WO2018207683A1 - 変性処理により得られるブロック共重合体組成物及びその製造方法、並びにそれに用いられる変性ブロック共重合体組成物及びその製造方法 - Google Patents

変性処理により得られるブロック共重合体組成物及びその製造方法、並びにそれに用いられる変性ブロック共重合体組成物及びその製造方法 Download PDF

Info

Publication number
WO2018207683A1
WO2018207683A1 PCT/JP2018/017439 JP2018017439W WO2018207683A1 WO 2018207683 A1 WO2018207683 A1 WO 2018207683A1 JP 2018017439 W JP2018017439 W JP 2018017439W WO 2018207683 A1 WO2018207683 A1 WO 2018207683A1
Authority
WO
WIPO (PCT)
Prior art keywords
block copolymer
copolymer composition
group
block
conjugated diene
Prior art date
Application number
PCT/JP2018/017439
Other languages
English (en)
French (fr)
Inventor
浩輔 磯部
貞治 橋本
淳 野澤
涼嗣 亀山
篤史 野呂
貴都 梶田
裕秀 松下
Original Assignee
日本ゼオン株式会社
国立大学法人名古屋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社, 国立大学法人名古屋大学 filed Critical 日本ゼオン株式会社
Priority to JP2019517584A priority Critical patent/JP7071968B2/ja
Priority to EP18798618.7A priority patent/EP3623396A4/en
Priority to US16/609,836 priority patent/US11466150B2/en
Publication of WO2018207683A1 publication Critical patent/WO2018207683A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/46Reaction with unsaturated dicarboxylic acids or anhydrides thereof, e.g. maleinisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • C08L53/025Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • C08F8/32Introducing nitrogen atoms or nitrogen-containing groups by reaction with amines

Definitions

  • the present invention relates to a block copolymer composition containing a block copolymer having an aromatic vinyl polymer block and a conjugated diene polymer block. More specifically, the present invention has good elasticity and excellent stress relaxation properties. The present invention relates to a block copolymer composition.
  • Thermoplastic elastomers are used in various fields as stretchable materials because they exhibit rubber elasticity at room temperature and soften when heated to exhibit fluidity and are easy to mold.
  • thermoplastic elastomer When using a thermoplastic elastomer as a stretchable material for various purposes, it is required to have both a relatively high elastic modulus and a small permanent elongation. For this reason, various studies for improving the properties of thermoplastic elastomers have been conducted.
  • some of the present inventors have a chain A that is a hard polymer chain in a glassy state near room temperature and a chain B that is a soft polymer chain in a molten state near room temperature.
  • the monomer component is non-covalently bonded between molecules and pseudo-crosslinked by including a portion where a monomer having a functional group capable of non-covalent bonding is included in the B chain. It has been reported that elastic properties such as elongation, maximum stress and toughness are improved.
  • thermoplastic elastomers are also required to have excellent stress relaxation properties.
  • the stress is applied and deformed, the residual stress is large, which means that the force for returning to the original shape is large. Therefore, when the stress relaxation property is inferior, when a thermoplastic elastomer is applied to various members, a relatively large residual stress continues to be applied, and peeling and breakage easily occur. Therefore, it is also necessary to be able to reduce the applied stress so that the residual stress becomes as small as possible, that is, to have excellent stress relaxation properties.
  • thermoplastic elastomer further improvement is desired from the viewpoint of achieving both elasticity and stress relaxation at a high level.
  • the present invention has been made in view of the above circumstances, and has as its main object to provide a block copolymer composition having good elasticity and excellent stress relaxation properties.
  • thermoplastic elastomers a block having an aromatic vinyl polymer block and a conjugated diene polymer block that are particularly elastic and flexible.
  • a copolymer By using a copolymer and introducing a functional group capable of non-covalent bonding to this block copolymer, it was found that elasticity and stress relaxation properties were compatible at a high level, and the present invention was completed. .
  • a functional group capable of non-covalent bonding is introduced into the block copolymer (A) having at least one aromatic vinyl polymer block and at least one conjugated diene polymer block.
  • a block copolymer composition obtained by a modification treatment containing the block copolymer (B) is provided.
  • the functional group capable of non-covalent bonding is introduced into the block copolymer (A) or a group obtained by reacting a carboxyl group or acid anhydride group introduced into the block copolymer (A) or a base.
  • the acid anhydride group thus obtained can be converted into a group obtained by hydrolysis with a base.
  • the acid anhydride group is a group derived from an unsaturated dicarboxylic acid anhydride.
  • the base can be at least one selected from the group consisting of an alkali metal-containing compound, an alkaline earth metal-containing compound, ammonia and an amine compound.
  • the functional group capable of non-covalent bonding is preferably a functional group capable of hydrogen bonding.
  • the aromatic vinyl polymer block has a weight average molecular weight in the range of 3,000 to 50,000, and the conjugated diene polymer block has a vinyl bond content in the range of 0.1 mol% to 50 mol%. And the weight average molecular weight is preferably in the range of 10,000 to 500,000.
  • the aromatic vinyl polymer block is preferably polystyrene.
  • the conjugated diene polymer block is polybutadiene and / or polyisoprene.
  • the block copolymer (A) having at least one aromatic vinyl polymer block and at least one conjugated diene polymer block is added with an unsaturated carboxylic acid or an unsaturated dicarboxylic anhydride.
  • a method for producing a block copolymer composition is provided.
  • the unsaturated dicarboxylic acid anhydride is preferably reacted.
  • At least one base selected from the group consisting of alkali metal-containing compounds, alkaline earth metal-containing compounds, ammonia and amine compounds.
  • an unsaturated carboxylic acid or an unsaturated dicarboxylic anhydride is added to the block copolymer (A) having at least one aromatic vinyl polymer block and at least one conjugated diene polymer block.
  • the modified block copolymer composition containing the modified block copolymer (C) into which the carboxyl group or acid anhydride group derived from is introduced is provided.
  • the aromatic vinyl polymer block has a weight average molecular weight in the range of 3,000 to 50,000, and the conjugated diene polymer block has a vinyl bond content in the range of 0.1 mol% to 50 mol%. And the weight average molecular weight is preferably in the range of 10,000 to 500,000.
  • the aromatic vinyl polymer block is preferably polystyrene.
  • the conjugated diene polymer block is polybutadiene and / or polyisoprene.
  • the block copolymer (A) having at least one aromatic vinyl polymer block and at least one conjugated diene polymer block is added with an unsaturated carboxylic acid or an unsaturated dicarboxylic anhydride.
  • a method for producing a modified block copolymer composition which comprises a step of obtaining a modified block copolymer (C) having a carboxyl group or an acid anhydride group introduced therein.
  • the present invention has an effect of providing a block copolymer composition having good elasticity and excellent stress relaxation properties.
  • block copolymer composition obtained by the modification treatment of the present invention and the production method thereof and the modified block copolymer composition and the production method thereof will be described in detail.
  • Block copolymer composition obtained by modification treatment is a block having at least one aromatic vinyl polymer block and at least one conjugated diene polymer block.
  • the block copolymer (B) obtained by introducing a functional group capable of non-covalent bonding into the copolymer (A) is included.
  • block copolymer composition obtained by the modification treatment may be simply referred to as “block copolymer composition”.
  • the block copolymer (B) since the block copolymer (B) has a functional group capable of non-covalent bonding, a non-covalent bond is formed between the polymer chains by the functional group capable of non-covalent bonding to form a pseudo-crosslink. be able to. Since non-covalent bonds can be dissociated and recombined, the block copolymer composition of the present invention can realize different properties from conventional block copolymer compositions. .
  • the aromatic vinyl polymer block of the block copolymer melts and exhibits fluidity at a high temperature, but the aromatic vinyl polymer block of the block copolymer vitrifies at room temperature. It becomes a cross-linking point and exhibits elasticity.
  • Non-covalent bonds due to non-covalent functional groups act as non-covalent cross-linking points along with physical cross-linking points by the aromatic vinyl polymer block of the block copolymer, thus maintaining the elasticity of the block copolymer composition Or it can be improved.
  • the stress when stress or strain is applied, in principle, the stress can be dispersed by the increase in the number of non-covalent crosslinking points, and the stress can be reduced by recombination of functional groups capable of non-covalent bonding. It can be relaxed to protect the physical cross-linking points. That is, even if stress relaxation occurs, the physical cross-linking point is maintained, so that a decrease in elasticity can be suppressed.
  • the block copolymer (B) is formed by introducing a functional group capable of noncovalent bonding to the block copolymer (A), the aromatic vinyl polymer block and the conjugated diene
  • the high elasticity and flexibility of the block copolymer having a polymer block can be maintained.
  • a monomer having a functional group capable of noncovalent bonding is copolymerized, the copolymerization itself is difficult, and a desired block copolymer, that is, a block copolymer exhibiting high elasticity and flexibility is obtained. It may not be possible.
  • Block copolymer (B) The block copolymer (B) used in the present invention has a functional group capable of non-covalent bonding to the block copolymer (A) having at least one aromatic vinyl polymer block and at least one conjugated diene polymer block. Is introduced.
  • the block copolymer (B) is used as a polymer component of the block copolymer composition of the present invention.
  • block copolymer includes any form of a pure block copolymer, a random block copolymer, and a copolymer having a tapered block structure. It is.
  • Block copolymer (A) The block copolymer (A) has at least one aromatic vinyl polymer block and at least one conjugated diene polymer block.
  • Aromatic vinyl polymer block The aromatic vinyl polymer block of the block copolymer (A) has an aromatic vinyl monomer unit obtained by polymerizing an aromatic vinyl monomer as a main repeating unit. It is a constructed polymer block.
  • the aromatic vinyl monomer used for forming the aromatic vinyl polymer block is not particularly limited as long as it is an aromatic vinyl compound.
  • styrene styrene, styrenes having an alkyl group having 1 to 12 carbon atoms as a substituent, and styrenes having an ether group or an ester group as a substituent are preferable from the viewpoint of availability, and styrene is used. Particularly preferred. That is, the aromatic vinyl polymer block is preferably polystyrene.
  • the aromatic vinyl polymer block may contain other monomer units as long as the aromatic vinyl monomer unit is the main repeating unit.
  • Monomers constituting monomer units other than aromatic vinyl monomer units that can be included in the aromatic vinyl polymer block include 1,3-butadiene and isoprene (2-methyl-1,3-butadiene).
  • Conjugated diene monomers such as ⁇ , ⁇ -unsaturated nitrile monomers such as acrylonitrile and methacrylonitrile; unsaturated carboxylic acid anhydrides such as maleic anhydride, butenyl succinic anhydride, tetrahydrophthalic anhydride, and citraconic anhydride Monomer; unsaturated carboxylic acid ester monomers such as methyl acrylate, ethyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, 2-ethylhexyl methacrylate; 1,4-pentadiene, 1 , 4-hexadiene and the like, and preferably a non-conjugated diene monomer having 5 to 12 carbon atoms;
  • the block copolymer (A) has a plurality of aromatic vinyl polymer blocks
  • the plurality of aromatic vinyl polymer blocks may be the same or different.
  • the content of the aromatic vinyl monomer unit in the aromatic vinyl polymer block is preferably 80% by mass or more, more preferably 90% by mass or more, and substantially 100% by mass. Particularly preferred. When the content of the aromatic vinyl monomer unit in the aromatic vinyl block is within the above range, high elastic modulus and stress relaxation can be achieved at a high level.
  • the content of the aromatic vinyl monomer unit in all the monomer units of the block copolymer (A) is not particularly limited, but is usually selected within the range of 5% by mass to 90% by mass, preferably It is selected within the range of 10% to 60% by weight. If the content of the aromatic vinyl monomer unit in the block copolymer (A) is in the above range, the resulting block copolymer composition can achieve both high elastic modulus and stress relaxation at a high level. it can.
  • the content of the aromatic vinyl monomer unit in the block copolymer can be measured using 1 H-NMR.
  • the block copolymer (A) has a conjugated diene polymer block composed of a conjugated diene monomer unit obtained by polymerizing a conjugated diene monomer as a main repeating unit. It is a coalesced block.
  • the conjugated diene monomer used for forming the conjugated diene polymer block is not particularly limited as long as it is a conjugated diene compound.
  • 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 2-chloro-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene and the like can be exemplified.
  • These conjugated diene monomers can be used alone or in combination of two or more.
  • the conjugated diene polymer block is preferably polybutadiene and / or polyisoprene.
  • the conjugated diene polymer block is composed of isoprene units, a block copolymer composition having excellent flexibility and stress relaxation properties can be obtained.
  • the conjugated diene polymer block may contain other monomer units as long as the conjugated diene monomer unit is the main repeating unit.
  • Monomers constituting monomer units other than conjugated diene monomer units that can be included in the conjugated diene polymer block include aromatic vinyl monomers such as styrene and ⁇ -methylstyrene; Examples include saturated nitrile monomers; unsaturated carboxylic acid anhydride monomers; unsaturated carboxylic acid ester monomers; non-conjugated diene monomers; In addition, about the specific example of each monomer, it can be made to be the same as that of the monomer which comprises monomer units other than the aromatic vinyl monomer unit which can be contained in the above-mentioned aromatic vinyl polymer block. .
  • the block copolymer (A) has a plurality of conjugated diene polymer blocks
  • the plurality of conjugated diene polymer blocks may be the same or different.
  • a part of the unsaturated bond of the conjugated diene polymer block may be hydrogenated.
  • the content of the conjugated diene monomer unit in the conjugated diene polymer block is preferably 80% by mass or more, more preferably 90% by mass or more, and particularly preferably substantially 100% by mass. .
  • the content of the conjugated diene monomer unit in the conjugated diene polymer block is in the above range, both high elastic modulus and stress relaxation can be achieved at a high level.
  • the vinyl bond content of the conjugated diene polymer block (the proportion of 1,2-vinyl bonds and 3,4-vinyl bonds in all conjugated diene monomer units in the conjugated diene polymer block) is particularly limited. However, it is preferably in the range of 0.1 mol% to 50 mol%, more preferably in the range of 1 mol% to 30 mol%, and in the range of 3 mol% to 10 mol%. It is particularly preferred. If the vinyl bond content is too high, the permanent elongation of the resulting block copolymer composition may increase.
  • the vinyl bond content of the conjugated diene polymer block can be measured using 1 H-NMR.
  • Block copolymer (A) As long as the block copolymer (A) has at least one aromatic vinyl polymer block and at least one conjugated diene polymer block, the number of each polymer block and the bonding form thereof are particularly limited. Not.
  • Ar represents an aromatic vinyl polymer block
  • D represents a conjugated diene polymer block
  • X represents a single bond or a residue of a coupling agent
  • n represents an integer of 2 or more
  • Ar-D -Aromatic vinyl-conjugated diene-aromatic vinyl-conjugated diene block copolymer represented as Ar-D and a mixture of block copolymers obtained by mixing two or more of these in any combination Although not limited to these, it is not limited to these.
  • the coupling agent is not particularly limited as long as it is bifunctional.
  • bifunctional halogenated silanes such as dichlorosilane, monomethyldichlorosilane, dimethyldichlorosilane; dichloroethane, dibromoethane.
  • Difunctional halogenated alkanes such as methylene chloride and dibromomethane
  • bifunctional tin halides such as dichlorotin, monomethyldichlorotin, dimethyldichlorotin, monoethyldichlorotin, diethyldichlorotin, monobutyldichlorotin and dibutyldichlorotin And the like.
  • These coupling agents may be used singly or in combination of two or more.
  • the weight average molecular weight of the block copolymer (A) is not particularly limited, but is usually preferably 30,000 to 500,000, preferably 60,000 to 470,000, and 90,000 to 450,000. It is more preferable that
  • the weight average molecular weight of each polymer block of the block copolymer (A) is not particularly limited.
  • the weight average molecular weight of the aromatic vinyl polymer block is preferably in the range of 3,000 to 50,000, more preferably in the range of 6,000 to 20,000.
  • the weight average molecular weight of the conjugated diene polymer block is preferably in the range of 10,000 to 500,000, and more preferably in the range of 40,000 to 400,000. If the weight average molecular weight of the conjugated diene polymer block is in the above range, the resulting block copolymer composition can achieve both high elastic modulus and stress relaxation at a high level.
  • the weight average molecular weight (Mw) of a block copolymer shall be calculated
  • the distribution is also not particularly limited, but is usually 1.8 or less, preferably 1.3 or less, more preferably 1.1 or less. If the molecular weight distribution of the block copolymer (A) and each polymer block constituting the block copolymer (A) is in the above range, the resulting block copolymer composition has high elastic modulus and stress relaxation properties. Can be achieved at a high level.
  • the melt index of the block copolymer (A) is not particularly limited, but is usually 1 to 1000 g / 10 minutes as a value measured according to ASTM D-1238 (G condition, 200 ° C., 5 kg), The amount is preferably 3 to 700 g / 10 minutes, more preferably 5 to 500 g / 10 minutes.
  • the block copolymer (A) can be produced according to a conventional method.
  • the manufacturing method of a block copolymer (A) it describes in the term of the below-mentioned "B. Manufacturing method of a block copolymer composition.”
  • block copolymer As the block copolymer (A), it is also possible to use a commercially available block copolymer as the block copolymer (A).
  • “Quintac (registered trademark)” manufactured by Nippon Zeon Co., Ltd.
  • JSR-SIS registered trademark
  • JSR manufactured by JSR
  • Vector registered trademark
  • Asaprene (registered trademark)” Trademark "" Tufprene (registered trademark) ",” Tuftec (registered trademark) "(manufactured by Asahi Kasei Chemicals),” Septon (registered trademark) "(manufactured by Kuraray),” Kraton (registered trademark) "(Kraton JSR Elastomers) Etc.)
  • JSR-SIS registered trademark
  • JSR manufactured trademark
  • Vector registered trademark
  • Asaprene (registered trademark)” Trademark "
  • Tufprene (registered trademark) Tuftec
  • Non-covalent bonding examples include hydrogen bonding, coordination bonding, and ionic bonding.
  • the functional group capable of noncovalent bonding is preferably a functional group capable of hydrogen bonding. This is because the hydrogen bonding has a moderate associating force per bond (that is, the bonding force is weak or the relaxation time is short) and rearrangement is possible.
  • Examples of the functional group capable of noncovalent bonding include an amide group, an imide group, a urethane bond, a carboxyl group or a salt thereof, and a hydroxyl group or a salt thereof.
  • the functional group capable of hydrogen bonding is preferably at least one selected from the group consisting of an amide group, an imide group, a urethane bond, a carboxyl group, and a hydroxyl group.
  • the block copolymer (B) may have a functional group capable of noncovalent bonding, and the functional group capable of noncovalent bonding may be directly bonded to the block copolymer, for example, via a linking group. May be combined.
  • the block copolymer (B) is obtained by introducing a functional group capable of non-covalent bonding into the block copolymer (A).
  • Any non-covalent bondable functional group can be introduced as long as it can introduce a noncovalent bondable functional group into the block copolymer (A).
  • the method using is mentioned.
  • a modification method using a modifier is preferable. That is, the functional group capable of non-covalent bonding preferably includes a residue of a modifier.
  • a functional group capable of non-covalent bonding may be introduced by modification with the modifier, and a functional group capable of non-covalent bonding is introduced by further reaction after modification with the modifier. May be.
  • the “residue of the modifying agent” means a reaction product produced when the modifying agent reacts with the block copolymer (A), or the modifying agent reacts with the block copolymer (A). In the reaction product produced when reacting with the above compound, the part derived from the modifier.
  • Examples of the modifier include an acid modifier.
  • Examples of the acid modifier include unsaturated carboxylic acid and unsaturated dicarboxylic acid anhydride. Of these, unsaturated dicarboxylic acid anhydrides are preferred from the standpoint of ease of reaction, economy, and the like. The unsaturated carboxylic acid and unsaturated dicarboxylic acid anhydride will be described later.
  • the acid modifier is an unsaturated carboxylic acid
  • a carboxyl group derived from the unsaturated carboxylic acid is introduced into the block copolymer (A).
  • the carboxyl group is a group capable of non-covalent bonding.
  • the carboxyl group can be converted into another functional group capable of non-covalent bonding by further reaction after modification with an acid modifier.
  • an acid anhydride group derived from the unsaturated dicarboxylic acid anhydride is introduced into the block copolymer (A).
  • the acid modifier is an unsaturated dicarboxylic acid anhydride
  • the acid anhydride group can be converted into a functional group capable of noncovalent bonding by further reaction after modification with the acid modifier.
  • the acid anhydride group can be converted into a noncovalent functional group by reacting the acid anhydride group with a base or hydrolyzing the acid anhydride group with a base by base treatment. .
  • the method for introducing a functional group capable of non-covalent bonding is preferably a method for introducing a functional group capable of non-covalent bonding by further base treatment after modification with an acid modifier. That is, the block copolymer (B) is preferably obtained by further base-treating the modified block copolymer (C) obtained by acid-modifying the block copolymer (A). That is, the functional group capable of non-covalent bonding is a group obtained by reacting a carboxyl group or acid anhydride group introduced into the block copolymer (A) with a base, or the block copolymer (A). A group obtained by hydrolyzing the introduced acid anhydride group with a base is preferable.
  • the functional group capable of non-covalent bonding is preferably a group obtained by reacting an acid anhydride group introduced into the block copolymer (A) with a base.
  • the method for introducing such a functional group capable of non-covalent bonding will be described in detail in the section “B. Method for producing block copolymer composition” described later.
  • the block copolymer (A) when the functional group capable of noncovalent bonding is a group obtained by reacting a carboxyl group or an acid anhydride group introduced into the block copolymer (A) with a base, the block copolymer (A) It is sufficient that at least a part of the introduced carboxyl group or acid anhydride group reacts with the base, and a part of the carboxyl group or acid anhydride group may react with the base, and the entire carboxyl group or acid anhydride group. May react with a base. That is, the block copolymer (B) is introduced into the block copolymer (A) and a group obtained by reacting the carboxyl group or acid anhydride group introduced into the block copolymer (A) with a base. It may have both a carboxyl group or an acid anhydride group.
  • the functional group capable of noncovalent bonding is a group obtained by hydrolyzing an acid anhydride group introduced into the block copolymer (A) with a base, it was introduced into the block copolymer (A). It is sufficient that at least a part of the acid anhydride group is hydrolyzed, a part of the acid anhydride group may be hydrolyzed, and the whole of the acid anhydride group may be hydrolyzed. That is, the block copolymer (B) includes a group obtained by hydrolyzing an acid anhydride group introduced into the block copolymer (A) with a base, and an acid anhydride introduced into the block copolymer (A). You may have both a physical group.
  • Specific examples of the group obtained by reacting a carboxyl group or acid anhydride group with a base include metal salts of amide groups and carboxyl groups.
  • Specific examples of the group obtained by hydrolyzing the acid anhydride group with a base include a carboxyl group.
  • the functional group capable of noncovalent bonding preferably has a residue of an acid modifier, specifically, preferably has a residue of an unsaturated carboxylic acid or an unsaturated dicarboxylic anhydride, It is more preferable to have a saturated dicarboxylic acid anhydride residue.
  • unsaturated carboxylic acids include ethylenically unsaturated carboxylic acids having 8 or less carbon atoms such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, and 3,6-endomethylene- Examples include Diels-Alder adducts of conjugated dienes such as 1,2,3,6-tetrahydrophthalic acid and ⁇ , ⁇ -unsaturated dicarboxylic acids having 8 or less carbon atoms.
  • Examples of the unsaturated dicarboxylic acid anhydride include ⁇ , ⁇ -unsaturated dicarboxylic acid anhydrides having 8 or less carbon atoms such as maleic anhydride, itaconic anhydride, citraconic anhydride, and 3,6-endomethylene-1,2 And Diels-Alder adducts of conjugated dienes such as 3,6-tetrahydrophthalic anhydride and ⁇ , ⁇ -unsaturated dicarboxylic anhydrides having 8 or less carbon atoms.
  • unsaturated dicarboxylic acid anhydrides are preferable, ⁇ , ⁇ -unsaturated aliphatic dicarboxylic acid anhydrides having 8 or less carbon atoms are more preferable, and maleic anhydride is particularly preferable.
  • the functional group capable of non-covalent bonding may be composed of a residue of one or more unsaturated carboxylic acids or unsaturated dicarboxylic anhydrides.
  • the base is not particularly limited as long as it can react with a carboxyl group or an acid anhydride group to form a functional group capable of noncovalent bonding, or can hydrolyze an acid anhydride group. And at least one selected from the group consisting of an alkaline earth metal-containing compound, ammonia and an amine compound.
  • the alkali metal-containing compound include oxides, hydroxides, carbonates, bicarbonates, acetates, sulfates, phosphates and the like of alkali metals such as sodium, lithium, and potassium.
  • alkaline earth metal-containing compound examples include oxides, hydroxides, carbonates, hydrogen carbonates, acetates, sulfates, phosphates and the like of alkaline earth metals such as magnesium and calcium.
  • the amine compound may be any of a primary amine compound, a secondary amine compound, and a tertiary amine compound.
  • the amine compound may be a monoamine or a diamine, but monoamine is preferably used because it is easily available.
  • Examples of the amine compound include aliphatic amines, aromatic amines, alicyclic amines, and heterocyclic amines. Of these, aliphatic amines are preferred, alkyl amines having 1 to 12 carbon atoms are particularly preferred, and alkyl amines having 2, 4 or 6 carbon atoms are more preferred.
  • the base is preferably one selected from the group consisting of ammonia, a primary amine compound and a secondary amine compound. This is because an amide group can be generated by reacting with a carboxyl group or an acid anhydride group.
  • the introduction rate of the functional group capable of non-covalent bonding in the block copolymer (B) may be within a range in which the effect of the present invention can be obtained. In the mol%, it can be in the range of 0.1 mol% or more and 75 mol% or less, and preferably in the range of 0.5 mol% or more and 50 mol% or less. If the introduction rate of non-covalent functional groups is too high, many non-covalent bonds (non-covalent cross-linking points) are formed, and the physical cross-linking points before non-covalent functional group rearrangement occurs This is because stress concentrates on the surface and breaks easily.
  • the introduction rate of a functional group capable of noncovalent bonding can be calculated using 1 H-NMR. The introduction of a functional group capable of noncovalent bonding can be confirmed by 1 H-NMR and / or infrared spectroscopic analysis.
  • the block copolymer composition of the present invention may contain only the block copolymer (B) as a polymer component, but may contain other polymer components.
  • the block copolymer composition of the present invention may contain a block copolymer (A) in addition to the block copolymer (B), for example. That is, when the block copolymer composition of the present invention contains two or more block copolymers having at least one aromatic vinyl polymer block and at least one conjugated diene polymer block, at least one kind is used.
  • the block copolymer only needs to have a functional group capable of noncovalent bonding.
  • Aromatic vinyl-conjugated diene-aromatic vinyl block copolymer conjugated diene homopolymer, aromatic vinyl-conjugated diene random copolymer, and branched polymers thereof; polyurethane-based thermoplastic elastomer, polyamide-based thermoplastic And thermoplastic elastomers such as elastomers and polyester thermoplastic elastomers; thermoplastic resins such as polyethylene, polypropylene, polyvinyl chloride, acrylonitrile-styrene copolymers, acrylonitrile-butadiene-styrene copolymers, and polyphenylene ether.
  • the content of these other polymers in the block copolymer composition is preferably less than 50% by mass, and more preferably 20% by mass or less.
  • the block copolymer composition of the present invention may contain polyethylene wax as necessary.
  • the polyethylene wax is a wax having an ethylene monomer unit as a main constituent unit.
  • the polyethylene wax used in the present invention is not particularly limited, but those having a viscosity at 140 ° C. of 20 to 6,000 mPa ⁇ s are preferably used.
  • Polyethylene wax is generally produced by polymerization of ethylene or decomposition of polyethylene, but any polyethylene wax may be used in the present invention.
  • Polyethylene wax is commercially available, and specific examples include “AC polyethylene” (Honeywell), “Mitsui High Wax” (Mitsui Chemicals), “Sun Wax” (Sanyo Kasei). Kogyo Co., Ltd.) and “Epollen” (Eastman Chemical Co.). These waxes may be modified (functionalized).
  • the block copolymer composition of the present invention can contain an antioxidant as necessary.
  • the type is not particularly limited.
  • pentaerythritol tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-t-butyl- Hindered phenol compounds such as 4-hydroxyphenyl) propionate, 2,6-di-t-butyl-p-cresol, di-t-butyl-4-methylphenol
  • thiodicarboxy such as dilauryl thiopropionate Rate esters
  • phosphites such as tris (nonylphenyl) phosphite can be used.
  • An antioxidant may be used individually by 1 type and may be used in combination of 2 or more type.
  • the content of the antioxidant is not particularly limited, but is usually 10 parts by mass or less, preferably 0.01 to 5 parts by mass, per 100 parts by mass of the polymer component of the block copolymer composition.
  • block copolymer composition of the present invention may further include a tackifier resin, a softener, an antibacterial agent, a light stabilizer, an ultraviolet absorber, a dye, a lubricant other than fatty acid monoamide and polyethylene wax, if necessary. Can be added.
  • the method of mixing the block copolymer and other components is not particularly limited.
  • the method of removing a solvent by heating etc. and the method of melt-mixing each component with a screw extruder, a kneader, etc. can be mentioned.
  • melt mixing is preferable from the viewpoint of more efficient mixing.
  • the temperature at the time of melt mixing is not particularly limited, but is usually in the range of 100 to 200 ° C.
  • the use of the block copolymer composition of the present invention is not particularly limited, and examples thereof include various technical fields such as the medical field, the adhesive field, the electronic field, and the optical field.
  • films, gloves, elastic bands, contraceptives, OA equipment, office rolls, anti-vibration sheets for electrical and electronic equipment, anti-vibration rubber, shock absorbing sheets, shock-absorbing films / sheets, residential damping sheets For molding materials used for vibration damper materials, adhesive tapes, adhesive sheets, adhesive labels, adhesives used for dust removal rollers, adhesives used for sanitary goods and bookbinding, clothing, sports equipment, etc.
  • the elastic fiber use etc. which are used can be mentioned.
  • a method for producing a block copolymer composition of the present invention comprises a block copolymer having at least one aromatic vinyl polymer block and at least one conjugated diene polymer block ( A) is reacted with an unsaturated carboxylic acid or unsaturated dicarboxylic acid anhydride to obtain a modified block copolymer (C) having a carboxyl group or an acid anhydride group introduced therein, and the modified block copolymer And a second step of obtaining a block copolymer (B) into which a functional group capable of noncovalent bonding has been introduced by subjecting the union (C) to a base treatment.
  • the method for producing the block copolymer composition of the present invention is a suitable method for producing the block copolymer composition described in the above-mentioned section “A. Block copolymer composition obtained by modification treatment”.
  • Block copolymer (A) The block copolymer (A) used in the first step is the same as the block copolymer (A) described in the above section “A. Block copolymer composition obtained by modification treatment”. be able to.
  • the block copolymer (A) can be produced according to a conventional method. Radical living polymerization, cationic living polymerization, ring-opening metathesis polymerization, etc. may be used, but the most common production method is that an aromatic vinyl monomer and a conjugated diene monomer are separated by anionic living polymerization, respectively. A method of sequentially polymerizing to form a polymer block and, if necessary, coupling with a coupling agent can be mentioned.
  • the method for obtaining the block copolymer mixture is not particularly limited, and the block copolymer (A) is produced according to a conventional block copolymer production method. be able to.
  • two or more types of block copolymers are produced separately, and if necessary, other polymer components and various additives are blended and then mixed in accordance with conventional methods such as kneading and solution mixing. Can be manufactured.
  • the method for obtaining a mixture of block copolymers is, for example, after obtaining an aromatic vinyl-conjugated diene block copolymer a and then, at the end of part of the aromatic vinyl-conjugated diene block copolymer a, an aromatic group.
  • a method may be used in which a vinyl polymer block is bonded to obtain an aromatic vinyl-conjugated diene-aromatic vinyl block copolymer b, that is, a method in which two types of block copolymers are simultaneously prepared.
  • the obtained block copolymer mixture may be used after being processed into a pellet shape or the like according to a conventional method.
  • Block copolymer composition obtained by modification treatment a commercially available block copolymer can be used as the block copolymer.
  • the block copolymer (A) is reacted with an unsaturated carboxylic acid or unsaturated dicarboxylic acid anhydride to introduce a modified block copolymer (carboxyl group or acid anhydride group introduced) ( C) is obtained. That is, the block copolymer (A) is acid-modified with an unsaturated carboxylic acid or an unsaturated dicarboxylic anhydride to obtain a modified block copolymer (C).
  • the acid modification may be performed once or a plurality of times. When acid modification is performed a plurality of times, the conditions for acid modification may be the same or different at each time.
  • the unsaturated carboxylic acid and unsaturated dicarboxylic acid anhydride used as the acid modifier in the acid modification reaction are the same as those described in the above-mentioned section “A. Block copolymer composition obtained by modification treatment”. is there. Unsaturated carboxylic acid and unsaturated dicarboxylic anhydride can be used individually or in combination of 2 or more types.
  • the amount of the unsaturated carboxylic acid and unsaturated dicarboxylic anhydride used is usually 0.01 to 200 parts by weight, preferably 0.05 to 100 parts by weight, based on 100 parts by weight of the block copolymer (A). is there.
  • the reaction temperature of the acid modification reaction can usually be in the range of 50 to 300 ° C. If the reaction temperature is too low, the reaction efficiency is inferior, and the content of unreacted unsaturated carboxylic acid and unsaturated dicarboxylic acid anhydride in the modified block copolymer (C) may increase.
  • the reaction time can usually be in the range of 5 minutes to 20 hours. If the reaction time is too short, the reaction efficiency is inferior, and the content of unreacted unsaturated carboxylic acid and unsaturated dicarboxylic acid anhydride in the modified block copolymer (C) may increase.
  • a diluent an antigelling agent, a reaction accelerator, and the like may be present as necessary during the acid modification reaction.
  • the acid value of the modified block copolymer (C) is preferably 1.3 to 1050 KOHmg / g, and more preferably 6.5 to 700 KOHmg / g. This is because if the acid value is too low or the acid value is too high, the desired elasticity and stress relaxation properties may not be obtained in the resulting block copolymer composition.
  • the acid value is, for example, a value measured according to JIS K 0070 for the modified block copolymer (C).
  • the introduction rate of the carboxylic group and the acid anhydride group in the modified block copolymer (C) is, for example, from 0.1 mol% to 75 in 100 mol% of the conjugated diene monomer unit in the modified block copolymer (C). It can be in the range of mol% or less, and preferably in the range of 0.5 mol% or more and 50 mol% or less. This is because if the introduction ratio of the carboxyl group and the acid anhydride group is too low or too high, the desired elasticity and stress relaxation properties may not be obtained in the resulting block copolymer composition.
  • the introduction rate of carboxyl group and acid anhydride group can be calculated using 1 H-NMR. Further, the introduction of a carboxyl group and an acid anhydride group can be confirmed by 1 H-NMR and / or infrared spectroscopic analysis.
  • the modified block copolymer (C) is treated with a base to obtain a block copolymer (B) into which a functional group capable of noncovalent bonding is introduced.
  • the base treatment may be performed once or a plurality of times.
  • the conditions for the base treatment may be the same each time or different.
  • the base used in the base treatment is the same as that described in the above-mentioned section “A. Block copolymer composition obtained by modification treatment”.
  • a base can be used individually or in combination of 2 or more types.
  • the base treatment varies depending on the type of carboxyl group and acid anhydride group introduced into the modified block copolymer (C) and the type of base.
  • carboxyl group and an acid anhydride group when ammonia, a primary amine compound, or a secondary amine compound is used as a base, the carboxyl group or acid anhydride group reacts with the base in the base treatment. And can be a functional group capable of non-covalent bonding. That is, in this case, in the base treatment, the modified block copolymer (C) can be modified with an amine.
  • an acid anhydride group when an alkali metal-containing compound, an alkaline earth metal-containing compound, or a tertiary amine compound is used as a base, the acid anhydride group is hydrolyzed with a base in the base treatment.
  • a functional group capable of noncovalent bonding when an alkali metal-containing compound, an alkaline earth metal-containing compound, or a tertiary amine compound is used as a base, the acid anhydride group is hydrolyzed with a base in the base treatment.
  • the amount of base used is appropriately selected according to the type of base treatment.
  • the amount of the base used is the carboxyl group introduced into the modified block copolymer (C).
  • it can be used in an equimolar amount or more with respect to the acid anhydride group, specifically about 1 to 2 moles.
  • the amount of the base used is not particularly limited, but for example, an acid anhydride introduced into the modified block copolymer (C) It can be equimolar or more with respect to the group.
  • the base treatment may be performed without a solvent or in a solvent.
  • the solvent include aliphatic halogenated hydrocarbons having 1 to 2 carbon atoms such as 1,2-dichloroethane, chloroform, dichloromethane, 1,1-dichloroethane, cyclohexane, methylcyclohexane, cyclohexane.
  • Examples include aliphatic cyclic hydrocarbons such as pentane, nitromethane, nitrobenzene, acetonitrile, tetrahydrofuran, tetrahydropyran, 1,2-dimethoxyethane, acetone, methyl ethyl ketone, dimethyl sulfoxide, dimethylformamide, pyrrolidone, and water.
  • a solvent may be used independently and may mix and use 2 or more types.
  • the reaction temperature of the base treatment varies depending on the type of carboxyl group and acid anhydride group introduced into the modified block copolymer (C), and the type of base, and can be, for example, 0 to 200 ° C., The temperature is preferably 10 to 150 ° C. If the reaction temperature is too low, the reaction rate is slow, and if it is too high, the modified block copolymer (C) may be thermally decomposed.
  • the reaction time varies depending on the reaction temperature, but can be, for example, 1 minute to 40 hours, preferably 3 minutes to 2 hours. If the reaction time is too short, the reaction does not proceed sufficiently, and if it is too long, the reaction efficiency may be poor.
  • the removal method is appropriately selected depending on the base treatment and the type of base, and examples thereof include washing, neutralization, filtration, and drying.
  • the modified block copolymer composition of the present invention comprises a block copolymer (A) having at least one aromatic vinyl polymer block and at least one conjugated diene polymer block.
  • the modified block copolymer (C) into which a carboxyl group or an acid anhydride group derived from an unsaturated carboxylic acid or an unsaturated dicarboxylic acid anhydride is introduced is included.
  • the modified block copolymer composition of the present invention is suitably used as a precursor of the block copolymer composition described in the above-mentioned section “A. Block copolymer composition obtained by modification treatment”.
  • the block copolymer (A) can be the same as the block copolymer (A) described in the above section “A. Block copolymer composition obtained by modification treatment”.
  • the modified block copolymer (C) can be the same as the modified block copolymer (C) described in the above-mentioned section “B. Production method of block copolymer composition”.
  • the modified block copolymer composition of the present invention may contain only the modified block copolymer (C) as a polymer component, but may contain other polymer components.
  • the other polymer components can be the same as the other polymer components described in the above section “A. Block copolymer composition obtained by modification treatment, 2. Other polymer”. .
  • the modified block copolymer composition of the present invention may contain other components as necessary.
  • Other components may be the same as those described in the above-mentioned section “A. Block copolymer composition obtained by modification treatment, 3. Other components”.
  • the method for producing a modified block copolymer composition of the present invention comprises a block copolymer having at least one aromatic vinyl polymer block and at least one conjugated diene polymer block. It is a production method comprising a step of obtaining a modified block copolymer (C) having a carboxyl group or an acid anhydride group introduced by reacting the union (A) with an unsaturated carboxylic acid or an unsaturated dicarboxylic acid anhydride. .
  • the method for producing the modified block copolymer composition of the present invention is a preferred method for producing the modified block copolymer composition described in the above-mentioned section “C. Modified Block Copolymer Composition”.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.
  • Example 1 In Example 1, Quintac (registered trademark) 3520 (polystyrene-polyisoprene block copolymer composition, manufactured by Nippon Zeon Co., Ltd.) was used as a block copolymer serving as a base polymer, and maleic anhydride was formed according to the following reaction. Next, modification with amine was performed. The specific procedure is shown below.
  • a base polymer block copolymer (Quintac 3520), an anti-aging agent N- (1,3-dimethylbutyl) -N′-phenyl-1,4-phenylenediamine (hereinafter referred to as 6PPD), and a solvent Cyclohexane and 5.00 g, 17.2 mg, and 25.0 g, respectively, were weighed and mixed with a magnetic stirrer in a round bottom flask at room temperature for 14.5 hours to prepare a solution. To this solution, 23.2 g of a high boiling point solvent di-n-octyl phthalate (hereinafter referred to as DNOP) was added and mixed. For 30 minutes.
  • DNOP a high boiling point solvent di-n-octyl phthalate
  • the purified maleic anhydride-modified block copolymer is dissolved in deuterated chloroform to prepare a solution of about 2% by mass, and the polyisoprene block in the block copolymer is prepared by proton nuclear magnetic resonance spectroscopy ( 1 H-NMR). The rate of introduction of acid anhydride groups derived from maleic anhydride was determined.
  • a peak derived from an acid anhydride group derived from maleic anhydride was observed at 2.7 to 3.4 ppm, a peak from 6.1 to 7.23 ppm derived from the phenyl group of polystyrene, and a poly (3,4-isoprene) ) Derived from maleic anhydride from an integral ratio of a peak at 4.5 to 4.85 ppm derived from) and a peak at 4.85 to 5.4 ppm derived from poly (1,2-isoprene) The introduction rate of was estimated to be 11.2 mol%.
  • the polymer was dissolved in tetrahydrofuran (hereinafter referred to as THF) to prepare a solution of about 0.5% by mass and measured by gel permeation chromatography (GPC).
  • THF tetrahydrofuran
  • the eluent was THF, the flow rate was 1 mL / min, and measurement was performed with three TSK-GEL columns 5000HHR manufactured by Tosoh Corporation connected. It was confirmed that almost no cleavage of the conjugated diene portion occurred.
  • the polymer was dissolved in THF to prepare an approximately 8% by mass solution, and 10 drops of the solution was dropped on an aluminum plate with a Pasteur pipette and allowed to stand at room temperature for 3 hours or more to evaporate THF. . Thereafter, the solvent was completely removed by drying for 3 hours or more using a vacuum dryer, and reflection Fourier transform infrared absorption spectroscopy (FT-IR) measurement was performed on the obtained film.
  • FT-IR reflection Fourier transform infrared absorption spectroscopy
  • the acid anhydride group and n-butylamine were in an equimolar amount.
  • the sample bottle was purged with nitrogen, and stirred on a hot plate at 50 ° C. at 300 rpm for about 13 hours.
  • the solution after the reaction was transferred to a 20 mL Teflon (registered trademark) beaker and allowed to stand at room temperature for 1.5 days to evaporate the THF solvent. Thereafter, the solvent was completely removed by drying for about 1 day using a vacuum dryer.
  • the obtained modified sample was in the form of a film, and the thickness thereof was about 0.46 mm.
  • the obtained modified sample was dissolved in deuterated chloroform to prepare a solution of about 2% by mass and subjected to 1 H-NMR method.
  • the methylene group adjacent to the nitrogen atom of the amide group was 3.0 to 3.3 ppm. From the fact that the peak intensity derived from the proton was observed, it was confirmed that the functional group capable of noncovalent bonding was introduced. Further, when FT-IR measurement was performed in the same manner as before the modification with amine, the absorption due to the NH stretching vibration of the amide group at 3100 to 3600 cm ⁇ 1 which was not observed before the modification with amine was newly observed. It was.
  • the obtained film-like modified sample was punched using a punching blade mold to prepare a 4 mm-wide dog-bone test piece.
  • the measuring device is an AGS-X, 50N load cell, 50N clip-type gripping tool manufactured by Shimadzu Corporation, with a distance between gripping tools of 8.5 mm and an initial strain rate of 0.33 / s (tensile speed of 2.8 mm / s). It was.
  • the Young's modulus was calculated in a region within 10% strain, and the toughness was calculated from the inner area of the SS curve until fracture.
  • Young's modulus, maximum stress, elongation at break, and toughness were 0.99 MPa, 7.1 MPa, 1850%, and 44 MJ / m 3 , respectively.
  • the Young's modulus was determined from the initial slope of the stress-strain curve (strain 10%), the maximum stress was determined from the maximum value of the stress, the elongation at break was the elongation when the fracture occurred, and the toughness was determined from the inner area of the stress-strain curve.
  • Comparative Example 1 In Comparative Example 1, a tensile test was performed on a base polymer block copolymer (Quintac 3520). 500 mg of a block copolymer (Quintac 3520) was dissolved in 5.00 g of THF, and the resulting solution was transferred to a 20 mL Teflon beaker and allowed to stand at room temperature for 1.5 days. Was evaporated. Thereafter, the solvent was completely removed by drying for about 1 day using a vacuum dryer. The thickness of the obtained film sample was about 0.52 mm.
  • the obtained film sample was punched using a punching blade die to prepare a 4 mm-wide dog-bone type test piece, a distance between grips of 9.3 mm, an initial strain rate of 0.33 / s (tensile rate of 3.1 mm / s) ) was subjected to a tensile test.
  • Young's modulus, maximum stress, elongation at break, and toughness were 1.7 MPa, 1.4 MPa, 1730%, and 16 MJ / m 3 , respectively.
  • Example 1 showed good mechanical properties because the amide group and carboxylic acid produced by the modification treatment formed hydrogen bonds between the modified polyisoprene blocks, and showed pseudo-like behavior like a triblock copolymer. It is thought that.
  • Example 2 the maleic anhydride-modified block copolymer of Example 1 (introduction rate of maleic anhydride-derived acid anhydride group 11.2 mol%) was subjected to a tensile test without modification with amine. It was.
  • a membrane sample was prepared in the same manner as in Comparative Example 1 except that 500 mg of maleic anhydride-modified block copolymer and 5.10 g of THF were used. The thickness of the obtained film sample was about 0.61 mm. The obtained film sample was punched using a punching blade mold to prepare a 4 mm wide dog-bone test piece.
  • the distance between the grips was 12.5 mm, the initial strain rate was 0.33 / s (the tensile rate was 4.1 mm / s). ) was subjected to a tensile test. As a result of the tensile test, Young's modulus, maximum stress, elongation at break, and toughness were 0.95 MPa, 0.72 MPa, 1040%, and 5.7 MJ / m 3 , respectively.
  • the maleic anhydride-modified block copolymer of Example 2 was greatly inferior in mechanical properties as compared with the sample after modification with amine (Example 1). This is probably because the maleic anhydride-derived acid anhydride group did not form a non-covalent bond, and therefore did not exhibit excellent mechanical properties as in the sample after modification with amine (Example 1).
  • Example 3 the maleic anhydride-modified block copolymer obtained in Example 1 (introduction rate of maleic anhydride-derived acid anhydride group 11.2 mol%) was modified with ethylamine.
  • a film-like modified sample was prepared in the same manner as in Example 1 except that 500 mg, 5.00 g, and 314 mg of a 10% by weight solution of maleic anhydride-modified block copolymer, THF, and ethylamine were used.
  • the thickness of the obtained modified sample was about 0.52 mm.
  • the obtained modified sample was subjected to 1 H-NMR measurement in the same manner as in Example 1. As a result, a peak derived from the proton of the methylene group adjacent to the nitrogen atom of the amide group was observed at 3.0 to 3.3 ppm. From this, it was confirmed that a functional group capable of noncovalent bonding was introduced. Further, when FT-IR measurement was performed in the same manner as before the modification with amine, the absorption due to the NH stretching vibration of the amide group at 3100 to 3600 cm ⁇ 1 which was not observed before the modification with amine was newly observed. It was.
  • the obtained modified sample was punched using a punching blade mold to prepare a dog bone type test piece having a width of 4 mm.
  • a tensile test was performed at a distance between the grippers of 10.6 mm and an initial strain rate of 0.33 / s (tensile rate of 3.5 mm / s).
  • Young's modulus, maximum stress, elongation at break, and toughness were 1.4 MPa, 10.4 MPa, 1740%, and 59.9 MJ / m 3 , respectively.
  • the stress relaxation test was conducted in the same manner as in Example 1, the same result as in Example 1 was obtained.
  • Example 4 the maleic anhydride-modified block copolymer obtained in Example 1 (maleic anhydride-derived acid anhydride group introduction rate 11.2 mol%) was modified with n-hexylamine. went.
  • a film-like modified sample was prepared in the same manner as in Example 1 except that 500 mg, 5.00 g, and 702 mg of a maleic anhydride-modified block copolymer, THF, and a 10% by mass solution of n-hexylamine were used.
  • the thickness of the obtained modified sample was about 0.57 mm.
  • the obtained modified sample was subjected to 1 H-NMR measurement in the same manner as in Example 1. As a result, a peak derived from the proton of the methylene group adjacent to the nitrogen atom of the amide group was observed at 3.0 to 3.3 ppm. From this, it was confirmed that a functional group capable of noncovalent bonding was introduced. Further, when FT-IR measurement was performed in the same manner as before the modification with amine, the absorption due to the NH stretching vibration of the amide group at 3100 to 3600 cm ⁇ 1 which was not observed before the modification with amine was newly observed. It was.
  • the obtained modified sample was punched using a punching blade mold to prepare a dog bone type test piece having a width of 4 mm.
  • a tensile test was performed at a distance between grips of 9.1 mm and an initial strain rate of 0.33 / s (tensile rate of 3.0 mm / s).
  • Young's modulus, maximum stress, breaking elongation, and toughness were 0.98 MPa, 6.1 MPa, 1810%, and 39 MJ / m 3 , respectively.
  • the stress relaxation test was conducted in the same manner as in Example 1, the same result as in Example 1 was obtained.
  • Example 5 the maleic anhydride-modified block copolymer obtained in Example 1 (introduction rate of maleic anhydride-derived acid anhydride group 11.2 mol%) was modified with n-octylamine. went.
  • a film-like modified sample was prepared in the same manner as in Example 1 except that 500 mg, 5.00 g, and 93 mg of maleic anhydride-modified block copolymer, THF, and n-octylamine were used.
  • the thickness of the obtained modified sample was about 0.60 mm.
  • the obtained modified sample was subjected to 1 H-NMR measurement in the same manner as in Example 1. As a result, a peak derived from the proton of the methylene group adjacent to the nitrogen atom of the amide group was observed at 3.0 to 3.3 ppm. From this, it was confirmed that a functional group capable of noncovalent bonding was introduced. Further, when FT-IR measurement was performed in the same manner as before the modification with amine, the absorption due to the NH stretching vibration of the amide group at 3100 to 3600 cm ⁇ 1 which was not observed before the modification with amine was newly observed. It was.
  • the obtained modified sample was punched using a punching blade mold to prepare a dog bone type test piece having a width of 4 mm.
  • a tensile test was performed at a distance between grips of 11.1 mm and an initial strain rate of 0.33 / s (tensile rate of 3.7 mm / s).
  • Young's modulus, maximum stress, breaking elongation, and toughness were 1.1 MPa, 7.2 MPa, 1700%, and 44 MJ / m 3 , respectively.
  • the stress relaxation test was conducted in the same manner as in Example 1, the same result as in Example 1 was obtained.
  • Example 6 Modification with maleic anhydride was carried out in the same manner as in Example 1 except that Kraton D1102 (manufactured by Kraton JSR Elastomers, polystyrene-polybutadiene block copolymer composition) was used as the block copolymer as the base polymer. Further, modification treatment with n-butylamine was performed. The introduction rate of the anhydride group derived from maleic anhydride was estimated to be 5.9 mol%. Also in this example, it was confirmed that a functional group capable of noncovalent bonding could be introduced.
  • Example 1 When a tensile test was performed in substantially the same manner as in Example 1, the Young's modulus, maximum stress, elongation at break, and toughness were 5.5 MPa, 5.2 MPa, 1000%, and 29 MJ / m 3 , respectively. Moreover, when the stress relaxation test was conducted in the same manner as in Example 1, the same result as in Example 1 was obtained.

Abstract

本発明は、弾性が良好で、しかも応力緩和性に優れたブロック共重合体組成物を提供することを主目的とする。 本発明は、少なくとも1つの芳香族ビニル重合体ブロックと、少なくとも1つの共役ジエン重合体ブロックとを有するブロック共重合体(A)に非共有結合可能な官能基が導入されてなるブロック共重合体(B)を含む、変性処理により得られるブロック共重合体組成物を提供することにより、上記課題を解決する。

Description

変性処理により得られるブロック共重合体組成物及びその製造方法、並びにそれに用いられる変性ブロック共重合体組成物及びその製造方法
 本発明は、芳香族ビニル重合体ブロックと共役ジエン重合体ブロックとを有するブロック共重合体を含有するブロック共重合体組成物に関し、さらに詳しくは、弾性が良好で、しかも応力緩和性に優れたブロック共重合体組成物に関する。
 熱可塑性エラストマーは、常温でゴム弾性を示し、また加熱すると軟化して流動性を示し成形加工が容易であることから、伸縮性材料として種々の分野で利用されている。
 熱可塑性エラストマーを伸縮性材料として種々の用途に使用するに際しては、比較的高い弾性率と小さい永久伸びとを併せ持つことが要求される。そのため、熱可塑性エラストマーの特性を改良する種々の検討が行われている。
 例えば、本発明者らの一部は、特許文献1に開示するように、室温付近でガラス状態の硬いポリマー鎖であるA鎖と、室温付近で溶融状態の柔らかいポリマー鎖であるB鎖とからなるブロック共重合体を含むエラストマーにおいて、B鎖に非共有結合可能な官能基を有するモノマーが重合した部分を含ませることで、分子間でモノマー成分が非共有結合し擬似架橋することにより、破断伸び、最大応力、靱性等の弾性特性が向上することを報告している。
 一方で、熱可塑性エラストマーは、応力緩和性に優れることも求められる。応力が加えられ変形した際に残留応力が大きいことは、元の形に戻ろうとする力が大きいことを意味する。そのため、応力緩和性が劣ると、熱可塑性エラストマーを様々な部材に適用した際に比較的大きな残留応力がかかり続け、剥離や破壊が容易に起こってしまう。よって、残留応力ができるだけ小さくなるように、加えられた応力を低減できること、すなわち応力緩和性に優れることも必要とされる。
 したがって、熱可塑性エラストマーにおいては、弾性と応力緩和性とを高いレベルで両立するという観点で、更なる改良が望まれている。
特開2016-89099号公報
 本発明は、上記実情に鑑みてなされたものであり、弾性が良好で、しかも応力緩和性に優れたブロック共重合体組成物を提供することを主目的とする。
 本発明者らは、上記目的を達成するために鋭意研究を行った結果、熱可塑性エラストマーの中でも、特に弾性に富み、柔軟である、芳香族ビニル重合体ブロックおよび共役ジエン重合体ブロックを有するブロック共重合体を用い、このブロック共重合体に非共有結合可能な官能基を導入することにより、弾性と応力緩和性とが高いレベルで両立されることを見出し、本発明を完成するに至った。
 かくして、本発明によれば、少なくとも1つの芳香族ビニル重合体ブロックと、少なくとも1つの共役ジエン重合体ブロックとを有するブロック共重合体(A)に非共有結合可能な官能基が導入されてなるブロック共重合体(B)を含む、変性処理により得られるブロック共重合体組成物が提供される。
 上記非共有結合可能な官能基は、上記ブロック共重合体(A)に導入されたカルボキシル基または酸無水物基と塩基とを反応させてなる基、あるいは上記ブロック共重合体(A)に導入された酸無水物基を塩基により加水分解してなる基とすることができる。
 上記酸無水物基が、不飽和ジカルボン酸無水物に由来する基であることが好ましい。
 上記塩基は、アルカリ金属含有化合物、アルカリ土類金属含有化合物、アンモニア及びアミン化合物からなる群より選択される少なくとも1種とすることができる。
 上記非共有結合可能な官能基が、水素結合可能な官能基であることが好ましい。
 上記芳香族ビニル重合体ブロックの重量平均分子量が3,000~50,000の範囲内であり、上記共役ジエン重合体ブロックのビニル結合含有量が0.1モル%~50モル%の範囲内であり、かつ重量平均分子量が10,000~500,000の範囲内であることが好ましい。
 上記芳香族ビニル重合体ブロックがポリスチレンであることが好ましい。
 上記共役ジエン重合体ブロックがポリブタジエン及び/又はポリイソプレンであることが好ましい。
 また、本発明によれば、少なくとも1つの芳香族ビニル重合体ブロックと、少なくとも1つの共役ジエン重合体ブロックとを有するブロック共重合体(A)に、不飽和カルボン酸または不飽和ジカルボン酸無水物を反応させ、カルボキシル基または酸無水物基が導入された変性ブロック共重合体(C)を得る第1工程と、上記変性ブロック共重合体(C)を塩基処理し、非共有結合可能な官能基が導入されたブロック共重合体(B)を得る第2工程とを有する、ブロック共重合体組成物の製造方法が提供される。
 上記第1工程では、上記不飽和ジカルボン酸無水物を反応させることが好ましい。
 上記第2工程では、アルカリ金属含有化合物、アルカリ土類金属含有化合物、アンモニア及びアミン化合物からなる群より選択される少なくとも1種の塩基を使用することが好ましい。
 さらに、本発明によれば、少なくとも1つの芳香族ビニル重合体ブロックと、少なくとも1つの共役ジエン重合体ブロックとを有するブロック共重合体(A)に、不飽和カルボン酸または不飽和ジカルボン酸無水物に由来するカルボキシル基または酸無水物基が導入されてなる変性ブロック共重合体(C)を含む、変性ブロック共重合体組成物が提供される。
 上記芳香族ビニル重合体ブロックの重量平均分子量が3,000~50,000の範囲内であり、上記共役ジエン重合体ブロックのビニル結合含有量が0.1モル%~50モル%の範囲内であり、かつ重量平均分子量が10,000~500,000の範囲内であることが好ましい。
 上記芳香族ビニル重合体ブロックがポリスチレンであることが好ましい。
 上記共役ジエン重合体ブロックがポリブタジエン及び/又はポリイソプレンであることが好ましい。
 また、本発明によれば、少なくとも1つの芳香族ビニル重合体ブロックと、少なくとも1つの共役ジエン重合体ブロックとを有するブロック共重合体(A)に、不飽和カルボン酸または不飽和ジカルボン酸無水物を反応させ、カルボキシル基または酸無水物基が導入された変性ブロック共重合体(C)を得る工程を有する、変性ブロック共重合体組成物の製造方法が提供される。
 本発明は、弾性が良好で、しかも応力緩和性に優れたブロック共重合体組成物を提供できるという効果を奏する。
 以下、本発明の変性処理により得られるブロック共重合体組成物及びその製造方法、並びに変性ブロック共重合体組成物及びその製造方法について詳細に説明する。
A.変性処理により得られるブロック共重合体組成物
 本発明の変性処理により得られるブロック共重合体組成物は、少なくとも1つの芳香族ビニル重合体ブロックと、少なくとも1つの共役ジエン重合体ブロックとを有するブロック共重合体(A)に非共有結合可能な官能基が導入されてなるブロック共重合体(B)を含むものである。
 なお、「変性処理により得られるブロック共重合体組成物」を単に「ブロック共重合体組成物」と称する場合がある。
 本発明によれば、ブロック共重合体(B)が非共有結合可能な官能基を有することから、非共有結合可能な官能基によって、ポリマー鎖間で非共有結合を形成し擬似架橋を形成することができる。非共有結合は解離したり再結合したりすることが可能であるため、本発明のブロック共重合体組成物は、従来のブロック共重合体組成物とは異なる特性を実現することが可能である。本発明のブロック共重合体組成物は、高温ではブロック共重合体の芳香族ビニル重合体ブロックが溶融し流動性を示すが、室温ではブロック共重合体の芳香族ビニル重合体ブロックがガラス化し物理的架橋点となり弾性を示す。非共有結合可能な官能基による非共有結合は、ブロック共重合体の芳香族ビニル重合体ブロックによる物理的架橋点とともに非共有結合性架橋点として働くため、ブロック共重合体組成物の弾性を維持又は向上させることができる。一方、応力やひずみを加えた際は、原理的には非共有結合性架橋点が増えた分だけ応力を分散させることができ、また、非共有結合可能な官能基が組み替わることで応力が緩和され、物理的架橋点を保護することができる。すなわち、応力緩和が生じても物理的架橋点が維持されるため、弾性の低下を抑制することができる。したがって、良好な弾性と優れた応力緩和性とを両立することが可能である。また、物理的架橋点が保護されるため、永久伸びを小さくすることができ、高い弾性率と小さい永久伸びとを高いレベルで両立することが可能である。
 また、本発明によれば、ブロック共重合体(B)がブロック共重合体(A)に非共有結合可能な官能基が導入されてなるものであるため、芳香族ビニル重合体ブロックおよび共役ジエン重合体ブロックを有するブロック共重合体の高い弾性および柔軟性を維持することができる。一方、非共有結合可能な官能基を有するモノマーを共重合する場合には、共重合すること自体が難しく、所望のブロック共重合体、すなわち、高い弾性および柔軟性を示すブロック共重合体が得られない場合がある。
1.ブロック共重合体(B)
 本発明に用いるブロック共重合体(B)は、少なくとも1つの芳香族ビニル重合体ブロックと、少なくとも1つの共役ジエン重合体ブロックとを有するブロック共重合体(A)に非共有結合可能な官能基が導入されてなるものである。ブロック共重合体(B)は、本発明のブロック共重合体組成物の重合体成分として用いられる。
 なお、本明細書において、特に説明がない限り、「ブロック共重合体」とは、ピュアブロック共重合体、ランダムブロック共重合体、及びテーパーブロック構造を有する共重合体のいずれの態様も含む意味である。
(1)ブロック共重合体(A)
 ブロック共重合体(A)は、少なくとも1つの芳香族ビニル重合体ブロックと、少なくとも1つの共役ジエン重合体ブロックとを有するものである。
(a)芳香族ビニル重合体ブロック
 ブロック共重合体(A)が有する芳香族ビニル重合体ブロックは、芳香族ビニル単量体を重合して得られる芳香族ビニル単量体単位を主たる繰り返し単位として構成される重合体ブロックである。
 芳香族ビニル重合体ブロックの形成に用いる芳香族ビニル単量体としては、芳香族ビニル化合物であれば特に限定されない。例えば、スチレン;α-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、2-エチルスチレン、3-エチルスチレン、4-エチルスチレン、2,4-ジイソプロピルスチレン、2,4-ジメチルスチレン、4-t-ブチルスチレン、5-t-ブチル-2-メチルスチレン等のアルキル基を置換基として有するスチレン類;4-アセトキシスチレン、4-(1-エトキシエトキシ)スチレン、4-メトキシスチレン、4-エトキシスチレン、4-t-ブトキシスチレン等のエーテル基やエステル基を置換基として有するスチレン類;2-クロロスチレン、3-クロロスチレン、4-クロロスチレン、4-ブロモスチレン、2,4-ジブロモスチレン等のハロゲン原子を置換基として有するスチレン類;2-メチル-4,6-ジクロロスチレン等のアルキル基とハロゲン原子を置換基として有するスチレン類;ビニルナフタレン;等が挙げられる。これらの芳香族ビニル単量体は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
 これらの中でも、入手の容易さの観点から、スチレン、炭素数1~12のアルキル基を置換基として有するスチレン類、エーテル基やエステル基を置換基として有するスチレン類が好ましく、スチレンを用いることが特に好ましい。すなわち、芳香族ビニル重合体ブロックがポリスチレンであることが好ましい。
 芳香族ビニル重合体ブロックは、芳香族ビニル単量体単位が主たる繰り返し単位となる限りにおいて、それ以外の単量体単位を含んでいてもよい。芳香族ビニル重合体ブロックに含まれ得る芳香族ビニル単量体単位以外の単量体単位を構成する単量体としては、1,3-ブタジエン、イソプレン(2-メチル-1,3-ブタジエン)等の共役ジエン単量体;アクリロニトリル、メタクリロニトリル等のα,β-不飽和ニトリル単量体;無水マレイン酸、ブテニル無水コハク酸、テトラヒドロ無水フタル酸、無水シトラコン酸等の不飽和カルボン酸無水物単量体;アクリル酸メチル、アクリル酸エチル、アクリル酸2-エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸2-エチルヘキシル等の不飽和カルボン酸エステル単量体;1,4-ペンタジエン、1,4-ヘキサジエン等の好ましくは炭素数が5~12の非共役ジエン単量体;等が挙げられる。
 また、ブロック共重合体(A)が複数の芳香族ビニル重合体ブロックを有する場合においては、複数の芳香族ビニル重合体ブロック同士は、同一であっても、相異なっていてもよい。
 芳香族ビニル重合体ブロックにおける芳香族ビニル単量体単位の含有量は、80質量%以上であることが好ましく、90質量%以上であることがより好ましく、実質的に100質量%であることが特に好ましい。芳香族ビニルブロックにおける芳香族ビニル単量体単位の含有量が上記範囲であれば、高い弾性率と応力緩和性とを高いレベルで両立することができる。
 ブロック共重合体(A)の全単量体単位中の芳香族ビニル単量体単位の含有量は、特に限定されないが、通常、5質量%~90質量%の範囲内で選択され、好ましくは10質量%~60質量%の範囲内で選択される。ブロック共重合体(A)における芳香族ビニル単量体単位の含有量が上記範囲にあれば、得られるブロック共重合体組成物で高い弾性率と応力緩和性とを高いレベルで両立することができる。なお、ブロック共重合体中の芳香族ビニル単量体単位の含有量は、H-NMRを用いて測定することができる。
(b)共役ジエン重合体ブロック
 ブロック共重合体(A)が有する共役ジエン重合体ブロックは、共役ジエン単量体を重合して得られる共役ジエン単量体単位を主たる繰り返し単位として構成される重合体ブロックである。
 共役ジエン重合体ブロックの形成に用いる共役ジエン単量体は、共役ジエン化合物であれば特に限定されない。例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、2-クロロ-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン等を例示することができる。これらの共役ジエン単量体は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
 これらの中でも、1,3-ブタジエン及び/又はイソプレンを用いることが好ましい。すなわち、共役ジエン重合体ブロックがポリブタジエン及び/又はポリイソプレンであることが好ましい。共役ジエン重合体ブロックをイソプレン単位で構成する場合には、柔軟性に優れ、応力緩和性に優れたブロック共重合体組成物とすることができる。
 共役ジエン重合体ブロックは、共役ジエン単量体単位が主たる繰り返し単位となる限りにおいて、それ以外の単量体単位を含んでいてもよい。共役ジエン重合体ブロックに含まれ得る共役ジエン単量体単位以外の単量体単位を構成する単量体としては、スチレン、α-メチルスチレン等の芳香族ビニル単量体;α,β-不飽和ニトリル単量体;不飽和カルボン酸無水物単量体;不飽和カルボン酸エステル単量体;非共役ジエン単量体;等が例示される。なお、各単量体の具体例については、上述の芳香族ビニル重合体ブロックに含まれ得る芳香族ビニル単量体単位以外の単量体単位を構成する単量体と同様とすることができる。
 また、ブロック共重合体(A)が複数の共役ジエン重合体ブロックを有する場合においては、複数の共役ジエン重合体ブロック同士は、同一であっても、相異なっていてもよい。さらに、共役ジエン重合体ブロックの不飽和結合の一部は水素化されていてもよい。
 共役ジエン重合体ブロックにおける共役ジエン単量体単位の含有量は、80質量%以上であることが好ましく、90質量%以上であることがより好ましく、実質的に100質量%であることが特に好ましい。共役ジエン重合体ブロックにおける共役ジエン単量体単位の含有量が上記範囲であれば、高い弾性率と応力緩和性とを高いレベルで両立することができる。
 また、共役ジエン重合体ブロックのビニル結合含有量(共役ジエン重合体ブロック中の全共役ジエン単量体単位において、1,2-ビニル結合と3,4-ビニル結合が占める割合)は、特に限定されないが、0.1モル%~50モル%の範囲内であることが好ましく、1モル%~30モル%の範囲内であることがより好ましく、3モル%~10モル%の範囲内であることが特に好ましい。このビニル結合含有量が高すぎると、得られるブロック共重合体組成物の永久伸びが大きくなるおそれがある。なお、共役ジエン重合体ブロックのビニル結合含有量は、H-NMRを用いて測定することができる。
(c)ブロック共重合体(A)
 ブロック共重合体(A)は、少なくとも1つの芳香族ビニル重合体ブロックと、少なくとも1つの共役ジエン重合体ブロックとを有するものであれば、各重合体ブロックの数やそれらの結合形態は特に限定されない。
 ブロック共重合体(A)の形態の具体例としては、Arが芳香族ビニル重合体ブロックを表し、Dが共役ジエン重合体ブロックを表し、Xが単結合またはカップリング剤の残基を表し、nが2以上の整数を表すものとした場合において、Ar-Dとして表される芳香族ビニル-共役ジエンブロック共重合体、Ar-D-Arまたは(Ar-D)-Xとして表される芳香族ビニル-共役ジエン-芳香族ビニルブロック共重合体、D-Ar-Dまたは(D-Ar)-Xとして表される共役ジエン-芳香族ビニル-共役ジエンブロック共重合体、Ar-D-Ar-Dとして表される芳香族ビニル-共役ジエン-芳香族ビニル-共役ジエンブロック共重合体、及びこれらの2種以上を任意の組み合わせで混合してなるブロック共重合体の混合物を挙げることができるが、これらに限定されない。
 上記の具体例において、カップリング剤としては、2官能性のものであれば特に限定されず、例えば、ジクロロシラン、モノメチルジクロロシラン、ジメチルジクロロシラン等の2官能性ハロゲン化シラン;ジクロロエタン、ジブロモエタン、メチレンクロライド、ジブロモメタン等の2官能性ハロゲン化アルカン;ジクロロスズ、モノメチルジクロロスズ、ジメチルジクロロスズ、モノエチルジクロロスズ、ジエチルジクロロスズ、モノブチルジクロロスズ、ジブチルジクロロスズ等の2官能性ハロゲン化スズ;等が挙げられる。これらのカップリング剤は、1種類を単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 ブロック共重合体(A)の重量平均分子量は、特に限定されないが、通常、30,000~500,000、好ましくは60,000~470,000であることが好ましく、90,000~450,000であることがより好ましい。
 また、ブロック共重合体(A)の各重合体ブロックの重量平均分子量も特に限定されない。芳香族ビニル重合体ブロックの重量平均分子量は、好ましくは3,000~50,000の範囲内であり、より好ましくは6,000~20,000の範囲内である。また、共役ジエン重合体ブロックの重量平均分子量は、好ましくは10,000~500,000の範囲内であり、より好ましくは40,000~400,000範囲内である。共役ジエン重合体ブロックの重量平均分子量が上記範囲にあれば、得られるブロック共重合体組成物で高い弾性率と応力緩和性とを高いレベルで両立することができる。なお、ブロック共重合体の重量平均分子量(Mw)は、テトラヒドロフラン(THF)を溶媒とする高速液体クロマトグラフィの測定による、ポリスチレン換算の値として求めるものとする。
 ブロック共重合体(A)、及びブロック共重合体(A)を構成する各重合体ブロックの重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)で表される分子量分布も、特に限定されないが、それぞれ、通常1.8以下であり、好ましくは1.3以下、より好ましくは1.1以下である。ブロック共重合体(A)、及びブロック共重合体(A)を構成する各重合体ブロックの分子量分布が上述の範囲にあれば、得られるブロック共重合体組成物で高い弾性率と応力緩和性とを高いレベルで両立することができる。
 ブロック共重合体(A)のメルトインデックスは、特に限定されないが、ASTM D-1238(G条件、200℃、5kg)に準拠して測定される値として、通常1~1000g/10分であり、3~700g/10分であることが好ましく、5~500g/10分であることがより好ましい。
 ブロック共重合体(A)は、常法に従って製造することが可能である。なお、ブロック共重合体(A)の製造方法については、後述の「B.ブロック共重合体組成物の製造方法」の項に記載する。
 また、本発明では、ブロック共重合体(A)として、市販のブロック共重合体を用いることも可能である。例えば、「クインタック(登録商標)」(日本ゼオン社製)、「JSR-SIS(登録商標)」(JSR社製)、「Vector(登録商標)」(DEXCO polymers社製)、「アサプレン(登録商標)」・「タフプレン(登録商標)」・「タフテック(登録商標)」(旭化成ケミカルズ社製)、「セプトン(登録商標)」(クラレ社製)、「Kraton(登録商標)」(Kraton JSR Elastomers社製)等を使用することができる。
(2)非共有結合可能な官能基
 非共有結合としては、水素結合、配位結合、イオン結合等が挙げられる。中でも、非共有結合可能な官能基は、水素結合可能な官能基であることが好ましい。水素結合は、結合一つあたりの会合力が適度であり(つまり結合力が弱く、もしくは緩和時間が短く)、再配列が可能だからである。
 非共有結合可能な官能基としては、例えば、アミド基、イミド基、ウレタン結合、カルボキシル基又はその塩、ヒドロキシル基又はその塩を挙げることができる。
 また、水素結合可能な官能基としては、アミド基、イミド基、ウレタン結合、カルボキシル基、及びヒドロキシル基からなる群より選択される少なくとも1種であることが好ましい。
 ブロック共重合体(B)は非共有結合可能な官能基を有していればよく、非共有結合可能な官能基は、例えばブロック共重合体に直接結合していてもよく、連結基を介して結合していてもよい。
 ブロック共重合体(B)は、ブロック共重合体(A)に非共有結合可能な官能基が導入されてなるものである。非共有結合可能な官能基の導入方法としては、ブロック共重合体(A)に非共有結合可能な官能基を導入できる方法であればよく、例えば変性剤による変性方法、アルケンの官能基変換反応を用いる方法が挙げられる。中でも、変性剤による変性方法が好ましい。すなわち、非共有結合可能な官能基は、変性剤の残基を含むことが好ましい。
 また、変性剤による変性方法を用いる場合、変性剤による変性によって非共有結合可能な官能基を導入してもよく、変性剤による変性後、さらに反応させることによって非共有結合可能な官能基を導入してもよい。
 なお、「変性剤の残基」とは、変性剤がブロック共重合体(A)と反応した際に生じる反応生成物において、あるいは変性剤がブロック共重合体(A)と反応し、さらに他の化合物と反応した際に生じる反応生成物において、変性剤に由来する部分をいう。
 変性剤としては、例えば酸変性剤を挙げることができる。また、酸変性剤としては、例えば不飽和カルボン酸、不飽和ジカルボン酸無水物を挙げることができる。中でも、反応の容易さ、経済性等の面から、不飽和ジカルボン酸無水物が好ましい。なお、不飽和カルボン酸および不飽和ジカルボン酸無水物については後述する。
 酸変性剤が不飽和カルボン酸である場合、ブロック共重合体(A)には不飽和カルボン酸に由来するカルボキシル基が導入される。なお、カルボキシル基は非共有結合可能な基であるが、酸変性剤による変性後、さらに反応させることにより、カルボキシル基を別の非共有結合可能な官能基とすることができる。
 また、酸変性剤が不飽和ジカルボン酸無水物である場合、ブロック共重合体(A)には不飽和ジカルボン酸無水物に由来する酸無水物基が導入される。なお、酸変性剤が不飽和ジカルボン酸無水物である場合には、酸変性剤による変性後、さらに反応させることにより、酸無水物基を非共有結合可能な官能基とすることができる。具体的には、塩基処理によって、酸無水物基を塩基と反応させる、あるいは酸無水物基を塩基により加水分解することにより、酸無水物基を非共有結合可能な官能基とすることができる。
 中でも、非共有結合可能な官能基の導入方法は、酸変性剤による変性後、さらに塩基処理することによって非共有結合可能な官能基を導入する方法であることが好ましい。すなわち、ブロック共重合体(B)は、ブロック共重合体(A)を酸変性した変性ブロック共重合体(C)を、さらに塩基処理したものであることが好ましい。つまり、非共有結合可能な官能基は、ブロック共重合体(A)に導入されたカルボキシル基または酸無水物基と塩基とを反応させてなる基である、あるいはブロック共重合体(A)に導入された酸無水物基を塩基により加水分解してなる基であることが好ましい。特に、非共有結合可能な官能基は、ブロック共重合体(A)に導入された酸無水物基と塩基とを反応させてなる基であることが好ましい。なお、このような非共有結合可能な官能基の導入方法については、後述の「B.ブロック共重合体組成物の製造方法」の項で詳述する。
 また、非共有結合可能な官能基が、ブロック共重合体(A)に導入されたカルボキシル基または酸無水物基と塩基とを反応させてなる基である場合、ブロック共重合体(A)に導入されたカルボキシル基または酸無水物基は少なくとも一部が塩基と反応すればよく、カルボキシル基または酸無水物基の一部が塩基と反応してもよく、カルボキシル基または酸無水物基の全部が塩基と反応してもよい。すなわち、ブロック共重合体(B)は、ブロック共重合体(A)に導入されたカルボキシル基または酸無水物基と塩基とを反応させてなる基と、ブロック共重合体(A)に導入されたカルボキシル基または酸無水物基との両方を有していてもよい。
 また、非共有結合可能な官能基が、ブロック共重合体(A)に導入された酸無水物基を塩基により加水分解してなる基である場合、ブロック共重合体(A)に導入された酸無水物基は少なくとも一部が加水分解されればよく、酸無水物基の一部が加水分解されてもよく、酸無水物基の全部が加水分解されてもよい。すなわち、ブロック共重合体(B)は、ブロック共重合体(A)に導入された酸無水物基を塩基により加水分解してなる基と、ブロック共重合体(A)に導入された酸無水物基との両方を有していてもよい。
 カルボキシル基または酸無水物基と塩基とを反応させてなる基としては、具体的にはアミド基、カルボキシル基の金属塩が挙げられる。また、酸無水物基を塩基により加水分解してなる基としては、具体的にはカルボキシル基が挙げられる。
 このように、非共有結合可能な官能基は、酸変性剤の残基を有することが好ましく、具体的には不飽和カルボン酸または不飽和ジカルボン酸無水物の残基を有することが好ましく、不飽和ジカルボン酸無水物の残基を有することがより好ましい。
 不飽和カルボン酸としては、例えばアクリル酸、メタクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸、シトラコン酸等の炭素数8以下のエチレン性不飽和カルボン酸、及び3,6-エンドメチレン-1,2,3,6-テトラヒドロフタル酸のような共役ジエンと炭素数8以下のα,β-不飽和ジカルボン酸とのディールス・アルダー付加物が挙げられる。
 不飽和ジカルボン酸無水物としては、例えば無水マレイン酸、無水イタコン酸、無水シトラコン酸等の炭素数8以下のα,β-不飽和ジカルボン酸無水物、及び3,6-エンドメチレン-1,2,3,6-テトラヒドロ無水フタル酸のような共役ジエンと炭素数8以下のα,β-不飽和ジカルボン酸無水物とのディールス・アルダー付加物が挙げられる。
 反応の容易さ、経済性等の面では、不飽和ジカルボン酸無水物が好ましく、炭素数8以下のα,β-不飽和脂肪族ジカルボン酸無水物がより好ましく、無水マレイン酸が特に好ましい。
 非共有結合可能な官能基は、1種または2種以上の不飽和カルボン酸または不飽和ジカルボン酸無水物の残基から構成されていてもよい。
 また、上記塩基としては、カルボキシル基または酸無水物基と反応して非共有結合可能な官能基を生成できるもの、あるいは酸無水物基を加水分解できるものであればよく、例えばアルカリ金属含有化合物、アルカリ土類金属含有化合物、アンモニア及びアミン化合物からなる群より選択される少なくとも1種を挙げることができる。アルカリ金属含有化合物としては、例えばナトリウム、リチウム、カリウム等のアルカリ金属の酸化物、水酸化物、炭酸塩、炭酸水素塩、酢酸塩、硫酸塩、リン酸塩等が挙げられる。アルカリ土類金属含有化合物としては、例えばマグネシウム、カルシウム等のアルカリ土類金属の酸化物、水酸化物、炭酸塩、炭酸水素塩、酢酸塩、硫酸塩、リン酸塩等が挙げられる。アミン化合物は、第1級アミン化合物、第2級アミン化合物及び第3級アミン化合物のいずれであってもよい。また、アミン化合物は、モノアミンであってもよく、ジアミンであってもよいが、入手が容易であることから、モノアミンが好ましく用いられる。アミン化合物としては、例えば脂肪族アミン、芳香族アミン、脂環式アミン、複素環式アミン等が挙げられる。中でも、脂肪族アミンが好ましく、特に、炭素数1~12のアルキルアミンが好ましく、炭素数2、4または6のアルキルアミンがより好ましい。
 中でも、塩基は、アンモニア、第1級アミン化合物及び第2級アミン化合物からなる群から選択される1種であることが好ましい。これらは、カルボキシル基または酸無水物基と反応してアミド基を生成することができるからである。
 ブロック共重合体(B)における非共有結合可能な官能基の導入率は、本発明の効果が得られる範囲であればよく、例えばブロック共重合体(B)中の共役ジエン単量体単位100モル%中に、0.1モル%以上75モル%以下の範囲内とすることができ、好ましくは0.5モル%以上50モル%以下の範囲内である。非共有結合可能な官能基の導入率が高すぎると、多くの非共有結合(非共有結合性架橋点)を形成し、非共有結合可能な官能基の再配列が生じる前に物理的架橋点に応力が集中し、破断を生じやすいからである。なお、非共有結合可能な官能基の導入率は、H-NMRを用いて算出することができる。また、非共有結合可能な官能基が導入されたことは、H-NMR及び/又は赤外分光分析により確認することができる。
2.他の重合体
 本発明のブロック共重合体組成物は、ブロック共重合体(B)のみを重合体成分として含むものであってよいが、他の重合体成分を含むものであってもよい。
 本発明のブロック共重合体組成物は、例えば、ブロック共重合体(B)の他に、ブロック共重合体(A)を含んでいてもよい。すなわち、本発明のブロック共重合体組成物が、少なくとも1つの芳香族ビニル重合体ブロックと、少なくとも1つの共役ジエン重合体ブロックとを有するブロック共重合体を2種以上含む場合、少なくとも1種のブロック共重合体が非共有結合可能な官能基を有していればよい。
 また、本発明のブロック共重合体組成物に含まれ得るブロック共重合体(B)以外の重合体成分としては、上記ブロック共重合体(A)のほか、ブロック共重合体(B)以外の芳香族ビニル-共役ジエン-芳香族ビニルブロック共重合体、共役ジエン単独重合体、芳香族ビニル-共役ジエンランダム共重合体、及びこれらの分岐型重合体;ポリウレタン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー等の熱可塑性エラストマー;ポリエチレン、ポリプロピレン、ポリ塩化ビニル、アクリロニトリル-スチレン共重合体、アクリロニトリル-ブタジエン-スチレン共重合体、ポリフェニレンエーテル等の熱可塑性樹脂;等が挙げられる。
 ブロック共重合体組成物中のこれらの他の重合体の含有量は、50質量%未満であることが好ましく、20質量%以下であることがより好ましい。
3.その他の成分
 本発明のブロック共重合体組成物は、必要に応じポリエチレンワックスを含有していてもよい。ポリエチレンワックスは、エチレン単量体単位を主たる構成単位とするワックスである。本発明で用いられるポリエチレンワックスは、特に限定されるものではないが、140℃における粘度が20~6,000mPa・sであるものが好ましく用いられる。
 ポリエチレンワックスは、一般的に、エチレンの重合又はポリエチレンの分解により製造されるが、本発明では、どちらのポリエチレンワックスを用いてもよい。また、ポリエチレンワックスは市販品を入手可能であり、その具体例としては、「A-C ポリエチレン」(Honeywell社製)、「三井ハイワックス」(三井化学社製)、「サンワックス」(三洋化成工業社製)、「エポレン」(Eastman  Chemical社製)を挙げることができる。なお、これらのワックスは変性されたもの(官能基化されたもの)であってもよい。
 本発明のブロック共重合体組成物は、必要に応じ酸化防止剤を含有することができる。その種類は特に限定されず、例えば、ペンタエリスリトールテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,6-ジ-t-ブチル-p-クレゾール、ジ-t-ブチル-4-メチルフェノール等のヒンダードフェノール系化合物;ジラウリルチオプロピオネート等のチオジカルボキシレートエステル類;トリス(ノニルフェニル)ホスファイト等の亜燐酸塩類;を使用することができる。酸化防止剤は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 酸化防止剤の含有量は、特に限定されないが、ブロック共重合体組成物の重合体成分100質量部当り、通常10質量部以下であり、好ましくは0.01~5質量部である。
 また、本発明のブロック共重合体組成物には、さらに、必要に応じて、粘着付与樹脂、軟化剤、抗菌剤、光安定剤、紫外線吸収剤、染料、脂肪酸モノアミド及びポリエチレンワックス以外の滑剤等を添加することができる。
 本発明のブロック共重合体組成物を得るにあたり、ブロック共重合体とその他の成分とを混合する方法は特に限定されない。例えば、それぞれの成分を溶剤に溶解し均一に混合した後、溶剤を加熱等により除去する方法、各成分をスクリュー押出機やニーダー等で溶融混合する方法を挙げることができる。これらの中でも、混合をより効率的に行う観点からは、溶融混合が好適である。なお、溶融混合を行う際の温度は、特に限定されるものではないが、通常100~200℃の範囲内である。
4.用途
 本発明のブロック共重合体組成物の用途は特に限定されるものではなく、例えば医療分野、接着分野、電子分野、光学分野等、様々な技術分野が挙げられる。例えば、フィルム、手袋、エラスティックバンド、避妊具、OA機器、事務用等の各種ロール、電気電子機器用防振シート、防振ゴム、衝撃吸収シート、衝撃緩衝フィルム・シート、住宅用制振シート、制振ダンパー材等に用いられる成形材料用途、粘着テープ、粘着シート、粘着ラベル、ゴミ取りローラー等に用いられる粘着剤用途、衛生用品や製本に用いられる接着剤用途、衣料、スポーツ用品等に用いられる弾性繊維用途等を挙げることができる。
B.ブロック共重合体組成物の製造方法
 本発明のブロック共重合体組成物の製造方法は、少なくとも1つの芳香族ビニル重合体ブロックと、少なくとも1つの共役ジエン重合体ブロックとを有するブロック共重合体(A)に、不飽和カルボン酸または不飽和ジカルボン酸無水物を反応させ、カルボキシル基または酸無水物基が導入された変性ブロック共重合体(C)を得る第1工程と、上記変性ブロック共重合体(C)を塩基処理し、非共有結合可能な官能基が導入されたブロック共重合体(B)を得る第2工程とを有する、製造方法である。
 本発明のブロック共重合体組成物の製造方法は、上述の「A.変性処理により得られるブロック共重合体組成物」の項に記載したブロック共重合体組成物の好適な製造方法である。
1.ブロック共重合体(A)
 第1工程に供されるブロック共重合体(A)については、上述の「A.変性処理により得られるブロック共重合体組成物」の項に記載したブロック共重合体(A)と同様とすることができる。
 ブロック共重合体(A)は、常法に従って製造することが可能である。ラジカルリビング重合やカチオンリビング重合、開環メタセシス重合等を用いてもよいが、最も一般的な製造法としては、アニオンリビング重合法により、芳香族ビニル単量体と共役ジエン単量体とをそれぞれ逐次的に重合して重合体ブロックを形成し、必要に応じて、カップリング剤を反応させてカップリングを行う方法を挙げることができる。
 また、ブロック共重合体(A)が2種以上のブロック共重合体の混合物である場合、ブロック共重合体の混合物を得る方法は特に限定されず、従来のブロック共重合体の製法に従って製造することができる。例えば、2種以上のブロック共重合体をそれぞれ別個に製造し、必要に応じて、他の重合体成分や各種添加剤を配合した上で、それらを混練や溶液混合等の常法に従って混合することにより、製造することができる。
 また、ブロック共重合体の混合物を得る方法は、例えば、芳香族ビニル-共役ジエンブロック共重合体aを得た後、一部の芳香族ビニル-共役ジエンブロック共重合体aの末端に芳香族ビニル重合体ブロックを結合し、芳香族ビニル-共役ジエン-芳香族ビニルブロック共重合体bを得る方法、すなわち2種のブロック共重合体を同時に調製する方法であってもよい。具体的には、国際公開第2009/123089号パンフレット、特開2012-77158号公報等を参照することができる。
 また、得られたブロック共重合体の混合物は、常法に従い、ペレット形状等に加工してから使用に供してもよい。
 また、上述の「A.変性処理により得られるブロック共重合体組成物」の項に記載したように、ブロック共重合体として、市販のブロック共重合体を用いることも可能である。
2.第1工程
 第1工程では、上記ブロック共重合体(A)に、不飽和カルボン酸または不飽和ジカルボン酸無水物を反応させ、カルボキシル基または酸無水物基が導入された変性ブロック共重合体(C)を得る。すなわち、ブロック共重合体(A)の不飽和カルボン酸または不飽和ジカルボン酸無水物による酸変性を行い、変性ブロック共重合体(C)を得る。なお、酸変性は1回または複数回行ってもよい。また、酸変性を複数回実施する場合、酸変性の条件は各回で同一であっても、または相異なっていてもよい。
 酸変性反応に酸変性剤として用いられる不飽和カルボン酸および不飽和ジカルボン酸無水物については、上述の「A.変性処理により得られるブロック共重合体組成物」の項に記載したものと同様である。不飽和カルボン酸および不飽和ジカルボン酸無水物は、単独でまたは2種以上を組合せて用いることができる。
 不飽和カルボン酸および不飽和ジカルボン酸無水物の使用量は、ブロック共重合体(A)100質量部に対して、通常、0.01~200質量部、好ましくは0.05~100質量部である。
 酸変性反応の反応温度は、通常、50~300℃の範囲内とすることができる。反応温度が低すぎると反応効率に劣り、変性ブロック共重合体(C)中の未反応の不飽和カルボン酸および不飽和ジカルボン酸無水物の含有量が増加するおそれがある。また、反応時間は、通常、5分~20時間の範囲内とすることができる。反応時間が短すぎると反応効率に劣り、変性ブロック共重合体(C)中の未反応の不飽和カルボン酸および不飽和ジカルボン酸無水物の含有量が増加するおそれがある。
 また、酸変性反応の際に、必要に応じて、希釈剤、ゲル化防止剤および反応促進剤などを存在せしめてもよい。
 変性ブロック共重合体(C)の酸価は、1.3~1050KOHmg/gであることが好ましく、なかでも6.5~700KOHmg/gであることが好ましい。酸価が低すぎたり、酸価が高すぎたりすると、得られるブロック共重合体組成物で目的とする弾性および応力緩和性が得られない場合があるからである。
 なお、酸価は、例えば、変性ブロック共重合体(C)についてJIS K 0070にしたがい測定した値である。
 変性ブロック共重合体(C)におけるカルボキル基および酸無水物基の導入率は、例えば変性ブロック共重合体(C)中の共役ジエン単量体単位100モル%中、0.1モル%以上75モル%以下の範囲内とすることができ、好ましくは0.5モル%以上50モル%以下の範囲内である。カルボキシル基および酸無水物基の導入率が低すぎたり、高すぎたりすると、得られるブロック共重合体組成物で目的とする弾性および応力緩和性が得られない場合があるからである。なお、カルボキシル基および酸無水物基の導入率は、H-NMRを用いて算出することができる。また、カルボキシル基および酸無水物基が導入されたことは、H-NMR及び/又は赤外分光分析により確認することができる。
 酸変性反応後は、未反応の不飽和カルボン酸および不飽和ジカルボン酸無水物を除去することが好ましい。
3.第2工程
 第2工程では、上記変性ブロック共重合体(C)を塩基処理し、非共有結合可能な官能基が導入されたブロック共重合体(B)を得る。なお、塩基処理は1回または複数回行ってもよい。また、塩基処理を複数回実施する場合、塩基処理の条件は各回で同一であっても、または相異なっていてもよい。
 塩基処理に使用される塩基については、上述の「A.変性処理により得られるブロック共重合体組成物」の項に記載したものと同様である。塩基は、単独でまたは2種以上を組合せて用いることができる。
 塩基処理は、変性ブロック共重合体(C)に導入されたカルボキシル基および酸無水物基の種類、ならびに塩基の種類に応じて異なる。例えば、カルボキシル基および酸無水物基の場合であって、塩基としてアンモニア、第1級アミン化合物、第2級アミン化合物を用いる場合、塩基処理では、カルボキシル基または酸無水物基と塩基とを反応させ、非共有結合可能な官能基とすることができる。すなわち、この場合、塩基処理では、変性ブロック共重合体(C)のアミンによる変性を行うことができる。また、例えば酸無水物基の場合であって、塩基としてアルカリ金属含有化合物、アルカリ土類金属含有化合物、第3級アミン化合物を用いる場合、塩基処理では、酸無水物基を塩基により加水分解し、非共有結合可能な官能基とすることができる。
 塩基の使用量は、塩基処理の種類に応じて適宜選択される。例えば、塩基処理において、カルボキシル基または酸無水物基と塩基とを反応させる場合、例えば、アミンによる変性を行う場合、塩基の使用量は、変性ブロック共重合体(C)に導入されたカルボキシル基または酸無水物基に対して、等モル以上とすることができ、具体的には1~2倍モル程度とすることができる。また例えば、塩基処理において、酸無水物基を塩基により加水分解してカルボキシル基とする場合、塩基の使用量は特に限定されないが、例えば変性ブロック共重合体(C)に導入された酸無水物基に対して、等モル以上とすることができる。
 塩基処理は、無溶媒で行ってもよく、溶媒中で行ってもよい。塩基処理を溶媒中で行う場合、溶媒としては、例えば1,2-ジクロロエタン、クロロホルム、ジクロロメタン、1,1-ジクロロエタン等の炭素数1~2の脂肪族ハロゲン化炭化水素、シクロヘキサン、メチルシクロヘキサン、シクロペンタン等の脂肪族環状炭化水素、ニトロメタン、ニトロベンゼン、アセトニトリル、テトラヒドロフラン、テトラヒドロピラン、1,2-ジメトキシエタン、アセトン、メチルエチルケトン、ジメチルスルホキシド、ジメチルホルムアミド、ピロリドン、水等が挙げられる。溶媒は、単独で用いてもよく2種以上を混合して用いてもよい。
 塩基処理の反応温度は、変性ブロック共重合体(C)に導入されたカルボキシル基および酸無水物基の種類、ならびに塩基の種類に応じて異なるが、例えば0~200℃とすることができ、好ましくは10~150℃である。反応温度が低すぎると反応速度が遅くなり、また高すぎると変性ブロック共重合体(C)が熱分解するおそれがある。また、反応時間は、反応温度によって異なるが、例えば1分間~40時間とすることができ、好ましくは3分間~2時間である。反応時間が短すぎると反応が充分に進行せず、また長すぎると反応効率に劣るおそれがある。
 塩基処理後は、残留している塩基を除去することが好ましい。除去方法は、塩基処理や塩基の種類に応じて適宜選択され、例えば洗浄、中和、ろ過、乾燥等を挙げることができる。
 非共有結合可能な官能基およびその導入率については、上述の「A.変性処理により得られるブロック共重合体組成物」の項に記載した通りである。
C.変性ブロック共重合体組成物
 本発明の変性ブロック共重合体組成物は、少なくとも1つの芳香族ビニル重合体ブロックと、少なくとも1つの共役ジエン重合体ブロックとを有するブロック共重合体(A)に、不飽和カルボン酸または不飽和ジカルボン酸無水物に由来するカルボキシル基または酸無水物基が導入されてなる変性ブロック共重合体(C)を含むものである。
 本発明の変性ブロック共重合体組成物は、上述の「A.変性処理により得られるブロック共重合体組成物」の項に記載したブロック共重合体組成物の前駆体として好適に用いられる。
 なお、ブロック共重合体(A)については、上述の「A.変性処理により得られるブロック共重合体組成物」の項に記載したブロック共重合体(A)と同様とすることができる。また、変性ブロック共重合体(C)については、上述の「B.ブロック共重合体組成物の製造方法」の項に記載した変性ブロック共重合体(C)と同様とすることができる。
 本発明の変性ブロック共重合体組成物は、変性ブロック共重合体(C)のみを重合体成分として含むものであってよいが、他の重合体成分を含むものであってもよい。なお、他の重合体成分については、上述の「A.変性処理により得られるブロック共重合体組成物 2.他の重合体」の項に記載した他の重合体成分と同様とすることができる。
 また、本発明の変性ブロック共重合体組成物は、必要に応じ、その他の成分を含有していてもよい。なお、その他の成分については、上述の「A.変性処理により得られるブロック共重合体組成物 3.その他の成分」の項に記載したその他の成分と同様とすることができる。
D.変性ブロック共重合体組成物の製造方法
 本発明の変性ブロック共重合体組成物の製造方法は、少なくとも1つの芳香族ビニル重合体ブロックと、少なくとも1つの共役ジエン重合体ブロックとを有するブロック共重合体(A)に、不飽和カルボン酸または不飽和ジカルボン酸無水物を反応させ、カルボキシル基または酸無水物基が導入された変性ブロック共重合体(C)を得る工程を有する、製造方法である。
 本発明の変性ブロック共重合体組成物の製造方法は、上述の「C.変性ブロック共重合体組成物」の項に記載した変性ブロック共重合体組成物の好適な製造方法である。
 なお、変性ブロック共重合体(C)を得る工程については、上述の「B.ブロック共重合体組成物の製造方法」に記載した第1工程と同様とすることができる。
 本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
 以下に、実施例および比較例を挙げて、本発明についてより具体的に説明する。なお、各例中の部および%は、特に断りのない限り、質量基準である。
[実施例1]
 実施例1では、ベースポリマーとなるブロック共重合体として、Quintac(登録商標)3520(日本ゼオン社製、ポリスチレン-ポリイソプレンブロック共重合体組成物)を使用し、下記の反応にしたがって無水マレイン酸による変性を行い、さらにアミンによる変性処理を行った。具体的な手順を以下に示す。
Figure JPOXMLDOC01-appb-C000001
[1-1]第1工程(無水マレイン酸による変性)
 ベースポリマーのブロック共重合体(Quintac3520)と、老化防止剤のN-(1,3-ジメチルブチル)-N’-フェニル-1,4-フェニレンジアミン(以下、6PPDと称する。)と、溶媒のシクロヘキサンとを、それぞれ5.00g、17.2mg、25.0gずつ秤り取り、室温において丸底フラスコ内で14.5時間、マグネチックスターラーによって混合することで溶液を調製した。この溶液に高沸点溶媒のフタル酸ジ-n-オクチル(以下、DNOPと称する。)を23.2g加えて混合した後、得られた溶液中のシクロヘキサンを取り除くためにロータリーエバポレーターを用いて70℃で30分間ロータリーエバポレーションを行った。残った溶液に無水マレイン酸を5.04g添加し、フラスコ内を窒素置換した後に常圧でオイルバスを用いて100℃、100rpmにおいて約5分間ほど攪拌して反応溶液を調製した。無水マレイン酸が完全に溶解したら、フラスコを約160℃のオイルバスに移し、250rpmで2時間攪拌することで反応を行った。その後オイルバスからフラスコを出して反応を終了した。
 上記溶液に45mLのトルエンを添加し、この溶液を750mLのアセトニトリル中に滴下して、無水マレイン酸で変性されたブロック共重合体を析出させた。得られたポリマーをデカンテーションによって分離し、真空乾燥によって十分に乾燥させた後、再びトルエン中に溶解させ、アセトニトリル中に滴下してポリマーを析出させた。得られたポリマーをデカンテーションによって分離し、真空乾燥によって十分に乾燥させた。この工程によって未反応の無水マレイン酸や溶媒のDNOPを除去した。
 精製した無水マレイン酸変性ブロック共重合体を重クロロホルムに溶解して約2質量%の溶液を調製し、プロトン核磁気共鳴分光(H-NMR)法によりブロック共重合体中のポリイソプレンブロックに対する無水マレイン酸由来の酸無水物基の導入率を決定した。2.7~3.4ppmに無水マレイン酸由来の酸無水物基に由来するピークが見られ、ポリスチレンのフェニル基に由来する6.1~7.23ppmのピークと、ポリ(3,4-イソプレン)に由来する4.5~4.85ppmのピークと、ポリ(1,2-イソプレン)に由来する4.85~5.4ppmのピークとの積分比から、無水マレイン酸由来の酸無水物基の導入率は11.2mol%と見積もられた。
 また、ポリマーをテトラヒドロフラン(以下、THFと称する。)に溶解して約0.5質量%の溶液を調製し、ゲル浸透クロマトグラフィー(GPC)により測定を行った。なお、溶出液はTHF、流速は1mL/minとし、東ソー(株)製のTSK-GELカラム5000HHRを3本連結させた状態で測定を行った。共役ジエン部の切断がほとんど生じていないことが確認された。
 また、ポリマーをTHFに溶解して約8質量%の溶液を調製し、アルミニウム製の板にその溶液をパスツールピペットで10滴垂らして、室温で3時間以上静置してTHFを蒸発させた。その後、真空乾燥機を用いて3時間以上乾燥させることで溶媒を完全に除去し、得られた膜に対して反射フーリエ変換赤外吸収分光(FT-IR)測定を行った。その結果、無水マレイン酸変性前のブロック共重合体では、1750~1900cm-1に吸収は見られなかったが、無水マレイン酸変性後のブロック共重合体では、1750~1900cm-1に無水マレイン酸由来のカルボニル基に由来する吸収が見られた。なお、測定装置には島津製作所製の赤外顕微鏡(AIM8800)付き赤外分光光度計IR Prestige-21(島津製作所製)を用いた。
[1-2]第2工程(塩基による変性)
 得られた無水マレイン酸変性ブロック共重合体(無水マレイン酸由来の酸無水物基の導入率11.2mol%)の無水マレイン酸由来の酸無水物基は反応性が高い酸無水物であるため、モノアミン化合物と反応してカルボン酸基とアミド基(非共有結合可能な官能基)になると考えられる。サンプル瓶中で500mgの無水マレイン酸変性ブロック共重合体を5.00gのTHFに溶解し、さらにあらかじめ調製したn-ブチルアミンのTHF10質量%溶液を506mg加えた。このとき、酸無水物基とn-ブチルアミンはほぼ等モル量であった。サンプル瓶内を窒素置換し、50℃のホットプレート上で300rpmで約13時間撹拌した。反応後の溶液を20mL容量のテフロン(登録商標)ビーカーに移し、そのまま室温で1.5日間静置させることでTHF溶媒を蒸発させた。その後、真空乾燥器を用いて約1日間乾燥させることで溶媒を完全に除去した。得られた変性試料は膜状であり、その厚さは約0.46mmであった。
 得られた変性試料を重クロロホルムに溶解して約2質量%の溶液を調製し、H-NMR法を行ったところ、3.0~3.3ppmにアミド基の窒素原子に隣接するメチレン基のプロトンに由来するピーク強度が見られたことから、非共有結合可能な官能基の導入が行われたことを確認した。また、アミンによる変性前と同様にFT-IR測定を行ったところ、アミンによる変性前には見られなかった3100~3600cm-1のアミド基のN-H伸縮振動に由来する吸収が新たに見られた。
[1-3]引張試験
 得られた膜状の変性試料を打抜き刃型を用いて打ち抜き、4mm幅のドッグボーン型試験片を調製した。測定装置は島津製作所製のAGS-X、50Nロードセル、50Nクリップ式つかみ具を用い、つかみ具間距離8.5mm、初期歪み速度0.33/s(引張速度2.8mm/s)にて行った。ヤング率はひずみ10%以内の領域で算出し、靱性は破断までのS-Sカーブの内面積より算出した。引張試験の結果、ヤング率、最大応力、破断伸び、靱性はそれぞれ、0.99MPa、7.1MPa、1850%、44MJ/mであった。なお、ヤング率は応力-ひずみ曲線の初期勾配(ひずみ10%)、最大応力は応力の最大値、破断伸びは破断が生じたときの伸び、靱性は応力-ひずみ曲線の内面積より求めた。
[1-4]応力緩和試験
 1-3引張試験と同様に、膜状の変性試料を打抜き刃型を用いて打ち抜き、4mm幅のドッグボーン型試験片を調製した。試験片の厚さは約0.60mmであった。測定装置は引張試験と同様に島津製作所製のAGS-X、50Nロードセル、50Nクリップ式つかみ具を用い、つかみ具間距離8.7mm、初期歪み速度1.5/s(引張速度13mm/s)、歪み1000%にて20時間、応力緩和試験を行った。歪み1000%で20時間維持しても破断が生じなかったことから、応力緩和性に優れることが分かる。
[比較例1]
 比較例1では、ベースポリマーのブロック共重合体(Quintac3520)に対して引張試験を行った。500mgのブロック共重合体(Quintac3520)を5.00gのTHFに溶解し、得られた溶液を20mL容量のテフロン(登録商標)ビーカーに移してそのまま室温で1.5日間静置させることでTHF溶媒を蒸発させた。その後、真空乾燥機を用いて約1日間乾燥させることで溶媒を完全に除去した。得られた膜試料の厚さは約0.52mmであった。得られた膜試料を打抜き刃型を用いて打ち抜き、4mm幅のドッグボーン型試験片を調製し、つかみ具間距離9.3mm、初期歪み速度0.33/s(引張速度3.1mm/s)にて引張試験を行った。引張試験の結果、ヤング率、最大応力、破断伸び、靱性はそれぞれ、1.7MPa、1.4MPa、1730%、16MJ/mであった。
 比較例1の試料は、実施例1に比べて、最大応力が1/5程度となり、その結果、靭性も1/3程度となった。実施例1が良い力学特性を示したのは、変性処理によって生成したアミド基やカルボン酸が変性ポリイソプレンブロック間で水素結合を形成し、擬似的にトリブロック共重合体様の挙動を示したためであると考えられる。
[実施例2]
 実施例2では、実施例1の無水マレイン酸変性ブロック共重合体(無水マレイン酸由来の酸無水物基の導入率11.2mol%)に対してアミンによる変性処理を行わずに引張試験を行った。500mgの無水マレイン酸変性ブロック共重合体と5.10gのTHFとを使用した以外は、比較例1と同様に膜試料を調製した。得られた膜試料の厚さは約0.61mmであった。得られた膜試料を打抜き刃型を用いて打ち抜き、4mm幅のドッグボーン型試験片を調製し、つかみ具間距離12.5mm、初期歪み速度0.33/s(引張速度4.1mm/s)にて引張試験を行った。引張試験の結果、ヤング率、最大応力、破断伸び、靱性はそれぞれ、0.95MPa、0.72MPa、1040%、5.7MJ/mであった。
 実施例2の無水マレイン酸変性ブロック共重合体は、アミンによる変性後の試料(実施例1)に比べて力学特性は大きく劣っていた。これは、無水マレイン酸由来の酸無水物基は非共有結合を形成していないため、アミンによる変性後の試料(実施例1)のように優れた力学特性は示さなかったと考えられる。
[実施例3]
 実施例3では、実施例1で得た無水マレイン酸変性ブロック共重合体(無水マレイン酸由来の酸無水物基の導入率11.2mol%)に対してエチルアミンを用いて変性処理を行った。無水マレイン酸変性ブロック共重合体、THF、エチルアミンのTHF10質量%溶液をそれぞれ500mg、5.00g、314mg使用した以外は、実施例1と同様に膜状の変性試料を調製した。得られた変性試料の厚さは約0.52mmであった。
 得られた変性試料について、実施例1と同様にH-NMR測定を行ったところ、3.0~3.3ppmにアミド基の窒素原子に隣接するメチレン基のプロトンに由来するピークが見られたことから、非共有結合可能な官能基の導入が行われたことを確認した。また、アミンによる変性前と同様にFT-IR測定を行ったところ、アミンによる変性前には見られなかった3100~3600cm-1のアミド基のN-H伸縮振動に由来する吸収が新たに見られた。
 得られた変性試料を打抜き刃型を用いて打ち抜き、4mm幅のドッグボーン型試験片を調製した。つかみ具間距離10.6mm、初期歪み速度0.33/s(引張速度3.5mm/s)にて引張試験を行った。引張試験の結果、ヤング率、最大応力、破断伸び、靱性はそれぞれ、1.4MPa、10.4MPa、1740%、59.9MJ/mであった。また、実施例1と同様に応力緩和試験を行ったところ、実施例1と同様の結果が得られた。
[実施例4]
 実施例4では、実施例1で得た無水マレイン酸変性ブロック共重合体(無水マレイン酸由来の酸無水物基の導入率11.2mol%)に対してn-ヘキシルアミンを用いて変性処理を行った。無水マレイン酸変性ブロック共重合体、THF、n-ヘキシルアミンのTHF10質量%溶液をそれぞれ500mg、5.00g、702mg使用した以外は、実施例1と同様に膜状の変性試料を調製した。得られた変性試料の厚さは約0.57mmであった。
 得られた変性試料について、実施例1と同様にH-NMR測定を行ったところ、3.0~3.3ppmにアミド基の窒素原子に隣接するメチレン基のプロトンに由来するピークが見られたことから、非共有結合可能な官能基の導入が行われたことを確認した。また、アミンによる変性前と同様にFT-IR測定を行ったところ、アミンによる変性前には見られなかった3100~3600cm-1のアミド基のN-H伸縮振動に由来する吸収が新たに見られた。
 得られた変性試料を打抜き刃型を用いて打ち抜き、4mm幅のドッグボーン型試験片を調製した。つかみ具間距離9.1mm、初期歪み速度0.33/s(引張速度3.0mm/s)にて引張試験を行った。引張試験の結果、ヤング率、最大応力、破断伸び、靱性はそれぞれ、0.98MPa、6.1MPa、1810%、39MJ/mであった。また、実施例1と同様に応力緩和試験を行ったところ、実施例1と同様の結果が得られた。
[実施例5]
 実施例5では、実施例1で得た無水マレイン酸変性ブロック共重合体(無水マレイン酸由来の酸無水物基の導入率11.2mol%)に対してn-オクチルアミンを用いて変性処理を行った。無水マレイン酸変性ブロック共重合体、THF、n-オクチルアミンをそれぞれ500mg、5.00g、93mg使用した以外は、実施例1と同様に膜状の変性試料を調製した。得られた変性試料の厚さは約0.60mmであった。
 得られた変性試料について、実施例1と同様にH-NMR測定を行ったところ、3.0~3.3ppmにアミド基の窒素原子に隣接するメチレン基のプロトンに由来するピークが見られたことから、非共有結合可能な官能基の導入が行われたことを確認した。また、アミンによる変性前と同様にFT-IR測定を行ったところ、アミンによる変性前には見られなかった3100~3600cm-1のアミド基のN-H伸縮振動に由来する吸収が新たに見られた。
 得られた変性試料を打抜き刃型を用いて打ち抜き、4mm幅のドッグボーン型試験片を調製した。つかみ具間距離11.1mm、初期歪み速度0.33/s(引張速度3.7mm/s)にて引張試験を行った。引張試験の結果、ヤング率、最大応力、破断伸び、靱性はそれぞれ、1.1MPa、7.2MPa、1700%、44MJ/mであった。また、実施例1と同様に応力緩和試験を行ったところ、実施例1と同様の結果が得られた。
[実施例6]
 ベースポリマーとなるブロック共重合体として、KratonD1102(Kraton JSR Elastomers社製、ポリスチレン-ポリブタジエンブロック共重合体組成物)を用いたこと以外は、実施例1と同様にして、無水マレイン酸による変性を行い、さらにn-ブチルアミンによる変性処理を行った。無水マレイン酸由来の酸無水物基の導入率は5.9mol%と見積もられた。本実施例でも、非共有結合可能な官能基を導入できることを確認した。
 実施例1とほぼ同様にして引張試験を行ったところ、ヤング率、最大応力、破断伸び、靱性はそれぞれ、5.5MPa、5.2MPa、1000%、29MJ/mであった。また、実施例1と同様に応力緩和試験を行ったところ、実施例1と同様の結果が得られた。

Claims (16)

  1.  少なくとも1つの芳香族ビニル重合体ブロックと、少なくとも1つの共役ジエン重合体ブロックとを有するブロック共重合体(A)に非共有結合可能な官能基が導入されてなるブロック共重合体(B)を含む、変性処理により得られるブロック共重合体組成物。
  2.  前記非共有結合可能な官能基が、前記ブロック共重合体(A)に導入されたカルボキシル基または酸無水物基と塩基とを反応させてなる基である、あるいは前記ブロック共重合体(A)に導入された酸無水物基を塩基により加水分解してなる基である、請求項1に記載の変性処理により得られるブロック共重合体組成物。
  3.  前記酸無水物基が、不飽和ジカルボン酸無水物に由来する基である、請求項2に記載の変性処理により得られるブロック共重合体組成物。
  4.  前記塩基が、アルカリ金属含有化合物、アルカリ土類金属含有化合物、アンモニア及びアミン化合物からなる群より選択される少なくとも1種である、請求項2または請求項3に記載の変性処理により得られるブロック共重合体組成物。
  5.  前記非共有結合可能な官能基が、水素結合可能な官能基である、請求項1から請求項4までのいずれかに記載の変性処理により得られるブロック共重合体組成物。
  6.  前記芳香族ビニル重合体ブロックの重量平均分子量が3,000~50,000の範囲内であり、
     前記共役ジエン重合体ブロックのビニル結合含有量が0.1モル%~50モル%の範囲内であり、かつ重量平均分子量が10,000~500,000の範囲内である、請求項1から請求項5までのいずれかに記載の変性処理により得られるブロック共重合体組成物。
  7.  前記芳香族ビニル重合体ブロックがポリスチレンである、請求項1から請求項6までのいずれかに記載の変性処理により得られるブロック共重合体組成物。
  8.  前記共役ジエン重合体ブロックがポリブタジエン及び/又はポリイソプレンである、請求項1から請求項7までのいずれかに記載の変性処理により得られるブロック共重合体組成物。
  9.  少なくとも1つの芳香族ビニル重合体ブロックと、少なくとも1つの共役ジエン重合体ブロックとを有するブロック共重合体(A)に、不飽和カルボン酸または不飽和ジカルボン酸無水物を反応させ、カルボキシル基または酸無水物基が導入された変性ブロック共重合体(C)を得る第1工程と、
     前記変性ブロック共重合体(C)を塩基処理し、非共有結合可能な官能基が導入されたブロック共重合体(B)を得る第2工程と
     を有する、ブロック共重合体組成物の製造方法。
  10.  前記第1工程では、前記不飽和ジカルボン酸無水物を反応させる、請求項9に記載のブロック共重合体組成物の製造方法。
  11.  前記第2工程では、アルカリ金属含有化合物、アルカリ土類金属含有化合物、アンモニア及びアミン化合物からなる群より選択される少なくとも1種の塩基を使用する、請求項9または請求項10に記載のブロック共重合体組成物の製造方法。
  12.  少なくとも1つの芳香族ビニル重合体ブロックと、少なくとも1つの共役ジエン重合体ブロックとを有するブロック共重合体(A)に、不飽和カルボン酸または不飽和ジカルボン酸無水物に由来するカルボキシル基または酸無水物基が導入されてなる変性ブロック共重合体(C)を含む、変性ブロック共重合体組成物。
  13.  前記芳香族ビニル重合体ブロックの重量平均分子量が3,000~50,000の範囲内であり、
     前記共役ジエン重合体ブロックのビニル結合含有量が0.1モル%~50モル%の範囲内であり、かつ重量平均分子量が10,000~500,000の範囲内である、請求項12に記載の変性ブロック共重合体組成物。
  14.  前記芳香族ビニル重合体ブロックがポリスチレンである、請求項12または請求項13に記載の変性ブロック共重合体組成物。
  15.  前記共役ジエン重合体ブロックがポリブタジエン及び/又はポリイソプレンである、請求項12から請求項14までのいずれかに記載の変性ブロック共重合体組成物。
  16.  少なくとも1つの芳香族ビニル重合体ブロックと、少なくとも1つの共役ジエン重合体ブロックとを有するブロック共重合体(A)に、不飽和カルボン酸または不飽和ジカルボン酸無水物を反応させ、カルボキシル基または酸無水物基が導入された変性ブロック共重合体(C)を得る工程を有する、変性ブロック共重合体組成物の製造方法。
PCT/JP2018/017439 2017-05-11 2018-05-01 変性処理により得られるブロック共重合体組成物及びその製造方法、並びにそれに用いられる変性ブロック共重合体組成物及びその製造方法 WO2018207683A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019517584A JP7071968B2 (ja) 2017-05-11 2018-05-01 変性処理により得られるブロック共重合体組成物及びその製造方法、並びにそれに用いられる変性ブロック共重合体組成物及びその製造方法
EP18798618.7A EP3623396A4 (en) 2017-05-11 2018-05-01 COMPOSITION OF BLOCK COPOLYMER OBTAINED BY MODIFICATION TREATMENT, PROCESS FOR THE PRODUCTION OF THE LATTER, COMPOSITION OF MODIFIED BLOCK COPOLYMER USED FOR THE LATTER, AND PROCESS FOR THE PRODUCTION OF SUCH COMPOSITION OF MODIFIED BLOCK COPOLYMER
US16/609,836 US11466150B2 (en) 2017-05-11 2018-05-01 Block copolymer composition obtained by modification treatment, method for producing same, modified block copolymer composition used for same, and method for producing said modified block copolymer composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-095056 2017-05-11
JP2017095056 2017-05-11

Publications (1)

Publication Number Publication Date
WO2018207683A1 true WO2018207683A1 (ja) 2018-11-15

Family

ID=64104673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017439 WO2018207683A1 (ja) 2017-05-11 2018-05-01 変性処理により得られるブロック共重合体組成物及びその製造方法、並びにそれに用いられる変性ブロック共重合体組成物及びその製造方法

Country Status (4)

Country Link
US (1) US11466150B2 (ja)
EP (1) EP3623396A4 (ja)
JP (1) JP7071968B2 (ja)
WO (1) WO2018207683A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131768A1 (ja) * 2017-12-28 2019-07-04 日本ゼオン株式会社 変性ブロック共重合体組成物
WO2019216241A1 (ja) * 2018-05-07 2019-11-14 日本ゼオン株式会社 イオン性基を有するブロック共重合体組成物及びフィルム
KR20200068123A (ko) * 2018-12-04 2020-06-15 주식회사 엘지화학 블록 공중합체 라텍스 조성물 제조방법, 이로부터 제조된 블록 공중합체 라텍스 조성물 및 이를 포함하는 종이 코팅액 조성물
EP3677645A4 (en) * 2017-08-31 2021-06-02 Zeon Corporation MULTI-BLOCK COPOLYMER COMPOSITION OBTAINED BY MODIFICATION TREATMENT, AND FILM
WO2024038845A1 (ja) * 2022-08-16 2024-02-22 株式会社レゾナック 樹脂組成物
WO2024038847A1 (ja) * 2022-08-16 2024-02-22 株式会社レゾナック 変性スチレン系エラストマー
WO2024038846A1 (ja) * 2022-08-16 2024-02-22 株式会社レゾナック 変性スチレン系エラストマー
WO2024080172A1 (ja) * 2022-10-14 2024-04-18 日本ゼオン株式会社 変性基含有水添ブロック共重合体および変性基含有水添ブロック共重合体の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021171954A1 (ja) * 2020-02-28 2021-09-02

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5483091A (en) * 1977-12-14 1979-07-02 Dainichi Seika Kogyo Kk Preparation of hydrophilic polymer
JPS54146889A (en) * 1978-05-09 1979-11-16 Kuraray Co Ltd Production of block copolymer latex
JPS5560511A (en) * 1978-10-31 1980-05-07 Asahi Chem Ind Co Ltd Modified block copolymer resin composition and its preparation
JPS56115307A (en) * 1980-02-15 1981-09-10 Asahi Chem Ind Co Ltd Preparation of polymer
JPS56116702A (en) * 1980-02-22 1981-09-12 Asahi Chem Ind Co Ltd Graft copolymer
JPS56120753A (en) * 1980-02-29 1981-09-22 Asahi Chem Ind Co Ltd Modified block copolymer composition and its preparation
JPS6243411A (ja) * 1986-08-14 1987-02-25 Asahi Chem Ind Co Ltd 変性ブロック共重合体樹脂の製造方法
JPS62181307A (ja) * 1987-01-08 1987-08-08 Asahi Chem Ind Co Ltd 変性ブロツク共重合体樹脂組成物の製造方法
JPH05125130A (ja) * 1991-11-05 1993-05-21 Tosoh Corp グラフト共重合体の製造方法
WO2009123089A1 (ja) 2008-03-31 2009-10-08 日本ゼオン株式会社 ブロック共重合体組成物、その製造方法及びフィルム
JP2012077158A (ja) 2010-09-30 2012-04-19 Nippon Zeon Co Ltd 重合体組成物の製造方法
JP2016089099A (ja) 2014-11-07 2016-05-23 国立大学法人名古屋大学 非共有結合性エラストマー

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4292414A (en) 1978-08-16 1981-09-29 Asahi Kasei Kogyo Kabushiki Kaisha Process for the preparation of modified block copolymers
US6248702B1 (en) * 1990-01-16 2001-06-19 Mobil Oil Corporation Dispersant and dispersant viscosity index improvers from selectively hydrogenated aryl-substituted olefin containing diene copolymers
EP1961778B1 (en) 2005-12-14 2018-12-05 Kuraray Co., Ltd. Block copolymer and hydrogenated product thereof
DE102007034458A1 (de) 2007-07-20 2009-01-22 Evonik Röhm Gmbh Harzsystem für Intumeszent Beschichtung mit verbesserter Metallhaftung

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5483091A (en) * 1977-12-14 1979-07-02 Dainichi Seika Kogyo Kk Preparation of hydrophilic polymer
JPS54146889A (en) * 1978-05-09 1979-11-16 Kuraray Co Ltd Production of block copolymer latex
JPS5560511A (en) * 1978-10-31 1980-05-07 Asahi Chem Ind Co Ltd Modified block copolymer resin composition and its preparation
JPS56115307A (en) * 1980-02-15 1981-09-10 Asahi Chem Ind Co Ltd Preparation of polymer
JPS56116702A (en) * 1980-02-22 1981-09-12 Asahi Chem Ind Co Ltd Graft copolymer
JPS56120753A (en) * 1980-02-29 1981-09-22 Asahi Chem Ind Co Ltd Modified block copolymer composition and its preparation
JPS6243411A (ja) * 1986-08-14 1987-02-25 Asahi Chem Ind Co Ltd 変性ブロック共重合体樹脂の製造方法
JPS62181307A (ja) * 1987-01-08 1987-08-08 Asahi Chem Ind Co Ltd 変性ブロツク共重合体樹脂組成物の製造方法
JPH05125130A (ja) * 1991-11-05 1993-05-21 Tosoh Corp グラフト共重合体の製造方法
WO2009123089A1 (ja) 2008-03-31 2009-10-08 日本ゼオン株式会社 ブロック共重合体組成物、その製造方法及びフィルム
JP2012077158A (ja) 2010-09-30 2012-04-19 Nippon Zeon Co Ltd 重合体組成物の製造方法
JP2016089099A (ja) 2014-11-07 2016-05-23 国立大学法人名古屋大学 非共有結合性エラストマー

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3623396A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3677645A4 (en) * 2017-08-31 2021-06-02 Zeon Corporation MULTI-BLOCK COPOLYMER COMPOSITION OBTAINED BY MODIFICATION TREATMENT, AND FILM
US11492452B2 (en) 2017-08-31 2022-11-08 Zeon Corporation Multi-block copolymer composition obtained by modification treatment, and film
WO2019131768A1 (ja) * 2017-12-28 2019-07-04 日本ゼオン株式会社 変性ブロック共重合体組成物
WO2019216241A1 (ja) * 2018-05-07 2019-11-14 日本ゼオン株式会社 イオン性基を有するブロック共重合体組成物及びフィルム
US11459417B2 (en) 2018-05-07 2022-10-04 Zeon Corporation Block copolymer composition including ionic group, and film
KR20200068123A (ko) * 2018-12-04 2020-06-15 주식회사 엘지화학 블록 공중합체 라텍스 조성물 제조방법, 이로부터 제조된 블록 공중합체 라텍스 조성물 및 이를 포함하는 종이 코팅액 조성물
KR102588750B1 (ko) * 2018-12-04 2023-10-13 주식회사 엘지화학 블록 공중합체 라텍스 조성물 제조방법, 이로부터 제조된 블록 공중합체 라텍스 조성물 및 이를 포함하는 종이 코팅액 조성물
WO2024038845A1 (ja) * 2022-08-16 2024-02-22 株式会社レゾナック 樹脂組成物
WO2024038847A1 (ja) * 2022-08-16 2024-02-22 株式会社レゾナック 変性スチレン系エラストマー
WO2024038846A1 (ja) * 2022-08-16 2024-02-22 株式会社レゾナック 変性スチレン系エラストマー
WO2024080172A1 (ja) * 2022-10-14 2024-04-18 日本ゼオン株式会社 変性基含有水添ブロック共重合体および変性基含有水添ブロック共重合体の製造方法

Also Published As

Publication number Publication date
JPWO2018207683A1 (ja) 2020-05-07
EP3623396A4 (en) 2021-01-27
JP7071968B2 (ja) 2022-05-19
EP3623396A1 (en) 2020-03-18
US20200062948A1 (en) 2020-02-27
US11466150B2 (en) 2022-10-11

Similar Documents

Publication Publication Date Title
JP7071968B2 (ja) 変性処理により得られるブロック共重合体組成物及びその製造方法、並びにそれに用いられる変性ブロック共重合体組成物及びその製造方法
JP6435022B2 (ja) 水添ブロック共重合体およびそれを含む組成物
WO2021171954A1 (ja) 耐衝撃材料用の熱可塑性エラストマー組成物、および耐衝撃材料
TW200303320A (en) Novel block copolymers and method for making same
JP5569310B2 (ja) 重合体組成物の製造方法
US11492452B2 (en) Multi-block copolymer composition obtained by modification treatment, and film
JP7064909B2 (ja) 熱可塑性樹脂組成物及び成形品
JP5263480B2 (ja) ブロック共重合体およびその水素添加物
JP7451399B2 (ja) イオン性基を有するブロック共重合体組成物及びフィルム
JP2009084458A (ja) ブロック共重合体及びその製造方法
JP7164933B2 (ja) ブロック共重合体組成物およびフィルム
JP2007262310A (ja) ゴム組成物およびゴム架橋物
JP2017008308A (ja) 伸縮性材料、フィルム及び不織布
WO2024080172A1 (ja) 変性基含有水添ブロック共重合体および変性基含有水添ブロック共重合体の製造方法
JP5055609B2 (ja) 熱可塑性エラストマー組成物を用いた弾性バンド
JP2011094074A (ja) 発泡体用変性ブロック共重合体及びその組成物
JP2023134111A (ja) 変性ブロック共重合体
JP2010150449A (ja) 成形材料
JP2006249125A (ja) 熱可塑性樹脂組成物
JP2004149674A (ja) 熱可塑性樹脂組成物
JPH04227749A (ja) 形状記憶性ブロック共重合体組成物、使用方法および形状記憶性成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18798618

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019517584

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018798618

Country of ref document: EP

Effective date: 20191211