WO2018199394A1 - 금 적층 구리 필름 및 그 제조 방법 - Google Patents

금 적층 구리 필름 및 그 제조 방법 Download PDF

Info

Publication number
WO2018199394A1
WO2018199394A1 PCT/KR2017/008309 KR2017008309W WO2018199394A1 WO 2018199394 A1 WO2018199394 A1 WO 2018199394A1 KR 2017008309 W KR2017008309 W KR 2017008309W WO 2018199394 A1 WO2018199394 A1 WO 2018199394A1
Authority
WO
WIPO (PCT)
Prior art keywords
gold
layer
metal
copper
brass
Prior art date
Application number
PCT/KR2017/008309
Other languages
English (en)
French (fr)
Inventor
권혁전
이상목
Original Assignee
주식회사 진영알앤에스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 진영알앤에스 filed Critical 주식회사 진영알앤에스
Priority to US15/739,971 priority Critical patent/US20190071766A1/en
Priority to CN201780002199.3A priority patent/CN109154068A/zh
Priority to GB1721710.0A priority patent/GB2570287A/en
Priority to JP2017567440A priority patent/JP2019518861A/ja
Publication of WO2018199394A1 publication Critical patent/WO2018199394A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0016Brazing of electronic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/19Soldering, e.g. brazing, or unsoldering taking account of the properties of the materials to be soldered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/42Printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0338Layered conductor, e.g. layered metal substrate, layered finish layer, layered thin film adhesion layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components
    • H05K3/3436Leadless components having an array of bottom contacts, e.g. pad grid array or ball grid array components

Definitions

  • This invention relates to a gold laminated copper film and its manufacturing method.
  • metal surface treatment techniques such as plating, thermal evaporation, or sputtering are techniques that improve the corrosion and wear resistance of metals and improve the color and gloss of the metal surface, thereby enhancing the value of the metals.
  • gold which is a precious metal, not only increases the value of the product, but is also widely used as a material for terminals and wiring of electronic devices and semiconductor products due to its excellent thermal and electrical properties.
  • the gold plating method of plating gold on metals such as copper (Cu) is used in various industrial fields such as electronic products and semiconductor parts as well as household items such as ornaments.
  • the last step in the printed circuit board (PCB) manufacturing process is a surface treatment process.
  • This surface treatment process is a very important step to prevent oxidation of the solder pad surface until the final soldering process is performed.
  • HSL hot air solder leveling
  • Au electroless gold
  • OSP organic solder ability preservative
  • pre-flux electroless tin
  • Au electroless silver
  • Ag electroless silver
  • Gold plating is generally plated with gold on copper, and a nickel protective layer is used to prevent nickel from penetrating into copper foil structure by plating nickel (Ni) first on copper before plating gold on copper. Used as
  • the nickel layer using nickel before the gold plating is used as the protective metal layer, the nickel layer is peeled off due to oxidation of the nickel layer after the soldering process.
  • the technical problem to be achieved by the present invention is to prevent the peeling phenomenon of the layer laminated on the metal to reduce the defective rate of the product.
  • Gold laminated copper film is a metal layer made of a material containing copper, located on the metal layer, brass, manganese brass, phosphor bronze, dust proof, delta metal, naval brass, aluminum (Al) -brass alloy, copper
  • a metal protective layer made of a (Cu) -tin (Sn) alloy, a bronze or a copper (Cu) -lead (Pb) alloy, and includes a gold layer located on the metal protective layer.
  • the metal layer may be made of a rolled copper foil, an electrolytic copper foil, or a battery copper foil.
  • the metal layer may have a thickness of 10 ⁇ m to 100 ⁇ m
  • the metal protective layer may have a thickness of 200 ⁇ m to 1000 ⁇ m
  • the gold layer may have a thickness of 200 ⁇ m to 1000 ⁇ m.
  • a method of manufacturing a gold-clad copper film includes forming a metal protective layer by a roll-to-roll sputtering method on a metal layer made of a copper-containing material, and forming a gold layer on the protective metal layer by a roll-to-roll sputtering method.
  • the metal protective layer includes brass, manganese brass, phosphor bronze, real, delta metal, naval brass, aluminum (Al) -brass alloy, copper (Cu) -tin (Sn) alloy, bronze or copper It consists of a (Cu) -lead (Pb) alloy.
  • the metal layer may be formed of a rolled copper foil, an electrolytic copper foil, or a battery copper foil.
  • the method of manufacturing a gold-clad copper film according to the above feature may further include forming a connection portion between the terminal of the component and the gold layer by performing a soldering process using solder on the gold layer.
  • a metal protective layer made of copper alloy is laminated on the metal layer, and then sputtering of gold is performed to prevent gold from penetrating into the metal layer. It increases the adhesion with gold and improves the gloss of the formed gold layer.
  • the sputtering method is used, and instead of using the nickel layer, which causes the peeling phenomenon of the plated gold due to oxidation during the soldering process, as a protective metal layer, a copper alloy is used as the protective metal layer, so that after the soldering process The phenomenon that a gold layer peels is prevented.
  • FIG. 1 is a cross-sectional view of a gold laminated copper film according to one embodiment of the present invention.
  • FIGS. 2 and 3 are cross-sectional views showing a method of manufacturing a gold-clad copper film according to an embodiment of the present invention.
  • 4 and 5 illustrate an example of a soldering process between a gold-clad copper film and a component having a terminal according to an embodiment of the present invention.
  • the gold-clad copper film 100 may include the metal layer 110, the first and second metal protective layers 121 and 122 positioned on the upper and lower portions of the metal layer 110, respectively. And first and second gold layers 131 and 132 positioned on the first and second metal protective layers 121 and 122, respectively.
  • a wiring may be positioned on at least one of the first and second gold layers 131 and 132 (eg, the first gold layer 131).
  • the metal layer 110 of the present example is a copper foil made of a material containing copper (Cu), and specifically, may be made of a rolled copper foil, an electrolytic copper foil, or a battery copper foil.
  • Cu copper
  • the metal layer 110 has a thickness of 10 ⁇ m to 100 ⁇ m.
  • the first and second metal protective layers 121 and 122 respectively positioned on the upper and lower portions of the metal layer 100 may have the same thickness, and may have, for example, a thickness of 200 ⁇ s to 1000 ⁇ s.
  • first and second metal protective layers 121 and 122 may be formed of brass, manganese brass, phosphor bronze, silzin, delta metal, and naval brass, respectively. naval brass, an aluminum (Al) -brass alloy, a copper (Cu) -tin (Sn) alloy (eg, bronze), or a copper (Cu) -lead (Pb) alloy.
  • the first and second gold layers 131 and 132 disposed on the first and second metal protective layers 121 and 122, respectively, and formed of gold (Au) may have a thickness of 200 ⁇ s to 1000 ⁇ s.
  • metal protective layers 121 and 122 made of copper alloy are laminated on the metal layer 110, and then sputtering of gold is performed.
  • adhesion of gold to the metal layer 110 is increased, and the gloss of the formed gold layers 131 and 132 is improved.
  • the sputtering method is used, and in particular, the soldering process is performed because the copper alloy is used as the metal protective layer instead of using the nickel layer, which causes the peeling phenomenon of the plated gold due to the oxidation phenomenon, as the metal protective layer. The phenomenon that a gold layer peels after a process is prevented.
  • a method of manufacturing the gold-clad copper film 100 having such a structure will be described with reference to FIGS. 2 and 3.
  • each corresponding layer is sequentially formed by using one chamber in which compartments partitioned by partitions or the like are formed by the number of layers stacked to manufacture one gold-clad copper film 100, but differently, Each corresponding layer may be formed sequentially in the chamber.
  • the metal layer 110 which is a base layer, moves to a corresponding compartment of a process chamber for laminating each desired layer.
  • the metal layer 110 may be made of a material containing copper (Cu), such as a rolled copper foil, an electrolytic copper foil, or a battery copper foil.
  • Cu copper
  • each layer 110, 121, 122, 131, 132 is manufactured by a roll-to-roll sputtering method using a roll-to-roll sputtering equipment.
  • the initial degree of vacuum of the processing chamber is 1 ⁇ 10 - is maintained at 6 torr - 6 torr to about 9 ⁇ 10.
  • the initial vacuum of the process chamber is to remove moisture from the metal layer 110 serving as the substrate layer, and a high vacuum pump, a turbo pump, a dispenser pump, or a cryo pump to reach a desired vacuum level. cryo pump).
  • the metal layer 110 moves to the process chamber, and then uses an mass flow controller (MFC) to form a plasma for the sputtering process.
  • gas i.e., plasma gas
  • inert gas e.g., argon (Ar) gases are introduced into the process chamber, thereby, a degree of vacuum of the processing chamber is 1 ⁇ 10 - 3 torr to about 9 ⁇ 10 - 3 torr, preferably It is adjusted to 1 to 5 ⁇ 10 -3 torr so that the vacuum state of the process chamber is adjusted from the initial state to the working state.
  • the amount of argon (Ar) gas may be 100sccm to 500sccm.
  • each lower limit value 100 sccm
  • the sputtering process is performed stably and the stacking operation of a desired layer is performed stably, and when the input amount of argon gas is lower than each upper limit value (500 sccm), Due to the collision with the ions during the plasma formation is reduced stacking efficiency is prevented.
  • the injected sputtering gas (argon gas) is discharged from the cathode side (e.g., the target material side). Collide with and be excited to become Ar + .
  • the excited argon gas (Ar +) moves toward the cathode where the target material is located and collides with the target material, and the collision generates a plasma, and thus the lamination operation is performed on the metal layer 110 located on the anode side.
  • Metal protective layers 121 and 122 are stacked on top and bottom of metal layer 110, respectively (FIG. 2).
  • the metal layer 110 may be formed. After the first metal protective layer 121 or the second metal protective layer 122 is formed on the front or rear surface, the second metal protective layer 121 or the second metal protective layer 122 is formed on the second surface of the remaining metal layer 110 in the atmosphere of the same process chamber. The metal protective layer 122 or the first metal protective layer 121 is formed.
  • the target material for the first and second metal protective layers 121 and 122 is an alloy material of copper, for example, brass, manganese brass, phosphor bronze ), Silzin, delta metal, naval brass, aluminum (Al) -brass alloys, copper (Cu) -tin (Sn) alloys (eg bronze) or copper ( Cu) -lead (Pb) alloy.
  • the manufactured copper foil serves as a compartment for stacking the first and second gold layers 131 and 132. Is moved.
  • argon gas which is an atmosphere gas
  • the target material gold (Au) is positioned for the first and second gold layers 131 and 132
  • the argon gas (Ar +) is injected into the corresponding compartment in which the target material gold (Au) is positioned for the first and second gold layers 131 and 132, and when power is supplied, the argon gas (Ar +)
  • the first and second gold layers 121 and 122 are formed on the first and second metal protective layers 121 and 122, respectively, by the sputtering operation (FIG. 3). At this time, the formation order of the first and second gold layers 131 and 132 is changed as necessary.
  • An amount of argon (Ar) gas for the first and second gold layers 131 and 132 may be 100 sccm to 500 sccm.
  • the first and second metal protective layers 121 and 122 are formed using a sputtering process performed in a vacuum without foreign substances, not a plating process in which foreign substances are introduced.
  • a problem caused by a foreign matter for example, a phenomenon in which at least one of the first and second metal protective layers 121 and 122 and the gold layers 131 and 132 formed thereon are oxidized due to the foreign matter or the gold layer 131. Problems such as delamination, etc. are prevented or reduced.
  • a heat-resistant copper alloy is used for the first and second metal protective layers 121 and 122 without using nickel, which generates thermal oxidation during the high temperature process for the soldering process.
  • the oxidation phenomenon according to the high temperature process performed during the soldering process is reduced or prevented, and as described above, no foreign matter penetrates when forming the first and second metal protective layers 121 and 122, and thus, when soldering, Oxidation and cracking due to this is prevented.
  • the density and flatness of the film formed during the sputtering process are greater than the density and flatness of the film formed by the plating process, the density and flatness of the first and second metal protective layers 121 and 122 may be increased than those formed by the plating process. do.
  • the adhesion force of the gold layers 131 and 132 is increased. Therefore, the amount of gold used is reduced, thereby improving economic efficiency.
  • the aesthetics of the product on which the first and second metal protective layers 121 and 122 are formed is improved due to an increase in gloss or the like due to the formation of the copper alloy material.
  • the amount of argon gas injected into the compartment for forming the metal protective layers 121 and 122 and the amount of argon gas injected into the compartment for forming the gold layers 131 and 132 may be different or the same.
  • the traveling speed of the metal layer 110 for roll-to-roll spattering may be 1 to 10 m / min.
  • the traveling speed of the metal layer 110 and the magnitude of power applied for plasma formation in the sputtering process that is, the magnitude of the power of the DC power generator or the DC pulse power generator are stacked in each of the layers 121 122, 131, and 132. It can be determined according to the thickness.
  • the gold laminated copper film 100 having the gold layers 131 and 132 having a desired thickness formed on the metal layer 110 may function as a wiring located on a printed circuit board (PCB) on which components are mounted.
  • PCB printed circuit board
  • FIGS. 4 and 5 an example of a soldering method for connecting a gold laminated copper film 10 as a wiring of a printed circuit board and connecting a component positioned thereon will be described.
  • the gold lamination copper film 100 and the component 200 positioned on the printed circuit board are solder balls as terminals for electrical connection with the gold lamination copper film 100 positioned below the gold lamination copper film 100.
  • solder balls as terminals for electrical connection with the gold lamination copper film 100 positioned below the gold lamination copper film 100.
  • the components having the terminals that is, the solder balls 210 ( 200 is positioned on the desired gold laminated copper film 100 using a flip chip process or a pick and place process.
  • the heat treatment temperature may be 100 °C to 300 °C and the heat treatment time may be 1 minute to 3 minutes.
  • gold (Au) contained in the gold laminated copper film 100 is melted, and the gold laminated copper film 100 and the solder balls 210 of the component 200 positioned thereon are electrically and physically connected to the gold laminated copper.
  • the connection layer 300 to which the gold layer 131 or 132 of the film 100 and the solder ball 210 which is a terminal of the component are connected is formed.
  • the terminal of the component is made of solder balls.
  • the present invention is not limited thereto and various kinds of soldering processes may be applied to the present example.
  • the gold laminated copper film 100 has metal protective layers 121 and 122 and gold layers 131 and 132 on both the front and the rear of the metal layer 110, but the gold laminated copper film is not limited thereto.
  • the metal protective layer 121 or 122 and the gold layer 131 or 132 may be formed on only one surface of the front and rear surfaces of the metal layer 110.
  • a surface modification operation of the metal layer 110 may be further performed by using a DC bombard process, thereby forming the metal layer 110.
  • the stacking efficiency of the first and second metal protective layers 121 and 122 formed on the surface may be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

본 발명은 금 적층 구리 필름에 관한 것으로서, 상기 금 적층 구리 필름은 구리로 이루어진 금속층, 상기 금속층 위에 위치하고, 황동, 망간황동, 인청동, 실진, 델타메탈, 네이벌 황동, 알루미늄(Al)-황동 합금, 구리(Cu)-주석(Sn) 합금, 청동(bronze) 또는 구리(Cu)-납(Pb) 합금으로 이루어진 금속 보호층, 그리고 상기 금속 보호층 위에 위치한 금층을 포함한다.

Description

금 적층 구리 필름 및 그 제조 방법
본 발명은 금 적층 구리 필름 및 그 제조 방법에 관한 것이다.
일반적으로 도금법, 열증착법 또는 스퍼터링법과 같은 금속 표면 처리 기술은 금속의 내식성과 내마모성 등을 향상시키는 동시에 금속 표면의 색채와 광택을 좋게 하여 금속의 가치를 높이는 기술이다.
특히, 금속 표면 처리 물질 중에서, 귀금속인 금은 제품의 가치를 높일 뿐만 아니라, 금이 갖고 있는 우수한 열적 및 전기적 특성으로 인해 전자 제품이나 반도체 제품 등에서 소자의 단자나 배선 등의 재료로 많이 사용되고 있다.
따라서, 구리(Cu) 등과 같은 금속에 금을 도금하는 금도금법은 장식품과 같은 생활 소품뿐만 아니라 전자제품과 반도체 부분과 같은 다양한 산업 분야에서 사용되고 있다.
그리고, 인쇄회로기판(PCB, Printed Circuit Board) 제조 공정에서 가장 마지막에 행해지는 공정은 표면처리 공정이다.
이 표면처리 공정은 최종 솔더링(Soldering) 공정이 이루어질 때까지 솔더 패드(Solder Pad) 표면의 산화를 방지하기 위한 마지막 공정으로 매우 중요한 공정이다.
표면처리 기술은 HASL(Hot Air Solder Leveling), 무전해 금(Au) 도금, 흔히 프리 플럭스(Pre-flux)라 불리는 OSP(Organic Solder ability Preservative), 무전해 주석(Sn), 무전해 은(Ag) 도금, 팔라듐(Pd) 도금 등이 있다.
금도금은 구리에 금을 도금하는 경우가 일반적으로, 구리 위에 금을 도금하기 전에 니켈(Ni)을 먼저 구리 위에 도금하여 금이 동박 조직 내로 침투되는 것을 방지하는 니켈층을 금속 보호층(Barrier layer)으로 사용한다.
하지만, 이와 같이, 금도금하기 전에 니켈을 이용한 니켈층을 보호 금속층으로 사용하는 경우, 솔더링 공정 후 니켈층의 산화로 인해 니켈층이 박리되는 현상이 발생한다.
하지만, 솔더링 공정을 완료하기 전까지 이러한 니켈층의 박리 현상을 검출할 수 없어 해당 제품의 불량률이 증가하는 원인이 된다.
[선행기술문헌]
[특허문헌]
대한민국 공개특허 공개번호 10-2014-0075843(공개일자: 2014년 06월 20일, 발명의 명칭: 전도성 나노폴리머를 이용한 무전해 금도금 방법)
따라서 본 발명이 이루고자 하는 기술적 과제는 금속 위에 적층된 층의 박리 현상을 방지하여 해당 제품의 불량률을 감소시키기 위한 것이다.
본 발명의 한 특징에 따른 금 적층 구리 필름은 구리를 함유한 물질로 이루어진 금속층, 상기 금속층 위에 위치하고, 황동, 망간황동, 인청동, 실진, 델타메탈, 네이벌 황동, 알루미늄(Al)-황동 합금, 구리(Cu)-주석(Sn) 합금, 청동(bronze) 또는 구리(Cu)-납(Pb) 합금으로 이루어진 금속 보호층이고, 상기 금속 보호층 위에 위치한 금층을 포함한다.
상기 금속층은 압연 동박, 전해 동박(electrolytic copper foil) 또는 전지용 동박으로 이루어지는 것이 좋다.
상기 금속층은 10㎛ 내지 100㎛의 두께를 갖고, 상기 금속 보호층은 200Å 내지 1000Å의 두께를 가지며, 상기 금층은 200Å 내지 1000Å의 두께를 가질 수 있다.
본 발명의 다른 특징에 따른 금 적층 구리 필름 제조 방법은 구리를 함유한 물질로 이루어진 금속층 위에 롤투롤 스퍼터링법으로 금속 보호층을 형성하는 단계, 그리고 상기 보호 금속층 위에 롤투롤 스퍼터링법으로 금층을 형성하는 단계를 포함하고, 상기 금속 보호층은 황동, 망간황동, 인청동, 실진, 델타메탈, 네이벌 황동, 알루미늄(Al)-황동 합금, 구리(Cu)-주석(Sn) 합금, 청동(bronze) 또는 구리(Cu)-납(Pb) 합금으로 이루어진다.
상기 금속층은 압연 동박, 전해 동박(electrolytic copper foil) 또는 전지용 동박으로 이루어질 수 있다.
상기 특징에 따른 금 적층 구리 필름 제조 방법은 상기 금층 위에 땜납을 이용한 솔더링 공정을 실시하여 부품의 단자와 상기 금층이 연결되는 연결부를 형성하는 단계를 더 포함할 수 있다.
이러한 특징에 따르면, 구리로 이루어진 금속층 위에 바로 금을 적층하는 대신 금속층 위에 구리 합금으로 이루어진 금속 보호층을 적층한 후, 금의 스퍼터링 동작을 실시하여, 금속층에 금이 침투되는 현상을 막아주고, 금속층과 금과의 부착력을 증가시키며, 형성된 금층의 광택을 향상시킨다.
또한, 도금법을 이용하는 대신 스퍼터링법을 이용하고, 솔더링 공정 시 산화 현상으로 인해 도금된 금의 박리 현상의 원인이 되는 니켈층을 보호 금속층으로 사용하는 대신 구리 합금을 금속 보호층을 이용하므로 솔더링 공정 이후 금층이 박리되는 현상이 방지된다.
도 1은 본 발명의 한 실시예에 따른 금 적층 구리 필름의 단면도이다.
도 2 및 도 3은 본 발명의 한 실시예에 따른 금 적층 구리 필름의 제조 방법은 도시한 단면도이다.
도 4 및 도 5는 본 발명의 한 실시예에 따른 금 적층 구리 필름과 단자를 구비한 부품과의 솔더링 공정의 한 예를 도시한 도면이다.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
어떤 구성요소가 다른 구성요소에 "접속되어" 있다거나 "연결되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 접속되어 있거나 연결되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 한다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 접속되어" 있다거나 "직접 연결되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
그러면 첨부한 도면을 참고로 하여 본 발명의 한 실시예에 따른 금 적층 구리 필름 및 그 제조 방법에 대하여 대하여 설명한다.
먼저, 도 1을 참고로 하여, 금 적층 구리 필름에 대하여 상세히 설명한다.
도 1에 도시한 것처럼, 본 예에 따른 금 적층 구리 필름(100)은 금속층(110), 금속층(110)의 상부와 하부에 각각 위치하는 제1 및 제2 금속 보호층(121, 122), 그리고 제1 및 제2 금속 보호층(121, 122) 위에 각각 위치하는 제1 및 제2 금층(131, 132)을 구비한다.
제1 및 제2 금층(131, 132) 중 적어도 하나[예, 제1 금층(131)] 위에는 배선이 위치할 수 있다.
본 예의 금속층(110)은 구리(Cu)를 함유한 물질로 이루어진 동박이고, 구체적으로 압연 동박(rolled copper foil), 전해 동박(electrolytic copper foil) 또는 전지용 동박으로 이루어질 수 있다.
이러한 금속층(110)은 10㎛ 내지 100㎛의 두께를 갖는다.
금속층(100)의 상부와 하부에 각각 위치하고 있는 제1 및 제2 금속 보호층(121, 122)은 모두 동일한 두께를 갖고 있고, 예를 들어 200Å 내지 1000Å의 두께를 가질 수 있다.
또한, 제1 및 제2 금속 보호층(121, 122)은 각각 황동(brass), 망간황동(manganese brass), 인청동(phosphor bronze), 실진(silzin), 델타메탈(delta metal), 네이벌 황동(naval brass), 알루미늄(Al)-황동 합금, 구리(Cu)-주석(Sn) 합금[예, 청동(bronze)] 또는 구리(Cu)-납(Pb) 합금 등의 구리 합금으로 이루어질 수 있다.
제1 및 제2 금속 보호층(121, 122) 위에 각각 위치하고 금(Au)으로 이루어진 제1 및 제2 금층(131, 132)은 200Å 내지 1000Å의 두께를 가질 수 있다.
본 예의 경우, 동박으로 이루어진 금속층(110) 위에 바로 금(Au)을 적층하는 대신 금속층(110) 위에 구리 합금으로 이루어진 금속 보호층(121, 122)을 적층한 후, 금의 스퍼터링 동작을 실시하여, 금속층(110)과의 금 부착력을 증가시키며, 또한 형성된 금층(131, 132)의 광택을 향상시킨다.
또한, 도금법을 이용하는 대신 스퍼터링법을 이용하고, 특히 솔더링 공정 시 산화 현상으로 인해 도금된 금의 박리 현상의 원인이 되는 니켈층을 금속 보호층으로 사용하는 대신 구리 합금을 금속 보호층을 이용하므로 솔더링 공정 이후 금층이 박리되는 현상이 방지된다.
이러한 구조를 갖는 금 적층 구리 필름(100)의 제조 방법에 대하여 도 2 및 도 3을 참고로 하여 설명한다.
본 예의 경우, 하나의 금 적층 구리 필름(100)을 제조하기 위해 적층되는 층 수만큼 격벽 등으로 구획된 격실이 형성된 하나의 챔버를 이용하여 각 해당 층이 순차적으로 형성되지만, 이와는 달리, 별개의 챔버에서 각 해당 층이 순차적으로 형성될 수 있다.
먼저, 기재층인 금속층(110)이 원하는 각 층을 적층하기 위한 공정 챔버의 해당 격실로 이동한다.
이때, 금속층(110)은 압연 동박, 전해 동박(electrolytic copper foil) 또는 전지용 동박과 같이 구리(Cu)을 함유한 물질로 이루어질 수 있다.
본 예에서 각 층(110, 121, 122, 131, 132)은 롤투롤 스퍼터링 (roll-to-roll sputtering) 장비를 사용하는 롤투롤 스퍼터링법으로 제조된다.
이때, 공정 챔버의 초기 진공도는 1×10- 6torr 내지 9×10- 6torr로 유지된다.
이러한 공정 챔버의 초기 진공도는 기재층으로 작용하는 금속층(110)의 수분을 제거하기 위한 것으로서 원하는 진공도에 도달하기 위해 고진공 펌프인 터보 펌프(turbo pump), DP 펌프(dispenser pump) 또는 클라이오 펌프(cryo pump) 등을 이용할 수 있다.
이와 같이, 공정 챔버의 초기 진공도가 원하는 크기로 조정되면 금속층(110)은 공정 챔버로 이동한 후, 스퍼터링 공정을 위한 플라즈마(plasma) 형성을 위하여 주입량 제어기(MFC, mass flow controller)를 이용하여 분위기 가스(즉, 플라즈마 가스)인 불활성 가스, 예를 들어, 아르곤(Ar) 가스가 공정 챔버로 투입되고, 이로 인해, 공정 챔버의 진공도는 1×10- 3torr 내지 9×10- 3torr, 바람직하게 1 내지 5×10-3torr로 조정되어 공정 챔버의 진공 상태는 초기 상태에서 작업 상태로 조정한다.
이때, 아르곤(Ar) 가스의 투입량은 100sccm 내지 500sccm일 수 있다.
아르곤 가스의 투입량이 각 하한값(100sccm) 이상인 경우, 안정적으로 스퍼터링 공정이 행해져 원하는 층의 적층 동작이 안정적으로 이루어지고, 아르곤 가스의 투입량이 각 상한값(500sccm) 이하인 경우, 발생된 이온 수의 증가로 인한 플라즈마 형성 시 이온들과의 충돌로 인한 적층 효율 감소가 방지된다.
이런 공정 챔버의 분위기에서, 플라즈마 공정을 실시하기 위해 DC 전원 생성기나 DC 펄스 전원 생성기에 의해 전원이 공급되면, 주입된 스퍼터링 가스(아르곤 가스)는 음극 쪽(예, 타겟물질 쪽)에서 방출된 전자와 충돌하여 여기(exit)되어 Ar+으로 된다. 여기된 아르곤 가스(Ar+)는 타겟 물질이 위치한 음극 쪽으로 이동하여 타겟 물질과 충돌하고 이러한 충돌로 인해 플라즈마가 생성되어 양극 쪽에 위치한 금속층(110) 위에 적층 동작이 이루어져 타겟 물질로 이루어진 제1 및 제2 금속 보호층(121, 122)이 금속층(110)의 상부와 하부 위에 각각 적층된다(도 2).
금속층(110)의 전면(즉, 상부면)과 후면(즉, 하부면)에 각각 스퍼터링 공정으로 제1 및 제2 금속 보호층(121, 122)을 형성하기 위해, 먼저, 금속층(110)의 전면 또는 후면에 제1 금속 보호층(121) 또는 제2 금속 보호층(122)을 형성한 후, 다시 동일한 공정 챔버의 분위기에서 나머지 금속층(110)의 면(예, 후면 또는 전면)에 제2 금속 보호층(122) 또는 제1 금속 보호층(121)을 형성한다.
본 예에서, 제1 및 제2 금속 보호층(121, 122)을 위한 타겟 물질은 구리의 합금 물질이 사용되며, 예를 들어, 황동(brass), 망간황동(manganese brass), 인청동(phosphor bronze), 실진(silzin), 델타메탈(delta metal), 네이벌 황동(naval brass), 알루미늄(Al)-황동 합금, 구리(Cu)-주석(Sn) 합금[예, 청동(bronze)] 또는 구리(Cu)-납(Pb) 합금일 수 있다.
이와 같이, 금속층(110) 위에 제1 및 제2 금속 보호층(121, 122)이 적층된 동박이 제조되면, 제조된 동박은 제1 및 제2 금층(131, 132)을 적층하기 위한 격실로 이동된다.
제1 및 제2 금층(131, 132)을 위해 타겟 물질인 금(Au)이 위치하는 해당 격실로 분위기 가스인 아르곤 가스를 해당 양만큼 주입한 후, 전원이 공급되면 아르곤 가스(Ar+)에 의한 스파터링 동작에 의해 제1 및 제2 금속 보호층(121, 122) 위에 각각 제1 및 제2 금층(121, 122)이 형성된다(도 3). 이때, 제1 및 제2 금층(131, 132)의 형성 순서는 필요에 따라 변경된다.
제1 및 제2 금층(131, 132)을 위한 아르곤(Ar) 가스의 투입량은 100sccm 내지 500sccm일 수 있다.
이와 같이, 제1 및 제2 금속 보호층(121, 122)은 이물질이 투입되어 행해지는 도금 공정이 아닌 이물질이 없는 진공 상태에서 행해지는 스퍼터링 공정을 이용하여 형성된다.
이로 인해, 이물질로 인한 문제, 예를 들어, 제1 및 제2 금속 보호층(121, 122) 및 그 위에 형성되는 금층(131, 132) 중 적어도 하나가 이물질로 인해 산화되는 현상 또는 금층(131, 132)이 박리되는 현상 등의 문제가 방지되거나 감소된다.
추가로, 배선 형성을 위한 솔더링 공정 시 이물질로 인해 크랙(crack)이나 산화 현상이 방지되어 배선 접점 불량의 발생율이 감소한다.
또한, 본 예의 경우, 제1 및 제2 금속 보호층(121, 122)용으로 솔더링 공정을 위한 고온 공정 시 열산화 현상이 발생하는 니켈을 이용하지 않고 열에 강한 구리의 합금을 이용한다. 이로 인해, 솔더링 공정 시 행해지는 고온 공정에 따른 산화 현상이 감소되거나 방지되고, 이미 기재한 것처럼, 제1 및 제2 금속 보호층(121, 122) 형성 시 이물질의 침투가 없으므로, 솔더링 시 이물질로 인한 산화 현상과 크랙(crack) 현상이 방지된다.
스퍼터링 공정 시 형성된 막의 치밀도와 평탄도가 도금 공정으로 형성된 막의 치밀도와 평탄도보다 크므로, 제1 및 제2 금속 보호층(121, 122)의 치밀도와 평탄도는 도금 공정으로 형성된 경우보다 증가하게 된다.
이로 인해, 제1 및 제2 금속 보호층(121, 122)으로의 산소 투입과 이물질 투입이 어려워 제1 및 제2 금속 보호층(121, 122)의 산화 현상이 감소되고 박리 현상 또한 줄어든다.
또한, 이러한 제1 및 제2 금속 보호층(121, 122)의 치밀도와 평탄도의 증가로 인해, 기존보다 얇은 두께로 금층(131, 132)을 형성해도 금층(131, 132)의 부착력이 증가하여 사용되는 금의 양이 줄어들어 경제성이 향상된다.
더욱이, 동의 합금 물질의 형성으로 인한 광택 등이 증가로 인해 제1 및 제2 금속 보호층(121, 122)이 형성된 제품의 심미성이 향상된다.
본 예에서, 금속 보호층(121, 122) 형성을 위해 해당 격실에 주입되는 아르곤 가스의 양과 금층(131, 132) 형성을 위해 해당 격실로 주입되는 아르곤 가스의 양은 서로 상이하거나 동일할 수 있다.
또한, 본 예에서, 롤 투 롤 스파터링을 위한 금속층(110)의 주행 속도는 1~10m/min일 수 있다.
이때, 금속층(110)의 주행 속도와 스퍼터링 공정 시 플라즈마 형성을 위해 인가되는 전력의 크기, 즉 DC 전원 생성기나 DC 펄스 전원 생성기의 전원 크기는 형성되는 각 층(121 122, 131, 132)의 적층 두께에 따라 정해질 수 있다.
이같이, 금속층(110) 위에 원하는 두께의 금층(131, 132)이 형성된 금 적층 구리 필름(100)은 부품이 실장되는 인쇄회로기판(PCB, printed circuit board) 위에 위치하는 배선으로 기능할 수 있다.
다음, 도 4 및 도 5를 참고로 하여, 금 적층 구리 필름(10)이 인쇄회로기판의 배선으로 기능하여 그 위에 위치한 부품과의 연결을 위한 솔더링법의 한 예를 설명한다.
본 예의 경우, 금 적층 구리 필름(100)과 인쇄회로기판 위에 위치하는 부품(200)은 그 하부에 위치하는 금 적층 구리 필름(100)과 전기적인 연결을 위한 단자로서 솔더 볼(solder ball)을 구비하고 있는 경우에 대하여 설명하지만 이에 한정되지 않는다.
먼저, 도 4에 도시한 것처럼, 금 적층 구리 필름(100)과 솔더볼(210)을 구비한 부품(200)과의 전기적 및 물리적인 연결을 위해, 단자 즉, 솔더볼(210)을 구비한 부품(200)을 플립 칩(flip chip) 공정이나 픽 앤 플레이스(pick and place) 공정을 이용하여 원하는 금 적층 구리 필름(100) 위에 위치시킨다.
그런 다음, 금 적층 구리 필름(100) 위에 위치한 부품(200)을 금 적층 구리 필름(100) 위에 고정하기 위해 오븐기(oven) 등을 이용하여 금 적층 구리 필름(100)이 위치한 인쇄회로기판을 열처리한다. 이때, 열처리 온도는 100℃ 내지 300℃일 수 있고 열처리 시간은 1분 내지 3분일 수 있다.
이러한 열처리 동작에 금 적층 구리 필름(100) 속에 함유된 금(Au)이 녹아 금 적층 구리 필름(100)과 그 위에 위치한 부품(200)의 솔더볼(210)이 전기적 및 물리적으로 연결되어 금 적층 구리 필름(100)의 금층(131 또는 132)과 부품의 단자인 솔더볼(210)이 연결된 연결부(300)를 형성하게 된다.
이미 기술한 것처럼, 하나의 예로서, 부품의 단자가 솔더볼로 이루어진 경우에 대하여 설명하였지만, 이에 한정되지 않고 다양한 종류의 솔더링 공정이 본 예에 적용될 수 있음은 당연하다.
본 예의 경우, 금 적층 구리 필름(100)은 금속층(110)의 전면과 후면에 모두 금속 보호층(121, 122)과 금층(131, 132)이 위치하지만, 이에 한정되지 않고 금 적층 구리 필름은 금속층(110)의 전면과 후면 중 한 면에만 금속 보호층(121 또는 122)과 금층(131 또는 132)이 형성될 수 있다.
또한, 제1 및 제2 금속 보호층(121, 122)을 형성하기 전에, 직류 밤바드(DC bombard) 공정을 이용하여 금속층(110)의 표면 개질 동작을 추가로 실시하여, 금속층(110)의 표면 위에 형성된 제1 및 제2 금속 보호층(121, 122)의 적층 효율이 향상될 수 있도록 한다.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.

Claims (6)

  1. 구리를 함유한 물질로 이루어진 금속층,
    상기 금속층 위에 위치하고, 황동, 망간황동, 인청동, 실진, 델타메탈, 네이벌 황동, 알루미늄(Al)-황동 합금, 구리(Cu)-주석(Sn) 합금, 청동(bronze) 또는 구리(Cu)-납(Pb) 합금으로 이루어진 금속 보호층, 그리고
    상기 금속 보호층 위에 위치한 금층
    을 포함하는 금 적층 구리 필름.
  2. 제1항에서,
    상기 금속층은 압연 동박, 전해 동박(electrolytic copper foil) 또는 전지용 동박으로 이루어진 금 적층 구리 필름.
  3. 제1항에서,
    상기 금속층은 10㎛ 내지 100㎛의 두께를 갖고,
    상기 금속 보호층은 200Å 내지 1000Å의 두께를 가지며,
    상기 금층은 200Å 내지 1000Å의 두께를 가지는
    금 적층 구리 필름.
  4. 구리를 함유한 물질로 이루어진 금속층 위에 롤투롤 스퍼터링법으로 금속 보호층을 형성하는 단계, 그리고
    상기 금속 보호층 위에 롤투롤 스퍼터링법으로 금층을 형성하는 단계
    를 포함하고,
    상기 금속 보호층은 황동, 망간황동, 인청동, 실진, 델타메탈, 네이벌 황동, 알루미늄(Al)-황동 합금, 구리(Cu)-주석(Sn) 합금, 청동(bronze) 또는 구리(Cu)-납(Pb) 합금으로 이루어진
    금 적층 구리 필름 제조 방법.
  5. 제4항에서,
    상기 금속층은 압연 동박, 전해 동박(electrolytic copper foil) 또는 전지용 동박으로 이루어진 금 적층 구리 필름 제조 방법.
  6. 제4항에서,
    상기 금층 위에 땜납을 이용한 솔더링 공정을 실시하여 부품의 단자와 상기 금층이 연결되는 연결부를 형성하는 단계를 더 포함하는 금 적층 구리 필름 제조 방법.
PCT/KR2017/008309 2017-04-28 2017-08-01 금 적층 구리 필름 및 그 제조 방법 WO2018199394A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/739,971 US20190071766A1 (en) 2017-04-28 2017-08-01 Gold coated copper film and method for manufacturing same
CN201780002199.3A CN109154068A (zh) 2017-04-28 2017-08-01 金层压铜膜及其制造方法
GB1721710.0A GB2570287A (en) 2017-04-28 2017-08-01 Gold-deposited copper film and manufacturing method therefor
JP2017567440A JP2019518861A (ja) 2017-04-28 2017-08-01 金積層銅フィルム及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0054984 2017-04-28
KR1020170054984A KR101991922B1 (ko) 2017-04-28 2017-04-28 금 적층 구리 필름 및 그 제조 방법

Publications (1)

Publication Number Publication Date
WO2018199394A1 true WO2018199394A1 (ko) 2018-11-01

Family

ID=63919577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/008309 WO2018199394A1 (ko) 2017-04-28 2017-08-01 금 적층 구리 필름 및 그 제조 방법

Country Status (6)

Country Link
US (1) US20190071766A1 (ko)
JP (1) JP2019518861A (ko)
KR (1) KR101991922B1 (ko)
CN (1) CN109154068A (ko)
GB (1) GB2570287A (ko)
WO (1) WO2018199394A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102515271B1 (ko) * 2021-05-31 2023-03-29 주식회사 다이브 다층 금속박막 및 이의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010012203A (ko) * 1997-05-14 2001-02-15 크리스 로저 에이치 인쇄 배선판용 초박 전도체층
KR100757612B1 (ko) * 2001-07-06 2007-09-10 가부시키가이샤 가네카 적층체 및 그의 제조 방법
JP2007335890A (ja) * 2000-04-11 2007-12-27 Agere Systems Guardian Corp 化学・機械的研磨(cmp)中における銅のディッシングを防止するための局部領域合金化
KR100957418B1 (ko) * 2009-06-26 2010-05-11 손경애 인쇄회로기판의 제조방법 및 그에 따라서 제조된 인쇄회로기판
KR100961272B1 (ko) * 2009-12-17 2010-06-03 주식회사 플렉스컴 연성회로기판의 부품 실장구조 및 그 실장방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040231141A1 (en) * 2001-07-06 2004-11-25 Masaru Nishinaka Laminate and its producing method
US20090208762A1 (en) * 2005-06-23 2009-08-20 Nippon Mining & Metals Co., Ltd. Copper Foil for Printed Wiring Board
JP5501586B2 (ja) * 2008-08-22 2014-05-21 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
JP5808114B2 (ja) * 2011-02-16 2015-11-10 Jx日鉱日石金属株式会社 プリント配線板用銅箔、積層体及びプリント配線板
KR101926565B1 (ko) * 2011-04-05 2018-12-10 엘지이노텍 주식회사 인쇄회로기판 및 그의 제조 방법
KR20140075843A (ko) 2012-11-29 2014-06-20 주식회사 지피하이텍 전도성 나노폴리머를 이용한 무전해 금도금 방법
KR20180041655A (ko) * 2015-08-19 2018-04-24 가부시키가이샤 니콘 배선 패턴의 제조 방법, 도전막의 제조 방법, 및 트랜지스터의 제조 방법
JP6600550B2 (ja) * 2015-12-16 2019-10-30 日東電工株式会社 金属層積層透明導電性フィルムおよびそれを用いたタッチセンサ
DE102016216308B4 (de) * 2016-08-30 2022-06-15 Schweizer Electronic Ag Leiterplatte und Verfahren zu deren Herstellung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010012203A (ko) * 1997-05-14 2001-02-15 크리스 로저 에이치 인쇄 배선판용 초박 전도체층
JP2007335890A (ja) * 2000-04-11 2007-12-27 Agere Systems Guardian Corp 化学・機械的研磨(cmp)中における銅のディッシングを防止するための局部領域合金化
KR100757612B1 (ko) * 2001-07-06 2007-09-10 가부시키가이샤 가네카 적층체 및 그의 제조 방법
KR100957418B1 (ko) * 2009-06-26 2010-05-11 손경애 인쇄회로기판의 제조방법 및 그에 따라서 제조된 인쇄회로기판
KR100961272B1 (ko) * 2009-12-17 2010-06-03 주식회사 플렉스컴 연성회로기판의 부품 실장구조 및 그 실장방법

Also Published As

Publication number Publication date
CN109154068A (zh) 2019-01-04
GB2570287A (en) 2019-07-24
JP2019518861A (ja) 2019-07-04
US20190071766A1 (en) 2019-03-07
KR20180120959A (ko) 2018-11-07
GB201721710D0 (en) 2018-02-07
KR101991922B1 (ko) 2019-06-21

Similar Documents

Publication Publication Date Title
US10256195B2 (en) Module and method for manufacturing same
US7523548B2 (en) Method for producing a printed circuit board
US6586683B2 (en) Printed circuit board with mixed metallurgy pads and method of fabrication
JP2001035740A (ja) 外部端子電極具備電子部品及びその製造方法
CN108155167B (zh) 焊料颗粒
WO2018199394A1 (ko) 금 적층 구리 필름 및 그 제조 방법
US9363900B2 (en) Mounting device and method of manufacturing the same
US6698648B2 (en) Method for producing solderable and functional surfaces on circuit carriers
JPH03179793A (ja) セラミックス基板の表面構造およびその製造方法
WO2017065407A1 (ko) 세라믹 회로기판 및 이의 제조방법
JP3066201B2 (ja) 回路基板及びその製造方法
US20090283305A1 (en) Tin-silver compound coating on printed circuit boards
JP3792642B2 (ja) 配線基板およびその製造方法
CN109951947B (zh) 一种反射陶瓷电路板及其加工方法
CN209949533U (zh) 一种反射陶瓷电路板
JP2008124048A (ja) フレキシブル基板用導体およびその製造方法並びにフレキシブル基板
JP2006203230A (ja) 配線基板およびそれを用いた電子装置
JP3857219B2 (ja) 配線基板およびその製造方法
JPH08273967A (ja) 電子部品の電極形成方法
CN112111706A (zh) 表面镀有金属的陶瓷件及其镀金属方法
CN116397199A (zh) 多层金属层蒸镀装置及其蒸镀方法
WO1998019858A1 (en) Circuit comprising microstrip conductor and method for making the same
KR970010107B1 (en) Surface treating method of electrolytic coating using pb/sn alloy in pcb substrate
JP2004122581A (ja) 銀安定化積層体
JPH04187778A (ja) 銅ポリイミド基板の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017567440

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1721710.0

Country of ref document: GB

ENP Entry into the national phase

Ref document number: 201721710

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20170801

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17906877

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17906877

Country of ref document: EP

Kind code of ref document: A1