on the side wall of the inner lens barrel 214, and the positioning feature is in one-to-one correspondence with the inclined groove 213, and each positioning feature is embedded. The inside of the inclined groove 213 is slidable along the inclined groove 213, thereby driving the movement of the inner barrel 214.
  • the number of the positioning features is not specifically limited.
  • the three positioning features are simultaneously moved in the inclined groove 213, thereby ensuring that the inner optical lens 217 on the inner barrel 214 is moving up and down. Make them all on one plane.
  • an oil layer for lubricating is added between the inner barrel 214 and the outer barrel 211, and the inner layer is increased.
  • the sliding of the lens barrel 214 is flexible, and the oil layer can prevent the dust from entering the inside to a certain extent, thereby preventing dust.
  • a specific oil layer may be formed by applying damping oil between the inner barrel 214 and the outer barrel 211, and it should be understood that other ways of improving the sliding flexibility between the inner barrel 214 and the outer barrel 211 are the same for the present application. protected range.
  • the positioning feature is three, the structure of the three positioning features can be divided into two fixing screws 220 and a toggle fixing screw 221, and the two fixing screws 220 and the dial fixing screws 221 are fixed by fixing screw holes.
  • the two fixing screws 220 and the toggle fixing screws 221 respectively protrude into the inclined groove 213 and are slidable along the inclined groove 213.
  • the inner barrel 214 includes a circular table 215 and at least one boss 216 extending above the circular table 215 and extending upward.
  • the boss 216 is in one-to-one correspondence with the inclined groove 213, and the fixing screw hole is located on the boss 216.
  • the shape of the boss 216 is matched with the shape of the inner wall of the outer barrel 211.
  • the boss 216 may be an annular wall, and the boss 216 is provided with a fixing screw corresponding to the inclined groove 213. hole.
  • the inner optical lens 217 is fixed to the inner lens barrel 214. As shown in FIG. 2, the inner optical lens 217 is fixed to the inner bottom of the inner lens barrel 214. For example, the bottom end of the inner lens barrel 214 is provided with a card slot, and the inner optical lens 217 is fixedly connected with the bottom end of the inner lens barrel 214. The bottom is the side away from the outer barrel 211.
  • the inner optical lens 217 and the inner lens barrel 214 can be fixed by fixing the inner optical lens 217 to the inner bottom of the inner lens barrel 214 by plastic, and the inner optical lens 217 can be stably fixed to the inner lens barrel 214 by plastic fixing. It is effective and dustproof.
  • the present application does not specifically limit the manner in which the two are fixed.
  • the inner lens barrel 214 can also be provided with no card slot, and the inner optical lens 217 can be fixed to the side wall of the inner bottom of the inner lens barrel 214, that is, the outer side of the inner optical lens 217 is fixedly connected to the inner side wall of the inner lens barrel 214.
  • the fixing method can ensure that the inner optical lens 217 is stably fixed to the inner lens barrel 214 by plastic fixing, and can effectively prevent dust.
  • the present application does not specifically limit the manner in which the two are fixed.
  • the combined structure of the inner barrel 214 and the inner optical lens 217 is defined as the first assembly.
  • the first dustproof member 218 and the first dustproof member 219 when the inner lens barrel 214 is moved in the direction of approaching or moving away from the outer optical lens 212 by the two fixing screws and the dial fixing screws that protrude into the inclined groove 213
  • the two first dustproof members 218 are respectively fixed on the outer side of the inclined groove 213 of the outer lens barrel 2111 corresponding to the two fixing screws 220, and the first dustproof member 219 is fixed to the outer lens barrel 211 corresponding to the toggle fixing screw 221.
  • the first dustproof member 219 may be fixed to the outside.
  • the first dustproof member 219 and the first dustproof member 218 are provided with notches corresponding to the inclined grooves 213.
  • the first dust-proof member 219 may specifically be a TPU sheet having adhesiveness, and the TPU sheet has an inclined groove 213 hole corresponding to the specific inclined groove 213.
  • the present application does not limit the material of the first dustproof member 219 to TPU. It should be understood that the selected material can be slotted as long as it has a certain hardness, and the specific dustproof property, such as PORON or a certain hardness with a certain hardness. PVC, high temperature glue or masking glue.
  • the fixing manner of the first dustproof member 218 and the first dustproof member 219 can be fixed by sticking to facilitate assembly, but the fixing method is not limited in the present application.
  • the assembly steps of the above optical lens focusing assembly are as follows:
  • Step 1 fixing the outer optical lens 212 to the inner top of the outer barrel 211 to form a first component
  • Step two fixing the inner optical lens 217 to the inner bottom of the inner lens barrel 214 to form a second component
  • Step 3 The first dustproof member 219 is placed inside the specific inclined groove 213 of the outer barrel 211 of the first assembly, and the specific inclined groove 213 is for extending into the toggle fixing screw.
  • Step 4 placing the second component inside the first component, and placing the assembled inner lens barrel 214 with the inner optical lens 217 in the assembled outer mirror with the outer optical lens 212 and the first dustproof member 219 The inside of the barrel 211.
  • Step 5 Since three fixing screw holes are provided on the side wall of the inner lens barrel 214, the three fixing screw holes are leaked to the inclined groove 213, and then two fixing screws 220 and one dial are respectively fixedly connected to the three fixing screw holes. Fix the fixing screw 221. Two first dust-proof members 218 are fixedly connected to the side walls of the outer lens barrel 211 corresponding to the inclined grooves 213 of the two fixing screws 220.
  • Step 5 Fix the dialing silicone head 222 to the outer end of the toggle fixing screw 221.
  • Optical lens focusing components are mainly used in the field of virtual reality, especially for short-distance optical lens adjustment. It should be understood that short-distance optical focusing in other fields is also within the scope of protection.
  • the working principle of the optical lens focusing assembly is specifically as follows: the toggled silicone head 222 is driven to drive the toggle fixing screw 221 to slide up or down on the inclined groove 213 of the outer barrel 211, because the fixing screw 221 is toggled. One end is fixed to the inner barrel 214, and the other two fixing screws 220 place the inner barrel 214 in an opposite plane. During the sliding of the set screw 221 along the inclined groove 213, the distance between the inner optical lens 217 on the inner barrel 214 and the outer optical lens 2122 of the outer barrel 211 is adjustable, and the specific change needs to be inclined according to the inclined groove 213.
  • the amplitude and the length of the notch of the inclined groove 213 are determined, preferably at an inclination angle of 5 to 15 degrees, and the distance between the inner optical lens 217 and the outer optical lens 212 is adjusted to be in the range of 0.5 to 10 mm.
  • the face support 6 includes a main body fixing portion 64 and a face contact portion 63, the side of the face contact portion 63 is connected to the main body fixing portion 64, and the other side is in contact with the human body face.
  • the main body fixing portion 64 is also connected to the rear case 3 of the virtual reality device, and the connection manner is not specifically limited. Both the main body fixing portion 64 and the face contact portion 63 may be an integrally formed structure. The main body fixing portion 64 and the face contact portion 63 will be described below.
  • Main body fixing portion 64 In order to facilitate the use of the face supporting member, the shape of the main body fixing portion 64 may be a figure-shaped structure which is arched from the both ends toward the center, and specifically may be a flange and an arc on both sides of the flange The glyphs formed by the department can realize the dispersion of the gravity of the virtual reality device to multiple positions on the human face.
  • the main body fixing portion 64 is provided with at least one protrusion protruding from the outer surface thereof, and the number of the protrusions shown in the drawing is not limited to four, two of which are the protrusions 61 on the flange, and the other two The protrusions 62 are located on the curved portion.
  • the rear case 3 of the virtual reality device is provided with face support members 41 and 43 for embedding the protrusions, and the face holders 41 and 43 may specifically For the opening, the connection of the main body fixing portion 64 to the virtual reality device is achieved.
  • the main body fixing portion When four fixing members are provided on the main body fixing portion, two of the protrusions 61 are located on both sides of the flange near the central axis, and in use, the two protrusions are located at corresponding positions near the nose bridge of the user; the other two protrusions 62 is located on the curved portion, corresponding to the vicinity of the facial humerus.
  • the preferred body fixing portion 64 corresponds to the position to be fixed of the virtual reality device to be used.
  • the body fixing portion 64 is integrally formed, and is preferably a lightweight material.
  • Facial contact portion 63 The side of the face contact portion 63 is connected to the main body fixing portion 64, and the other side is in contact with the human body surface.
  • the shape of the face contact portion 63 can also be set as a zigzag structure which is arched from the both ends toward the center, and specifically can be a triangular shape composed of a flange and an arc portion on both sides of the flange. The curved portion extends in a direction away from the flange.
  • the flange can correspond to the vicinity of the nose bridge of the user, and the curved portion can extend along the tail of the eye to better allow the face support member to withstand the force distribution of the human face, that is, the face contact portion and The place where the human face touches is evenly stressed.
  • the thickness of the face contact portion 63 is gradually thickened first, and then gradually thinned, and the thickness of the center is smaller than the thickness of the end portions, that is, the thickness near the central axis of the face contact portion 63 is thin. The free end is thicker.
  • the surface in contact with the human body surface at the face contact portion 63 is an inclined surface having a certain angle, that is, the surface is provided as a surface matching the human body surface and the nasal bridge surface.
  • the inclined surface may specifically include a nose inclined surface and an inclined surface of the cheek, and the area of the inclined surface of the nose is smaller than the area of the inclined surface of the cheek, wherein the angle between the inclined surface of the nose and the vertical surface is 10° to 80°, and the inclined surface of the cheek The angle from the vertical plane is 3° to 60°.
  • the thickness of the face contact portion corresponding to the inclined surface of the nose may be smaller than the thickness of the face contact portion corresponding to the inclined surface of the cheek.
  • the face contact portion 63 is preferably a light and soft material such as foam.
  • the face contact portion 63 may be integrally formed. As shown in FIG. 15, the specific installation steps of the above-mentioned face support 6 mounted on the rear case 3 are as follows:
  • the main body fixing portion 64 and the face contact portion 63 are fixedly connected to form a face holder 6.
  • the fixed connection method is not specifically limited, and the fixed connection may be performed by using a pasting method;
  • the main body fixing portion 64 is fixed to the rear case 3 of the virtual reality device.
  • the fixed connection manner is not specifically limited.
  • the face holders 41 and 43 may specifically be openings through which the main body fixing portion 64 and the rear case 3 are fixed by being caught in the opening.
  • the lateral length of the face support 6 is 60-160 mm, preferably 90-30 mm, especially 100-20 mm, which can satisfy most human faces, such as the lateral length is set to 110 mm ⁇ 8 mm;
  • the overall longitudinal height is 20 to 80 mm, preferably 30 to 70 mm, especially 45 to 55 mm, which can satisfy the nose of most human bodies, for example, the longitudinal direction is set to 48 mm ⁇ 5 mm.
  • the face support accessory of the present application makes full use of the facial shape characteristics of the person, so that when the user wears the virtual reality device, the contact surface with the user's face is increased as much as possible, and the gravity of the virtual reality device is dispersed.
  • the face support of the present application is different from the existing face support only in contact with the bridge portion of the nose, and the contact surface with the user's face is increased, that is, the face support member not only contacts the bridge of the nose, but also contacts the position near the eye, thereby further arranging the virtual reality device.
  • the gravity is dispersed, and the eye circumference on both sides of the bridge of the nose and the nose can withstand part of the gravity of the virtual reality device, reducing the discomfort and damage caused by the user wearing the virtual reality device, and allowing the user to use the headset for a long time. , greatly improve the user experience.
  • the light-shielding assembly 7 includes a light-shielding member 78 and a front end fixing ring 77; the light-shielding member 78 includes a top surface 73, a first curved surface 75, a second curved surface 76, and a bottom surface 74.
  • the side of the top surface 73 in contact with the human body surface is a non-closed arc extending outward from the center;
  • the bottom surface 74 is integrally disposed integrally with the top surface 73;
  • the first curved surface 75 and the second curved surface 76 are located on the top surface Both sides of the 73 are curved in a direction close to the bottom surface 74;
  • the first curved surface 75 and the second curved surface 76 are respectively smoothly connected with the top surface 73 and the bottom surface 74, such that the top surface 73, the first curved surface 75, and the second curved surface 76
  • the bottom surface 74 encloses a closed hollow region;
  • the front end fixing ring 77 is located at the outermost inner periphery of the hollow region and conforms thereto.
  • the shading component of the virtual reality device of the present application is used in conjunction with the main body of the virtual reality device, in order to facilitate the fixing of the shading assembly 7, the first curved surface 75 and the second curved surface 76 are respectively provided with connecting members 71 and 72, for convenience.
  • the first connector 71 and the second connector 72 are for attachment to the left and right temples 5, 4 of the virtual reality device.
  • the light shielding unit 7 is a cover structure comprising a front end fixing ring 77, a light blocking member 78, a first connecting member 71 and a second connecting member 72, respectively, for the above components.
  • Front end fixing ring 77 The front end fixing ring 77 is built in the outermost side of the light shielding member 78. When the light shielding unit 7 is applied to the virtual reality device main body, the front end fixing ring 77 is located at the inner periphery of the hollow region and is connected to the front end of the virtual reality device body. Contact, such as when the virtual reality device is in the form of glasses, the front end retaining ring 77 can enclose the frame portion, where the frame portion excludes the temples.
  • the front end fixing ring 77 can be a hollow airtight frame. Since the front end fixing ring 77 needs to surround the virtual reality device body, the shape of the front end fixing ring 77 needs to correspond to the outer shape of the virtual reality device body itself.
  • the shape of the front end fixing ring 77 needs to be changed accordingly.
  • the shape of the front end fixing ring 77 is also preferably a form of glasses, that is, the shape of the front end fixing ring 77 is according to the shape of the outer edge of the main body of the virtual reality device.
  • the front end fixing ring 77 may be hollowed out, and may of course be a solid structure. In order to save materials, reduce user wearing weight, and improve user experience, the front end fixing ring 77 is preferably hollowed out.
  • the light blocking member 78 includes a top surface 73, a first curved surface 75, a second curved surface 76, and a bottom surface 74.
  • the front end fixing ring 77 is configured to include a virtual reality device body front end outer frame, and the first curved surface 75 and the second curved surface 76 are extendable in the temple direction, the first curved surface 75 and the second surface
  • the first connecting member 71 and the second connecting portion 72 on the curved surface 76 are fixed on the left temple 5 and the right temple 4, so that the light shielding assembly 7 is fixed on the virtual reality device body, and the user uses the virtual reality device configured with the light shielding component.
  • the light blocking member 78 is connected to the virtual reality device body through the front end fixing ring 77.
  • the first curved surface 75 and the second curved surface 76 of the light blocking member 78 extend in a direction close to the end of the virtual reality device, and the side of the top surface 73 contacting the human body surface is a non-closed arc extending outward from the center, the non-closed arc can be matched with the forehead of the human body, and the bottom surface is set to a W shape which is arched from the both ends to the center, and is also matched with the human face, so that it is not only Saving materials can also reduce the weight of the shading assembly, and can improve the user's wearing comfort and achieve a good shading effect.
  • the light blocking member 78 may be selected from a soft material having a certain hardness, being breathable, and capable of preventing light from transmitting.
  • a material having a certain elasticity and not easy to wrinkle may be selected, such as a pull cotton, a Lycra or the like.
  • the material is selected from a synthetic fabric having two layers, one for shading and the other for air permeability and deformation. Since the general fabric is relatively soft and difficult to mold, in order to solve the problem, the elasticity, hardness and abrasion resistance of the synthetic fabric are improved, and the two layers of the fabric are synthesized by glue.
  • the light blocking member 78 has a hollow area for accommodating the front end of the virtual reality device body.
  • the hollow area includes a face contact surface and a virtual device connection surface; the face contact surface is for contacting the user's face, and the virtual device connection surface is used for the virtual reality device The viewing side of the inside of the frame is connected; or the hollow area includes a face contact surface and a virtual device connection surface; the face contact surface is for contacting the user's face, and the virtual device connection surface is for connecting with the outside of the frame of the virtual reality device.
  • the optical component of the virtual reality device in this embodiment may be a focusing component
  • the optical component specifically includes an outer lens barrel 211, an outer optical lens 212 fixed to the outer lens barrel 211, an inner lens barrel 214, and a fixed inner lens barrel 214.
  • the inner optical lens 217 and the positioning feature (specifically, the fixing screw 220 and the toggle fixing screw 221); at least one inclined groove 213 is disposed on the side wall of the outer lens barrel 211; the inner lens barrel 214 is built in the outer lens barrel 211;
  • the feature member (specifically, the fixing screw 220 and the toggle fixing screw 221) has a one-to-one correspondence with the inclined groove 213, and one end of each positioning feature (specifically, the fixing screw 220 and the toggle fixing screw 221) is fixed to the inner lens barrel 214.
  • the side wall and the other end are slidable in the inclined groove 213 through the inclined groove 213.
  • the positioning feature (specifically, the fixing screw 220 and the toggle fixing screw 221) is a virtual reality device protruding control key, and when the positioning feature (specifically, the fixing screw 220 and the toggle fixing screw 221) is adjusted, the inner lens barrel is adjusted.
  • the outer lens barrel 211 is relatively slid along the outer lens barrel 211, the distance between the outer optical lens 212 fixed to the outer lens barrel 211 and the inner optical lens 217 fixed to the inner lens barrel 214 is adjustable, and focusing of the optical component is achieved.
  • the bottom surface of the light shielding member 78 is provided with an opening for the virtual reality device to protrude the control key, that is, the positioning feature is exposed, and the shading is realized while achieving focusing.
  • the size of the shading assembly 7 of the virtual reality device may be such that the front end lateral distance of the shading assembly 7 is relatively smaller than the rear end longitudinal distance in order to adapt to the size of the human head shape.
  • the front end of the shading module has a lateral length of any value in the range of 50 to 250 mm, preferably any value in the range of 120 to 170 mm, and particularly 150 to 160 mm, which is most suitable for the mass of the user, such as 155 mm.
  • the longitudinal length is any value within the range of 30 to 150 mm, preferably any value within the range of 60-120 mm, and particularly between 80 and 100 mm, which is most suitable for mass user size, such as 91 mm.
  • the distance from the bottom end of the curved top surface of the shading component to the front end of the hood is any value within the range of 3 to 25 mm, preferably any value within the range of 8-20 mm, especially between 12 and 16 mm, which is most suitable for the mass user size. Such as 14mm.
  • the working principle of the light-shielding component 7 of the virtual reality device is as follows: when the user uses the virtual reality device with the light-shielding component, the user brings the virtual reality device, and the light-shielding member 78 of the light-shielding component 7 and the user's forehead and the user's face And the virtual reality device forms a relatively closed space, which allows the user's eyes to avoid external light interference, and only sees the visual light provided by the virtual reality device, so that the user can immerse himself in the video scene of the virtual reality device, greatly Improve user experience.
  • the specific installation steps of the shading component 7 of the above virtual reality device are as follows:
  • the first step surrounding the virtual reality device body through the closed hollow region of the light shielding component, and the front end fixing ring 77 located in the inner periphery of the closed hollow region is in contact with the front end frame of the virtual reality device;
  • the second step fixing the first curved surface 75 and the second curved surface 76 of the light shielding assembly to the virtual reality device through the first connecting member 71 and the second connecting member 72, the first curved surface 75 and the second curved surface 76 along the end of the virtual reality device
  • the direction extends.
  • the virtual reality device is a spectacles structure
  • the first connecting member 71 and the second connecting member 72 are respectively fixed to the temples of the virtual reality device, and specifically may be separately set on the two temples of the virtual reality device (virtual reality glasses).
  • the fixing of the light blocking member 78 and the virtual reality device body can be realized. It is also easy to disassemble, which is convenient for users to operate and improve user experience. It can be understood that the virtual reality device and the light shielding member 78 can also be fixed by sticking, and the fixing manner is not specifically limited to the present application.
  • PCBA board 8 As shown in FIG. 7, the rear case 3 includes a storage cavity 46 for accommodating the PCBA board 8 of the virtual reality device, and the PCBA board 8 is connected with the optical system. Specifically, the PCBA board 8 and the left display screen 22. The screen of the right display screen 24 is vertically connected. At the same time, the light sensing component is also connected to the PCBA board 8 and is perpendicular to the plane of the PCBA board 8.
  • Heat sink 9 The heat sink 9 is respectively attached to the rear of the left display 22 and the right display 24, and is attached to the heat generating device of the PCBA board 8.
  • the heat sink 9 includes a copper foil layer and a carbon film layer on the outer layer of the copper foil layer.
  • the copper foil layer is adhered to the rear of the left display screen 22 and the right display screen 24, and is attached to the heat generating device of the PCBA board 8. Hehe.
  • a part of the surface layer of the thermal conductive adhesive may be selected and connected to the heat sink 9 at the rear of the left display 22 and the right display 24. Since the display and the heat sink are only partially bonded, it is easy to disassemble during the maintenance process.
  • the surface of the heat generating component of the PCBA board can be coated with the thermal conductive adhesive and connected to the heat sink 9.
  • a maintenance opening can be provided at the heat sink corresponding to the light-blocking component or other heat-shielding device, so that the maintenance can be performed later, and the maintenance process is avoided. The entire heat sink needs to be removed for repair.
  • Data line fixing member 19 As shown in Figs. 19 to 21, the data line fixing member 19 is used for fixing on a virtual reality device.
  • the virtual reality device includes a frame and a temple, and a side of the rear casing 3 of the frame near the temple is provided with a temple connection portion, the lens connection portion is provided with a groove 44, and the temple is provided with a recess The projection 53 of the groove 44.
  • the data line fixing member 19 is fixed to the temple connecting portion, such as a screw connection.
  • the data line fixing member 19 includes a top surface and first and second side surfaces respectively connected to and opposite to the top surface, and respectively formed with a fixing portion 191 for fixing on the virtual reality device, a hollow opening 192, and a data line receiving
  • the cavity 193 and the data line baffle 194 are described in detail below for each of the above components.
  • the second side is fixedly connected to the temple connection portion of the virtual reality device
  • the first side is located on the inner side of the outer periphery of the virtual reality device, and the first side, the second side, and the top surface are surrounded by data lines.
  • the receiving cavity corresponds to the interface of the virtual reality device
  • the fixing portion 191 is located on the second side and extends away from the top surface, and the fixing portion 191 is used for fixing the data line fixing member 19 on the virtual reality device.
  • the fixing portion 191 is detachably connected to the virtual reality device.
  • the virtual reality device is provided with a screw hole
  • the fixing portion 191 is connected to the virtual reality device through the screw 195
  • the fixing portion 191 is non-detachably connected with the virtual reality device, such as welding, etc.
  • a hollow opening is provided on the first side surface and/or the second side surface, and a hollow opening 192 is not limited to the second side surface shown in FIG.
  • the top surface, the first side surface and the second side surface define a U-shaped data line receiving cavity 193 which is open on three sides, and the connector of the data line connected to the virtual reality device is received in the data line receiving cavity 193.
  • the data line fixing member 19 may further be provided with a data line baffle 194, and the data line baffle 194 is disposed on the data line.
  • the fixing member 19 is away from the side of the virtual reality device, and the data line baffle 194 can be respectively connected to the top surface and the first side, and has a space for extending into the data line with the second side; or the data line baffle 194
  • the second side surface and the top surface may be connected to each other and have a gap with the first side surface for extending into the data line, and the connection head of the data line is received in the data line receiving cavity 193, the data line block 25 board It is used to prevent the connector from coming off the data line receiving cavity 193.
  • the specific steps for installing the data line fixture 19 to the virtual reality device are as follows:
  • the first step is to connect the data line on the virtual reality device, that is, insert the connector of the data line into the data line interface on the virtual reality device.
  • the data line in this embodiment is generally an HDMI data line, and of course, other uses may be used.
  • the data line for data transmission or charging is not specifically limited;
  • the data line fixing member 19 of the present application may be integrally formed, and the preferred material is a material that is lightweight and has a certain hardness.
  • the working principle of the data line fixing member 19 is as follows: firstly, the connector of the data line is fixed on the data line interface of the virtual reality device, and then the connector of the data line is also accommodated in the data line receiving cavity 193 of the data line fixing member 19. At the same time, the data line fixing member is further away from the data line interface of the virtual reality device, and a data line baffle 194 is further disposed.
  • the data line baffle 194 is used for preventing the connection of the data line from loosening or falling, and blocking the connection of the data line.
  • the data line is well connected with the virtual reality device, avoiding the looseness of the data line externally connected by the user during use, resulting in poor data transmission or even falling off the data line, which allows the user to enter the virtual reality scene interaction boldly. To improve user experience.
  • the virtual reality device in the present application newly adds a data line fixing member 19, and fixes the data line on the virtual reality device while accommodating the connector of the data line, and can have the data line connector at The controllable range can be moved without even moving, so that the data line can be well connected with the virtual reality device, even if the user performs intense exercise during use, the data line will not fall off, and the user's Experience and improve the applicable scenarios of virtual reality devices.
  • FIG. 24 is a schematic diagram of a virtual reality device structure according to an embodiment of the present application.
  • FIG. 25 is a schematic structural diagram of a virtual reality device back shell according to an embodiment of the present application.
  • the virtual reality device provided by the present application presents a form of glasses, which can create a virtual reality environment experience for the user, and the user can use the virtual reality device provided by the present application by wearing glasses.
  • a virtual reality device provided by the present application includes: a front case 1, a rear case 3 and a temple 3a.
  • the rear case 3 is composed of a bottom case bottom surface 21a and a frame 22a, and the rear case bottom surface 21a is located.
  • One side of the frame 22a forms a receiving cavity 46 with the bottom surface 21a of the rear case;
  • the front case 1 is located on the other side of the frame 22a to close the receiving cavity 46;
  • the temple 3a is disposed on the rear case and extends in the opposite direction of the receiving cavity 46.
  • the front case 1 is a face shell having a flat structure, one side is smooth, and the other side is slightly curved in the direction of the rear case 3; the rear case bottom surface 21a is located on one side of the frame 22a, and is disposed around the edge of the frame 22a and the bottom surface of the rear case
  • the 21a forms a housing cavity 46 for mounting optical components and electronic components of the virtual reality device.
  • the front case 1 and the rear case 3 When the front case 1 and the rear case 3 are engaged, the front case 1 and the rear case 3 together form a closed outer casing of the virtual reality device, so that the storage cavity 46 becomes a closed cavity structure, which can isolate the optical component and the electronic component from the external environment. It protects optical components and electronic components.
  • the temples 3a are disposed on the rear case 3, and can be retracted and opened for the user to wear and store.
  • the frame 22a is divided into two segments in a direction perpendicular to the bottom surface 21a of the rear casing, and the two segments respectively form a frame 22a.
  • the rear frame surface 222a and the front frame surface 223a, the rear frame surface 222a and the front frame surface 223a are bent at the joint to form a ridge-shaped structure, and the ridge-shaped structure is changed in the form of a straight curved surface frame generally used in the prior art.
  • the rear frame surface 222a and the front frame surface 223a are approximately formed into two curved side edges having a triangular curved surface structure, and the rear case bottom surface 21a and the front case 1 respectively support the two ends of the frame 22a, which may be equivalent to the third of the triangular curved surface structure.
  • Surface edges It can be seen that the frame 22a of the present application forms a unitary form equivalent to a triangular curved surface structure with the rear case bottom surface 21a and the front case 1 by using the two-stage structure of the rear frame surface 222a and the front frame surface 223a. Because, in the structural form of mechanics, the triangular structure has stability and is not easy to change shape due to the action of external force. It is widely used in the traditional construction industry, but in the field of virtual reality, the triangular structure is used. In the case where the virtual reality device is thin and light, the scheme of improving the structural strength of the outer casing is not conventional.
  • the virtual reality device with a straight curved surface is subjected to an external force, and the direction of the impact force is perpendicular to the tangent plane direction of the straight curved surface, so that the impact force cannot extend along the direction of the straight curved surface.
  • the internal stress of the frame is opposite to the direction of the impact force and perpendicular to the straight surface, and the opposite direction of the impact force is generated at the intersection of the frame and the bottom surface of the rear case and the frame and the front case.
  • the impact force, internal stress and supporting force constitute the shearing moment of the frame and form a force balance.
  • the impact force Since the direction of the impact force is perpendicular to the tangential plane of the straight curved surface, the impact force will not be in the tangent plane of the straight curved surface.
  • the direction produces a component, so that all components of the impact force act in a direction perpendicular to the plane of the tangent, and the wall thickness of the frame in this direction is the thinnest, and the ability to withstand external forces is the weakest. Therefore, when the virtual reality device is light and thin, When the outer casing is thin, the above-mentioned prior art virtual reality device cannot achieve a high outer casing strength in a thin and light case.
  • the frame 22a is divided into a rear frame surface 222a and a front frame surface 223a, so that the rear frame surface 222a and the front frame surface 223a form a ridge-shaped structure at the joint.
  • the connection between the rear frame surface 222a and the front frame surface 223a is in contact with the impact surface due to the top position of the ridge-shaped structure due to the existence of the ridge-shaped structure.
  • the rear frame surface 222a and the front frame surface 223a are not perpendicular to the direction of the force of the frame 22a. Therefore, the impact force can form two components along the direction of the rear frame surface 222a and the front frame surface 223a, and the two component impact forces can be along the rear frame.
  • the surface 222a and the front frame surface 223a are guided to the rear case bottom surface 21a and the front case 1 so that the impact energy received by the frame 22a can be effectively dispersed to other areas of the outer casing, thereby avoiding a large shearing moment generated by the impact on the frame. Under the condition that the virtual reality device is light and thin, the strength of the virtual reality device shell is improved.
  • the thickness of the outer casing is usually much smaller than the width of the outer casing. Therefore, the weight of the thin and thin virtual reality device shown in FIG. 24 is parallel to the bottom surface of the rear case.
  • the direction of 21a is more concentrated, which causes, for example, the thin and light virtual reality device shown in Fig. 24 to fall, the probability that the frame 22a hits the ground is much greater than the probability of landing on other parts of the casing.
  • FIG. 26 is a schematic structural diagram of a virtual reality device frame according to an embodiment of the present application.
  • the frame 22a includes a frame top curved surface 224a, a frame bottom curved surface 225a, and a connecting frame top curved surface 224a and a frame bottom curved surface in a direction surrounding the rear case bottom surface 21a.
  • the frame top curved surface 224a is located at the top of the frame 22a, and presents a gently curved surface which is concave in the middle and raised on both sides, and is at the center of the frame top surface 224a, that is, at the center plane 10a of the rear case 3.
  • An arc base 2241a is formed. Since the accommodating cavity 46 is relatively narrow in the region located at the center plane 10a, the outer casing structure located in the region of the arc base 2241a is also more thin, and it is more likely to be damaged when subjected to an external force than other regions of the outer casing.
  • the frame 22a has a lower middle and a higher concave on the side of the frame top surface 224a.
  • the shape structure when the virtual reality device falls, since the height of the frame top arc surface 224a at the bottom of the arc 2241a is lower than the height of the two sides of the frame top arc surface 224a, the impact surface may only be higher on both sides of the frame top arc surface 224a.
  • the area contact, the area near the arc base 2241a is between the higher areas on both sides of the frame top arc surface 224a, and does not contact the impact surface, thereby avoiding the impact of the thinner area on the virtual reality device casing. Directly withstand external forces and cause damage.
  • the design allows the frame top curved surface 224a to have a certain angle of curvature on the horizontal surface, and also has a certain elasticity, so that when the side of the virtual reality device is vertically dropped, it can have a certain amount of buffering and enhance the anti-falling force.
  • the frame bottom curved surface 225a is located at the bottom of the frame 22a, has a "several" shape symmetrical along the center plane 10a, and forms an arc top 2251a at the center of the frame bottom curved surface 225a, that is, at the center plane 10a.
  • the curvature of the bottom curved surface 225a is large, and the outer casing (the outer casing is also referred to as a casing) can be reduced to a greater extent while avoiding the contact between the thin surface and the impact surface near the arc top 2251a.
  • the volume makes the outer casing more light and thin; and the bottom curved surface 225a has a curved surface similar to the contour of the human nose bridge, and the bottom curved surface provided by the bottom curved surface 225a is compared with the conventional curved lens holder.
  • the similar curved surface can increase the contact area between the bottom curved surface 225a and the user's nose bridge, and reduce the pressure on the bridge of the nose when the user wears the virtual reality device, so that the user does not wear the virtual reality device for a long time.
  • Realistic devices are heavier than traditional glasses and cause nasal pressure.
  • the joint between the bottom curved surface 225a and the connecting curved surface 226a is the lower position 227a of the rear shell 3; the width of the rear frame surface 222a is on the top curved surface 224a of the frame.
  • the 225a gradually decreases from the low point 227a toward the arc top 2251a.
  • the frame top arc surface 224a is a gentle arc surface, when the external force is applied, the force direction of the frame top arc surface 224a is close to the frame top arc surface 224a, and the force is hard to be decomposed and transmitted around the force point, resulting in The local stress of the force point is too large; and, since the extended length of the frame top curved surface 224a along the top of the frame 22a is long, when subjected to an external force, a large bend is generated from the force point to the frame top arc surface 224a.
  • the width of the virtual reality glasses rear frame surface 222a of the present application has a minimum value on the frame top curved surface 224a, so that the widths of the rear frame surface 222a and the front frame surface 223a are relatively close, which helps to form a more convex ridge shape.
  • the structure reduces the angle between the force direction and the rear frame surface 222a and the front frame surface 223a when the frame top curved surface 224a is subjected to an external force, so that the external force is easily decomposed and transmitted along the rear frame surface 222a and the front frame surface 223a.
  • the local stress of the force point is reduced, and the structural strength of the frame top surface 224a is improved.
  • the more convex ridge-shaped structure can make the frame top curved surface 224a have better bending resistance, and can effectively resist the frame top arc surface 224a from the force point to the frame top arc surface 224a when subjected to an external force.
  • the generated bending moment prevents the frame top arc surface 224a from being deformed.
  • the arc of the frame 22a is relatively large in the area except the top arc surface 224a of the frame top surface 224a, the boundary and the conduction of the force are better than the frame top surface 224a when subjected to an external force.
  • the degree of protrusion of the ridge-shaped structure can be appropriately reduced, and the visual effect of the ridge-shaped structure on the thin and light form of the virtual reality device is appropriately reduced while ensuring the structural strength of the ridge-shaped structure to the frame 22a.
  • the width of the rear frame surface 222a is the maximum at the low position 227a, so that the width of the rear frame surface 222a is much larger than the width of the front frame surface 223a, so that the frame 22a is visually not caused by
  • the rear frame surface 222a and the front frame surface 223a form a ridge-shaped structure to be thick; and the width of the rear frame surface 222a gradually decreases from the lower position 227a toward the frame top curved surface 224a on the connecting curved surface 226a; the rear frame surface
  • the width of the 222a gradually decreases from the low point 227a toward the arc top 2251a on the bottom curved surface 225a, so that the rear frame surface 222a and the front frame surface 223a form a continuously varying asymmetric visual segmentation effect, and the visual segmentation effect is
  • the combination of ambient light effects gives the user a visual experience that is thinner and lighter than the original virtual reality device form, reducing the psychological burden of the user being visually thick
  • the above-mentioned visual segmentation effect is combined with the ambient light effect. Specifically, when the ambient light is irradiated onto the frame 22a, the light irradiated on the rear frame surface 222a and the front frame surface 223a is reflected in different directions due to the presence of the ridge-shaped structure. The angle between the reflection direction and the human eye is different, and the intensity of the light incident into the human eye is also different.
  • the rear frame surface 222a and the front frame surface 223a form an image with a difference in visual strength in the human eye, and the rear frame surface 222a Any visual effect with the front frame 223a will attract more attention of the user, so that the user's attention to the visual effect of the image is reduced, thereby making the virtual reality device at the same thickness of the frame 22a. A visual experience that is thinner than the actual thickness of the actual bezel 22a is produced.
  • the junction of the bottom curved surface 225a and the connecting curved surface 226a is the lower position 227a of the rear shell 3; the width of the rear frame surface 222a has a maximum value on the top curved surface 224a of the frame.
  • the low position 227a is the minimum value; the width of the rear frame surface 222a gradually increases from the lower position 227a toward the frame top arc surface 224a on the connecting curved surface 226a; the width of the rear frame surface 222a is from the lower position on the bottom curved surface 225a.
  • the 227a gradually becomes larger toward the arc top 2251a.
  • this structure can also reduce the visual impact of the ridge structure on the thin and light form of the virtual reality device while ensuring the structural strength of the ridge structure to the frame 22a, so that the rear frame surface The 222a and the front frame surface 223a form a continuously varying asymmetric visual segmentation effect, and the visual segmentation effect is combined with the ambient light effect to give the user a lighter and thinner visual experience than the original virtual reality device form, and reduce the user's use of the virtual reality device.
  • the joint of the frame bottom curved surface 225a and the connecting curved surface 226a is the rear case 3 low position 227a; the width of the rear frame surface 222a has a minimum value on the frame top curved surface 224a.
  • the low position 227a is the maximum value; the width of the rear frame surface 222a gradually decreases from the lower position 227a toward the frame top curved surface 224a on the connecting curved surface 226a; the width of the rear frame surface 222a is from the lower position on the bottom curved surface 225a.
  • the embodiment in which the 227a gradually decreases toward the arc top 2251a is a preferred embodiment because the frame 22a is generally integrally formed with the rear case bottom surface 21a, and therefore, the connection strength of the rear frame surface 222a and the rear case bottom surface 21a Higher, able to withstand large internal stresses and bending moments; and the front frame surface 223a and the front casing 1 are separated structures, and the fastening is achieved by providing some fastening features, so that the front frame surface 223a is in contact with the front casing 1
  • the structural strength at the location is not as high as the connection strength between the rear frame surface 222a and the rear casing bottom surface 21a, so the preferred embodiment in the present application places the ridge-shaped structure on the frame 22a closer to the side of the front casing 1 due to the ridge structure. Higher strength and better stability
  • the chevron structure is located closer to the side of the front housing 1, help to improve the strength of the connection with the front frame 22a of the housing 1.
  • FIG. 27 is a cross-sectional view of the rear housing of the virtual reality device shown in FIG.
  • the rear frame surface 222a extends from the rear case bottom surface 21a in the direction of the front case 1, and the formed expansion angle ⁇ causes the opening of the housing cavity 46 to expand; the front frame surface The 223a and the rear frame surface 222a form a ridge top line 221a at the joint; the ridge angle ⁇ formed by the front frame surface 223a and the rear frame surface 222a at the ridge top line 221a reduces the expansion tendency of the opening of the receiving cavity 46 or presents Contraction trend.
  • the expansion angle ⁇ causes the opening of the accommodating cavity 46 to be expanded, that is, the rear frame surface 222a and the rear case bottom surface 21a are not perpendicular, and the opening of the accommodating cavity 46 gradually increases away from the rear case bottom surface 21a.
  • the component of the force carried by the rear frame surface 222a can be decomposed to the bottom surface 21a of the rear case due to the existence of the expansion angle ⁇ , so that the expansion angle ⁇ can facilitate the frame 22a when subjected to an external force.
  • the force is dissipated inside the outer casing, which in turn gives the outer casing a higher strength.
  • the opening of the accommodating cavity 46 is formed.
  • the frame 22a When the frame 22a is subjected to an external force, the frame 22a is slightly elastically deformed, and the frame 22a is elastically deformed in the same direction as the external force, that is, the frame 22a.
  • the inside of the housing chamber 46 is deformed. However, since the opening of the housing chamber 46 exhibits an expanding tendency, if the frame 22a is deformed toward the inside of the housing chamber 46, the expansion tendency of the opening of the housing chamber 46 is reduced, and the frame 22a has been formed. Next, the inside of the frame 22a generates a compressive stress to block the expansion tendency of the opening caused by the external force, so that the frame 22a maintains the structure stability when subjected to an external force.
  • the expansion angle ⁇ in the present application causes a small structural change in the opening formed by the accommodation chamber 46, and the structural strength of the outer casing is improved without affecting the slim shape of the virtual reality device.
  • the front frame surface 223a and the rear frame surface 222a form a ridge top line 221a at the joint; the front frame surface 223a and the rear frame surface 222a form a ridge angle ⁇ at the ridge top line 221a, so that the opening of the receiving cavity 46
  • the expansion trend is decreasing or showing a contraction trend.
  • the ridge top line 221a is a contour of the ridge top of the ridge-shaped structure formed by the front frame surface 223a and the rear frame surface 222a, and the ridge top line 221a gives the frame 22a a visually strong feeling; the ridge angle ⁇ and The common size of the expansion angle ⁇ determines the ridge slope morphology of the ridge-shaped structure; in addition, the ridge angle ⁇ reduces the expansion tendency of the opening of the accommodation cavity 46 or exhibits a contraction tendency, and the stable shape of the ridge-shaped structure enables the front frame
  • the engagement of the face 223a with the front case 1 is more secure, and it is less likely that the front case 1 is detached from the frame 22a due to deformation of the frame 22a when subjected to an external force.
  • the contour area of the front case 1 is larger than the outline area of the rear case bottom surface 21a in a direction perpendicular to the rear case bottom surface 21a, when the human eye is viewed from the front case 1 side of the virtual reality device, The rear frame surface 222a on the other side of the ridge top line 221a is not visible to the human eye, thereby providing the frame 22a with a slim visual experience for the virtual reality device.
  • the expansion angle ⁇ gradually decreases from the arc base 2241a toward both sides of the center plane 10a on the frame top curved surface 224a; the expansion angle ⁇ is at the bottom of the frame.
  • the 225a gradually decreases from the arc top 2251a toward the lower side points 227a on both sides; the expansion angle ⁇ gradually increases from the lower point 227a toward the frame top arc surface 224a on the connecting curved surface 226a.
  • the frame top arc surface 224a is a gentle arc surface, when subjected to an external force, the force direction of the frame top arc surface 224a is close to the frame top arc surface 224a, and the force is hard to be decomposed to the force point. Conduction, causing excessive local stress at the point of stress; and, since the extended length of the top curved surface 224a along the top of the frame 22a is long, when subjected to an external force, it is generated from the force point to the top surface of the frame 224a. Large bending moments.
  • the present application uses the frame top surface 224a to form the arc base 2241a on the center plane 10a of the rear case 3 so that the expansion angle ⁇ is on the frame top surface 224a.
  • the gradual decrease from the arc base 2241a toward both sides of the center plane 10a, and increasing the expansion angle ⁇ can increase the slope of the rear frame surface 222a as a ridge-shaped structure, facilitating the formation of a smaller ridge angle ⁇ in the ridge top line 221a.
  • the ridge structure on the top arc surface 224a of the frame is more convex, and the structural strength and structural stability of the frame top surface 224a are improved.
  • the magnitude of the expansion angle ⁇ satisfies an arc shape in which the top line 221a is also concave on the frame top surface 224a, and the probability that the frame top curved surface 224a is in direct contact with the external force at a position near the center plane 10a is reduced.
  • the expansion angle ⁇ gradually decreases from the arc top 2251a toward the lower low point 227a on the frame bottom curved surface 225a, so that the frame bottom curved surface 225a forms a curved surface similar to the contour of the human nose bridge.
  • the contact area of the large frame bottom surface 225a with the user's nose bridge reduces the pressure on the bridge of the nose when the user wears the virtual reality device, so that the user does not wear the virtual reality device for a long time, because the virtual reality device is not more weight than the conventional glasses. Heavy causes a sense of nasal pressure.
  • the expansion angle ⁇ gradually increases from the lower point 227a toward the frame top arc surface 224a on the connecting curved surface 226a.
  • the temple 3a of the virtual reality device in the present application is located at a position on both sides of the rear case 3. Due to the presence of the temple 3a, the gravity of the area near the temple on both sides of the rear case 3 is relatively concentrated, when virtual When the actual device is dropped, the area near the temple on both sides of the rear case 3 is more likely to come into contact with the falling surface.
  • the expansion angle ⁇ of the present application gradually increases from the lower position 227a toward the frame top arc surface 224a on the connecting curved surface 226a, and can gradually increase the slope of the rear frame surface 222a as a ridge-shaped structure, which is advantageous for the ridge top line.
  • the 221a gradually forms a smaller ridge angle ⁇ , which makes the ridge-shaped structure on the top arc surface 224a more convex, and improves the structural strength and structural stability of the frame top curved surface 224a.
  • the ridge angle ⁇ gradually increases from the arc base 2241a toward both sides of the center plane 10a on the frame top arc surface 224a; the ridge angle ⁇ is from the arc on the frame bottom arc surface 225a.
  • the top portion 2251a gradually increases toward the lower side points 227a on both sides; the ridge angle ⁇ gradually decreases from the lower position 227a toward the frame top curved surface 224a on the connecting curved surface 226a.
  • the frame top arc surface 224a is a gentle arc surface, when subjected to an external force, the force direction of the frame top arc surface 224a is close to the frame top arc surface 224a, and the force is hard to be decomposed to the force point. Conduction, causing excessive local stress at the point of stress; and, since the extended length of the top curved surface 224a along the top of the frame 22a is long, when subjected to an external force, it is generated from the force point to the top surface of the frame 224a. Large bending moments.
  • the present application uses the frame top surface 224a to form the arc base 2241a on the center plane 10a of the rear case 3, and the ridge angle ⁇ is on the frame top surface 224a.
  • the ridge structure is most convex at the arc bottom 2241a of the frame top arc surface 224a, and the front frame surface 223a and the rear frame surface 222a are formed.
  • the ridge shape of the ridge-shaped structure gradually becomes gentle on both sides of the central plane 10a, which improves the structural strength of the virtual reality device shell, does not affect the thin and light form of the virtual reality device, and does not affect the user's visual perception of the thin and light shape of the virtual reality device. .
  • the ridge angle ⁇ gradually increases from the arc top 2251a toward the lower low point 227a on the frame bottom curved surface 225a, and is adapted to the expansion angle ⁇ , and the expansion angle ⁇ causes the frame bottom curved surface 225a to form.
  • the ridge angle ⁇ enables the expansion tendency of the opening of the receiving cavity 46 formed by the front frame surface 223a to be close to or the same as the position of the frame 22a, thereby ensuring the fastening of the front case 1 and the rear case 3. effect.
  • the ridge angle ⁇ gradually decreases from the lower point 227a toward the frame top arc surface 224a on the connecting curved surface 226a.
  • the temple 3a of the virtual reality device in the present application is located at a position on both sides of the rear case 3. Due to the presence of the temple 3a, the gravity of the area near the temple on both sides of the rear case 3 is relatively concentrated, when virtual When the actual device is dropped, the area near the temple on both sides of the rear case 3 is more likely to come into contact with the falling surface.
  • the ridge angle ⁇ of the present application gradually decreases from the lower position 227a toward the frame top curved surface 224a on the connecting curved surface 226a, and the slope of the rear frame surface 222a and the front frame surface 223a as a ridge-shaped structure can be gradually increased.
  • the ridge structure on the top arc surface 224a of the frame is more convex, and the structural strength and structural stability of the frame top surface 224a are improved.
  • FIG. 28 is a schematic diagram showing a contour angle of a back cover of a virtual reality device according to an embodiment of the present application.
  • the relationship between the expansion angle ⁇ and the ridge angle ⁇ satisfies: the contour angle ⁇ formed between the rear case bottom surface 21a and the front frame surface 223a is always greater than 90 degrees. And the range of the contour angle ⁇ is between 92 degrees ⁇ 2 degrees.
  • the expansion angle ⁇ gradually decreases from the arc base 2241a toward both sides of the center plane 10a on the frame top arc surface 224a; the expansion angle ⁇ gradually increases from the arc top 2251a to the lower two sides 227a on the frame bottom curved surface 225a.
  • the expansion angle ⁇ gradually increases from the lower point 227a toward the frame top arc surface 224a on the connecting curved surface 226a.
  • the ridge angle ⁇ gradually increases from the arc base 2241a toward both sides of the center plane 10a on the frame top curved surface 224a; the ridge angle ⁇ is on the frame bottom curved surface 225a from the arc top 2251a to the lower two sides 227a The direction gradually increases; the ridge angle ⁇ gradually decreases from the lower point 227a toward the frame top curved surface 224a on the connecting curved surface 226a.
  • the expansion angle ⁇ , the ridge angle ⁇ and the contour angle ⁇ can be selected as follows:
  • the value of the contour angle ⁇ may continuously change along the frame 22a, and is not necessarily a fixed value.
  • the expansion angle ⁇ , the ridge angle ⁇ and the contour angle ⁇ may be selected as follows:
  • FIG. 29 is a schematic diagram showing a contour angle of a rear casing of another virtual reality device according to an embodiment of the present application.
  • the relationship between the expansion angle ⁇ and the ridge angle ⁇ satisfies: the contour angle ⁇ formed between the rear case bottom surface 21a and the front frame surface 223a is always less than 90 degrees. And the contour angle ⁇ ranges between 88 degrees ⁇ 2 degrees.
  • the expansion angle ⁇ gradually decreases from the arc base 2241a toward both sides of the center plane 10a on the frame top arc surface 224a; the expansion angle ⁇ gradually increases from the arc top 2251a to the lower two sides 227a on the frame bottom curved surface 225a.
  • the expansion angle ⁇ gradually increases from the lower point 227a toward the frame top arc surface 224a on the connecting curved surface 226a.
  • the ridge angle ⁇ gradually increases from the arc base 2241a toward both sides of the center plane 10a on the frame top curved surface 224a; the ridge angle ⁇ is on the frame bottom curved surface 225a from the arc top 2251a to the lower two sides 227a The direction gradually increases; the ridge angle ⁇ gradually decreases from the lower point 227a toward the frame top curved surface 224a on the connecting curved surface 226a.
  • the expansion angle ⁇ , the ridge angle ⁇ and the contour angle ⁇ can be selected as follows:
  • the expansion angle ⁇ 96 degrees
  • the ridge angle ⁇ 170 degrees
  • the value of the contour angle ⁇ may continuously change along the frame 22a, and is not necessarily a fixed value.
  • the expansion angle ⁇ , the ridge angle ⁇ and the contour angle ⁇ may be selected as follows:
  • FIG. 30 is a schematic diagram showing a contour angle of a rear casing of still another virtual reality device according to an embodiment of the present application.
  • the relationship between the expansion angle ⁇ and the ridge angle ⁇ is such that the rear bottom surface (21a) is perpendicular to the front frame surface (223a).
  • the expansion angle ⁇ gradually decreases from the arc base 2241a toward both sides of the center plane 10a on the frame top arc surface 224a; the expansion angle ⁇ gradually increases from the arc top 2251a to the lower two sides 227a on the frame bottom curved surface 225a.
  • the expansion angle ⁇ gradually increases from the lower point 227a toward the frame top arc surface 224a on the connecting curved surface 226a.
  • the ridge angle ⁇ gradually increases from the arc base 2241a toward both sides of the center plane 10a on the frame top curved surface 224a; the ridge angle ⁇ is on the frame bottom curved surface 225a from the arc top 2251a to the lower two sides 227a The direction gradually increases; the ridge angle ⁇ gradually decreases from the lower point 227a toward the frame top curved surface 224a on the connecting curved surface 226a.
  • the expansion angle ⁇ , the ridge angle ⁇ and the contour angle ⁇ can be selected as follows:
  • the numerical values of the expansion angle ⁇ , the ridge angle ⁇ and the contour angle ⁇ shown in the above alternative embodiments are given only as exemplary numerical values for explaining the technical solutions of the present application, all satisfying the above-mentioned options.
  • the numerical combination and numerical value of the values of the expansion angle ⁇ , the ridge angle ⁇ , and the contour angle ⁇ of the relationship between the expansion angle ⁇ and the ridge angle ⁇ shown in the embodiment fall within the protection scope of the present application, and satisfy the expansion.
  • Other combinations of the expansion angle ⁇ , the ridge angle ⁇ , and the contour angle ⁇ of the angle ⁇ and the ridge angle ⁇ are not described in this embodiment.
  • the ridge angle ⁇ decreases, that is, the ridge structure of the frame 22a is more convex, and the structural strength of the frame 22a Higher;
  • the contour angle ⁇ decreases, that is, the ridge structure of the frame 22a is more prominent, and the structural strength of the frame 22a is higher; however, if the contour angle ⁇ is too If the small or divergent angle ⁇ is too large, the ridge structure of the frame 22a will be too convex, resulting in a virtual reality device that becomes both visually and structurally thick.
  • the expansion angle ⁇ , the ridge angle ⁇ , and the contour angle ⁇ are selected.
  • the value of the virtual reality device has a high shell strength while having a light and thin shape in a suitable range.
  • the values of the expansion angle ⁇ , the ridge angle ⁇ , and the contour angle ⁇ exemplarily provided in the embodiment shown in the embodiment of the present application can realize that the virtual reality device has a high outer casing strength while having a thin and light form.
  • FIG. 31 and FIG. 32 are schematic diagrams showing the width of the back ridge of a virtual reality device according to an embodiment of the present application.
  • the rear casing includes a rear shell thickness ⁇ 0 in a direction perpendicular to the bottom surface of the rear casing, and a width of the rear frame surface 222a ranges from 50 in the rear shell thickness ⁇ 0. Between % and 80%. Since the connection strength between the rear frame surface 222a and the rear casing bottom surface 21a is high, the internal stress and the bending moment can be withstood; and the front frame surface 223a and the front casing 1 are separated structures, and the fastening is achieved by providing some fastening features.
  • the structural strength of the front frame surface 223a and the front casing 1 at the point of contact is not as high as the connection strength between the rear frame surface 222a and the rear casing bottom surface 21a, and therefore, the width of the rear frame surface 222a is greater than 50% of the thickness of the rear casing 3, That is, the width of the rear frame surface 222a is larger than the width of the front frame surface 223a, and the frame 22a can be subjected to an external force, and the bending moment of the front frame surface 223a is smaller than that of the rear frame surface 222a, thereby improving the strength of the frame 22a as a whole.
  • the width of the front frame surface 223a cannot be too small, otherwise the ridge-shaped structure cannot be formed, which is disadvantageous for improving the strength of the frame 22a. Therefore, the width of the rear frame surface 222a in the present application is in the range of 50% to 80% of the thickness ⁇ 0 of the back shell, which is in the most reasonable range.
  • the width of the rear frame surface 222a is fixed at the frame top arc surface 224a to a minimum value ⁇ 1, and the minimum value ⁇ 1 is between 50% and 55% of the thickness of the rear case 3.
  • the width of the rear frame surface 222a is the maximum value ⁇ 2 at the low position 227a, and the maximum value ⁇ 2 ranges between 75% and 80% of the thickness of the rear case 3.
  • the width of the rear frame surface 222a is The frame top arc surface 224a is fixed and can improve the integrity of the frame top arc surface 224a, so that the frame top arc surface 224a is more regular when subjected to an external force, and the overall strength of the frame top arc surface 224a is improved; At the same time, the width of the rear frame surface 222a is fixed on the frame top curved surface 224a, and a straight ridge line 221a can be formed on the frame top curved surface 224a, which gives a visually strong feeling.
  • the width of the rear frame surface 222a is fixed to the minimum value ⁇ 1 on the frame top curved surface 224a, and the minimum value ⁇ 1 is between 50% and 55% of the thickness of the rear case 3, and
  • the width of the rear frame surface 222a is the maximum value ⁇ 2 at the low position 227a, and the range of the maximum value ⁇ 2 is between 75% and 80% of the thickness of the rear case 3, which is the preferred embodiment shown in this embodiment.
  • the relevant expositions in the previous article are not covered here.
  • FIG. 33 is a schematic diagram of a ridge top line and a dividing plane of a virtual reality device according to an embodiment of the present application.
  • the top line 221a is located in a dividing plane 20a extending through the frame 22a, and the dividing plane 20a is perpendicular to the center plane 10a.
  • the dividing plane 20a is inclined to the rear case bottom surface 21a such that the range of the inclination angle ⁇ is such that the width of the rear frame surface 222a ranges between 50% and 80% of the thickness of the rear case 3.
  • the ridge top line 221a is located in a dividing plane 20a penetrating the frame 22a, and the width of the rear frame surface 222a and the front frame surface 223a can be linearly changed along the line of intersection of the dividing plane 20a and the center plane 10a, thereby improving the overall structure of the frame 22a. Therefore, when the frame 22a is subjected to an external force, the distribution of stress is more regular, and the overall strength of the frame top surface 224a is improved. Further, the top line 221a is located in a dividing plane 20a penetrating the frame 22a, and the back shell 3 can be easily opened and processed.
  • the wall thickness of the front frame surface 223a is greater than the wall thickness of the rear frame surface 222a, and the front frame surface 223a and the rear frame surface 222a are smooth transition surfaces 44a inside the housing cavity 46. . Since the connection manner of the front frame surface 223a and the front case 1 may be connected by a snap connection or the like, the structural strength is not as high as that of the rear frame surface 222a and the rear case bottom surface 21a. Therefore, the front frame is appropriately increased.
  • the wall thickness of the surface 223a can increase the structural strength of the front frame surface 223a, and reduce the deformation of the frame 22a on the front frame surface 223a when subjected to an external force, so that the overall strength of the virtual reality device casing is higher.
  • the front frame surface 223a and the rear frame surface 222a are smooth transition surfaces 44a inside the housing chamber 46, contributing to a reduction in stress concentration at the joint between the front frame surface 223a and the rear frame surface 222a.
  • the front end surface 223a has an open end 2231a at its end, and the front frame surface 223a is provided with a slit 228a at the open end 2231a.
  • the opening 228a is located inside the receiving cavity 46, and the opening 228a A notch bottom surface 2281a parallel to the bottom surface 21a of the rear case is provided, and the distance from the bottom surface 2281a of the opening to the opening end 2231a is less than 20% of the thickness of the rear case 3.
  • the gap 228a acts on the front shell 1 in a limited position. When the front shell 1 and the frame 22a are engaged, the position of the front shell 1 is prevented from being changed, and the stability of the overall structure of the outer casing is improved.
  • a first chamfer 41a is provided at the junction of the rear frame surface 222a and the rear casing bottom surface 21a, and the height of the first chamfer 41a does not exceed half the wall thickness of the rear casing 3.
  • the first chamfer 41a is provided at the joint of the rear bottom surface 21a, so that the stress concentration of the joint between the rear frame surface 222a and the rear bottom surface 21a when subjected to an external force can be avoided, and the strength of the outer casing can be improved. Further, the height of the first chamfer 41a does not exceed half the wall thickness of the rear case 3, and does not affect the overall wall thickness of the outer casing.
  • a second chamfer 42a is provided outside the edge of the front frame surface 223a, and the height of the second chamfer 42a does not exceed half the wall thickness of the rear casing 3.
  • the second chamfer 42a functions to eliminate the tip end profile on the outer side of the edge of the front frame surface 223a, thereby preventing the front frame surface 223a from being damaged by stress concentration when subjected to an external force, thereby improving the strength of the outer casing.
  • the height of the second chamfer 42a does not exceed half the wall thickness of the rear case 3 and does not affect the overall wall thickness of the outer casing.
  • the rear case 3 is provided with a transition fillet 43a at the top line 221a, and the transition fillet 43a can eliminate the stress concentration generated by the top line 221a when subjected to an external force, thereby avoiding The rear case 3 is damaged due to stress concentration, and the strength of the outer casing is improved.
  • the head mounted devices include, but are not limited to, virtual reality devices, augmented reality devices, gaming devices, mobile computing devices, and other wearable devices. Computer, etc.
  • the numerical values disclosed in the embodiments of the present application including the distance ratio, the width ratio, and the thickness ratio, are examples for illustrating the dimensional relationship between the components. In practical applications, the dimensions of the components may also be other. The numerical value, when the size of one component changes, the size of other parts also changes. The specific changed value is not described in detail in the application, and can be calculated according to the proportional relationship disclosed in the present application.
  • a virtual reality device provided by the present application includes a rear frame surface and a front frame surface in a direction perpendicular to a bottom surface of the rear case, and the front frame surface and the rear frame surface form a ridge structure at the joint.
  • the ridge structure makes the frame of the virtual reality device form a stable structure with a triangular shape.
  • the frame When the virtual reality device is subjected to an external force, for example, when accidentally falling to the ground, the frame is in collision with the ground, due to the presence of the ridge structure, the frame The direction of the ground impact force forms an angle of less than 90 degrees between the rear frame surface and the front frame surface of the ridge-shaped structure, so that the impact force can be distributed along the rear frame surface and the front frame toward the sides of the virtual reality device. So that the frame will not be damaged due to excessive local stress caused by the force being unable to disperse, and the ridge structure makes the frame of the virtual reality device form a stable structure with a triangular shape, which can keep the frame from being shocked by external force.
  • the original form does not cause breakage due to excessive deformation, and can reduce the micro-vibration of the virtual reality device frame. Conducive to virtual reality equipment to provide a stable 3D stereoscopic imaging effect.
  • the width of the rear frame surface and the front frame surface gradually changes according to the shape of the virtual reality device, so that the ridge structure of the frame has high strength while realizing the thin and light form of the virtual reality device. Therefore, the virtual reality device provided by the present application can realize that the virtual reality device has a thin and light form and has a high outer casing strength, and is not easily damaged even when it is damaged by an external force.

Abstract

一种虚拟现实设备,边框(22a)在垂直于后壳底面(21a)的方向上包括后框面(222a)和前框面(223a),前框面(223a)和后框面(222a)在连接处形成山脊形结构,山脊形结构使虚拟现实设备的边框形成具有三角形形态的稳定结构,当虚拟现实设备受到外力作用,由于山脊形结构的存在,受力方向与山脊形结构的后框面和前框面之间均形成小于90度的夹角,使受力能沿着后框面和前框面向虚拟现实设备的两侧分散传导,使边框不会因为受力无法分散导致局部应力过大而损坏,并且由于山脊形结构使虚拟现实设备的边框形成具有三角形形态的稳定结构,不会因为变形过大而导致断裂,并提高3D成像的稳定性,能够实现虚拟现实设备具有轻薄形态的同时,拥有较高的外壳强度。

Description

一种虚拟现实设备
本申请要求在2017年5月27日提交中国专利局,申请号为201710392921.0,发明名称为“光学镜片调焦组件”;申请号为201710392923.x,发明名称为“一种虚拟现实设备的脸托配件”;申请号为201710392914.0,发明名称为“一种虚拟现实设备”;申请号为201710392078.6,发明名称为“一种虚拟现实设备的遮光组件”四件专利的中国专利申请的优先权,并要求在2017年9月11日提交中国专利局,申请号为201710813537.3,发明名称为“一种虚拟现实设备”的中国专利申请的优先权,其全部内容均通过引用结合在本申请中。
技术领域
本申请涉及头戴显示领域,尤其涉及一种虚拟现实设备。
背景技术
虚拟现实(Virtual Reality:VR)技术,简称虚拟技术,是一种利用电脑技术模拟产生一个虚拟空间,并在虚拟空间中提供沉浸体验的技术,该技术集成了电脑图形、电脑仿真、人工智能、显示及网络并行处理等技术,是一种高级模拟技术。VR设备是应用VR技术的人机交互设备,常见的VR设备,例如虚拟现实设备,能将人体对外界的视觉、听觉等感知隔离,引导用户产生身临其境的VR体验。图23示出了一种现有技术提供的虚拟现实设备,包括镜体200和发带100。从图23可以看出,与普通眼镜相比,图23所示的虚拟现实设备的镜体200十分宽厚,当用户佩戴时,镜体200的重量集中在用户面部前方,导致用户在长时间佩戴虚拟现实设备时,产生面部压迫感,影响用户体验。
因此,虚拟现实设备应当尽可能轻薄,采用申请号为US20170017078B,名称为短距离光学放大模组及使用其的近眼显示光学模组的美国发明专利提供的短距离光学放大模组,就有利于虚拟现实设备变得更加轻薄。然而,由于虚拟现实设备中集成了大量的元器件,包括光学部件:例如镜筒、镜头等,以及电子元器件,例如显示屏、传感器、PCB板等。这些元器件以集成的方式安装在镜体内,但是,如果既要求虚拟现实设备的镜体应尽可能轻薄,又要求它能够容纳这么多的元器件,就会导致虚拟现实设备一些结构性的物理部件,例如虚拟现实设备的外壳,变得单薄,导致虚拟现实设备的结构强度下降,在受到外力冲击时,容易发生如外壳破损之类的损坏,从而导致元器件的损坏。
因此,如何提高一种具较高强度外壳的虚拟现实设备,即使其在受到外力破坏时 也不易发生破损,成为本领域技术人员亟待解决的技术问题。
发明内容
本申请提出一种眼镜形态的虚拟现实设备,解决现有技术中虚拟现实设备体积大,不够美观,以及质量较重的问题,通过设计眼镜形态的虚拟现实设备,将虚拟现实设备的器件收容在眼镜主体中,外观美丽,并且体积较小,重量也较轻。
本申请一种虚拟现实设备的技术方案包括由前壳和后壳围成的镜框、与所述后壳连接的两个镜腿和内置于所述镜框的光学系统、PCBA板、光感组件,所述前壳周边设有若干用于嵌入所述后壳的卡扣固定件;所述后壳的背面设有用于与脸托连接的脸托固定件、与所述镜腿连接的凹槽。
优选地,所述脸托包括主体固定部和面部接触部;所述面部接触部一侧与所述主体固定部连接,另一侧与人体面部相接触,所述主体固定部上设有与所述脸托固定件相对应的凸起;所述主体固定部和所述面部接触部均为由位于中心的凸缘和沿远离凸缘方向延伸的弧形部组成的几字形结构。
优选地,所述光学系统与PCBA板连接,并包括相互独立的左镜筒机构、右镜筒机构和分别安装于两者后方的左显示屏和右显示屏。
优选地,所述PCBA板与所述左右显示屏的屏面垂直连接。
优选地,所述光感组件连接所述PCBA板,且与所述PCBA板平面保持垂直。
优选地,所述左镜筒机构和所述右镜筒机构均包括外镜筒、外光学镜片、内镜筒和内光学镜片;所述外镜筒侧壁上设有倾斜槽;所述内镜筒设置在外镜筒内,所述内镜筒的侧壁上设有定位特征件,所述定位特征件还伸入倾斜槽并沿倾斜槽滑动。
优选地,所述后壳上还设有用于伸出所述定位特征件的调节槽。
优选地,所述后壳上设有收纳腔,所述左镜筒机构和所述右镜筒机构置于所述收纳腔。
优选地,所述收纳腔偏上位置设有用于容纳所述PCBA板的固定槽。
优选地,所述后壳靠近所述镜腿的一面设有镜脚连接部,所述镜脚连接部上设有所述凹槽,两个所述镜腿上设有用于嵌入所述凹槽的凸起,所述凹槽的外侧还设有挡板。
优选地,本申请提供的一种虚拟现实设备,包括:前壳,后壳和镜腿,所述后壳由后壳底面和边框组成,所述后壳底面位于所述边框的一侧,与所述后壳底面形成收纳腔;所述前壳位于所述边框的另一侧,使所述收纳腔封闭;所述镜腿设置于所述后壳上,向所述收纳腔的相反方向延伸。
所述边框在垂直于所述后壳底面的方向上包括后框面和前框面;所述前框面与所述后框面在连接处形成山脊形结构。
所述边框在围绕所述后壳底面的方向上包括框顶弧面、框底弧面,以及连接所述框顶弧面和所述框底弧面的两个连接弧面,两个所述连接弧面沿所述后壳的中心平面对称;所述框顶弧面设置有弧底,所述框底弧面设置有弧顶,所述弧底和所述弧顶均位于所述后壳的中心平面上;所述框底弧面与所述连接弧面的连接处为所述后壳低位点;所述后框面的宽度在所述框顶弧面上存在最小值,在所述低位点处为最大值;所述后框面的宽度在所述连接弧面上从所述低位点向所述框顶弧面方向逐渐减小;所述后框面的宽度在所述框底弧面上从所述低位点向所述弧顶处方向逐渐减小。
优选地,所述后框面从所述后壳底面向所述前壳方向延伸,所形成的扩张角α使所述收纳腔设置有扩张趋势的开口;所述前框面与所述后框面在连接处形成脊顶线;所述前框面与所述后框面在所述脊顶线处形成的脊形角β,使所述收纳腔的开口的扩张趋势减小或呈现收缩趋势。
优选地,所述扩张角α在所述框顶弧面上从所述弧底处向所述中心平面两侧方向逐渐减小;所述扩张角α在所述框底弧面上从所述弧顶处向两侧的所述低位点方向逐渐减小;所述扩张角α在所述连接弧面上从所述低位点处向所述框顶弧面方向逐渐增大。
优选地,所述脊形角β在所述框顶弧面上从所述弧底处向所述中心平面两侧方向逐渐增大;所述脊形角β在所述框底弧面上从所述弧顶处向两侧的所述低位点方向逐渐增大;所述脊形角β在所述连接弧面上从所述低位点处向所述框顶弧面方向逐渐减小。
优选地,所述扩张角α和所述脊形角β的关系满足:使所述后壳底面与所述前框面之间形成的轮廓角γ始终大于90度,且所述轮廓角γ的范围在度92±2度之间;或者,使所述后壳底面与所述前框面之间形成的轮廓角γ始终小于90度,且所述轮廓角γ的范围在度88±2度之间;或者,使所述后壳底面与所述前框面垂直。
优选地,所述后壳在垂直于所述后壳底面的方向包括后壳厚度δ0,所述后框面的宽度的范围在所述后壳厚度δ0的50%至80%之间。
优选地,所述后框面的宽度在所述框顶弧面上固定不变为最小值δ1,所述最小值δ1在所述后壳厚度δ0的50%至55%之间。
优选地,所述后框面的宽度在所述低位点为最大值δ2,所述最大值δ2的范围在所述后壳厚度δ0的75%至80%之间。
优选地,所述脊顶线位于一个贯穿所述边框的分割平面内,所述分割平面垂直于所述中心平面。
优选地,所述分割平面倾斜于所述后壳底面,所形成的倾斜角ν的范围使所述后框面的宽度的范围在所述后壳厚度δ0的50%至80%之间。
优选地,所述前框面的壁厚大于所述后框面的壁厚,所述前框面与所述后框面在所述收纳腔内侧设置有平滑的过渡曲面。
优选地,所述前框面的末端为开口端,所述前框面在所述开口端处设置有豁口,所述豁口位于所述收纳腔的内侧,所述豁口设置有与所述后壳底面平行的豁口底面,所述豁口底面到所述开口端的距离小于所述后壳厚度δ0的20%。
优选地,所述后框面与所述后壳底面的连接处设置有第一倒角,所述第一倒角的高度不超过所述后壳壁厚的一半;和/或者,所述前框面边缘外侧设置有第二倒角,所述第二倒角的高度不超过所述后壳壁厚的一半。
优选地,所述后壳在所述脊顶线处设置有过渡圆角。
由以上技术方案可知,本申请提供的一种虚拟现实设备,边框在垂直于后壳底面的方向上包括后框面和前框面,前框面和后框面在连接处形成山脊形结构,该山脊形结构使虚拟现实设备的边框形成具有三角形形态的稳定结构,当虚拟现实设备受到外力作用,例如,不慎跌落到地面时,边框与地面发生碰撞接触,由于山脊形结构的存在,边框受到地面撞击力的方向与山脊形结构的后框面和前框面之间均形成小于90度的夹角,使撞击力能沿着后框面和前框面向虚拟现实设备的两侧分散传导,使边框不会因为受力无法分散导致局部应力过大而损坏,并且由于山脊形结构使虚拟现实设备的边框形成具有三角形形态的稳定结构,该稳定结构能够使边框在收到外力冲击时保持原有的形态,不会因为变形过大而导致断裂,并能够减少虚拟现实设备镜框的微振动,有利于虚拟现实设备提供稳定的3D立体成像效果。此外,后框面和前框面的宽度依据虚拟现实设备的形态逐渐变化,使边框的山脊形结构在实现虚拟现实设备轻薄形态的同时具有较高的强度。因此,本申请提供的虚拟现实设备,能够实现虚拟现实设备具有轻薄形态的同时,具有较高的外壳强度,即使其在受到外力破坏时也不易发生破损。
附图说明
为了更清楚地说明本申请的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例示出的一种虚拟现实设备的爆炸图;
图2为本申请实施例示出的一种虚拟现实设备的前壳的结构图;
图3(a)和图3(b)为本申请实施例示出的一种虚拟现实设备的后壳的正面图和背面图;
图4为本申请实施例示出的与虚拟现实设备配套使用的脸托的结构图;
图5为本申请实施例示出的一种虚拟现实设备的镜腿的结构图;
图6为本申请实施例示出的一种虚拟现实设备的遮光组件的结构图;
图7为本申请实施例示出的一种虚拟现实设备的光学系统、散热片的结构图;
图8为本申请实施例示出的一种虚拟现实设备的光学系统的结构图;
图9为本申请实施例示出的一种虚拟现实设备的右镜筒机构、右显示屏和右屏支架的爆炸图;
图10为本申请实施例示出的一种光学镜片调焦组件的爆炸图;
图11为本申请实施例示出的一种光学镜片调焦组件的剖视图;
图12为本申请实施例示出的一种光学镜片调焦组件的仰视图;
图13为本申请实施例示出的一种光学镜片调焦组件的俯视图;
图14为本申请实施例示出的与虚拟现实设备配套使用的脸托的爆炸图;
图15为本申请实施例示出的虚拟现实设备与脸托的配合结构图;
图16为本申请实施例示出的一种虚拟现实设备的遮光组件的爆炸图;
图17(a)(b)(c)为本申请实施例示出的遮光组件安装在虚拟现实设备上的步骤图;
图18为本申请实施例示出的遮光组件安装在虚拟现实设备上的结构图;
图19为本申请实施例示出的数据线固定件的结构图;
图20为本申请实施例示出的数据线固定件与虚拟现实设备的爆炸图;
图21为本申请实施例示出的数据线固定件安装在虚拟现实设备上的结构图;
图22(a)(b)为本申请实施例示出的右屏支架和左屏支架的结构图。
图23为现有技术示出的一种虚拟现实眼镜的结构示意图;
图24为本申请实施例示出的一种虚拟现实设备结构拆解图;
图25为本申请实施例示出的一种虚拟现实设备后壳的结构示意图;
图26为本申请实施例示出的一种虚拟现实设备边框的结构示意图;
图27为本申请实施例示出的一种虚拟现实设备后壳的A-A向剖视图;
图28为本申请实施例示出的一种虚拟现实设备后壳的轮廓角示意图;
图29为本申请实施例示出的另一种虚拟现实设备后壳的轮廓角示意图;
图30为本申请实施例示出的又一种虚拟现实设备后壳的轮廓角示意图;
图31和图32为申请实施例示出的一种虚拟现实设备后脊面宽度示意图;
图33为本申请实施例示出的一种虚拟现实设备脊顶线和分割平面示意图。
具体实施方式
本申请实施例示出的提供一种虚拟现实设备的光学系统,解决现有技术中虚拟现实设备体积较大的技术问题。
下面将结合本申请实施例示出的实施例中的附图,对本申请实施例示出的实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请实施例示出的一部分实施例,而不是全部的实施例。基于本申请实施例示出的中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请实施例示出的保护的范围。
本实施例中的虚拟现实设备包括壳体、内置于壳体的光学系统、PCBA板、散热板和光感组件、与壳体配合使用的脸托、遮光罩等。下面针对各部件进行详细说明。
(一)壳体:如图1所示,壳体包括:前壳1与后壳3围成的镜框、与镜框连接的左镜腿5和右镜腿4。下面分别针对上述部件进行详细说明:
(1)前壳1:如图2所示,前壳1的周边设有若干卡扣固定件16,用来将前壳1与后壳3固定;靠近前壳1的上端设有PCBA固定件18,用来对PCBA板8进行限位和固定;在靠近前壳1两端附近安装保护柱17,用来防止安装过程或者安装好后前壳受力过猛损坏前壳1。进一步的,为了提高前壳1的质量,还可以设置多条加固条纹。为了减轻虚拟现实设备的壳体重量,前壳1的材质优选轻质塑料,为了便于加工,整个前壳1优选设计为一体成型。
(2)后壳3:如图3(a)和图3(b)所示,后壳3包括收纳腔46,用来收纳虚拟现实设备的光学系统、PCBA板8、散热片9和光感组件等。后壳3的下端设有调节槽42,用于伸出光学系统的焦距调节键(等同于下文的定位特征件、凸出控制键)并对其进行控制。后壳3内部偏上位置设有与前壳1相配合的PCBA固定槽。为了提高后壳3的质量,还可以设置多条加固条纹,优选的设置在后壳的侧边。在后壳3的背面设有镜脚连接部,镜脚连接部上设有与左镜腿5和右镜腿4前端的凸起连接的凹槽44,凹槽44的外侧设有挡板45。由于凹槽44外侧具有一个挡板45,当镜腿的凸起装配到该凹槽中时,此时的镜腿只能向内侧移动。当用户配戴该虚拟现实设备时,镜腿的凸起会受到挡板45的阻挡,阻止其向外移动,这时就会向内产生一个力,让镜腿能够夹紧用户头部。在后壳3的背面还设有脸托固定件41和43,用来便于脸托6的固定。如图4和图14所示,脸托6包括主体固定部64和面部接触部63,面部接触部63一侧与主体固定部64连接,另一侧与人体面部相接触,主体固定部64上设 有用于嵌入脸托固定件41和43的凸起61和62,实现主体固定部64固定在后壳3上。为了便于脸托6能分散虚拟现实设备的重量,主体固定部64和面部接触部63均为由位于中心的向外凸起的凸缘和沿远离凸缘方向延伸的弧形部组成的几字形结构。为了减轻虚拟现实壳体主体的重量,后壳3优选轻质塑料,为了便于加工,后壳3优选设计为一体成型。
(3)左镜腿5和右镜腿4:将左镜腿5和右镜腿4统称为镜腿,两者结构无实质差别。每一镜腿前端设有用于嵌入后壳3上镜脚连接部上凹槽的凸起53。下面以左镜腿5为例进行详细说明。如图5所示,非折合状态下,左镜腿5和右镜腿4为向内弯曲的弧形,便于夹紧使用者头部。为了进一步增强镜腿的夹紧力度,镜腿前端的厚度大于镜脚后端厚度。为了减轻镜腿的重量,镜腿上还设有镂空槽52,同时镂空槽52也可以防止注塑表面产生缺陷,影响美观。左镜腿5和右镜腿4上还分别设有通孔51,用于将遮光组件7的连接件71和72嵌入通孔51,实现遮光组件7的固定。通孔具体包括两个相通的固定孔和连接孔,连接孔的孔径大于连接件的最大宽度,固定孔的孔径小于连接件的最大宽度。固定孔用来固定遮光组件的凸起,连接孔用来遮光组件的凸起穿过定位。左镜腿5和右镜腿4均可为一体成型机构,为了减轻整体虚拟现实设备的整体重量,左镜腿5和右镜腿4的材质为具有柔韧性塑胶(TR90)。结合图1所示,上述虚拟现实设备的壳体和其他组件的具体安装步骤如下:
第一步:将带有左显示屏22、右显示屏24的左镜筒机构21、右镜筒机构23的光学系统装入后壳3的收纳腔46中进行固定,不限定具体固定方式。左镜筒机构21、右镜筒机构23的定位特征件同时伸出后壳3的调节槽42,便于用户来进行调节焦距;
第二步:将PCBA板8装入后壳3的PCBA固定槽中,并将PCBA板8与光学系统进行连接;
第三步:装入散热片9,具体将散热片9一端与PCBA板8上的发热器件贴合,另外一端分别与左显示屏22和右显示屏24的背面贴合,使得散热片9就可以将PCBA板8和左显示屏22和右显示屏24散发的热量均匀散出;
第四步:装上前壳1,即将前壳1与后壳3进行固定,具体的将前壳1压入后壳3中,通过前壳1的扣固定件11进行固定;
第五步:将左镜腿5和右镜腿4上的凸起53嵌入后壳3上的凹槽44;
第六步:将脸托6安装到后壳3上,具体的将脸托6上的凸起61和62分别与后壳3上的脸托固定件41和43进行固定;
第七步:将遮光组件7包围虚拟现实设备,同时将遮光组件的,具体的连接件71和72分别嵌入镜腿的通孔51上。
上述虚拟现实设备包括前壳、后壳和两个镜腿,结构简单,组装简便,同时将虚拟现实设备的其他器件对应的安装在后壳的收纳槽上,盖上前壳和连接镜腿,整个虚 拟现实设备结构比较小,占用空间较小,外形类似眼镜形态,比较美观。
(二)光学系统:如图1所示,光学系统包括左镜筒机构21、左显示屏22、右镜筒机构23和右显示屏24,左镜筒机构21和右镜筒机构23结构相同,统称为光学镜片调焦组件。具体的,左镜筒机构21和左显示屏22安装在左屏支架上且左显示屏22位于左镜筒机构21的后方,左显示屏整体位于左屏支架的内侧;右镜筒机构23和右显示屏24安装在右屏支架13上且右显示屏24位于右镜筒机构23的后方,右显示屏24整体位于右屏支架13的内侧。左显示屏22和右显示屏24的侧边沿具有切角,如图1所示,左显示屏22的右下角侧边具有切角。右显示屏24的左下角侧边具有切角。左屏支架和右屏支架13为两个相互独立的屏支架,均为一中空环状结构。由于两个屏支架中空,实现了通过左镜筒机构21和右镜筒机构23的镜片观看对应显示屏所显示的内容。屏支架的中空环状可为圆形或多边形或不规则形形状,具体根据光学模组的形状和虚拟现实设备外壳的形状确定。各屏支架与显示屏接触的面为屏接触面,屏接触面用于与显示屏表面相贴合,具体可设为光滑面,将屏接触面设为光滑面,可为避免显示屏造成损坏,同时也实现了显示屏与屏支架的良好贴合。本实施例中不具体限定屏接触面为光滑面或粗糙面。本实施例中,为了更好的实现屏接触面与显示屏表面的贴合,可以在两者之间设置软性的双面粘贴胶,双面粘贴胶可以为屏支架形状相对应的环形圈,通过双面粘贴胶使屏支架与显示屏粘贴在一起。与屏接触面相对应的为光学模组接触面,光学模组接触面分别与左镜筒机构21、右镜筒机构23相贴合。当屏支架分别与显示屏和光学模组组装后,屏支架起到便于安装的作用,同时三者形成密闭空间,起到防尘作用。为了进一步提高屏支架与显示屏和光学模组之间的防尘效果,右镜腿4屏支架靠近右镜腿4屏接触面的一侧设有第一凹槽,右镜腿4屏支架靠近右镜腿4光学模组接触面的一侧设有第二凹槽,右镜腿4第一凹槽和右镜腿4第二凹槽内均用于放置防尘圈,实现屏支架与光学模组、显示屏之间连接无空隙,进而避免外界的灰尘进入,提高其的防尘效果。需要说明的是,也可在不用防尘圈的情况下直接将显示屏和光学模组固定在屏支架上。由于左屏支架与右屏支架的安装相似,下面以右显示屏24、右镜筒机构23和右屏支架13的安装步骤进行说明,应该理解为左眼显示屏的安装相似,具体安装步骤如下:
第一步:在屏支架13的相对设置的屏接触面和光学模组接触面上分别固定左防尘圈12、右防尘圈14(左、右仅仅是结合附图进行区别,不具有实际含义),屏支架13、左防尘圈12和右防尘圈14组装成屏支架组件。左防尘圈12和右防尘圈14的固定方式可根据实际需要设置,不具体限定。优选为粘贴固定,左防尘圈12和右防尘圈14可为具有粘贴性的双面胶片,屏支架13上设有第一凹槽和第二凹槽,第一凹槽位于靠近屏接触面的一侧并与左防尘圈12的形状相对应,第二凹槽位于靠近光学模组接触面的一侧并与右防尘圈14的形状相对应,便于提高防尘效果以及节约材料。需要说明的是,双面胶片只是左防尘圈12和右防尘圈14可选的一种具体材料,任何具有粘贴性并且可以进行软性收缩的材料都可以,比如塑料或具有一定软性的 PORON或一定软性的PVC或轻薄的布料等;当然,为了减轻虚拟现实设备的整体重量,左防尘圈12和右防尘圈14优选质轻材料。同理,为了减轻虚拟现实设备的整体重量,屏支架13可一体成型,屏支架13的材料可选择轻质材料,如具有一定硬度的塑胶。
第二步:将右镜筒机构23和右显示屏24分别与屏支架组件进行固定。具体的,将右镜筒机构23放置到右防尘圈14上,优选的,右镜筒机构23可以放置在第二凹槽上,该右防尘圈14一侧与屏支架13接触,另一侧与右镜筒机构23接触。具体的,将右显示屏24放置到左防尘圈12上,优选的,右显示屏24可以放置在第一凹槽上,实现右显示屏24与屏支架13的固定。该左防尘圈12一侧与屏支架13接触,另一侧与右显示屏24接触。将右镜筒机构23和右显示屏241优选的固定在屏支架13两侧的第一凹槽和第二凹槽时,右显示屏24、屏支架13和右镜筒机构23之间能够形成密闭空间,其连接处都是紧密连接,并且具有凹槽的侧边进行防尘,这样就可以避免外界的灰尘进入到该密闭空间中,也就是说避免外界灰尘进粘附到显示屏上,造成显示屏上显示出现杂像的问题。
第三步:当右镜筒机构23、左防尘圈12、屏支架13、右防尘圈14和右镜筒机构23组装完成后,通过屏支架13上的屏固定孔与虚拟现实设备对应的第二固定孔匹配,实现组装后的组件固定到虚拟现实设备上,此固定方式不局限于螺钉固定方式。需要说明的是,屏支架13上的屏固定孔包括至少一个正向孔和至少一个反向孔。
如图22(a)(b)所示,屏支架的结构为:两个屏支架相互独立,光学模组接触面上设有沿远离其表面方向延伸光学模组固定件111和定位件113,当光学模组伸入屏支架并凸出于光学模组接触面时,光学模组固定件111与光学模组的最外边相接触,用于将光学模组固定在屏支架上,光学模组固定件111可以为向屏支架中心延伸的L形结构,用于将光学模组限定在L形结构内;定位件113位于光学模组的外围,用于确保光学模组安装在预设位置,用于限定光学模组的运动轨迹,定位件113用来防止光学模组向外移动。为了便于虚拟现实设备一些其他小电子件的固定,例如光感器,在屏支架的一侧凸出一个对应的收纳固定槽114,用来对其他小电子器件的固定。当显示屏、左防尘圈、屏支架、右防尘圈和光学模组组成完成后,通过屏支架上的屏固定孔112与虚拟现实设备对应的第二固定孔匹配,实现组装后的组件固定到虚拟现实设备上,此固定方式不局限于螺钉固定方式。需要说明的是,屏支架上的屏固定孔112包括至少一个正向孔和至少一个反向孔。如图10至图13所示,左镜筒机构和右镜筒机构统称为的光学镜片调焦组件均包括:外镜筒211、外光学镜片212、内镜筒214和内光学镜片217,外光学镜片212固定在外镜筒211上,内光学镜片217固定在内镜筒214上;外镜筒211侧壁上设有倾斜槽213;内镜筒214设置在外镜筒211内,内镜筒214的侧壁上设有定位特征件,定位特征件还伸入倾斜槽213并沿倾斜槽213滑动;当内镜筒214沿外镜筒211相对滑动时,固定在外镜筒211上的外光学镜片212与固定在内镜筒214上的内光学镜片217之间的距离可调,实现了光学组件的 调焦。如图10所示的光学调焦组件的爆炸图,包括一个外镜筒211、外光学镜片212、内镜筒214、内光学镜片217、两个第一防尘件218、第一防尘件219、两个固定螺钉220、拨动固定螺钉221和拨动硅胶头222。下面分别针对上述各部件进行说明:
(1)外镜筒211:该外镜筒211侧壁上设有至少一个倾斜槽213,倾斜槽213相对于水平面以一定角度倾斜,当固定在内镜筒214侧壁上的定位特征件嵌入倾斜槽213并沿倾斜槽213移动时,外光学镜片212与内光学镜片217之间的间距可调。如图1所示,外镜筒211横截面的形状为圆形,当倾斜槽213数量为三个以上时,倾斜槽213沿外镜筒211周向均布。需要说明的是,倾斜槽213不局限于图中所示的三个,优选的,倾斜槽213的数量为三个。此外,倾斜槽213也不仅限于沿外镜筒211周向均布,但必须满足若干个倾斜槽213位于同一水平面上。外镜筒211的截面形状也不限于图1中所示的圆形,也可为椭圆或菱形或异形。为了更好适配人体的形态特征,在靠近人体鼻梁附近,可以设置为与人体鼻梁匹配的形状,即将一个简单的圆形切除部分形成具有一与鼻梁匹配的倾斜面。因此,为了适应具体虚拟现实设备外壳,以及减小整体的虚拟现实设备的体积,外镜筒211的截面形可根据具体的虚拟现实外壳而定。
(2)外光学镜片212:外光学镜片212固定在外镜筒211上,具体的,如图2所示,外光学镜片212固定在外镜筒211的内侧顶部,内侧顶部即为远离内镜筒214的一侧。外光学镜片212与外镜筒211的固定方式具体可以是:通过塑胶将外光学镜片212固定在外镜筒211的内侧顶部,通过塑胶固定可以保证外光学镜片212稳定的固定在外镜筒211上,并且能有效防尘。需要说明的是,本申请不具体限定两者的固定方式。为了便于说明,将外镜筒211和外光学镜片212的组合结构定义为第一组件。
(3)内镜筒214:内镜筒214内置于外镜筒211,且内镜筒214可沿靠近或远离外光学镜片212的方向移动,进而外光学镜片212和内光学镜片217两者的间距可调。具体实现内镜筒214可沿外镜筒211移动的方式为:内镜筒214的侧壁上设有至少一个定位特征件,定位特征件与倾斜槽213一一对应,每一定位特征件嵌入倾斜槽213内并可沿倾斜槽213滑动,进而带动内镜筒214的移动。由于本申请未限定倾斜槽213的数量,则定位特征件的数量也不做具体限定。当倾斜槽213的数量为三个且沿外镜筒211周向均布时,三个定位特征件同时在倾斜槽213内移动,进而可保证内镜筒214上的内光学镜片217在上下移动过程中使其均处于一个平面上。进一步,由于外镜筒211与内镜筒214接触,为了提高调焦过程中内镜筒214的滑动,在内镜筒214与外镜筒211之间增加了起到润滑作用的油层,提高内镜筒214的滑动灵活性,并且油层一定程度上能够阻止外界的灰尘进入内部,起到防尘作用。具体的油层可以通过在内镜筒214与外镜筒211之间涂阻尼油形成,应该理解为其他可以提高内镜筒214与外镜筒211之间的滑动灵活性的方式都为本申请的保护范围。当定位特征件为三个时,三个定位特征件的结构可以分为:两个固定螺钉220和拨动固定螺钉221,两个固定螺钉220和拨动固定螺钉221通过固定螺孔固定在内镜筒214上,且两个固 定螺钉220和拨动固定螺钉221分别伸入倾斜槽213并可沿倾斜槽213滑动。为了能提高推动拨动固定螺钉221的舒适度,便于用户在使用过程便于拨动,该拨动固定螺钉221外侧端固定连接有拨动硅胶头222,该拨动硅胶头222为具有一定硬度的硅胶,用户使用起来手感比较舒适。如图10所示,内镜筒214包括圆台215和位于圆台215上方并向上延伸的至少一个凸台216,凸台216与倾斜槽213一一对应,固定螺孔位于凸台216上。凸台216的形状与外镜筒211内壁形状相吻合,当外镜筒211为圆形时,凸台216可以为环形壁,该凸台216上均设有与倾斜槽213相对应的固定螺孔。
(4)内光学镜片217:内光学镜片217固定在内镜筒214上。如图2所示,内光学镜片217固定在内镜筒214的内侧底部,如内镜筒214的底端设有卡槽,内光学镜片217与内镜筒214底端卡槽固定连接,内侧底部为远离外镜筒211的一侧。内光学镜片217与内镜筒214的固定方式具体可以是:通过塑胶将内光学镜片217固定在内镜筒214的内侧底部,通过塑胶固定可以保证内光学镜片217稳定的固定在内镜筒214上,并且能有效防尘。需要说明的是,本申请不具体限定两者的固定方式。当然内镜筒214也可以不设卡槽,可以将内光学镜片217固定在内镜筒214的内侧底部的侧壁,即内光学镜片217的外侧边与内镜筒214的内侧壁固定连接,固定方式可以通过塑胶固定可以保证内光学镜片217稳定的固定在内镜筒214上,并且能有效防尘。需要说明的是,本申请不具体限定两者的固定方式。为了便于说明,将内镜筒214和内光学镜片217的组合结构定义为第一组件。
(5)第一防尘件218和第一防尘件219:当内镜筒214通过伸入倾斜槽213的两个固定螺钉和拨动固定螺钉沿靠近或远离外光学镜片212的方向移动时,两个第一防尘件218分别一一固定在两个固定螺钉220对应的外镜筒2111的倾斜槽213外侧,第一防尘件219固定在拨动固定螺钉221对应的外镜筒211的倾斜槽213内侧。需要说明的是,第一防尘件219也可以固定在外侧。第一防尘件219和第一防尘件218上设有与倾斜槽213对应的槽口。第一防尘件219具体可为具有粘贴性的TPU片,该TPU片上有与特定倾斜槽213对应的倾斜槽213孔。本申请不限定第一防尘件219的材质为TPU,应该理解为,所选材质只要满足具有一定硬度便于进行开槽口,且具体防尘性质即可,如具有一定硬度的PORON或一定硬度的PVC、高温胶或美纹胶等。第一防尘件218和第一防尘件219的固定方式均可通过粘贴的方式进行固定,便于组装,但本申请不限定其固定方式。上述光学镜片调焦组件的装配步骤为:
步骤一:将外光学镜片212固定在外镜筒211的内侧顶部,形成第一组件;
步骤二:将内光学镜片217固定在内镜筒214的内侧底部,形成第二组件;
步骤三:将第一防尘件219放入第一组件的外镜筒211的特定倾斜槽213的内侧,该特定倾斜槽213用于伸入拨动固定螺钉。
步骤四:将第二组件置于第一组件内侧,即将组装好的带有内光学镜片217的内镜筒214置于组装好的带有外光学镜片212和第一防尘件219的外镜筒211的内侧。
步骤五:由于内镜筒214的侧壁上设有三个固定螺孔,三个固定螺孔外漏于倾斜槽213,然后在三个固定螺孔上分别固定连接两个固定螺钉220和一个拨动固定螺钉221。两个固定螺钉220伸入的倾斜槽213对应的外镜筒211的侧壁上分别固定连接两个第一防尘件218。
步骤五:将拨动硅胶头222固定在拨动固定螺钉221外侧端。
需要说明的是,上述的具体装配步骤不构成先后限制,可以根据具体情况安排其步骤的先后顺序。光学镜片调焦组件主要应用于虚拟现实领域,特别是短距离的光学镜片调节,应该理解为其他领域进行短距离的光学调焦也在保护范围内。
上述光学镜片调焦组件的工作原理具体为:拨动拨动硅胶头222使其带动拨动固定螺钉221在外镜筒211的倾斜槽213上进行上升或下降的倾斜滑动,由于拨动固定螺钉221一端固定在内镜筒214上,并且与其他两个固定螺钉220使内镜筒214在一个相对平面内。在拨动固定螺钉221沿倾斜槽213滑动的过程中,内镜筒214上的内光学镜片217与外镜筒211的外光学镜片2122的间距可调,具体的变化需要根据倾斜槽213的倾斜幅度以及倾斜槽213的槽口长度决定,优选的在倾斜角度在5-15度,内光学镜片217和外光学镜片212的距离调节范围在0.5-10mm之间。
(三)脸托6:如图14和15所示,脸托6包括主体固定部64和面部接触部63,面部接触部63一侧与主体固定部64连接,另一侧与人体面部相接触,主体固定部64还与虚拟现实设备的后壳3连接,不具体限定连接方式。主体固定部64和面部接触部63均可为一体成型结构。下面分别针对主体固定部64和面部接触部63进行说明。
(1)主体固定部64:为了便于脸托配件的使用,主体固定部64的形状可为由两端向中心拱起的几字形结构,具体可为凸缘和位于凸缘两侧的弧形部组成的几字形,可实现将虚拟现实设备的重力分散到人体面部多处位置。主体固定部64上设有至少一个凸出于其外表面的凸起,不局限附图中所示的凸起的数量为四个,其中两个为位于凸缘上的凸起61,另两个为位于弧形部上的凸起62。与该凸起相对应的是,如图3(b)所示,虚拟现实设备的后壳3上设有用于嵌入凸起的脸托固定件41和43,脸托固定件41和43具体可以为开口,实现了主体固定部64与虚拟现实设备的连接。当主体固定部上设有四个固定件时,其中两个凸起61位于凸缘靠近中轴线的两侧,在使用时,两个凸起位于用户鼻梁附近对应的位置;另外两个凸起62位于弧形部上,对应于靠近脸部颧骨附近。为了节约材料,以及使脸托形状比较美观,优选的主体固定部64与配套使用的虚拟现实设备的待固定位置相对应。为了便于生产,主体固定部64为一体成型,且优选质轻材料。
(2)面部接触部63:面部接触部63一侧与主体固定部64连接,另一侧与人体面部相接触。为了分散虚拟现实设备的重力,面部接触部63的形状同样可设为由两端向中心拱起的几字形结构,具体可为凸缘和位于凸缘两侧的弧形部组成的几字形, 弧形部沿远离凸缘的方向延伸。在脸托6实际使用过程中,凸缘可对应到使用者鼻梁附近,弧形部可沿眼尾方向延伸,更好的让脸托配件承受到力分配的人体面部,即让面部接触部与人体面部接触的地方受力均匀。沿凸缘至远离凸缘的方向,面部接触部63的厚度为先逐步变厚,后逐步变薄,且中心的厚度小于两端端部的厚度,即面部接触部63中心轴附近厚度较薄,自由端厚度较厚。在面部接触部63与人体面部相接触的一面为具有一定角度的倾斜面,即将该面设置为与人体面以及鼻梁面相匹配的面。该倾斜面可具体包括鼻部倾斜面和脸颊倾斜面,鼻部倾斜面的面积小于脸颊倾斜面的面积,其中,鼻部倾斜面与竖直面的角度为10°~80°,脸颊倾斜面与竖直面的角度为3°至60°。此外,鼻部倾斜面对应的面部接触部厚度可小于脸颊倾斜面对应的面部接触部厚度。考虑到面部接触部63需要与人体进行接触,面部接触部63优选质轻且柔软材质,比如泡棉。同时为了便于生产加工,面部接触部63可为一体成型。如图15所示,上述脸托6安装到后壳3上的具体安装步骤如下:
第一步:将主体固定部64和面部接触部63固定连接,形成脸托6。固定连接方式不具体限定,如可采用粘贴方式进行固定连接;
第二步:将主体固定部64固定到虚拟现实设备的后壳3上。不具体限定固定连接方式,如主体固定部64上若有若干凸出于其外表面的凸起61和62,虚拟现实设备的后壳3上与凸起61和62相对应的脸托固定件41和43,脸托固定件41和43具体可以为开口,通过凸起卡入开口中实现主体固定部64和后壳3的固定。
值得注意的是,脸托6整体的横向长度为60~160mm,优选的90~30mm,特别是100~20mm这样可以满足大部分人体的脸部,比如横向长度设为110mm±8mm;脸托配件整体的纵向高度20~80mm,优选的30~70mm,特别是45~55mm这样可以满足大部分人体的鼻部,比如纵向设为48mm±5mm。应该理解为,本申请的脸托配件充分利用人的脸部形态特点,让用户配戴虚拟现实设备时,尽可能的增大与用户面部的接触面,将虚拟现实设备的重力进行分散。
本申请的脸托区别于现有脸托只与鼻梁部分进行接触,增大与用户面部的接触面,即脸托配件不仅与鼻梁接触,而且还与眼部附近位置接触,进而将虚拟现实设备的重力进行分散,鼻梁和鼻梁两侧的眼周都可承受虚拟现实设备的部分重力,减少用户使用虚拟现实设备配戴带来的不舒服以及损伤,可以让用户长时间舒服的使用头戴设备,大大的提高用户的体验度。
(四)遮光组件7:如图16至图18所示,遮光组件7包括:遮光件78和前端固定环77;遮光件78包括顶面73、第一曲面75、第二曲面76和底面74,其中:顶面73与人体面部相接触的一侧为由中心向外延伸的非封闭弧形;底面74整体与顶面73整体上下相对设置;第一曲面75和第二曲面76位于顶面73两侧,并均向靠近底面74的方向弯曲;第一曲面75和第二曲面76均分别与顶面73和底面74光滑过渡连接,使得顶面73、第一曲面75、第二曲面76和底面74围成一封闭中空区域;前 端固定环77位于中空区域的最外侧的内周边并与其吻合。同时,由于本申请虚拟现实设备的遮光组件与虚拟现实设备主体配套使用,为了便于该遮光组件7的固定,第一曲面75和第二曲面76上各分别设有连接件71和72,为了便于区分,分别用第一连接件71和第二连接件72表示,第一连接件71和第二连接件72用于固定在虚拟现实设备的左镜腿5和右镜腿4上。如爆炸图图16所示,遮光组件7为一罩体结构,包括一个前端固定环77、一个遮光件78、一个第一连接件71和一个第二连接件72,下面分别针对上述各部件进行详细说明。
(1)前端固定环77:前端固定环77内置于遮光件78最外侧,当将遮光组件7应用到虚拟现实设备主体时,前端固定环77位于中空区域的内周边并与虚拟现实设备主体前端接触,如当虚拟现实设备为眼镜形态时,前端固定环77可以包围镜框部分,此处镜框部分排除镜腿。前端固定环77可为一个镂空密闭框架,由于前端固定环77需要包围虚拟现实设备主体,所以前端固定环77的形状需与虚拟现实设备主体本身外侧形状相对应。可以理解的是,如虚拟现实设备主体的形状可以为长方形,正方形以及各个不同规则的形状,则前端固定环77的形状需要相应变化。例如,当虚拟现实设备主体选择具有一定弧度且与眼镜形态相对应的形态时,前端固定环77的形状也优选为眼镜形态,即前端固定环77的形状是根据虚拟现实设备主体外侧边缘的形状而定。需要说明的是,前端固定环77可以是镂空,当然也可以是实心结构,为了节约材料、减轻用户配戴重量,提高用户体验度,前端固定环77优选为镂空。
(2)遮光件78:遮光件78包括顶面73、第一曲面75、第二曲面76和底面74。当将遮光组件应用到虚拟现实设备主体时,前端固定环77用于包括虚拟现实设备主体前端外框架,第一曲面75和第二曲面76可沿镜腿方向延伸,第一曲面75和第二曲面76上的第一连接件71和第二连接72固定在左镜腿5和右镜腿4上,实现遮光组件7固定在虚拟现实设备主体上,用户在使用配置有遮光组件的虚拟现实设备时,遮光件78围成的中空区域与人体面部能形成相对密闭的空间,避免外界的光学进入。遮光件78通过前端固定环77和虚拟现实设备主体连接,遮光件78的第一曲面75和第二曲面76沿靠近虚拟现实设备末端的方向延伸,顶面73与人体面部相接触的一侧为由中心向外延伸的非封闭弧形,该非封闭弧形可以与人体额头相匹配,底面设为由两端向中心拱起的W形,也同样与人体脸型相匹配,这样做不仅仅可以节约材料,还可以减轻遮光组件的重量,并且能够提高用户的配戴舒适度并且达到良好的遮光效果。具体的,遮光件78可选择具有一定硬度、可透气且能够防止光线透过的软性材质。优选的,为了便于遮光组件在使用过程中美观,可以选择具有一定弹性并且不容易褶皱的材质,例如拉架棉、莱卡等。例如,材质选择一种合成布,该合成布具有两层,一侧用来进行遮光,另外一层用来进行保证透气并且不易变形。由于一般的布料都比较柔软,难以成型,为了解决该问题,提高合成布的弹性、硬度并且耐磨性,通过胶水将两层布料进行合成。遮光件78具有容纳虚拟现实设备主体前端的中空区域,具体的,中空区域包括面部接触面和虚拟设备连接面;面部接触面用于与用户面部接 触,虚拟设备连接面用于与虚拟现实设备的框体内侧的观看侧连接;或中空区域包括面部接触面和虚拟设备连接面;面部接触面用于与用户面部接触,虚拟设备连接面用于与虚拟现实设备的框体外侧连接。由于本实施例中的虚拟现实设备的光学组件可以为调焦组件,光学组件具体包括外镜筒211、固定在外镜筒211的外光学镜片212、内镜筒214、固定在内镜筒214的内光学镜片217和定位特征件(具体为的固定螺钉220和拨动固定螺钉221);外镜筒211侧壁上设有至少一个倾斜槽213;内镜筒214内置于外镜筒211;定位特征件(具体为的固定螺钉220和拨动固定螺钉221)与倾斜槽213一一对应,各定位特征件(具体为的固定螺钉220和拨动固定螺钉221)一端固定在内镜筒214的侧壁,另一端穿过倾斜槽213可在倾斜槽213内滑动。定位特征件(具体为的固定螺钉220和拨动固定螺钉221)即为虚拟现实设备凸出控制键,当调节定位特征件(具体为的固定螺钉220和拨动固定螺钉221)使内镜筒214沿外镜筒211相对滑动时,固定在外镜筒211上的外光学镜片212与固定在内镜筒214上的内光学镜片217之间的距离可调,实现了光学组件的调焦。为了使得上述凸出控制键便于操作,遮光件78的底面上设有开孔,开孔用于虚拟现实设备凸出控制键即定位特征件外露,在实现调焦的同时也实现了遮光。上述虚拟现实设备的遮光组件7的尺寸可以为:为了适配人体头部形态的大小,遮光组件7的前端横向距离相对小于后端纵向距离。一般遮光组件的前端横向长度为50~250mm范围内任意值,优选为120~170mm范围内任意值,特别是150~160mm之间最适合大众用户尺寸,具体比如155mm。纵向长度在30~150mm范围内任意值,优选为60-120mm范围内任意值,特别是80~100mm之间最适合大众用户尺寸,具体如91mm。遮光组件顶面的弧形的最底端至遮光罩前端的距离为3~25mm范围内任意值,优选为8-20mm范围内任意值,特别是12~16mm之间最适合大众用户尺寸,具体如14mm。
上述虚拟现实设备的遮光组件7的工作原理为:用户在使用带有遮光组件的虚拟现实设备时,用户带上虚拟现实设备,遮光组件7的遮光件78就会与用户的额头以及用户的脸以及虚拟现实设备一起形成一个相对密闭的空间,可以让用户眼睛避免外界的光线干扰,只看到虚拟现实设备提供的视觉光线,让用户能够很好的沉浸到虚拟现实设备的视频场景中,大大的提高用户的体验度。上述虚拟现实设备的遮光组件7的具体安装步骤如下:
第一步:通过遮光组件的封闭中空区域将虚拟现实设备主体包围,位于封闭中空区域内周边的前端固定环77与虚拟现实设备的前端框架相接触;
第二步:通过第一连接件71和第二连接件72将遮光组件的第一曲面75和第二曲面76固定在虚拟现实设备上,第一曲面75和第二曲面76沿虚拟现实设备末端的方向延伸。当虚拟现实设备为眼镜结构时,第一连接件71和第二连接件72分别与虚拟现实设备的镜腿固定,具体可以为虚拟现实设备(虚拟现实眼镜)的两个镜腿上各分别设有用于嵌入第一连接件71和第二连接件72的通孔51,当第一连接件71和第二连接件72嵌入通孔51时,可实现遮光件78和虚拟现实设备主体的固定,并且也 便于拆卸下来,便于用户操作,提高用户的体验度。可以理解的是,虚拟现实设备和遮光件78也可通过粘贴的方式实现固定,对本申请不具体限定固定方式。
(五)PCBA板8:如图7所示,后壳3包括收纳腔46,用来收纳虚拟现实设备的PCBA板8,PCBA板8与光学系统连接,具体的,PCBA板8与左显示屏22、右显示屏24的屏面垂直连接。同时,光感组件还连接PCBA板8,且与PCBA板8平面保持垂直。
(六)散热片9:散热片9分别与左显示屏22和右显示屏24的后方贴合,并与PCBA板8的发热器件贴合。具体的,散热片9包括铜箔层和位于铜箔层的外层的碳膜层,铜箔层与左显示屏22和右显示屏24的后方贴合,并与PCBA板8的发热器件贴合。具体的,由于显示屏发热小,因此可在左显示屏22和右显示屏24的后方选取一部分表层涂导热胶并与散热片9连接。由于显示屏与散热片仅部分粘贴连接,便于后期维护过程中的拆卸。由于PCBA板的芯片发热比较大,要让其热量充分散发出去,因此可将PCBA板的发热器件表层涂满导热胶并与散热片9连接。考虑到光感组件也会被散热片9遮挡住,为了便于维修,在光感组件或其他散热片遮挡的器件对应的散热片处可以设置维修开口,便于后期进行维修,而避免了维修过程中需要将整个散热片拆卸下来进行维修。
(七)数据线固定件19:如图19至21所示,数据线固定件19用于固定在虚拟现实设备上。具体的,虚拟现实设备包括镜框和镜腿,镜框的后壳3靠近镜腿的一侧设有镜脚连接部,该镜脚连接部上设有凹槽44,镜腿上设有可嵌入凹槽44的凸起53。经过上述说明,为了虚拟现实设备的整体美观,数据线固定件19固定在镜脚连接部上,如螺钉连接。数据线固定件19包括顶面和分别与顶面连接并相对设置的第一侧面和第二侧面,其上分别形成有用于固定在虚拟现实设备上的固定部191、镂空开口192、数据线收容腔193和数据线挡板194,下面针对上述各部件进行详细说明。本实施例中,设定第二侧面与虚拟现实设备的镜脚连接部固定连接,第一侧面位于虚拟现实设备的外周边的内侧,第一侧面、第二侧面和顶面围成的数据线收容腔与虚拟现实设备的接口相对应,则固定部191位于第二侧面上并沿远离顶面的方向延伸,固定部191用来将数据线固定件19固定在虚拟现实设备上。固定部191与虚拟现实设备可拆卸连接,如虚拟现实设备上设有螺钉孔,固定部191与虚拟现实设备通过螺钉195连接;或固定部191与虚拟现实设备不可拆卸连接,如焊接等,具体不做限定。为了减轻数据线固定件19的重量以及节约材料,第一侧面和/或第二侧面上设有镂空开口,不局限于图1中所示的第二侧面上设有镂空开口192。顶面、第一侧面和第二侧面围成一三面开口的U形的数据线收容腔193,与虚拟现实设备连接的数据线的连接头收容在数据线收容腔193内。为了进一步防止数据线的连接头松动或掉落,避免数据线松动到时连接不良的问题,数据线固定件19上还可以进一步设有数据线挡板194,数据线挡板194设在数据线固定件19远离虚拟现实设备的一侧,数据线挡板194可分别与顶面和第一侧面连接,并与第二侧面之间具有用于伸入数据线的间隔; 或数据线挡板194可以与第二侧面和顶面连接,并与第一侧面之间具有空隙,该空隙用于伸入数据线,同时数据线的连接头容纳在数据线收容腔193内,该数据线挡25板用于防止连接头脱离数据线收容腔193。将数据线固定件19安装到虚拟现实设备的具体步骤如下:
第一步:在虚拟现实设备上连接好数据线,即将数据线的连接头插入到虚拟现实设备上的数据线接口,本实施例中的数据线一般为HDMI数据线,当然也可采用其他用来进行数据传输或者进行充电的数据线,不做具体限定;
第二步:将数据线固定件19固定在虚拟现实设备上,数据线的连接头位于数据线固定件19中数据线收容腔193内。需要说明的是,本申请的数据线固定件19可为一体成型,优选的材质为轻质并且具有一定硬度的材质。
上述数据线固定件19的工作原理为:首先将数据线的连接头固定在虚拟现实设备的数据线接口上,然后数据线的连接头也容纳在数据线固定件19的数据线收容腔193内,同时数据线固定件远离虚拟现实设备的数据线接口的一侧还设有数据线挡板194,数据线挡板194用于防止数据线的连接头松动或掉落,阻挡数据线的连接头向外移动,使得数据线与虚拟现实设备良好连接,避免用户在使用过程中外接的数据线松动,导致数据传输不良甚至数据线脱落的问题,可以让用户大胆的进入的虚拟现实的场景互动中,提高用户体验度。
与现有技术相比,本申请中的虚拟现实设备新增加了数据线固定件19,在收纳数据线的连接头的同时将数据线固定在虚拟现实设备上,能有让数据线连接头在可控发范围移动,甚至不发生移动,这样就可以让数据线很好与虚拟现实设备进行连接,即便用户使用过程中进行剧烈的运动也不会导致数据线脱落,较大的提高了用户的体验度,并且提高了虚拟现实设备的适用场景。
本申请提供一种虚拟现实设备,图24为本申请实施例示出的一种虚拟现实设备结构拆解图,图25为本申请实施例示出的一种虚拟现实设备后壳的结构示意图。
参见图24,本申请提供的虚拟现实设备呈现眼镜形态,能够为用户创造虚拟现实环境体验,用户可以通过佩戴眼镜的方式使用本申请提供的虚拟现实设备。
参见图24和图25,本申请提供的一种虚拟现实设备包括:包括:前壳1,后壳3和镜腿3a,后壳3由后壳底面21a和边框22a组成,后壳底面21a位于边框22a的一侧,与后壳底面21a形成收纳腔46;前壳1位于边框22a的另一侧,使收纳腔46封闭;镜腿3a设置于后壳上,向收纳腔46的相反方向延伸。
前壳1为具有扁平结构的面壳体,一面光滑,另一面在边缘向后壳3方向轻微弯曲;后壳底面21a位于边框22a的一侧,环绕设置在边框22a的边缘,与后壳底面21a形成收纳腔46,收纳腔46用于安装虚拟现实设备的光学部件和电子元器件。当前壳1与后壳3扣合时,前壳1与后壳3共同形成虚拟现实设备的封闭外壳,使收纳腔 46成为密闭的腔体结构,能够使光学部件和电子元器件与外界环境隔离,对光学部件和电子元器件起到保护的作用。由于本申请中的虚拟现实设备呈现眼镜形态,镜腿3a设置于后壳3上,并可收放和张开,便于用户佩戴和存放。
本申请中,为了实现在虚拟现实设备轻薄的条件下,提高虚拟现实设备外壳的强度,将边框22a在垂直于后壳底面21a的方向上分割成两段结构,这两段结构分别形成边框22a的后框面222a和前框面223a,后框面222a与前框面223a在连接处折弯,形成山脊形结构,山脊形结构改变的现有技术中通常采用的平直曲面的边框的形式,使后框面222a和前框面223a近似形成具有三角形曲面结构的两个曲面边,而后壳底面21a与前壳1分别支撑住边框22a的两端,可相当于三角形曲面结构的第三个曲面边。由此可以看出,本申请的边框22a通过使用后框面222a和前框面223a的两段结构,与后壳底面21a和前壳1形成了可等同于三角形曲面结构的整体形态。由于,在力学领域的结构形态中,三角形结构具有稳定性,不易因为受到外力的作用而轻易地改变形态,在传统的建筑施工行业被广泛应用,但是,在虚拟现实领域中,使用三角形结构来实现在虚拟现实设备轻薄的情况下,提高外壳结构强度的方案,并不惯用。
以跌落为例,现有技术中边框为平直曲面的虚拟现实设备在受到外力作用时,撞击力的作用方向垂直于平直曲面的切平面方向,导致撞击力无法沿平直曲面的延伸方向分解,因此,为了平衡撞击力,边框内部会产生与撞击力方向相反且垂直于平直曲面的内应力,在边框与后壳底面、边框与前壳相交处还会产生与撞击力方向相反的支撑力。撞击力、内应力和支撑力构成对边框的剪切力矩,并形成受力平衡,由于,撞击力的作用方向垂直于平直曲面的切平面方向,撞击力不会在平直曲面的切平面方向产生分量,所以,撞击力的全部分量均作用在垂直于切平面的方向,并且,该方向的边框壁厚最薄,承受外力作用的能力最弱,因此,当虚拟现实设备由于轻薄而导致外壳单薄时,上述现有技术中的虚拟现实设备无法实现在轻薄的情况下,具有较高的外壳强度。
本申请提供的虚拟现实设备,将边框22a分割成后框面222a和前框面223a,使后框面222a和前框面223a在连接处形成山脊形结构。通过这种形态的变化,能够改变虚拟现实设备在受到外力作用时,边框22a上的受力情况,山脊形的结构更有利于受力的分散,能够提高外壳的强度。
以跌落为例,本申请提供的虚拟现实设备在受到外力作用时,后框面222a与前框面223a的连接处由于处于山脊形结构的顶部位置而与撞击面接触,由于山脊形结构的存在,后框面222a与前框面223a在边框22a受力方向不垂直,因此,撞击力能够沿后框面222a和前框面223a方向形成两个分量,这两个分量撞击力能够沿后框面222a和前框面223a向后壳底面21a和前壳1方向传导,使边框22a承受的撞击能量能够有效地向外壳其他区域分散,避免了撞击对边框产生的较大的剪切力矩,从而,在实现虚拟现实设备轻薄的条件下,提高了虚拟现实设备外壳的强度。
对于轻薄的虚拟现实设备,例如图24所示的眼镜形态的轻薄虚拟现实设备,外壳的厚度通常远小于外壳的宽度,因此,图24所示的轻薄虚拟现实设备的重量在平行于后壳底面21a的方向更为集中,这就导致了例如图24所示的轻薄虚拟现实设备在跌落时,边框22a着地的概率要远大于外壳其他部位着地的几率。
图26为本申请实施例示出的一种虚拟现实设备边框的结构示意图。
针对上述情况,在一种可选的实施方式中,边框22a在围绕后壳底面21a的方向上包括框顶弧面224a、框底弧面225a,以及连接框顶弧面224a和框底弧面225a的两个连接弧面226a。
如图26所示,框顶弧面224a位于边框22a的顶部,呈现中间下凹、两侧上升的平缓弧面,并在框顶弧面224a的中心处,即后壳3的中心平面10a处形成弧底2241a。由于收纳腔46在位于中心平面10a的区域比较狭窄,导致位于弧底2241a区域的外壳结构也更加单薄,与外壳其他区域相比,在受到外力作用时更容易发生损坏。而本申请通过在边框22a的顶部设置呈现中间下凹、两侧上升平缓弧面的框顶弧面224a,使边框22a在框顶弧面224a区域呈现中间较低、两侧较高的“凹”形结构,当虚拟现实设备发生跌落时,由于框顶弧面224a在弧底2241a的高度低于框顶弧面224a两侧的高度,撞击面只可能与框顶弧面224a两侧较高的区域接触,弧底2241a附近的区域由于处在框顶弧面224a两侧较高的区域之间,而不会与撞击面接触,从而,避免了虚拟现实设备外壳上较单薄的区域在撞击时直接承受外力作用而导致损坏。并且该设计让框顶弧面224a在横面上具有一定角度弯曲,也具有一定的弹性,这样可以让虚拟现实设备侧面垂直落下时,可以有一定力的缓存,增强其的抗摔力度。
如图26所示,框底弧面225a位于边框22a的底部,呈沿中心平面10a对称的“几”形结构,并在框底弧面225a的中心,即中心平面10a处形成弧顶2251a。与框顶弧面224a相比,框底弧面225a的弧度较大,在避免弧顶2251a附近较单薄区域与撞击面接触的同时,能更大程度降低外壳(外壳也被称为壳体)的体积,使外壳更显轻薄;并且,框底弧面225a具有与人脸鼻梁轮廓相近的弧面,与传统的眼镜的镜托相比,框底弧面225a所提供的与人脸鼻梁轮廓相近的弧面能够增大框底弧面225a与使用者鼻梁的接触面积,降低用户佩戴虚拟现实设备时,鼻梁承受的压强,使使用者在长时间佩戴虚拟现实设备时,也不会因为虚拟现实设备比传统眼镜重量更重而导致鼻部压迫感。
在一种可选的实施方式中,如图26所示,框底弧面225a与连接弧面226a的连接处为后壳3低位点227a;后框面222a的宽度在框顶弧面224a上存在最小值,在低位点227a为最大值;后框面222a的宽度在连接弧面226a上从低位点227a向框顶弧面224a方向逐渐减小;后框面222a的宽度在框底弧面225a上从低位点227a向弧顶2251a处方向逐渐减小。
由于框顶弧面224a为平缓的弧面,在受到外力作用时,框顶弧面224a的受力方 向与框顶弧面224a接近垂直,受力很难向受力点四周分解传导,造成受力点的局部应力过大;并且,由于框顶弧面224a沿边框22a顶部的延展长度较长,在受到外力作用时,从受力点到框顶弧面224a两侧会产生较大的弯矩。因此,本申请的虚拟现实眼镜后框面222a的宽度在框顶弧面224a上存在最小值,使后框面222a和前框面223a的宽度较为接近,有助于形成更加凸出的山脊形结构,减小框顶弧面224a在受到外力作用时,受力方向与后框面222a和前框面223a的夹角,使外力容易沿着后框面222a和前框面223a分解传导,能够降低受力点的局部应力,提高框顶弧面224a的结构强度。并且,更凸出的山脊形结构能够使框顶弧面224a具有更好的抗弯能力,能有效抵挡框顶弧面224a在受到外力作用时,从受力点到框顶弧面224a两侧产生的弯矩,防止框顶弧面224a发生变形。
由于,与框顶弧面224a的弧度相比,边框22a在除框顶弧面224a的区域弧度相对较大,在受到外力作用时,力的分界和传导作用要好于框顶弧面224a,因此,可适当降低山脊形结构的凸出程度,在保证山脊形结构对边框22a的结构强度加强的同时,适当降低山脊形结构对虚拟现实设备轻薄形态的视觉影响。对此,本申请的虚拟现实设备,后框面222a的宽度在低位点227a处为最大值,使后框面222a的宽度远大于前框面223a的宽度,使边框22a在视觉上不会因为后框面222a和前框面223a形成的山脊形结构而显得厚重;并且,后框面222a的宽度在连接弧面226a上从低位点227a向框顶弧面224a方向逐渐减小;后框面222a的宽度在框底弧面225a上从低位点227a向弧顶2251a处方向逐渐减小,使后框面222a和前框面223a形成了连续变化地非对称的视觉分割效果,视觉分割效果与环境光作用结合,给用户一种比原有虚拟现实设备形态更轻薄的视觉体验,降低用户在使用虚拟现实设备时由视觉上比普通眼镜厚重而带来的心理负担。
上述视觉分割效果与环境光作用结合,具体来说,当环境光照射到边框22a上时,由于山脊形结构的存在,照射在后框面222a和前框面223a的光线会向不同的方向反射,其反射方向与人眼的之间角度不同,入射进人眼中的光线强度也不同,因此后框面222a和前框面223a在人眼中会形成具有视觉强弱差异的成像,后框面222a和前框面223a任一个视觉效果强的成像都会吸引用户更多的注意力,从而使用户对成像视觉效果的部分注意力下降,由此,使虚拟现实设备在相同的边框22a厚度情况下,产生一种比实际边框22a实际厚度更轻薄的视觉体验。
在另一种可选择的实施方式中,框底弧面225a与连接弧面226a的连接处为后壳3低位点227a;后框面222a的宽度在框顶弧面224a上存在最大值,在低位点227a为最小值;后框面222a的宽度在连接弧面226a上从低位点227a向框顶弧面224a方向逐渐变大;后框面222a的宽度在框底弧面225a上从低位点227a向弧顶2251a处方向逐渐变大。与上文中的可选择实施方式效果相同,这种结构也能在保证山脊形结构对边框22a的结构强度加强的同时,适当降低山脊形结构对虚拟现实设备轻薄形态的视觉影响,使后框面222a和前框面223a形成连续变化地非对称的视觉分割效果, 视觉分割效果与环境光作用结合,给用户一种比原有虚拟现实设备形态更轻薄的视觉体验,降低用户在使用虚拟现实设备时由视觉上比普通眼镜厚重而带来的心理负担。
在上述两种可选择的实施方式中“框底弧面225a与连接弧面226a的连接处为后壳3低位点227a;后框面222a的宽度在框顶弧面224a上存在最小值,在低位点227a为最大值;后框面222a的宽度在连接弧面226a上从低位点227a向框顶弧面224a方向逐渐减小;后框面222a的宽度在框底弧面225a上从低位点227a向弧顶2251a处方向逐渐减小”的方案为优选实施方式,其原因在于:边框22a通常与后壳底面21a为一体成型的结构,因此,后框面222a与后壳底面21a的连接强度较高,能够承受较大内部应力和弯矩;而前框面223a与前壳1为分体结构,通过设置一些扣合特征实现扣合,因此,前框面223a与前壳1在相接处位置的结构强度不如后框面222a与后壳底面21a的连接强度高,因此本申请中的优选实施方式使边框22a上的山脊形结构位于更靠近前壳1的一侧,由于山脊形结构的强度更高和稳定性更好,因此,山脊形结构位于更靠近前壳1的一侧,有助于提高边框22a与前壳1的连接强度。
图27为本申请实施例示出的一种虚拟现实设备后壳的A-A向剖视图。
在一种可选的实施方式中,如图27所示,后框面222a从后壳底面21a向前壳1方向延伸,所形成的扩张角α使收纳腔46扩张趋势的开口;前框面223a与后框面222a在连接处形成脊顶线221a;前框面223a与后框面222a在脊顶线221a处形成的脊形角β,使收纳腔46的开口的扩张趋势减小或呈现收缩趋势。
本申请中,扩张角α使收纳腔46形成的扩张趋势的开口,即后框面222a与后壳底面21a之间不垂直,收纳腔46的开口在远离后壳底面21a的方向逐渐增大。当边框22a受到外力作用时,由于扩张角α的存在,后框面222a所承载的作用力的分量能够分解到后壳底面21a上,因此扩张角α能有利于边框22a在受到外力作用时,作用力在外壳内部的消耗分解,进而使外壳具有更高的强度。此外由于扩张角α使收纳腔46形成的扩张趋势的开口,当边框22a受到外力作用时,边框22a会发生轻微的弹性形变,边框22a发生弹性形变的趋势与外力作用的方向相同,即边框22a会向收纳腔46内侧形变,但是,由于收纳腔46的开口呈现扩张趋势,如果边框22a向收纳腔46内侧发生形变,会使收纳腔46开口的扩张趋势减小,在边框22a已经成型的情况下,边框22a内部会产生挤压应力阻挡由外力导致的开口扩张趋势,使边框22a在受到外力作用时保持结构稳定。本申请中的扩张角α使收纳腔46形成的扩张趋势的开口,使用微小的结构变化,在不影响虚拟现实设备轻薄形态的情况下,提高了外壳的结构强度。
本申请中,前框面223a与后框面222a在连接处形成脊顶线221a;前框面223a与后框面222a在脊顶线221a处形成的脊形角β,使收纳腔46的开口的扩张趋势减小或呈现收缩趋势。脊顶线221a为前框面223a与后框面222a形成的山脊形结构的山脊顶部的轮廓线,脊顶线221a使边框22a在视觉上给人一种结实硬朗的感觉;脊 形角β和扩张角α的共同大小决定的山脊形结构的山脊坡度形态;此外,脊形角β使收纳腔46的开口的扩张趋势减小或呈现收缩趋势,结合山脊形结构的稳定形态,能够使前框面223a与前壳1的扣合更牢靠,不易因为边框22a在受到外力作用时产生变形而导致前壳1从边框22a上脱落。
此外,由于扩张角α的存在,在垂直于后壳底面21a的方向,前壳1的轮廓面积大于后壳底面21a的轮廓面积,当人眼从虚拟现实设备的前壳1一侧观察时,人眼看不到脊顶线221a另一侧的后框面222a,从而,使边框22a为虚拟现实设备带来轻薄的视觉体验。
在一种可选的实施方式中,如图27所示,扩张角α在框顶弧面224a上从弧底2241a处向中心平面10a两侧方向逐渐减小;扩张角α在框底弧面225a上从弧顶2251a处向两侧的低位点227a方向逐渐减小;扩张角α在连接弧面226a上从低位点227a处向框顶弧面224a方向逐渐增大。
本申请中,由于框顶弧面224a为平缓的弧面,在受到外力作用时,框顶弧面224a的受力方向与框顶弧面224a接近垂直,受力很难向受力点四周分解传导,造成受力点的局部应力过大;并且,由于框顶弧面224a沿边框22a顶部的延展长度较长,在受到外力作用时,从受力点到框顶弧面224a两侧会产生较大的弯矩。对此,本申请为了提高框顶弧面224a的结构强度,利用框顶弧面224a在后壳3的中心平面10a上设置有弧底2241a的形态,使扩张角α在框顶弧面224a上从弧底2241a处向中心平面10a两侧方向逐渐减小,增大扩张角α能够增加后框面222a作为山脊形结构时的坡度,有利于在脊顶线221a形成更小的脊形角β,使框顶弧面224a上的山脊形结构更加凸出,提高框顶弧面224a的结构强度和结构的稳定性。
并且,扩张角α的大小满足使脊顶线221a在框顶弧面224a上也成下凹的弧形,降低框顶弧面224a在位于中心平面10a附近的位置与外力直接接触的几率。
本申请中,扩张角α在框底弧面225a上从弧顶2251a处向两侧的低位点227a方向逐渐减小,能够使框底弧面225a形成与人脸鼻梁轮廓相近的弧面,增大框底弧面225a与使用者鼻梁的接触面积,降低用户佩戴虚拟现实设备时,鼻梁承受的压强,使用户在长时间佩戴虚拟现实设备时,也不会因为虚拟现实设备比传统眼镜重量更重而导致鼻部压迫感。
本申请中,扩张角α在连接弧面226a上从低位点227a处向框顶弧面224a方向逐渐增大。为了适应人体面部构造,本申请中虚拟现实设备的镜腿3a位于后壳3两侧偏上的位置,由于镜腿3a的存在,后壳3两侧靠近镜腿的区域重力较为集中,当虚拟现实设备跌落时,后壳3两侧靠近镜腿的区域更容易与跌落表面接触。因此,本申请扩张角α在连接弧面226a上从低位点227a处向框顶弧面224a方向逐渐增大,能够逐渐增加后框面222a作为山脊形结构时的坡度,有利于在脊顶线221a逐渐形成更小的脊形角β,使框顶弧面224a上的山脊形结构更加凸出,提高框顶弧面224a的 结构强度和结构的稳定性。
在一种可选的实施方式中,脊形角β在框顶弧面224a上从弧底2241a处向中心平面10a两侧方向逐渐增大;脊形角β在框底弧面225a上从弧顶2251a处向两侧的低位点227a方向逐渐增大;脊形角β在连接弧面226a上从低位点227a处向框顶弧面224a方向逐渐减小。
本申请中,由于框顶弧面224a为平缓的弧面,在受到外力作用时,框顶弧面224a的受力方向与框顶弧面224a接近垂直,受力很难向受力点四周分解传导,造成受力点的局部应力过大;并且,由于框顶弧面224a沿边框22a顶部的延展长度较长,在受到外力作用时,从受力点到框顶弧面224a两侧会产生较大的弯矩。对此,本申请为了提高框顶弧面224a的结构强度,利用框顶弧面224a在后壳3的中心平面10a上设置有弧底2241a的形态,脊形角β在框顶弧面224a上从弧底2241a处向中心平面10a两侧方向逐渐增大,使山脊形结构在框顶弧面224a的弧底2241a处最为凸出,并使前框面223a与后框面222a形成的两个山脊形结构的脊形面向中心平面10a两侧方向逐渐平缓,在提高虚拟现实设备外壳结构强度的同时,不对虚拟现实设备轻薄形态造成影响,亦不会影响用户对虚拟现实设备轻薄外形的视觉感受。
本申请中,脊形角β在框底弧面225a上从弧顶2251a处向两侧的低位点227a方向逐渐增大,与扩张角α相适应,当扩张角α使框底弧面225a形成与人脸鼻梁轮廓相近的弧面时,脊形角β能够使前框面223a形成的收纳腔46开口的扩张趋势与边框22a位置保持相近或相同,保证前壳1与后壳3的扣合效果。
本申请中,脊形角β在连接弧面226a上从低位点227a处向框顶弧面224a方向逐渐减小。为了适应人体面部构造,本申请中虚拟现实设备的镜腿3a位于后壳3两侧偏上的位置,由于镜腿3a的存在,后壳3两侧靠近镜腿的区域重力较为集中,当虚拟现实设备跌落时,后壳3两侧靠近镜腿的区域更容易与跌落表面接触。因此,本申请脊形角β在连接弧面226a上从低位点227a处向框顶弧面224a方向逐渐减小,能够逐渐增加后框面222a和前框面223a作为山脊形结构时的坡度,使框顶弧面224a上的山脊形结构更加凸出,提高框顶弧面224a的结构强度和结构的稳定性。
图28为本申请实施例示出的一种虚拟现实设备后壳的轮廓角示意图。
在一种可选择的实施例中,如图28所示,扩张角α和脊形角β的关系满足:使后壳底面21a与前框面223a之间形成的轮廓角γ始终大于90度,且轮廓角γ的范围在92度±2度之间。
由角度计算可知,扩张角α、脊形角β与轮廓角γ的关系满足:
γ=α+β-180(单位:度)
根据,
扩张角α在框顶弧面224a上从弧底2241a处向中心平面10a两侧方向逐渐减小;扩张角α在框底弧面225a上从弧顶2251a处向两侧的低位点227a方向逐渐减小;扩张角α在连接弧面226a上从低位点227a处向框顶弧面224a方向逐渐增大。
以及,
脊形角β在框顶弧面224a上从弧底2241a处向中心平面10a两侧方向逐渐增大;脊形角β在框底弧面225a上从弧顶2251a处向两侧的低位点227a方向逐渐增大;脊形角β在连接弧面226a上从低位点227a处向框顶弧面224a方向逐渐减小。
在同时满足提高外壳结构强度和不影响虚拟现实设备轻薄形态的条件下,作为示例性地,扩张角α、脊形角β与轮廓角γ可选取以下值:
①当轮廓角γ=92度时
在弧底2241a处:扩张角α=110度,脊形角β=162度
在框顶弧面224a与连接弧面226a连接处:扩张角α=97度,脊形角β=175度
在弧顶2251a处:扩张角α=152度,脊形角β=120度
在低位点227a处:扩张角α=95度,脊形角β=177度
②当轮廓角γ=90.5度时
在弧底2241a处:扩张角α=109度,脊形角β=161.5度
在框顶弧面224a与连接弧面226a连接处:扩张角α=96度,脊形角β=174.5度
在弧顶2251a处:扩张角α=151度,脊形角β=119.5度
在低位点227a处:扩张角α=94度,脊形角β=176.5度
③当轮廓角γ=94度时
在弧底2241a处:扩张角α=111度,脊形角β=163度
在框顶弧面224a与连接弧面226a连接处:扩张角α=98度,脊形角β=176度
在弧顶2251a处:扩张角α=153度,脊形角β=121度
在低位点227a处:扩张角α=96度,脊形角β=178度
需要说明的是,本申请中,轮廓角γ的值可沿边框22a连续变化,而并非一定为固定值,示例性地,扩张角α、脊形角β与轮廓角γ可选取以下值:
在弧底2241a处:扩张角α=110度,脊形角β=161度,轮廓角γ=91度
在框顶弧面224a与连接弧面226a连接处:扩张角α=96度,脊形角β=174.5度,轮廓角γ=90.5度
在弧顶2251a处:扩张角α=152度,脊形角β=120度,轮廓角γ=92度
在低位点227a处:扩张角α=95度,脊形角β=178度,轮廓角γ=93度
图29为本申请实施例示出的另一种虚拟现实设备后壳的轮廓角示意图。
在一种可选择的实施例中,如图29所示,扩张角α和脊形角β的关系满足:使后壳底面21a与前框面223a之间形成的轮廓角γ始终小于90度,且轮廓角γ的范围在88度±2度之间。
由角度计算可知,扩张角α、脊形角β与轮廓角γ的关系满足:
γ=α+β-180(单位:度)
根据,
扩张角α在框顶弧面224a上从弧底2241a处向中心平面10a两侧方向逐渐减小;扩张角α在框底弧面225a上从弧顶2251a处向两侧的低位点227a方向逐渐减小;扩张角α在连接弧面226a上从低位点227a处向框顶弧面224a方向逐渐增大。
以及,
脊形角β在框顶弧面224a上从弧底2241a处向中心平面10a两侧方向逐渐增大;脊形角β在框底弧面225a上从弧顶2251a处向两侧的低位点227a方向逐渐增大;脊形角β在连接弧面226a上从低位点227a处向框顶弧面224a方向逐渐减小。
在同时满足提高外壳结构强度和不影响虚拟现实设备轻薄形态的条件下,作为示例性地,扩张角α、脊形角β与轮廓角γ可选取以下值:
①当轮廓角γ=88度时
在弧底2241a处:扩张角α=110度,脊形角β=158度
在框顶弧面224a与连接弧面226a连接处:扩张角α=97度,脊形角β=171度
在弧顶2251a处:扩张角α=152度,脊形角β=116度
在低位点227a处:扩张角α=95度,脊形角β=173度
②当轮廓角γ=86度时
在弧底2241a处:扩张角α=109度,脊形角β=157度
在框顶弧面224a与连接弧面226a连接处:扩张角α=96度,脊形角β=170度
在弧顶2251a处:扩张角α=151度,脊形角β=115度
在低位点227a处:扩张角α=94度,脊形角β=172度
③当轮廓角γ=89.5度时
在弧底2241a处:扩张角α=111度,脊形角β=158.5度
在框顶弧面224a与连接弧面226a连接处:扩张角α=98度,脊形角β=171.5度
在弧顶2251a处:扩张角α=153度,脊形角β=116.5度
在低位点227a处:扩张角α=96度,脊形角β=177.5度
需要说明的是,本申请中,轮廓角γ的值可沿边框22a连续变化,而并非一定为固定值,示例性地,扩张角α、脊形角β与轮廓角γ可选取以下值:
在弧底2241a处:扩张角α=110度,脊形角β=157度,轮廓角γ=87度
在框顶弧面224a与连接弧面226a连接处:扩张角α=96度,脊形角β=170.5度,轮廓角γ=86.5度
在弧顶2251a处:扩张角α=152度,脊形角β=116度,轮廓角γ=88度
在低位点227a处:扩张角α=95度,脊形角β=174度,轮廓角γ=89度
图30为本申请实施例示出的又一种虚拟现实设备后壳的轮廓角示意图。
在一种可选择的实施例中,如图30所示,扩张角α和脊形角β的关系满足:使后壳底面(21a)与前框面(223a)垂直。
由角度计算可知,扩张角α、脊形角β与轮廓角γ的关系满足:
γ=α+β-180(单位:度)
根据,
扩张角α在框顶弧面224a上从弧底2241a处向中心平面10a两侧方向逐渐减小;扩张角α在框底弧面225a上从弧顶2251a处向两侧的低位点227a方向逐渐减小;扩张角α在连接弧面226a上从低位点227a处向框顶弧面224a方向逐渐增大。
以及,
脊形角β在框顶弧面224a上从弧底2241a处向中心平面10a两侧方向逐渐增大;脊形角β在框底弧面225a上从弧顶2251a处向两侧的低位点227a方向逐渐增大;脊形角β在连接弧面226a上从低位点227a处向框顶弧面224a方向逐渐减小。
在同时满足提高外壳结构强度和不影响虚拟现实设备轻薄形态的条件下,作为示例性地,扩张角α、脊形角β与轮廓角γ可选取以下值:
在弧底2241a处:扩张角α=110度,脊形角β=160度
在框顶弧面224a与连接弧面226a连接处:扩张角α=97度,脊形角β=173度
在弧顶2251a处:扩张角α=152度,脊形角β=118度
在低位点227a处:扩张角α=95度,脊形角β=175度
需要说明的是,上述可选择的实施方式中示出的扩张角α、脊形角β和轮廓角γ的数值,仅作为解释本申请技术方案的示例性数值给出,所有满足上述可选择的实施方式中示出的扩张角α和脊形角β关系的扩张角α、脊形角β和轮廓角γ的数值的数值组合和数值变化,均落入本申请的保护范围内,对于满足扩张角α和脊形角β关系的扩张角α、脊形角β和轮廓角γ的其他组合,本实施例中不再赘述。
从上述可选择的实施方式中可以看出,当扩张角α确定时,随着轮廓角γ减小,脊形角β减小,即边框22a的山脊形结构更凸出,边框22a的结构强度更高;当轮廓角γ确定时,随着扩张角α的增大,轮廓角γ减小,即边框22a的山脊形结构更突出,边框22a的结构强度更高;但是,如果轮廓角γ太小或扩张角α太大,边框22a的山脊形结构就会过于凸出,导致虚拟现实设备在视觉上和结构上都变得厚重,因此,选择扩张角α、脊形角β和轮廓角γ的数值在一个合适的范围内,才能够实现在虚拟现实设备具有轻薄形态的同时,具有较高的外壳强度。本申请实施例示出的实施方式中示例性提供的扩张角α、脊形角β和轮廓角γ的取值,就能够实现虚拟现实设备在具有轻薄形态的同时,具有较高的外壳强度。
图31和图32为申请实施例示出的一种虚拟现实设备后脊面宽度示意图。
在一种可选择的实施方式中,参见图31和图32,后壳在垂直于所述后壳底面的方向包括后壳厚度δ0,后框面222a的宽度的范围在后壳厚度δ0的50%至80%之间。由于后框面222a与后壳底面21a的连接强度较高,能够承受较大内部应力和弯矩;而前框面223a与前壳1为分体结构,通过设置一些扣合特征实现扣合,因此,前框面223a与前壳1在相接处位置的结构强度不如后框面222a与后壳底面21a的连接强度高,因此,后框面222a的宽度大于后壳3厚度的50%,即后框面222a的宽度大于前框面223a的宽度,能够使边框22a在受到外力作用时,前框面223a承受的弯矩小于后框面222a,在整体上提高边框22a的强度,但是,由于边框22a的山脊形结构同样有助于提高边框22a的强度,所以,前框面223a的宽度不能太小,否则山脊形结构无法形成,不利于提高边框22a的强度。因此,本申请中后框面222a的宽度的范围在后壳厚度δ0的50%至80%之间,处于最合理的范围。
在一种可选择的实施方式中,后框面222a的宽度在框顶弧面224a上固定不变为最小值δ1,最小值δ1在后壳3厚度的50%至55%之间。
和/或,
后框面222a的宽度在低位点227a为最大值δ2,最大值δ2的范围在后壳3厚度的75%至80%之间。
由于,框顶弧面224a为平缓的弧面,后框面222a和前框面223a在位于框顶弧面224a的部分形态变化很小,且延展长度长,因此,后框面222a的宽度在框顶弧面224a上固定不变,能够提高框顶弧面224a结构的整体性,使框顶弧面224a在受到外 力作用时,应力的分布更加规则,提高框顶弧面224a的整体强度;同时,后框面222a的宽度在框顶弧面224a上固定不变,能够在框顶弧面224a上形成一段笔直的脊顶线221a,在视觉上给人一种硬朗的感觉。此外,根据本申请实施例前文的论述,后框面222a的宽度在框顶弧面224a上固定不变为最小值δ1,最小值δ1在后壳3厚度的50%至55%之间,以及,后框面222a的宽度在低位点227a为最大值δ2,最大值δ2的范围在后壳3厚度的75%至80%之间均为本实施例示出的优选方案,其作用参见本实施例中前文的有关论述,此处不在赘述。
图33为本申请实施例示出的一种虚拟现实设备脊顶线和分割平面示意图。
在一种可选的实施方式中,参见图33,脊顶线221a位于一个贯穿边框22a的分割平面20a内,分割平面20a垂直于中心平面10a。分割平面20a倾斜于后壳底面21a,成的倾斜角ν的范围使后框面222a的宽度的范围在后壳3厚度的50%至80%之间。脊顶线221a位于一个贯穿边框22a的分割平面20a内,能够使后框面222a和前框面223a的宽度沿分割平面20a和中心平面10a的交线方向呈线性变化,提高边框22a结构的整体性,使边框22a在受到外力作用时,应力的分布更加规则,提高框顶弧面224a的整体强度。此外,脊顶线221a位于一个贯穿所述边框22a的分割平面20a内,也能使后壳3易于开模和加工。
在一种可选择的实施方式中,参见图27,前框面223a的壁厚大于后框面222a的壁厚,前框面223a与后框面222a在收纳腔46内侧为平滑的过渡曲面44a。由于,前框面223a与前壳1的连接方式会出现扣合连接等活动连接的情况,结构强度不如后框面222a与后壳底面21a的一体成型连接结构强度高,因此,适当增加前框面223a的壁厚能够提高前框面223a的结构强度,降低边框22a在受到外力作用时发生在前框面223a上的形变,使虚拟现实设备外壳的整体强度更高。此外,前框面223a与后框面222a在收纳腔46内侧为平滑的过渡曲面44a,有助于降低前框面223a与后框面222a在连接处的应力集中。
在一种可选择的实施方式中,参见图27,前框面223a的末端为开口端2231a,前框面223a在开口端2231a处设置有豁口228a,豁口228a位于收纳腔46的内侧,豁口228a设置有与后壳底面21a平行的豁口底面2281a,豁口底面2281a到开口端2231a的距离小于后壳3厚度的20%。本申请中,豁口228a对前壳1有限位作用,当前壳1与边框22a扣合时,防止前壳1的位置发生改变,提高外壳整体结构的稳定性。
在一种可选择的实施方式中,参见图27,后框面222a与后壳底面21a的连接处设置第一倒角41a,第一倒角41a的高度不超过后壳3壁厚的一半。由于,后框面222a与后壳底面21a之间形成扩张角α,后框面222a与后壳底面21a的连接处在受到外力作用时会出现应力集中而损坏,本申请的后框面222a与后壳底面21a的连接处设置第一倒角41a,能够避免后框面222a与后壳底面21a的连接处在受到外力作用时出现 应力集中,提高外壳强度。此外,第一倒角41a的高度不超过后壳3壁厚的一半,亦不会对外壳的整体壁厚造成影响。
在一种可选择的实施方式中,参见图27,前框面223a边缘外侧设置第二倒角42a,第二倒角42a的高度不超过后壳3壁厚的一半。第二倒角42a的作用是消除前框面223a边缘外侧的尖端轮廓,避免前框面223a在受到外力作用时出现应力集中而损坏,提高外壳强度。第二倒角42a的高度不超过后壳3壁厚的一半,亦不会对外壳的整体壁厚造成影响。
在一种可选择的实施方式中,参见图27,后壳3在脊顶线221a设置有过渡圆角43a,过渡圆角43a能够消除脊顶线221a在受到外力作用时产生的应力集中,避免后壳3因应力集中而损坏,提高外壳强度。
以上实施例中,不仅局限于虚拟现实设备,还可应用于任何头戴设备,且所述头戴设备具体包括但不限于虚拟现实设备、增强现实设备、游戏设备、移动计算设备以及其它可穿戴式计算机等。需要说明的是,本申请实施例中公开的数值,包括距离占比、宽度比和厚度比等均为举例说明各部件之间的尺寸关系,在实际应用中,各部件的尺寸还可采用其他数值,其中一个部件的尺寸发生变化时,其他部分的尺寸也发生变化,具体变化后的数值,本申请不再赘述,可根据本申请中公开的比例关系进行相应计算得到。
由以上技术方案可知,本申请提供的一种虚拟现实设备,边框在垂直于后壳底面的方向上包括后框面和前框面,前框面和后框面在连接处形成山脊形结构,该山脊形结构使虚拟现实设备的边框形成具有三角形形态的稳定结构,当虚拟现实设备受到外力作用,例如,不慎跌落到地面时,边框与地面发生碰撞接触,由于山脊形结构的存在,边框受到地面撞击力的方向与山脊形结构的后框面和前框面之间均形成小于90度的夹角,使撞击力能沿着后框面和前框面向虚拟现实设备的两侧分散传导,使边框不会因为受力无法分散导致局部应力过大而损坏,并且由于山脊形结构使虚拟现实设备的边框形成具有三角形形态的稳定结构,该稳定结构能够使边框在收到外力冲击时保持原有的形态,不会因为变形过大而导致断裂,并能够减少虚拟现实设备镜框的微振动,有利于虚拟现实设备提供稳定的3D立体成像效果。此外,后框面和前框面的宽度依据虚拟现实设备的形态逐渐变化,使边框的山脊形结构在实现虚拟现实设备轻薄形态的同时具有较高的强度。因此,本申请提供的虚拟现实设备,能够实现虚拟现实设备具有轻薄形态的同时,具有较高的外壳强度,即使其在受到外力破坏时也不易发生破损。
本领域技术人员在考虑说明书及实践这里公开的申请后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围 和精神由下面的权利要求指出。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求来限制。

Claims (10)

  1. 一种虚拟现实设备,其特征在于,包括由前壳(1)和后壳(3)围成的镜框、与所述后壳(3)连接的两个镜腿(3a)和内置于所述镜框的光学系统、PCBA板(8)、光感组件,所述前壳(1)周边设有若干用于嵌入所述后壳(3)的卡扣固定件(16);所述后壳(3)的背面设有用于与脸托(6)连接的脸托固定件(41)、与所述镜腿(3a)连接的凹槽(44)。
  2. 根据权利要求1所述的虚拟现实设备,其特征在于,所述后壳(3)由后壳底面(21a)和边框(22a)组成,所述后壳底面(21a)位于所述边框(22a)的一侧,与所述后壳底面(21a)形成收纳腔(46);所述前壳(1)位于所述边框(22a)的另一侧,使所述收纳腔(46)封闭;所述镜腿(3a)设置于所述后壳(3)上,向所述收纳腔(46)的相反方向延伸。
  3. 根据权利要求2所述的虚拟现实设备,其特征在于,所述边框(22a)在垂直于所述后壳底面(21a)的方向上包括后框面(222a)和前框面(223a);所述前框面(223a)与所述后框面(222a)在连接处形成山脊形结构。
  4. 根据权利要求3所述的虚拟现实设备,其特征在于,所述边框(22a)在围绕所述后壳底面(21a)的方向上包括框顶弧面(224a)、框底弧面(225a),以及连接所述框顶弧面(224a)和所述框底弧面(225a)的两个连接弧面(226a),两个所述连接弧面(226a)沿所述后壳(3)的中心平面(10a)对称;所述框顶弧面(224a)设置有弧底(2241a),所述框底弧面(225a)设置有弧顶(2251a),所述弧底(2241a)和所述弧顶(2251a)均位于所述后壳(3)的中心平面(10a)上;所述框底弧面(225a)与所述连接弧面(226a)的连接处为所述后壳(3)低位点(227a);所述后框面(222a)的宽度在所述框顶弧面(224a)上存在最小值,在所述低位点(227a)处为最大值;所述后框面(222a)的宽度在所述连接弧面(226a)上从所述低位点(227a)向所述框顶弧面(224a)方向逐渐减小;所述后框面(222a)的宽度在所述框底弧面(225a)上从所述低位点(227a)向所述弧顶(2251a)处方向逐渐减小。
  5. 根据权利要求4所述的虚拟现实设备,其特征在于,所述后框面(222a)从所述后壳底面(21a)向所述前壳(1)方向延伸,所形成的扩张角α使所述收纳腔(46)设置有扩张趋势的开口;所述前框面(223a)与所述后框面(222a)在连接处形成脊顶线(221a);所述前框面(223a)与所述后框面(222a)在所述脊顶线(221a)处形成的脊形角β,使所述收纳腔(46)的开口的扩张趋势减小或呈现收缩趋势。
  6. 根据权利要求5所述的虚拟现实设备,其特征在于,所述扩张角α在所述框顶弧面(224a)上从所述弧底(2241a)处向所述中心平面(10a)两侧方向逐渐减小;所述扩张角α在所述框底弧面(225a)上从所述弧顶(2251a)处向两侧的所述低位点(227a)方向逐渐减小;所述扩张角α在所述连接弧面(226a)上从所述低位点(227a)处向所述框顶弧面(224a)方向逐渐增大。
  7. 根据权利要求5所述的虚拟现实设备,其特征在于,所述脊形角β在所述框顶弧面(224a)上从所述弧底(2241a)处向所述中心平面(10a)两侧方向逐渐增大;所述脊形角β在所述框底弧面(225a)上从所述弧顶(2251a)处向两侧的所述低位点(227a)方向逐渐增大;所述脊形角β在所述连接弧面(226a)上从所述低位点(227a)处向所述框顶弧面(224a)方向逐渐减小。
  8. 根据权利要求5-7任意一项所述的虚拟现实设备,其特征在于,所述扩张角α和所述脊形角β的关系满足:
    使所述后壳底面(21a)与所述前框面(223a)之间形成的轮廓角γ始终大于90度,且所述轮廓角γ的范围在92度±2度之间;
    或,
    使所述后壳底面(21a)与所述前框面(223a)之间形成的轮廓角γ始终小于90度,且所述轮廓角γ的范围在88度±2度之间;
    或,
    使所述后壳底面(21a)与所述前框面(223a)垂直。
  9. 根据权利要求8所述的虚拟现实设备,其特征在于,所述后壳(3)在垂直于所述后壳底面(21a)的方向包括后壳厚度δ0,所述后框面(222a)的宽度的范围在所述后壳厚度δ0的50%至80%之间。
  10. 根据权利要求9所述的虚拟现实设备,其特征在于,所述脊顶线(221a)位于一个贯穿所述边框(22a)的分割平面(20a)内,所述分割平面(20a)垂直于所述中心平面(10a)。
PCT/CN2018/088586 2017-05-27 2018-05-27 一种虚拟现实设备 WO2018219243A1 (zh)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN201710392921.0 2017-05-27
CN201710392921.0A CN107015340A (zh) 2017-05-27 2017-05-27 光学镜片调焦组件
CN201710392914.0 2017-05-27
CN201710392914.0A CN107015367A (zh) 2017-05-27 2017-05-27 一种虚拟现实设备
CN201710392078.6 2017-05-27
CN201710392923.X 2017-05-27
CN201710392078.6A CN107065194A (zh) 2017-05-27 2017-05-27 一种虚拟现实设备的遮光组件
CN201710392923.XA CN106990538A (zh) 2017-05-27 2017-05-27 一种虚拟现实设备的脸托配件
CN201710813537.3 2017-09-11
CN201710813537.3A CN107526169B (zh) 2017-05-27 2017-09-11 一种虚拟现实设备

Publications (1)

Publication Number Publication Date
WO2018219243A1 true WO2018219243A1 (zh) 2018-12-06

Family

ID=60302738

Family Applications (9)

Application Number Title Priority Date Filing Date
PCT/CN2018/088585 WO2018219242A1 (zh) 2017-05-27 2018-05-27 具有防尘功能的光学镜片调焦组件
PCT/CN2018/088578 WO2018219239A1 (zh) 2017-05-27 2018-05-27 一种虚拟现实设备
PCT/CN2018/088574 WO2018219237A1 (zh) 2017-05-27 2018-05-27 光学镜片调焦组件
PCT/CN2018/088581 WO2018219241A1 (zh) 2017-05-27 2018-05-27 一种虚拟现实设备的脸托配件
PCT/CN2018/088586 WO2018219243A1 (zh) 2017-05-27 2018-05-27 一种虚拟现实设备
PCT/CN2018/088589 WO2018219245A1 (zh) 2017-05-27 2018-05-27 一种虚拟现实设备组件
PCT/CN2018/088576 WO2018219238A1 (zh) 2017-05-27 2018-05-27 一种虚拟现实设备
PCT/CN2018/088579 WO2018219240A1 (zh) 2017-05-27 2018-05-27 一种虚拟现实设备
PCT/CN2018/088587 WO2018219244A1 (zh) 2017-05-27 2018-05-27 一种虚拟现实设备

Family Applications Before (4)

Application Number Title Priority Date Filing Date
PCT/CN2018/088585 WO2018219242A1 (zh) 2017-05-27 2018-05-27 具有防尘功能的光学镜片调焦组件
PCT/CN2018/088578 WO2018219239A1 (zh) 2017-05-27 2018-05-27 一种虚拟现实设备
PCT/CN2018/088574 WO2018219237A1 (zh) 2017-05-27 2018-05-27 光学镜片调焦组件
PCT/CN2018/088581 WO2018219241A1 (zh) 2017-05-27 2018-05-27 一种虚拟现实设备的脸托配件

Family Applications After (4)

Application Number Title Priority Date Filing Date
PCT/CN2018/088589 WO2018219245A1 (zh) 2017-05-27 2018-05-27 一种虚拟现实设备组件
PCT/CN2018/088576 WO2018219238A1 (zh) 2017-05-27 2018-05-27 一种虚拟现实设备
PCT/CN2018/088579 WO2018219240A1 (zh) 2017-05-27 2018-05-27 一种虚拟现实设备
PCT/CN2018/088587 WO2018219244A1 (zh) 2017-05-27 2018-05-27 一种虚拟现实设备

Country Status (2)

Country Link
CN (17) CN107577049B (zh)
WO (9) WO2018219242A1 (zh)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107577049B (zh) * 2017-05-27 2020-06-23 深圳多哚新技术有限责任公司 一种虚拟现实设备的脸托配件
CN108205202B (zh) * 2018-01-31 2023-11-03 歌尔科技有限公司 头戴显示设备及其绑带调节方法
CN108931669A (zh) * 2018-04-06 2018-12-04 盐城同舟电气有限公司 一种曲面电力仪表固定装置
CN109164636B (zh) * 2018-08-15 2021-04-09 华为技术有限公司 一种显示装置
TWI663429B (zh) * 2018-08-20 2019-06-21 宏碁股份有限公司 頭戴顯示器
CN109254405A (zh) * 2018-10-31 2019-01-22 深圳多哚新技术有限责任公司 一种头戴设备光学组件
US20200159027A1 (en) * 2018-11-20 2020-05-21 Facebook Technologies, Llc Head-mounted display with unobstructed peripheral viewing
JP2020086346A (ja) * 2018-11-30 2020-06-04 セイコーエプソン株式会社 導光装置及び虚像表示装置
TWI699610B (zh) * 2018-12-05 2020-07-21 上暘光學股份有限公司 可調整傾斜度之鏡室結構
CN112346243B (zh) * 2019-08-08 2022-11-29 Oppo广东移动通信有限公司 一种眼镜
CN110716309A (zh) * 2019-10-12 2020-01-21 广州林电科技有限公司 一种具有清洁功能的便捷型vr眼镜
CN115220232A (zh) * 2019-12-06 2022-10-21 Oppo广东移动通信有限公司 保护壳体和头戴式设备
CN111427221B (zh) * 2020-03-09 2021-04-23 长沙学院 一种带可变焦距镜头的光学装置
US11815693B2 (en) * 2020-04-20 2023-11-14 Apple Inc. Head-mounted electronic device
CN212302102U (zh) * 2020-08-12 2021-01-05 杭州灵伴科技有限公司 头戴显示设备支架和智能近眼显示装置
US20220075198A1 (en) * 2020-09-07 2022-03-10 Htc Corporation Glasses type display device and light-shielding face mask
CN112099238B (zh) * 2020-10-30 2022-07-08 歌尔光学科技有限公司 一种头戴显示设备及其前端风冷散热结构
CN112379521A (zh) * 2020-11-13 2021-02-19 Oppo广东移动通信有限公司 用于可穿戴设备的佩戴组件以及可穿戴设备
CN112394519B (zh) * 2020-11-13 2023-08-25 Oppo广东移动通信有限公司 用于可穿戴设备的佩戴组件以及可穿戴设备
CN112526755B (zh) * 2020-12-10 2023-01-24 歌尔科技有限公司 一种头戴显示设备及其多重防撞防护结构
CN214335367U (zh) * 2021-02-19 2021-10-01 深圳市红箭头科技有限公司 Vr眼镜配件和vr眼镜组件
JP2022131032A (ja) * 2021-02-26 2022-09-07 セイコーエプソン株式会社 光学モジュール及び頭部装着型表示装置
CN113126304B (zh) * 2021-04-29 2023-04-07 闪耀现实(无锡)科技有限公司 光学设备
CN113406803B (zh) * 2021-06-30 2022-06-21 歌尔光学科技有限公司 Ar眼镜
CN113568176B (zh) * 2021-07-31 2023-05-16 温州职业技术学院 一种多功能舒适型vr一体机
WO2023049049A1 (en) * 2021-09-23 2023-03-30 Callisto Design Solutions Llc Sealed components for heat management and grounding
CN114152964A (zh) * 2021-10-30 2022-03-08 安徽省公路工程建设监理有限责任公司 一种北斗定位户外设施
CN115480404A (zh) * 2022-09-20 2022-12-16 武汉华星光电技术有限公司 显示设备
TWI821090B (zh) * 2022-12-30 2023-11-01 宏達國際電子股份有限公司 頭戴式顯示裝置與變焦透鏡模組

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105204165A (zh) * 2015-11-03 2015-12-30 上海乐相科技有限公司 一种头戴式虚拟现实设备
CN205862013U (zh) * 2016-07-26 2017-01-04 杜晓红 一种轻型vr视力保护眼镜系统
CN205880375U (zh) * 2016-07-27 2017-01-11 缑威 一种新型头戴显示设备
CN106990538A (zh) * 2017-05-27 2017-07-28 深圳多哚新技术有限责任公司 一种虚拟现实设备的脸托配件
CN107015340A (zh) * 2017-05-27 2017-08-04 深圳多哚新技术有限责任公司 光学镜片调焦组件
CN107015367A (zh) * 2017-05-27 2017-08-04 深圳多哚新技术有限责任公司 一种虚拟现实设备
CN107065194A (zh) * 2017-05-27 2017-08-18 深圳多哚新技术有限责任公司 一种虚拟现实设备的遮光组件
CN107526169A (zh) * 2017-05-27 2017-12-29 深圳多哚新技术有限责任公司 一种虚拟现实设备

Family Cites Families (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0350522A1 (en) * 1986-10-23 1990-01-17 Lighting Technology Incorporated Heat-dissipating light fixture for use with tungsten-halogen lamps
CN2049780U (zh) * 1989-03-06 1989-12-20 胡宁生 防近视阅读眼镜
JPH08248294A (ja) * 1995-03-09 1996-09-27 Sony Corp レンズ鏡筒
CN2256540Y (zh) * 1995-11-06 1997-06-18 卢桂彬 一种符合人体工学的眼镜
CN2341168Y (zh) * 1998-06-09 1999-09-29 熊思尧 一种眼镜的软鼻垫
CN2590310Y (zh) * 2002-12-31 2003-12-03 玉晶光电(厦门)有限公司 背投影电视镜头调节装置
JP4497817B2 (ja) * 2003-01-28 2010-07-07 キヤノン株式会社 鏡筒機構およびカメラ
US20050012890A1 (en) * 2003-07-14 2005-01-20 Anthony Iacobucci Universal glare and safety shield
JP4660141B2 (ja) * 2004-08-20 2011-03-30 日東光学株式会社 ズームレンズ鏡筒
CN2764077Y (zh) * 2004-12-04 2006-03-08 鸿富锦精密工业(深圳)有限公司 具数码相机模组的移动电话
CN1847899A (zh) * 2005-04-12 2006-10-18 亚洲光学股份有限公司 具凸轮机构的筒件组及镜头组
US20070058374A1 (en) * 2005-05-23 2007-03-15 Genlyte Thomas Group, Llc Luminaire Reflector Having Attachment Ring
CN2938154Y (zh) * 2006-08-17 2007-08-22 欧以良 头佩式眼镜显示器
CN200956433Y (zh) * 2006-10-20 2007-10-03 联想(北京)有限公司 防止电源线意外脱落结构
CN201247347Y (zh) * 2008-06-10 2009-05-27 上海北大方正科技电脑系统有限公司 一种头戴式显示器
CN101650513B (zh) * 2008-08-14 2011-03-23 鸿富锦精密工业(深圳)有限公司 投影机
CN101661152B (zh) * 2008-08-27 2011-08-24 鸿富锦精密工业(深圳)有限公司 调焦组合及具该调焦组合的投影机
TWI392904B (zh) * 2008-09-12 2013-04-11 Hon Hai Prec Ind Co Ltd 調焦組合及具該調焦組合之投影機
CN101369104B (zh) * 2008-10-08 2010-09-15 上海微电子装备有限公司 光学元件微调整装置
JP5197397B2 (ja) * 2009-01-14 2013-05-15 オリンパス株式会社 参照レンズユニットの取付構造および方法
JP2010262226A (ja) * 2009-05-11 2010-11-18 Fujifilm Corp レンズ鏡筒
CN201425660Y (zh) * 2009-05-31 2010-03-17 厦门全圣实业有限公司 弹性镂空镜腿
CN201656164U (zh) * 2010-04-13 2010-11-24 英华达(上海)科技有限公司 一种印刷电路板上跳线的固定装置
KR101285602B1 (ko) * 2011-02-15 2013-07-12 서운수 자동 차광 고글
CN202171678U (zh) * 2011-08-20 2012-03-21 福建福光数码科技有限公司 用于智能交通系统的高分辨率变焦距镜头
CN103065830B (zh) * 2011-10-18 2016-04-13 海洋王照明科技股份有限公司 信号灯开关保护套及信号灯
FR2985323B1 (fr) * 2011-12-30 2014-01-31 Thales Sa Equipement de vision en realite augmentee comportant un masque
CN202720400U (zh) * 2012-06-08 2013-02-06 刘蓉君 运动眼镜内衬件安装结构
CN203217191U (zh) * 2012-09-03 2013-09-25 陈建男 一种新型眼镜框
CN203025418U (zh) * 2012-12-18 2013-06-26 广东长虹电子有限公司 一种电视观看镜
CN203191616U (zh) * 2013-01-17 2013-09-11 深圳迈瑞生物医疗电子股份有限公司 光学调节架
KR20140093590A (ko) * 2013-01-18 2014-07-28 주식회사 오토스윙 유해 섬광 차단 눈부심방지 전자 보안경
US9033726B2 (en) * 2013-03-13 2015-05-19 Exelis, Inc. Systems for establishing electrical interconnections for helmet-mounted devices
JP2014215345A (ja) * 2013-04-23 2014-11-17 キヤノン株式会社 レンズ鏡筒
CN103412389B (zh) * 2013-07-26 2016-05-04 南昌欧菲光电技术有限公司 镜头模组及应用该镜头模组的电子设备
JP6094423B2 (ja) * 2013-08-09 2017-03-15 ミツミ電機株式会社 レンズホルダ駆動装置、カメラモジュール、およびカメラ付き携帯端末
JP2015050543A (ja) * 2013-08-30 2015-03-16 ソニー株式会社 撮像装置
GB2522401A (en) * 2013-11-07 2015-07-29 Liviu Berechet Hexa lens accessory that allows the use of a mobile device as a stereoscopic virtual reality eyewear device
CN204155007U (zh) * 2014-03-10 2015-02-11 何照云 一种眼镜
WO2015138266A1 (en) * 2014-03-10 2015-09-17 Ion Virtual Technology Corporation Modular and convertible virtual reality headset system
DE202014010406U1 (de) * 2014-06-05 2015-06-30 Carl Zeiss Ag Anzeigevorrichtung
CN203982010U (zh) * 2014-07-15 2014-12-03 温州市鹿城大宗光学眼镜有限公司 一种带有数据线的眼镜
JP6529335B2 (ja) * 2014-07-24 2019-06-12 矢崎総業株式会社 車両用表示装置及び車両
JP6277916B2 (ja) * 2014-09-12 2018-02-14 ブラザー工業株式会社 ヘッドマウントディスプレイおよび装着具
CN204065530U (zh) * 2014-10-30 2014-12-31 成都贝思达光电科技有限公司 一种简易的视频眼镜视度调节机构
US20160217613A1 (en) * 2015-01-28 2016-07-28 Oculus Vr, Llc Extendable eyecups for a virtual reality headset
US9927618B2 (en) * 2015-04-07 2018-03-27 Oculus Vr, Llc Strap systems for head-mounted displays
CN104808341A (zh) * 2015-04-09 2015-07-29 青岛歌尔声学科技有限公司 一种头戴式虚拟现实设备
CN104793452B (zh) * 2015-04-29 2016-08-17 北京小鸟看看科技有限公司 一种微型投影设备
CN204903860U (zh) * 2015-07-14 2015-12-23 上海旗娱网络科技有限公司 一种基于螺纹调焦的3d虚拟现实眼镜
CN106054403B (zh) * 2015-08-14 2020-01-07 丛繁滋 在正视眼方向具有动态轻度离焦变焦功能的眼镜
EP3360001B1 (en) * 2015-10-08 2023-11-15 LG Electronics Inc. Head mount display device
CN205067869U (zh) * 2015-10-26 2016-03-02 东莞伟信电子有限公司 一种可调焦距的近眼显示光学系统
CN205644409U (zh) * 2016-01-12 2016-10-12 深圳多哚新技术有限责任公司 一种虚拟现实设备
CN105445939B (zh) * 2016-01-12 2019-06-14 深圳多哚新技术有限责任公司 一种虚拟现实眼镜的pcb支架结构
CN205374879U (zh) * 2016-01-28 2016-07-06 深圳云院线科技有限公司 镜腿安装结构和虚拟眼镜
TWM522362U (zh) * 2016-02-04 2016-05-21 Baso Prec Optics Ltd 改善鏡頭移轉傾斜之結構
CN205406862U (zh) * 2016-02-15 2016-07-27 太仓市科翔电子有限公司 用于固定数据线的扣式磁环外壳
CN205656366U (zh) * 2016-02-15 2016-10-19 深圳市看见智能科技有限公司 镜梁可过线的智能眼镜
CN205507253U (zh) * 2016-03-24 2016-08-24 康智钦 一种改良式3d虚拟现实眼镜
CN205594226U (zh) * 2016-04-25 2016-09-21 深圳市金格亚美科技有限公司 虚拟现实眼镜
CN205562990U (zh) * 2016-04-29 2016-09-07 施权峰 一种新型眼镜架结构
CN205750134U (zh) * 2016-06-29 2016-11-30 嘉兴玄视信息科技有限公司 一种虚拟现实视镜透气结构
CN206057680U (zh) * 2016-07-01 2017-03-29 诚迈科技(南京)股份有限公司 一种虚拟现实vr眼镜
CN205862012U (zh) * 2016-07-21 2017-01-04 深圳市维尚境界显示技术有限公司 便携式折叠vr眼镜
CN205900977U (zh) * 2016-07-29 2017-01-18 于东兴 旋转式防绕线连接装置
CN206147176U (zh) * 2016-07-29 2017-05-03 北京海鲸科技有限公司 一种调焦眼镜
CN106066539B (zh) * 2016-08-03 2019-03-19 深圳酷酷科技有限公司 光学模组及头戴式显示设备
CN205958822U (zh) * 2016-08-03 2017-02-15 深圳酷酷科技有限公司 镜筒机构
CN205958857U (zh) * 2016-08-30 2017-02-15 重庆蓝莱科技有限公司 一种可更换防护垫的虚拟现实眼镜
CN106455419A (zh) * 2016-09-05 2017-02-22 珠海格力电器股份有限公司 一种电子设备散热结构
CN206193374U (zh) * 2016-09-22 2017-05-24 前海乐檬科技(深圳)有限公司 一种智能眼镜
CN206074917U (zh) * 2016-09-26 2017-04-05 深圳市大疆创新科技有限公司 调节机构及具有该调节机构的观影装置
CN106291984A (zh) * 2016-10-11 2017-01-04 广州初曲科技有限公司 一种基于眼电传感控制的运动监测智能眼镜
CN206074918U (zh) * 2016-10-20 2017-04-05 哈尔滨哲思科技发展有限公司 防疲劳的虚拟现实头盔
CN206193360U (zh) * 2016-11-17 2017-05-24 厦门轻居科技有限公司 一种头戴式vr设备
CN206193378U (zh) * 2016-11-21 2017-05-24 北京水镜先生科技有限公司 一种可更换镜腿的连接结构以及带有该结构的眼镜
CN106526855A (zh) * 2016-11-30 2017-03-22 深圳多哚新技术有限责任公司 一种vr眼镜的光学组件安装结构及调节方法
CN206442654U (zh) * 2017-01-24 2017-08-25 东莞市鸿艺电子有限公司 一种散热组件
CN207625007U (zh) * 2017-05-27 2018-07-17 深圳多哚新技术有限责任公司 数据线固定件和虚拟现实设备组件
CN207318839U (zh) * 2017-05-27 2018-05-04 深圳多哚新技术有限责任公司 一种虚拟现实设备的脸托配件
CN207318837U (zh) * 2017-05-27 2018-05-04 深圳多哚新技术有限责任公司 一种虚拟现实设备的遮光组件
CN206848550U (zh) * 2017-05-27 2018-01-05 深圳多哚新技术有限责任公司 光学镜片调焦组件
CN207867133U (zh) * 2017-09-11 2018-09-14 深圳多哚新技术有限责任公司 一种虚拟现实设备
CN207318848U (zh) * 2017-09-11 2018-05-04 深圳多哚新技术有限责任公司 一种虚拟现实设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105204165A (zh) * 2015-11-03 2015-12-30 上海乐相科技有限公司 一种头戴式虚拟现实设备
CN205862013U (zh) * 2016-07-26 2017-01-04 杜晓红 一种轻型vr视力保护眼镜系统
CN205880375U (zh) * 2016-07-27 2017-01-11 缑威 一种新型头戴显示设备
CN106990538A (zh) * 2017-05-27 2017-07-28 深圳多哚新技术有限责任公司 一种虚拟现实设备的脸托配件
CN107015340A (zh) * 2017-05-27 2017-08-04 深圳多哚新技术有限责任公司 光学镜片调焦组件
CN107015367A (zh) * 2017-05-27 2017-08-04 深圳多哚新技术有限责任公司 一种虚拟现实设备
CN107065194A (zh) * 2017-05-27 2017-08-18 深圳多哚新技术有限责任公司 一种虚拟现实设备的遮光组件
CN107526169A (zh) * 2017-05-27 2017-12-29 深圳多哚新技术有限责任公司 一种虚拟现实设备

Also Published As

Publication number Publication date
CN107577048B (zh) 2022-08-09
CN107526168B (zh) 2020-11-10
CN107643598A (zh) 2018-01-30
CN107462995B (zh) 2020-06-19
CN107577051B (zh) 2020-05-15
CN107526169B (zh) 2020-11-10
CN107462996A (zh) 2017-12-12
CN107577026A (zh) 2018-01-12
CN107577051A (zh) 2018-01-12
CN107526172B (zh) 2020-06-19
WO2018219237A1 (zh) 2018-12-06
CN107577050B (zh) 2020-05-15
WO2018219244A1 (zh) 2018-12-06
CN107526172A (zh) 2017-12-29
CN107577047A (zh) 2018-01-12
WO2018219239A1 (zh) 2018-12-06
CN107367844A (zh) 2017-11-21
WO2018219241A1 (zh) 2018-12-06
CN107643598B (zh) 2020-03-27
CN107526171A (zh) 2017-12-29
CN107577049A (zh) 2018-01-12
CN107367843A (zh) 2017-11-21
CN107462996B (zh) 2021-04-27
WO2018219245A1 (zh) 2018-12-06
CN107577026B (zh) 2020-12-01
WO2018219240A1 (zh) 2018-12-06
CN107526170A (zh) 2017-12-29
CN107577048A (zh) 2018-01-12
CN107577050A (zh) 2018-01-12
CN107703628B (zh) 2020-01-10
CN107367844B (zh) 2020-05-19
WO2018219238A1 (zh) 2018-12-06
CN107367843B (zh) 2020-05-19
CN107703628A (zh) 2018-02-16
CN107462995A (zh) 2017-12-12
CN107577047B (zh) 2020-12-29
CN107577049B (zh) 2020-06-23
WO2018219242A1 (zh) 2018-12-06
CN107526169A (zh) 2017-12-29
CN107526168A (zh) 2017-12-29

Similar Documents

Publication Publication Date Title
WO2018219243A1 (zh) 一种虚拟现实设备
US9766482B2 (en) Wearable device with input and output structures
TWI575252B (zh) 具有輸入及輸出結構之可戴式裝置
US9128284B2 (en) Device mountable lens component
WO2019001575A1 (zh) 可穿戴显示器
JP7277099B2 (ja) ヘッドマウントディスプレイ、減光部材
WO2018049621A1 (zh) 头戴式电子设备及其显示模组
CN207318848U (zh) 一种虚拟现实设备
CN207676037U (zh) 一种虚拟现实设备
WO2018049620A1 (zh) 头戴式电子设备及其显示模组
CN208239725U (zh) 一种虚拟现实设备
KR20240014414A (ko) 렌즈 배럴을 포함하는 웨어러블 전자 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18808821

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08/05/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18808821

Country of ref document: EP

Kind code of ref document: A1