WO2018214215A1 - Oled器件的封装组件及封装方法、显示装置 - Google Patents

Oled器件的封装组件及封装方法、显示装置 Download PDF

Info

Publication number
WO2018214215A1
WO2018214215A1 PCT/CN2017/089704 CN2017089704W WO2018214215A1 WO 2018214215 A1 WO2018214215 A1 WO 2018214215A1 CN 2017089704 W CN2017089704 W CN 2017089704W WO 2018214215 A1 WO2018214215 A1 WO 2018214215A1
Authority
WO
WIPO (PCT)
Prior art keywords
barrier layer
pattern region
oled device
buffer layer
layer
Prior art date
Application number
PCT/CN2017/089704
Other languages
English (en)
French (fr)
Inventor
李文杰
史婷
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to EP17911303.0A priority Critical patent/EP3629393A4/en
Priority to JP2019564930A priority patent/JP6895546B2/ja
Priority to KR1020197038045A priority patent/KR102327796B1/ko
Priority to US15/541,538 priority patent/US10141541B1/en
Publication of WO2018214215A1 publication Critical patent/WO2018214215A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8794Arrangements for heating and cooling
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/87Arrangements for heating or cooling
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour

Definitions

  • the present invention relates to the field of display, and in particular to a package assembly, a package method, and a display device for an OLED (Organic Light Emitting Diode) device.
  • OLED Organic Light Emitting Diode
  • the traditional use of the liquid crystal display is that it does not need to use a backlight, by making an organic film on the substrate, the organic film is wrapped between the cathode and the anode metal, applying voltage to the two electrodes Then the organic film will glow. Since the organic material of the organic film is very sensitive to water vapor and oxygen, the water/oxygen permeation will greatly reduce the life of the OLED device. Therefore, in order to meet the market demand for its service life and stability, the industry has very strict requirements for the packaging effect of the OLED device. high.
  • the OLED device is generally packaged in a thin film package manner. As shown in FIG. 1, a package film 12 covering the OLED device 11 is formed on the OLED device 11, and the package film 12 is alternately deposited by the barrier layer 121 and the buffer layer 122. .
  • the barrier layer 121 serves as an effective barrier layer for water/oxygen, and its main component is inorganic, and defects such as pinholes, particles, and the like may occur during preparation.
  • the main component of the buffer layer 122 is an organic substance that functions to cover the defects of the barrier layer 121 to achieve planarization.
  • the prior art in order to improve the material utilization rate and save costs, the prior art generally adopts an inkjet printing (IJP) method to form the buffer layer 122. How to prevent the droplet overflow of the buffer layer 122 from forming is very critical.
  • the thinning design trend of the OLED device 11 makes the wiring dense, and how to improve the rapid heat dissipation capability of the OLED device 11 is also very important.
  • the present invention provides a package assembly and a packaging method and a display device for an OLED device, which can prevent the package film from being peeled off due to bending of the LED device, and prevent droplet overflow when the package film is formed by the inkjet printing method. And help to improve the rapid dispersion of OLED devices Thermal capacity.
  • a first pattern region and a second pattern region are disposed on a side of the first barrier layer away from the OLED device, and the first pattern region and the second pattern region are staggered along a predetermined direction, the first barrier layer
  • the thickness of the first pattern region is less than the thickness of the second pattern region
  • a display device includes a package assembly, the package assembly comprising:
  • a first pattern region and a second pattern region are disposed on a side of the first barrier layer away from the OLED device, and the first pattern region and the second pattern region are staggered along a predetermined direction, the first barrier layer
  • the thickness of the first pattern region is less than the thickness of the second pattern region
  • the first barrier layer is disposed on the side away from the OLED device with a first pattern region and a second pattern region, and the first pattern region and the second pattern region are staggered along a predetermined direction, the first blocking
  • the thickness of the layer in the first pattern region is less than the thickness of the layer in the second pattern region;
  • a buffer layer is coated on the first barrier layer, and the buffer layer is doped with heat conductive particles.
  • the first barrier layer of the present invention has a predetermined pattern such that the thickness of the first barrier layer in the first pattern region is smaller than the thickness of the second pattern region, and the stress of the first barrier layer when the OLED device is bent is reduced. Therefore, it is possible to prevent the package film from peeling off due to bending of the OLED device; and, the first pattern region can accommodate droplets forming a buffer layer by inkjet printing technology to prevent droplet overflow; and, in addition, the heat conductive particles in the first barrier layer Helps improve the fast heat dissipation of OLED devices.
  • FIG. 1 is a schematic cross-sectional view showing a package assembly of an OLED device in the prior art
  • FIG. 2 is a cross-sectional view showing a display device according to an embodiment of the present invention.
  • Figure 3 is a plan view showing the structure of the buffer layer and the first barrier layer shown in Figure 2;
  • Figure 4 is a plan view showing the structure of a mask for producing the first barrier layer shown in Figure 3;
  • FIG. 5 is a schematic flow chart of a method of packaging an OLED device according to an embodiment of the invention.
  • FIG. 2 is a display device according to an embodiment of the present invention.
  • the display device includes an OLED device 20 and a package assembly of the OLED device 20.
  • the package assembly may include a substrate substrate 21, a first barrier layer 22, and a buffer layer 23.
  • the OLED device 20 is carried on a substrate substrate 21.
  • the substrate substrate 21 includes, but is not limited to, a transparent glass substrate or a transparent plastic substrate.
  • the substrate substrate 21 may be a bendable transparent plastic substrate.
  • the first barrier layer 22 covers the OLED device 20.
  • the first barrier layer 22 has a predetermined pattern on a side away from the OLED device 20.
  • the first barrier layer 22 may include a plurality of strips alternately arranged in a direction parallel to the substrate substrate 21 (horizontal direction). a strip-shaped region, each strip-shaped region including a first pattern region 221 and a second pattern region 222 which are alternately connected in the vertical direction, the thickness of the first barrier layer 22 in the first pattern region 221 being smaller than that in the second pattern region 222 thickness.
  • the area between adjacent two strip regions may be regarded as the third pattern region 223 of the first barrier layer 22, and the third pattern region 223 may expose the surface of the OLED device 20.
  • the present invention can form the first barrier layer 22 by a PECVD (Plasma Enhanced Chemical Vapor Deposition) method. Specifically, first, the substrate substrate 21 carrying the OLED device 20 is placed in a sealed cavity, and a mask 40 is placed on the OLED device 20. As shown in FIG. 4, the mask 40 includes hollowing out.
  • PECVD Plasma Enhanced Chemical Vapor Deposition
  • the area 41 and the non-hollow area 42 include a first sub-area 411 and a second sub-area 412 that are electrically connected to each other, the area of the first sub-area 411 is smaller than the area of the second sub-area 412, and the first sub-area 411 And the second sub-region 412 may be both rectangular, the first sub-region 411 and the first pattern region 221 have the same shape in a plan view, and the second sub-region 412 and the second pattern region 222 have the same shape in a plan view.
  • a reaction gas such as a mixed gas containing SiH 4 (silane), NH 3 (ammonia gas), and N 2 (nitrogen) is introduced into the sealed cavity, and then the reaction gas is subjected to radio frequency discharge, so that the reaction gas reacts to generate SiN. x (silicon nitride), SiN x by the hollow area 40 of mask 41 is deposited on the OLED device 20, such that the first barrier layer 22 is formed.
  • a reaction gas such as a mixed gas containing SiH 4 (silane), NH 3 (ammonia gas), and N 2 (nitrogen) is introduced into the sealed cavity, and then the reaction gas is subjected to radio frequency discharge, so that the reaction gas reacts to generate SiN. x (silicon nitride), SiN x by the hollow area 40 of mask 41 is deposited on the OLED device 20, such that the first barrier layer 22 is formed.
  • the present invention can horizontally move the mask sheet 40 to a predetermined region after one PEVCD process, and perform the PEVCD process again.
  • the distance and the number of movements are determined according to the pattern and number of the first pattern regions 221 and the second pattern regions 222 designed by the first barrier layer 22, thereby forming the first barrier layer 22 having a predetermined pattern.
  • the present invention can also adopt any one of an ALD (Atomic Layer Deposition) method, a PVD (Physical Vapor Deposition) method, and a CVD (Chemical Vapor Deposition) method.
  • the mask 40 forms a first barrier layer 22 having a predetermined pattern.
  • the material of the first barrier layer 22 may be other inorganic substances such as nitride of aluminum, oxide of aluminum, oxynitride of aluminum, oxide of silicon, and oxynitride of silicon.
  • the buffer layer 23 is coated on the first barrier layer 22, and the buffer layer 23 can completely cover the first pattern region 221, the second pattern region 222, and the third pattern region 223, that is, the buffer layer 23 is A full face structure of the first barrier layer 22 is completely covered.
  • the buffer layer 23 may cover only the first pattern region 221 and the third pattern region 223.
  • the buffer layer 23 is doped with heat conductive particles 231.
  • the material of the buffer layer 23 may be an organic material such as an epoxy resin, a silicon-based polymer, or PMMA (polymethyl methacrylate).
  • the heat conductive particles 231 are made of a material having a large thermal conductivity, such as graphene, carbon nanotubes, aluminum oxide, magnesium oxide, zinc oxide, aluminum nitride, boron nitride, and, for example, silver, copper, gold, aluminum, and alloys thereof. .
  • the present invention can form the buffer layer 23 without using a mask, for example, using any one of an ODF (One Drop Filling) method, an inkjet printing method, and a nozzle printing method to form the buffer layer 23, To save the design and production cost of the mask, thereby reducing the production and manufacturing costs of the entire package.
  • ODF One Drop Filling
  • the nano-sized alumina particles are first hydrophilically modified, and then the alumina particles are uniformly dispersed into the epoxy resin by a high-speed shear dispersing emulsifier, wherein the alumina particles are
  • the amount of doping may be 3 to 50% by weight (% by weight), and the formation is slow
  • the viscosity of the scouring solution is less than 0.5 Pa ⁇ s (Pascals per second), and finally curing is carried out at a temperature of 80 to 100 ° C to form a buffer layer 23 .
  • the present invention can also form the buffer layer 23 by UV (Ultraviolet, ultraviolet irradiation or radiation) curing.
  • the first barrier layer 22 is an effective barrier layer for water/oxygen
  • the buffer layer 23 is used to cover the first barrier layer 22 to achieve planarization
  • the buffer layer 23 and the first barrier layer 22 can be regarded as the OLED device 20 Packaging film.
  • the present invention designs that the thickness of the first barrier layer 22 in the first pattern region 221 is smaller than the thickness of the second pattern region 222, which is equivalent to the side of the first barrier layer 22 away from the OLED device 20. In the patterning process, when the OLED device 20 is bent, the edge portions of the first pattern region 221 and the second pattern region 222 are not pressed, and the stress of the first barrier layer 22 when the OLED device 20 is bent is reduced.
  • the first pattern region 221 can accommodate droplets when the buffer layer 23 is formed by a method such as inkjet printing to prevent the droplets from overflowing.
  • the thermally conductive particles 231 in the buffer layer 23 help to improve the rapid heat dissipation capability of the OLED device 20.
  • the addition of the thermally conductive particles 231 in the buffer layer 23 can extend the path of water/oxygen entering the OLED device 20, further improving the OLED device 20. Water/oxygen resistance.
  • the present invention can produce the heat conductive particles 231 by using a heat conductive material having a high light transmittance to ensure the light output performance of the OLED device 20.
  • the package assembly of an embodiment of the present invention may further include a second barrier layer 24 covering the buffer layer 23 and the first barrier layer 22 .
  • the second barrier layer 24 may be made of the same material as the first barrier layer 22.
  • the present invention can form the second barrier layer 24 without a mask, for example, using the ODF method, the inkjet printing method, and the nozzle printing method to form the second barrier layer 24 to save cost.
  • the side of the second barrier layer 24 away from the buffer layer 23 may be a smooth plane.
  • a protective film or a touch sensor having a touch sensor function is attached to a side of the second barrier layer 24 away from the buffer layer 23, the present invention does not appear at the attachment of the smooth plane to the protective film or the touch film. Tiny gullies, thereby avoiding the occurrence of bubbles when the OLED device 20 is displayed.
  • FIG. 5 illustrates a method of packaging an OLED device according to an embodiment of the invention.
  • the encapsulation method may include the following steps S51 to S54.
  • the substrate substrate includes, but is not limited to, a transparent glass substrate or a transparent plastic substrate.
  • the substrate substrate can be a flexible plastic substrate that can be bent.
  • the OLED device is carried on a substrate substrate.
  • S53 covering the first barrier layer on the OLED device, the first barrier layer is disposed on the side away from the OLED device, and the first pattern region and the second pattern region are disposed in a predetermined direction.
  • a barrier layer has a thickness in the first pattern region that is less than a thickness in the second pattern region.
  • the first barrier layer has a predetermined pattern away from a side of the OLED device.
  • the first barrier layer may include a plurality of strip-shaped regions alternately arranged in a direction parallel to the substrate substrate (horizontal direction), each strip region The first pattern region and the second pattern region are alternately connected in the vertical direction, and the thickness of the first barrier layer in the first pattern region is smaller than the thickness in the second pattern region.
  • the area between adjacent two strip regions can be regarded as the third pattern region of the first barrier layer, and the third pattern region can expose the surface of the OLED device.
  • the present invention can form a first barrier layer by a PECVD method. Specifically, first, the substrate substrate carrying the OLED device is placed in a sealed cavity, and a mask plate is disposed on the OLED device, the mask plate includes a hollowed out area and a non-hollowed area, and the hollowed out area includes mutual conduction. a first sub-area and a second sub-area, the area of the first sub-area is smaller than the area of the second sub-area, and the first sub-area and the second sub-area may both be rectangular, the first sub-area and the first pattern area
  • the shape is the same in plan view, and the second sub-area and the second pattern area have the same shape in plan view.
  • a reaction gas for example, a mixed gas containing SiH 4 , NH 3 and N 2 , is introduced into the sealed cavity, and then the reaction gas is subjected to radio frequency discharge, so that the reaction gas reacts to generate SiN x , and the SiN x passes through the mask.
  • the voided region is deposited on the OLED device to form a first barrier layer.
  • the present invention can horizontally move the mask sheets to a predetermined region after one PEVCD process, and perform the PEVCD process again.
  • the distance and the number of movements are determined according to the pattern and number of the first pattern area and the second pattern area designed by the first barrier layer, thereby forming a first barrier layer having a predetermined pattern.
  • the present invention may also employ any one of an ALD method, a PVD method, and a CVD method, and combine with the mask to form a first barrier layer having a predetermined pattern.
  • the material of the first barrier layer may be other inorganic substances such as nitride of aluminum, oxide of aluminum, oxynitride of aluminum, oxide of silicon, and oxynitride of silicon.
  • S54 coating a buffer layer on the first barrier layer, wherein the buffer layer is doped with heat conductive particles.
  • the buffer layer can completely cover the first pattern area, the second pattern area and the third pattern area, that is, buffer
  • the layer is a one-sided structure that completely covers the first barrier layer.
  • the buffer layer may cover only the first pattern region and the third pattern region.
  • the buffer layer is doped with heat conductive particles.
  • the present invention can produce thermally conductive particles by using a heat conductive material having a high light transmittance to ensure the light output performance of the OLED device.
  • the material of the buffer layer can be organic, such as epoxy resin, silicon based polymer, PMMA.
  • the thermally conductive particles are made of a material having a large thermal conductivity, such as graphene, carbon nanotubes, alumina, magnesia, zinc oxide, aluminum nitride, boron nitride, and also, for example, silver, copper, gold, aluminum, and alloys thereof.
  • the present invention can form the buffer layer without using a mask, for example, using any one of an ODF method, an inkjet printing method, and a nozzle printing method to form a buffer layer, thereby saving the design and production cost of the mask, thereby reducing the entire Production and manufacturing costs of package components.
  • the nano-sized alumina particles are first hydrophilically modified, and then the alumina particles are uniformly dispersed into the epoxy resin by a high-speed shear dispersing emulsifier, wherein the alumina particles are
  • the doping amount may be 3 to 50% by weight
  • the viscosity of the formed buffer solution is less than 0.5 Pa ⁇ s
  • curing is carried out at a temperature of 80 to 100 ° C to form a buffer layer.
  • the present invention can also form a buffer layer by UV curing.
  • the present invention may further form a second barrier layer covering the buffer layer and the first barrier layer after the step S54, that is, the packaging method may further include the step S55:
  • the side of the second barrier layer away from the buffer layer is a smooth plane.
  • the second barrier layer may be made of the same material as the first barrier layer.
  • the present invention can form the second barrier layer without using a mask, for example, forming a second barrier layer by using any one of an ODF method, an inkjet printing method, and a nozzle printing method to save cost.
  • the above-described packaging method of the OLED device can be used to produce a package assembly having the structure shown in FIG. 2, and thus has the same advantageous effects.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种OLED器件的封装组件及封装方法、显示装置。覆盖OLED器件(20)的第一阻挡层(22)远离OLED器件的一侧设置有第一图案区(221)和第二图案区(222),第一阻挡层在第一图案区的厚度小于其在第二图案区的厚度;涂覆于第一阻挡层上的缓冲层(23)中掺杂有导热粒子(231)。

Description

OLED器件的封装组件及封装方法、显示装置 【技术领域】
本发明涉及显示领域,具体涉及一种OLED(Organic Light Emitting Diode,有机发光二极管)器件的封装组件及封装方法、显示装置。
【背景技术】
OLED作为新一代的显示器,与传统的液晶显示器的不用之处在于其无需采用背光源,通过在衬底基板上制作有机薄膜,有机薄膜被包裹在阴极和阳极金属之间,给两电极施加电压,则有机薄膜就会发光。由于有机薄膜的有机材料对水汽和氧气非常敏感,水/氧的渗透会大大缩减OLED器件的寿命,因此为了达到市场对其使用寿命和稳定性的要求,业界对OLED器件的封装效果的要求非常高。
当前,业界对OLED器件一般采用薄膜封装方式进行封装,如图1所示,在OLED器件11上形成覆盖OLED器件11的封装薄膜12,该封装薄膜12由阻挡层121和缓冲层122交替沉积形成。阻挡层121作为水/氧的有效阻挡层,其主要成分为无机物,并且其在制备过程中会出现针孔(Pinholes)、异物(Particle)等缺陷。缓冲层122的主要成分为有机物,其作用为覆盖阻挡层121的缺陷以实现平坦化。其中,水/氧的阻隔能力越强,阻挡层121的厚度越大,其在OLED器件11弯折时受到的应力越大,这使得薄膜12容易从OLED器件11上剥落。并且,为了提高材料利用率以节省成本,现有技术一般采用喷墨打印(Ink-jet printing,IJP)方法形成缓冲层122,如何防止形成缓冲层122的液滴溢流非常关键。另外,OLED器件11的轻薄化设计趋势,使其布线较为密集,如何提高OLED器件11的快速散热能力也非常重要。
【发明内容】
有鉴于此,本发明提供一种OLED器件的封装组件及封装方法、显示装置,能够避免封装薄膜因LED器件弯折而剥落,以及防止采用喷墨打印方法形成封装薄膜时产生液滴溢流,并且有助于提高OLED器件的快速散 热能力。
本发明一实施例的OLED器件的封装组件,包括:
衬底基材,用于承载OLED器件;
覆盖OLED器件的第一阻挡层,第一阻挡层远离OLED器件的一侧设置有第一图案区和第二图案区,第一图案区和第二图案区沿预定方向交错设置,第一阻挡层在第一图案区的厚度小于其在第二图案区的厚度;
涂覆于第一阻挡层上的缓冲层,缓冲层中掺杂有导热粒子。
本发明一实施例的显示装置,包括封装组件,该封装组件包括:
衬底基材,用于承载OLED器件;
覆盖OLED器件的第一阻挡层,第一阻挡层远离OLED器件的一侧设置有第一图案区和第二图案区,第一图案区和第二图案区沿预定方向交错设置,第一阻挡层在第一图案区的厚度小于其在第二图案区的厚度;
涂覆于第一阻挡层上的缓冲层,缓冲层中掺杂有导热粒子。
本发明一实施例的OLED器件的封装方法,包括:
提供一衬底基材;
将OLED器件承载于衬底基材上;
在OLED器件上覆盖第一阻挡层,第一阻挡层远离OLED器件的一侧设置有第一图案区和第二图案区,第一图案区和第二图案区沿预定方向交错设置,第一阻挡层在第一图案区的厚度小于其在第二图案区的厚度;
在第一阻挡层上涂覆缓冲层,缓冲层中掺杂有导热粒子。
有益效果:本发明设计第一阻挡层具有预定图案,使得第一阻挡层在第一图案区的厚度小于其在第二图案区的厚度,降低第一阻挡层在OLED器件弯折时受到的应力,从而能够避免封装薄膜因OLED器件弯折而剥落;并且,第一图案区可以容纳采用喷墨打印技术形成缓冲层的液滴,防止液滴溢流;另外,第一阻挡层中的导热粒子有助于提高OLED器件的快速散热能力。
【附图说明】
图1是现有技术中OLED器件的封装组件的剖面示意图;
图2是本发明一实施例的显示装置的剖面示意图;
图3是图2所示的缓冲层和第一阻挡层的结构俯视图;
图4是用于制得图3所示第一阻挡层的掩膜板的结构俯视图;
图5是本发明一实施例的OLED器件的封装方法的流程示意图。
【具体实施方式】
下面将结合本发明实施例中的附图,对本发明所提供的各个示例性的实施例的技术方案进行清楚、完整地描述。在不冲突的情况下,下述各个实施例以及实施例中的特征可以相互组合。
请参阅图2,为本发明一实施例的显示装置。所述显示装置包括OLED器件20以及该OLED器件20的封装组件。所述封装组件可以包括衬底基材21、第一阻挡层22及缓冲层23。
OLED器件20承载于衬底基材21上。所述衬底基材21包括但不限于透明玻璃基板或透明塑料基板,在制作柔性显示装置时,衬底基材21可以采用可弯折的透明塑料基板。
第一阻挡层22覆盖OLED器件20。该第一阻挡层22远离OLED器件20的一侧具有预定图案,例如图3所示,第一阻挡层22可以包括沿平行于衬底基材21方向(水平方向)间隔交替设置的多个带状区域,每一带状区域包括沿垂直方向依次交替连接的第一图案区221和第二图案区222,第一阻挡层22在第一图案区221的厚度小于其在第二图案区222的厚度。而相邻两个带状区域之间的区域可视为第一阻挡层22的第三图案区223,第三图案区223可以暴露OLED器件20的表面。
本发明可采用PECVD(Plasma Enhanced Chemical Vapor Deposition,等离子增强化学气相沉积)方法形成第一阻挡层22。具体而言:首先,将承载有OLED器件20的衬底基材21放置于一密封腔体中,并在OLED器件20上放置掩膜板40,如图4所示,掩膜板40包括镂空区41和非镂空区42,镂空区41包括相互导通的第一子区域411和第二子区域412,第一子区域411的面积小于第二子区域412的面积,且第一子区域411和第二子区域412可以均为矩形,第一子区域411和第一图案区221在俯视时的形状相同,第二子区域412和第二图案区222在俯视时的形状相同。然后,向密封腔体中通入反应气体,例如含有SiH4(硅烷)、NH3(氨气)和N2(氮气)的 混合气体,接着对反应气体进行射频放电,使得反应气体反应生成SiNx(硅的氮化物),该SiNx通过掩膜板40的镂空区41沉积在OLED器件20上,从而形成第一阻挡层22。
当掩膜板40的镂空区41的数量小于第一图案区221或第二图案区222的数量时,本发明可以在一次PEVCD制程之后,水平移动掩膜板40至预定区域,再次进行PEVCD制程。根据第一阻挡层22所设计的第一图案区221和第二图案区222的图形和数量来确定移动的距离和次数,从而形成具有预定图案的第一阻挡层22。
当然,本发明还可以采用ALD(Atomic layer deposition,原子层沉积)方法、PVD(Physical Vapor Deposition,物理气象沉积)方法及CVD(Chemical Vapor Deposition,化学气相沉积)方法中的任一种,并结合所述掩膜板40形成具有预定图案的第一阻挡层22。
并且,第一阻挡层22的制造材料还可以为其他无机物,例如铝的氮化物、铝的氧化物、铝的氮氧化物、硅的氧化物、硅的氮氧化物。
继续参阅图2和图3,缓冲层23涂覆于第一阻挡层22上,缓冲层23可以完全覆盖第一图案区221、第二图案区222及第三图案区223,即缓冲层23为完全覆盖第一阻挡层22的一整面结构。当然,在本发明其他实施例中,缓冲层23还可以仅覆盖第一图案区221和第三图案区223。另外,缓冲层23中掺杂有导热粒子231。
缓冲层23的制造材料可以为有机物,例如环氧树脂、硅基聚合物、PMMA(聚甲基丙烯酸甲酯)。导热粒子231由导热系数较大的材料制得,例如石墨烯、碳纳米管、氧化铝、氧化镁、氧化锌、氮化铝、氮化硼,又例如银、铜、金、铝及其合金。
本发明无需掩膜板即可形成所述缓冲层23,例如采用ODF(One Drop Filling,滴注)方法、喷墨打印方法和喷嘴印刷(Nozzle printing)方法中的任一种形成缓冲层23,以节省掩膜板的设计与生产成本,从而降低整个封装组件的生产与制造成本。
以ODF方法为例,在实际应用场景中,首先对纳米级氧化铝粒子进行亲水改性,然后采用高速剪切分散乳化机将氧化铝粒子均匀分散到环氧树脂中,其中氧化铝粒子的掺杂量可以为3~50wt%(重量百分比),形成的缓 冲溶液的粘度小于0.5Pa·s(帕斯卡每秒),最终在80~100℃的温度中进行固化,形成缓冲层23。当然,本发明也可以采用UV(Ultraviolet,紫外线照射或辐射)固化方式形成缓冲层23。
在本发明中,第一阻挡层22为水/氧的有效阻挡层,缓冲层23用于覆盖第一阻挡层22以实现平坦化,缓冲层23和第一阻挡层22可视为OLED器件20的封装薄膜。相比较与现有技术,本发明设计第一阻挡层22在第一图案区221的厚度小于其在第二图案区222的厚度,相当于对第一阻挡层22远离OLED器件20的一侧进行了图案化制程,在OLED器件20弯折时,第一图案区221和第二图案区222的边缘部分不会产生挤压,降低了第一阻挡层22在OLED器件20弯折时受到的应力,从而能够避免封装薄膜因OLED器件20弯折而剥落。并且,第一图案区221可以容纳采用喷墨打印等方法形成缓冲层23时的液滴,防止液滴溢流。另外,缓冲层23中的导热粒子231有助于提高OLED器件20的快速散热能力,同时,在缓冲层23中添加导热粒子231可以延长水/氧进入OLED器件20的路径,进一步提高OLED器件20抗水/氧能力。
进一步地,本发明可以采用光透过率高的导热材料制得导热粒子231,以保证OLED器件20的出光性能。
请继续参阅图1,本发明一实施例的封装组件还可以包括覆盖缓冲层23和第一阻挡层22的第二阻挡层24。该第二阻挡层24的制造材料可以与第一阻挡层22的制造材料相同。本发明无需掩膜板即可形成所述第二阻挡层24,例如采用ODF方法、喷墨打印方法和喷嘴印刷方法中的任一种形成第二阻挡层24,以节省成本。
第二阻挡层24远离缓冲层23的一面可以为光滑平面。在第二阻挡层24远离缓冲层23的一面贴附保护膜或具有触控(touch sensor)功能的触控膜时,本发明不会在光滑平面与保护膜或触控膜的贴附处出现微小的沟壑,从而能够避免在OLED器件20显示时出现bubble(泡影)。
请参阅图5,为本发明一实施例的OLED器件的封装方法。所述封装方法可以包括以下步骤S51~S54。
S51:提供一衬底基材。
所述衬底基材包括但不限于透明玻璃基板或透明塑料基板,在制作柔 性OLED显示器时,衬底基材可以采用可弯折的透明塑料基板。
S52:将OLED器件承载于衬底基材上。
S53:在OLED器件上覆盖第一阻挡层,第一阻挡层远离OLED器件的一侧设置有第一图案区和第二图案区,第一图案区和第二图案区沿预定方向交错设置,第一阻挡层在第一图案区的厚度小于其在第二图案区的厚度。
该第一阻挡层远离OLED器件的一侧具有预定图案,例如,第一阻挡层可以包括沿平行于衬底基材方向(水平方向)间隔交替设置的多个带状区域,每一带状区域包括沿垂直方向依次交替连接的第一图案区和第二图案区,第一阻挡层在第一图案区的厚度小于其在第二图案区的厚度。而相邻两个带状区域之间的区域可视为第一阻挡层的第三图案区,第三图案区可以暴露OLED器件的表面。
本发明可采用PECVD方法形成第一阻挡层。具体而言:首先,将承载有OLED器件的衬底基材放置于一密封腔体中,并在OLED器件上放置掩膜板,掩膜板包括镂空区和非镂空区,镂空区包括相互导通的第一子区域和第二子区域,第一子区域的面积小于第二子区域的面积,且第一子区域和第二子区域可以均为矩形,第一子区域和第一图案区在俯视时的形状相同,第二子区域和第二图案区在俯视时的形状相同。然后,向密封腔体中通入反应气体,例如含有SiH4、NH3和N2的混合气体,接着对反应气体进行射频放电,使得反应气体反应生成SiNx,该SiNx通过掩膜板的镂空区沉积在OLED器件上,从而形成第一阻挡层。
当掩膜板的镂空区的数量小于第一图案区或第二图案区的数量时,本发明可以在一次PEVCD制程之后,水平移动掩膜板至预定区域,再次进行PEVCD制程。根据第一阻挡层所设计的第一图案区和第二图案区的图形和数量来确定移动的距离和次数,从而形成具有预定图案的第一阻挡层。
当然,本发明还可以采用ALD方法、PVD方法及CVD方法中的任一种,并结合所述掩膜板形成具有预定图案的第一阻挡层。
并且,第一阻挡层的制造材料还可以为其他无机物,例如铝的氮化物、铝的氧化物、铝的氮氧化物、硅的氧化物、硅的氮氧化物。
S54:在第一阻挡层上涂覆缓冲层,缓冲层中掺杂有导热粒子。
缓冲层可以完全覆盖第一图案区、第二图案区及第三图案区,即缓冲 层为完全覆盖第一阻挡层的一整面结构。当然,在本发明其他实施例中,缓冲层还可以仅覆盖第一图案区和第三图案区。另外,缓冲层中掺杂有导热粒子。并且,本发明可以采用光透过率高的导热材料制得导热粒子,以保证OLED器件的出光性能。
缓冲层的制造材料可以为有机物,例如环氧树脂、硅基聚合物、PMMA。导热粒子由导热系数较大的材料制得,例如石墨烯、碳纳米管、氧化铝、氧化镁、氧化锌、氮化铝、氮化硼,又例如银、铜、金、铝及其合金。
本发明无需掩膜板即可形成所述缓冲层,例如采用ODF方法、喷墨打印方法和喷嘴印刷方法中的任一种形成缓冲层,以节省掩膜板的设计与生产成本,从而降低整个封装组件的生产与制造成本。
以ODF方法为例,在实际应用场景中,首先对纳米级氧化铝粒子进行亲水改性,然后采用高速剪切分散乳化机将氧化铝粒子均匀分散到环氧树脂中,其中氧化铝粒子的掺杂量可以为3~50wt%,形成的缓冲溶液的粘度小于0.5Pa·s,最终在80~100℃的温度中进行固化,形成缓冲层。当然,本发明也可以采用UV固化方式形成缓冲层。
本发明还可以在步骤S54之后,形成覆盖缓冲层和第一阻挡层的第二阻挡层,即所述封装方法还可以包括步骤S55:
S55:形成覆盖缓冲层和第一阻挡层的第二阻挡层。
其中,第二阻挡层远离缓冲层的一面为光滑平面。该第二阻挡层的制造材料可以与第一阻挡层的制造材料相同。本发明无需掩膜板即可形成所述第二阻挡层,例如采用ODF方法、喷墨打印方法和喷嘴印刷方法中的任一种形成第二阻挡层,以节省成本。
上述OLED器件的封装方法可用于制得具有图2所示结构的封装组件,因此具有与其相同的有益效果。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,例如各实施例之间技术特征的相互结合,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (13)

  1. 一种OLED器件的封装组件,其中,所述封装组件包括:
    衬底基材,用于承载OLED器件;
    覆盖所述OLED器件的第一阻挡层,所述第一阻挡层远离所述OLED器件的一侧设置有第一图案区和第二图案区,所述第一图案区和第二图案区沿预定方向交错设置,所述第一阻挡层在第一图案区的厚度小于其在所述第二图案区的厚度;
    涂覆于所述第一阻挡层上的缓冲层,所述缓冲层中掺杂有导热粒子。
  2. 根据权利要求1所述的封装组件,其中,所述封装组件还包括第二阻挡层,用于覆盖所述缓冲层和所述第一阻挡层。
  3. 根据权利要求2所述的封装组件,其中,所述第二阻挡层远离所述缓冲层的一面为光滑平面。
  4. 根据权利要求1所述的封装组件,其中,所述导热粒子的制造材料包括可透光的导热材料。
  5. 一种显示装置,其中,所述显示装置包括封装组件,所述封装组件包括:
    衬底基材,用于承载OLED器件;
    覆盖所述OLED器件的第一阻挡层,所述第一阻挡层远离所述OLED器件的一侧设置有第一图案区和第二图案区,所述第一图案区和第二图案区沿预定方向交错设置,所述第一阻挡层在第一图案区的厚度小于其在所述第二图案区的厚度;
    涂覆于所述第一阻挡层上的缓冲层,所述缓冲层中掺杂有导热粒子。
  6. 根据权利要求5所述的显示装置,其中,所述封装组件还包括第二阻挡层,用于覆盖所述缓冲层和所述第一阻挡层。
  7. 根据权利要求6所述的显示装置,其中,所述第二阻挡层远离所述缓冲层的一面为光滑平面。
  8. 根据权利要求5所述的显示装置,其中,所述导热粒子的制造材料包括可透光的导热材料。
  9. 一种OLED器件的封装方法,其中,所述封装方法包括:
    提供一衬底基材;
    将OLED器件承载于所述衬底基材上;
    在所述OLED器件上覆盖第一阻挡层,所述第一阻挡层远离所述OLED器件的一侧设置有第一图案区和第二图案区,所述第一图案区和第二图案区沿预定方向交错设置,所述第一阻挡层在第一图案区的厚度小于其在所述第二图案区的厚度;
    在所述第一阻挡层上涂覆缓冲层,所述缓冲层中掺杂有导热粒子。
  10. 根据权利要求9所述的封装方法,其中,在所述第一阻挡层上涂覆缓冲层之后,所述封装方法还包括:
    形成覆盖所述缓冲层和所述第一阻挡层的第二阻挡层。
  11. 根据权利要求10所述的封装方法,其中,所述第二阻挡层远离所述缓冲层的一面为光滑平面。
  12. 根据权利要求9所述的封装方法,其中,采用可透光的导热材料制得所述导热粒子。
  13. 根据权利要求9所述的封装方法,其中,通过基于掩膜板的图案化工艺形成所述第一阻挡层。
PCT/CN2017/089704 2017-05-25 2017-06-23 Oled器件的封装组件及封装方法、显示装置 WO2018214215A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17911303.0A EP3629393A4 (en) 2017-05-25 2017-06-23 OLED DEVICE ENCAPSULATION ASSEMBLY AND ENCAPSULATION PROCESS, AND DISPLAY APPARATUS
JP2019564930A JP6895546B2 (ja) 2017-05-25 2017-06-23 Oledデバイスのパッケージアセンブリ及びパッケージ方法、ならびに表示装置
KR1020197038045A KR102327796B1 (ko) 2017-05-25 2017-06-23 Oled 소자의 봉지 모듈 및 봉지 방법, 디스플레이 장치
US15/541,538 US10141541B1 (en) 2017-05-25 2017-06-23 Package component of an OLED device and a package method thereof, and a display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710379285.8 2017-05-25
CN201710379285.8A CN106972113B (zh) 2017-05-25 2017-05-25 Oled器件的封装组件及封装方法、显示装置

Publications (1)

Publication Number Publication Date
WO2018214215A1 true WO2018214215A1 (zh) 2018-11-29

Family

ID=59327159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/089704 WO2018214215A1 (zh) 2017-05-25 2017-06-23 Oled器件的封装组件及封装方法、显示装置

Country Status (6)

Country Link
US (1) US10141541B1 (zh)
EP (1) EP3629393A4 (zh)
JP (1) JP6895546B2 (zh)
KR (1) KR102327796B1 (zh)
CN (1) CN106972113B (zh)
WO (1) WO2018214215A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107565059A (zh) 2017-10-09 2018-01-09 深圳市华星光电半导体显示技术有限公司 Qled器件的封装方法及封装结构
CN108155302B (zh) * 2018-01-31 2020-05-08 京东方科技集团股份有限公司 一种有机发光显示面板、其制备方法
CN109065748B (zh) * 2018-07-20 2020-02-14 云谷(固安)科技有限公司 显示面板及设有其的显示装置
CN110047877A (zh) * 2019-03-27 2019-07-23 武汉华星光电半导体显示技术有限公司 一种有机发光二极管显示面板、显示模组及电子装置
CN110176479B (zh) * 2019-05-30 2020-09-01 武汉华星光电半导体显示技术有限公司 显示面板及其制备方法
CN110265574A (zh) * 2019-06-25 2019-09-20 京东方科技集团股份有限公司 薄膜封装结构及其制作方法、元器件、显示面板和装置
CN110911582A (zh) * 2019-11-28 2020-03-24 云谷(固安)科技有限公司 显示面板及显示装置
CN111129030A (zh) * 2019-12-17 2020-05-08 武汉华星光电半导体显示技术有限公司 背板及显示面板
CN112467016A (zh) * 2020-11-16 2021-03-09 福建华佳彩有限公司 一种Mini LED的柔性封装散热结构及其制造方法
CN112802978A (zh) * 2021-01-08 2021-05-14 深圳市华星光电半导体显示技术有限公司 显示面板及其制备方法、显示装置
CN115911138A (zh) * 2021-09-28 2023-04-04 Tcl科技集团股份有限公司 封装结构、封装方法及显示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104733507A (zh) * 2015-04-09 2015-06-24 京东方科技集团股份有限公司 柔性显示装置和柔性显示装置的封装方法
CN105552246A (zh) * 2015-12-07 2016-05-04 上海天马微电子有限公司 柔性显示装置及柔性显示装置的制作方法
CN106450029A (zh) * 2016-10-25 2017-02-22 武汉华星光电技术有限公司 Oled显示装置及其制作方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10275681A (ja) * 1997-03-31 1998-10-13 Toyota Central Res & Dev Lab Inc 有機el素子
JP2004265776A (ja) * 2003-03-03 2004-09-24 Hitachi Ltd 有機elディスプレイ装置
JP2006128022A (ja) * 2004-11-01 2006-05-18 Seiko Epson Corp 発光装置、発光装置の製造方法、及び電子機器
JP5365891B2 (ja) * 2006-10-13 2013-12-11 日本ゼオン株式会社 発光素子用樹脂組成物、発光素子用積層体、発光素子
KR101735571B1 (ko) * 2010-08-20 2017-05-16 삼성전자주식회사 방열 재료, 상기 방열 재료로 만들어진 접합부를 포함하는 발광 다이오드 패키지
KR101261456B1 (ko) * 2010-12-29 2013-05-10 순천향대학교 산학협력단 보호막 및 이를 포함하는 전자 소자
JP5907722B2 (ja) * 2011-12-23 2016-04-26 株式会社半導体エネルギー研究所 発光装置の作製方法
DE102012200485A1 (de) * 2012-01-13 2013-07-18 Osram Opto Semiconductors Gmbh Organische lichtemittierende Vorrichtung und Verfahren zum Prozessieren einer organischen lichtemittierenden Vorrichtung
KR102097443B1 (ko) * 2013-05-09 2020-04-07 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
KR20150102179A (ko) * 2014-02-27 2015-09-07 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
JP2016111124A (ja) * 2014-12-04 2016-06-20 スタンレー電気株式会社 半導体装置及びその製造方法
CN104659271B (zh) * 2015-03-17 2017-03-01 京东方科技集团股份有限公司 一种有机发光二极管封装结构及封装方法、显示装置
CN105118927A (zh) * 2015-07-01 2015-12-02 深圳市华星光电技术有限公司 一种oled薄膜封装结构及其封装方法、显示装置
KR102330331B1 (ko) * 2015-07-17 2021-11-25 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
CN105304676A (zh) * 2015-09-22 2016-02-03 深圳市华星光电技术有限公司 柔性有机电致发光器件的封装结构、柔性显示装置
CN105206763B (zh) * 2015-10-21 2018-01-23 京东方科技集团股份有限公司 柔性显示器及其制造方法
CN106876424A (zh) * 2015-12-14 2017-06-20 上海和辉光电有限公司 一种有机发光显示器及其制备方法
CN105470409A (zh) * 2016-01-04 2016-04-06 京东方科技集团股份有限公司 一种oled封装结构及其制作方法、显示器件
CN105449121B (zh) * 2016-01-13 2017-08-25 京东方科技集团股份有限公司 Oled器件的封装方法、oled封装器件及显示装置
CN106384743B (zh) * 2016-10-20 2019-12-24 武汉华星光电技术有限公司 Oled显示器及其制作方法
CN106328826B (zh) * 2016-10-24 2019-04-30 武汉华星光电技术有限公司 Oled显示装置及其制作方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104733507A (zh) * 2015-04-09 2015-06-24 京东方科技集团股份有限公司 柔性显示装置和柔性显示装置的封装方法
CN105552246A (zh) * 2015-12-07 2016-05-04 上海天马微电子有限公司 柔性显示装置及柔性显示装置的制作方法
CN106450029A (zh) * 2016-10-25 2017-02-22 武汉华星光电技术有限公司 Oled显示装置及其制作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3629393A4 *

Also Published As

Publication number Publication date
CN106972113B (zh) 2018-09-11
US10141541B1 (en) 2018-11-27
EP3629393A1 (en) 2020-04-01
EP3629393A4 (en) 2021-01-13
JP2020521299A (ja) 2020-07-16
CN106972113A (zh) 2017-07-21
US20180342697A1 (en) 2018-11-29
KR102327796B1 (ko) 2021-11-18
JP6895546B2 (ja) 2021-06-30
KR20200008626A (ko) 2020-01-28

Similar Documents

Publication Publication Date Title
WO2018214215A1 (zh) Oled器件的封装组件及封装方法、显示装置
US20180342698A1 (en) Oled device packaging component, packaging method and display device thereof
US10243174B2 (en) OLED packaging structure and manufacturing method thereof and display device
EP3531454B1 (en) Oled display device and manufacturing method thereof
US10079367B2 (en) Waterproof and anti-reflective flexible OLED apparatus and method for manufacturing the same
WO2019127683A1 (zh) 显示面板及其制作方法
CN107403877B (zh) Oled面板的封装方法
CN105449121B (zh) Oled器件的封装方法、oled封装器件及显示装置
CN106567052B (zh) 掩膜板及oled器件的封装方法
CN106848088B (zh) 显示模组封装结构及其制备方法
WO2017156830A1 (zh) Oled器件的封装方法与oled封装结构
WO2016026225A1 (zh) 一种有机发光显示装置及有机发光二极管的封装方法
US20210159448A1 (en) Packaging method for display panel, display device and manufacturing method thereof
TW200535262A (en) Method and apparatus of depositing low temperature inorganic films on plastic substrates
WO2019051920A1 (zh) Oled显示面板的封装方法
WO2019080159A1 (zh) 制备oled薄膜封装层的方法、oled薄膜封装结构及oled结构
WO2020181591A1 (zh) 显示面板的制作方法、显示面板及电子设备
WO2020181569A1 (zh) 显示面板的制作方法、显示面板及电子设备
WO2020248420A1 (zh) 封装体、显示面板及显示面板的封装方法
WO2017166330A1 (zh) 石墨烯液晶显示装置、石墨烯发光元件及其制作方法
WO2020181587A1 (zh) 显示面板的制作方法、显示面板及电子设备
CN107845734A (zh) 一种薄膜封装材料、薄膜封装结构和oled显示面板
CN109585682A (zh) 一种发光器件的封装方法、封装结构及显示装置
WO2022246920A1 (zh) Oled显示面板
CN111584741B (zh) 显示基板、显示装置及其封装方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15541538

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17911303

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019564930

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017911303

Country of ref document: EP

Effective date: 20191122

ENP Entry into the national phase

Ref document number: 20197038045

Country of ref document: KR

Kind code of ref document: A