WO2018214257A1 - 封装薄膜及其制作方法与oled面板的封装方法 - Google Patents

封装薄膜及其制作方法与oled面板的封装方法 Download PDF

Info

Publication number
WO2018214257A1
WO2018214257A1 PCT/CN2017/092875 CN2017092875W WO2018214257A1 WO 2018214257 A1 WO2018214257 A1 WO 2018214257A1 CN 2017092875 W CN2017092875 W CN 2017092875W WO 2018214257 A1 WO2018214257 A1 WO 2018214257A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
organic buffer
substrate
buffer layer
Prior art date
Application number
PCT/CN2017/092875
Other languages
English (en)
French (fr)
Inventor
李文杰
李金川
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US15/742,526 priority Critical patent/US10840475B2/en
Publication of WO2018214257A1 publication Critical patent/WO2018214257A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8722Peripheral sealing arrangements, e.g. adhesives, sealants
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • H10K50/8445Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/846Passivation; Containers; Encapsulations comprising getter material or desiccants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • H10K59/8731Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B19/00Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica
    • B32B19/04Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica next to another layer of the same or of a different material
    • B32B19/045Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/42Alternating layers, e.g. ABAB(C), AABBAABB(C)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2313/00Elements other than metals
    • B32B2313/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2315/00Other materials containing non-metallic inorganic compounds not provided for in groups B32B2311/00 - B32B2313/04
    • B32B2315/10Mica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • B32B9/007Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile comprising carbon, e.g. graphite, composite carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/045Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/874Passivation; Containers; Encapsulations including getter material or desiccant
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/80Manufacture or treatment specially adapted for the organic devices covered by this subclass using temporary substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates

Definitions

  • the present invention relates to the field of flat panel display technologies, and in particular, to a package film, a method for fabricating the same, and a method for packaging an OLED panel.
  • OLED Organic Light Emitting Display
  • OLED has self-illumination, low driving voltage, high luminous efficiency, short response time, high definition and contrast ratio, near 180° viewing angle, wide temperature range, and flexible display.
  • a large-area full-color display and many other advantages have been recognized by the industry as the most promising display device.
  • OLED display technology is different from traditional liquid crystal display technology. It does not require a backlight. It uses a very thin coating of organic materials and a glass substrate. When there is current, these organic materials will emit light. However, since organic materials are easily reacted with water vapor or oxygen, as an organic material-based display device, the OLED display has a very high requirement for packaging, and therefore, the sealing of the inside of the device is improved by the packaging of the OLED device, and the external environment is isolated as much as possible. It is essential for stable illumination of OLED devices.
  • the package of the OLED device is mainly packaged on a rigid package substrate (such as glass or metal), but the method is not suitable for the flexible device. Therefore, there is also a technical solution for packaging the OLED device by the laminated film.
  • the thin film encapsulation method generally forms two barrier layers with excellent water resistance as inorganic materials on the OLED device on the substrate, and forms a flexible buffer layer of organic material between the two barrier layers. (buffer layer).
  • a thin film packaged OLED display comprising a substrate 100, an OLED device 200 disposed on the substrate 100, and a thin film encapsulation layer 300 formed on the OLED device 200, wherein the thin film package
  • the layer 300 includes a first inorganic material barrier layer 310 formed on the OLED device 200, an organic material buffer layer 320 formed on the first inorganic material barrier layer 310, and a second inorganic material barrier formed on the organic material buffer layer 320.
  • Layer 330 is a thin film packaged OLED display, comprising a substrate 100, an OLED device 200 disposed on the substrate 100, and a thin film encapsulation layer 300 formed on the OLED device 200, wherein the thin film package
  • the layer 300 includes a first inorganic material barrier layer 310 formed on the OLED device 200, an organic material buffer layer 320 formed on the first inorganic material barrier layer 310, and a second inorganic material barrier formed on the organic material buffer layer 320.
  • Layer 330 is a thin film packaged OLED display,
  • ALD atomic layer deposition
  • the object of the present invention is to provide a package film, the inorganic barrier layer is selected from one or more of a graphene film, a mica film, and a carbon nanotube film, thereby achieving high transmittance and high barrier of the package film. Sex, and high flexibility, while reducing the water-oxygen transmission rate of the device, it also reduces the thickness of the package film, making the device thinner and lighter, and can meet the packaging requirements of flexible OLED panels.
  • Another object of the present invention is to provide a method for fabricating a package film which has high transmittance, high barrier property, and high flexibility, and reduces the water vapor transmission rate of the device.
  • the thickness of the package film makes the device thin and light, and can meet the packaging requirements of flexible OLED panels.
  • Another object of the present invention is to provide a method for packaging an OLED panel.
  • the above-mentioned package film can reduce the thickness of the package film while reducing the water oxygen transmission rate of the device, so that the device is light and thin, and can satisfy the flexibility. Packaging requirements for OLED panels.
  • the present invention provides a package film comprising a polymer substrate, at least two organic buffer layers, and at least two inorganic barrier layers;
  • a single layer of organic buffer layer and a single layer of inorganic barrier layer are sequentially stacked on the polymer substrate;
  • Each of the organic buffer layers is provided with a water absorbing layer and a water blocking layer in sequence from the inside to the outside;
  • the inorganic barrier layer is selected from one or more of a graphene film, a mica film, and a carbon nanotube film; the organic buffer layer is formed of a material having a viscosity, and the inorganic barrier layer passes through an organic buffer layer Sticky to the polymer substrate.
  • the organic buffer layer is formed by a solid film or glue
  • the solid film is a pyrolysis tape or a PSA type film, and the material of the glue includes one or more of PMMA, PS, PDMS, and PVA.
  • the material of the water absorbing layer comprises calcium oxide
  • the material of the water blocking layer is PDMS glue or DAM glue.
  • the material of the polymer substrate is PI, PEN, PET, PBT, PMMA, PS, COP, or FRT.
  • the water absorbing layer and the water blocking layer are both formed by nozzle printing.
  • the organic buffer layer has a thickness of 500 to 9000 nm
  • the inorganic barrier layer has a thickness of 100 to 5000 nm
  • the thickness of the water absorbing layer is 100 to 5000 nm;
  • the thickness of the water blocking layer is the same as the thickness of the water absorbing layer.
  • the invention also provides a method for manufacturing a package film, comprising the following steps:
  • Step S1 providing a polymer substrate
  • Step S2 forming a layer of a viscous organic buffer layer on the polymer substrate, forming a ring of water absorbing layer disposed in the outer periphery of the organic buffer layer, and a ring of water blocking layer;
  • Step S3 forming an inorganic barrier film, adhering the inorganic barrier film to the polymer substrate by using the viscosity of the organic buffer layer, and forming on the organic buffer layer, the water absorption layer and the water blocking layer Inorganic barrier layer;
  • Step S4 repeating the above steps S2 and S3 at least once to obtain the package film.
  • the organic buffer layer is formed by a solid adhesive film, and the solid adhesive film is a thermal release tape or a PSA type adhesive film, and the organic buffer layer is formed by direct filming; or
  • the organic buffer layer is formed by a glue, and the material of the glue includes one or more of PMMA, PS, PDMS, and PVA, and the organic buffer layer is formed by coating, and the coating method is Jet dispensing, spin coating, screen printing, or inkjet printing.
  • the invention also provides a method for packaging an OLED panel, comprising the following steps:
  • Step S100 providing a substrate, forming an OLED device on the substrate, to obtain an OLED substrate;
  • Step S200 applying a filling glue on the base substrate and the OLED device to form a filling layer, and placing a circle of DAM glue on the substrate substrate on the periphery of the OLED device;
  • Step S300 providing a package film as described above, and aligning and bonding the package film and the OLED substrate.
  • the polymer substrate of the package film is located at the uppermost layer on the OLED device, and the lowermost inorganic barrier layer passes.
  • a filler layer or a double-sided adhesive layer spaced apart from the OLED device;
  • the DAM adhesive on the periphery of the OLED device is subjected to ultraviolet light irradiation to be cured to obtain a sealant, or the package film is adhered to the OLED substrate through the double-sided adhesive layer, thereby completing the packaging of the OLED panel.
  • the encapsulating film of the present invention comprises a polymer substrate, at least two organic buffer layers, and at least two inorganic barrier layers; wherein the single-layer organic buffer layer and the single-layer inorganic barrier layer are alternately replaced Laminatingly disposed on the polymer substrate; each of the organic buffer layer is provided with a water absorbing layer and a water blocking layer from the inside to the outside; the inorganic barrier layer is selected from the group consisting of a graphene film, a mica film, and One or more of the carbon nanotube films; the organic buffer layer has Forming a viscous material that adheres to the polymer substrate by the viscosity of the organic buffer layer; the present invention utilizes a graphene film, a mica film, and a carbon nanotube film to have excellent optical properties and high The compactness realizes the excellent performance of high transmittance, high barrier property, and high flexibility of the package film, and reduces the thickness of the package film while reducing the water-oxygen transmittance of the device
  • the method for fabricating the package film of the invention has high transmittance, high barrier property and high flexibility, and reduces the thickness of the package film while reducing the water-oxygen transmittance of the device, so that the device Lightweight and thin, and can meet the packaging requirements of flexible OLED panels.
  • the packaging method of the OLED panel of the invention adopts the above-mentioned package film, which reduces the thickness of the package film while reducing the water-oxygen transmittance of the device, makes the device thin and light, and satisfies the packaging requirements of the flexible OLED panel, and overcomes the problem.
  • the shortcomings of traditional thin film packaging can effectively protect the device.
  • FIG. 1 is a schematic structural view of a conventional thin film packaged OLED display
  • FIG. 2 is a schematic structural view of a package film of the present invention
  • FIG. 3 is a schematic flow chart of a method for fabricating a package film of the present invention.
  • FIG. 4 is a schematic view showing a step S2 of a method for fabricating a package film of the present invention
  • 5-7 is a schematic view showing a step S3 of a preferred embodiment of the method for fabricating a package film of the present invention.
  • FIG. 8 is a schematic flow chart of a method for packaging an OLED panel according to the present invention.
  • Figure 9 is a schematic view of step S300 of Figure 8.
  • FIG. 10 is a schematic flow chart of another method for packaging an OLED panel according to the present invention.
  • FIG 11 is a schematic view of step S300' in Figure 10.
  • the present invention firstly provides a package film comprising a polymer substrate 11, at least two organic buffer layers 12, and at least two inorganic barrier layers 13;
  • a single layer of the organic buffer layer 12 and a single layer of inorganic barrier layer 13 are sequentially stacked on the polymer substrate 11;
  • Each of the organic buffer layer 12 is provided with a ring of water absorbing layer 14 and a water blocking layer 15 from the inside to the outside;
  • the inorganic barrier layer 13 is selected from one or more of a graphene film, a mica film, and a carbon nanotube film; the organic buffer layer 12 is formed of a material having a viscosity, and the inorganic barrier layer 13 is organic The buffer layer 12 is adhered to the polymer substrate 11 by the adhesiveness.
  • the organic buffer layer 12 may be formed by a solid adhesive film or a liquid glue; wherein the solid adhesive film may be a commercial pyro tape, or a pressure sensitive (PSA) type adhesive film,
  • the material of the glue includes one or more of polymers such as polymethyl methacrylate (PMMA), polystyrene (PS), polydimethylsiloxane (PDMS), and polyvinyl alcohol (PVA).
  • the material of the water absorbing layer 14 is mainly calcium oxide, and its water absorption capacity can reach 5 to 10%.
  • the material of the water blocking layer 15 is an organic polymer having high transmittance and hydrophobic properties, such as PDMS glue or DAM glue (a commercially available crepe rubber).
  • the transmittance of the polymer substrate 11 can reach >98% in the visible range;
  • the material of the polymer substrate 11 is a hydrocarbon, ester, or amide polymer such as a polyacyl group.
  • Imine (PI) polyethylene naphthalate (PEN), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), PMMA, PS, cyclic olefin Polymer (COP), or thermoplastic composite (FRT).
  • the water absorbing layer 14 and the water blocking layer 15 are both formed by nozzle printing.
  • the organic buffer layer 12 has a thickness of 500 to 9000 nm.
  • the inorganic barrier layer 13 has a thickness of 100 to 5000 nm.
  • the water absorbing layer 14 has a thickness of 100 to 5000 nm.
  • the water blocking layer 15 has a thickness of 100 to 5000 nm, which is the same as the thickness of the water absorbing layer 14.
  • the encapsulating film includes 2-5 organic buffer layers 12 and 2-5 inorganic barrier layers 13.
  • the encapsulating film of the present invention utilizes a graphene film, a mica film, and a carbon nanotube film to have an excellent optical property and high density, and a graphene film, a mica film, or a carbon nanotube film is introduced as the inorganic barrier layer 13, Excellent packaging film with high transmittance, high barrier properties, and high flexibility
  • the performance while reducing the water-oxygen transmission rate of the device, also reduces the thickness of the package film, thereby making the device thin and light, and can meet the packaging requirements of the flexible OLED panel; in addition, by setting a periphery of each organic buffer layer 12
  • the water absorbing layer 14 and the water blocking layer 15 reinforce the structure of the packaging film from the lateral direction, thereby further improving the water and oxygen barrier capability.
  • a preferred embodiment of the encapsulating film of the present invention comprises three organic buffer layers 12 and three inorganic barrier layers 13, wherein the middlemost layer of the three inorganic barrier layers 13 is a mica film, and the other two layers are Graphene film.
  • the present invention further provides a method for fabricating a package film, comprising the following steps:
  • Step S1 provides a polymer substrate 11.
  • the transmittance of the polymer substrate 11 can reach >98% in the visible range.
  • the material of the polymer substrate 11 is a hydrocarbon, ester, or amide high polymer such as PI, PEN, PET, PBT, PMMA, PS, COP, or FRT.
  • Step S2 as shown in FIG. 4, a viscous organic buffer layer 12 is formed on the polymer substrate 11, and a ring of water absorbing layer 14 disposed in order from the inside to the outside is formed on the periphery of the organic buffer layer 12, and A circle of water blocking layer 15 is provided.
  • the organic buffer layer 12 is formed by a solid film, and the solid film is a PSA film, or the PSA film can be formed by direct filming; or
  • the organic buffer layer 12 is formed by a liquid glue, and the material of the glue includes one or more of PMMA, PS, PDMS, and PVA, and the organic buffer layer 12 can be formed by coating.
  • the coating method is Jet dispensing, Spin coating, Screen printing, or Ink jet printing.
  • the material of the water absorbing layer 14 is mainly calcium oxide, and its water absorption capacity can reach 5 to 10%.
  • the material of the water blocking layer 15 is an organic polymer having high transmittance and hydrophobic properties, such as PDMS glue or DAM glue.
  • the water absorbing layer 14 and the water blocking layer 15 are formed by nozzle printing.
  • the organic buffer layer 12 has a thickness of 500 to 9000 nm.
  • the water absorbing layer 14 has a thickness of 100 to 5000 nm.
  • the water blocking layer 15 has a thickness of 100 to 5000 nm, which is the same as the thickness of the water absorbing layer 14.
  • the step S2 further includes pre-curing the organic buffer layer 12, and the specific manner of pre-curing the organic buffer layer 12 is UV curing or thermal curing; further comprising: the water absorbing layer 14 and the resistor
  • the water layer 15 is pre-cured, and the water absorbing layer 14 and the water blocking layer 15 are pre-cured.
  • the specific mode is UV curing, or thermal curing, preferably thermal curing.
  • Step S3 forming an inorganic barrier film, and adhering the inorganic barrier film to the polymer substrate 11 by using the viscosity of the organic buffer layer 12, in the organic buffer layer 12, the water absorption layer 14 and the resistor
  • An inorganic barrier layer 13 is formed on the water layer 15.
  • the inorganic barrier layer 13 has a thickness of 100 to 5000 nm.
  • Step S4 repeating the above steps S2 and S3 at least once to obtain the package film.
  • step S2 and step S31-4 are repeated in the step S4 to obtain the package film.
  • the polymer substrate 11 provided in the step S1 is a film of a PET material.
  • the organic buffer layer 12 formed in the step S2 is a PDMS glue, and the step S2 is specifically: coating a PDMS prepolymerization solution on the polymer substrate 11 to form an organic buffer layer 12, in the organic A water blocking layer 15 is formed on the periphery of the buffer layer 12, a water absorbing layer 14 is formed between the organic buffer layer 12 and the water blocking layer 15, and then the organic buffer layer 12, the water absorbing layer 14, and the water blocking layer 15 are preliminarily Curing, the PDMS prepolymerization solution is solidified, at which time the organic buffer layer 12 appears as a transparent elastomer with a certain viscosity on the surface.
  • the inorganic barrier layer 13 formed in the step S3 is a graphene film, and the specific process of the step S3 is as follows:
  • a graphene film 13' is produced: a metal nickel plate 80 is used as a substrate, and after being cleaned, it is placed in a tube furnace, and a methane having a flow ratio of 1.1:1 to 1.5:1 is introduced.
  • the mixed gas of hydrogen is argon gas as the shielding gas, the flow rate is 100-200sccm; when the temperature reaches 900-1000 °C, the methane and hydrogen flow valve is opened, the reaction starts, the reaction time is set to 90-120 s, and the cooling is finished.
  • the sample was taken out to form a graphene film 13' on the metallic nickel plate 80.
  • the polymer substrate 11 subjected to the step S2 is attached to the metallic nickel plate 80, and the viscous organic buffer layer 12 is in close contact with the graphene film 13'.
  • the whole process is performed under nitrogen. Conducted in an atmosphere.
  • the polymer substrate 11 is quickly peeled off from the metallic nickel plate 80, and the graphene film 13' is attached to the polymer substrate 11 through the organic buffer layer 12 to obtain an inorganic barrier layer 13. .
  • the method for fabricating the encapsulating film of the invention has simple operation, and the prepared encapsulating film has high transmittance, high barrier property, and high flexibility, and reduces the thickness of the encapsulating film while reducing the water oxygen transmission rate of the device.
  • the device is light and thin, and can meet the packaging requirements of flexible OLED panels.
  • the package film of the present invention can also easily realize the structure of some hybrid package, for example, combined with a Dam&Fill package or a face sealant package, and the applicability of the package film can be seen. Wide, and can be highly selective. Therefore, based on the above As shown in FIG. 8 , the present invention further provides a method for packaging an OLED panel. The method comprises the following steps: combining the package film and the Dam & Fill package to package the OLED panel.
  • Step S100 providing a substrate substrate 20, forming an OLED device 30 on the substrate substrate 20, and obtaining an OLED substrate.
  • Step S200 applying a filling glue on the base substrate 20 and the OLED device 30 to form a filling layer 41 on which a circle of DAM glue is disposed on the periphery of the OLED device 30.
  • Step S300 as shown in FIG. 9, the package film 10 is provided as described above, and the package film 10 and the OLED substrate are paired and bonded. At this time, the polymer substrate 11 of the package film 10 is on the OLED device 30. Located in the uppermost layer, the lowermost inorganic barrier layer 13 is spaced apart from the OLED device 30 by the filling layer 41, and the DAM glue on the periphery of the OLED device 30 is irradiated with ultraviolet light to be cured to obtain a sealant 42. OLED panel packaging.
  • the structure of the encapsulating film 10 has been previously described, and details are not described herein again.
  • the present invention further provides a method for packaging an OLED panel, which combines the above-mentioned package film with a face sealant package to package the OLED panel, and specifically includes the following steps:
  • step S100' the base substrate 20 is provided, and the OLED device 30 is formed on the base substrate 20 to obtain an OLED substrate.
  • Step S200' forming a double-sided adhesive layer 40 on the base substrate 20 and the OLED device 30.
  • Step S300 ′ as shown in FIG. 11 , the package film 10 as described above is provided, and the package film 10 and the OLED substrate are paired and bonded. At this time, the polymer substrate 11 of the package film 10 is in the OLED device 30 . The uppermost layer, the lowermost inorganic barrier layer 13 is spaced apart from the OLED device 30 by a double-sided adhesive layer 40, and the package film 10 is adhered to the OLED substrate through the double-sided adhesive layer 40, thereby completing the OLED panel.
  • the structure of the encapsulating film 10 has been previously described, and details are not described herein again.
  • the package film of the present invention comprises a polymer substrate, at least two organic buffer layers, and at least two inorganic barrier layers; wherein, the single-layer organic buffer layer and the single-layer inorganic barrier layer are alternately laminated in this order.
  • each organic buffer layer is provided with a water absorbing layer and a water blocking layer from the inside to the outside;
  • the inorganic barrier layer is selected from the group consisting of a graphene film, a mica film, and carbon.
  • the organic buffer layer is formed of a material having a viscosity, the inorganic barrier layer being adhered to the polymer substrate by the viscosity of the organic buffer layer;
  • the present invention utilizes graphite Excellent optical properties and high properties of the olefin film, mica film, and carbon nanotube film. The compactness realizes the excellent performance of high transmittance, high barrier property, and high flexibility of the package film, and reduces the thickness of the package film while reducing the water-oxygen transmittance of the device, thereby making the device thin and light, and It can meet the packaging requirements of flexible OLED panels; in addition, by providing a ring of water absorbing layer and a ring of water blocking layer on the periphery of each organic buffer layer, the structure of the package film is strengthened from the lateral direction, thereby further improving the water and oxygen barrier.
  • the method for fabricating the package film of the invention has high transmittance, high barrier property and high flexibility, and reduces the thickness of the package film while reducing the water-oxygen transmittance of the device, so that the device Lightweight and thin, and can meet the packaging requirements of flexible OLED panels.
  • the packaging method of the OLED panel of the invention adopts the above-mentioned package film, which reduces the thickness of the package film while reducing the water-oxygen transmittance of the device, makes the device thin and light, and satisfies the packaging requirements of the flexible OLED panel, and overcomes the problem.
  • the shortcomings of traditional thin film packaging can effectively protect the device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)
  • Wrappers (AREA)

Abstract

一种封装薄膜及其制作方法与OLED面板的封装方法,其中封装薄膜,包括聚合物衬底(11)、至少两层有机缓冲层(12)、及至少两层无机阻挡层(13);其中,单层的有机缓冲层(12)和单层的无机阻挡层(13)依次交替层叠设置于所述聚合物衬底上(11);所述无机阻挡层(13)选自具有优异光学性能和高致密性的石墨烯膜、云母片膜、及碳纳米管膜中的一种或多种,实现了封装薄膜高透过率、高阻隔性、及高柔韧性的优良性能,在降低器件水氧透过率的同时也会减小封装薄膜的厚度,从而使得器件轻薄化,并可满足柔性OLED面板的封装要求;另外,每一有机缓冲层(12)外围由内向外依次设有一圈吸水层(14)、及一圈阻水层(15),从侧向对封装薄膜的结构进行加强,进一步提高了其水氧阻隔能力。

Description

封装薄膜及其制作方法与OLED面板的封装方法 技术领域
本发明涉及平板显示技术领域,尤其涉及一种封装薄膜及其制作方法与OLED面板的封装方法。
背景技术
有机发光二极管显示装置(Organic Light Emitting Display,OLED)具有自发光、驱动电压低、发光效率高、响应时间短、清晰度与对比度高、近180°视角、使用温度范围宽,可实现柔性显示与大面积全色显示等诸多优点,被业界公认为是最有发展潜力的显示装置。
OLED显示技术与传统的液晶显示技术不同,无需背光灯,采用非常薄的有机材料涂层和玻璃基板,当有电流通过时,这些有机材料就会发光。但是由于有机材料易与水汽或氧气反应,作为基于有机材料的显示设备,OLED显示屏对封装的要求非常高,因此,通过OLED器件的封装提高器件内部的密封性,尽可能的与外部环境隔离,对于OLED器件的稳定发光至关重要。
目前OLED器件的封装主要在硬质封装基板(如玻璃或金属)上通过封装胶封装,但是该方法并不适用于柔性器件,因此,也有技术方案通过叠层的薄膜对OLED器件进行封装,该薄膜封装方式一般是在基板上的OLED器件上方形成两层为无机材料的阻水性好的阻挡层(barrier layer),在两层阻挡层之间形成一层为有机材料的柔韧性好的缓冲层(buffer layer)。具体请参阅图1,为现有的一种薄膜封装的OLED显示器,包括基板100、设于基板100上的OLED器件200、形成于OLED器件200上的薄膜封装层300,其中,所述薄膜封装层300包括形成于OLED器件200上的第一无机材料阻挡层310、形成于第一无机材料阻挡层310上的有机材料缓冲层320、及形成于有机材料缓冲层320上的第二无机材料阻挡层330。
另外一种薄膜封装技术为原子层沉积技术(atomic layer deposition,ALD),采用ALD技术所制备的薄膜致密度高,缺陷少;但是整个制作过程需要真空环境,并且薄膜的生长速率很慢。另外,无机薄膜的柔韧性很差,以及在OLED上沉积薄膜时需要较低的温度来减小对发光材料的损伤。
对于柔性OLED器件的封装,商业化对于器件使用寿命和稳定性的要求为:水汽透过率小于10-6g/m2/day,氧气穿透率小于10-5cc/m2/day(1atm)。 因此封装制程在OLED器件制作中处于重要的位置,是影响产品良率的关键因素之一,如何采用便捷并且高效的手段来制备柔性OLED封装薄膜成为近阶段研究热点。金属薄膜封装可达到较低的水汽透过率,但是由于金属不透光,这也限制了其应用范围。
发明内容
本发明的目的在于提供一种封装薄膜,无机阻挡层选自石墨烯膜、云母片膜、及碳纳米管膜中的一种或多种,从而实现了封装薄膜的高透过率、高阻隔性、及高柔韧性,在降低器件水氧透过率的同时也会减小封装薄膜的厚度,使得器件轻薄化,并可满足柔性OLED面板的封装要求。
本发明的另一目的在于提供一种封装薄膜的制作方法,所制作的封装薄膜具有高透过率、高阻隔性、及高柔韧性,在降低器件水氧透过率的同时也会减小封装薄膜的厚度,使得器件轻薄化,并可满足柔性OLED面板的封装要求。
本发明的另一目的在于提供一种OLED面板的封装方法,采用上述的封装薄膜,在降低器件水氧透过率的同时也会减小封装薄膜的厚度,使得器件轻薄化,并可满足柔性OLED面板的封装要求。
为实现上述目的,本发明提供一种封装薄膜,包括聚合物衬底、至少两层有机缓冲层、及至少两层无机阻挡层;
其中,单层的有机缓冲层和单层的无机阻挡层依次交替层叠设置于所述聚合物衬底上;
每一有机缓冲层外围由内向外依次设有一圈吸水层、及一圈阻水层;
所述无机阻挡层选自石墨烯膜、云母片膜、及碳纳米管膜中的一种或多种;所述有机缓冲层由具有粘性的材料形成,所述无机阻挡层通过有机缓冲层的粘性而粘附于所述聚合物衬底上。
所述有机缓冲层由固体胶膜、或胶水所形成;
所述固体胶膜为热释胶带、或者PSA型胶膜,所述胶水的材料包括PMMA、PS、PDMS、及PVA中的一种或者多种。
所述吸水层的材料包括氧化钙;
所述阻水层的材料为PDMS胶、或DAM胶。
所述聚合物衬底的材料为PI、PEN、PET、PBT、PMMA、PS、COP、或FRT。
所述吸水层与所述阻水层均采用喷嘴打印的方式形成。
所述有机缓冲层的厚度为500~9000nm;
所述无机阻挡层的厚度为100~5000nm;
所述吸水层的厚度为100~5000nm;
所述阻水层的厚度与所述吸水层的厚度相同。
本发明还提供一种封装薄膜的制作方法,包括如下步骤:
步骤S1、提供聚合物衬底;
步骤S2、在所述聚合物衬底上形成一层具有粘性的有机缓冲层,在该有机缓冲层外围形成由内向外依次设置的一圈吸水层、及一圈阻水层;
步骤S3、形成一层无机阻挡膜,利用所述有机缓冲层的粘性将所述无机阻挡膜粘附在所述聚合物衬底上,在所述有机缓冲层、吸水层及阻水层上形成无机阻挡层;
步骤S4、重复上述步骤S2与步骤S3至少一次,得到所述封装薄膜。
所述步骤S2中,所述有机缓冲层由固体胶膜形成,所述固体胶膜为热释胶带、或者PSA型胶膜,所述有机缓冲层通过直接贴膜的方式形成;或者,
所述有机缓冲层由胶水所形成,所述胶水的材料包括PMMA、PS、PDMS、及PVA中的一种或者多种,所述有机缓冲层通过涂布的方式形成,该涂布的方式为喷射式点胶法、旋涂法、丝网印刷法、或喷墨打印法。
本发明还提供一种OLED面板的封装方法,包括如下步骤:
步骤S100、提供衬底基板,在所述衬底基板上形成OLED器件,得到OLED基板;
步骤S200、在所述衬底基板、及OLED器件上涂布填充胶,形成填充胶层,在所述衬底基板上于所述OLED器件外围设置一圈DAM胶;或者,
在所述衬底基板、及OLED器件上形成一层双面胶层;
步骤S300、提供如上所述的封装薄膜,将封装薄膜与所述OLED基板对组、贴合,此时,封装薄膜的聚合物衬底在OLED器件上位于最上层,最下层的无机阻挡层通过填充胶层或者双面胶层与所述OLED器件间隔开;
然后对所述OLED器件外围的DAM胶进行紫外光照射使其固化,得到框胶,或者所述封装薄膜通过该双面胶层粘附在OLED基板上,从而完成OLED面板的封装。
本发明的有益效果:本发明的封装薄膜,包括聚合物衬底、至少两层有机缓冲层、及至少两层无机阻挡层;其中,单层的有机缓冲层和单层的无机阻挡层依次交替层叠设置于所述聚合物衬底上;每一有机缓冲层外围由内向外依次设有一圈吸水层、及一圈阻水层;所述无机阻挡层选自石墨烯膜、云母片膜、及碳纳米管膜中的一种或多种;所述有机缓冲层由具有 粘性的材料形成,所述无机阻挡层通过有机缓冲层的粘性而粘附于所述聚合物衬底上;本发明利用石墨烯膜、云母片膜、及碳纳米管膜优异的光学性能和高致密性,实现了封装薄膜高透过率、高阻隔性、及高柔韧性的优良性能,在降低器件水氧透过率的同时也会减小封装薄膜的厚度,从而使得器件轻薄化,并可满足柔性OLED面板的封装要求;另外,通过在每一有机缓冲层外围设置一圈吸水层、及一圈阻水层,从侧向对封装薄膜的结构进行加强,进一步提高了其水氧阻隔能力。本发明的封装薄膜的制作方法,所制作的封装薄膜具有高透过率、高阻隔性、及高柔韧性,在降低器件水氧透过率的同时也会减小封装薄膜的厚度,使得器件轻薄化,并可满足柔性OLED面板的封装要求。本发明的OLED面板的封装方法,采用上述的封装薄膜,在降低器件水氧透过率的同时也会减小封装薄膜的厚度,使得器件轻薄化,并满足柔性OLED面板的封装要求,克服了传统薄膜封装的缺点,可以有效保护器件。
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其他有益效果显而易见。
附图中,
图1为现有一种薄膜封装的OLED显示器的结构示意图;
图2为本发明的封装薄膜的结构示意图;
图3为本发明的封装薄膜的制作方法的流程示意图;
图4为本发明的封装薄膜的制作方法的步骤S2的示意图;
图5-7为本发明的封装薄膜的制作方法一优选实施例的步骤S3的示意图;
图8为本发明的一种OLED面板的封装方法的流程示意图;
图9为图8中步骤S300的示意图;
图10为本发明的另一种OLED面板的封装方法的流程示意图;
图11为图10中步骤S300’的示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明 的优选实施例及其附图进行详细描述。
请参阅图2,本发明首先提供一种封装薄膜,包括聚合物衬底11、至少两层有机缓冲层12、及至少两层无机阻挡层13;
其中,单层的有机缓冲层12和单层的无机阻挡层13依次交替层叠设置于所述聚合物衬底11上;
每一有机缓冲层12外围由内向外依次设有一圈吸水层14、及一圈阻水层15;
所述无机阻挡层13选自石墨烯膜、云母片膜、及碳纳米管膜中的一种或多种;所述有机缓冲层12由具有粘性的材料形成,所述无机阻挡层13通过有机缓冲层12的粘性而粘附于所述聚合物衬底11上。
具体地,所述有机缓冲层12可以由固体胶膜、或液体的胶水所形成;其中,所述固体胶膜可以为商业化的热释胶带、或者压敏(PSA)型胶膜,所述胶水的材料包括聚甲基丙烯酸甲酯(PMMA)、聚苯乙烯(PS)、聚二甲基硅氧烷(PDMS)、及聚乙烯醇(PVA)等聚合物中的一种或者多种。
具体地,所述吸水层14的材料主要为氧化钙,其吸水能力可达到5~10%。
具体地,所述阻水层15的材料为透过率高并具有疏水性能的有机聚合物,比如PDMS胶、或DAM胶(市面上所售的围堰胶)。
具体地,所述聚合物衬底11的透过率在可见光范围内可达到>98%;所述聚合物衬底11的材料为烃类、酯类、或酰胺类高聚物,比如聚酰亚胺(PI)、聚萘二甲酸乙二醇酯(PEN)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、PMMA、PS、环烯烃聚合物(COP)、或热塑性复合材料(FRT)。
具体地,所述吸水层14与所述阻水层15均采用喷嘴打印(Nozzle printing)的方式形成。
具体地,所述有机缓冲层12的厚度为500~9000nm。
具体地,所述无机阻挡层13的厚度为100~5000nm。
具体地,所述吸水层14的厚度为厚度100~5000nm。
具体地,所述阻水层15的厚度为厚度100~5000nm,与所述吸水层14的厚度相同。
具体地,所述封装薄膜包括2-5层有机缓冲层12、及2-5层无机阻挡层13。
本发明的封装薄膜,利用石墨烯膜、云母片膜、及碳纳米管膜优异的光学性能和高致密性,通过引入石墨烯膜、云母片膜、或碳纳米管膜作为无机阻挡层13,实现了封装薄膜高透过率、高阻隔性、及高柔韧性的优良 性能,在降低器件水氧透过率的同时也会减小封装薄膜的厚度,从而使得器件轻薄化,并可满足柔性OLED面板的封装要求;另外,通过在每一有机缓冲层12外围设置一圈吸水层14、及一圈阻水层15,从侧向对封装薄膜的结构进行加强,进一步提高了其水氧阻隔能力。
本发明封装薄膜的一优选实施例,包括3层有机缓冲层12、及3层无机阻挡层13,所述3层无机阻挡层13中,最中间的一层为云母片膜,另外两层为石墨烯膜。
基于上述的封装薄膜,请参阅图3,本发明还提供一种封装薄膜的制作方法,包括如下步骤:
步骤S1、提供聚合物衬底11。
具体地,所述聚合物衬底11的透过率在可见光范围内可达到>98%。所述聚合物衬底11的材料为烃类、酯类、或酰胺类高聚物,比如PI、PEN、PET、PBT、PMMA、PS、COP、或FRT。
步骤S2、如图4所示,在所述聚合物衬底11上形成一层具有粘性的有机缓冲层12,在该有机缓冲层12外围形成由内向外依次设置的一圈吸水层14、及一圈阻水层15。
具体地,所述有机缓冲层12由固体胶膜形成,所述固体胶膜为热释胶带、或者PSA型胶膜,则所述有机缓冲层12可通过直接贴膜的方式形成;或者,
所述有机缓冲层12由液体的胶水所形成,所述胶水的材料包括PMMA、PS、PDMS、及PVA中的一种或者多种,所述有机缓冲层12可通过涂布的方式形成,该涂布的方式为喷射式点胶法(Jet dispensing)、旋涂法(Spin coating)、丝网印刷法(Screen printing)、或喷墨打印法(Ink jet printing)。
具体地,所述吸水层14的材料主要为氧化钙,其吸水能力可达到5~10%。
具体地,所述阻水层15的材料为透过率高并具有疏水性能的有机聚合物,比如PDMS胶、或DAM胶。
具体地,所述吸水层14与所述阻水层15均采用喷嘴打印的方式形成。
具体地,所述有机缓冲层12的厚度为500~9000nm。
具体地,所述吸水层14的厚度为100~5000nm。
具体地,所述阻水层15的厚度为100~5000nm,与所述吸水层14的厚度相同。
具体地,所述步骤S2还包括对所述有机缓冲层12进行预固化,对所述有机缓冲层12预固化的具体方式为UV固化、或热固化;还包括对所述吸水层14及阻水层15进行预固化,对所述吸水层14及阻水层15预固化 的具体方式为UV固化、或热固化,优选为热固化。
步骤S3、形成一层无机阻挡膜,利用所述有机缓冲层12的粘性将所述无机阻挡膜粘附在所述聚合物衬底11上,在所述有机缓冲层12、吸水层14及阻水层15上形成无机阻挡层13。具体地,所述无机阻挡层13的厚度为100~5000nm。
步骤S4、重复上述步骤S2与步骤S3至少一次,得到所述封装薄膜。
具体地,所述步骤S4中重复上述步骤S2与步骤S31-4次,得到所述封装薄膜。
在本发明的封装薄膜的制作方法一优选实施例中,所述步骤S1中提供的聚合物衬底11为PET材料膜。
所述步骤S2中所形成的有机缓冲层12为PDMS胶,所述步骤S2具体为,在所述聚合物衬底11上涂布PDMS预聚合溶液,形成一层有机缓冲层12,在该有机缓冲层12外围形成一圈阻水层15,在该有机缓冲层12与阻水层15之间形成一圈吸水层14,然后对有机缓冲层12、吸水层14、及阻水层15进行预固化,使PDMS预聚合溶液固化,此时,所述有机缓冲层12呈现为透明的弹性体,表面具有一定粘性。
所述步骤S3所形成的无机阻挡层13为石墨烯膜,该步骤S3的具体过程如下:
(1)、如图5所示,制作石墨烯膜13’:以金属镍板80为衬底,清洁后放入管式炉中,通入流量比为1.1:1~1.5:1的甲烷与氢气的混和气体,以氩气为保护气体,流量为100~200sccm;当温度达到900~1000℃时,打开甲烷与氢气流量阀,开始进行反应,设定反应时间为90~120s,结束后冷却拿出样品,在金属镍板80上形成石墨烯膜13’。
(2)、如图6所示,将经过步骤S2的聚合物衬底11贴合在金属镍板80上,使具有粘性的有机缓冲层12与石墨烯膜13’紧密接触,整个过程在氮气氛围下进行。
(3)、如图7所示,迅速将聚合物衬底11从金属镍板80上撕除,石墨烯膜13’通过有机缓冲层12附着在聚合物衬底11上,得到无机阻挡层13。
本发明的封装薄膜的制作方法,操作简单,所制作的封装薄膜具有高透过率、高阻隔性、及高柔韧性,在降低器件水氧透过率的同时也会减小封装薄膜的厚度,使得器件轻薄化,并可满足柔性OLED面板的封装要求。
本发明的封装薄膜,还可轻易实现一些混合(hybrid)封装的结构,例如与围堰填充(Dam&Fill)封装方式、或者面胶(face sealant)封装方式进行结合,可见,此封装薄膜的适用性广,可选择性高。因此,基于上述的 封装薄膜,请参阅图8,本发明还提供一种OLED面板的封装方法,该方法将上述封装薄膜与Dam&Fill封装方式进行结合而对OLED面板进行封装,具体包括如下步骤:
步骤S100、提供衬底基板20,在所述衬底基板20上形成OLED器件30,得到OLED基板。
步骤S200、在所述衬底基板20、及OLED器件30上涂布填充胶,形成填充胶层41,在所述衬底基板20上于所述OLED器件30外围设置一圈DAM胶。
步骤S300、如图9所示,提供如上所述的封装薄膜10,将封装薄膜10与所述OLED基板对组、贴合,此时,封装薄膜10的聚合物衬底11在OLED器件30上位于最上层,最下层的无机阻挡层13通过填充胶层41与所述OLED器件30间隔开,对所述OLED器件30外围的DAM胶进行紫外光照射使其固化,得到框胶42,从而完成OLED面板的封装。其中,所述封装薄膜10的结构此前已作介绍,在此不再赘述。
请参阅图10,本发明还提供另外一种OLED面板的封装方法,该方法将上述封装薄膜与face sealant封装方式进行结合而对OLED面板进行封装,具体包括如下步骤:
步骤S100’、提供衬底基板20,在所述衬底基板20上形成OLED器件30,得到OLED基板。
步骤S200’、在所述衬底基板20、及OLED器件30上形成一层双面胶层40。
步骤S300’、如图11所示,提供如上所述的封装薄膜10,将封装薄膜10与所述OLED基板对组、贴合,此时,封装薄膜10的聚合物衬底11在OLED器件30上位于最上层,最下层的无机阻挡层13通过双面胶层40与所述OLED器件30间隔开,所述封装薄膜10通过该双面胶层40粘附在OLED基板上,从而完成OLED面板的封装。其中,所述封装薄膜10的结构此前已作介绍,在此不再赘述。
综上所述,本发明的封装薄膜,包括聚合物衬底、至少两层有机缓冲层、及至少两层无机阻挡层;其中,单层的有机缓冲层和单层的无机阻挡层依次交替层叠设置于所述聚合物衬底上;每一有机缓冲层外围由内向外依次设有一圈吸水层、及一圈阻水层;所述无机阻挡层选自石墨烯膜、云母片膜、及碳纳米管膜中的一种或多种;所述有机缓冲层由具有粘性的材料形成,所述无机阻挡层通过有机缓冲层的粘性而粘附于所述聚合物衬底上;本发明利用石墨烯膜、云母片膜、及碳纳米管膜优异的光学性能和高 致密性,实现了封装薄膜高透过率、高阻隔性、及高柔韧性的优良性能,在降低器件水氧透过率的同时也会减小封装薄膜的厚度,从而使得器件轻薄化,并可满足柔性OLED面板的封装要求;另外,通过在每一有机缓冲层外围设置一圈吸水层、及一圈阻水层,从侧向对封装薄膜的结构进行加强,进一步提高了其水氧阻隔能力。本发明的封装薄膜的制作方法,所制作的封装薄膜具有高透过率、高阻隔性、及高柔韧性,在降低器件水氧透过率的同时也会减小封装薄膜的厚度,使得器件轻薄化,并可满足柔性OLED面板的封装要求。本发明的OLED面板的封装方法,采用上述的封装薄膜,在降低器件水氧透过率的同时也会减小封装薄膜的厚度,使得器件轻薄化,并满足柔性OLED面板的封装要求,克服了传统薄膜封装的缺点,可以有效保护器件。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明后附的权利要求的保护范围。

Claims (9)

  1. 一种封装薄膜,包括聚合物衬底、至少两层有机缓冲层、及至少两层无机阻挡层;
    其中,单层的有机缓冲层和单层的无机阻挡层依次交替层叠设置于所述聚合物衬底上;
    每一有机缓冲层外围由内向外依次设有一圈吸水层、及一圈阻水层;
    所述无机阻挡层选自石墨烯膜、云母片膜、及碳纳米管膜中的一种或多种;所述有机缓冲层由具有粘性的材料形成,所述无机阻挡层通过有机缓冲层的粘性而粘附于所述聚合物衬底上。
  2. 如权利要求1所述的封装薄膜,其中,所述有机缓冲层由固体胶膜、或胶水所形成;
    所述固体胶膜为热释胶带、或者PSA型胶膜,所述胶水的材料包括PMMA、PS、PDMS、及PVA中的一种或者多种。
  3. 如权利要求1所述的封装薄膜,其中,所述吸水层的材料包括氧化钙;
    所述阻水层的材料为PDMS胶、或DAM胶。
  4. 如权利要求1所述的封装薄膜,其中,所述聚合物衬底的材料为PI、PEN、PET、PBT、PMMA、PS、COP、或FRT。
  5. 如权利要求1所述的封装薄膜,其中,所述吸水层与所述阻水层均采用喷嘴打印的方式形成。
  6. 如权利要求1所述的封装薄膜,其中,所述有机缓冲层的厚度为500~9000nm;
    所述无机阻挡层的厚度为100~5000nm;
    所述吸水层的厚度为100~5000nm;
    所述阻水层的厚度与所述吸水层的厚度相同。
  7. 一种如权利要求1所述的封装薄膜的制作方法,包括如下步骤:
    步骤S1、提供聚合物衬底;
    步骤S2、在所述聚合物衬底上形成一层具有粘性的有机缓冲层,在该有机缓冲层外围形成由内向外依次设置的一圈吸水层、及一圈阻水层;
    步骤S3、形成一层无机阻挡膜,利用所述有机缓冲层的粘性将所述无机阻挡膜粘附在所述聚合物衬底上,在所述有机缓冲层、吸水层及阻水层上形成无机阻挡层;
    步骤S4、重复上述步骤S2与步骤S3至少一次,得到所述封装薄膜。
  8. 如权利要求7所述的封装薄膜的制作方法,其中,所述步骤S2中,所述有机缓冲层由固体胶膜形成,所述固体胶膜为热释胶带、或者PSA型胶膜,所述有机缓冲层通过直接贴膜的方式形成;或者,
    所述有机缓冲层由胶水所形成,所述胶水的材料包括PMMA、PS、PDMS、及PVA中的一种或者多种,所述有机缓冲层通过涂布的方式形成,该涂布的方式为喷射式点胶法、旋涂法、丝网印刷法、或喷墨打印法。
  9. 一种OLED面板的封装方法,包括如下步骤:
    步骤S100、提供衬底基板,在所述衬底基板上形成OLED器件,得到OLED基板;
    步骤S200、在所述衬底基板、及OLED器件上涂布填充胶,形成填充胶层,在所述衬底基板上于所述OLED器件外围设置一圈DAM胶;或者,
    在所述衬底基板、及OLED器件上形成一层双面胶层;
    步骤S300、提供如权利要求1所述的封装薄膜,将封装薄膜与所述OLED基板对组、贴合,此时,封装薄膜的聚合物衬底在OLED器件上位于最上层,最下层的无机阻挡层通过填充胶层或者双面胶层与所述OLED器件间隔开;
    然后对所述OLED器件外围的DAM胶进行紫外光照射使其固化,得到框胶,或者所述封装薄膜通过该双面胶层粘附在OLED基板上,从而完成OLED面板的封装。
PCT/CN2017/092875 2017-05-26 2017-07-13 封装薄膜及其制作方法与oled面板的封装方法 WO2018214257A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/742,526 US10840475B2 (en) 2017-05-26 2017-07-13 Package film and manufacturing method thereof, and packaging method for OLED panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710386498.3A CN107170902B (zh) 2017-05-26 2017-05-26 封装薄膜及其制作方法与oled面板的封装方法
CN201710386498.3 2017-05-26

Publications (1)

Publication Number Publication Date
WO2018214257A1 true WO2018214257A1 (zh) 2018-11-29

Family

ID=59820960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/092875 WO2018214257A1 (zh) 2017-05-26 2017-07-13 封装薄膜及其制作方法与oled面板的封装方法

Country Status (3)

Country Link
US (1) US10840475B2 (zh)
CN (1) CN107170902B (zh)
WO (1) WO2018214257A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110767843A (zh) * 2019-11-29 2020-02-07 京东方科技集团股份有限公司 显示面板及制备方法、显示装置

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109698286A (zh) * 2017-10-23 2019-04-30 昆山维信诺科技有限公司 发光器件封装结构及具有该封装结构的柔性显示器
CN107799666B (zh) * 2017-11-10 2019-04-23 武汉华星光电半导体显示技术有限公司 封装结构、封装方法及电子器件
US10581016B2 (en) 2017-11-10 2020-03-03 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Package structure, packaging method and electronic device
CN108638621B (zh) * 2018-05-11 2020-07-24 昆山国显光电有限公司 薄膜封装结构及显示装置
US10784467B2 (en) 2018-05-11 2020-09-22 Kunshan Go-Visionox Opto-Electronics Co., Ltd. Thin film packaging structures and display devices
CN108832020A (zh) * 2018-06-25 2018-11-16 上海大学 一种柔性衬底复合结构及其制备方法与应用
CN109301084B (zh) * 2018-09-28 2020-06-16 京东方科技集团股份有限公司 封装结构、电子装置及封装方法
CN109585677A (zh) * 2018-11-29 2019-04-05 云谷(固安)科技有限公司 一种封装结构及显示装置
CN109713155B (zh) * 2018-11-30 2021-07-13 云谷(固安)科技有限公司 封装薄膜、显示面板及其制备方法
CN109585684A (zh) * 2018-12-07 2019-04-05 深圳市华星光电半导体显示技术有限公司 一种显示装置及其封装方法
CN109755408B (zh) * 2018-12-26 2021-01-15 深圳市华星光电半导体显示技术有限公司 一种显示面板及其制作方法、显示装置
CN109755410B (zh) * 2019-01-10 2022-05-13 昆山国显光电有限公司 一种有机发光显示面板、制备方法及显示装置
CN109888121A (zh) * 2019-01-25 2019-06-14 深圳市华星光电半导体显示技术有限公司 发光面板、发光面板的制备方法及显示装置
CN109860417A (zh) * 2019-01-28 2019-06-07 深圳市华星光电半导体显示技术有限公司 发光面板、发光面板的制备方法及显示装置
CN109830621B (zh) * 2019-02-19 2021-08-10 成都京东方光电科技有限公司 柔性基板及其制造方法、柔性显示基板及其制造方法
CN110224082B (zh) * 2019-07-17 2022-02-08 云谷(固安)科技有限公司 薄膜封装结构、薄膜封装结构的制作方法及显示装置
CN110429064B (zh) * 2019-08-01 2020-11-10 武汉华星光电半导体显示技术有限公司 缓冲结构、显示面板及缓冲结构的制作方法
CN110690358A (zh) * 2019-09-05 2020-01-14 武汉华星光电半导体显示技术有限公司 显示面板、显示装置及显示面板的制作方法
CN110784817B (zh) * 2019-10-16 2021-04-02 深圳创维-Rgb电子有限公司 扬声器振膜的制备方法、扬声器振膜及扬声器单体
CN110931651A (zh) * 2019-11-22 2020-03-27 深圳市华星光电半导体显示技术有限公司 一种显示面板及其制备方法
CN111524949B (zh) * 2020-04-29 2022-11-25 京东方科技集团股份有限公司 一种显示面板、其制作方法及显示装置
CN111933821B (zh) * 2020-08-17 2023-11-03 京东方科技集团股份有限公司 封装结构、其制作方法、显示面板及显示装置
CN112331798A (zh) * 2020-10-22 2021-02-05 福建华佳彩有限公司 一种显示面板及制作方法
CN113054137A (zh) * 2021-03-11 2021-06-29 武汉华星光电半导体显示技术有限公司 显示面板及显示装置
CN112976853A (zh) * 2021-03-17 2021-06-18 上达电子(深圳)股份有限公司 两次印刷提高油墨精度的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102569674A (zh) * 2010-12-24 2012-07-11 三星移动显示器株式会社 封装片及其平板显示装置及制造该平板显示装置的方法
CN103199199A (zh) * 2013-03-05 2013-07-10 京东方科技集团股份有限公司 一种oled器件封装薄膜、制备方法以及oled器件、封装方法
CN103325953A (zh) * 2012-03-19 2013-09-25 瀚宇彩晶股份有限公司 有机发光二极管封装及其封装方法
CN104347820A (zh) * 2014-10-10 2015-02-11 信利(惠州)智能显示有限公司 Amoled器件及制备方法
CN104576970A (zh) * 2013-10-12 2015-04-29 昆山工研院新型平板显示技术中心有限公司 一种柔性显示装置的制备方法及其制备的柔性显示装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060093795A1 (en) * 2004-11-04 2006-05-04 Eastman Kodak Company Polymeric substrate having a desiccant layer
CN2849981Y (zh) * 2005-12-07 2006-12-20 陕西科技大学 一种改善有机电致发光显示器件性能的结构
KR100977704B1 (ko) * 2007-12-21 2010-08-24 주성엔지니어링(주) 표시소자 및 그 제조방법
CN202067839U (zh) * 2010-12-16 2011-12-07 陕西科技大学 一种oled玻璃封装器件
KR102029107B1 (ko) * 2013-03-05 2019-10-08 삼성디스플레이 주식회사 유기 발광 표시 장치 및 유기 발광 표시 장치의 제조 방법
KR102111562B1 (ko) * 2013-04-25 2020-05-18 삼성디스플레이 주식회사 표시 장치
US20140353594A1 (en) * 2013-05-29 2014-12-04 Shenzhen China Star Optoelectronics Technology Co., Ltd. OLED Panel, Manufacturing Method, and Related Testing Method
TWI794098B (zh) * 2013-09-06 2023-02-21 日商半導體能源研究所股份有限公司 發光裝置以及發光裝置的製造方法
CN103915573B (zh) * 2014-03-05 2017-05-17 厦门天马微电子有限公司 一种封装盖板及制作方法、显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102569674A (zh) * 2010-12-24 2012-07-11 三星移动显示器株式会社 封装片及其平板显示装置及制造该平板显示装置的方法
CN103325953A (zh) * 2012-03-19 2013-09-25 瀚宇彩晶股份有限公司 有机发光二极管封装及其封装方法
CN103199199A (zh) * 2013-03-05 2013-07-10 京东方科技集团股份有限公司 一种oled器件封装薄膜、制备方法以及oled器件、封装方法
CN104576970A (zh) * 2013-10-12 2015-04-29 昆山工研院新型平板显示技术中心有限公司 一种柔性显示装置的制备方法及其制备的柔性显示装置
CN104347820A (zh) * 2014-10-10 2015-02-11 信利(惠州)智能显示有限公司 Amoled器件及制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110767843A (zh) * 2019-11-29 2020-02-07 京东方科技集团股份有限公司 显示面板及制备方法、显示装置
CN110767843B (zh) * 2019-11-29 2023-04-11 京东方科技集团股份有限公司 显示面板及制备方法、显示装置

Also Published As

Publication number Publication date
US10840475B2 (en) 2020-11-17
US20180375060A1 (en) 2018-12-27
CN107170902A (zh) 2017-09-15
CN107170902B (zh) 2019-04-02

Similar Documents

Publication Publication Date Title
WO2018214257A1 (zh) 封装薄膜及其制作方法与oled面板的封装方法
TWI408755B (zh) 封入環境敏感裝置的方法
JP4147008B2 (ja) 有機el素子に用いるフィルム及び有機el素子
WO2016095331A1 (zh) 透明柔性封装衬底及柔性oled封装方法
WO2016101395A1 (zh) 柔性oled显示器件及其制造方法
US20070135552A1 (en) Gas barrier
WO2015085751A1 (zh) 用于有机电致发光显示器件的光学薄膜层叠体、其制备方法、有机电致发光显示器件及显示装置
WO2019196372A1 (zh) 封装结构、显示器件及显示装置
CN105591036A (zh) 一种柔性电致发光器件的封装结构及其封装方法
TW201041736A (en) Transparent barrier lamination
WO2019127702A1 (zh) Oled面板及其制作方法
KR20100048035A (ko) 다층 박막, 이의 제조방법 및 이를 포함하는 봉지구조체
CN103956435A (zh) 一种有机发光二极管的胶带封装结构
JP2014514981A (ja) 多層プラスチック基板およびその製造方法
WO2019075854A1 (zh) Oled面板的封装方法及封装结构
JP6170627B2 (ja) 電子デバイスの製造方法および複合フィルム
KR101878572B1 (ko) 접착제를 사용하지 않는 다층구조의 수분 및 기체 고차단성 유연필름 및 그 제조방법
WO2016133130A1 (ja) 封止構造体
TW201511252A (zh) 製造有機發光顯示裝置之方法
TW200531588A (en) Composite articles having diffusion barriers and devices incorporating the same
JP2015103389A (ja) 有機el素子
WO2017033823A1 (ja) 電子装置
TWI360862B (en) Methods of forming gas barriers on electronic devi
JP6142091B2 (ja) 複合フィルム
JP6196944B2 (ja) 封止部材および電子デバイスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17911259

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17911259

Country of ref document: EP

Kind code of ref document: A1