WO2018198975A1 - 発光素子 - Google Patents

発光素子 Download PDF

Info

Publication number
WO2018198975A1
WO2018198975A1 PCT/JP2018/016310 JP2018016310W WO2018198975A1 WO 2018198975 A1 WO2018198975 A1 WO 2018198975A1 JP 2018016310 W JP2018016310 W JP 2018016310W WO 2018198975 A1 WO2018198975 A1 WO 2018198975A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ring
formula
atom
represented
Prior art date
Application number
PCT/JP2018/016310
Other languages
English (en)
French (fr)
Inventor
敏明 佐々田
玲 岡村
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN201880027269.5A priority Critical patent/CN110546781B/zh
Priority to KR1020197034216A priority patent/KR102468541B1/ko
Priority to US16/500,903 priority patent/US11588119B2/en
Priority to EP18792310.7A priority patent/EP3618134A4/en
Priority to JP2018568995A priority patent/JP6519719B2/ja
Publication of WO2018198975A1 publication Critical patent/WO2018198975A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D165/00Coating compositions based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/61Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton with at least one of the condensed ring systems formed by three or more rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D219/00Heterocyclic compounds containing acridine or hydrogenated acridine ring systems
    • C07D219/14Heterocyclic compounds containing acridine or hydrogenated acridine ring systems with hydrocarbon radicals, substituted by nitrogen atoms, attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D265/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one oxygen atom as the only ring hetero atoms
    • C07D265/281,4-Oxazines; Hydrogenated 1,4-oxazines
    • C07D265/341,4-Oxazines; Hydrogenated 1,4-oxazines condensed with carbocyclic rings
    • C07D265/38[b, e]-condensed with two six-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/10Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aromatic carbon atoms, e.g. polyphenylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0033Iridium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/122Copolymers statistical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/13Morphological aspects
    • C08G2261/135Cross-linked structures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1414Unsaturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1426Side-chains containing oxygen containing carboxy groups (COOH) and/or -C(=O)O-moieties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/148Side-chains having aromatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/152Side-groups comprising metal complexes
    • C08G2261/1522Side-groups comprising metal complexes of alkali metals or alkaline-earth metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • C08G2261/3142Condensed aromatic systems, e.g. perylene, anthracene or pyrene fluorene-based, e.g. fluorene, indenofluorene, or spirobifluorene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/316Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain bridged by heteroatoms, e.g. N, P, Si or B
    • C08G2261/3162Arylamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/411Suzuki reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/514Electron transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/52Luminescence
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/76Post-treatment crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/95Use in organic luminescent diodes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings

Definitions

  • the present invention relates to a light emitting element.
  • Patent Document 1 describes a light-emitting element having a second organic layer made of only a crosslinked material of a crosslinking material, and a first organic layer containing a compound (H0) and a metal complex (B0). Yes.
  • an object of the present invention is to provide a light-emitting element that has an excellent luminance life.
  • the present invention provides the following [1] to [15].
  • a light emitting device having an anode, a cathode, a first organic layer provided between the anode and the cathode, and a second organic layer provided between the anode and the cathode,
  • the first organic layer is a layer containing a compound represented by the formula (C-1);
  • a light-emitting element in which the second organic layer is a layer containing a compound represented by the formula (C-1) and a crosslinked material of a crosslinking material.
  • Ring R 1C and ring R 2C each independently represent an aromatic hydrocarbon ring or an aromatic heterocyclic ring, and these rings optionally have a substituent.
  • R C represents an oxygen atom, a sulfur atom, or a group represented by the formula (C′-1). ]
  • Ring R 3C and ring R 4C each independently represent an aromatic hydrocarbon ring or an aromatic heterocyclic ring, and these rings optionally have a substituent.
  • R C ′ represents a carbon atom, a silicon atom, a germanium atom, a tin atom, or a lead atom.
  • Ring R 1C ′, ring R 2C ′, ring R 3C ′ and ring R 4C ′ each independently represent a benzene ring, a pyridine ring or a diazabenzene ring.
  • R 11C , R 12C , R 13C , R 14C , R 21C , R 22C , R 23C , R 24C , R 31C , R 32C , R 33C , R 34C , R 41C , R 42C , R 43C and R 44C are respectively Independently, it represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group or a halogen atom. You may have. When E 11C is a nitrogen atom, R 11C does not exist.
  • E 12C is a nitrogen atom
  • E 13C is a nitrogen atom
  • R 13C does not exist
  • E 14C is a nitrogen atom
  • E 21C is a nitrogen atom
  • E 22C is a nitrogen atom
  • E 23C is a nitrogen atom
  • E 24C is a nitrogen atom
  • E 31C is a nitrogen atom
  • E 32C is a nitrogen atom
  • E 33C is a nitrogen atom, R 33C does not exist.
  • E 34C is a nitrogen atom
  • R 34C does not exist.
  • E 41C is a nitrogen atom
  • R 42C does not exist.
  • E 43C is a nitrogen atom
  • R 43C does not exist.
  • E 44C is a nitrogen atom, R 44C does not exist.
  • R 11C and R 12C , R 12C and R 13C , R 13C and R 14C , R 14C and R 34C , R 34C and R 33C , R 33C and R 32C , R 32C and R 31C , R 31C and R 41C , R 41C And R 42C , R 42C and R 43C , R 43C and R 44C , R 44C and R 24C , R 24C and R 23C , R 23C and R 22C , R 22C and R 21C , and R 21C and R 11C are respectively They may be bonded to form a ring together with the carbon atoms to which they are bonded.
  • the first organic layer is a layer further containing a phosphorescent compound,
  • the light emitting device according to any one of [1] to [4], wherein the phosphorescent compound is a phosphorescent compound represented by the formula (1).
  • M represents a ruthenium atom, a rhodium atom, a palladium atom, an iridium atom or a platinum atom.
  • n 1 represents an integer of 1 or more
  • n 2 represents an integer of 0 or more.
  • E 1 and E 2 each independently represent a carbon atom or a nitrogen atom. However, at least one of E 1 and E 2 is a carbon atom. When a plurality of E 1 and E 2 are present, they may be the same or different.
  • Ring L 1 represents an aromatic heterocycle, and this aromatic heterocycle may have a substituent. When a plurality of such substituents are present, they may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • the ring L 1 represents an aromatic hydrocarbon ring or an aromatic heterocyclic ring, and these rings may have a substituent. When a plurality of such substituents are present, they may be bonded to each other to form a ring together with the atoms to which they are bonded. When a plurality of rings L 2 are present, they may be the same or different.
  • the substituent that the ring L 1 may have and the substituent that the ring L 2 may have may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • a 1 -G 1 -A 2 represents an anionic bidentate ligand.
  • a 1 and A 2 each independently represents a carbon atom, an oxygen atom or a nitrogen atom, and these atoms may be atoms constituting a ring.
  • G 1 represents a single bond or an atomic group constituting a bidentate ligand together with A 1 and A 2 .
  • a 1 -G 1 -A 2 When a plurality of A 1 -G 1 -A 2 are present, they may be the same or different.
  • [6] The light emitting device according to [5], wherein the phosphorescent compound represented by the formula (1) is a phosphorescent compound represented by the formula (1-B). [Where: M, n 1 , n 2 and A 1 -G 1 -A 2 represent the same meaning as described above.
  • E11B , E12B , E13B , E14B , E21B , E22B , E23B and E24B each independently represent a nitrogen atom or a carbon atom.
  • E 11B , E 12B , E 13B , E 14B , E 21B , E 22B , E 23B and E 24B they may be the same or different.
  • E 11B is a nitrogen atom
  • R 11B does not exist.
  • E 12B is a nitrogen atom
  • E 13B is a nitrogen atom
  • R 13B does not exist.
  • E 14B is a nitrogen atom, R 14B does not exist.
  • E 21B is a nitrogen atom
  • R 21B does not exist.
  • E 22B is a nitrogen atom
  • R 22B does not exist.
  • E 23B is a nitrogen atom
  • R 23B does not exist.
  • E 24B is a nitrogen atom, R 24B does not exist.
  • R 11B , R 12B , R 13B , R 14B , R 21B , R 22B , R 23B and R 24B are each independently a hydrogen atom, alkyl group, cycloalkyl group, alkoxy group, cycloalkoxy group, aryl group, aryl An oxy group, a monovalent heterocyclic group, a substituted amino group, or a halogen atom is represented, and these groups may have a substituent.
  • R 11B , R 12B , R 13B , R 14B , R 21B , R 22B , R 23B and R 24B they may be the same or different.
  • Ring L 1B represents a pyridine ring or a diazabenzene ring.
  • Ring L 2B represents a benzene ring, a pyridine ring or a diazabenzene ring.
  • the phosphorescent compound represented by the formula (1-B) is a phosphorescent compound represented by the formula (1-B1), a phosphorescent compound represented by the formula (1-B2), A phosphorescent compound represented by the formula (1-B3), a phosphorescent compound represented by the formula (1-B4) or a phosphorescent compound represented by the formula (1-B5) [6]
  • n 11 and n 12 each independently represents an integer of 1 or more. However, when M is a ruthenium atom, rhodium atom or iridium atom, n 11 + n 12 is 3, and when M is a palladium atom or platinum atom, n 11 + n 12 is 2.
  • R 15B , R 16B , R 17B and R 18B are each independently a hydrogen atom, alkyl group, cycloalkyl group, alkoxy group, cycloalkoxy group, aryl group, aryloxy group, monovalent heterocyclic group, substituted amino group Represents a group or a halogen atom, and these groups optionally have a substituent.
  • R 15B , R 16B , R 17B and R 18B When there are a plurality of R 15B , R 16B , R 17B and R 18B , they may be the same or different.
  • R 13B and R 15B , R 15B and R 16B , R 16B and R 17B , R 17B and R 18B , and R 18B and R 21B are bonded to each other to form a ring together with the atoms to which they are bonded. Also good.
  • the phosphorescent compound represented by the formula (1) is a phosphorescent compound represented by the formula (1-A). [Where: M, n 1 , n 2 , E 1 and A 1 -G 1 -A 2 represent the same meaning as described above.
  • E 11A , E 12A , E 13A , E 21A , E 22A , E 23A and E 24A each independently represent a nitrogen atom or a carbon atom.
  • E 11A , E 12A , E 13A , E 21A , E 22A , E 23A and E 24A they may be the same or different.
  • E 11A is a nitrogen atom
  • R 11A may or may not be present.
  • E 12A is a nitrogen atom
  • E 13A is a nitrogen atom
  • R 13A may or may not be present.
  • E 21A is a nitrogen atom, R 21A does not exist.
  • R 22A When E 22A is a nitrogen atom, R 22A does not exist.
  • E 23A When E 23A is a nitrogen atom, R 23A does not exist.
  • E 24A When E 24A is a nitrogen atom, R 24A does not exist.
  • R 11A , R 12A , R 13A , R 21A , R 22A , R 23A and R 24A are each independently a hydrogen atom, alkyl group, cycloalkyl group, alkoxy group, cycloalkoxy group, aryl group, aryloxy group, It represents a monovalent heterocyclic group, a substituted amino group, or a halogen atom, and these groups may have a substituent.
  • R 11A , R 12A , R 13A , R 21A , R 22A , R 23A and R 24A they may be the same or different.
  • R 11A and R 12A , R 12A and R 13A , R 11A and R 21A , R 21A and R 22A , R 22A and R 23A , and R 23A and R 24A are bonded to each other together with the atoms to which they are bonded.
  • a ring may be formed.
  • Ring L 1A represents a triazole ring or a diazole ring.
  • Ring L 2A represents a benzene ring, a pyridine ring or a diazabenzene ring.
  • the phosphorescent compound represented by the formula (1-A) is a phosphorescent compound represented by the formula (1-A1), a phosphorescent compound represented by the formula (1-A2), A phosphorescent compound represented by the formula (1-A3), a phosphorescent compound represented by the formula (1-A4) or a phosphorescent compound represented by the formula (1-A5) [8]
  • the cross-linking material is [1] A low molecular compound having at least one crosslinking group selected from the crosslinking group A group, or a polymer compound containing a crosslinking structural unit having at least one crosslinking group selected from the crosslinking group A group. -The light emitting element in any one of [9].
  • Crosslinking group A group [Wherein, R XL represents a methylene group, an oxygen atom or a sulfur atom, and n XL represents an integer of 0 to 5. When a plurality of R XL are present, they may be the same or different, and when a plurality of n XL are present, they may be the same or different.
  • * 1 represents a binding position.
  • the cross-linking material is a polymer compound including a cross-linking structural unit having at least one cross-linking group selected from the cross-linking group A group,
  • nA represents an integer of 0 to 5, and n represents 1 or 2. When a plurality of nA are present, they may be the same or different.
  • Ar 3 represents an aromatic hydrocarbon group or a heterocyclic group, and these groups may have a substituent.
  • L A represents an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, a group represented by —NR′—, an oxygen atom or a sulfur atom, and these groups have a substituent. Also good.
  • R ′ represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • X represents a crosslinking group selected from the crosslinking group A group. When two or more X exists, they may be the same or different.
  • mA represents an integer of 0 to 5
  • m represents an integer of 1 to 4
  • c represents 0 or 1.
  • Ar 5 represents an aromatic hydrocarbon group, a heterocyclic group, or a group in which at least one aromatic hydrocarbon ring and at least one heterocyclic ring are directly bonded, and these groups have a substituent. It may be.
  • Ar 4 and Ar 6 each independently represent an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
  • Ar 4 , Ar 5 and Ar 6 are each bonded to a group other than the group bonded to the nitrogen atom to which the group is bonded, directly or via an oxygen atom or a sulfur atom to form a ring.
  • K A represents an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, a group represented by —NR ′′ —, an oxygen atom or a sulfur atom, and these groups have a substituent.
  • R ′′ represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • X ′ represents a bridging group selected from the bridging group A, a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent. .
  • at least one X ′ is a cross-linking group selected from the cross-linking group A group.
  • the cross-linking material is a low molecular compound represented by formula (3). [Where: m B1 , m B2 and m B3 each independently represent an integer of 0 or more and 10 or less.
  • a plurality of m B1 may be the same or different. When a plurality of m B3 are present, they may be the same or different.
  • Ar 7 represents an aromatic hydrocarbon group, a heterocyclic group, or a group in which at least one aromatic hydrocarbon ring and at least one heterocyclic ring are directly bonded, and these groups have a substituent. It may be. When a plurality of Ar 7 are present, they may be the same or different.
  • L B1 represents an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, a group represented by —NR ′ ′′ —, an oxygen atom or a sulfur atom, and these groups have a substituent. It may be.
  • R ′ ′′ represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • L B1 When a plurality of L B1 are present, they may be the same or different.
  • X ′′ represents a bridging group selected from the bridging group A, a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent. .
  • a plurality of X ′′ may be the same or different. However, at least one of a plurality of X ′′ is a crosslinking group selected from the crosslinking group A group.
  • the first organic layer further contains at least one material selected from the group consisting of a hole transport material, a hole injection material, an electron transport material, an electron injection material, and a light emitting material.
  • a hole transport material a hole injection material
  • an electron transport material an electron injection material
  • a light emitting material a material selected from the group consisting of a hole transport material, a hole injection material, an electron transport material, an electron injection material, and a light emitting material.
  • -The light emitting element in any one of [12].
  • the second organic layer is a layer provided between the anode and the first organic layer.
  • Me represents a methyl group
  • Et represents an ethyl group
  • Bu represents a butyl group
  • i-Pr represents an isopropyl group
  • t-Bu represents a tert-butyl group.
  • the hydrogen atom may be a deuterium atom or a light hydrogen atom.
  • the solid line representing the bond with the central metal means a covalent bond or a coordinate bond.
  • polymer compound means a polymer having a molecular weight distribution and having a polystyrene-equivalent number average molecular weight of 1 ⁇ 10 3 to 1 ⁇ 10 8 .
  • Low molecular weight compound means a compound having no molecular weight distribution and a molecular weight of 1 ⁇ 10 4 or less.
  • Structuretural unit means one or more units present in a polymer compound.
  • the “alkyl group” may be linear or branched.
  • the number of carbon atoms of the straight chain alkyl group is usually 1 to 50, preferably 3 to 30, and more preferably 4 to 20, excluding the number of carbon atoms of the substituent.
  • the number of carbon atoms of the branched alkyl group is usually 3 to 50, preferably 3 to 30, more preferably 4 to 20, excluding the number of carbon atoms of the substituent.
  • the alkyl group may have a substituent, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, 2-butyl group, isobutyl group, tert-butyl group, pentyl group, isoamyl group, 2-ethylbutyl, hexyl, heptyl, octyl, 2-ethylhexyl, 3-propylheptyl, decyl, 3,7-dimethyloctyl, 2-ethyloctyl, 2-hexyldecyl, dodecyl
  • a group in which a hydrogen atom in these groups is substituted with a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a fluorine atom or the like (for example, a trifluoromethyl group, a pentafluoroethyl group,
  • the number of carbon atoms of the “cycloalkyl group” is usually 3 to 50, preferably 3 to 30, and more preferably 4 to 20, excluding the number of carbon atoms of the substituent.
  • the cycloalkyl group may have a substituent, and examples thereof include a cyclohexyl group, a cyclohexylmethyl group, and a cyclohexylethyl group.
  • Aryl group means an atomic group remaining after removing one hydrogen atom directly bonded to a carbon atom constituting a ring from an aromatic hydrocarbon.
  • the number of carbon atoms of the aryl group is usually 6 to 60, preferably 6 to 20, and more preferably 6 to 10, excluding the number of carbon atoms of the substituent.
  • the “alkoxy group” may be linear or branched.
  • the number of carbon atoms of the straight-chain alkoxy group is usually 1 to 40, preferably 4 to 10, excluding the number of carbon atoms of the substituent.
  • the number of carbon atoms of the branched alkoxy group is usually 3 to 40, preferably 4 to 10, excluding the number of carbon atoms of the substituent.
  • the alkoxy group may have a substituent, for example, methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butyloxy group, isobutyloxy group, tert-butyloxy group, pentyloxy group, hexyloxy group, Heptyloxy group, octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyloxy group, lauryloxy group, and the hydrogen atom in these groups is a cycloalkyl group, an alkoxy group, And a group substituted with a cycloalkoxy group, an aryl group, a fluorine atom, or the like.
  • a substituent for example, methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butyloxy group, isobutyloxy group, tert-buty
  • the number of carbon atoms of the “cycloalkoxy group” is usually 3 to 40, preferably 4 to 10, not including the number of carbon atoms of the substituent.
  • the cycloalkoxy group may have a substituent, and examples thereof include a cyclohexyloxy group.
  • the number of carbon atoms of the “aryloxy group” is usually 6 to 60, preferably 6 to 48, not including the number of carbon atoms of the substituent.
  • the aryloxy group may have a substituent, for example, phenoxy group, 1-naphthyloxy group, 2-naphthyloxy group, 1-anthracenyloxy group, 9-anthracenyloxy group, 1- Examples include a pyrenyloxy group and a group in which a hydrogen atom in these groups is substituted with an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, a fluorine atom, or the like.
  • the “p-valent heterocyclic group” (p represents an integer of 1 or more) is p of hydrogen atoms directly bonded to a carbon atom or a hetero atom constituting a ring from a heterocyclic compound. This means the remaining atomic group excluding the hydrogen atom. Among the p-valent heterocyclic groups, it is the remaining atomic group obtained by removing p hydrogen atoms from the hydrogen atoms directly bonded to the carbon atoms or heteroatoms constituting the ring from the aromatic heterocyclic compound. A “p-valent aromatic heterocyclic group” is preferable.
  • Aromatic heterocyclic compounds '' are oxadiazole, thiadiazole, thiazole, oxazole, thiophene, pyrrole, phosphole, furan, pyridine, pyrazine, pyrimidine, triazine, pyridazine, quinoline, isoquinoline, carbazole, dibenzophosphole, etc.
  • a compound in which the ring itself exhibits aromaticity, and a heterocyclic ring such as phenoxazine, phenothiazine, dibenzoborol, dibenzosilol, benzopyran itself does not exhibit aromaticity, but the aromatic ring is condensed to the heterocyclic ring Means a compound.
  • the number of carbon atoms of the monovalent heterocyclic group is usually 2 to 60, preferably 4 to 20, excluding the number of carbon atoms of the substituent.
  • the monovalent heterocyclic group may have a substituent, for example, thienyl group, pyrrolyl group, furyl group, pyridyl group, piperidinyl group, quinolinyl group, isoquinolinyl group, pyrimidinyl group, triazinyl group, and these And a group in which the hydrogen atom in the group is substituted with an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, or the like.
  • Halogen atom means a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • the “amino group” may have a substituent, and a substituted amino group is preferable.
  • a substituent which an amino group has an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group is preferable.
  • the substituted amino group include a dialkylamino group, a dicycloalkylamino group, and a diarylamino group.
  • the amino group include dimethylamino group, diethylamino group, diphenylamino group, bis (4-methylphenyl) amino group, bis (4-tert-butylphenyl) amino group, bis (3,5-di-tert- Butylphenyl) amino group.
  • the “alkenyl group” may be linear or branched.
  • the number of carbon atoms of the straight-chain alkenyl group is usually 2-30, preferably 3-20, excluding the number of carbon atoms of the substituent.
  • the number of carbon atoms of the branched alkenyl group is usually 3 to 30, preferably 4 to 20, not including the number of carbon atoms of the substituent.
  • the number of carbon atoms of the “cycloalkenyl group” is usually 3 to 30, preferably 4 to 20, not including the number of carbon atoms of the substituent.
  • the alkenyl group and the cycloalkenyl group may have a substituent, for example, a vinyl group, a 1-propenyl group, a 2-propenyl group, a 2-butenyl group, a 3-butenyl group, a 3-pentenyl group, a 4-pentenyl group, Examples include a pentenyl group, a 1-hexenyl group, a 5-hexenyl group, a 7-octenyl group, and groups in which these groups have a substituent.
  • the “alkynyl group” may be linear or branched.
  • the number of carbon atoms of the alkynyl group is usually 2 to 20, preferably 3 to 20, not including the carbon atom of the substituent.
  • the number of carbon atoms of the branched alkynyl group is usually from 4 to 30, and preferably from 4 to 20, not including the carbon atom of the substituent.
  • the number of carbon atoms of the “cycloalkynyl group” is usually 4 to 30, preferably 4 to 20, not including the carbon atom of the substituent.
  • the alkynyl group and the cycloalkynyl group may have a substituent, for example, an ethynyl group, a 1-propynyl group, a 2-propynyl group, a 2-butynyl group, a 3-butynyl group, a 3-pentynyl group, 4- Examples include a pentynyl group, 1-hexynyl group, 5-hexynyl group, and groups in which these groups have a substituent.
  • the “arylene group” means an atomic group remaining after removing two hydrogen atoms directly bonded to a carbon atom constituting a ring from an aromatic hydrocarbon.
  • the number of carbon atoms of the arylene group is usually 6 to 60, preferably 6 to 30, and more preferably 6 to 18, excluding the number of carbon atoms of the substituent.
  • the arylene group may have a substituent. Examples include chrysenediyl groups and groups in which these groups have substituents, and groups represented by formulas (A-1) to (A-20) are preferable.
  • the arylene group includes a group in which a plurality of these groups are bonded.
  • R and R a each independently represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group.
  • a plurality of R and R a may be the same or different, and R a may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • the number of carbon atoms of the divalent heterocyclic group is usually 2 to 60, preferably 3 to 20, and more preferably 4 to 15 excluding the number of carbon atoms of the substituent.
  • the divalent heterocyclic group may have a substituent, for example, pyridine, diazabenzene, triazine, azanaphthalene, diazanaphthalene, carbazole, dibenzofuran, dibenzothiophene, dibenzosilol, phenoxazine, phenothiazine, acridine, Divalent acridine, furan, thiophene, azole, diazole, and triazole include divalent groups obtained by removing two hydrogen atoms from hydrogen atoms directly bonded to carbon atoms or heteroatoms constituting the ring, and preferably Is a group represented by formula (AA-1) to formula (AA-34).
  • the divalent heterocyclic group includes a group in which a plurality of these groups
  • crosslinking group is a group capable of generating a new bond by being subjected to heating, ultraviolet irradiation, near ultraviolet irradiation, visible light irradiation, infrared irradiation, radical reaction, etc.
  • “Substituent” means a halogen atom, cyano group, alkyl group, cycloalkyl group, aryl group, monovalent heterocyclic group, alkoxy group, cycloalkoxy group, aryloxy group, amino group, substituted amino group, alkenyl group. Represents a cycloalkenyl group, an alkynyl group or a cycloalkynyl group.
  • the substituent may be a crosslinking group.
  • the first organic layer included in the light-emitting element of the present invention is a layer containing a compound represented by the formula (C-1).
  • the molecular weight of the compound represented by formula (C-1) is preferably 2 ⁇ 10 2 to 5 ⁇ 10 4 , more preferably 2 ⁇ 10 2. Is 5 ⁇ 10 3 , more preferably 3 ⁇ 10 2 to 3 ⁇ 10 3 , and particularly preferably 4 ⁇ 10 2 to 1 ⁇ 10 3 .
  • the number of carbon atoms of the aromatic hydrocarbon ring represented by ring R 1C and ring R 2C is usually 6 to 60, preferably 6 to 30 and more preferably not including the number of carbon atoms of the substituent. Is 6-18.
  • Examples of the aromatic hydrocarbon ring represented by ring R 1C and ring R 2C include a benzene ring, naphthalene ring, anthracene ring, indene ring, fluorene ring, spirobifluorene ring, phenanthrene ring, dihydrophenanthrene ring, and pyrene ring.
  • Chrysene ring and triphenylene ring preferably benzene ring, naphthalene ring, anthracene ring, fluorene ring, spirobifluorene ring, phenanthrene ring or dihydrophenanthrene ring, more preferably benzene ring, naphthalene ring, fluorene ring Or it is a spirobifluorene ring, More preferably, it is a benzene ring, These rings may have a substituent.
  • the number of carbon atoms of the aromatic heterocyclic ring represented by ring R 1C and ring R 2C is usually 2 to 60, preferably 3 to 30, more preferably not including the number of carbon atoms of the substituent. Is 4-15.
  • Examples of the aromatic heterocycle represented by ring R 1C and ring R 2C include, for example, a pyrrole ring, a diazole ring, a triazole ring, a furan ring, a thiophene ring, an oxadiazole ring, a thiadiazole ring, a pyridine ring, a diazabenzene ring, and a triazine.
  • azanaphthalene ring diazanaphthalene ring, triazanaphthalene ring, azaanthracene ring, diazaanthracene ring, triazaanthracene ring, azaphenanthrene ring, diazaphenanthrene ring, triazaphenanthrene ring, dibenzofuran ring, dibenzothiophene ring , Dibenzosilole ring, dibenzophosphole ring, carbazole ring, azacarbazole ring, diazacarbazole ring, phenoxazine ring, phenothiazine ring, dihydroacridine ring and dihydrophenazine ring, preferably pyridine ring, diazabe ring Zen ring, azanaphthalene ring, diazanaphthalene ring, azaanthracene ring, diazaphenanthrene ring, dibenzofuran ring, dibenzo
  • At least one of the ring R 1C and the ring R 2C is preferably an aromatic hydrocarbon ring, and more preferably both are aromatic hydrocarbon rings. More preferably, both are benzene rings.
  • the substituent that the ring R 1C and the ring R 2C may have, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, A substituted amino group or a halogen atom, more preferably an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group, still more preferably an aryl group, a monovalent heterocyclic group or A substituted amino group, particularly preferably an aryl group or a monovalent heterocyclic group, particularly preferably a monovalent heterocyclic group, and these groups may further have a substituent.
  • the number of carbon atoms of the aryl group which is a substituent that the ring R 1C and the ring R 2C may have is usually 6 to 60, preferably 6 to 40, not including the number of carbon atoms of the substituent. Yes, more preferably 6-25.
  • Examples of the aryl group which is a substituent that the ring R 1C and the ring R 2C may have include, for example, a benzene ring, naphthalene ring, anthracene ring, indene ring, fluorene ring, spirobifluorene ring, phenanthrene ring, dihydrophenanthrene.
  • Examples include a ring, a pyrene ring, a chrysene ring, a triphenylene ring, or a group obtained by condensing these rings, by removing one hydrogen atom directly bonded to the carbon atom constituting the ring, preferably a benzene ring or a naphthalene ring , A fluorene ring, a spirobifluorene ring, a phenanthrene ring, a dihydrophenanthrene ring or a triphenylene ring, in which one hydrogen atom directly bonded to the carbon atom constituting the ring is removed, more preferably a benzene ring or a fluorene ring Alternatively, a hydrogen atom 1 directly bonded from a spirobifluorene ring to a carbon atom constituting the ring 1 And more preferably a group in which one hydrogen atom directly bonded to the carbon atom constituting the ring is removed from the
  • the number of carbon atoms of the monovalent heterocyclic group which is a substituent that the ring R 1C and the ring R 2C may have is usually 2 to 60, not including the number of carbon atoms of the substituent, preferably 3 to 30 and more preferably 3 to 15.
  • Examples of the monovalent heterocyclic group that may be substituted on the ring R 1C and the ring R 2C include a pyrrole ring, a diazole ring, a triazole ring, a furan ring, a thiophene ring, an oxadiazole ring, and a thiadiazole.
  • Aromatic ring Examples include a group in which one hydrogen atom directly bonded to a carbon atom or a hetero atom constituting the ring is removed from a combined
  • the amino group preferably has an aryl group or a monovalent heterocyclic group, more preferably an aryl group, These groups may further have a substituent.
  • Examples and preferred ranges of the aryl group which is a substituent of the amino group are the same as examples and preferred ranges of the aryl group which is a substituent that the ring R 1C and the ring R 2C may have.
  • Examples and preferred ranges of monovalent heterocyclic groups that are substituents of the amino group include examples and preferred ranges of monovalent heterocyclic groups that are substituents that the ring R 1C and ring R 2C may have. Is the same.
  • Examples of the aryl group, monovalent heterocyclic group and substituted amino group, which are the substituents that the substituent which the ring R 1C and the ring R 2C may have, may further have, and preferred ranges thereof, respectively, Examples of the aryl group, monovalent heterocyclic group and substituted amino group, which are the substituents that the ring R 1C and the ring R 2C may have, are the same as the preferred range.
  • R C is preferably a sulfur atom or a group represented by the formula (C′-1), more preferably a formula (C′-1), since the luminance lifetime of the light emitting device of the present invention is more excellent. It is a group represented.
  • the group R C ′ represented by the formula (C′-1) is preferably a carbon atom, a silicon atom or a germanium atom, more preferably a carbon atom or a carbon atom, because the luminance lifetime of the light emitting device of the present invention is more excellent.
  • At least one of the ring R 3C and the ring R 4C is preferably an aromatic hydrocarbon ring, and more preferably both are aromatic hydrocarbon rings. More preferably, both are benzene rings.
  • Examples and preferred ranges of the aromatic hydrocarbon ring and aromatic heterocyclic ring represented by ring R 3C and ring R 4C are the aromatic hydrocarbon ring and aromatic represented by ring R 1C and ring R 2C , respectively. Examples of heterocyclic rings and examples of preferred ranges and preferred ranges are the same.
  • Examples and preferred ranges of the substituent that the ring R 3C and the ring R 4C may have are the same as examples and preferred ranges of the substituent that the ring R 1C and the ring R 2C may have.
  • Examples of the substituents that the ring R 3C and the ring R 4C may have and the substituents that the ring R 1C and the ring R 2C may have include examples of the substituents that the ring R 1C and the ring R 2C may have. Further, the examples are the same as the examples and preferred ranges of the substituents that may be present.
  • R C is a group represented by the formula (C′-1)
  • the luminance lifetime of the light-emitting device of the present invention is more excellent. Therefore, among R 1C , Ring R 2C , Ring R 3C, and Ring R 4C At least one preferably has an aryl group or a monovalent heterocyclic group, and at least one of the ring R 1C , the ring R 2C , the ring R 3C, and the ring R 4C is represented by the following formula (D-1) Or more preferably a group represented by formula (E-1), wherein at least one of ring R 1C , ring R 2C , ring R 3C and ring R 4C is represented by formula (D-1). More preferably, it has a group.
  • R C is a group represented by the formula (C′-1), and at least one of the ring R 1C , the ring R 2C , the ring R 3C and the ring R 4C is an aryl group or a monovalent heterocyclic group.
  • the total number of aryl groups and monovalent heterocyclic groups contained in ring R 1C , ring R 2C , ring R 3C and ring R 4C is preferably 1 to 5, more preferably 1 to The number is 3, more preferably 1 or 2, and particularly preferably 1.
  • R C is a group represented by the formula (C′-1), and at least one of the ring R 1C , the ring R 2C , the ring R 3C, and the ring R 4C is represented by the following formula (D-1) or formula
  • the group represented by the formula (D-1) and the formula (E-1) of the ring R 1C , the ring R 2C , the ring R 3C and the ring R 4C The total number is preferably 1 to 5, more preferably 1 to 3, further preferably 1 or 2, and particularly preferably 1.
  • At least one of the ring R 1C and the ring R 2C is an aryl group or a monovalent heterocyclic group.
  • R C is an oxygen atom or a sulfur atom, when at least one of the ring R 1C and ring R 2C but having an aryl group or a monovalent heterocyclic group, an aryl group and one having ring R 1C and ring R 2C is
  • the total number of valent heterocyclic groups is preferably 1 to 5, more preferably 1 to 3, further preferably 1 or 2, and particularly preferably 1.
  • R C is an oxygen atom or a sulfur atom
  • at least one of ring R 1C and ring R 2C has a group represented by the following formula (D-1) or formula (E-1)
  • ring R 1 The total number of groups represented by the formula (D-1) and the formula (E-1) of 1C and ring R 2C is preferably 1 to 5, more preferably 1 to 3, More preferably, it is 1 or 2, particularly preferably 1.
  • Ring RD represents an aromatic hydrocarbon ring or an aromatic heterocyclic ring, and these rings may have a substituent. When a plurality of such substituents are present, they may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • X D1 and X D2 each independently represent a single bond, an oxygen atom, a sulfur atom, a group represented by —N (R XD1 ) —, or a group represented by —C (R XD2 ) 2 —. .
  • R XD1 and R XD2 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group, or a halogen atom. These groups may have a substituent.
  • a plurality of R XD2 may be the same or different, and may be bonded to each other to form a ring together with the carbon atom to which each is bonded.
  • E 1D , E 2D , E 3D and E 4D each independently represent a nitrogen atom or a carbon atom.
  • E 1D , E 2D , E 3D and E 4D is a carbon atom.
  • R 1D , R 2D , R 3D and R 4D are each independently a bond, a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group or a monovalent heterocyclic group. Represents a substituted amino group or a halogen atom, and these groups optionally have a substituent.
  • one of R 1D , R 2D , R 3D and R 4D is a bond. When E 1D is a nitrogen atom, R 1D does not exist.
  • E 2D When E 2D is a nitrogen atom, R 2D does not exist.
  • E 3D When E 3D is a nitrogen atom, R 3D does not exist.
  • E 4D When E 4D is a nitrogen atom, R 4D does not exist.
  • R 1D is a bond
  • E 1D is a carbon atom.
  • R 2D is a bond
  • E 2D is a carbon atom.
  • R 3D is a bond
  • E 3D When R 4D is a bond, E 4D is a carbon atom.
  • R 1D and R 2D may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • R 2D and R 3D may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • R 3D and R 4D may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • R 1D and R XD1 may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • R 1D and R XD2 may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • R 4D and R XD1 may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • R 4D and R XD2 may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • the substituent which the ring R D may have and R XD1 may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • the substituent which the ring R D may have and R XD2 may be bonded to each other to form a ring together with the carbon atom to which each is bonded.
  • Examples and preferred ranges of the aromatic hydrocarbon ring and aromatic heterocyclic ring represented by the ring R D are examples of the aromatic hydrocarbon ring and aromatic heterocyclic ring represented by the ring R 1C and ring R 2C , respectively. It is the same as a preferable range. Examples and preferred ranges of the substituent that the ring R D may have are examples and preferred ranges of the substituent that the ring R 1C and the substituent that the ring R 2C may further have. Is the same.
  • the ring R D is preferably an aromatic hydrocarbon ring and more preferably a benzene ring because the luminance life of the light emitting device of the present invention is more excellent.
  • X D1 and X D2 are preferably a single bond, an oxygen atom, a sulfur atom, or a group represented by —C (R XD2 ) 2 — because the luminance lifetime of the light emitting device of the present invention is more excellent.
  • a single bond, an oxygen atom or a sulfur atom is preferable, and a single bond or a sulfur atom is more preferable.
  • At least one of X D1 and X D2 is preferably a single bond, and more preferably X D2 is a single bond.
  • R XD1 is preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group or a monovalent heterocyclic group, still more preferably an aryl group. These groups may have a substituent.
  • R XD2 is preferably an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, more preferably an alkyl group or an aryl group, and these groups optionally have a substituent. .
  • aryl groups represented by R XD1 and R XD2 monovalent heterocyclic groups, and substituted amino groups, and preferred ranges thereof are aryls that may be substituted on ring R 1C and ring R 2C , respectively. The same as the examples and preferred ranges of the group, monovalent heterocyclic group and substituted amino group.
  • R XD2 groups represented by —C (R XD2 ) 2 — represented by X D1 and X D2 is preferably both an alkyl group or a cycloalkyl group, both an aryl group, Is a monovalent heterocyclic group, or one is an alkyl group or a cycloalkyl group and the other is an aryl group or a monovalent heterocyclic group, more preferably both are an aryl group or one is an alkyl group or a cycloalkyl group.
  • An alkyl group and the other is an aryl group, more preferably both are aryl groups, and these groups may have a substituent.
  • R XD2 s are preferably bonded to each other to form a ring together with the carbon atom to which each is bonded.
  • the group represented by —C (R XD2 ) 2 — is preferably a group represented by the formula (Y-A1) -formula (Y-A5), more preferably Is a group represented by the formula (Y-A4), and these groups may have a substituent.
  • Examples and preferred ranges of the substituent that R XD1 and R XD2 may have include examples of the substituent that the ring R 1C and the ring R 2C may further have, and It is the same as a preferable range.
  • E 1D , E 2D , E 3D and E 4D are preferably carbon atoms.
  • R 1D , R 3D or R 4D is preferably a bond, R 1D or R 4D is more preferably a bond, and R 4D is more preferably a bond.
  • R 1D , R 2D , R 3D and R 4D are other than a bond, R 1D , R 2D , R 3D and R 4D are a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic ring It is preferably a group or a substituted amino group, more preferably a hydrogen atom, an alkyl group or an aryl group, still more preferably a hydrogen atom, and these groups may further have a substituent.
  • Examples and preferred ranges of the aryl group, monovalent heterocyclic group and substituted amino group represented by R 1D , R 2D , R 3D and R 4D may be the ring R 1C and the ring R 2C , respectively.
  • Examples of preferred aryl groups, monovalent heterocyclic groups and substituted amino groups are the same as the preferred ranges.
  • Examples and preferred ranges of substituents that R 1D , R 2D , R 3D and R 4D may have are the same as examples and preferred ranges of substituents which R XD1 and R XD2 may have. .
  • R 1D and R 2D , R 2D and R 3D , R 3D and R 4D , R 1D and R XD1 , R 1D and R XD1 , R 1D and R XD2 , R 4D and R XD1 , R 4D and R XD2 , R XD1 the ring R D has optionally may substituent and,, R XD2 and ring R D substituent which may be possessed are bonded to each, and each form a ring together with the carbon atoms to which are attached However, it is preferable not to form a ring.
  • the group represented by the formula (D-1) is preferably a group represented by the formula (D-2) because the luminance life of the light emitting device of the present invention is more excellent.
  • E 5D , E 6D , E 7D and E 8D each independently represent a nitrogen atom or a carbon atom.
  • R 5D , R 6D , R 7D and R 8D are each independently a hydrogen atom, alkyl group, cycloalkyl group, alkoxy group, cycloalkoxy group, aryl group, aryloxy group, monovalent heterocyclic group, substituted amino group Represents a group or a halogen atom, and these groups optionally have a substituent.
  • E 5D is a nitrogen atom
  • R 5D does not exist.
  • E 6D is a nitrogen atom
  • R 6D does not exist.
  • E 7D is a nitrogen atom
  • R 7D does not exist.
  • E 8D is a nitrogen atom
  • R 5D and R 6D , R 6D and R 7D , R 7D and R 8D , R 5D and R XD1 , R 5D and R XD2 , R 8D and R XD1 , and R 8D and R XD2 are combined, You may form the ring with the carbon atom to which each couple
  • E 5D , E 6D , E 7D and E 8D are preferably carbon atoms.
  • R 5D, R 6D, examples and preferable ranges of R 7D and R 8D is, R 1D, examples of R 2D, R 1D when R 3D and R 4D is other than a bond hand, R 2D, R 3D and R 4D And the same as the preferred range.
  • substituents that R 5D , R 6D , R 7D and R 8D may have and preferred ranges thereof include examples of substituents which R 1D , R 2D , R 3D and R 4D may have and It is the same as a preferable range.
  • a ring may be formed together with the carbon atoms to which each is bonded, but it is preferable that no ring be formed.
  • Ring R E1 and ring R E2 each independently represent an aromatic hydrocarbon ring or an aromatic heterocyclic ring, and these rings optionally have a substituent. When a plurality of such substituents are present, they may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • X E1 represents a single bond, an oxygen atom, a sulfur atom, a group represented by —N (R XE1 ) —, or a group represented by —C (R XE2 ) 2 —.
  • R XE1 and R XE2 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group, or a halogen atom. These groups may have a substituent.
  • a plurality of R XE2 may be the same or different, and may be bonded to each other to form a ring together with the carbon atom to which each is bonded. ]
  • Examples and preferred ranges of the aromatic hydrocarbon ring and aromatic heterocycle represented by ring R E1 and ring R E2 are the aromatic hydrocarbon ring and aromatic heterocycle represented by ring R 1C and ring R 2C , respectively. It is the same as the examples and preferred ranges of the ring. Examples and preferred ranges of the substituents that the ring R E1 and the ring R E2 may have are the substituents that the ring R 1C and the ring R 2C may further have, respectively. Examples of groups are the same as the preferred ranges.
  • At least one of the ring R E1 and the ring R E2 is preferably an aromatic hydrocarbon ring, and more preferably both are aromatic hydrocarbon rings. More preferably, both are benzene rings.
  • X E1 is preferably a group represented by a single bond, an oxygen atom, a sulfur atom, or —C (R XD2 ) 2 — because the luminance lifetime of the light emitting device of the present invention is more excellent, and more preferably It is a single bond, an oxygen atom or a sulfur atom, and more preferably a single bond.
  • Examples and preferred ranges of the group represented by R XE1 are the same as examples and preferred ranges of the group represented by R XD1 .
  • Examples and preferred ranges of the group represented by R XE2 are the same as examples and preferred ranges of the group represented by R XD2 .
  • the group represented by the formula (E-1) is preferably a group represented by the formula (E-2) because the luminance lifetime of the light emitting device of the present invention is more excellent.
  • E 1E , E 2E , E 3E , E 4E , E 5E , E 6E , E 7E and E 8E each independently represent a nitrogen atom or a carbon atom.
  • R 1E , R 2E , R 3E , R 4E , R 5E , R 6E , R 7E and R 8E are each independently a hydrogen atom, alkyl group, cycloalkyl group, alkoxy group, cycloalkoxy group, aryl group, aryl An oxy group, a monovalent heterocyclic group, a substituted amino group, or a halogen atom is represented, and these groups may have a substituent.
  • E 1E is a nitrogen atom
  • R 1E does not exist.
  • E 2E is a nitrogen atom
  • R 2E does not exist.
  • E 3E is a nitrogen atom
  • R 3E does not exist.
  • E 4E is a nitrogen atom
  • E 5E is a nitrogen atom
  • E 6E is a nitrogen atom
  • E 7E is a nitrogen atom
  • E 8E is a nitrogen atom
  • R 8E does not exist.
  • R 1E and R 2E , R 2E and R 3E , R 3E and R 4E , R 5E and R 6E , R 6E and R 7E , R 7E and R 8E , R 5E and R XD1 , R 5E and R XD2 , R 1E And R XD1 , and R 1E and R XD2 may be bonded to each other to form a ring together with the carbon atom to which they are bonded.
  • E 1E , E 2E , E 3E , E 4E , E 5E , E 6E , E 7E and E 8E are preferably carbon atoms.
  • Examples and preferred ranges of R 1E , R 2E , R 3E , R 4E , R 5E , R 6E , R 7E and R 8E are R when R 1D , R 2D , R 3D and R 4D are other than a bond.
  • the examples and preferred ranges of 1D , R 2D , R 3D and R 4D are the same.
  • R 1E , R 2E , R 3E , R 4E , R 5E , R 6E , R 7E and R 8E may have and preferred ranges thereof are R 1D , R 2D , R 3D and R 4D. Are the same as the examples and preferred ranges of the substituents that may have.
  • R 1E and R 2E , R 2E and R 3E , R 3E and R 4E , R 5E and R 6E , R 6E and R 7E , R 7E and R 8E , R 5E and R XD1 , R 5E and R XD2 , R 1E And R XD1 and R 1E and R XD2 may be bonded to each other to form a ring together with the carbon atoms to which they are bonded, but it is preferable that no ring is formed.
  • the compound represented by the formula (C-1) has a higher luminance lifetime of the light-emitting element of the present invention, the compound represented by the formula (C-2-1) or the formula (C-2-2) And a compound represented by formula (C-2-1) is more preferable.
  • E 11C , E 12C , E 13C , E 14C , E 21C , E 22C , E 23C , E 24C , E 31C E 32C , E 33C , E 34C , E 41C , E 42C , E 43C and E 44C are preferably carbon atoms.
  • ring R 1C ′, ring R 2C ′, ring R 3C ′ and ring R 4C ′ are preferably benzene rings is there.
  • R C ′′ is preferably a sulfur atom because the luminance lifetime of the light emitting device of the present invention is more excellent.
  • R 11C , R 12C , R 13C , R 14C , R 21C , R 22C , R 23C , R 24C , R 31C , R 32C , R 33C , R 34C , R 41C , R 42C , R 43C and R 44C are preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group. And more preferably a hydrogen atom, a group represented by the formula (D-1), or a group represented by the formula (E-1). The group represented by D-1) is particularly preferred, and these groups may further have a substituent.
  • R 11C , R 12C , R 13C , R 14C , R 21C , R 22C , R 23C , R 24C , R 31C , R 32C , R 33C , R 34C , R 41C , R 42C , R 43C and R 44C are preferably an aryl group or a monovalent heterocyclic group, and are represented by the group represented by the formula (D-1) or the formula (E
  • the group represented by formula (D-1) is more preferred, the group represented by formula (D-1) is more preferred, and these groups may further have a substituent.
  • R 11C , R 12C , R 13C , R 14C , R 21C , R 22C , R 23C , R 24C , R 31C , R 32C , R 33C , R 34C , R 41C , R 42C , R 43C and R 44C are each an aryl group or a monovalent heterocyclic group, R 11C , R 12C , R 13C , R 14C , R 21C , R 22C , R The total number of 23C , R 24C , R 31C , R 32C , R 33C , R 34C , R 41C , R 42C , R 43C and R 44C is preferably an aryl group or a monovalent heterocyclic group.
  • R 11C , R 12C , R 13C , R 14C , R 21C , R 22C , R 23C , R 24C , R 31C , R 32C , R 33C , R 34C , R 41C , R 42C , R 43C and R 44C are groups represented by formula (D-1) or formula (E-1), R 11C , R 12C , R 13C , R 14C , R21C , R22C , R23C , R24C , R31C , R32C , R33C , R34C , R41C , R42C , R43C and R44C are represented by formula (D-1) or formula (E-1 ) Is preferably 1 to 5, more preferably 1 to 3, still more preferably 1 or 2, and particularly preferably 1.
  • R 11C , R 12C , R 13C , R 14C , R 21C , R 22C , R 23C , R 24C , R 31C , R 32C , R 33C , R 34C , R 41C , R 42C , R 43C and R 44C are each an aryl group or a monovalent heterocyclic group, R 11C , R 12C , R 14C , R 21C , R 22C , R 24C , R At least one of 31C , R32C , R34C , R41C , R42C and R44C is preferably an aryl group or a monovalent heterocyclic group, and R11C , R12C , R21C , R22C , R 31C, R 32C, more preferably at least one of R 41C and R 42C is an aryl group or a monovalent heterocyclic group, at least one aryl of R 11C,
  • R 11C , R 12C , R 13C , R 14C , R 21C , R 22C , R 23C , R 24C , R 31C , R 32C , R 33C , R 34C , R 41C , R 42C , R 43C and R 44C are each a group represented by the formula (D-1) or a group represented by the formula (E-1), R 11C , R 12C , R 14C, R 21C, R 22C, R 24C, R 31C, R 32C, R 34C, R 41C, group, or the formula at least one of R 42C and R 44C are represented by the formula (D-1) ( E-1) is preferred, and at least one of R 11C , R 12C , R 21C , R 22C , R 31C , R 32C , R 41C and R 42C is represented by formula (D-1) Or a group represented by formula (E-1), and at least one of R
  • R 11C , R 12C , R 13C , R 14C , R 21C , R 22C , R 23C and R 24C are a hydrogen atom, an alkyl group, a cycloalkyl group, An aryl group, a monovalent heterocyclic group or a substituted amino group is preferable, and a hydrogen atom, an aryl group or a monovalent heterocyclic group is more preferable, and a hydrogen atom, or a compound represented by the formula (D-1) or A group represented by the formula (E-1) is more preferred, a hydrogen atom or a group represented by the formula (E-1) is particularly preferred, and these groups further have a substituent.
  • R 11C , R 12C , R 13C , R 14C , R 21C , R 22C , R 23C and R 24C is an aryl group or 1 A valent heterocyclic group, more preferably a group represented by the formula (D-1) or the formula (E-1), and a group represented by the formula (E-1). Are more preferred, and these groups may further have a substituent.
  • R 11C , R 12C , R 13C , R 14C , R 21C , R 22C , R 23C and R 24C is an aryl group or a monovalent group.
  • the total number of R 11C , R 12C , R 13C , R 14C , R 21C , R 22C , R 23C and R 24C is an aryl group, monovalent heterocyclic group or substituted amino group The number is preferably 1 to 5, more preferably 1 to 3, further preferably 1 or 2, and particularly preferably 2.
  • R 11C , R 12C , R 13C , R 14C , R 21C , R 22C , R 23C and R 24C is represented by the formula (D-1)
  • R 11C , R 12C , R 13C , R 14C , R 21C , R 22C , R 23C and R 24C are represented by the formula (D-1) or the formula (E
  • the total number of groups represented by -1) is preferably 1 to 5, more preferably 1 to 3, further preferably 1 or 2, and particularly preferably 2. is there.
  • R 11C , R 12C , R 13C , R 14C , R 21C , R 22C , R 23C and R 24C is an aryl group or a monovalent group.
  • R 11C , R 12C , R 13C , R 21C , R 22C and R 23C is an aryl group or a monovalent heterocyclic group
  • R 12C and R 22C More preferably, at least one of them is an aryl group or a monovalent heterocyclic group.
  • R 11C , R 12C , R 13C , R 14C , R 21C , R 22C , R 23C and R 24C is represented by the formula (D-1)
  • R 11C , R 12C , R 13C , R 21C , R 22C and R 23C is represented by formula (D-1) or formula (E-
  • the group represented by 1) is preferred, and at least one of R 12C and R 22C is more preferably a group represented by the formula (D-1) or the formula (E-1). More preferably, at least one of 12C and R 22C is a group represented by the formula (E-1).
  • R 11C , R 12C , R 13C , R 14C , R 21C , R 22C , R 23C , R 24C , R 31C , R 32C , R 33C , R 34C , R 41C , R 42C , R 43C and R 44C may have examples of substituents and preferred ranges thereof, even if ring R 1C and ring R 2C have It is the same as the example and preferable range of the substituent which the good substituent may have further.
  • R 11C and R 12C , R 12C and R 13C , R 13C and R 14C , R 14C and R 34C , R 34C And R 33C , R 33C and R 32C , R 32C and R 31C , R 31C and R 41C , R 41C and R 42C , R 42C and R 43C , R 43C and R 44C , R 44C and R 24C , R 24C and R 23C , R 23C and R 22C , R 22C and R 21C , and R 21C and R 11C may be bonded together to form a ring with the carbon atoms to which they are bonded, but they must not form a ring. Is preferred.
  • the compound represented by the formula (C-2-1) is preferably a compound represented by the formula (C-3-1) because the luminance life of the light emitting device of the present invention is more excellent.
  • the compound represented by the formula (C-2-2) is preferably a compound represented by the formula (C-3-2) because the luminance lifetime of the light-emitting element of the present invention is more excellent.
  • Examples of the compound represented by formula (C-1) include compounds represented by formula (C-101) to formula (C-146).
  • X represents an oxygen atom or a sulfur atom. When two or more X exists, they may be the same or different. ]
  • X is preferably a sulfur atom.
  • the compound represented by the formula (C-1) is, for example, Aldrich, Luminescence Technology Corp. Is available from Other examples of the compound represented by the formula (C-1) include, for example, International Publication No. 2014/023388, International Publication No. 2013/0445408, International Publication No. 2013/045410, International Publication No. 2013/045411, International Publication No. 2012. / 048820, International Publication No. 2012/048819, International Publication No. 2011/006574, “Organic-Electronics Vol. 14, 902-908 (2013)”, International Publication No. 2009/096202, International Publication No. 2009/086028, Japanese Patent Application Laid-Open No. 2009/2009. -267255 and JP-A 2009-46408 can be used for the synthesis.
  • the first organic layer is preferably a layer containing a compound represented by the formula (C-1) and a phosphorescent compound.
  • the first organic layer may contain one compound represented by the formula (C-1), or two or more compounds.
  • the phosphorescent compound may be contained alone or in combination of two kinds It may be contained above.
  • the content of the phosphorescent compound is represented by formula (C-1).
  • the total of the compound and the phosphorescent compound is 100 parts by mass, it is usually 0.01 to 95 parts by mass, preferably 0.1 to 70 parts by mass, more preferably 1 to 50 parts by mass, The amount is preferably 10 to 40 parts by mass.
  • the host material is preferably a host material having at least one function selected from a hole injection property, a hole transport property, an electron injection property, and an electron transport property.
  • the first organic layer is a layer containing a compound represented by formula (C-1) and a phosphorescent compound
  • the lowest excited triplet state of the compound represented by formula (C-1) (T 1 ) is more excellent in the luminance life of the light-emitting element of the present invention, so that the energy level equivalent to T 1 of the phosphorescent compound contained in the first organic layer or a higher energy level Is preferable, and a higher energy level is more preferable.
  • the phosphorescent compound since the light-emitting element of the present invention can be produced by a solution coating process, the phosphorescent compound is a solvent capable of dissolving the compound represented by the formula (C-1) contained in the first organic layer. On the other hand, it is preferable to exhibit solubility.
  • Phosphorescent compound generally means a compound that exhibits phosphorescence at room temperature (25 ° C.), and is preferably a metal complex that emits light from a triplet excited state at room temperature.
  • the metal complex that emits light from the triplet excited state has a central metal atom and a ligand.
  • the central metal atom for example, a metal atom having an atomic number of 40 or more and having a spin-orbit interaction in a complex and capable of causing an intersystem crossing between a singlet state and a triplet state can be given.
  • the metal atom include a ruthenium atom, a rhodium atom, a palladium atom, an iridium atom, and a platinum atom.
  • an iridium atom or a platinum atom is preferable.
  • a neutral or anionic monodentate ligand that forms at least one bond selected from the group consisting of a coordination bond and a covalent bond with the central metal atom, or Neutral or anionic polydentate ligands may be mentioned.
  • the bond between the central metal atom and the ligand include a metal-nitrogen bond, a metal-carbon bond, a metal-oxygen bond, a metal-phosphorus bond, a metal-sulfur bond, and a metal-halogen bond.
  • the multidentate ligand usually means a bidentate to hexadentate ligand.
  • the phosphorescent compound is preferably a phosphorescent compound represented by Formula (1).
  • M is preferably an iridium atom or a platinum atom, and more preferably an iridium atom, because the luminance lifetime of the light emitting device of the present invention is more excellent.
  • M is a ruthenium atom, a rhodium atom or an iridium atom, n 1 is preferably 2 or 3, and more preferably 3.
  • M is a palladium atom or a platinum atom
  • n 1 is preferably 2.
  • E 1 and E 2 are preferably carbon atoms.
  • Ring L 1 is preferably a 5-membered aromatic heterocyclic ring or a 6-membered aromatic heterocyclic ring, or a 5-membered aromatic heterocyclic ring having 2 to 4 nitrogen atoms as constituent atoms or one More preferably, it is a 6-membered aromatic heterocycle having 4 or less nitrogen atoms as constituent atoms, and a 5-membered aromatic heterocycle having 2 or more and 3 or less nitrogen atoms as constituent atoms or one More preferably, it is a 6-membered aromatic heterocyclic ring having 2 or less nitrogen atoms as constituent atoms, and these rings may have a substituent.
  • E 1 is preferably a carbon atom.
  • the ring L 1 include a diazole ring, a triazole ring, a pyridine ring, a diazabenzene ring, a triazine ring, an azanaphthalene ring and a dianaphthalene ring, and a diazole ring, a triazole ring, a pyridine ring, a diazabenzene ring, a quinoline ring or an isoquinoline.
  • a ring is preferable, a diazole ring, a triazole ring, a pyridine ring, a quinoline ring or an isoquinoline ring is more preferable, a diazole ring or a triazole ring is further preferable, a diazole ring is particularly preferable, and these rings may have a substituent. .
  • Ring L 2 is preferably a 5-membered or 6-membered aromatic hydrocarbon ring, or a 5-membered or 6-membered aromatic heterocycle, and a 6-membered aromatic hydrocarbon ring or a 6-membered aromatic heterocycle More preferably, it is a ring, more preferably a 6-membered aromatic hydrocarbon ring, and these rings may have a substituent.
  • E 2 is preferably a carbon atom.
  • Examples of the ring L 2 include a benzene ring, naphthalene ring, fluorene ring, phenanthrene ring, indene ring, pyridine ring, diazabenzene ring and triazine ring, and a benzene ring, naphthalene ring, fluorene ring, pyridine ring or diazabenzene ring is included.
  • a benzene ring, a pyridine ring or a diazabenzene ring is more preferable, a benzene ring is more preferable, and these rings may have a substituent.
  • Examples of the substituent that the ring L 1 and the ring L 2 may have include an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, and a substituted amino group.
  • a halogen atom is preferred, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a monovalent heterocyclic group, a substituted amino group or a fluorine atom is more preferred, an alkyl group, a cycloalkyl group, an aryl group, A monovalent heterocyclic group or a substituted amino group is more preferable, an aryl group or a monovalent heterocyclic group is particularly preferable, and an aryl group is particularly preferable. These groups may further have a substituent.
  • aryl group which is a substituent that the ring L 1 and the ring L 2 may have, a phenyl group, a naphthyl group, an anthracenyl group, a phenanthrenyl group, a dihydrophenanthrenyl group, a fluorenyl group, or a pyrenyl group is preferable.
  • a phenyl group, a naphthyl group or a fluorenyl group is more preferred, a phenyl group is still more preferred, and these groups may further have a substituent.
  • Examples of the monovalent heterocyclic group that may be substituted on the ring L 1 and the ring L 2 include a pyridyl group, a pyrimidinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a dibenzofuranyl group, and a dibenzothienyl group.
  • the amino group preferably has an aryl group or a monovalent heterocyclic group, more preferably an aryl group, These groups may further have a substituent.
  • Examples and preferred ranges of the aryl group in the substituent that the amino group has are the same as examples and preferred ranges of the aryl group in the substituent that the ring L 1 and the ring L 2 may have.
  • Examples and preferred ranges of the monovalent heterocyclic group in the substituent that the amino group has are the same as examples and preferred ranges of the monovalent heterocyclic group in the substituent that the ring L 1 and the ring L 2 may have. It is.
  • Examples of the substituent that the ring L 1 and the ring L 2 may have further include an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, an alkoxy group, a cyclo group
  • An alkoxy group or a substituted amino group is preferred, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group is more preferred, an alkyl group, a cycloalkyl group or an aryl group is further preferred, and an alkyl group or a cyclo Alkyl groups are particularly preferred, and these groups may further have a substituent, but these groups preferably have no further substituent.
  • the aryl group, monovalent heterocyclic group or substituted amino group which is a substituent that the ring L 1 and the ring L 2 may have is preferably a compound represented by the formula: (DA), a group represented by the formula (DB) or the formula (DC), more preferably a group represented by the formula (DA) or the formula (DC), more preferably a formula (DC). It is group represented by these.
  • m DA1 , m DA2 and m DA3 each independently represent an integer of 0 or more.
  • GDA represents a nitrogen atom, an aromatic hydrocarbon group, or a heterocyclic group, and these groups may have a substituent.
  • Ar DA1 , Ar DA2 and Ar DA3 each independently represent an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
  • T DA represents an aryl group or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • the plurality of TDAs may be the same or different.
  • m DA1 , m DA2 , m DA3 , m DA4 , m DA5 , m DA6 and m DA7 each independently represent an integer of 0 or more.
  • GDA represents a nitrogen atom, an aromatic hydrocarbon group, or a heterocyclic group, and these groups may have a substituent.
  • a plurality of GDAs may be the same or different.
  • Ar DA1 , Ar DA2 , Ar DA3 , Ar DA4 , Ar DA5 , Ar DA6 and Ar DA7 each independently represent an arylene group or a divalent heterocyclic group, and these groups may have a substituent. Good.
  • T DA represents an aryl group or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • the plurality of TDAs may be the same or different.
  • m DA1 represents an integer of 0 or more.
  • Ar DA1 represents an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
  • T DA represents an aryl group or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • m DA1, m DA2, m DA3 , m DA4, m DA5, m DA6 and m DA7 is usually 10 or less integer is preferably 5 or less integer, more preferably 2 or less an integer, further Preferably 0 or 1.
  • m DA2 , m DA3 , m DA4 , m DA5 , m DA6 and m DA7 are preferably the same integer, and m DA1 , m DA2 , m DA3 , m DA4 , m DA5 , m DA6 and m DA7 are More preferably, they are the same integer.
  • GDA is preferably an aromatic hydrocarbon group or a heterocyclic group, more preferably hydrogen bonded directly to a carbon atom or a nitrogen atom constituting the ring from a benzene ring, a pyridine ring, a pyrimidine ring, a triazine ring or a carbazole ring. It is a group formed by removing three atoms, and these groups may have a substituent.
  • the substituent that GDA may have is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, more preferably an alkyl group, A cycloalkyl group, an alkoxy group or a cycloalkoxy group, more preferably an alkyl group or a cycloalkyl group, and these groups may further have a substituent, but these groups further have a substituent. It is preferable not to have it.
  • G DA is preferably a group represented by the formula (GDA-11) ⁇ formula (GDA-15), more preferably a group represented by the formula (GDA-11) ⁇ formula (GDA-14) And more preferably a group represented by the formula (GDA-11) or (GDA-14), and particularly preferably a group represented by the formula (GDA-11).
  • R DA represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may further have a substituent. When there are a plurality of RDA , they may be the same or different. ]
  • R DA is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group or a cycloalkoxy group, more preferably a hydrogen atom, an alkyl group or a cycloalkyl group, and these groups have a substituent. May be.
  • Ar DA1 , Ar DA2 , Ar DA3 , Ar DA4 , Ar DA5 , Ar DA6 and Ar DA7 are preferably a phenylene group, a fluorenediyl group or a carbazolediyl group, more preferably a formula (ArDA-1) to a formula A group represented by formula (ArDA-5), more preferably a group represented by formula (ArDA-1) to formula (ArDA-3), particularly preferably formula (ArDA-1) or formula (ArDA -2), particularly preferably a group represented by the formula (ArDA-1), and these groups may have a substituent.
  • R DA represents the same meaning as described above.
  • R DB represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. When there are a plurality of RDBs , they may be the same or different. ]
  • R DB is preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group or a monovalent heterocyclic group, still more preferably an aryl group, The group may have a substituent.
  • Examples of the substituents that Ar DA1 , Ar DA2 , Ar DA3 , Ar DA4 , Ar DA5 , Ar DA6 , Ar DA7 and R DB may have and preferred ranges thereof may be the substituents that G DA may have The same as the examples and preferred ranges.
  • T DA is preferably a group represented by the formula (TDA-1) ⁇ formula (TDA-3), more preferably a group represented by the formula (TDA-1).
  • R DA and R DB represent the same meaning as described above.
  • the group represented by the formula (DA) is preferably a group represented by the formula (D-A1) to the formula (D-A5), more preferably the formula (D-A1) or the formula (D-A3).
  • a group represented by the formula (D-A5) more preferably a group represented by the formula (D-A1).
  • R p1 , R p2 , R p3 and R p4 each independently represents an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group or a halogen atom.
  • R p1 , R p2 and R p4 may be the same or different.
  • np1 represents an integer of 0 to 5
  • np2 represents an integer of 0 to 3
  • np3 represents 0 or 1
  • np4 represents an integer of 0 to 4.
  • a plurality of np1 may be the same or different.
  • the group represented by the formula (DB) is preferably a group represented by the formula (D-B1) to the formula (D-B6), more preferably the formula (D-B1) to the formula (D-B3). Or it is group represented by a formula (D-B5), More preferably, it is group represented by a formula (D-B1).
  • R p1 , R p2 , R p3 and R p4 each independently represents an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group or a halogen atom.
  • R p1 , R p2 and R p4 they may be the same or different.
  • np1 represents an integer of 0 to 5
  • np2 represents an integer of 0 to 3
  • np3 represents 0 or 1
  • np4 represents an integer of 0 to 4.
  • a plurality of np1 may be the same or different.
  • a plurality of np2 may be the same or different.
  • the group represented by the formula (DC) is preferably a group represented by the formula (D-C1) to the formula (D-C4), more preferably the formula (D-C1) or the formula (D-C2). And more preferably a group represented by the formula (D-C2).
  • R p4 , R p5 and R p6 each independently represents an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group or a halogen atom. When there are a plurality of R p4 , R p5 and R p6 , they may be the same or different.
  • np4 represents an integer of 0 to 4
  • np5 represents an integer of 0 to 5
  • np6 represents an integer of 0 to 5.
  • Np1 is preferably an integer of 0 to 2, more preferably 0 or 1.
  • np2 is preferably 0 or 1
  • np3 is preferably 0.
  • np4 is preferably an integer of 0 to 2
  • np5 is preferably an integer of 0 to 3, more preferably 0 or 1.
  • np6 is preferably an integer of 0 to 2, more preferably 0 or 1.
  • the alkyl group or cycloalkyl group represented by R p1 , R p2 , R p3 , R p4 , R p5 and R p6 is preferably a methyl group, an ethyl group, an isopropyl group, a tert-butyl group, a hexyl group, 2-ethylhexyl group, cyclohexyl group or tert-octyl group.
  • the alkoxy group or cycloalkoxy group represented by R p1 , R p2 , R p3 , R p4 , R p5 and R p6 is preferably a methoxy group, a 2-ethylhexyloxy group or a cyclohexyloxy group.
  • R p1 , R p2 , R p3 , R p4 , R p5 and R p6 are preferably an optionally substituted alkyl group or an optionally substituted cycloalkyl group, and more An alkyl group which may have a substituent is preferable, and a methyl group, an ethyl group, an isopropyl group, a tert-butyl group, a hexyl group, a 2-ethylhexyl group or a tert-octyl group is more preferable.
  • the ring L 1 When there are a plurality of substituents that the ring L 1 may have, it is preferable that they are bonded to each other and do not form a ring together with the atoms to which they are bonded.
  • the ring L 2 When there are a plurality of substituents that the ring L 2 may have, it is preferable that they are bonded to each other and do not form a ring with the atoms to which they are bonded.
  • the substituent that the ring L 1 may have and the substituent that the ring L 2 may have are preferably bonded to each other and do not form a ring with the atoms to which they are bonded.
  • anionic bidentate ligand examples include a ligand represented by the following formula. However, the anionic bidentate ligand represented by A 1 -G 1 -A 2 is different from the ligand whose number is defined by the subscript n 1 .
  • R L1 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, or a halogen atom, and these groups optionally have a substituent.
  • a plurality of R L1 may be the same or different.
  • R L2 represents an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, or a halogen atom, and these groups optionally have a substituent.
  • R L1 is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a fluorine atom, more preferably a hydrogen atom or an alkyl group, and these groups optionally have a substituent.
  • R L2 is preferably an alkyl group or an aryl group, and these groups optionally have a substituent.
  • the phosphorescent compound represented by the formula (1) has a higher luminance lifetime of the light emitting device of the present invention
  • the phosphorescent compound represented by the formula (1-A) or the formula (1-B) is preferably a phosphorescent compound represented by the formula (1-A).
  • ring L 1A is a diazole ring
  • an imidazole ring in which E 11A is a nitrogen atom or an imidazole ring in which E 12A is a nitrogen atom is preferable
  • an imidazole ring in which E 11A is a nitrogen atom is more preferable.
  • ring L 1A is a triazole ring
  • a triazole ring in which E 11A and E 12A are nitrogen atoms, or a triazole ring in which E 11A and E 13A are nitrogen atoms is preferable, and E 11A and E 12A are nitrogen atoms.
  • a triazole ring is more preferred.
  • Ring L 1A is preferably a diazole ring.
  • Examples and preferred ranges of the aryl group, monovalent heterocyclic group and substituted amino group represented by R 11A , R 12A , R 13A , R 21A , R 22A , R 23A and R 24A are ring L 1 and Examples of the aryl group, monovalent heterocyclic group and substituted amino group, which are the substituents that the ring L 2 may have, are the same as the preferred range. Examples of the substituent which R 11A , R 12A , R 13A , R 21A , R 22A , R 23A and R 24A may have and preferred ranges thereof may have ring L 1 and ring L 2. It is the same as the example and preferable range of the substituent which the substituent may further have.
  • R 11A is preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and an aryl group or a monovalent heterocyclic ring It is more preferably a group, and further preferably an aryl group, and these groups may have a substituent.
  • R 11A is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group, and a hydrogen atom, an alkyl group, a cycloalkyl group Or it is more preferably an aryl group, more preferably a hydrogen atom, an alkyl group or a cycloalkyl group, and particularly preferably a hydrogen atom, and these groups optionally have a substituent.
  • R 12A is preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and an aryl group or a monovalent heterocyclic ring It is more preferably a group, and further preferably an aryl group, and these groups may have a substituent.
  • R 12A is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group, a hydrogen atom, an alkyl group, a cycloalkyl group Or it is more preferably an aryl group, more preferably a hydrogen atom, an alkyl group or a cycloalkyl group, and particularly preferably a hydrogen atom, and these groups optionally have a substituent.
  • R 13A is preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and an aryl group or a monovalent heterocyclic ring It is more preferably a group, and further preferably an aryl group, and these groups may have a substituent.
  • R 13A is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group, a hydrogen atom, an alkyl group, a cycloalkyl group Or it is more preferably an aryl group, more preferably a hydrogen atom, an alkyl group or a cycloalkyl group, and particularly preferably a hydrogen atom, and these groups optionally have a substituent.
  • ring L 1A is a diazole ring
  • ring L 1A is preferably an imidazole ring in which E 11A is a nitrogen atom and R 11A is present, or E 12A is a nitrogen atom, and R 12A More preferably, E 11A is a nitrogen atom, and R 11A is an imidazole ring.
  • ring L 1A is a triazole ring
  • ring L 1A is preferably a triazole ring in which E 11A and E 12A are nitrogen atoms and R 11A is present but R 12A is absent, or E 11A and E 13A is a nitrogen atom, and a triazole ring in which R 11A is present and R 13A is not present. More preferably, E 11A and E 12A are nitrogen atoms, and R 11A is present and R 12A is present. Not a triazole ring.
  • R 11A , R 12A and R 13A are preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, It is more preferably an aryl group, still more preferably an alkyl group, and these groups may have a substituent.
  • ring L 2A is a pyridine ring
  • ring L 2A is a pyridine ring
  • E 21A is a nitrogen atom
  • a pyridine ring E 22A is a nitrogen atom
  • E 23A is a pyridine ring is a nitrogen atom
  • E 22A is a pyridine ring which is a nitrogen atom.
  • ring L 2A is Jiazabenzen ring
  • ring L 2A is a pyrimidine ring
  • E 22A and E 24A is a nitrogen atom
  • E 22A and E 24A is a pyrimidine ring is a nitrogen atom
  • E 22A And E 24A is more preferably a pyrimidine ring which is a nitrogen atom.
  • Ring L 2A is preferably a benzene ring.
  • R 21A , R 22A , R 23A and R 24A may be a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a monovalent heterocyclic group, a substituted amino group or a fluorine atom.
  • a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group is more preferable, and a hydrogen atom, an alkyl group, or a formula (DA) or a formula (D -B) or a group represented by the formula (DC) is more preferable, a hydrogen atom or a group represented by the formula (DA) is particularly preferable, and a hydrogen atom is particularly preferable.
  • these groups may have a substituent.
  • R 22A or R 23A is preferably an aryl group, monovalent heterocyclic group or substituted amino group, and R 22A is aryl. It is more preferably a group, a monovalent heterocyclic group or a substituted amino group.
  • R 11A and R 12A , R 12A and R 13A , R 11A and R 21A , R 21A and R 22A , R 22A and R 23A , and R 23A and R 24A are bonded to each other together with the atoms to which they are bonded. It is preferable not to form a ring.
  • the phosphorescent compound represented by the formula (1-A) has a further excellent luminance lifetime of the light emitting device of the present invention
  • the phosphorescent compound represented by the formulas (1-A1) to (1-A5) The phosphorescent compound represented by the formula (1-A1), the formula (1-A3) or the formula (1-A4) is more preferable, and the formula (1-A1) or the formula ( A phosphorescent compound represented by 1-A4) is more preferred, and a phosphorescent compound represented by formula (1-A4) is particularly preferred.
  • ring L 1B is Jiazabenzen ring
  • ring L 1B is a pyrimidine ring
  • E 11B is a nitrogen atom
  • E 13B is a pyrimidine ring is a nitrogen atom
  • E 11B is a nitrogen atom pyrimidine More preferably, it is a ring.
  • Ring L 1B is preferably a pyridine ring.
  • ring L 2B is a pyridine ring
  • ring L 2B is a pyridine ring
  • E 21B is a nitrogen atom
  • a pyridine ring E 22B is a nitrogen atom
  • E 23B is a pyridine ring is a nitrogen atom
  • E 22B is a pyridine ring which is a nitrogen atom.
  • ring L 2B is Jiazabenzen ring
  • ring L 2B is a pyrimidine ring
  • E 22B and E 24B is a nitrogen atom
  • E 21B and E 23B is a pyrimidine ring is a nitrogen atom
  • E 22B And E 24B is more preferably a pyrimidine ring which is a nitrogen atom.
  • Ring L 2B is preferably a benzene ring.
  • Examples and preferred ranges of the aryl group, monovalent heterocyclic group and substituted amino group represented by R 11B , R 12B , R 13B , R 14B , R 21B , R 22B , R 23B and R 24B are each a ring.
  • Examples of the aryl group, monovalent heterocyclic group and substituted amino group, which are the substituents that L 1 and ring L 2 may have, are the same as the preferred ranges.
  • Examples of substituents that R 11B , R 12B , R 13B , R 14B , R 21B , R 22B , R 23B and R 24B may have and preferred ranges thereof include ring L 1 and ring L 2.
  • R 11B , R 12B , R 13B , R 14B , R 21B , R 22B , R 23B and R 24B are a hydrogen atom, alkyl group, cycloalkyl group, alkoxy group, cycloalkoxy group, aryl group, monovalent heterocyclic ring Group, a substituted amino group or a fluorine atom, and more preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group, a hydrogen atom, an alkyl group, Or a group represented by formula (DA), formula (DB) or formula (DC), more preferably a hydrogen atom or a group represented by formula (DA). It is particularly preferable that these groups may have a substituent.
  • R 11B , R 12B or R 13B is preferably an aryl group, a monovalent heterocyclic group or a substituted amino group, 12B or R 13B is more preferably an aryl group, monovalent heterocyclic group or substituted amino group, and R 13B is more preferably an aryl group, monovalent heterocyclic group or substituted amino group.
  • R 22B or R 23B is preferably an aryl group, monovalent heterocyclic group or substituted amino group, and R 22B is aryl. It is more preferably a group, a monovalent heterocyclic group or a substituted amino group.
  • the phosphorescent compound represented by the formula (1-B) has a further excellent luminance lifetime of the light emitting device of the present invention
  • the phosphorescent compound represented by the formulas (1-B1) to (1-B5) is more preferable, and the phosphorescent compound or the formula represented by the formula (1-B1)
  • the phosphorescent compound represented by (1-B2) is more preferred, and the phosphorescent compound represented by formula (1-B1) is particularly preferred.
  • Examples and preferred ranges of the aryl group, monovalent heterocyclic group and substituted amino group represented by R 15B , R 16B , R 17B and R 18B may be the ring L 1 and the ring L 2 , respectively.
  • Examples of preferred aryl groups, monovalent heterocyclic groups and substituted amino groups are the same as the preferred ranges.
  • Examples of substituents that R 15B , R 16B , R 17B and R 18B may have and preferred ranges thereof may be further included in the substituents which ring L 1 and ring L 2 may have. Examples of good substituents and preferred ranges are the same.
  • R 15B , R 16B , R 17B and R 18B may be a hydrogen atom, alkyl group, cycloalkyl group, alkoxy group, cycloalkoxy group, fluorine atom, aryl group, monovalent heterocyclic group or substituted amino group.
  • it is a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group, more preferably a hydrogen atom, an alkyl group or a cycloalkyl group, and a hydrogen atom It is particularly preferable that these groups may have a substituent.
  • Examples of the phosphorescent compound include a phosphorescent compound represented by the following formula.
  • Phosphorescent compounds are described in, for example, Aldrich, Luminescence Technology Corp. Available from the American Dye Source. In addition, phosphorescent compounds are described in Journal of the American Chemical Society, Vol. 107, 1431-1432 (1985), Journal of the American Chemical Society, Vol. 106, 6647-6653 (1984), International Publication No. 2011/024761, International Publication No. 2002/44189, Japanese Patent Application Laid-Open No. 2006-188673, and the like.
  • the first organic layer includes a compound represented by the formula (C-1), the phosphorescent compound, a hole transport material, a hole injection material, an electron transport material, an electron injection material, a light emitting material, and an antioxidant. It may be a layer containing a composition containing at least one material selected from the group consisting of (hereinafter also referred to as “first composition”).
  • first composition a composition containing at least one material selected from the group consisting of
  • the hole transport material, hole injection material, electron transport material, and electron injection material contained in the first composition are different from the compound represented by the formula (C-1) in the first composition.
  • the luminescent material contained in is different from the phosphorescent compound, unlike the compound represented by the formula (C-1).
  • the hole transport material is classified into a low molecular compound and a high molecular compound, and is preferably a high molecular compound.
  • the hole transport material may have a crosslinking group.
  • the polymer compound include polyvinyl carbazole and derivatives thereof; polyarylene having an aromatic amine structure in the side chain or main chain and derivatives thereof.
  • the polymer compound may be a compound to which an electron accepting site is bonded. Examples of the electron accepting site include fullerene, tetrafluorotetracyanoquinodimethane, tetracyanoethylene, trinitrofluorenone, and fullerene is preferable.
  • the compounding amount of the hole transport material is usually 1 to 400 parts by mass, preferably 5 to 150 parts, when the compound represented by the formula (C-1) is 100 parts by mass. Part by mass.
  • a hole transport material may be used individually by 1 type, or may use 2 or more types together.
  • Electron transport materials are classified into low-molecular compounds and high-molecular compounds.
  • the electron transport material may have a crosslinking group.
  • Low molecular weight compounds include, for example, metal complexes having 8-hydroxyquinoline as a ligand, oxadiazole, anthraquinodimethane, benzoquinone, naphthoquinone, anthraquinone, tetracyanoanthraquinodimethane, fluorenone, diphenyldicyanoethylene and diphenoquinone.
  • Examples of the polymer compound include polyphenylene, polyfluorene, and derivatives thereof.
  • the polymer compound may be doped with a metal.
  • the amount of the electron transport material is usually 1 to 400 parts by mass, preferably 5 to 150 parts by mass, when the compound represented by the formula (C-1) is 100 parts by mass. Part.
  • An electron transport material may be used individually by 1 type, or may use 2 or more types together.
  • Hole injection material and electron injection material are each classified into a low molecular compound and a high molecular compound.
  • the hole injection material and the electron injection material may have a crosslinking group.
  • the low molecular weight compound include metal phthalocyanines such as copper phthalocyanine; carbon; metal oxides such as molybdenum and tungsten; and metal fluorides such as lithium fluoride, sodium fluoride, cesium fluoride, and potassium fluoride.
  • the polymer compound examples include polyaniline, polythiophene, polypyrrole, polyphenylene vinylene, polythienylene vinylene, polyquinoline and polyquinoxaline, and derivatives thereof; conductive polymers such as polymers containing an aromatic amine structure in the main chain or side chain.
  • the compounding amounts of the hole injecting material and the electron injecting material are each usually 1 to 400 parts by mass when the compound represented by the formula (C-1) is 100 parts by mass. The amount is preferably 5 to 150 parts by mass.
  • Each of the electron injection material and the hole injection material may be used alone or in combination of two or more.
  • the electrical conductivity of the conductive polymer is preferably 1 ⁇ 10 ⁇ 5 S / cm to 1 ⁇ 10 3 S / cm is there.
  • the conductive polymer can be doped with an appropriate amount of ions.
  • the type of ions to be doped is an anion for a hole injection material and a cation for an electron injection material. Examples of the anion include polystyrene sulfonate ion, alkylbenzene sulfonate ion, and camphor sulfonate ion. Examples of the cation include lithium ion, sodium ion, potassium ion, and tetrabutylammonium ion. Doping ions may be used alone or in combination of two or more.
  • Luminescent materials are classified into low-molecular compounds and high-molecular compounds.
  • the light emitting material may have a crosslinking group.
  • the low molecular weight compound include naphthalene and derivatives thereof, anthracene and derivatives thereof, and perylene and derivatives thereof.
  • the polymer compound include a phenylene group, a naphthalenediyl group, an anthracenediyl group, a fluorenediyl group, a phenanthrene diyl group, a dihydrophenanthenediyl group, a group represented by the following formula (X), a carbazole diyl group, a phenoxy group.
  • the blending amount of the light emitting material is usually 1 to 400 parts by mass, preferably 5 to 150 parts by mass when the compound represented by the formula (C-1) is 100 parts by mass. It is.
  • a luminescent material may be used individually by 1 type, or may use 2 or more types together.
  • the antioxidant may be any compound that is soluble in the same solvent as the compound represented by the formula (C-1) and does not inhibit light emission and charge transport.
  • a phenolic antioxidant, Phosphorus antioxidant is mentioned.
  • the blending amount of the antioxidant is usually 0.001 to 10 parts by mass when the compound represented by the formula (C-1) is 100 parts by mass.
  • Antioxidants may be used alone or in combination of two or more.
  • First ink A composition containing a compound represented by the formula (C-1) and a solvent (hereinafter also referred to as “first ink”) is prepared by spin coating, casting, or microgravure coating.
  • Method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, flexographic printing method, offset printing method, ink jet printing method, capillary coating method, nozzle coating method It can use suitably for coating methods, such as a method.
  • the viscosity of the first ink may be adjusted according to the type of coating method. However, when a solution such as an ink jet printing method is applied to a printing method that passes through a discharge device, clogging and flight bending at the time of discharge occur. Since it is difficult, it is preferably 1 to 20 mPa ⁇ s at 25 ° C.
  • the solvent contained in the first ink is preferably a solvent that can dissolve or uniformly disperse the solid content in the ink.
  • the solvent include chlorine solvents such as 1,2-dichloroethane, 1,1,2-trichloroethane, chlorobenzene and o-dichlorobenzene; ether solvents such as tetrahydrofuran, dioxane, anisole and 4-methylanisole; toluene, Aromatic hydrocarbon solvents such as xylene, mesitylene, ethylbenzene, n-hexylbenzene, cyclohexylbenzene; cyclohexane, methylcyclohexane, n-pentane, n-hexane, n-heptane, n-octane, n-nonane, n- Aliphatic hydrocarbon solvents such as decane, n-dodecane, and bicyclohexyl
  • the compounding amount of the solvent is usually 1000 to 100,000 parts by mass, preferably 2000 to 20000 parts by mass when the compound represented by the formula (C-1) is 100 parts by mass. .
  • the second organic layer included in the light-emitting element of the present invention is a layer containing a compound represented by the formula (C-1) and a crosslinked body of a crosslinking material. That is, in the second organic layer, the compound represented by the formula (C-1) and the crosslinked material of the crosslinking material are contained as separate compounds.
  • the compound represented by the formula (C-1) is preferably a compound containing no crosslinking group.
  • a crosslinked material of the crosslinked material can be obtained by crosslinking the crosslinked material by the method and conditions described later.
  • the cross-linking material may be a low-molecular compound or a high-molecular compound. However, since the luminance life of the light-emitting device of the present invention is more excellent, the low-molecular material having at least one cross-linking group selected from the cross-linking group A group is used.
  • a molecular compound hereinafter also referred to as “second molecular layer compound of the second organic layer” or a polymer compound containing a cross-linking structural unit having at least one cross-linking group selected from the cross-linking group A group (hereinafter “ It is also preferable to be a polymer compound containing a crosslinked structural unit having at least one crosslinking group selected from the crosslinking group A group.
  • the formula (XL-1) to the formula (XL-4) and the formula (XL-7) to the formula are preferable.
  • the polymer compound of the second organic layer The structural unit having at least one crosslinking group selected from the group A of crosslinking groups contained in the polymer compound of the second organic layer is represented by the formula (2)
  • the structural unit is preferably a unit or a structural unit represented by the formula (2 ′), but may be a structural unit represented by the following formula.
  • the polymer compound of the second organic layer contains two or more structural units having at least one crosslinking group selected from the crosslinking group A group
  • the polymer compound has at least one crosslinking group selected from the crosslinking group A group. It is preferable that at least two of the structural units have different cross-linking groups. Examples of combinations of different crosslinking groups include formula (XL-1), formula (XL-2), formula (XL-5) to formula (XL-8), or formula (XL-14) to formula (XL-16).
  • a combination of the crosslinking group represented by formula (XL-3), formula (XL-4), formula (XL-13) or formula (XL-17) is preferred, and the formula (XL -1) or a crosslinkable group represented by formula (XL-16) and a crosslinkable group represented by formula (XL-17) are more preferred, and a crosslinkable group represented by formula (XL-1) A combination with a crosslinking group represented by the formula (XL-17) is more preferred.
  • nA represented by the formula (2) is preferably an integer of 0 to 3, more preferably an integer of 0 to 2, even more preferably, because the luminance life of the light emitting device of the present invention is more excellent. Is 1 or 2, particularly preferably 1. n is preferably 2 because the luminance lifetime of the light emitting device of the present invention is more excellent.
  • Ar 3 is preferably an aromatic hydrocarbon group which may have a substituent since the luminance lifetime of the light emitting device of the present invention is more excellent.
  • the number of carbon atoms of the aromatic hydrocarbon group represented by Ar 3 is usually 6 to 60, preferably 6 to 30, and more preferably 6 to 18, excluding the number of carbon atoms of the substituent. is there.
  • the arylene group portion excluding n substituents of the aromatic hydrocarbon group represented by Ar 3 is preferably a group represented by the formula (A-1) to the formula (A-20), More preferably, groups represented by formula (A-1), formula (A-2), formula (A-6) to formula (A-10), formula (A-19) or formula (A-20) And more preferably a group represented by formula (A-1), formula (A-2), formula (A-7), formula (A-9) or formula (A-19), This group may have a substituent.
  • the number of carbon atoms of the heterocyclic group represented by Ar 3 is usually 2 to 60, preferably 3 to 30, and more preferably 4 to 18, excluding the number of carbon atoms of the substituent.
  • the divalent heterocyclic group part excluding n substituents of the heterocyclic group represented by Ar 3 is preferably a group represented by the formula (AA-1) to the formula (AA-34). is there.
  • the aromatic hydrocarbon group and heterocyclic group represented by Ar 3 may have a substituent.
  • substituents include an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, and an aryloxy group.
  • Group, halogen atom, monovalent heterocyclic group or cyano group is preferred.
  • the number of carbon atoms of the alkylene group represented by L A is usually 1 to 20, preferably 1 to 15, more preferably 1 to 10, not including the number of carbon atoms of the substituent.
  • the number of carbon atoms of the cycloalkylene group represented by L A is usually 3 to 20, excluding the number of carbon atoms of the substituent.
  • the alkylene group and the cycloalkylene group may have a substituent, and examples thereof include a methylene group, an ethylene group, a propylene group, a butylene group, a hexylene group, a cyclohexylene group, and an octylene group.
  • Alkylene group and cycloalkylene group represented by L A may have a substituent.
  • the substituent that the alkylene group and the cycloalkylene group may have is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, a halogen atom or a cyano group, and these groups further have a substituent. It may be.
  • the arylene group represented by L A may have a substituent.
  • the arylene group is preferably a phenylene group or a fluorenediyl group, more preferably an m-phenylene group, a p-phenylene group, a fluorene-2,7-diyl group, or a fluorene-9,9-diyl group.
  • Examples of the substituent that the arylene group may have include an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a halogen atom, a cyano group, or a bridging group A.
  • a crosslinking group selected from the group is preferred, and these groups may further have a substituent.
  • the divalent heterocyclic group represented by L A is preferably a group represented by formula (AA-1) to formula (AA-34).
  • L A is preferably an arylene group or an alkylene group, more preferably a phenylene group, a fluorenediyl group, or an alkylene group, because it facilitates the production of the polymer compound of the second organic layer.
  • This group may have a substituent.
  • the bridging group represented by X since the luminance lifetime of the light emitting device of the present invention is more excellent, preferably the formula (XL-1) to the formula (XL-4), the formula (XL-7) to the formula (XL) ⁇ 10) or a crosslinking group represented by formula (XL-14) to formula (XL-17), more preferably formula (XL-1), formula (XL-3), formula (XL-9) ,
  • the structural unit represented by the formula (2) is excellent in the stability and crosslinkability of the polymer compound of the second organic layer, it is based on the total amount of the structural units contained in the polymer compound of the second organic layer. Thus, it is preferably 0.5 to 80 mol%, more preferably 3 to 65 mol%, still more preferably 5 to 50 mol%.
  • One type of structural unit represented by the formula (2) may be contained in the polymer compound of the second organic layer, or two or more types may be contained.
  • the polymer compound of the second organic layer contains two or more structural units represented by the formula (2)
  • at least two structural units represented by the formula (2) are cross-linked by X. It is preferred that the groups are different from one another.
  • the preferable range of the combination of the crosslinking groups represented by different X is the same as the preferable range of the combination of the different crosslinking groups described above.
  • the structural unit mA represented by the formula (2 ′) is preferably an integer of 0 to 3, more preferably an integer of 0 to 2, since the luminance life of the light emitting device of the present invention is more excellent. 0 or 1 is preferable, and 0 is particularly preferable. m is preferably 1 or 2 and more preferably 2 because the luminance life of the light emitting device of the present invention is more excellent. c is preferably 0 because the production of the polymer compound of the second organic layer is facilitated and the luminance life of the light emitting device of the present invention is more excellent.
  • Ar 5 is preferably an aromatic hydrocarbon group which may have a substituent since the luminance lifetime of the light emitting device of the present invention is more excellent.
  • the definition and examples of the arylene group portion excluding m substituents of the aromatic hydrocarbon group represented by Ar 5 are the same as the definitions and examples of the arylene group represented by Ar X2 in formula (X) described later. It is.
  • the definition and examples of the divalent heterocyclic group part excluding m substituents of the heterocyclic group represented by Ar 5 are the divalent heterocyclic group represented by Ar X2 in formula (X) described later. Same as definition and example of part.
  • divalent groups excluding m substituents of a group in which at least one aromatic hydrocarbon ring represented by Ar 5 and at least one heterocyclic ring are directly bonded are shown in the formula ( The definition and examples of the divalent group in which at least one arylene group represented by Ar X2 in X) and at least one divalent heterocyclic group are directly bonded are the same.
  • Ar 4 and Ar 6 are preferably an arylene group which may have a substituent since the luminance lifetime of the light emitting device of the present invention is more excellent.
  • the definitions and examples of the arylene group represented by Ar 4 and Ar 6 are the same as the definitions and examples of the arylene group represented by Ar X1 and Ar X3 in the formula (X) described later.
  • the definitions and examples of the divalent heterocyclic group represented by Ar 4 and Ar 6 are the same as the definitions and examples of the divalent heterocyclic group represented by Ar X1 and Ar X3 in formula (X) described later. is there.
  • the groups represented by Ar 4 , Ar 5 and Ar 6 may have a substituent, and examples of the substituent include an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, A halogen atom, a monovalent heterocyclic group and a cyano group are preferred.
  • K A since production of the polymer compound of the second organic layer becomes easy, it is preferable that a phenylene group or a methylene group.
  • crosslinking group represented by X ′ are the same as the definition and example of the crosslinking group represented by X described above.
  • the structural unit represented by the formula (2 ′) is excellent in the stability of the polymer compound in the second organic layer and in the crosslinking property of the polymer compound in the second organic layer.
  • the amount is preferably 0.5 to 50 mol%, more preferably 3 to 30 mol%, still more preferably 5 to 20 mol%, based on the total amount of structural units contained in the polymer compound in the layer.
  • One type of structural unit represented by the formula (2 ′) may be contained in the polymer compound of the second organic layer, or two or more types may be contained.
  • the polymer compound of the second organic layer contains two or more structural units represented by the formula (2 ′), at least two structural units represented by the formula (2 ′) are represented by X ′. It is preferable that the crosslinking groups to be different are different from each other. The preferable range of the combination of different crosslinking groups represented by X ′ is the same as the preferable range of the combination of different crosslinking groups described above.
  • Examples of the structural unit represented by the formula (2) include those represented by the formulas (2-1) to (2-30):
  • Examples of the structural unit represented by the formula (2 ′) include structural units represented by the formula (2′-1) to the formula (2′-9).
  • it is preferably a structural unit represented by the formula (2-1) to the formula (2-30), more preferably the formula (2 -1) to Formula (2-15), Formula (2-19), Formula (2-20), Formula (2-23), Formula (2-25), or Formula (2-30)
  • the polymer compound of the second organic layer preferably further comprises a structural unit represented by the formula (X) from the viewpoint of hole transportability, and from the viewpoint of luminance life, Furthermore, it is preferable that the structural unit represented by Formula (Y) is included. Since the polymer compound of the second organic layer has excellent hole transportability and more excellent luminance lifetime of the light emitting device of the present invention, the structural unit represented by the formula (X) and the formula (Y) It is preferable that the structural unit represented by these is included.
  • a X1 and a X2 each independently represent an integer of 0 or more.
  • Ar X1 and Ar X3 each independently represent an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
  • Ar X2 and Ar X4 each independently represent an arylene group, a divalent heterocyclic group, or a divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded. And these groups may have a substituent.
  • Ar X2 and Ar X4 When there are a plurality of Ar X2 and Ar X4 , they may be the same or different.
  • R X1 , R X2 and R X3 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. When there are a plurality of R X2 and R X3 , they may be the same or different. ]
  • a X1 is preferably an integer of 2 or less, more preferably 1, because the luminance lifetime of the light emitting device of the present invention is more excellent.
  • a X2 is preferably an integer of 2 or less, more preferably 0, because the luminance lifetime of the light emitting device of the present invention is more excellent.
  • R X1 , R X2 and R X3 are preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups have a substituent. Also good.
  • the arylene group represented by Ar X1 and Ar X3 is more preferably a group represented by the formula (A-1) or the formula (A-9), and more preferably a formula (A-1). These groups may have a substituent.
  • the divalent heterocyclic group represented by Ar X1 and Ar X3 is more preferably represented by Formula (AA-1), Formula (AA-2), or Formula (AA-7) to Formula (AA-26). These groups may have a substituent.
  • Ar X1 and Ar X3 are preferably an arylene group which may have a substituent.
  • the arylene group represented by Ar X2 and Ar X4 is represented by formula (A-1), formula (A-6), formula (A-7), formula (A-9) to formula (A-11). Or it is group represented by a formula (A-19), and these groups may have a substituent.
  • the more preferable range of the divalent heterocyclic group represented by Ar X2 and Ar X4 is the same as the more preferable range of the divalent heterocyclic group represented by Ar X1 and Ar X3 . More preferable range of the arylene group and the divalent heterocyclic group in the divalent group in which at least one kind of arylene group represented by Ar X2 and Ar X4 and at least one kind of divalent heterocyclic group are directly bonded.
  • R XX represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • R XX is preferably an alkyl group, a cycloalkyl group, or an aryl group, and these groups optionally have a substituent.
  • Ar X2 and Ar X4 are preferably an arylene group which may have a substituent.
  • the substituent which the groups represented by Ar X1 to Ar X4 and R X1 to R X3 may have is preferably an alkyl group, a cycloalkyl group or an aryl group, and these groups further have a substituent. You may do it.
  • the structural unit represented by the formula (X) is preferably a structural unit represented by the formula (X-1) to the formula (X-7), more preferably the formula (X-3) to the formula (X -7), more preferably structural units represented by formula (X-3) to formula (X-6).
  • R X4 and R X5 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a halogen atom, a monovalent heterocyclic group or cyano. Represents a group, and these groups may have a substituent.
  • a plurality of R X4 may be the same or different.
  • a plurality of R X5 may be the same or different, and adjacent R X5 may be bonded to each other to form a ring together with the carbon atom to which each is bonded.
  • the structural unit represented by the formula (X) has excellent hole transportability, it is preferably 0.1 to 90 mol% based on the total amount of the structural units contained in the polymer compound of the second organic layer. More preferably, it is 1 to 70 mol%, and still more preferably 10 to 50 mol%.
  • Examples of the structural unit represented by the formula (X) include structural units represented by the formula (X1-1) to the formula (X1-19), preferably the formula (X1-6) to the formula (X1 -14).
  • the structural unit represented by the formula (X) may be included alone or in combination of two or more.
  • Ar Y1 represents an arylene group, a divalent heterocyclic group, or a divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded, and these This group may have a substituent.
  • the arylene group represented by Ar Y1 is represented by formula (A-1), formula (A-6), formula (A-7), formula (A-9) to formula (A-11), formula (A) A-13) or a group represented by formula (A-19), more preferably in formula (A-1), formula (A-7), formula (A-9) or formula (A-19). And these groups may have a substituent.
  • the divalent heterocyclic group represented by Ar Y1 is represented by the formula (AA-4), formula (AA-10), formula (AA-13), formula (AA-15), formula (AA-18) ) Or a group represented by formula (AA-20), more preferably represented by formula (AA-4), formula (AA-10), formula (AA-18) or formula (AA-20) These groups may have a substituent.
  • the ranges are the same as the more preferable ranges and further preferable ranges of the arylene group and divalent heterocyclic group represented by Ar Y1 described above.
  • the divalent group in which at least one arylene group represented by Ar Y1 and at least one divalent heterocyclic group are directly bonded to each other is at least represented by Ar X2 and Ar X4 in the formula (X). Examples thereof include the same divalent groups in which one kind of arylene group and at least one kind of divalent heterocyclic group are directly bonded.
  • the substituent that the group represented by Ar Y1 may have is preferably an alkyl group, a cycloalkyl group, or an aryl group, and these groups may further have a substituent.
  • Examples of the structural unit represented by the formula (Y) include structural units represented by the formula (Y-1) to the formula (Y-7), and from the viewpoint of the luminance life of the light emitting device of the present invention.
  • a structural unit represented by the formula (Y-1) or (Y-2) and from the viewpoint of electron transport properties of the polymer compound of the second organic layer, preferably the formula (Y-3 ) Or a structural unit represented by formula (Y-4), and preferably from formula (Y-5) to formula (Y-7) from the viewpoint of hole transport properties of the polymer compound of the second organic layer.
  • a structural unit represented by the formula (Y-1) or (Y-2) Preferably a structural unit represented by the formula (Y-3 ) Or a structural unit represented by formula (Y-4), and preferably from formula (Y-5) to formula (Y-7) from the viewpoint of hole transport properties of the polymer compound of the second organic layer.
  • R Y1 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • a plurality of R Y1 may be the same or different, and adjacent R Y1 may be bonded to each other to form a ring together with the carbon atom to which each is bonded.
  • R Y1 is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, or an aryl group, and these groups optionally have a substituent.
  • the structural unit represented by the formula (Y-1) is preferably a structural unit represented by the formula (Y-1 ′).
  • R Y11 represents an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • a plurality of R Y11 may be the same or different.
  • R Y11 is preferably an alkyl group, a cycloalkyl group, or an aryl group, more preferably an alkyl group or a cycloalkyl group, and these groups optionally have a substituent.
  • R Y1 represents the same meaning as described above.
  • X Y1 is, -C (R Y2) 2 -
  • R Y2 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
  • a plurality of R Y2 may be the same or different, and R Y2 may be bonded to each other to form a ring together with the carbon atom to which each is bonded. ]
  • R Y2 is preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably an alkyl group, a cycloalkyl group or an aryl group, and these groups have a substituent. May be.
  • R Y2 in the group represented by —C (R Y2 ) 2 — in X Y1 is preferably an alkyl group or a cycloalkyl group, both are aryl groups, and both are monovalent complex
  • R Y2 s may be bonded to each other to form a ring together with the atoms to which they are bonded, and when R Y2 forms a ring, the group represented by —C (R Y2 ) 2 — Is preferably a group represented by formula (Y-A1) to formula (Y-A5), more preferably a group represented by formula (Y-A4), and these groups have a substituent. You may do it.
  • the combination of two R Y2 in the group represented by —C (R Y2 ) ⁇ C (R Y2 ) — is preferably such that both are alkyl groups or cycloalkyl groups, or one is an alkyl group Alternatively, a cycloalkyl group and the other is an aryl group, and these groups optionally have a substituent.
  • R Y2 in the group represented by —C (R Y2 ) 2 —C (R Y2 ) 2 — are preferably an alkyl group or a cycloalkyl group which may have a substituent. It is. A plurality of R Y2 may be bonded to each other to form a ring together with the atoms to which each is bonded. When R Y2 forms a ring, —C (R Y2 ) 2 —C (R Y2 ) 2 —
  • the group represented is preferably a group represented by the formula (Y-B1) to the formula (Y-B5), more preferably a group represented by the formula (Y-B3). It may have a substituent.
  • R Y2 represents the same meaning as described above.
  • the structural unit represented by the formula (Y-2) is preferably a structural unit represented by the formula (Y-2 ′).
  • R Y1 represents the same meaning as described above.
  • R Y3 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
  • R Y3 is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups have a substituent. May be.
  • R Y1 represents the same meaning as described above.
  • R Y4 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • R Y4 is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups have a substituent. May be.
  • Examples of the structural unit represented by the formula (Y) include structural units represented by the formula (Y-11) to the formula (Y-56).
  • the structural unit represented by the formula (Y), in which Ar Y1 is an arylene group, is included in the polymer compound of the second organic layer because the luminance life of the light emitting device of the present invention is more excellent.
  • the amount is preferably 0.5 to 80 mol%, more preferably 30 to 60 mol%, based on the total amount of the structural units.
  • a structural unit represented by the formula (Y), wherein Ar Y1 is a divalent heterocyclic group, or at least one arylene group and at least one divalent heterocyclic group are directly bonded.
  • the structural unit which is a group of the organic compound is preferably 0.1 to the total amount of the structural units contained in the polymer compound of the second organic layer since the polymer compound of the second organic layer is excellent in charge transportability. It is 90 mol%, more preferably 1 to 70 mol%, still more preferably 10 to 50 mol%.
  • One type of structural unit represented by the formula (Y) may be contained in the polymer compound of the second organic layer, or two
  • Examples of the polymer compound of the second organic layer include polymer compounds P-1 to P-8.
  • the “other structural unit” means a structural unit other than the structural units represented by Formula (2), Formula (2 ′), Formula (X), and Formula (Y).
  • the polymer compound of the second organic layer may be any of a block copolymer, a random copolymer, an alternating copolymer, and a graft copolymer, and may be in other modes.
  • a copolymer obtained by copolymerizing various raw material monomers is preferable.
  • the number average molecular weight in terms of polystyrene of the polymer compound of the second organic layer is preferably 5 ⁇ 10 3 to 1 ⁇ 10 6 , more preferably 1 ⁇ 10 4 to 5 ⁇ 10 5 , and still more preferably. 1.5 ⁇ 10 4 to 1 ⁇ 10 5 .
  • the polymer compound of the second organic layer is known as described in Chemical Review (Chem. Rev.), Vol. 109, pages 897-1091 (2009), etc.
  • Examples of the polymerization method include a polymerization reaction by a coupling reaction using a transition metal catalyst such as a Suzuki reaction, a Yamamoto reaction, a Buchwald reaction, a Stille reaction, a Negishi reaction, and a Kumada reaction.
  • the polymerization method as a method of charging the monomer, a method of charging the entire amount of the monomer into the reaction system at once, a part of the monomer is charged and reacted, and then the remaining monomer is batched, Examples thereof include a method of charging continuously or divided, a method of charging monomer continuously or divided, and the like.
  • the transition metal catalyst include a palladium catalyst and a nickel catalyst.
  • Post-treatment of the polymerization reaction is a known method, for example, a method of removing water-soluble impurities by liquid separation, adding the reaction solution after polymerization reaction to a lower alcohol such as methanol, filtering the deposited precipitate, and then drying. These methods are performed alone or in combination.
  • the purity of the polymer compound in the second organic layer is low, it can be purified by a usual method such as crystallization, reprecipitation, continuous extraction with a Soxhlet extractor, column chromatography, or the like.
  • the low molecular compound of the second organic layer is preferably a low molecular compound represented by the formula (3).
  • m B1 is preferably an integer of 0 to 5, more preferably an integer of 0 to 2, still more preferably 0 or 1, and particularly preferably 0, since it facilitates the synthesis of the crosslinking material.
  • m B2 is preferably an integer of 0 to 5, more preferably an integer of 0 to 3, and even more preferably, since it facilitates the synthesis of the cross-linking material and the luminance life of the light emitting device of the present invention is more excellent.
  • m B3 is preferably an integer of 0 to 4, more preferably an integer of 0 to 2, and still more preferably 0, since it facilitates the synthesis of the crosslinking material.
  • the definition and examples of the arylene group part excluding m B3 substituents of the aromatic hydrocarbon group represented by Ar 7 are the definitions and examples of the arylene group represented by Ar X2 in the aforementioned formula (X). The same.
  • the definition and examples of the divalent heterocyclic group part excluding m B3 substituents of the heterocyclic group represented by Ar 7 are the divalent heterocyclic ring represented by Ar X2 in the above formula (X). Same as definition and example of base part.
  • the definition and examples of the divalent group excluding m B3 substituents of the group in which at least one aromatic hydrocarbon ring represented by Ar 7 and at least one heterocycle are directly bonded are as described above.
  • the definition and example of the divalent group in which at least one kind of arylene group represented by Ar X2 and at least one kind of divalent heterocyclic group in (X) are directly bonded are the same.
  • the definition and example of the substituent that the group represented by Ar 7 may have are the same as the definition and example of the substituent that the group represented by Ar X2 in Formula (X) may have. is there.
  • Ar 7 is preferably an aromatic hydrocarbon group because the luminance life of the light-emitting element of the present invention is excellent, and this aromatic hydrocarbon group may have a substituent.
  • L B1 The definitions and examples of the alkylene group, cycloalkylene group, arylene group and divalent heterocyclic group represented by L B1 are respectively the alkylene group, cycloalkylene group, arylene group and divalent represented by L A described above. This is the same as the definition and example of the heterocyclic group of.
  • L B1 is preferably an alkylene group, an arylene group or an oxygen atom, more preferably an alkylene group or an arylene group, still more preferably a phenylene group, a fluorenediyl group or An alkylene group, particularly preferably a phenylene group or an alkylene group, and these groups optionally have a substituent.
  • X ′′ is preferably a bridging group, an aryl group or a monovalent heterocyclic group represented by any one of the formulas (XL-1) to (XL-17), more preferably the formula (XL -1), a crosslinking group represented by formula (XL-3), formula (XL-7) to formula (XL-10), formula (XL-16) or formula (XL-17), or an aryl group More preferably a crosslinking group represented by the formula (XL-1), the formula (XL-16) or the formula (XL-17), a phenyl group, a naphthyl group or a fluorenyl group.
  • XL-16 or a crosslinking group represented by the formula (XL-17), a phenyl group or a naphthyl group, particularly preferably a crosslinking group represented by the formula (XL-16) or a naphthyl group, These groups may have a substituent.
  • cross-linking material examples include low molecular compounds represented by formulas (3-1) to (3-16), and preferably represented by formulas (3-1) to (3-10). Low molecular compounds, more preferably low molecular compounds represented by formulas (3-5) to (3-9).
  • the low molecular weight compound of the second organic layer is, for example, Aldrich, Luminescence Technology Corp. Available from the American Dye Source.
  • the low molecular weight compound of the second organic layer is synthesized according to the methods described in, for example, International Publication No. 1997/033193, International Publication No. 2005/035221, International Publication No. 2005/049548. Can do.
  • the crosslinked material of the crosslinking material may be contained singly or in combination of two or more.
  • the compound represented by the formula (C-1) may be contained singly or in combination of two or more.
  • the content of the compound represented by the formula (C-1) contained in the second organic layer is such that the total of the compound represented by the formula (C-1) and the crosslinked material of the crosslinking material is 100 parts by mass. In this case, it is usually 0.01 to 80 parts by mass, preferably 0.1 to 60 parts by mass, more preferably 1 to 40 parts by mass, and further preferably 10 to 30 parts by mass.
  • the second organic layer includes a compound represented by the formula (C-1), a crosslinked material of a crosslinking material, a hole transport material, a hole injection material, an electron transport material, an electron injection material, a light emitting material, and an antioxidant. It may be a layer containing a composition containing at least one material selected from the group consisting of agents (hereinafter also referred to as “second composition”).
  • the hole transport material, the hole injection material, the electron transport material, the electron injection material, and the light emitting material are different from the compound represented by the formula (C-1).
  • the hole transport material, the hole injection material, the electron transport material, the electron injection material, and the light-emitting material are different from the crosslinked material of the crosslinking material.
  • Examples and preferred ranges of the hole transport material, electron transport material, hole injection material and electron injection material contained in the second composition are the hole transport material and electron transport material contained in the first composition.
  • the examples and preferred ranges of the hole injection material and the electron injection material and the light emitting material are the same.
  • Examples of the luminescent material contained in the second composition include the luminescent material and phosphorescent compound contained in the first composition, and examples and preferred ranges thereof are described in the first composition. It is the same as the example and preferable range of the light emitting material and phosphorescent compound to be contained.
  • the compounding amounts of the hole transport material, the electron transport material, the hole injection material, the electron injection material, and the light emitting material are each set to crosslink between the compound represented by the formula (C-1) and the crosslinking material.
  • the total amount with the body is 100 parts by mass, it is usually 1 to 400 parts by mass, preferably 5 to 150 parts by mass.
  • Examples and preferred ranges of the antioxidant contained in the second composition are the same as examples and preferred ranges of the antioxidant contained in the first composition.
  • the blending amount of the antioxidant is usually 0.001 to 10 parts by mass when the total of the compound represented by the formula (C-1) and the crosslinked material of the crosslinking material is 100 parts by mass. It is.
  • Second ink A composition containing a compound represented by the formula (C-1), a cross-linking material, and a solvent (hereinafter, also referred to as “second ink”) is the item of the first ink. It can be suitably used for the coating method described in 1. above.
  • the preferable range of the viscosity of the second ink is the same as the preferable range of the viscosity of the first ink.
  • Examples and preferred ranges of the solvent contained in the second ink are the same as examples and preferred ranges of the solvent contained in the first ink.
  • the blending amount of the solvent is usually 1000 to 100,000 parts by mass, preferably 2000 when the total of the compound represented by the formula (C-1) and the crosslinking material is 100 parts by mass. ⁇ 20,000 parts by mass.
  • the compound represented by the formula (C-1) contained in the first organic layer and the compound represented by the formula (C-1) contained in the second organic layer are: May be the same or different.
  • the compound represented by the formula (C-1) contained in the first organic layer and the formula (C-1) contained in the second organic layer It is preferable that at least one of the represented compounds is a compound represented by the formula (C-2-1) or a compound represented by the formula (C-2-2), and the first organic layer Both the compound represented by the formula (C-1) contained in and the compound represented by the formula (C-1) contained in the second organic layer are represented by the formula (C-2-1). Or a compound represented by the formula (C-2-2) and a compound represented by the formula (C-1) and a second organic layer contained in the first organic layer. It is more preferable that both of the compounds represented by formula (C-1) contained in are compounds represented by formula (C-2-1).
  • the compound represented by the formula (C-1) contained in the first organic layer and the formula (C-1) contained in the second organic layer When at least one of the represented compounds is a compound represented by the formula (C-2-1), the compound represented by the formula (C-2-1) is represented by the formula (C-3-1): It is preferable that it is a compound represented by these.
  • the compound represented by the formula (C-1) contained in the first organic layer and the formula (C-1) contained in the second organic layer When at least one of the represented compounds is a compound represented by the formula (C-2-2), the compound represented by the formula (C-2-2) is represented by the formula (C-3-2): It is preferable that it is a compound represented by these. Since the luminance life of the light emitting device of the present invention is more excellent, the compound represented by the formula (C-1) contained in the first organic layer and the formula (C-1) contained in the second organic layer When both of the represented compounds are compounds represented by the formula (C-2-1), the compound represented by the formula (C-2-1) is represented by the formula (C-3-1).
  • the compound represented by the formula (C-1) contained in the first organic layer and the formula (C-1) contained in the second organic layer When both of the represented compounds are compounds represented by the formula (C-2-2), the compound represented by the formula (C-2-2) is represented by the formula (C-3-2). It is preferable that it is a compound.
  • the compound represented by the formula (C-1) contained in the first organic layer and the formula (C-1) contained in the second organic layer at least one compound represented by the formula (C-1) preferably has a group represented by the formula (D-1) or the formula (E-1). It is more preferable to have a group represented by -1). Since the luminance life of the light emitting device of the present invention is more excellent, the compound represented by the formula (C-1) contained in the first organic layer and the formula (C-1) contained in the second organic layer It is preferable that both of the represented compounds have a group represented by the formula (D-1) or the formula (E-1).
  • Examples of the method for forming the first organic layer and the second organic layer include dry methods such as a vacuum deposition method, and coating methods such as a spin coating method and an ink jet printing method, and a coating method is preferable.
  • dry methods such as a vacuum deposition method
  • coating methods such as a spin coating method and an ink jet printing method
  • a coating method is preferable.
  • the first organic layer is formed by a coating method, it is preferable to use the first ink.
  • the crosslinking material can be crosslinked by heating or light irradiation, and it is preferable that the crosslinking material is crosslinked by heating. Since the crosslinked material is contained in the second organic layer in a crosslinked state (crosslinked product of the crosslinked material), the second organic layer is substantially insolubilized in the solvent. Therefore, the second organic layer can be suitably used for stacking light emitting elements.
  • the heating temperature for crosslinking is usually 25 ° C to 300 ° C, preferably 50 ° C to 260 ° C, more preferably 130 ° C to 230 ° C, and further preferably 180 ° C to 210 ° C. .
  • the heating time is usually 0.1 minutes to 1000 minutes, preferably 0.5 minutes to 500 minutes, more preferably 1 minute to 120 minutes, and even more preferably 10 minutes to 60 minutes.
  • the types of light used for light irradiation are, for example, ultraviolet light, near ultraviolet light, and visible light.
  • Examples of the analysis method of the components contained in the first organic layer or the second organic layer include chemical separation analysis methods such as extraction, infrared spectroscopy (IR), nuclear magnetic resonance spectroscopy (NMR), Examples include instrumental analysis methods such as mass spectrometry (MS), and analysis methods combining chemical separation analysis methods and instrumental analysis methods.
  • chemical separation analysis methods such as extraction, infrared spectroscopy (IR), nuclear magnetic resonance spectroscopy (NMR)
  • Examples include instrumental analysis methods such as mass spectrometry (MS), and analysis methods combining chemical separation analysis methods and instrumental analysis methods.
  • insoluble Component components that are substantially insoluble in the organic solvent
  • dissolved component components that dissolves in an organic solvent
  • insoluble components can be analyzed by infrared spectroscopy or nuclear magnetic resonance spectroscopy, and dissolved components can be analyzed by nuclear magnetic resonance spectroscopy or mass spectrometry.
  • the light emitting element of the present invention may have a layer other than the anode, the cathode, the first organic layer, and the second organic layer.
  • the first organic layer is usually a light emitting layer (hereinafter referred to as “first light emitting layer”).
  • the second organic layer is usually a hole transport layer, a second light emitting layer or an electron transport layer, preferably a hole transport layer or a second light emitting layer.
  • the first organic layer and the second organic layer are preferably adjacent to each other because the luminance lifetime of the light-emitting element of the present invention is more excellent.
  • the second organic layer is preferably a layer provided between the anode and the first organic layer, since the luminance life of the light emitting device of the present invention is more excellent, and is between the anode and the first organic layer. It is more preferable that the hole transport layer or the second light emitting layer is provided.
  • the second organic layer is a hole transport layer provided between the anode and the first organic layer
  • the luminance life of the light emitting device of the present invention is more excellent, and therefore, between the anode and the second organic layer.
  • the second organic layer is a hole transport layer provided between the anode and the first organic layer
  • the luminance life of the light-emitting element of the present invention is more excellent, and therefore, between the cathode and the first organic layer.
  • the luminance life of the light emitting device of the present invention is more excellent, so that the anode and the second organic layer It is preferable to further include at least one of a hole injection layer and a hole transport layer therebetween.
  • the second organic layer is a second light emitting layer provided between the anode and the first organic layer
  • the luminance life of the light emitting device of the present invention is more excellent, so that the cathode and the first organic layer It is preferable to further have at least one of an electron injection layer and an electron transport layer in between.
  • the luminance life of the light emitting device of the present invention is more excellent, so that the anode and the first organic layer It is preferable to further include at least one of a hole injection layer and a hole transport layer therebetween.
  • the second organic layer is a second light-emitting layer provided between the cathode and the first organic layer, the luminance life of the light-emitting element of the present invention is more excellent. It is preferable to further have at least one of an electron injection layer and an electron transport layer in between.
  • the second organic layer is an electron transport layer provided between the cathode and the first organic layer
  • the luminance life of the light emitting device of the present invention is more excellent, so that the gap between the anode and the first organic layer is It is preferable to further include at least one of a hole injection layer and a hole transport layer.
  • the second organic layer is an electron transport layer provided between the cathode and the first organic layer
  • the luminance life of the light-emitting element of the present invention is more excellent, and therefore, between the cathode and the second organic layer. It is preferable to further have an electron injection layer.
  • the layer structure of the light emitting device of the present invention include layer structures represented by (D1) to (D15).
  • the light-emitting element of the present invention usually has a substrate, but may be laminated from the anode on the substrate, or may be laminated from the cathode on the substrate.
  • “/” means that the preceding and following layers are adjacently stacked.
  • “second light emitting layer (second organic layer) / first light emitting layer (first organic layer)” means the second light emitting layer (second organic layer) and the first light emitting layer (second organic layer).
  • the light emitting layer (first organic layer) is adjacently laminated. Since the luminance life of the light emitting device of the present invention is more excellent, the layer structure represented by (D3) to (D12) is preferable.
  • the anode, the hole injection layer, the hole transport layer, the second light emitting layer, the electron transport layer, the electron injection layer, and the cathode are each provided in two or more layers as necessary. Also good. When there are a plurality of anodes, hole injection layers, hole transport layers, second light emitting layers, electron transport layers, electron injection layers, and cathodes, they may be the same or different.
  • the thickness of the anode, hole injection layer, hole transport layer, first light emitting layer, second light emitting layer, electron transport layer, electron injection layer and cathode is usually 1 nm to 1 ⁇ m, preferably 2 nm to It is 500 nm, more preferably 5 nm to 150 nm.
  • the order, number, and thickness of stacked layers may be adjusted in consideration of the luminance life, driving voltage, and element life of the light-emitting element.
  • a 2nd light emitting layer is a layer containing a 2nd organic layer or a luminescent material normally, Preferably, it is a layer containing a luminescent material.
  • the second light emitting layer is a layer containing a light emitting material
  • examples of the light emitting material contained in the second light emitting layer include the light emitting material that may be contained in the first composition. It is done.
  • One type of light emitting material contained in the second light emitting layer may be contained, or two or more types may be contained.
  • the second light-emitting layer may be the second organic layer. preferable.
  • a hole transport layer is a layer containing a 2nd organic layer or a hole transport material normally, Preferably, it is a 2nd organic layer.
  • the hole transport layer is a layer containing a hole transport material
  • examples of the hole transport material include a hole transport material that may be contained in the first composition described above.
  • One kind of hole transport material contained in the hole transport layer may be contained alone, or two or more kinds may be contained.
  • the hole transport layer is preferably the second organic layer. .
  • An electron transport layer is a layer containing a 2nd organic layer or an electron transport material normally, Preferably, it is a layer containing an electron transport material.
  • the electron transport layer is a layer containing an electron transport material
  • examples of the electron transport material contained in the electron transport layer include the electron transport material that may be contained in the first composition described above. .
  • One kind of electron transport material contained in the electron transport layer may be contained, or two or more kinds may be contained.
  • the electron transport layer is preferably the second organic layer.
  • a hole injection layer is a layer containing hole injection material.
  • the hole injection material which the above-mentioned 1st composition may contain is mentioned, for example.
  • the hole injection material contained in the hole injection layer may be contained singly or in combination of two or more.
  • the electron injection layer is a layer containing an electron injection material.
  • the electron injection material which the above-mentioned 1st composition may contain is mentioned, for example.
  • the electron injection material contained in the electron injection layer may contain one kind alone or two or more kinds.
  • the substrate in the light-emitting element may be any substrate that can form an electrode and does not change chemically when the organic layer is formed.
  • the substrate / electrode is made of a material such as glass, plastic, or silicon. It is a substrate. When an opaque substrate is used, it is preferable that the electrode farthest from the substrate is transparent or translucent.
  • Examples of the material for the anode include conductive metal oxides and translucent metals, preferably indium oxide, zinc oxide, tin oxide; indium tin oxide (ITO), indium zinc oxide, etc.
  • conductive metal oxides and translucent metals preferably indium oxide, zinc oxide, tin oxide; indium tin oxide (ITO), indium zinc oxide, etc.
  • ITO indium tin oxide
  • Examples of the material of the cathode include metals such as lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, aluminum, zinc, indium; two or more kinds of alloys thereof; Alloys of at least one species and at least one of silver, copper, manganese, titanium, cobalt, nickel, tungsten, and tin; and graphite and graphite intercalation compounds.
  • Examples of the alloy include a magnesium-silver alloy, a magnesium-indium alloy, a magnesium-aluminum alloy, an indium-silver alloy, a lithium-aluminum alloy, a lithium-magnesium alloy, a lithium-indium alloy, and a calcium-aluminum alloy.
  • At least one of the anode and the cathode is usually transparent or translucent, but the anode is preferably transparent or translucent.
  • Examples of the method for forming the anode and the cathode include a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and a laminating method.
  • a low molecular compound is used as a method for forming each of the first light emitting layer, the second light emitting layer, the hole transport layer, the electron transport layer, the hole injection layer, the electron injection layer, and the like.
  • a vacuum deposition method from a powder a method by film formation from a solution or a molten state can be mentioned, and when a polymer compound is used, for example, a method by film formation from a solution or a molten state can be mentioned.
  • the first light-emitting layer, the second light-emitting layer, the hole transport layer, the electron transport layer, the hole injection layer, and the electron injection layer are the first ink, the second ink, and the above-described light-emitting material and hole. It can be formed by a coating method such as a spin coating method or an ink jet printing method using inks each containing a transport material, an electron transport material, a hole injection material, and an electron injection material.
  • the planar anode and the cathode may be arranged so as to overlap each other.
  • a method of forming an anode or a cathode, or both electrodes in a pattern is a method.
  • a segment type display device capable of displaying numbers, characters, and the like can be obtained.
  • both the anode and the cathode may be formed in stripes and arranged orthogonally. Partial color display and multicolor display are possible by a method of separately coating a plurality of types of polymer compounds having different emission colors, or a method using a color filter or a fluorescence conversion filter.
  • the dot matrix display device can be driven passively or can be driven actively in combination with TFTs. These display devices can be used for displays of computers, televisions, portable terminals and the like.
  • the planar light emitting element can be suitably used as a planar light source for backlight of a liquid crystal display device or a planar illumination light source. If a flexible substrate is used, it can be used as a curved light source and display device.
  • the polystyrene-equivalent number average molecular weight (Mn) and polystyrene-equivalent weight average molecular weight (Mw) of the polymer compound were determined by the following size exclusion chromatography (SEC) using tetrahydrofuran as the mobile phase. .
  • SEC size exclusion chromatography
  • the polymer compound to be measured was dissolved in tetrahydrofuran at a concentration of about 0.05% by mass, and 10 ⁇ L was injected into SEC.
  • the mobile phase was run at a flow rate of 1.0 mL / min.
  • PLgel MIXED-B manufactured by Polymer Laboratories
  • the detector used was a UV-VIS detector (trade name: UV-8320GPC, manufactured by Tosoh Corporation).
  • NMR NMR was measured by the following method. About 5 to 10 mg of a measurement sample, about 0.5 mL of heavy chloroform (CDCl 3 ), heavy tetrahydrofuran, heavy dimethyl sulfoxide, heavy acetone, heavy N, N-dimethylformamide, heavy toluene, heavy methanol, heavy ethanol, heavy 2-propanol Alternatively, it was dissolved in methylene chloride and measured using an NMR apparatus (manufactured by JEOL RESONANCE, trade name: JNM-ECZ400S / L1).
  • HPLC high performance liquid chromatography
  • SUMPAX ODS Z-CLUE manufactured by Sumika Chemical Analysis Center, inner diameter: 4.6 mm, length: 250 mm, particle size: 3 ⁇ m
  • a photodiode array detector manufactured by Shimadzu Corporation, trade name: SPD-M20A was used.
  • the obtained solution was added dropwise to methanol and stirred, and then the resulting precipitate was collected by filtration and dried to obtain 1.64 g of the polymer compound HTL-1.
  • the high molecular compound HTL-1 had Mn of 3.5 ⁇ 10 4 and Mw of 2.2 ⁇ 10 5 .
  • the theoretical value obtained from the amount of charged raw materials for polymer compound HTL-1 is that the structural unit derived from compound M1, the structural unit derived from compound M2, and the structural unit derived from compound M3 are: A copolymer composed of a molar ratio of 40:10:50.
  • the obtained solution was added dropwise to methanol and stirred, and then the resulting precipitate was collected by filtration and dried to obtain 6.02 g of a polymer compound HTL-2.
  • the high molecular compound HTL-2 had Mn of 3.8 ⁇ 10 4 and Mw of 4.5 ⁇ 10 5 .
  • the polymer compound HTL-2 has a theoretical value determined from the amount of raw materials charged, a structural unit derived from the compound M1, a structural unit derived from the compound M2, a structural unit derived from the compound M3, a metal
  • a structural unit derived from the complex RM1 is a copolymer having a molar ratio of 40: 10: 47: 3.
  • Compound HTL-M1 and Compound HM-8 were purchased from Luminesense Technology.
  • Compound HM-8 was purchased from 1-Material.
  • HM-6, HM-7, HM-9 and HM-12 Synthesis of Compounds HM-6, HM-7, HM-9 and HM-12
  • Compound HM-6 is disclosed in International Publication No. 2014/023388. Was synthesized according to the method described in 1.
  • Compound HM-7 was synthesized according to the method described in International Publication No. 2013/045408.
  • Compound HM-9 was synthesized according to the method described in International Publication No. 2013/045410.
  • Compound HM-12 was synthesized according to the method described in International Publication No. 2013/045411.
  • the reaction vessel was filled with a nitrogen gas atmosphere, then compound HM-3a (13.5 g), compound HM-2b (8.9 g), toluene (404 mL), tetrakis (triphenylphosphine) palladium (0) (2.0 g) ) And a 20% by mass aqueous tetrabutylammonium hydroxide solution (166 g), and the mixture was stirred at 90 ° C. for 3 hours.
  • the resulting reaction solution was cooled to room temperature and then filtered through a filter with celite. The obtained filtrate was washed with ion-exchanged water, and then the obtained organic layer was dried over anhydrous sodium sulfate and filtered.
  • the obtained filtrate was concentrated under reduced pressure to obtain a solid.
  • the obtained solid was purified by silica gel column chromatography (a mixed solvent of hexane and chloroform), further crystallized using a mixed solvent of toluene and methanol, and then dried at 50 ° C. under reduced pressure to give compound HM- 3 (10.5 g) was obtained.
  • Compound HM-3 had an HPLC area percentage value of 99.5% or more.
  • the reaction vessel was filled with a nitrogen gas atmosphere, then compound HM-4a (1.6 g), compound HM-4b (1.3 g), xylene (63 mL), palladium acetate (II) (22 mg), tri-tert-butyl Phosphonium tetrafluoroborate (63 mg) and sodium tert-butoxide (1.9 g) were added, and the mixture was stirred with heating under reflux for 54 hours.
  • the resulting reaction solution was cooled to room temperature and then filtered through a filter with silica gel and celite. The obtained filtrate was washed with ion-exchanged water, and then the obtained organic layer was dried over anhydrous sodium sulfate and filtered.
  • HM-4 (1.0 g) was obtained.
  • Compound HM-4 had an HPLC area percentage value of 99.5% or more.
  • the reaction vessel was filled with a nitrogen gas atmosphere, then compound HM-2a (1.64 g), compound HM-5b (1.00 g), toluene (40 mL), tetrakis (triphenylphosphine) palladium (0) (0.24 g) ) And a 20% by mass aqueous tetrabutylammonium hydroxide solution (20 g), and the mixture was stirred at 90 ° C. for 3 hours. After cooling the obtained reaction liquid to room temperature, toluene was added and it wash
  • reaction vessel was filled with a nitrogen gas atmosphere, then compound HM-10a (3.0 g), compound HM-10b (2.8 g), toluene (150 mL), palladium (II) acetate (43 mg), tri-tert-butyl Phosphonium tetrafluoroborate (0.12 g) and sodium tert-butoxide (3.7 g) were added, and the mixture was stirred at 105 ° C. for 3 hours.
  • the obtained reaction liquid was cooled to room temperature, solid precipitated. The obtained solid was collected by filtration and then dissolved in chloroform.
  • Activated carbon was added to the obtained chloroform solution and stirred, followed by filtration with a filter covered with celite and silica gel.
  • the obtained filtrate was concentrated under reduced pressure to obtain a solid.
  • the obtained solid was crystallized from toluene and then dried under reduced pressure at 50 ° C. to obtain Compound HM-10 (3.0 g).
  • the HPLC area percentage value of Compound HM-10 was 99.5%.
  • the polymer compound ETL-1a had an Mn of 3.2 ⁇ 10 4 and an Mw of 6.0 ⁇ 10 4 .
  • the theoretical value obtained from the amount of the raw material used for the polymer compound ETL-1a is that the structural unit derived from the compound M4 and the structural unit derived from the compound M5 are composed in a molar ratio of 50:50. It is a copolymer.
  • Example D1 Fabrication and evaluation of light-emitting element D1 (formation of anode and hole injection layer)
  • An anode was formed by attaching an ITO film with a thickness of 45 nm to the glass substrate by sputtering.
  • a hole injection material ND-3202 manufactured by Nissan Chemical Industries
  • a hole injection layer was formed by heating on a hot plate at 50 ° C. for 3 minutes and further heating at 230 ° C. for 15 minutes.
  • the polymer compound ETL-1 was dissolved in 2,2,3,3,4,4,5,5-octafluoro-1-pentanol at a concentration of 0.25% by mass. Using the obtained 2,2,3,3,4,4,5,5-octafluoro-1-pentanol solution, a film having a thickness of 10 nm is formed on the first organic layer by spin coating. Then, an electron transport layer was formed by heating at 130 ° C. for 10 minutes in a nitrogen gas atmosphere.
  • EL light emission was observed by applying a voltage to the light emitting element D1.
  • the CIE chromaticity coordinates (x, y) at 1000 cd / m 2 were (0.19, 0.44).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 85% of the initial luminance was measured.
  • Example D2 Production and Evaluation of Light-Emitting Element D2
  • “Compound HM-1” was used instead of “Compound HM-3” in (Formation of second organic layer)
  • the light emitting device D2 was produced in the same manner as in Example D1, except that “Compound HM-1” was used instead of “Compound HM-3”.
  • EL light emission was observed by applying a voltage to the light emitting element D2.
  • the CIE chromaticity coordinate (x, y) at 1000 cd / m 2 was (0.19, 0.43).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 85% of the initial luminance was measured.
  • Example D3 Fabrication and Evaluation of Light-Emitting Element D3
  • “Compound HM-2” was used instead of “Compound HM-3” in (Formation of second organic layer).
  • a light-emitting device D3 was produced. EL light emission was observed by applying a voltage to the light emitting element D3.
  • the CIE chromaticity coordinates (x, y) at 1000 cd / m 2 were (0.19, 0.42).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 85% of the initial luminance was measured.
  • Example D4 Fabrication and Evaluation of Light-Emitting Element D4 In Example D1, “Compound HM-5” was used instead of “Compound HM-3” in (Formation of second organic layer).
  • the light emitting device D4 was produced in the same manner as in Example D1, except that “Compound HM-5” was used instead of “Compound HM-3”.
  • EL light emission was observed by applying a voltage to the light emitting element D4.
  • the CIE chromaticity coordinate (x, y) at 1000 cd / m 2 was (0.19, 0.43).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 85% of the initial luminance was measured.
  • Example D5 Fabrication and Evaluation of Light-Emitting Element D5
  • “Compound HM-7” was used instead of “Compound HM-3” in (Formation of second organic layer).
  • the light emitting device D5 was produced in the same manner as in Example D1, except that “Compound HM-2” was used instead of “Compound HM-3”.
  • EL light emission was observed by applying a voltage to the light emitting element D5.
  • the CIE chromaticity coordinates (x, y) at 1000 cd / m 2 were (0.20, 0.45).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 85% of the initial luminance was measured.
  • Example D6 Production and Evaluation of Light-Emitting Element D6
  • “Compound HM-8” was used instead of “Compound HM-3” in (Formation of second organic layer).
  • the light emitting device D6 was produced in the same manner as in Example D1, except that “Compound HM-2” was used instead of “Compound HM-3”.
  • EL light emission was observed by applying a voltage to the light emitting element D6.
  • the CIE chromaticity coordinates (x, y) at 1000 cd / m 2 were (0.22, 0.47).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 85% of the initial luminance was measured.
  • Example D7 Production and Evaluation of Light-Emitting Element D7
  • “Compound HM-9” was used instead of “Compound HM-3” in (Formation of second organic layer).
  • a light-emitting device D7 was produced. EL light emission was observed by applying a voltage to the light emitting element D7.
  • the CIE chromaticity coordinates (x, y) at 1000 cd / m 2 were (0.20, 0.43).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 85% of the initial luminance was measured.
  • Example D8 Fabrication and Evaluation of Light-Emitting Element D8 In Example D1, “Compound HM-10” was used instead of “Compound HM-3” in (Formation of second organic layer).
  • the light emitting device D8 was produced in the same manner as in Example D1, except that “Compound HM-2” was used instead of “Compound HM-3”.
  • EL light emission was observed by applying a voltage to the light emitting element D8.
  • the CIE chromaticity coordinates (x, y) at 1000 cd / m 2 were (0.22, 0.46).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 85% of the initial luminance was measured.
  • Example D1 Fabrication and Evaluation of Light-Emitting Element CD1
  • (formation of first organic layer) A light emitting device CD1 was produced in the same manner as in Example D1, except that “Compound HM-1” was used instead of “Compound HM-3”. EL light emission was observed by applying a voltage to the light emitting device CD1.
  • the CIE chromaticity coordinates (x, y) at 1000 cd / m 2 were (0.20, 0.46).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 85% of the initial luminance was measured.
  • Table 2 shows the results of Examples D1 to D9 and Comparative Example CD1.
  • the relative value of the time until the luminance of the light emitting elements D1 to D9 reaches 85% of the initial luminance when the time until the luminance of the light emitting element CD1 reaches 85% of the initial luminance is 1.0 is shown.
  • Example D11 Fabrication and evaluation of light-emitting element D11 (formation of anode and hole injection layer)
  • An anode was formed by attaching an ITO film with a thickness of 45 nm to the glass substrate by sputtering.
  • a hole injection material ND-3202 manufactured by Nissan Chemical Industries
  • a hole injection layer was formed by heating on a hot plate at 50 ° C. for 3 minutes and further heating at 230 ° C. for 15 minutes.
  • the polymer compound ETL-1 was dissolved in 2,2,3,3,4,4,5,5-octafluoro-1-pentanol at a concentration of 0.25% by mass. Using the obtained 2,2,3,3,4,4,5,5-octafluoro-1-pentanol solution, a film having a thickness of 10 nm is formed on the first organic layer by spin coating. Then, an electron transport layer was formed by heating at 130 ° C. for 10 minutes in a nitrogen gas atmosphere.
  • EL light emission was observed by applying a voltage to the light emitting element D11.
  • the CIE chromaticity coordinates (x, y) at 1000 cd / m 2 were (0.46, 0.41).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 95% of the initial luminance was measured.
  • Example D12 Fabrication and Evaluation of Light-Emitting Element D12 “Compound HM-1” was used instead of “Compound HM-3” in (Formation of second organic layer).
  • a light-emitting device D12 was produced. EL light emission was observed by applying a voltage to the light emitting element D12.
  • the CIE chromaticity coordinates (x, y) at 1000 cd / m 2 were (0.46, 0.41).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 95% of the initial luminance was measured.
  • Example D13 Fabrication and Evaluation of Light-Emitting Element D13
  • “Compound HM-1” was used instead of “Compound HM-3” in (Formation of second organic layer).
  • a light emitting device D13 was fabricated in the same manner as D11.
  • EL light emission was observed by applying a voltage to the light emitting element D13.
  • the CIE chromaticity coordinates (x, y) at 1000 cd / m 2 were (0.47, 0.45).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 95% of the initial luminance was measured.
  • Example D11 Production and Evaluation of Light-Emitting Element CD2
  • (formation of first organic layer) A light emitting device CD2 was produced in the same manner as in Example D11 except that “Compound HM-1” was used instead of “Compound HM-3”. EL light emission was observed by applying a voltage to the light emitting device CD2.
  • the CIE chromaticity coordinates (x, y) at 1000 cd / m 2 were (0.45, 0.41).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 95% of the initial luminance was measured.
  • Table 3 shows the results of Examples D11 to D13 and Comparative Example CD2.
  • the relative value of the time until the luminance of the light emitting elements D11 to D13 reaches 95% of the initial luminance when the time until the luminance of the light emitting element CD2 reaches 95% of the initial luminance is 1.0 is shown.
  • Example D14 Fabrication and Evaluation of Light-Emitting Element D14 In Example D11, “Compound HM-2” was used instead of “Compound HM-3” in (Formation of second organic layer). In the same manner as in Example D11, except that “Compound HM-2” was used in place of “Compound HM-3” in (Formation of organic layer 1), a light-emitting device D14 was produced. EL light emission was observed by applying a voltage to the light emitting element D14. The CIE chromaticity coordinates (x, y) at 1000 cd / m 2 were (0.47, 0.40). A constant current drive was performed at a current value of 1 mA, and the time until the luminance became 70% of the initial luminance was measured.
  • Example D15 Fabrication and Evaluation of Light-Emitting Element D15
  • “Compound HM-4” was used instead of “Compound HM-3” in (Formation of second organic layer).
  • a light emitting device D15 was produced. EL light emission was observed by applying a voltage to the light emitting element D15.
  • the CIE chromaticity coordinates (x, y) at 1000 cd / m 2 were (0.32, 0.40).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 70% of the initial luminance was measured.
  • Example D16 Fabrication and Evaluation of Light-Emitting Element D16
  • “Compound HM-4” was used instead of “Compound HM-3” in (Formation of second organic layer).
  • a light-emitting device D16 was produced. EL light emission was observed by applying a voltage to the light emitting element D16.
  • the CIE chromaticity coordinates (x, y) at 1000 cd / m 2 were (0.48, 0.41).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 70% of the initial luminance was measured.
  • Example D17 Production and Evaluation of Light-Emitting Element D17
  • “Compound HM-5” was used instead of “Compound HM-3” in (Formation of second organic layer).
  • a light-emitting device D17 was produced. EL light emission was observed by applying a voltage to the light emitting element D17.
  • the CIE chromaticity coordinates (x, y) at 1000 cd / m 2 were (0.47, 0.40).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 70% of the initial luminance was measured.
  • Example D18 Fabrication and Evaluation of Light-Emitting Element D18 “Compound HM-6” was used instead of “Compound HM-3” in (Formation of second organic layer).
  • a light-emitting device D18 was produced. EL light emission was observed by applying a voltage to the light emitting element D18.
  • the CIE chromaticity coordinates (x, y) at 1000 cd / m 2 were (0.48, 0.40).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 70% of the initial luminance was measured.
  • Example D19 Production and Evaluation of Light-Emitting Element D19
  • “Compound HM-7” was used instead of “Compound HM-3” in (Formation of second organic layer).
  • a light-emitting device D19 was produced. EL light emission was observed by applying a voltage to the light emitting element D19.
  • the CIE chromaticity coordinates (x, y) at 1000 cd / m 2 were (0.48, 0.40).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 70% of the initial luminance was measured.
  • Example D20 Production and Evaluation of Light-Emitting Element D20
  • “Compound HM-8” was used instead of “Compound HM-3” in (Formation of second organic layer), and In the same manner as in Example D11, except that “Compound HM-2” was used in place of “Compound HM-3” in (Formation of organic layer 1), a light-emitting device D20 was produced. EL light emission was observed by applying a voltage to the light emitting element D20. The CIE chromaticity coordinates (x, y) at 1000 cd / m 2 were (0.49, 0.40). A constant current drive was performed at a current value of 1 mA, and the time until the luminance became 70% of the initial luminance was measured.
  • Example D21 Fabrication and Evaluation of Light-Emitting Element D21 “Compound HM-9” was used instead of “Compound HM-3” in (Formation of second organic layer).
  • a light-emitting device D21 was produced. EL light emission was observed by applying a voltage to the light emitting element D21.
  • the CIE chromaticity coordinates (x, y) at 1000 cd / m 2 were (0.49, 0.41).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 70% of the initial luminance was measured.
  • Example D22 Fabrication and Evaluation of Light-Emitting Element D22 In Example D11, “Compound HM-10” was used instead of “Compound HM-3” in (Formation of second organic layer). In the same manner as in Example D11, except that “Compound HM-2” was used instead of “Compound HM-3” in the formation of the organic layer 1), a light emitting device D22 was produced. EL light emission was observed by applying a voltage to the light emitting element D22. The CIE chromaticity coordinates (x, y) at 1000 cd / m 2 were (0.49, 0.41). A constant current drive was performed at a current value of 1 mA, and the time until the luminance became 70% of the initial luminance was measured.
  • Example D23 Fabrication and Evaluation of Light-Emitting Element D23
  • “Compound HM-11” was used instead of “Compound HM-3” in (Formation of second organic layer).
  • a light-emitting device D23 was produced. EL light emission was observed by applying a voltage to the light emitting element D23.
  • the CIE chromaticity coordinates (x, y) at 1000 cd / m 2 were (0.49, 0.40).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 70% of the initial luminance was measured.
  • Example D24 Production and Evaluation of Light-Emitting Element D24
  • “Compound HM-12” was used instead of “Compound HM-3” in (Formation of second organic layer), and In the same manner as in Example D11, except that “Compound HM-2” was used instead of “Compound HM-3” in the formation of the organic layer 1), a light-emitting device D23 was produced. EL light emission was observed by applying a voltage to the light emitting element D23. The CIE chromaticity coordinates (x, y) at 1000 cd / m 2 were (0.48, 0.40). A constant current drive was performed at a current value of 1 mA, and the time until the luminance became 70% of the initial luminance was measured.
  • Example D11 Fabrication and Evaluation of Light-Emitting Element CD3
  • (formation of first organic layer) A light emitting device CD3 was produced in the same manner as in Example D11 except that “Compound HM-4” was used instead of “Compound HM-3”. EL light emission was observed by applying a voltage to the light emitting device CD3.
  • the CIE chromaticity coordinates (x, y) at 1000 cd / m 2 were (0.32, 0.40).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 70% of the initial luminance was measured.
  • Table 4 shows the results of Examples D14 to D24 and Comparative Example CD3.
  • the relative value of the time until the luminance of the light emitting elements D14 to D24 becomes 70% of the initial luminance when the time until the luminance of the light emitting element CD3 becomes 70% of the initial luminance is 1.0 is shown.
  • Example D25 Production and Evaluation of Light-Emitting Element D25
  • “Compound HM-4” was used instead of “Compound HM-3” in (Formation of second organic layer).
  • a light-emitting device D25 was produced. EL light emission was observed by applying a voltage to the light emitting element D25.
  • the CIE chromaticity coordinates (x, y) at 1000 cd / m 2 were (0.18, 0.40).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 70% of the initial luminance was measured.
  • Example D26 Production and Evaluation of Light-Emitting Element D26
  • “Compound HM-4” was used instead of “Compound HM-3” in (Formation of second organic layer)
  • the light-emitting device D26 was produced in the same manner as in Example D1, except that “Compound HM-2” was used instead of “Compound HM-3”.
  • EL light emission was observed by applying a voltage to the light emitting element D26.
  • the CIE chromaticity coordinates (x, y) at 1000 cd / m 2 were (0.20, 0.44).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 70% of the initial luminance was measured.
  • Example D1 Fabrication and Evaluation of Light-Emitting Element CD4
  • (formation of first organic layer) A light emitting device CD4 was produced in the same manner as in Example D1, except that “Compound HM-4” was used instead of “Compound HM-3”. EL light emission was observed by applying a voltage to the light emitting device CD4.
  • the CIE chromaticity coordinates (x, y) at 1000 cd / m 2 were (0.21, 0.47).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 70% of the initial luminance was measured.
  • Table 5 shows the results of Example D25, Example D26, and Comparative Example CD4.
  • the relative value of the time until the luminance of the light emitting elements D25 and D26 reaches 70% of the initial luminance when the time until the luminance of the light emitting element CD4 reaches 70% of the initial luminance is 1.0 is shown.
  • Example D27 Fabrication and Evaluation of Light-Emitting Element D27
  • “Compound HM-1” was used instead of “Compound HM-3” in (Formation of second organic layer).
  • EL light emission was observed by applying a voltage to the light emitting device CD5.
  • the CIE chromaticity coordinates (x, y) at 1000 cd / m 2 were (0.35, 0.49).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 95% of the initial luminance was measured.
  • Table 6 shows the results of Example D27 and Comparative Example CD5. The relative value of the time until the luminance of the light emitting element D27 becomes 95% of the initial luminance when the time until the luminance of the light emitting element CD5 becomes 95% of the initial luminance is 1.0 is shown.
  • Example D28 Production and Evaluation of Light-Emitting Element D28
  • “Compound HM-1” was used instead of “Compound HM-3” in (Formation of second organic layer).
  • EL light emission was observed by applying a voltage to the light emitting device CD6.
  • the CIE chromaticity coordinates (x, y) at 1000 cd / m 2 were (0.34, 0.38).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 90% of the initial luminance was measured.
  • Table 7 shows the results of Example D28 and Comparative Example CD6.
  • the relative value of the time until the luminance of the light emitting element D28 becomes 90% of the initial luminance when the time until the luminance of the light emitting element CD6 becomes 90% of the initial luminance is 1.0 is shown.
  • Example D29 Fabrication and evaluation of light-emitting element D29
  • EL light emission was observed by applying a voltage to the light emitting element D29.
  • the CIE chromaticity coordinates (x, y) at 1000 cd / m 2 were (0.21, 0.45).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 60% of the initial luminance was measured.
  • Example D29 Fabrication and Evaluation of Light-Emitting Element CD7
  • EL light emission was observed by applying a voltage to the light emitting device CD7.
  • the CIE chromaticity coordinates (x, y) at 1000 cd / m 2 were (0.22, 0.47).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 60% of the initial luminance was measured.
  • Table 8 shows the results of Example D29 and Comparative Example CD7.
  • the relative value of the time until the luminance of the light emitting element D29 becomes 60% of the initial luminance when the time until the luminance of the light emitting element CD7 becomes 60% of the initial luminance is 1.0 is shown.
  • Example D30 Fabrication and evaluation of light-emitting element D30
  • a light emitting device D30 was produced in the same manner as in Example D29. EL light emission was observed by applying a voltage to the light emitting element D30.
  • the CIE chromaticity coordinates (x, y) at 1000 cd / m 2 were (0.21, 0.46).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 95% of the initial luminance was measured.
  • the CIE chromaticity coordinates (x, y) at 1000 cd / m 2 were (0.21, 0.47).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 95% of the initial luminance was measured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

輝度寿命に優れる発光素子を提供する。 陽極と、陰極と、陽極及び陰極の間に設けられた第1の有機層と、陽極及び陰極の間に設けられた第2の有機層とを有する発光素子であって、 第1の有機層が、式(C-1)で表される化合物を含有する層であり、 第2の有機層が、式(C-1)で表される化合物と、架橋材料の架橋体とを含有する層である発光素子。 [式中、 環R1C及び環R2Cは、芳香族炭化水素環又は芳香族複素環を表す。 RCは、酸素原子、硫黄原子、又は、式(C'-1)で表される基を表す。] [式中、 環R3C及び環R4Cは、芳香族炭化水素環又は芳香族複素環を表す。 RC'は、炭素原子、ケイ素原子、ゲルマニウム原子、スズ原子又は鉛原子を表す。]

Description

発光素子
 本発明は、発光素子に関する。
 有機エレクトロルミネッセンス素子等の発光素子は、ディスプレイ及び照明の用途に好適に使用することが可能である。例えば、特許文献1には、架橋材料の架橋体のみからなる第2の有機層と、化合物(H0)及び金属錯体(B0)を含有する第1の有機層とを有する発光素子が記載されている。
Figure JPOXMLDOC01-appb-C000017
国際公開第2015/159744号
 しかし、上記の発光素子は、輝度寿命が必ずしも十分ではなかった。そこで、本発明は、輝度寿命に優れる発光素子を提供することを目的とする。
 本発明は、以下の[1]~[15]を提供する。
[1]陽極と、陰極と、陽極及び陰極の間に設けられた第1の有機層と、陽極及び陰極の間に設けられた第2の有機層とを有する発光素子であって、
 第1の有機層が、式(C-1)で表される化合物を含有する層であり、
 第2の有機層が、式(C-1)で表される化合物と、架橋材料の架橋体とを含有する層
である、発光素子。
Figure JPOXMLDOC01-appb-C000018
[式中、
 環R1C及び環R2Cは、それぞれ独立に、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
 RCは、酸素原子、硫黄原子、又は、式(C’-1)で表される基を表す。]
Figure JPOXMLDOC01-appb-C000019
[式中、
 環R3C及び環R4Cは、それぞれ独立に、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
 RC'は、炭素原子、ケイ素原子、ゲルマニウム原子、スズ原子又は鉛原子を表す。]
[2]前記第1の有機層に含有される前記式(C-1)で表される化合物及び前記第2の有機層に含有される前記式(C-1)で表される化合物のうちの少なくとも1つが、式(C-2-1)で表される化合物又は式(C-2-2)で表される化合物である、[1]に記載の発光素子。
Figure JPOXMLDOC01-appb-C000020
[式中、
 RC'は、前記と同じ意味を表す。
 RC''は、酸素原子又は硫黄原子を表す。
 E11C、E12C、E13C、E14C、E21C、E22C、E23C、E24C、E31C、E32C、E33C、E34C、E41C、E42C、E43C及びE44Cは、それぞれ独立に、窒素原子又は炭素原子を表す。
 環R1C'、環R2C'、環R3C'及び環R4C'は、それぞれ独立に、ベンゼン環、ピリジン環又はジアザベンゼン環を表す。
 R11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。
 E11Cが窒素原子の場合、R11Cは存在しない。E12Cが窒素原子の場合、R12Cは存在しない。E13Cが窒素原子の場合、R13Cは存在しない。E14Cが窒素原子の場合、R14Cは存在しない。E21Cが窒素原子の場合、R21Cは存在しない。E22Cが窒素原子の場合、R22Cは存在しない。E23Cが窒素原子の場合、R23Cは存在しない。E24Cが窒素原子の場合、R24Cは存在しない。E31Cが窒素原子の場合、R31Cは存在しない。E32Cが窒素原子の場合、R32Cは存在しない。E33Cが窒素原子の場合、R33Cは存在しない。E34Cが窒素原子の場合、R34Cは存在しない。E41Cが窒素原子の場合、R41Cは存在しない。E42Cが窒素原子の場合、R42Cは存在しない。E43Cが窒素原子の場合、R43Cは存在しない。E44Cが窒素原子の場合、R44Cは存在しない。
 R11CとR12C、R12CとR13C、R13CとR14C、R14CとR34C、R34CとR33C、R33CとR32C、R32CとR31C、R31CとR41C、R41CとR42C、R42CとR43C、R43CとR44C、R44CとR24C、R24CとR23C、R23CとR22C、R22CとR21C、及び、R21CとR11Cは、それぞれ結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。]
[3]前記第1の有機層に含有される前記式(C-1)で表される化合物及び前記第2の有機層に含有される前記式(C-1)で表される化合物のうちの少なくとも1つが、式(C-2-1)で表される化合物であり、
 前記式(C-2-1)で表される化合物が、式(C-3-1)で表される化合物である、[2]に記載の発光素子。
Figure JPOXMLDOC01-appb-C000021
[式中、RC'、R11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cは、前記と同じ意味を表す。]
[4]前記第1の有機層に含有される前記式(C-1)で表される化合物及び前記第2の有機層に含有される前記式(C-1)で表される化合物のうちの少なくとも1つが、式(C-2-2)で表される化合物であり、
 前記式(C-2-2)で表される化合物が、式(C-3-2)で表される化合物である、[2]に記載の発光素子。
Figure JPOXMLDOC01-appb-C000022
[式中、RC''、R11C、R12C、R13C、R14C、R21C、R22C、R23C及びR24Cは、前記と同じ意味を表す。]
[5]前記第1の有機層が、更に燐光発光性化合物を含有する層であり、
 前記燐光発光性化合物が、式(1)で表される燐光発光性化合物である、[1]~[4]のいずれかに記載の発光素子。
Figure JPOXMLDOC01-appb-C000023
[式中、
 Mは、ルテニウム原子、ロジウム原子、パラジウム原子、イリジウム原子又は白金原子を表す。
 n1は1以上の整数を表し、n2は0以上の整数を表す。但し、Mがルテニウム原子、ロジウム原子又はイリジウム原子の場合、n1+n2は3であり、Mがパラジウム原子又は白金原子の場合、n1+n2は2である。
 E1及びE2は、それぞれ独立に、炭素原子又は窒素原子を表す。但し、E1及びE2の少なくとも一方は炭素原子である。E1及びE2が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。
 環L1は、芳香族複素環を表し、この芳香族複素環は置換基を有していてもよい。該置換基が複数存在する場合、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環L1が複数存在する場合、それらは同一でも異なっていてもよい。
 環L2は、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環L2が複数存在する場合、それらは同一でも異なっていてもよい。
 環L1が有していてもよい置換基と、環L2が有していてもよい置換基とは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
 A1-G1-A2は、アニオン性の2座配位子を表す。A1及びA2は、それぞれ独立に、炭素原子、酸素原子又は窒素原子を表し、これらの原子は環を構成する原子であってもよい。G1は、単結合、又は、A1及びA2とともに2座配位子を構成する原子団を表す。A1-G1-A2が複数存在する場合、それらは同一でも異なっていてもよい。]
[6]前記式(1)で表される燐光発光性化合物が、式(1-B)で表される燐光発光性化合物である、[5]に記載の発光素子。
Figure JPOXMLDOC01-appb-C000024
[式中、
 M、n1、n2及びA1-G1-A2は、前記と同じ意味を表す。
 E11B、E12B、E13B、E14B、E21B、E22B、E23B及びE24Bは、それぞれ独立に、窒素原子又は炭素原子を表す。E11B、E12B、E13B、E14B、E21B、E22B、E23B及びE24Bが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。E11Bが窒素原子の場合、R11Bは存在しない。E12Bが窒素原子の場合、R12Bは存在しない。E13Bが窒素原子の場合、R13Bは存在しない。E14Bが窒素原子の場合、R14Bは存在しない。E21Bが窒素原子の場合、R21Bは存在しない。E22Bが窒素原子の場合、R22Bは存在しない。E23Bが窒素原子の場合、R23Bは存在しない。E24Bが窒素原子の場合、R24Bは存在しない。
 R11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。R11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。R11BとR12B、R12BとR13B、R13BとR14B、R11BとR21B、R21BとR22B、R22BとR23B、及び、R23BとR24Bは、それぞれ結合して、それぞれが結合する原子とともに環を形成していてもよい。
 環L1Bは、ピリジン環又はジアザベンゼン環を表す。
 環L2Bは、ベンゼン環、ピリジン環又はジアザベンゼン環を表す。]
[7]前記式(1-B)で表される燐光発光性化合物が、式(1-B1)で表される燐光発光性化合物、式(1-B2)で表される燐光発光性化合物、式(1-B3)で表される燐光発光性化合物、式(1-B4)で表される燐光発光性化合物又は式(1-B5)で表される燐光発光性化合物である、[6]に記載の発光素子。
Figure JPOXMLDOC01-appb-C000025
[式中、
 M、n1、n2、A1-G1-A2、R11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bは、前記と同じ意味を表す。
 n11及びn12は、それぞれ独立に、1以上の整数を表す。但し、Mがルテニウム原子、ロジウム原子又はイリジウム原子の場合、n11+n12は3であり、Mがパラジウム原子又は白金原子の場合、n11+n12は2である。
 R15B、R16B、R17B及びR18Bは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。R15B、R16B、R17B及びR18Bが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。R13BとR15B、R15BとR16B、R16BとR17B、R17BとR18B、及び、R18BとR21Bは、それぞれ結合して、それぞれが結合する原子とともに環を形成していてもよい。]
[8]前記式(1)で表される燐光発光性化合物が、式(1-A)で表される燐光発光性化合物である、[5]に記載の発光素子。
Figure JPOXMLDOC01-appb-C000026
[式中、
 M、n1、n2、E1及びA1-G1-A2は、前記と同じ意味を表す。
 E11A、E12A、E13A、E21A、E22A、E23A及びE24Aは、それぞれ独立に、窒素原子又は炭素原子を表す。E11A、E12A、E13A、E21A、E22A、E23A及びE24Aが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。E11Aが窒素原子の場合、R11Aは存在しても存在しなくてもよい。E12Aが窒素原子の場合、R12Aは存在しても存在しなくてもよい。E13Aが窒素原子の場合、R13Aは存在しても存在しなくてもよい。E21Aが窒素原子の場合、R21Aは存在しない。E22Aが窒素原子の場合、R22Aは存在しない。E23Aが窒素原子の場合、R23Aは存在しない。E24Aが窒素原子の場合、R24Aは存在しない。
 R11A、R12A、R13A、R21A、R22A、R23A及びR24Aは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。R11A、R12A、R13A、R21A、R22A、R23A及びR24Aが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。R11AとR12A、R12AとR13A、R11AとR21A、R21AとR22A、R22AとR23A、及び、R23AとR24Aは、それぞれ結合して、それぞれが結合する原子とともに環を形成していてもよい。
 環L1Aは、トリアゾール環又はジアゾール環を表す。
 環L2Aは、ベンゼン環、ピリジン環又はジアザベンゼン環を表す。]
[9]前記式(1-A)で表される燐光発光性化合物が、式(1-A1)で表される燐光発光性化合物、式(1-A2)で表される燐光発光性化合物、式(1-A3)で表される燐光発光性化合物、式(1-A4)で表される燐光発光性化合物又は式(1-A5)で表される燐光発光性化合物である、[8]に記載の発光素子。
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
[式中、M、n1、n2、R11A、R12A、R13A、R21A、R22A、R23A、R24A及びA1-G1-A2は、前記と同じ意味を表す。]
[10]前記架橋材料が、
 架橋基A群から選ばれる少なくとも1種の架橋基を有する低分子化合物、又は、架橋基A群から選ばれる少なくとも1種の架橋基を有する架橋構成単位を含む高分子化合物である、[1]~[9]のいずれかに記載の発光素子。
(架橋基A群)
Figure JPOXMLDOC01-appb-C000030
[式中、RXLは、メチレン基、酸素原子又は硫黄原子を表し、nXLは、0~5の整数を表す。RXLが複数存在する場合、それらは同一でも異なっていてもよく、nXLが複数存在する場合、それらは同一でも異なっていてもよい。*1は結合位置を表す。これらの架橋基は置換基を有していてもよい。]
[11]前記架橋材料が、架橋基A群から選ばれる少なくとも1種の架橋基を有する架橋構成単位を含む高分子化合物であり、
 前記架橋構成単位が、式(2)で表される構成単位又は式(2’)で表される構成単位である、[10]に記載の発光素子。
Figure JPOXMLDOC01-appb-C000031
[式中、
 nAは0~5の整数を表し、nは1又は2を表す。nAが複数存在する場合、それらは同一でも異なっていてもよい。
 Ar3は、芳香族炭化水素基又は複素環基を表し、これらの基は置換基を有していてもよい。
 LAは、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-NR’-で表される基、酸素原子又は硫黄原子を表し、これらの基は置換基を有していてもよい。R’は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。LAが複数存在する場合、それらは同一でも異なっていてもよい。
 Xは、前記架橋基A群から選ばれる架橋基を表す。Xが複数存在する場合、それらは同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000032
[式中、
 mAは0~5の整数を表し、mは1~4の整数を表し、cは0又は1を表す。mAが複数存在する場合、それらは同一でも異なっていてもよい。
 Ar5は、芳香族炭化水素基、複素環基、又は、少なくとも1種の芳香族炭化水素環と少なくとも1種の複素環とが直接結合した基を表し、これらの基は置換基を有していてもよい。
 Ar4及びAr6は、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。
 Ar4、Ar5及びAr6はそれぞれ、当該基が結合している窒素原子に結合している当該基以外の基と、直接又は酸素原子もしくは硫黄原子を介して結合して、環を形成していてもよい。
 KAは、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-NR’’-で表される基、酸素原子又は硫黄原子を表し、これらの基は置換基を有していてもよい。R’’は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。KAが複数存在する場合、それらは同一でも異なっていてもよい。
 X’は、前記架橋基A群から選ばれる架橋基、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。但し、少なくとも1つのX’は、前記架橋基A群から選ばれる架橋基である。]
[12]前記架橋材料が、式(3)で表される低分子化合物である、[10]に記載の発光素子。
Figure JPOXMLDOC01-appb-C000033
[式中、
 mB1、mB2及びmB3は、それぞれ独立に、0以上10以下の整数を表す。複数存在するmB1は、同一でも異なっていてもよい。mB3が複数存在する場合、それらは同一でも異なっていてもよい。
 Ar7は、芳香族炭化水素基、複素環基、又は、少なくとも1種の芳香族炭化水素環と少なくとも1種の複素環とが直接結合した基を表し、これらの基は置換基を有していてもよい。Ar7が複数存在する場合、それらは同一でも異なっていてもよい。
 LB1は、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-NR’’’-で表される基、酸素原子又は硫黄原子を表し、これらの基は置換基を有していてもよい。R’’’は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。LB1が複数存在する場合、それらは同一でも異なっていてもよい。
 X’’は、架橋基A群から選ばれる架橋基、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するX’’は、同一でも異なっていてもよい。但し、複数存在するX’’のうち、少なくとも1つは、架橋基A群から選ばれる架橋基である。]
[13]前記第1の有機層が、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料及び発光材料からなる群より選ばれる少なくとも1種の材料を更に含有する、[1]~[12]のいずれかに記載の発光素子。
[14]前記第1の有機層と前記第2の有機層とが隣接している、[1]~[13]のいずれかに記載の発光素子。
[15]前記第2の有機層が、前記陽極及び前記第1の有機層との間に設けられた層である、[1]~[14]のいずれかに記載の発光素子。
 本発明によれば、輝度寿命に優れる発光素子を提供することができる。
 以下、本発明の好適な実施形態について詳細に説明する。
 <共通する用語の説明>
 本明細書で共通して用いられる用語は、特記しない限り、以下の意味である。
 Meはメチル基、Etはエチル基、Buはブチル基、i-Prはイソプロピル基、t-Buはtert-ブチル基を表す。
 水素原子は、重水素原子であっても、軽水素原子であってもよい。
 金属錯体を表す式中、中心金属との結合を表す実線は、共有結合又は配位結合を意味する。
 「高分子化合物」とは、分子量分布を有し、ポリスチレン換算の数平均分子量が1×103~1×108である重合体を意味する。
 「低分子化合物」とは、分子量分布を有さず、分子量が1×104以下の化合物を意味する。
 「構成単位」とは、高分子化合物中に1個以上存在する単位を意味する。
 「アルキル基」は、直鎖及び分岐のいずれでもよい。直鎖のアルキル基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~50であり、好ましくは3~30であり、より好ましくは4~20である。分岐のアルキル基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~50であり、好ましくは3~30であり、より好ましくは4~20である。
 アルキル基は、置換基を有していてもよく、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、2-ブチル基、イソブチル基、tert-ブチル基、ペンチル基、イソアミル基、2-エチルブチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、3-プロピルヘプチル基、デシル基、3,7-ジメチルオクチル基、2-エチルオクチル基、2-ヘキシルデシル基、ドデシル基、及び、これらの基における水素原子が、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等で置換された基(例えば、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基、3-フェニルプロピル基、3-(4-メチルフェニル)プロピル基、3-(3,5-ジ-ヘキシルフェニル)プロピル基、6-エチルオキシヘキシル基)が挙げられる。
 「シクロアルキル基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~50であり、好ましくは3~30であり、より好ましくは4~20である。
 シクロアルキル基は、置換基を有していてもよく、例えば、シクロヘキシル基、シクロヘキシルメチル基、シクロヘキシルエチル基が挙げられる。
 「アリール基」は、芳香族炭化水素から環を構成する炭素原子に直接結合する水素原子1個を除いた残りの原子団を意味する。アリール基の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~20であり、より好ましくは6~10である。
 アリール基は、置換基を有していてもよく、例えば、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、2-フルオレニル基、3-フルオレニル基、4-フルオレニル基、2-フェニルフェニル基、3-フェニルフェニル基、4-フェニルフェニル基、及び、これらの基における水素原子が、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等で置換された基が挙げられる。
 「アルコキシ基」は、直鎖及び分岐のいずれでもよい。直鎖のアルコキシ基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~40であり、好ましくは4~10である。分岐のアルコキシ基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~40であり、好ましくは4~10である。
 アルコキシ基は、置換基を有していてもよく、例えば、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブチルオキシ基、イソブチルオキシ基、tert-ブチルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7-ジメチルオクチルオキシ基、ラウリルオキシ基、及び、これらの基における水素原子が、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等で置換された基が挙げられる。
 「シクロアルコキシ基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~40であり、好ましくは4~10である。
 シクロアルコキシ基は、置換基を有していてもよく、例えば、シクロヘキシルオキシ基が挙げられる。
 「アリールオキシ基」の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~48である。
 アリールオキシ基は、置換基を有していてもよく、例えば、フェノキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基、1-アントラセニルオキシ基、9-アントラセニルオキシ基、1-ピレニルオキシ基、及び、これらの基における水素原子が、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、フッ素原子等で置換された基が挙げられる。
 「p価の複素環基」(pは、1以上の整数を表す。)とは、複素環式化合物から、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうちp個の水素原子を除いた残りの原子団を意味する。p価の複素環基の中でも、芳香族複素環式化合物から、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうちp個の水素原子を除いた残りの原子団である「p価の芳香族複素環基」が好ましい。
 「芳香族複素環式化合物」は、オキサジアゾール、チアジアゾール、チアゾール、オキサゾール、チオフェン、ピロール、ホスホール、フラン、ピリジン、ピラジン、ピリミジン、トリアジン、ピリダジン、キノリン、イソキノリン、カルバゾール、ジベンゾホスホール等の複素環自体が芳香族性を示す化合物、及び、フェノキサジン、フェノチアジン、ジベンゾボロール、ジベンゾシロール、ベンゾピラン等の複素環自体は芳香族性を示さなくとも、複素環に芳香環が縮環されている化合物を意味する。
 1価の複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常、2~60であり、好ましくは4~20である。
 1価の複素環基は、置換基を有していてもよく、例えば、チエニル基、ピロリル基、フリル基、ピリジル基、ピペリジニル基、キノリニル基、イソキノリニル基、ピリミジニル基、トリアジニル基、及び、これらの基における水素原子が、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基等で置換された基が挙げられる。
 「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子又はヨウ素原子を示す。
 「アミノ基」は、置換基を有していてもよく、置換アミノ基が好ましい。アミノ基が有する置換基としては、アルキル基、シクロアルキル基、アリール基又は1価の複素環基が好ましい。
 置換アミノ基としては、例えば、ジアルキルアミノ基、ジシクロアルキルアミノ基及びジアリールアミノ基が挙げられる。
 アミノ基としては、例えば、ジメチルアミノ基、ジエチルアミノ基、ジフェニルアミノ基、ビス(4-メチルフェニル)アミノ基、ビス(4-tert-ブチルフェニル)アミノ基、ビス(3,5-ジ-tert-ブチルフェニル)アミノ基が挙げられる。
 「アルケニル基」は、直鎖及び分岐のいずれでもよい。直鎖のアルケニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~30であり、好ましくは3~20である。分岐のアルケニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~30であり、好ましくは4~20である。
 「シクロアルケニル基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~30であり、好ましくは4~20である。
 アルケニル基及びシクロアルケニル基は、置換基を有していてもよく、例えば、ビニル基、1-プロペニル基、2-プロペニル基、2-ブテニル基、3-ブテニル基、3-ペンテニル基、4-ペンテニル基、1-ヘキセニル基、5-ヘキセニル基、7-オクテニル基、及び、これらの基が置換基を有する基が挙げられる。
 「アルキニル基」は、直鎖及び分岐のいずれでもよい。アルキニル基の炭素原子数は、置換基の炭素原子を含めないで、通常2~20であり、好ましくは3~20である。分岐のアルキニル基の炭素原子数は、置換基の炭素原子を含めないで、通常4~30であり、好ましくは4~20である。
 「シクロアルキニル基」の炭素原子数は、置換基の炭素原子を含めないで、通常4~30であり、好ましくは4~20である。
 アルキニル基及びシクロアルキニル基は、置換基を有していてもよく、例えば、エチニル基、1-プロピニル基、2-プロピニル基、2-ブチニル基、3-ブチニル基、3-ペンチニル基、4-ペンチニル基、1-ヘキシニル基、5-ヘキシニル基、及び、これらの基が置換基を有する基が挙げられる。
 「アリーレン基」は、芳香族炭化水素から環を構成する炭素原子に直接結合する水素原子2個を除いた残りの原子団を意味する。アリーレン基の炭素原子数は、置換基の炭素原子数を含めないで、通常、6~60であり、好ましくは6~30であり、より好ましくは6~18である。
 アリーレン基は、置換基を有していてもよく、例えば、フェニレン基、ナフタレンジイル基、アントラセンジイル基、フェナントレンジイル基、ジヒドロフェナントレンジイル基、ナフタセンジイル基、フルオレンジイル基、ピレンジイル基、ペリレンジイル基、クリセンジイル基、及び、これらの基が置換基を有する基が挙げられ、好ましくは、式(A-1)~式(A-20)で表される基である。アリーレン基は、これらの基が複数結合した基を含む。
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
[式中、R及びRaは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表す。複数存在するR及びRaは、各々、同一でも異なっていてもよく、Ra同士は互いに結合して、それぞれが結合する原子と共に環を形成していてもよい。]
 2価の複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常、2~60であり、好ましくは、3~20であり、より好ましくは、4~15である。
 2価の複素環基は、置換基を有していてもよく、例えば、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、ジベンゾシロール、フェノキサジン、フェノチアジン、アクリジン、ジヒドロアクリジン、フラン、チオフェン、アゾール、ジアゾール、トリアゾールから、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうち2個の水素原子を除いた2価の基が挙げられ、好ましくは、式(AA-1)~式(AA-34)で表される基である。2価の複素環基は、これらの基が複数結合した基を含む。
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
[式中、R及びRaは、前記と同じ意味を表す。]
 「架橋基」とは、加熱、紫外線照射、近紫外線照射、可視光照射、赤外線照射、ラジカル反応等に供することにより、新たな結合を生成することが可能な基であり、好ましくは、上記架橋基A群の式(XL-1)~式(XL-17)で表される架橋基である。
 「置換基」とは、ハロゲン原子、シアノ基、アルキル基、シクロアルキル基、アリール基、1価の複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アミノ基、置換アミノ基、アルケニル基、シクロアルケニル基、アルキニル基又はシクロアルキニル基を表す。置換基は架橋基であってもよい。
 <発光素子>
 [第1の有機層]
 本発明の発光素子が有する第1の有機層は、式(C-1)で表される化合物を含有する層である。
 ・式(C-1)で表される化合物
 式(C-1)で表される化合物の分子量は、好ましくは、2×102~5×104であり、より好ましくは、2×102~5×103あり、更に好ましくは、3×102~3×103であり、特に好ましくは、4×102~1×103である。
 環R1C及び環R2Cで表される芳香族炭化水素環の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~30であり、より好ましくは6~18である。
 環R1C及び環R2Cで表される芳香族炭化水素環としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、インデン環、フルオレン環、スピロビフルオレン環、フェナントレン環、ジヒドロフェナントレン環、ピレン環、クリセン環及びトリフェニレン環が挙げられ、好ましくは、ベンゼン環、ナフタレン環、アントラセン環、フルオレン環、スピロビフルオレン環、フェナントレン環又はジヒドロフェナントレン環であり、より好ましくはベンゼン環、ナフタレン環、フルオレン環又はスピロビフルオレン環であり、更に好ましくはベンゼン環であり、これらの環は置換基を有していてもよい。
 環R1C及び環R2Cで表される芳香族複素環の炭素原子数は、置換基の炭素原子数を含めないで、通常2~60であり、好ましくは、3~30であり、より好ましくは、4~15である。
 環R1C及び環R2Cで表される芳香族複素環としては、例えば、ピロール環、ジアゾール環、トリアゾール環、フラン環、チオフェン環、オキサジアゾール環、チアジアゾール環、ピリジン環、ジアザベンゼン環、トリアジン環、アザナフタレン環、ジアザナフタレン環、トリアザナフタレン環、アザアントラセン環、ジアザアントラセン環、トリアザアントラセン環、アザフェナントレン環、ジアザフェナントレン環、トリアザフェナントレン環、ジベンゾフラン環、ジベンゾチオフェン環、ジベンゾシロール環、ジベンゾホスホール環、カルバゾール環、アザカルバゾール環、ジアザカルバゾール環、フェノキサジン環、フェノチアジン環、ジヒドロアクリジン環及びジヒドロフェナジン環が挙げられ、好ましくは、ピリジン環、ジアザベンゼン環、アザナフタレン環、ジアザナフタレン環、アザアントラセン環、ジアザフェナントレン環、ジベンゾフラン環、ジベンゾチオフェン環、カルバゾール環、フェノキサジン環、フェノチアジン環、ジヒドロアクリジン環又はジヒドロフェナジン環であり、より好ましくは、ピリジン環、ジアザベンゼン環、アザナフタレン環、ジアザナフタレン環、ジベンゾフラン環、ジベンゾチオフェン環又はカルバゾール環であり、更に好ましくは、ピリジン環又はジアザベンゼン環であり、これらの環は置換基を有していてもよい。
 本発明の発光素子の輝度寿命がより優れるので、環R1C及び環R2Cのうちの少なくとも1つが芳香族炭化水素環であることが好ましく、両方が芳香族炭化水素環であることがより好ましく、両方がベンゼン環であることが更に好ましい。
 環R1C及び環R2Cが有していてもよい置換基としては、好ましくは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子であり、より好ましくは、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であり、更に好ましくは、アリール基、1価の複素環基又は置換アミノ基であり、特に好ましくは、アリール基又は1価の複素環基であり、とりわけ好ましくは1価の複素環基であり、これらの基は更に置換基を有していてもよい。
 環R1C及び環R2Cが有していてもよい置換基であるアリール基の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~40であり、より好ましくは6~25である。
 環R1C及び環R2Cが有していてもよい置換基であるアリール基としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、インデン環、フルオレン環、スピロビフルオレン環、フェナントレン環、ジヒドロフェナントレン環、ピレン環、クリセン環、トリフェニレン環又はこれらの環が縮合した環から、環を構成する炭素原子に直接結合する水素原子1個を除いた基が挙げられ、好ましくは、ベンゼン環、ナフタレン環、フルオレン環、スピロビフルオレン環、フェナントレン環、ジヒドロフェナントレン環又はトリフェニレン環から、環を構成する炭素原子に直接結合する水素原子1個を除いた基であり、より好ましくは、ベンゼン環、フルオレン環又はスピロビフルオレン環から、環を構成する炭素原子に直接結合する水素原子1個を除いた基であり、更に好ましくはフルオレン環又はスピロビフルオレン環から、環を構成する炭素原子に直接結合する水素原子1個を除いた基であり、これらの基は更に置換基を有していてもよい。
 環R1C及び環R2Cが有していてもよい置換基である1価の複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~60であり、好ましくは、3~30であり、より好ましくは、3~15である。
 環R1C及び環R2Cが有していてもよい置換基である1価の複素環基としては、例えば、ピロール環、ジアゾール環、トリアゾール環、フラン環、チオフェン環、オキサジアゾール環、チアジアゾール環、ピリジン環、ジアザベンゼン環、トリアジン環、アザナフタレン環、ジアザナフタレン環、トリアザナフタレン環、アザアントラセン環、ジアザアントラセン環、トリアザアントラセン環、アザフェナントレン環、ジアザフェナントレン環、トリアザフェナントレン環、ジベンゾフラン環、ジベンゾチオフェン環、ジベンゾシロール環、ジベンゾホスホール環、カルバゾール環、アザカルバゾール環、ジアザカルバゾール環、フェノキサジン環、フェノチアジン環、ジヒドロアクリジン環、ジヒドロフェナジン環又はこれらの環に芳香環が縮合した環から、環を構成する炭素原子又はヘテロ原子に直接結合する水素原子1個を除いた基が挙げられ、好ましくは、ピリジン環、ジアザベンゼン環、トリアジン環、アザナフタレン環、ジアザナフタレン環、ジベンゾフラン環、ジベンゾチオフェン環、カルバゾール環、アザカルバゾール環、ジアザカルバゾール環、フェノキサジン環、フェノチアジン環、ジヒドロアクリジン環又はジヒドロフェナジン環から、環を構成する炭素原子又はヘテロ原子に直接結合する水素原子1個を除いた基であり、より好ましくは、ピリジン環、ジアザベンゼン環、トリアジン環、ジベンゾフラン環、ジベンゾチオフェン環、カルバゾール環、アザカルバゾール環、ジアザカルバゾール環、フェノキサジン環、フェノチアジン環、ジヒドロアクリジン環又はジヒドロフェナジン環から、環を構成する炭素原子又はヘテロ原子に直接結合する水素原子1個を除いた基であり、更に好ましくは、ジベンゾフラン環、ジベンゾチオフェン環、カルバゾール環、フェノキサジン環、フェノチアジン環、ジヒドロアクリジン環又はジヒドロフェナジン環から、環を構成する炭素原子又はヘテロ原子に直接結合する水素原子1個を除いた基であり、特に好ましくは、ジベンゾフラン環、ジベンゾチオフェン環又はカルバゾール環から、環を構成する炭素原子又はヘテロ原子に直接結合する水素原子1個を除いた基であり、とりわけ好ましくは、ジベンゾフラン環又はジベンゾチオフェン環から、環を構成する炭素原子又はヘテロ原子に直接結合する水素原子1個を除いた基であり、これらの環は置換基を有していてもよい。
 環R1C及び環R2Cが有していてもよい置換基である置換アミノ基において、アミノ基が有する置換基としては、アリール基又は1価の複素環基が好ましく、アリール基がより好ましく、これらの基は更に置換基を有していてもよい。アミノ基が有する置換基であるアリール基の例及び好ましい範囲は、環R1C及び環R2Cが有していてもよい置換基であるアリール基の例及び好ましい範囲と同じである。アミノ基が有する置換基である1価の複素環基の例及び好ましい範囲は、環R1C及び環R2Cが有していてもよい置換基である1価の複素環基の例及び好ましい範囲と同じである。
 環R1C及び環R2Cが有していてもよい置換基が更に有していてもよい置換基としては、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子が好ましく、アルキル基、シクロアルキル基、アリール基又は1価の複素環基がより好ましく、アルキル基又はアリール基が更に好ましく、これらの基は更に置換基を有していてもよいが、これらの基は更に置換基を有さないことが好ましい。
 環R1C及び環R2Cが有していてもよい置換基が更に有していてもよい置換基であるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、環R1C及び環R2Cが有していてもよい置換基であるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
 RCは、本発明の発光素子の輝度寿命がより優れるので、好ましくは、硫黄原子又は式(C’-1)で表される基であり、より好ましくは、式(C’-1)で表される基である。
 ・式(C’-1)で表される基
 RC'は、本発明の発光素子の輝度寿命がより優れるので、好ましくは炭素原子、ケイ素原子又はゲルマニウム原子であり、より好ましくは炭素原子又はケイ素原子であり、更に好ましくは炭素原子である。
 本発明の発光素子の輝度寿命がより優れるので、環R3C及び環R4Cのうちの少なくとも1つが芳香族炭化水素環であることが好ましく、両方が芳香族炭化水素環であることがより好ましく、両方がベンゼン環であることが更に好ましい。
 環R3C及び環R4Cで表される芳香族炭化水素環環及び芳香族複素環の例及び好ましい範囲は、それぞれ、環R1C及び環R2Cで表される芳香族炭化水素環及び芳香族複素環の例及び好ましい範囲の例及び好ましい範囲と同じである。
 環R3C及び環R4Cが有していてもよい置換基の例及び好ましい範囲は、環R1C及び環R2Cが有していてもよい置換基の例及び好ましい範囲と同じである。
 環R3C及び環R4Cが有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲は、環R1C及び環R2Cが有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。
 RCが式(C’-1)で表される基である場合、本発明の発光素子の輝度寿命がより優れるので、環R1C、環R2C、環R3C及び環R4Cのうちの少なくとも1つは、アリール基又は1価の複素環基を有することが好ましく、環R1C、環R2C、環R3C及び環R4Cのうちの少なくとも1つは後述する式(D-1)又は式(E-1)で表される基を有することがより好ましく、環R1C、環R2C、環R3C及び環R4Cのうちの少なくとも1つは式(D-1)で表される基を有することが更に好ましい。
 RCが式(C’-1)で表される基であって、環R1C、環R2C、環R3C及び環R4Cのうちの少なくとも1つがアリール基又は1価の複素環基を有する場合、環R1C、環R2C、環R3C及び環R4Cが有するアリール基及び1価の複素環基の合計の個数は、好ましくは1~5個であり、より好ましくは、1~3個であり、更に好ましくは1又は2個であり、特に好ましくは1個である。
 RCが式(C’-1)で表される基であって、環R1C、環R2C、環R3C及び環R4Cのうちの少なくとも1つが後述する式(D-1)又は式(E-1)で表される基を有する場合、環R1C、環R2C、環R3C及び環R4Cが有する式(D-1)及び式(E-1)で表される基の合計の個数は、好ましくは1~5個であり、より好ましくは1~3個であり、更に好ましくは1又は2個であり、特に好ましくは1個である。
 RCが酸素原子又は硫黄原子である場合、本発明の発光素子の輝度寿命がより優れるので、環R1C及び環R2Cのうちの少なくとも1つは、アリール基又は1価の複素環基を有することが好ましく、後述する式(D-1)又は式(E-1)で表される基を有することがより好ましく、式(E-1)で表される基を有することが更に好ましく、これらの基は置換基を有していてもよい。
 RCが酸素原子又は硫黄原子であり、環R1C及び環R2Cのうちの少なくとも1つがアリール基又は1価の複素環基を有する場合、環R1C及び環R2Cが有するアリール基及び1価の複素環基の合計の個数は、好ましくは1~5個であり、より好ましくは、1~3個であり、更に好ましくは1又は2個であり、特に好ましくは1個である。
 RCが酸素原子又は硫黄原子であり、環R1C及び環R2Cのうちの少なくとも1つが後述する式(D-1)又は式(E-1)で表される基を有する場合、環R1C及び環R2Cが有する式(D-1)及び式(E-1)で表される基の合計の個数は、好ましくは1~5個であり、より好ましくは1~3個であり、更に好ましくは1又は2個であり、特に好ましくは1個である。
 ・式(D-1)で表される基
Figure JPOXMLDOC01-appb-C000045
[式中、
 環RDは、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
 XD1及びXD2は、それぞれ独立に、単結合、酸素原子、硫黄原子、-N(RXD1)-で表される基、又は、-C(RXD2)2-で表される基を表す。RXD1及びRXD2は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。複数存在するRXD2は、同一でも異なっていてもよく、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。
 E1D、E2D、E3D及びE4Dは、それぞれ独立に、窒素原子又は炭素原子を表す。但し、E1D、E2D、E3D及びE4Dのうちの少なくとも1つは炭素原子である。
 R1D、R2D、R3D及びR4Dは、それぞれ独立に、結合手、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。但し、R1D、R2D、R3D及びR4Dのうちの1つは結合手である。
 E1Dが窒素原子の場合、R1Dは存在しない。E2Dが窒素原子の場合、R2Dは存在しない。E3Dが窒素原子の場合、R3Dは存在しない。E4Dが窒素原子の場合、R4Dは存在しない。
 R1Dが結合手の場合、E1Dは炭素原子である。R2Dが結合手の場合、E2Dは炭素原子である。R3Dが結合手の場合、E3Dは炭素原子である。R4Dが結合手の場合、E4Dは炭素原子である。
 R1DとR2Dとは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。R2DとR3Dとは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。R3DとR4Dとは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。R1DとRXD1とは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。R1DとRXD2とは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。R4DとRXD1とは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。R4DとRXD2とは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環RDが有していてもよい置換基とRXD1とは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環RDが有していてもよい置換基とRXD2とは、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。]
 環RDで表される芳香族炭化水素環及び芳香族複素環の例及び好ましい範囲は、それぞれ、環R1C及び環R2Cで表される芳香族炭化水素環及び芳香族複素環の例及び好ましい範囲と同じである。
 環RDが有していてもよい置換基の例及び好ましい範囲は、環R1C及び環R2Cが有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。
 環RDは、本発明の発光素子の輝度寿命がより優れるので、芳香族炭化水素環であることが好ましく、ベンゼン環であることがより好ましい。
 XD1及びXD2は、本発明の発光素子の輝度寿命がより優れるので、好ましくは単結合、酸素原子、硫黄原子、又は、-C(RXD2)2-で表される基であり、より好ましくは、単結合、酸素原子又は硫黄原子であり、更に好ましくは、単結合又は硫黄原子である。
 XD1及びXD2のうちの少なくとも一方は、単結合であることが好ましく、XD2が単結合であることがより好ましい。
 RXD1は、好ましくは、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくは、アリール基又は1価の複素環基であり、更に好ましくは、アリール基であり、これらの基は置換基を有していてもよい。
 RXD2は、好ましくは、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくはアルキル基又はアリール基であり、これらの基は置換基を有していてもよい。
 RXD1及びRXD2で表されるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、環R1C及び環R2Cが有していてもよい置換基であるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
 XD1及びXD2で表される-C(RXD2)2-で表される基中の2個のRXD2の組み合わせは、好ましくは両方がアルキル基若しくはシクロアルキル基、両方がアリール基、両方が1価の複素環基、又は、一方がアルキル基若しくはシクロアルキル基で他方がアリール基若しくは1価の複素環基であり、より好ましくは、両方がアリール基、又は、一方がアルキル基若しくはシクロアルキル基で他方がアリール基であり、更に好ましくは、両方がアリール基であり、これらの基は置換基を有していてもよい。2個存在するRXD2は互いに結合して、それぞれが結合する炭素原子と共に環を形成することが好ましい。RXD2が環を形成する場合、-C(RXD2)2-で表される基としては、好ましくは式(Y-A1)-式(Y-A5)で表される基であり、より好ましくは式(Y-A4)で表される基であり、これらの基は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000046
 RXD1及びRXD2が有していてもよい置換基の例及び好ましい範囲は、環R1C及び環R2Cが有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。
 E1D、E2D、E3D及びE4Dは、炭素原子であることが好ましい。
 R1D、R3D又はR4Dが結合手であることが好ましく、R1D又はR4Dが結合手であることがより好ましく、R4Dが結合手であることが更に好ましい。
 R1D、R2D、R3D及びR4Dが結合手以外である場合、R1D、R2D、R3D及びR4Dは、水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であることが好ましく、水素原子、アルキル基又はアリール基であることがより好ましく、水素原子であることが更に好ましく、これらの基は更に置換基を有していてもよい。
 R1D、R2D、R3D及びR4Dで表されるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、環R1C及び環R2Cが有していてもよい置換基であるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
 R1D、R2D、R3D及びR4Dが有していてもよい置換基の例及び好ましい範囲は、RXD1及びRXD2が有していてもよい置換基の例及び好ましい範囲と同じである。
 R1DとR2D、R2DとR3D、R3DとR4D、R1DとRXD1、R1DとRXD1、R1DとRXD2、R4DとRXD1、R4DとRXD2、RXD1と環RDが有していてもよい置換基、及び、RXD2と環RDが有していてもよい置換基は、それぞれ結合して、それぞれが結合する炭素原子とともに環を形成していてもよいが、環を形成しないことが好ましい。
 式(D-1)で表される基は、本発明の発光素子の輝度寿命がより優れるので、好ましくは、式(D-2)で表される基である。
 ・式(D-2)で表される基
Figure JPOXMLDOC01-appb-C000047
[式中、
 XD1、XD2、E1D、E2D、E3D、E4D、R1D、R2D、R3D及びR4Dは、前記と同じ意味を表す。
 E5D、E6D、E7D及びE8Dは、それぞれ独立に、窒素原子又は炭素原子を表す。
 R5D、R6D、R7D及びR8Dは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。
 E5Dが窒素原子の場合、R5Dは存在しない。E6Dが窒素原子の場合、R6Dは存在しない。E7Dが窒素原子の場合、R7Dは存在しない。E8Dが窒素原子の場合、R8Dは存在しない。
 R5DとR6D、R6DとR7D、R7DとR8D、R5DとRXD1、R5DとRXD2、R8DとRXD1、及び、R8DとRXD2は、それぞれ結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。]
 E5D、E6D、E7D及びE8Dは、炭素原子であることが好ましい。
 R5D、R6D、R7D及びR8Dの例及び好ましい範囲は、R1D、R2D、R3D及びR4Dが結合手以外である場合のR1D、R2D、R3D及びR4Dの例及び好ましい範囲と同じである。
 R5D、R6D、R7D及びR8Dが有していてもよい置換基の例及び好ましい範囲は、R1D、R2D、R3D及びR4Dが有していてもよい置換基の例及び好ましい範囲と同じである。
 R5DとR6D、R6DとR7D、R7DとR8D、R5DとRXD1、R5DとRXD2、R8DとRXD1、及び、R8DとRXD2は、それぞれ結合して、それぞれが結合する炭素原子とともに環を形成していてもよいが、環を形成しないことが好ましい。
 ・式(E-1)で表される基
Figure JPOXMLDOC01-appb-C000048
[式中、
 環RE1及び環RE2は、それぞれ独立に、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
 XE1は、単結合、酸素原子、硫黄原子、-N(RXE1)-で表される基、又は、-C(RXE2)2-で表される基を表す。RXE1及びRXE2は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。複数存在するRXE2は、同一でも異なっていてもよく、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。]
 環RE1及び環RE2で表される芳香族炭化水素環及び芳香族複素環の例及び好ましい範囲は、それぞれ、環R1C及び環R2Cで表される芳香族炭化水素環及び芳香族複素環の例及び好ましい範囲と同じである。
 環RE1及び環RE2が有していてもよい置換基の例及び好ましい範囲は、それぞれ、環R1C及び環R2Cが有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。
 本発明の発光素子の輝度寿命がより優れるので、環RE1及び環RE2のうちの少なくとも1つが芳香族炭化水素環であることが好ましく、両方が芳香族炭化水素環であることがより好ましく、両方がベンゼン環であることが更に好ましい。
 XE1は、本発明の発光素子の輝度寿命がより優れるので、好ましくは単結合、酸素原子、硫黄原子、又は、-C(RXD2)2-で表される基であり、より好ましくは、単結合、酸素原子又は硫黄原子であり、更に好ましくは、単結合である。
 RXE1で表される基の例及び好ましい範囲は、RXD1で表される基の例及び好ましい範囲と同じである。RXE2で表される基の例及び好ましい範囲は、RXD2で表される基の例及び好ましい範囲と同じである。
 式(E-1)で表される基は、本発明の発光素子の輝度寿命がより優れるので、好ましくは、式(E-2)で表される基である。
Figure JPOXMLDOC01-appb-C000049
[式中、
 XE1は、前記と同じ意味を表す。
 E1E、E2E、E3E、E4E、E5E、E6E、E7E及びE8Eは、それぞれ独立に、窒素原子又は炭素原子を表す。
 R1E、R2E、R3E、R4E、R5E、R6E、R7E及びR8Eは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。
 E1Eが窒素原子の場合、R1Eは存在しない。E2Eが窒素原子の場合、R2Eは存在しない。E3Eが窒素原子の場合、R3Eは存在しない。E4Eが窒素原子の場合、R4Eは存在しない。E5Eが窒素原子の場合、R5Eは存在しない。E6Eが窒素原子の場合、R6Eは存在しない。E7Eが窒素原子の場合、R7Eは存在しない。E8Eが窒素原子の場合、R8Eは存在しない。
 R1EとR2E、R2EとR3E、R3EとR4E、R5EとR6E、R6EとR7E、R7EとR8E、R5EとRXD1、R5EとRXD2、R1EとRXD1、及び、R1EとRXD2は、それぞれ結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。]
 E1E、E2E、E3E、E4E、E5E、E6E、E7E及びE8Eは、炭素原子であることが好ましい。
 R1E、R2E、R3E、R4E、R5E、R6E、R7E及びR8Eの例及び好ましい範囲は、R1D、R2D、R3D及びR4Dが結合手以外である場合のR1D、R2D、R3D及びR4Dの例及び好ましい範囲と同じである。
 R1E、R2E、R3E、R4E、R5E、R6E、R7E及びR8Eが有していてもよい置換基の例及び好ましい範囲は、R1D、R2D、R3D及びR4Dが有していてもよい置換基の例及び好ましい範囲と同じである。
 R1EとR2E、R2EとR3E、R3EとR4E、R5EとR6E、R6EとR7E、R7EとR8E、R5EとRXD1、R5EとRXD2、R1EとRXD1、及び、R1EとRXD2は、それぞれ結合して、それぞれが結合する炭素原子とともに環を形成していてもよいが、環を形成しないことが好ましい。
・式(C-2-1)で表される化合物及び式(C-2-2)で表される化合物
 式(C-1)で表される化合物は、本発明の発光素子の輝度寿命がより優れるので、式(C-2-1)で表される化合物又は式(C-2-2)で表される化合物であることが好ましく、式(C-2-1)で表される化合物であることがより好ましい。
 式(C-2-1)及び式(C-2-2)で表される化合物において、E11C、E12C、E13C、E14C、E21C、E22C、E23C、E24C、E31C、E32C、E33C、E34C、E41C、E42C、E43C及びE44Cは、炭素原子であることが好ましい。
 式(C-2-1)及び式(C-2-2)で表される化合物において、環R1C'、環R2C'、環R3C'及び環R4C'は、好ましくはベンゼン環である。
 式(C-2-2)で表される化合物において、RC''は、本発明の発光素子の輝度寿命がより優れるので、好ましくは硫黄原子である。
 式(C-2-1)で表される化合物において、R11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cは、水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であることが好ましく、水素原子、アリール基又は1価の複素環基であることがより好ましく、水素原子、式(D-1)で表される基又は式(E-1)で表される基であることが更に好ましく、水素原子又は式(D-1)で表される基であることが特に好ましく、これらの基は更に置換基を有していてもよい。
 式(C-2-1)で表される化合物において、R11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cのうちの少なくとも一つは、アリール基又は1価の複素環基であることが好ましく、式(D-1)で表される基又は式(E-1)で表される基であることがより好ましく、式(D-1)で表される基であることが更に好ましく、これらの基は更に置換基を有していてもよい。
 式(C-2-1)で表される化合物において、R11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cのうちの少なくとも一つがアリール基又は1価の複素環基である場合、R11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cがアリール基又は1価の複素環基である合計の個数は、好ましくは1~5個であり、より好ましくは1~3個であり、更に好ましくは1又は2個であり、特に好ましくは1個である。
 式(C-2-1)で表される化合物において、R11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cのうちの少なくとも1つが式(D-1)又は式(E-1)で表される基である場合、R11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cが式(D-1)又は式(E-1)で表される基である合計の個数は、好ましくは1~5個であり、より好ましくは1~3個であり、更に好ましくは1又は2個であり、特に好ましくは1個である。
 式(C-2-1)で表される化合物において、R11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cのうちの少なくとも一つがアリール基又は1価の複素環基である場合、R11C、R12C、R14C、R21C、R22C、R24C、R31C、R32C、R34C、R41C、R42C及びR44Cのうちの少なくとも一つがアリール基又は1価の複素環基であることが好ましく、R11C、R12C、R21C、R22C、R31C、R32C、R41C及びR42Cのうちの少なくとも一つがアリール基又は1価の複素環基であることがより好ましく、R11C、R12C、R21C及びR22Cのうちの少なくとも一つがアリール基又は1価の複素環基であることが更に好ましく、R11C及びR12Cのうちの少なくとも一つがアリール基又は1価の複素環基であることが特に好ましく、これらの基は置換基を有していてもよい。
 式(C-2-1)で表される化合物において、R11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cのうちの少なくとも一つが式(D-1)で表される基又は式(E-1)で表される基である場合、R11C、R12C、R14C、R21C、R22C、R24C、R31C、R32C、R34C、R41C、R42C及びR44Cのうちの少なくとも一つが式(D-1)で表される基又は式(E-1)で表される基であることが好ましく、R11C、R12C、R21C、R22C、R31C、R32C、R41C及びR42Cのうちの少なくとも一つが式(D-1)で表される基又は式(E-1)で表される基であることがより好ましく、R11C、R12C、R21C及びR22Cのうちの少なくとも一つがが式(D-1)で表される基又は式(E-1)で表される基であることが更に好ましく、R11C及びR12Cのうちの少なくとも一つが式(D-1)で表される基又は式(E-1)で表される基であることが特に好ましい。
 式(C-2-2)で表される化合物において、R11C、R12C、R13C、R14C、R21C、R22C、R23C及びR24Cは、水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であることが好ましく、水素原子、アリール基又は1価の複素環基であることがより好ましく、水素原子、又は、式(D-1)若しくは式(E-1)で表される基であることが更に好ましく、水素原子、又は、式(E-1)で表される基であることが特に好ましく、これらの基は更に置換基を有していてもよい。
 式(C-2-2)で表される化合物において、R11C、R12C、R13C、R14C、R21C、R22C、R23C及びR24Cのうちの少なくとも1つは、アリール基又は1価の複素環基であることが好ましく、式(D-1)又は式(E-1)で表される基であることがより好ましく、式(E-1)で表される基であることが更に好ましく、これらの基は更に置換基を有していてもよい。
 式(C-2-2)で表される化合物において、R11C、R12C、R13C、R14C、R21C、R22C、R23C及びR24Cのうちの少なくとも1つがアリール基又は1価の複素環基である場合、R11C、R12C、R13C、R14C、R21C、R22C、R23C及びR24Cがアリール基、1価の複素環基又は置換アミノ基である合計の個数は、好ましくは1~5個であり、より好ましくは1~3個であり、更に好ましくは1又は2個であり、特に好ましくは2個である。
 式(C-2-2)で表される化合物において、R11C、R12C、R13C、R14C、R21C、R22C、R23C及びR24Cのうちの少なくとも1つが式(D-1)又は式(E-1)で表される基である場合、R11C、R12C、R13C、R14C、R21C、R22C、R23C及びR24Cが式(D-1)又は式(E-1)で表される基である合計の個数は、好ましくは1~5個であり、より好ましくは1~3個であり、更に好ましくは1又は2個であり、特に好ましくは2個である。
 式(C-2-2)で表される化合物において、R11C、R12C、R13C、R14C、R21C、R22C、R23C及びR24Cのうちの少なくとも1つがアリール基又は1価の複素環基である場合、R11C、R12C、R13C、R21C、R22C及びR23Cのうちの少なくとも1つがアリール基又は1価の複素環基であることが好ましく、R12C及びR22Cのうちの少なくとも1つがアリール基又は1価の複素環基であることがより好ましい。
 式(C-2-2)で表される化合物において、R11C、R12C、R13C、R14C、R21C、R22C、R23C及びR24Cのうちの少なくとも1つが式(D-1)又は式(E-1)で表される基である場合、R11C、R12C、R13C、R21C、R22C及びR23Cのうちの少なくとも1つが式(D-1)又は式(E-1)で表される基であることが好ましく、R12C及びR22Cのうちの少なくとも1つが式(D-1)又は式(E-1)で表される基であることがより好ましく、R12C及びR22Cのうちの少なくとも1つが式(E-1)で表される基であることが更に好ましい。
 式(C-2-1)及び式(C-2-2)で表される化合物において、R11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cで表されるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、環R1C及び環R2Cが有していてもよい置換基であるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
 式(C-2-1)及び式(C-2-2)で表される化合物において、R11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cが有していてもよい置換基の例及び好ましい範囲は、環R1C及び環R2Cが有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。
 式(C-2-1)及び式(C-2-2)で表される化合物において、R11CとR12C、R12CとR13C、R13CとR14C、R14CとR34C、R34CとR33C、R33CとR32C、R32CとR31C、R31CとR41C、R41CとR42C、R42CとR43C、R43CとR44C、R44CとR24C、R24CとR23C、R23CとR22C、R22CとR21C、及び、R21CとR11Cは、それぞれ結合して、それぞれが結合する炭素原子とともに環を形成していてもよいが、環を形成しないことが好ましい。
 式(C-2-1)で表される化合物は、本発明の発光素子の輝度寿命がより優れるので、式(C-3-1)で表される化合物であることが好ましい。
 式(C-2-2)で表される化合物は、本発明の発光素子の輝度寿命がより優れるので、式(C-3-2)で表される化合物であることが好ましい。
 式(C-1)で表される化合物としては、例えば、式(C-101)~式(C-146)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
[式中、Xは酸素原子又は硫黄原子を表す。Xが複数存在する場合、それらは同一でも異なっていてもよい。]
 Xは、硫黄原子であることが好ましい。
 式(C-1)で表される化合物は、例えば、Aldrich、Luminescence Technology Corp.から入手可能である。式(C-1)で表される化合物は、その他には、例えば、国際公開2014/023388号、国際公開2013/045408号、国際公開2013/045410号、国際公開2013/045411号、国際公開2012/048820号、国際公開2012/048819号、国際公開2011/006574号、「Organic Electronics vol.14、902-908(2013)」、国際公開2009/096202号、国際公開2009/086028号、特開2009-267255号公報、特開2009-46408号公報に記載されている方法に従って合成することができる。
 ・その他
 本発明の発光素子の輝度寿命がより優れるので、第1の有機層は、式(C-1)で表される化合物と、燐光発光性化合物とを含有する層であることが好ましい。
 第1の有機層には、式(C-1)で表される化合物が1種単独で含有されていてもよく、2種以上含有されていてもよい。第1の有機層が、式(C-1)で表される化合物と燐光発光性化合物とを含有する層である場合、燐光発光性化合物が1種単独で含有されていてもよく、2種以上含有されていてもよい。
 第1の有機層が、式(C-1)で表される化合物と燐光発光性化合物とを含有する層である場合、燐光発光性化合物の含有量は、式(C-1)で表される化合物と燐光発光性化合物との合計を100質量部とした場合、通常、0.01~95質量部であり、好ましくは0.1~70質量部であり、より好ましくは1~50質量部であり、更に好ましくは10~40質量部である。
 第1の有機層が、式(C-1)で表される化合物と燐光発光性化合物とを含有する層である場合、式(C-1)で表される化合物は、本発明の発光素子の輝度寿命がより優れるので、正孔注入性、正孔輸送性、電子注入性及び電子輸送性から選ばれる少なくとも1つの機能を有するホスト材料であることが好ましい。
 第1の有機層が、式(C-1)で表される化合物と燐光発光性化合物とを含有する層である場合、式(C-1)で表される化合物の有する最低励起三重項状態(T1)は、本発明の発光素子の輝度寿命がより優れるので、第1の有機層に含有される燐光発光性化合物の有するT1と同等のエネルギー準位、又は、より高いエネルギー準位であることが好ましく、より高いエネルギー準位であることがより好ましい。
 燐光発光性化合物としては、本発明の発光素子を溶液塗布プロセスで作製できるので、第1の有機層に含有される式(C-1)で表される化合物を溶解することが可能な溶媒に対して溶解性を示すものであることが好ましい。
 「燐光発光性化合物」は、通常、室温(25℃)で燐光発光性を示す化合物を意味するが、好ましくは、室温で三重項励起状態からの発光を示す金属錯体である。この三重項励起状態からの発光を示す金属錯体は、中心金属原子及び配位子を有する。
 中心金属原子としては、例えば、原子番号40以上の原子で、錯体にスピン-軌道相互作用があり、一重項状態と三重項状態との間の項間交差を起こし得る金属原子が挙げられる。金属原子としては、例えば、ルテニウム原子、ロジウム原子、パラジウム原子、イリジウム原子及び白金原子が挙げられ、本発明の発光素子の輝度寿命がより優れるので、好ましくはイリジウム原子又は白金原子である。
 配位子としては、例えば、中心金属原子との間に、配位結合及び共有結合からなる群から選ばれる少なくとも1種の結合を形成する、中性若しくはアニオン性の単座配位子、又は、中性若しくはアニオン性の多座配位子が挙げられる。中心金属原子と配位子との間の結合としては、例えば、金属-窒素結合、金属-炭素結合、金属-酸素結合、金属-リン結合、金属-硫黄結合及び金属-ハロゲン結合が挙げられる。多座配位子とは、通常、2座以上6座以下の配位子を意味する。
 ・式(1)で表される燐光発光性化合物
 燐光発光性化合物は、前記式(1)で表される燐光発光性化合物であることが好ましい。
 Mは、本発明の発光素子の輝度寿命がより優れるので、イリジウム原子又は白金原子であることが好ましく、イリジウム原子であることがより好ましい。
 Mがルテニウム原子、ロジウム原子又はイリジウム原子の場合、n1は2又は3であることが好ましく、3であることがより好ましい。
 Mがパラジウム原子又は白金原子の場合、n1は2であることが好ましい。
 E1及びE2は、炭素原子であることが好ましい。
 環L1は、5員の芳香族複素環又は6員の芳香族複素環であることが好ましく、2つ以上4つ以下の窒素原子を構成原子として有する5員の芳香族複素環又は1つ以上4つ以下の窒素原子を構成原子として有する6員の芳香族複素環であることがより好ましく、2つ以上3つ以下の窒素原子を構成原子として有する5員の芳香族複素環又は1つ以上2つ以下の窒素原子を構成原子として有する6員の芳香族複素環であることが更に好ましく、これらの環は置換基を有していてもよい。但し、環L1が6員の芳香族複素環である場合、E1は炭素原子であることが好ましい。
 環L1としては、例えば、ジアゾール環、トリアゾール環、ピリジン環、ジアザベンゼン環、トリアジン環、アザナフタレン環及びジアナフタレン環が挙げられ、ジアゾール環、トリアゾール環、ピリジン環、ジアザベンゼン環、キノリン環又はイソキノリン環が好ましく、ジアゾール環、トリアゾール環、ピリジン環、キノリン環又はイソキノリン環がより好ましく、ジアゾール環又はトリアゾール環が更に好ましく、ジアゾール環が特に好ましく、これらの環は置換基を有していてもよい。
 環L2は、5員若しくは6員の芳香族炭化水素環、又は、5員若しくは6員の芳香族複素環であることが好ましく、6員の芳香族炭化水素環又は6員の芳香族複素環であることがより好ましく、6員の芳香族炭化水素環であることが更に好ましく、これらの環は置換基を有していてもよい。環R2が6員の芳香族複素環である場合、E2は炭素原子であることが好ましい。
 環L2としては、例えば、ベンゼン環、ナフタレン環、フルオレン環、フェナントレン環、インデン環、ピリジン環、ジアザベンゼン環及びトリアジン環が挙げられ、ベンゼン環、ナフタレン環、フルオレン環、ピリジン環又はジアザベンゼン環が好ましく、ベンゼン環、ピリジン環又はジアザベンゼン環がより好ましく、ベンゼン環が更に好ましく、これらの環は置換基を有していてもよい。
 環L1及び環L2が有していてもよい置換基としては、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子が好ましく、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基、置換アミノ基又はフッ素原子がより好ましく、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基が更に好ましく、アリール基又は1価の複素環基が特に好ましく、アリール基がとりわけ好ましく、これらの基は更に置換基を有していてもよい。
 環L1及び環L2が有していてもよい置換基であるアリール基としては、フェニル基、ナフチル基、アントラセニル基、フェナントレニル基、ジヒドロフェナントレニル基、フルオレニル基又はピレニル基が好ましく、フェニル基、ナフチル基又はフルオレニル基がより好ましく、フェニル基が更に好ましく、これらの基は更に置換基を有していてもよい。
 環L1及び環L2が有していてもよい置換基である1価の複素環基としては、ピリジル基、ピリミジニル基、トリアジニル基、キノリニル基、イソキノリニル基、ジベンゾフラニル基、ジベンゾチエニル基、カルバゾリル基、アザカルバゾリル基、ジアザカルバゾリル基、フェノキサジニル基又はフェノチアジニル基が好ましく、ピリジル基、ピリミジニル基、トリアジニル基、カルバゾリル基、アザカルバゾリル基又はジアザカルバゾリル基がより好ましく、ピリジル基、ピリミジニル基又はトリアジニル基が更に好ましく、トリアジニル基が特に好ましく、これらの基は更に置換基を有していてもよい。
 環L1及び環L2が有していてもよい置換基である置換アミノ基において、アミノ基が有する置換基としては、アリール基又は1価の複素環基が好ましく、アリール基がより好ましく、これらの基は更に置換基を有していてもよい。アミノ基が有する置換基におけるアリール基の例及び好ましい範囲は、環L1及び環L2が有していてもよい置換基におけるアリール基の例及び好ましい範囲と同じである。アミノ基が有する置換基における1価の複素環基の例及び好ましい範囲は、環L1及び環L2が有していてもよい置換基における1価の複素環基の例及び好ましい範囲と同じである。
 環L1及び環L2が有していてもよい置換基が更に有していてもよい置換基としては、アルキル基、シクロアルキル基、アリール基、1価の複素環基、アルコキシ基、シクロアルコキシ基又は置換アミノ基が好ましく、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基がより好ましく、アルキル基、シクロアルキル基又はアリール基が更に好ましく、アルキル基又はシクロアルキル基が特に好ましく、これらの基は更に置換基を有していてもよいが、これらの基は更に置換基を有さないことが好ましい。
 環L1及び環L2が有していてもよい置換基であるアリール基、1価の複素環基又は置換アミノ基は、本発明の発光素子の輝度寿命がより優れるので、好ましくは、式(D-A)、式(D-B)又は式(D-C)で表される基であり、より好ましくは、式(D-A)又は式(D-C)で表される基であり、更に好ましくは、式(D-C)で表される基である。
Figure JPOXMLDOC01-appb-C000061
[式中、
 mDA1、mDA2及びmDA3は、それぞれ独立に、0以上の整数を表す。
 GDAは、窒素原子、芳香族炭化水素基又は複素環基を表し、これらの基は置換基を有していてもよい。
 ArDA1、ArDA2及びArDA3は、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。ArDA1、ArDA2及びArDA3が複数ある場合、それらはそれぞれ同一でも異なっていてもよい。
 TDAは、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるTDAは、同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000062
[式中、
 mDA1、mDA2、mDA3、mDA4、mDA5、mDA6及びmDA7は、それぞれ独立に、0以上の整数を表す。
 GDAは、窒素原子、芳香族炭化水素基又は複素環基を表し、これらの基は置換基を有していてもよい。複数あるGDAは、同一でも異なっていてもよい。
 ArDA1、ArDA2、ArDA3、ArDA4、ArDA5、ArDA6及びArDA7は、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。ArDA1、ArDA2、ArDA3、ArDA4、ArDA5、ArDA6及びArDA7が複数ある場合、それらはそれぞれ同一でも異なっていてもよい。
 TDAは、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるTDAは、同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000063
[式中、
 mDA1は、0以上の整数を表す。
 ArDA1は、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。ArDA1が複数ある場合、それらは同一でも異なっていてもよい。
 TDAは、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。]
 mDA1、mDA2、mDA3、mDA4、mDA5、mDA6及びmDA7は、通常10以下の整数であり、好ましくは5以下の整数であり、より好ましくは2以下の整数であり、更に好ましくは0又は1である。mDA2、mDA3、mDA4、mDA5、mDA6及びmDA7は、同一の整数であることが好ましく、mDA1、mDA2、mDA3、mDA4、mDA5、mDA6及びmDA7は、同一の整数であることがより好ましい。
 GDAは、好ましくは芳香族炭化水素基又は複素環基であり、より好ましくはベンゼン環、ピリジン環、ピリミジン環、トリアジン環又はカルバゾール環から環を構成する炭素原子又は窒素原子に直接結合する水素原子3個を除いてなる基であり、これらの基は置換基を有していてもよい。
 GDAが有していてもよい置換基としては、好ましくは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基であり、より好ましくは、アルキル基、シクロアルキル基、アルコキシ基又はシクロアルコキシ基であり、更に好ましくは、アルキル基又はシクロアルキル基であり、これらの基は更に置換基を有していてもよいが、これらの基は更に置換基を有さないことが好ましい。
 GDAは、好ましくは式(GDA-11)~式(GDA-15)で表される基であり、より好ましくは式(GDA-11)~式(GDA-14)で表される基であり、更に好ましくは式(GDA-11)又は式(GDA-14)で表される基であり、特に好ましくは式(GDA-11)で表される基である。
Figure JPOXMLDOC01-appb-C000064
[式中、
 *は、式(D-A)におけるArDA1、式(D-B)におけるArDA1、式(D-B)におけるArDA2、又は、式(D-B)におけるArDA3との結合を表す。
 **は、式(D-A)におけるArDA2、式(D-B)におけるArDA2、式(D-B)におけるArDA4、又は、式(D-B)におけるArDA6との結合を表す。
 ***は、式(D-A)におけるArDA3、式(D-B)におけるArDA3、式(D-B)におけるArDA5、又は、式(D-B)におけるArDA7との結合を表す。
 RDAは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は更に置換基を有していてもよい。RDAが複数ある場合、それらは同一でも異なっていてもよい。]
 RDAは、好ましくは水素原子、アルキル基、シクロアルキル基、アルコキシ基又はシクロアルコキシ基であり、より好ましくは水素原子、アルキル基又はシクロアルキル基であり、これらの基は置換基を有していてもよい。
 ArDA1、ArDA2、ArDA3、ArDA4、ArDA5、ArDA6及びArDA7は、好ましくは、フェニレン基、フルオレンジイル基又はカルバゾールジイル基であり、より好ましくは式(ArDA-1)~式(ArDA-5)で表される基であり、更に好ましくは式(ArDA-1)~式(ArDA-3)で表される基であり、特に好ましくは式(ArDA-1)又は式(ArDA-2)で表される基であり、とりわけ好ましくは式(ArDA-1)で表される基であり、これらの基は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000065
[式中、
 RDAは、前記と同じ意味を表す。
 RDBは、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。RDBが複数ある場合、それらは同一でも異なっていてもよい。]
 RDBは、好ましくはアルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくはアリール基又は1価の複素環基であり、更に好ましくはアリール基であり、これらの基は置換基を有していてもよい。
 ArDA1、ArDA2、ArDA3、ArDA4、ArDA5、ArDA6、ArDA7及びRDBが有していてもよい置換基の例及び好ましい範囲は、GDAが有していてもよい置換基の例及び好ましい範囲と同じである。
 TDAは、好ましくは式(TDA-1)~式(TDA-3)で表される基であり、より好ましくは式(TDA-1)で表される基である。
Figure JPOXMLDOC01-appb-C000066
[式中、RDA及びRDBは、前記と同じ意味を表す。]
 式(D-A)で表される基は、好ましくは式(D-A1)~式(D-A5)で表される基であり、より好ましくは式(D-A1)又は式(D-A3)~式(D-A5)で表される基であり、更に好ましくは式(D-A1)で表される基である。
Figure JPOXMLDOC01-appb-C000067
[式中、
 Rp1、Rp2、Rp3及びRp4は、それぞれ独立に、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基又はハロゲン原子を表す。Rp1、Rp2及びRp4が複数ある場合、それらはそれぞれ同一であっても異なっていてもよい。
 np1は、0~5の整数を表し、np2は0~3の整数を表し、np3は0又は1を表し、np4は0~4の整数を表す。複数あるnp1は、同一でも異なっていてもよい。]
 式(D-B)で表される基は、好ましくは式(D-B1)~式(D-B6)で表される基であり、より好ましくは式(D-B1)~式(D-B3)又は式(D-B5)で表される基であり、更に好ましくは式(D-B1)で表される基である。
Figure JPOXMLDOC01-appb-C000069
[式中、
 Rp1、Rp2、Rp3及びRp4は、それぞれ独立に、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基又はハロゲン原子を表す。Rp1、Rp2及びRp4が複数ある場合、それらはそれぞれ同一でも異なっていてもよい。
 np1は0~5の整数を表し、np2は0~3の整数を表し、np3は0又は1を表し、np4は0~4の整数を表す。複数あるnp1は同一でも異なっていてもよい。複数あるnp2は、それらは同一でも異なっていてもよい。]
 式(D-C)で表される基は、好ましくは式(D-C1)~式(D-C4)で表される基であり、より好ましくは式(D-C1)又は式(D-C2)で表される基であり、更に好ましくは式(D-C2)で表される基である。
Figure JPOXMLDOC01-appb-C000070
[式中、
 Rp4、Rp5及びRp6は、それぞれ独立に、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基又はハロゲン原子を表す。Rp4、Rp5及びRp6が複数ある場合、それらはそれぞれ同一であっても異なっていてもよい。
 np4は0~4の整数を表し、np5は0~5の整数を表し、np6は0~5の整数を表す。]
 np1は、好ましくは0~2の整数であり、より好ましくは0又は1である。np2は、好ましくは0又は1であり、より好ましくは0である。np3は好ましくは0である。np4は、好ましくは0~2の整数であり、より好ましくは0である。np5は、好ましくは0~3の整数であり、より好ましくは0又は1である。np6は、好ましくは0~2の整数であり、より好ましくは0又は1である。
 Rp1、Rp2、Rp3、Rp4、Rp5及びRp6で表されるアルキル基又はシクロアルキル基としては、好ましくは、メチル基、エチル基、イソプロピル基、tert-ブチル基、ヘキシル基、2-エチルヘキシル基、シクロヘキシル基又はtert-オクチル基である。
 Rp1、Rp2、Rp3、Rp4、Rp5及びRp6で表されるアルコキシ基又はシクロアルコキシ基としては、好ましくは、メトキシ基、2-エチルヘキシルオキシ基又はシクロへキシルオキシ基である。
 Rp1、Rp2、Rp3、Rp4、Rp5及びRp6は、好ましくは、置換基を有していてもよいアルキル基又は置換基を有していてもよいシクロアルキル基であり、より好ましくは、置換基を有していてもよいアルキル基であり、更に好ましくは、メチル基、エチル基、イソプロピル基、tert-ブチル基、ヘキシル基、2-エチルヘキシル基又はtert-オクチル基である。
 環L1が有していてもよい置換基が複数存在する場合、互いに結合して、それぞれが結合する原子とともに環を形成しないことが好ましい。
 環L2が有していてもよい置換基が複数存在する場合、互いに結合して、それぞれが結合する原子とともに環を形成しないことが好ましい。
 環L1が有していてもよい置換基と、環L2が有していてもよい置換基とは、互いに結合して、それぞれが結合する原子とともに環を形成しないことが好ましい。
 [アニオン性の2座配位子]
 A1-G1-A2で表されるアニオン性の2座配位子としては、例えば、下記式で表される配位子が挙げられる。但し、A1-G1-A2で表されるアニオン性の2座配位子は、添え字n1でその数を定義されている配位子とは異なる。
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
[式中、
 *は、Mと結合する部位を表す。
 RL1は、水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。複数存在するRL1は、同一でも異なっていてもよい。
 RL2は、アルキル基、シクロアルキル基、アリール基、1価の複素環基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。]
 RL1は、水素原子、アルキル基、シクロアルキル基、アリール基又はフッ素原子であることが好ましく、水素原子又はアルキル基であることがより好ましく、これらの基は置換基を有していてもよい。
 RL2は、アルキル基又はアリール基であることが好ましく、これらの基は置換基を有していてもよい。
 式(1)で表される燐光発光性化合物は、本発明の発光素子の輝度寿命がより優れるので、式(1-A)で表される燐光発光性化合物又は式(1-B)で表される燐光発光性化合物であることが好ましく、式(1-A)で表される燐光発光性化合物であることがより好ましい。
[式(1-A)で表される燐光発光性化合物]
 環L1Aがジアゾール環である場合、E11Aが窒素原子であるイミダゾール環、又は、E12Aが窒素原子であるイミダゾール環が好ましく、E11Aが窒素原子であるイミダゾール環がより好ましい。
 環L1Aがトリアゾール環である場合、E11A及びE12Aが窒素原子であるトリアゾール環、又は、E11A及びE13Aが窒素原子であるトリアゾール環が好ましく、E11A及びE12Aが窒素原子であるトリアゾール環がより好ましい。
 環L1Aはジアゾール環であることが好ましい。
 R11A、R12A、R13A、R21A、R22A、R23A及びR24Aで表されるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、環L1及び環L2が有していてもよい置換基であるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
 R11A、R12A、R13A、R21A、R22A、R23A及びR24Aが有していてもよい置換基の例及び好ましい範囲は、環L1及び環L2が有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。
 E11Aが窒素原子であり、且つ、R11Aが存在する場合、R11Aはアルキル基、シクロアルキル基、アリール基又は1価の複素環基であることが好ましく、アリール基又は1価の複素環基であることがより好ましく、アリール基であることが更に好ましく、これらの基は置換基を有していてもよい。
 E11Aが炭素原子である場合、R11Aは水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であることが好ましく、水素原子、アルキル基、シクロアルキル基又はアリール基であることがより好ましく、水素原子、アルキル基又はシクロアルキル基であることが更に好ましく、水素原子であることが特に好ましく、これらの基は置換基を有していてもよい。
 E12Aが窒素原子であり、且つ、R12Aが存在する場合、R12Aはアルキル基、シクロアルキル基、アリール基又は1価の複素環基であることが好ましく、アリール基又は1価の複素環基であることがより好ましく、アリール基であることが更に好ましく、これらの基は置換基を有していてもよい。
 E12Aが炭素原子である場合、R12Aは水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であることが好ましく、水素原子、アルキル基、シクロアルキル基又はアリール基であることがより好ましく、水素原子、アルキル基又はシクロアルキル基であることが更に好ましく、水素原子であることが特に好ましく、これらの基は置換基を有していてもよい。
 E13Aが窒素原子であり、且つ、R13Aが存在する場合、R13Aはアルキル基、シクロアルキル基、アリール基又は1価の複素環基であることが好ましく、アリール基又は1価の複素環基であることがより好ましく、アリール基であることが更に好ましく、これらの基は置換基を有していてもよい。
 E13Aが炭素原子である場合、R13Aは水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であることが好ましく、水素原子、アルキル基、シクロアルキル基又はアリール基であることがより好ましく、水素原子、アルキル基又はシクロアルキル基であることが更に好ましく、水素原子であることが特に好ましく、これらの基は置換基を有していてもよい。
 環L1Aがジアゾール環である場合、環L1Aは、好ましくは、E11Aが窒素原子であり、且つ、R11Aが存在するイミダゾール環、又は、E12Aが窒素原子であり、且つ、R12Aが存在するイミダゾール環であり、より好ましくは、E11Aが窒素原子であり、且つ、R11Aが存在するイミダゾール環である。
 環L1Aがトリアゾール環である場合、環L1Aは、好ましくは、E11A及びE12Aが窒素原子であり、且つ、R11Aが存在しR12Aが存在しないトリアゾール環、又は、E11A及びE13Aが窒素原子であり、且つ、R11Aが存在しR13Aが存在しないトリアゾール環であり、より好ましくは、E11A及びE12Aが窒素原子であり、且つ、R11Aが存在しR12Aが存在しないトリアゾール環である。
 環L1Aがトリアゾール環である場合、R11A、R12A及びR13Aのうちの2つは、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であることが好ましく、アルキル基又はアリール基であることがより好ましく、アルキル基であることが更に好ましく、これらの基は置換基を有していてもよい。
 環L2Aがピリジン環である場合、環L2Aは、E21Aが窒素原子であるピリジン環、E22Aが窒素原子であるピリジン環、又は、E23Aが窒素原子であるピリジン環であることが好ましく、E22Aが窒素原子であるピリジン環であることがより好ましい。
 環L2Aがジアザベンゼン環である場合、環L2Aは、E22A及びE24Aが窒素原子であるピリミジン環、又は、E22A及びE24Aが窒素原子であるピリミジン環であることが好ましく、E22A及びE24Aが窒素原子であるピリミジン環であることがより好ましい。
 環L2Aは、ベンゼン環であることが好ましい。
 R21A、R22A、R23A及びR24Aは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基、置換アミノ基又はフッ素原子であることが好ましく、水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であることがより好ましく、水素原子、アルキル基、又は、式(D-A)、式(D-B)若しくは式(D-C)で表される基であることが更に好ましく、水素原子又は式(D-A)で表される基であることが特に好ましく、水素原子であることがとりわけ好ましく、これらの基は置換基を有していてもよい。
 環L2Aがアリール基、1価の複素環基又は置換アミノ基を有する場合、R22A又はR23Aがアリール基、1価の複素環基又は置換アミノ基であることが好ましく、R22Aがアリール基、1価の複素環基又は置換アミノ基であることがより好ましい。
 R11AとR12A、R12AとR13A、R11AとR21A、R21AとR22A、R22AとR23A、及び、R23AとR24Aは、それぞれ結合して、それぞれが結合する原子とともに環を形成しないことが好ましい。
 式(1-A)で表される燐光発光性化合物は、本発明の発光素子の輝度寿命が更に優れるので、式(1-A1)~式(1-A5)で表される燐光発光性化合物であることが好ましく、式(1-A1)、式(1-A3)又は式(1-A4)で表される燐光発光性化合物であることがより好ましく、式(1-A1)又は式(1-A4)で表される燐光発光性化合物であることが更に好ましく、式(1-A4)で表される燐光発光性化合物であることが特に好ましい。
[式(1-B)で表される燐光発光性化合物]
 環L1Bがジアザベンゼン環である場合、環L1Bは、E11Bが窒素原子であるピリミジン環、又は、E13Bが窒素原子であるピリミジン環であることが好ましく、E11Bが窒素原子であるピリミジン環であることがより好ましい。
 環L1Bは、ピリジン環であることが好ましい。
 環L2Bがピリジン環である場合、環L2Bは、E21Bが窒素原子であるピリジン環、E22Bが窒素原子であるピリジン環、又は、E23Bが窒素原子であるピリジン環であることが好ましく、E22Bが窒素原子であるであるピリジン環であることがより好ましい。
 環L2Bがジアザベンゼン環である場合、環L2Bは、E22B及びE24Bが窒素原子であるピリミジン環、又は、E21B及びE23Bが窒素原子であるピリミジン環であることが好ましく、E22B及びE24Bが窒素原子であるピリミジン環であることがより好ましい。
 環L2Bは、ベンゼン環であることが好ましい。
 R11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bで表されるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、環L1及び環L2が有していてもよい置換基であるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
 R11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bが有していてもよい置換基の例及び好ましい範囲は、環L1及び環L2が有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。
 R11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基、置換アミノ基又はフッ素原子であることが好ましく、水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であることがより好ましく、水素原子、アルキル基、又は、式(D-A)、式(D-B)若しくは式(D-C)で表される基であることが更に好ましく、水素原子又は式(D-A)で表される基であることが特に好ましく、これらの基は置換基を有していてもよい。
 環L1Bがアリール基、1価の複素環基又は置換アミノ基を有する場合、R11B、R12B又はR13Bがアリール基、1価の複素環基又は置換アミノ基であることが好ましく、R12B又はR13Bがアリール基、1価の複素環基又は置換アミノ基であることがより好ましく、R13Bがアリール基、1価の複素環基又は置換アミノ基であることが更に好ましい。
 環L2Bがアリール基、1価の複素環基又は置換アミノ基を有する場合、R22B又はR23Bがアリール基、1価の複素環基又は置換アミノ基であることが好ましく、R22Bがアリール基、1価の複素環基又は置換アミノ基であることがより好ましい。
 式(1-B)で表される燐光発光性化合物は、本発明の発光素子の輝度寿命が更に優れるので、式(1-B1)~式(1-B5)で表される燐光発光性化合物であることが好ましく、式(1-B1)~式(1-B3)で表される燐光発光性化合物であることがより好ましく、式(1-B1)で表される燐光発光性化合物又は式(1-B2)で表される燐光発光性化合物であることが更に好ましく、式(1-B1)で表される燐光発光性化合物であることが特に好ましい。
 R15B、R16B、R17B及びR18Bで表されるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、環L1及び環L2が有していてもよい置換基であるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
 R15B、R16B、R17B及びR18Bが有していてもよい置換基の例及び好ましい範囲は、環L1及び環L2が有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。
 R15B、R16B、R17B及びR18Bは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、フッ素原子、アリール基、1価の複素環基又は置換アミノ基であることが好ましく、水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であることがより好ましく、水素原子、アルキル基又はシクロアルキル基であることが更に好ましく、水素原子であることが特に好ましく、これらの基は置換基を有していてもよい。
 燐光発光性化合物としては、例えば、下記式で表される燐光発光性化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
 燐光発光性化合物は、例えば、Aldrich、Luminescence Technology Corp.、American Dye Sourceから入手可能である。
 また、燐光発光性化合物は、Journal of the American Chemical Society,Vol.107,1431-1432(1985)、Journal of the American Chemical Society,Vol.106,6647-6653(1984)、国際公開第2011/024761号、国際公開第2002/44189号、特開2006-188673号公報等の文献に記載の公知の方法により製造することも可能である。
 [第1の組成物]
 第1の有機層は、式(C-1)で表される化合物と、前記燐光発光性化合物、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料及び酸化防止剤からなる群から選ばれる少なくとも1種の材料とを含む組成物(以下、「第1の組成物」ともいう。)を含有する層であってもよい。但し、第1の組成物に含有される正孔輸送材料、正孔注入材料、電子輸送材料及び電子注入材料は、式(C-1)で表される化合物とは異なり、第1の組成物に含有される発光材料は、式(C-1)で表される化合物とは異なり、燐光発光性化合物とは異なる。
 ・正孔輸送材料
 正孔輸送材料は、低分子化合物と高分子化合物とに分類され、好ましくは高分子化合物である。正孔輸送材料は、架橋基を有していてもよい。
 高分子化合物としては、例えば、ポリビニルカルバゾール及びその誘導体;側鎖又は主鎖に芳香族アミン構造を有するポリアリーレン及びその誘導体が挙げられる。高分子化合物は、電子受容性部位が結合された化合物でもよい。電子受容性部位としては、例えば、フラーレン、テトラフルオロテトラシアノキノジメタン、テトラシアノエチレン、トリニトロフルオレノン等が挙げられ、好ましくはフラーレンである。
 第1の組成物において、正孔輸送材料の配合量は、式(C-1)で表される化合物を100質量部とした場合、通常、1~400質量部であり、好ましくは5~150質量部である。
 正孔輸送材料は、一種単独で用いても二種以上を併用してもよい。
 ・電子輸送材料
 電子輸送材料は、低分子化合物と高分子化合物とに分類される。電子輸送材料は、架橋基を有していてもよい。
 低分子化合物としては、例えば、8-ヒドロキシキノリンを配位子とする金属錯体、オキサジアゾール、アントラキノジメタン、ベンゾキノン、ナフトキノン、アントラキノン、テトラシアノアントラキノジメタン、フルオレノン、ジフェニルジシアノエチレン及びジフェノキノン、並びに、これらの誘導体が挙げられる。
 高分子化合物としては、例えば、ポリフェニレン、ポリフルオレン、及び、これらの誘導体が挙げられる。高分子化合物は、金属でドープされていてもよい。
 第1の組成物において、電子輸送材料の配合量は、式(C-1)で表される化合物を100質量部とした場合、通常、1~400質量部であり、好ましくは5~150質量部である。
 電子輸送材料は、一種単独で用いても二種以上を併用してもよい。
 ・正孔注入材料及び電子注入材料
 正孔注入材料及び電子注入材料は、各々、低分子化合物と高分子化合物とに分類される。正孔注入材料及び電子注入材料は、架橋基を有していてもよい。
 低分子化合物としては、例えば、銅フタロシアニン等の金属フタロシアニン;カーボン;モリブデン、タングステン等の金属酸化物;フッ化リチウム、フッ化ナトリウム、フッ化セシウム、フッ化カリウム等の金属フッ化物が挙げられる。
 高分子化合物としては、例えば、ポリアニリン、ポリチオフェン、ポリピロール、ポリフェニレンビニレン、ポリチエニレンビニレン、ポリキノリン及びポリキノキサリン、並びに、これらの誘導体;芳香族アミン構造を主鎖又は側鎖に含む重合体等の導電性高分子が挙げられる。
 第1の組成物において、正孔注入材料及び電子注入材料の配合量は、各々、式(C-1)で表される化合物を100質量部とした場合、通常、1~400質量部であり、好ましくは5~150質量部である。
 電子注入材料及び正孔注入材料は、各々、一種単独で用いても二種以上を併用してもよい。
 ・イオンドープ
 正孔注入材料又は電子注入材料が導電性高分子を含む場合、導電性高分子の電気伝導度は、好ましくは、1×10-5S/cm~1×103S/cmである。導電性高分子の電気伝導度をかかる範囲とするために、導電性高分子に適量のイオンをドープすることができる。
 ドープするイオンの種類は、正孔注入材料であればアニオン、電子注入材料であればカチオンである。アニオンとしては、例えば、ポリスチレンスルホン酸イオン、アルキルベンゼンスルホン酸イオン、樟脳スルホン酸イオンが挙げられる。カチオンとしては、例えば、リチウムイオン、ナトリウムイオン、カリウムイオン、テトラブチルアンモニウムイオンが挙げられる。
 ドープするイオンは、一種単独で用いても二種以上を併用してもよい。
 ・発光材料
 発光材料は、低分子化合物と高分子化合物とに分類される。発光材料は、架橋基を有していてもよい。
 低分子化合物としては、例えば、ナフタレン及びその誘導体、アントラセン及びその誘導体、及び、ペリレン及びその誘導体が挙げられる。
 高分子化合物としては、例えば、フェニレン基、ナフタレンジイル基、アントラセンジイル基、フルオレンジイル基、フェナントレンジイル基、ジヒドロフェナントレンジイル基、後述の式(X)で表される基、カルバゾールジイル基、フェノキサジンジイル基、フェノチアジンジイル基、ピレンジイル基等を含む高分子化合物が挙げられる。
 第1の組成物において、発光材料の配合量は、式(C-1)で表される化合物を100質量部とした場合、通常、1~400質量部であり、好ましくは5~150質量部である。
 発光材料は、一種単独で用いても二種以上を併用してもよい。
 ・酸化防止剤
 酸化防止剤は、式(C-1)で表される化合物と同じ溶媒に可溶であり、発光及び電荷輸送を阻害しない化合物であればよく、例えば、フェノール系酸化防止剤、リン系酸化防止剤が挙げられる。
 第1の組成物において、酸化防止剤の配合量は、式(C-1)で表される化合物を100質量部とした場合、通常、0.001~10質量部である。
 酸化防止剤は、一種単独で用いても二種以上を併用してもよい。
 ・第1のインク
 式(C-1)で表される化合物と、溶媒とを含有する組成物(以下、「第1のインク」ともいう。)は、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、キャピラリ-コート法、ノズルコート法等の塗布法に好適に使用することができる。
 第1のインクの粘度は、塗布法の種類によって調整すればよいが、インクジェット印刷法等の溶液が吐出装置を経由する印刷法に適用する場合には、吐出時の目づまりと飛行曲がりが起こりづらいので、好ましくは25℃において1~20mPa・sである。
 第1のインクに含有される溶媒は、好ましくは、インク中の固形分を溶解又は均一に分散できる溶媒である。溶媒としては、例えば、1,2-ジクロロエタン、1,1,2-トリクロロエタン、クロロベンゼン、o-ジクロロベンゼン等の塩素系溶媒;テトラヒドロフラン、ジオキサン、アニソール、4-メチルアニソール等のエーテル系溶媒;トルエン、キシレン、メシチレン、エチルベンゼン、n-ヘキシルベンゼン、シクロヘキシルベンゼン等の芳香族炭化水素系溶媒;シクロヘキサン、メチルシクロヘキサン、n-ペンタン、n-ヘキサン、n-へプタン、n-オクタン、n-ノナン、n-デカン、n-ドデカン、ビシクロヘキシル等の脂肪族炭化水素系溶媒;アセトン、メチルエチルケトン、シクロヘキサノン、アセトフェノン等のケトン系溶媒;酢酸エチル、酢酸ブチル、エチルセルソルブアセテート、安息香酸メチル、酢酸フェニル等のエステル系溶媒;エチレングリコール、グリセリン、1,2-ヘキサンジオール等の多価アルコール系溶媒;イソプロピルアルコール、シクロヘキサノール等のアルコール系溶媒;ジメチルスルホキシド等のスルホキシド系溶媒;N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド等のアミド系溶媒が挙げられる。溶媒は、一種単独で用いても二種以上を併用してもよい。
 第1のインクにおいて、溶媒の配合量は、式(C-1)で表される化合物を100質量部とした場合、通常、1000~100000質量部であり、好ましくは2000~20000質量部である。
 [第2の有機層]
 本発明の発光素子が有する第2の有機層は、式(C-1)で表される化合物と、架橋材料の架橋体とを含有する層である。すなわち、第2の有機層には、式(C-1)で表される化合物と、架橋材料の架橋体とは別個の化合物として含有されている。ここで、式(C-1)で表される化合物は架橋基を含まない化合物であることが好ましい。
 ・架橋材料の架橋体
 架橋材料の架橋体は、架橋材料を後述の方法及び条件等により架橋した状態にすることで得られる。
 架橋材料は、低分子化合物であっても高分子化合物であってもよいが、本発明の発光素子の輝度寿命がより優れるので、架橋基A群から選ばれる少なくとも1種の架橋基を有する低分子化合物(以下、「第2の有機層の低分子化合物」ともいう。)、又は、架橋基A群から選ばれる少なくとも1種の架橋基を有する架橋構成単位を含む高分子化合物(以下、「第2の有機層の高分子化合物」ともいう。)であることが好ましく、架橋基A群から選ばれる少なくとも1種の架橋基を有する架橋構成単位を含む高分子化合物であることがより好ましい。
 架橋基A群から選ばれる架橋基としては、本発明の発光素子の輝度寿命がより優れるので、好ましくは、式(XL-1)~式(XL-4)、式(XL-7)~式(XL-10)又は式(XL-14)~式(XL-17)で表される架橋基であり、より好ましくは、式(XL-1)、式(XL-3)、式(XL-9)、式(XL-10)、式(XL-16)又は式(XL-17)で表される架橋基であり、更に好ましくは、式(XL-1)、式(XL-16)又は式(XL-17)で表される架橋基であり、特に好ましくは、式(XL-1)又は式(XL-17)で表される架橋基であり、とりわけ好ましくは、式(XL-17)で表される架橋基である。
 ・第2の有機層の高分子化合物
 第2の有機層の高分子化合物に含まれる、架橋基A群から選ばれる少なくとも一種の架橋基を有する構成単位は、式(2)で表される構成単位又は式(2')で表される構成単位であることが好ましいが、下記式で表される構成単位であってもよい。
Figure JPOXMLDOC01-appb-C000083
 第2の有機層の高分子化合物が、架橋基A群から選ばれる少なくとも1種の架橋基を有する構成単位を2種以上含む場合、架橋基A群から選ばれる少なくとも1種の架橋基を有する構成単位の少なくとも2種は、架橋基が互いに異なることが好ましい。互いに異なる架橋基の組み合わせとしては、式(XL-1)、式(XL-2)、式(XL-5)~式(XL-8)又は式(XL-14)~式(XL-16)で表される架橋基と、式(XL-3)、式(XL-4)、式(XL-13)又は式(XL-17)で表される架橋基との組み合わせが好ましく、式(XL-1)又は式(XL-16)で表される架橋基と、式(XL-17)で表される架橋基との組み合わせがより好ましく、式(XL-1)で表される架橋基と、式(XL-17)で表される架橋基との組み合わせが更に好ましい。
 ・式(2)で表される構成単位
 nAは、本発明の発光素子の輝度寿命がより優れるので、好ましくは0~3の整数であり、より好ましくは0~2の整数であり、更に好ましくは1又は2であり、特に好ましくは1である。
 nは、本発明の発光素子の輝度寿命がより優れるので、好ましくは2である。
 Ar3は、本発明の発光素子の輝度寿命がより優れるので、好ましくは置換基を有していてもよい芳香族炭化水素基である。
 Ar3で表される芳香族炭化水素基の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~30であり、より好ましくは6~18である。
 Ar3で表される芳香族炭化水素基のn個の置換基を除いたアリーレン基部分としては、好ましくは、式(A-1)~式(A-20)で表される基であり、より好ましくは、式(A-1)、式(A-2)、式(A-6)~式(A-10)、式(A-19)又は式(A-20)で表される基であり、さらに好ましくは、式(A-1)、式(A-2)、式(A-7)、式(A-9)又は式(A-19)で表される基であり、これらの基は置換基を有していてもよい。
 Ar3で表される複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~60であり、好ましくは3~30であり、より好ましくは4~18である。
 Ar3で表される複素環基のn個の置換基を除いた2価の複素環基部分としては、好ましくは、式(AA-1)~式(AA-34)で表される基である。
 Ar3で表される芳香族炭化水素基及び複素環基は置換基を有していてもよく、置換基としては、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、ハロゲン原子、1価の複素環基又はシアノ基が好ましい。
 LAで表されるアルキレン基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~20であり、好ましくは1~15であり、より好ましくは1~10である。LAで表されるシクロアルキレン基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~20である。
 アルキレン基及びシクロアルキレン基は、置換基を有していてもよく、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ヘキシレン基、シクロヘキシレン基、オクチレン基が挙げられる。
 LAで表されるアルキレン基及びシクロアルキレン基は、置換基を有していてもよい。アルキレン基及びシクロアルキレン基が有していてもよい置換基としては、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、ハロゲン原子又はシアノ基が好ましく、これらの基は更に置換基を有していてもよい。
 LAで表されるアリーレン基は、置換基を有していてもよい。アリーレン基としては、フェニレン基又はフルオレンジイル基が好ましく、m-フェニレン基、p-フェニレン基、フルオレン-2,7-ジイル基、フルオレン-9,9-ジイル基がより好ましい。アリーレン基が有してもよい置換基としては、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、ハロゲン原子、シアノ基又は架橋基A群から選ばれる架橋基が好ましく、これらの基は更に置換基を有していてもよい。
 LAで表される2価の複素環基としては、好ましくは式(AA-1)~式(AA-34)で表される基である。
 LAは、第2の有機層の高分子化合物の製造が容易になるので、好ましくは、アリーレン基又はアルキレン基であり、より好ましくは、フェニレン基、フルオレンジイル基又はアルキレン基であり、これらの基は置換基を有していてもよい。
 Xで表される架橋基としては、本発明の発光素子の輝度寿命がより優れるので、好ましくは、式(XL-1)~式(XL-4)、式(XL-7)~式(XL-10)又は式(XL-14)~式(XL-17)で表される架橋基であり、より好ましくは、式(XL-1)、式(XL-3)、式(XL-9)、式(XL-10)、式(XL-16)又は式(XL-17)で表される架橋基であり、更に好ましくは、式(XL-1)、式(XL-16)又は式(XL-17)で表される架橋基であり、特に好ましくは、式(XL-1)又は式(XL-17)で表される架橋基であり、とりわけ好ましくは、式(XL-17)で表される架橋基である。
 式(2)で表される構成単位は、第2の有機層の高分子化合物の安定性及び架橋性が優れるので、第2の有機層の高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5~80モル%であり、より好ましくは3~65モル%であり、更に好ましくは5~50モル%である。
 式(2)で表される構成単位は、第2の有機層の高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。
 第2の有機層の高分子化合物が、式(2)で表される構成単位を2種以上含む場合、式(2)で表される構成単位の少なくとも2種は、Xで表される架橋基が互いに異なることが好ましい。互いに異なるXで表される架橋基の組み合わせの好ましい範囲は、前述の互いに異なる架橋基の組み合わせの好ましい範囲と同じである。
 ・式(2')で表される構成単位
 mAは、本発明の発光素子の輝度寿命がより優れるので、好ましくは0~3の整数であり、より好ましくは0~2の整数であり、更に好ましくは0又は1であり、特に好ましくは0である。
 mは、本発明の発光素子の輝度寿命がより優れるので、好ましくは1又は2であり、より好ましくは2である。
 cは、第2の有機層の高分子化合物の製造が容易になり、且つ、本発明の発光素子のの輝度寿命がより優れるので、好ましくは0である。
 Ar5は、本発明の発光素子の輝度寿命がより優れるので、好ましくは置換基を有していてもよい芳香族炭化水素基である。
 Ar5で表される芳香族炭化水素基のm個の置換基を除いたアリーレン基部分の定義や例は、後述する式(X)におけるArX2で表されるアリーレン基の定義や例と同じである。
 Ar5で表される複素環基のm個の置換基を除いた2価の複素環基部分の定義や例は、後述する式(X)におけるArX2で表される2価の複素環基部分の定義や例と同じである。
 Ar5で表される少なくとも1種の芳香族炭化水素環と少なくとも1種の複素環が直接結合した基のm個の置換基を除いた2価の基の定義や例は、後述する式(X)におけるArX2で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基の定義や例と同じである。
 Ar4及びAr6は、本発明の発光素子の輝度寿命がより優れるので、好ましくは置換基を有していてもよいアリーレン基である。
 Ar4及びAr6で表されるアリーレン基の定義や例は、後述する式(X)におけるArX1及びArX3で表されるアリーレン基の定義や例と同じである。
 Ar4及びAr6で表される2価の複素環基の定義や例は、後述する式(X)におけるArX1及びArX3で表される2価の複素環基の定義や例と同じである。
 Ar4、Ar5及びAr6で表される基は置換基を有していてもよく、置換基としては、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、ハロゲン原子、1価の複素環基及びシアノ基が好ましい。
 KAで表されるアルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基の定義や例は、それぞれ、LAで表されるアルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基の定義や例と同じである。
 KAは、第2の有機層の高分子化合物の製造が容易になるので、フェニレン基又はメチレン基であることが好ましい。
 X’で表される架橋基の定義や例は、前述のXで表される架橋基の定義や例と同じである。
 式(2')で表される構成単位は、第2の有機層の高分子化合物の安定性が優れ、且つ、第2の有機層の高分子化合物の架橋性が優れるので、第2の有機層の高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5~50モル%であり、より好ましくは3~30モル%であり、更に好ましくは5~20モル%である。
 式(2')で表される構成単位は、第2の有機層の高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。
 第2の有機層の高分子化合物が、式(2’)で表される構成単位を2種以上含む場合、式(2’)で表される構成単位の少なくとも2種は、X’で表される架橋基が互いに異なることが好ましい。互いに異なるX’で表される架橋基の組み合わせの好ましい範囲は、前述の互いに異なる架橋基の組み合わせの好ましい範囲と同じである。
 ・式(2)又は(2')で表される構成単位の好ましい態様
 式(2)で表される構成単位としては、例えば、式(2-1)~式(2-30)で表される構成単位が挙げられ、式(2')で表される構成単位としては、例えば、式(2'-1)~式(2'-9)で表される構成単位が挙げられる。これらの中でも、第2の有機層の高分子化合物の架橋性が優れるので、好ましくは式(2-1)~式(2-30)で表される構成単位であり、より好ましくは式(2-1)~式(2-15)、式(2-19)、式(2-20)、式(2-23)、式(2-25)又は式(2-30)で表される構成単位であり、更に好ましくは式(2-1)~式(2-9)又は式(2-30)で表される構成単位である。
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
 ・その他の構成単位
 第2の有機層の高分子化合物は、正孔輸送性の観点からは、更に、式(X)で表される構成単位を含むことが好ましく、輝度寿命の観点からは、更に、式(Y)で表される構成単位を含むことが好ましい。
 第2の有機層の高分子化合物は、正孔輸送性が優れ、且つ、本発明の発光素子の輝度寿命がより優れるので、更に、式(X)で表される構成単位及び式(Y)で表される構成単位を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000088
[式中、
 aX1及びaX2は、それぞれ独立に、0以上の整数を表す。
 ArX1及びArX3は、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。
 ArX2及びArX4は、それぞれ独立に、アリーレン基、2価の複素環基、又は、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基を表し、これらの基は置換基を有していてもよい。ArX2及びArX4が複数存在する場合、それらは同一でも異なっていてもよい。
 RX1、RX2及びRX3は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。RX2及びRX3が複数存在する場合、それらは同一でも異なっていてもよい。]
 aX1は、本発明の発光素子の輝度寿命がより優れるので、好ましくは2以下の整数であり、より好ましくは1である。
 aX2は、本発明の発光素子の輝度寿命がより優れるので、好ましくは2以下の整数であり、より好ましくは0である。
 RX1、RX2及びRX3は、好ましくはアルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくはアリール基であり、これらの基は置換基を有していてもよい。
 ArX1及びArX3で表されるアリーレン基は、より好ましくは式(A-1)又は式(A-9)で表される基であり、更に好ましくは式(A-1)で表される基であり、これらの基は置換基を有していてもよい。
 ArX1及びArX3で表される2価の複素環基は、より好ましくは式(AA-1)、式(AA-2)又は式(AA-7)~式(AA-26)で表される基であり、これらの基は置換基を有していてもよい。
 ArX1及びArX3は、好ましくは置換基を有していてもよいアリーレン基である。
 ArX2及びArX4で表されるアリーレン基は、より好ましくは式(A-1)、式(A-6)、式(A-7)、式(A-9)~式(A-11)又は式(A-19)で表される基であり、これらの基は置換基を有していてもよい。
 ArX2及びArX4で表される2価の複素環基のより好ましい範囲は、ArX1及びArX3で表される2価の複素環基のより好ましい範囲と同じである。
 ArX2及びArX4で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基における、アリーレン基及び2価の複素環基のより好ましい範囲、更に好ましい範囲は、それぞれ、ArX1及びArX3で表されるアリーレン基及び2価の複素環基のより好ましい範囲、更に好ましい範囲と同じである。
 ArX2及びArX4で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基としては、例えば、下記式で表される基が挙げられ、これらは置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000089
[式中、RXXは、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。]
 RXXは、好ましくはアルキル基、シクロアルキル基又はアリール基であり、これらの基は置換基を有していてもよい。
 ArX2及びArX4は、好ましくは置換基を有していてもよいアリーレン基である。
 ArX1~ArX4及びRX1~RX3で表される基が有してもよい置換基としては、好ましくはアルキル基、シクロアルキル基又はアリール基であり、これらの基は更に置換基を有していてもよい。
 式(X)で表される構成単位としては、好ましくは式(X-1)~式(X-7)で表される構成単位であり、より好ましくは式(X-3)~式(X-7)で表される構成単位であり、更に好ましくは式(X-3)~式(X-6)で表される構成単位である。
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
[式中、RX4及びRX5は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、ハロゲン原子、1価の複素環基又はシアノ基を表し、これらの基は置換基を有していてもよい。複数存在するRX4は、同一でも異なっていてもよい。複数存在するRX5は、同一でも異なっていてもよく、隣接するRX5同士は互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。]
 式(X)で表される構成単位は、正孔輸送性が優れるので、第2の有機層の高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.1~90モル%であり、より好ましくは1~70モル%であり、更に好ましくは10~50モル%である。
 式(X)で表される構成単位としては、例えば、式(X1-1)~式(X1-19)で表される構成単位が挙げられ、好ましくは式(X1-6)~式(X1-14)で表される構成単位である。
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
 第2の有機層の高分子化合物において、式(X)で表される構成単位は、1種のみ含まれていても、2種以上含まれていてもよい。
Figure JPOXMLDOC01-appb-C000102
[式中、ArY1は、アリーレン基、2価の複素環基、又は、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基を表し、これらの基は置換基を有していてもよい。]
 ArY1で表されるアリーレン基は、より好ましくは式(A-1)、式(A-6)、式(A-7)、式(A-9)~式(A-11)、式(A-13)又は式(A-19)で表される基であり、更に好ましくは式(A-1)、式(A-7)、式(A-9)又は式(A-19)で表される基であり、これらの基は置換基を有していてもよい。
 ArY1で表される2価の複素環基は、より好ましくは式(AA-4)、式(AA-10)、式(AA-13)、式(AA-15)、式(AA-18)又は式(AA-20)で表される基であり、更に好ましくは式(AA-4)、式(AA-10)、式(AA-18)又は式(AA-20)で表される基であり、これらの基は置換基を有していてもよい。
 ArY1で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基における、アリーレン基及び2価の複素環基のより好ましい範囲、更に好ましい範囲は、それぞれ、前述のArY1で表されるアリーレン基及び2価の複素環基のより好ましい範囲、更に好ましい範囲と同様である。
 ArY1で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基としては、式(X)のArX2及びArX4で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基と同様のものが挙げられる。
 ArY1で表される基が有してもよい置換基は、好ましくはアルキル基、シクロアルキル基又はアリール基であり、これらの基は更に置換基を有していてもよい。
 式(Y)で表される構成単位としては、例えば、式(Y-1)~式(Y-7)で表される構成単位が挙げられ、本発明の発光素子の輝度寿命の観点からは、好ましくは式(Y-1)又は式(Y-2)で表される構成単位であり、第2の有機層の高分子化合物の電子輸送性の観点からは、好ましくは式(Y-3)又は式(Y-4)で表される構成単位であり、第2の有機層の高分子化合物の正孔輸送性の観点からは、好ましくは式(Y-5)~式(Y-7)で表される構成単位である。
Figure JPOXMLDOC01-appb-C000103
[式中、RY1は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRY1は、同一でも異なっていてもよく、隣接するRY1同士は互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。]
 RY1は、好ましくは水素原子、アルキル基、シクロアルキル基又はアリール基であり、これらの基は置換基を有していてもよい。
 式(Y-1)で表される構成単位は、好ましくは、式(Y-1')で表される構成単位である。
Figure JPOXMLDOC01-appb-C000104
[式中、RY11は、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRY11は、同一でも異なっていてもよい。]
 RY11は、好ましくは、アルキル基、シクロアルキル基又はアリール基であり、より好ましくは、アルキル基又はシクロアルキル基であり、これらの基は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000105
[式中、
 RY1は前記と同じ意味を表す。
 XY1は、-C(RY2)2-、-C(RY2)=C(RY2)-又は-C(RY2)2-C(RY2)2-で表される基を表す。RY2は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRY2は、同一でも異なっていてもよく、RY2同士は互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。]
 RY2は、好ましくはアルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくはアルキル基、シクロアルキル基又はアリール基であり、これらの基は置換基を有していてもよい。
 XY1において、-C(RY2)2-で表される基中の2個のRY2の組み合わせは、好ましくは双方がアルキル基若しくはシクロアルキル基、双方がアリール基、双方が1価の複素環基、又は、一方がアルキル基若しくはシクロアルキル基で他方がアリール基若しくは1価の複素環基であり、より好ましくは一方がアルキル基若しくはシクロアルキル基で他方がアリール基であり、これらの基は置換基を有していてもよい。2個存在するRY2は互いに結合して、それぞれが結合する原子とともに環を形成していてもよく、RY2が環を形成する場合、-C(RY2)2-で表される基としては、好ましくは式(Y-A1)~式(Y-A5)で表される基であり、より好ましくは式(Y-A4)で表される基であり、これらの基は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000106
 XY1において、-C(RY2)=C(RY2)-で表される基中の2個のRY2の組み合わせは、好ましくは双方がアルキル基若しくはシクロアルキル基、又は、一方がアルキル基若しくはシクロアルキル基で他方がアリール基であり、これらの基は置換基を有していてもよい。
 XY1において、-C(RY2)2-C(RY2)2-で表される基中の4個のRY2は、好ましくは置換基を有していてもよいアルキル基又はシクロアルキル基である。複数あるRY2は互いに結合して、それぞれが結合する原子とともに環を形成していてもよく、RY2が環を形成する場合、-C(RY2)2-C(RY2)2-で表される基は、好ましくは式(Y-B1)~式(Y-B5)で表される基であり、より好ましくは式(Y-B3)で表される基であり、これらの基は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000107
[式中、RY2は前記と同じ意味を表す。]
 式(Y-2)で表される構成単位は、式(Y-2')で表される構成単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000108
[式中、RY1及びXY1は前記と同じ意味を表す。]
Figure JPOXMLDOC01-appb-C000109
[式中、
 RY1は前記と同じ意味を表す。
 RY3は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。]
 RY3は、好ましくはアルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基であり、より好ましくはアリール基であり、これらの基は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000110
[式中、
 RY1は前記を同じ意味を表す。
 RY4は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。]
 RY4は、好ましくはアルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基であり、より好ましくはアリール基であり、これらの基は置換基を有していてもよい。
 式(Y)で表される構成単位としては、例えば、式(Y-11)~式(Y-56)で表される構成単位が挙げられる。
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000117
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000121
 式(Y)で表される構成単位であって、ArY1がアリーレン基である構成単位は、本発明の発光素子の輝度寿命がより優れるので、第2の有機層の高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5~80モル%であり、より好ましくは30~60モル%である。
 式(Y)で表される構成単位であって、ArY1が2価の複素環基、又は、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基である構成単位は、第2の有機層の高分子化合物の電荷輸送性が優れるので、第2の有機層の高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.1~90モル%であり、より好ましくは1~70モル%であり、更に好ましくは10~50モル%である。
 式(Y)で表される構成単位は、第2の有機層の高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。
 第2の有機層の高分子化合物としては、例えば、高分子化合物P-1~P-8が挙げられる。ここで、「その他の構成単位」とは、式(2)、式(2')、式(X)及び式(Y)で表される構成単位以外の構成単位を意味する。
Figure JPOXMLDOC01-appb-T000122

[表中、p’、q’、r’、s’及びt’は、各構成単位のモル比率を表す。p’+q’+r’+s’+t’=100であり、且つ、70≦p’+q’+r’+s’≦100である。]
 第2の有機層の高分子化合物は、ブロック共重合体、ランダム共重合体、交互共重合体、グラフト共重合体のいずれであってもよいし、その他の態様であってもよいが、複数種の原料モノマーを共重合した共重合体であることが好ましい。
 第2の有機層の高分子化合物のポリスチレン換算の数平均分子量は、好ましくは5×103~1×106であり、より好ましくは1×104~5×105であり、更に好ましくは1.5×104~1×105である。
 ・第2の有機層の高分子化合物の製造方法
 第2の有機層の高分子化合物は、ケミカルレビュー(Chem. Rev.),第109巻,897-1091頁(2009年)等に記載の公知の重合方法を用いて製造することができ、Suzuki反応、Yamamoto反応、Buchwald反応、Stille反応、Negishi反応及びKumada反応等の遷移金属触媒を用いるカップリング反応により重合させる方法が例示される。
 前記重合方法において、単量体を仕込む方法としては、単量体全量を反応系に一括して仕込む方法、単量体の一部を仕込んで反応させた後、残りの単量体を一括、連続又は分割して仕込む方法、単量体を連続又は分割して仕込む方法等が挙げられる。
 遷移金属触媒としては、パラジウム触媒、ニッケル触媒等が挙げられる。
 重合反応の後処理は、公知の方法、例えば、分液により水溶性不純物を除去する方法、メタノール等の低級アルコールに重合反応後の反応液を加えて、析出させた沈殿を濾過した後、乾燥させる方法等を単独又は組み合わせて行う。第2の有機層の高分子化合物の純度が低い場合、例えば、晶析、再沈殿、ソックスレー抽出器による連続抽出、カラムクロマトグラフィー等の通常の方法にて精製することができる。
 ・第2の有機層の低分子化合物
 第2の有機層の低分子化合物は、式(3)で表される低分子化合物が好ましい。
 mB1は、架橋材料の合成が容易になるので、好ましくは0~5の整数であり、より好ましくは0~2の整数であり、更に好ましくは0又は1であり、特に好ましくは0である。
 mB2は、架橋材料の合成が容易となり、且つ、本発明の発光素子の輝度寿命がより優れるので、好ましくは0~5の整数であり、より好ましくは0~3の整数であり、更に好ましくは1又は2であり、特に好ましくは1である。
 mB3は、架橋材料の合成が容易になるので、好ましくは0~4の整数であり、より好ましくは0~2の整数であり、更に好ましくは0である。
 Ar7で表される芳香族炭化水素基のmB3個の置換基を除いたアリーレン基部分の定義や例は、前述の式(X)におけるArX2で表されるアリーレン基の定義や例と同じである。
 Ar7で表される複素環基のmB3個の置換基を除いた2価の複素環基部分の定義や例は、前述の式(X)におけるArX2で表される2価の複素環基部分の定義や例と同じである。
 Ar7で表される少なくとも1種の芳香族炭化水素環と少なくとも1種の複素環が直接結合した基のmB3個の置換基を除いた2価の基の定義や例は、前述の式(X)におけるArX2で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基の定義や例と同じである。
 Ar7で表される基が有してもよい置換基の定義や例は、前述の式(X)におけるArX2で表される基が有してもよい置換基の定義や例と同じである。
 Ar7は、本発明の発光素子の輝度寿命が優れるので、好ましくは芳香族炭化水素基であり、この芳香族炭化水素基は置換基を有していてもよい。
 LB1で表されるアルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基の定義や例は、それぞれ、前述のLAで表されるアルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基の定義や例と同じである。
 LB1は、架橋材料の合成が容易になるので、好ましくは、アルキレン基、アリーレン基又は酸素原子であり、より好ましくはアルキレン基又はアリーレン基であり、更に好ましくはフェニレン基、フルオレンジイル基又はアルキレン基であり、特に好ましくはフェニレン基又はアルキレン基であり、これらの基は置換基を有していてもよい。
 X’’は、好ましくは、式(XL-1)~式(XL-17)のいずれかで表される架橋基、アリール基又は1価の複素環基であり、より好ましくは、式(XL-1)、式(XL-3)、式(XL-7)~式(XL-10)、式(XL-16)若しくは式(XL-17)で表される架橋基、又は、アリール基であり、更に好ましくは、式(XL-1)、式(XL-16)若しくは式(XL-17)で表される架橋基、フェニル基、ナフチル基又はフルオレニル基であり、特に好ましくは、式(XL-16)若しくは式(XL-17)で表される架橋基、フェニル基又はナフチル基であり、とりわけ好ましくは、式(XL-16)で表される架橋基、又は、ナフチル基であり、これらの基は置換基を有していてもよい。
 架橋材料としては、例えば、式(3-1)~式(3-16)で表される低分子化合物が挙げられ、好ましくは式(3-1)~式(3-10)で表される低分子化合物であり、より好ましくは式(3-5)~式(3-9)で表される低分子化合物である。
Figure JPOXMLDOC01-appb-C000123
Figure JPOXMLDOC01-appb-C000124
Figure JPOXMLDOC01-appb-C000125
Figure JPOXMLDOC01-appb-C000126
Figure JPOXMLDOC01-appb-C000127
 第2の有機層の低分子化合物は、例えば、Aldrich、Luminescence Technology Corp.、American Dye Sourceから入手可能である。第2の有機層の低分子化合物は、その他には、例えば、国際公開第1997/033193号、国際公開第2005/035221号、国際公開第2005/049548号に記載されている方法に従って合成することができる。
 ・その他
 第2の有機層において、架橋材料の架橋体は、1種単独で含有されていても、2種以上含有されていてもよい。第2の有機層において、式(C-1)で表される化合物は、1種単独で含有されていても、2種以上含有されていてもよい。
 第2の有機層に含有される式(C-1)で表される化合物の含有量は、式(C-1)で表される化合物と架橋材料の架橋体との合計を100質量部とした場合、通常、0.01~80質量部であり、好ましくは0.1~60質量部であり、より好ましくは1~40質量部であり、更に好ましくは10~30質量部である。
 [第2の組成物]
 第2の有機層は、式(C-1)で表される化合物と、架橋材料の架橋体と、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料及び酸化防止剤からなる群から選ばれる少なくとも1種の材料とを含む組成物(以下、「第2の組成物」ともいう。)を含有する層であってもよい。第2の有機層において、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料及び発光材料は、式(C-1)で表される化合物とは異なる。また、第2の有機層において、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料及び発光材料は、架橋材料の架橋体とは異なる。
 第2の組成物に含有される正孔輸送材料、電子輸送材料、正孔注入材料及び電子注入材料の例及び好ましい範囲は、第1の組成物に含有される正孔輸送材料、電子輸送材料、正孔注入材料及び電子注入材料発光材料の例及び好ましい範囲と同じである。第2の組成物に含有される発光材料としては、第1の組成物に含有される発光材料及び燐光発光性化合物が挙げられ、これらの例及び好ましい範囲は、それぞれ、第1の組成物に含有される発光材料及び燐光発光性化合物の例及び好ましい範囲と同じである。
 第2の組成物において、正孔輸送材料、電子輸送材料、正孔注入材料、電子注入材料及び発光材料の配合量は、各々、式(C-1)で表される化合物と架橋材料の架橋体との合計を100質量部とした場合、通常、1~400質量部であり、好ましくは5~150質量部である。
 第2の組成物に含有される酸化防止剤の例及び好ましい範囲は、第1の組成物に含有される酸化防止剤の例及び好ましい範囲と同じである。第2の組成物において、酸化防止剤の配合量は、式(C-1)で表される化合物と架橋材料の架橋体との合計を100質量部とした場合、通常、0.001~10質量部である。
 ・第2のインク
 式(C-1)で表される化合物と、架橋材料と、溶媒とを含有する組成物(以下、「第2のインク」ともいう。)は、第1のインクの項で説明した塗布法に好適に使用することができる。第2のインクの粘度の好ましい範囲は、第1のインクの粘度の好ましい範囲と同じである。第2のインクに含有される溶媒の例及び好ましい範囲は、第1のインクに含有される溶媒の例及び好ましい範囲と同じである。
 第2のインクにおいて、溶媒の配合量は、式(C-1)で表される化合物と架橋材料との合計を100質量部とした場合、通常、1000~100000質量部であり、好ましくは2000~20000質量部である。
 [その他の層、電極]
 本発明の発光素子において、第1の有機層に含有される式(C-1)で表される化合物と第2の有機層に含有される式(C-1)で表される化合物とは、同一でも異なっていてもよい。
 本発明の発光素子の輝度寿命がより優れるので、第1の有機層に含有される式(C-1)で表される化合物及び第2の有機層に含有される式(C-1)で表される化合物のうちの少なくとも1つは、式(C-2-1)で表される化合物又は式(C-2-2)で表される化合物であることが好ましく、第1の有機層に含有される式(C-1)で表される化合物及び第2の有機層に含有される式(C-1)で表される化合物の両方が、式(C-2-1)で表される化合物又は式(C-2-2)で表される化合物であることがより好ましく、第1の有機層に含有される式(C-1)で表される化合物及び第2の有機層に含有される式(C-1)で表される化合物の両方が、式(C-2-1)で表される化合物であることが更に好ましい。
 本発明の発光素子の輝度寿命がより優れるので、第1の有機層に含有される式(C-1)で表される化合物及び第2の有機層に含有される式(C-1)で表される化合物のうちの少なくとも1つが式(C-2-1)で表される化合物である場合、式(C-2-1)で表される化合物は、式(C-3-1)で表される化合物であることが好ましい。
 本発明の発光素子の輝度寿命がより優れるので、第1の有機層に含有される式(C-1)で表される化合物及び第2の有機層に含有される式(C-1)で表される化合物のうちの少なくとも1つが式(C-2-2)で表される化合物である場合、式(C-2-2)で表される化合物は、式(C-3-2)で表される化合物であることが好ましい。
 本発明の発光素子の輝度寿命がより優れるので、第1の有機層に含有される式(C-1)で表される化合物及び第2の有機層に含有される式(C-1)で表される化合物の両方が式(C-2-1)で表される化合物である場合、式(C-2-1)で表される化合物は、式(C-3-1)で表される化合物であることが好ましい。
 本発明の発光素子の輝度寿命がより優れるので、第1の有機層に含有される式(C-1)で表される化合物及び第2の有機層に含有される式(C-1)で表される化合物の両方が式(C-2-2)で表される化合物である場合、式(C-2-2)で表される化合物は、式(C-3-2)で表される化合物であることが好ましい。
 本発明の発光素子の輝度寿命がより優れるので、第1の有機層に含有される式(C-1)で表される化合物及び第2の有機層に含有される式(C-1)で表される化合物のうちの少なくとも1つの式(C-1)で表される化合物は、式(D-1)又は式(E-1)で表される基を有することが好ましく、式(D-1)で表される基を有することがより好ましい。
 本発明の発光素子の輝度寿命がより優れるので、第1の有機層に含有される式(C-1)で表される化合物及び第2の有機層に含有される式(C-1)で表される化合物の両方が、式(D-1)又は式(E-1)で表される基を有することが好ましい。
 第1の有機層及び第2の有機層の形成方法としては、例えば、真空蒸着法等の乾式法、並びに、スピンコート法及びインクジェット印刷法等の塗布法が挙げられ、塗布法が好ましい。第1の有機層を塗布法により形成する場合、第1のインクを用いることが好ましい。
 第2の有機層を塗布法により形成する場合、第2のインクを用いることが好ましい。第2の有機層を形成後、加熱又は光照射することで、架橋材料を架橋させることができ、加熱することで、架橋材料を架橋させることが好ましい。架橋材料が架橋した状態(架橋材料の架橋体)で第2の有機層に含有されているため、第2の有機層は溶媒に対して実質的に不溶化されている。そのため、第2の有機層は、発光素子の積層化に好適に使用することができる。
 架橋させるための加熱の温度は、通常、25℃~300℃であり、好ましくは50℃~260℃であり、より好ましくは130℃~230℃であり、更に好ましくは180℃~210℃である。
 加熱の時間は、通常、0.1分~1000分であり、好ましくは0.5分~500分であり、より好ましくは1分~120分であり、更に好ましくは10分~60分である。
 光照射に用いられる光の種類は、例えば、紫外光、近紫外光、可視光である。
 第1の有機層又は第2の有機層に含有される成分の分析方法としては、例えば、抽出等の化学的分離分析法、赤外分光法(IR)、核磁気共鳴分光法(NMR)、質量分析法(MS)等の機器分析法、並びに、化学的分離分析法及び機器分析法を組み合わせた分析法が挙げられる。
 第1の有機層又は第2の有機層に対して、トルエン、キシレン、クロロホルム、テトラヒドロフラン等の有機溶媒を用いた固液抽出を行うことで、有機溶媒に対して実質的に不溶な成分(不溶成分)と、有機溶媒に対して溶解する成分(溶解成分)とに分離することが可能である。不溶成分は赤外分光法又は核磁気共鳴分光法により分析することが可能であり、溶解成分は核磁気共鳴分光法又は質量分析法により分析することが可能である。
 [層構成]
 本発明の発光素子は、陽極、陰極、第1の有機層及び第2の有機層以外の層を有していてもよい。
 第1の有機層は、通常、発光層(以下、「第1の発光層」と言う。)である。
 第2の有機層は、通常、正孔輸送層、第2の発光層又は電子輸送層であり、好ましくは正孔輸送層又は第2の発光層である。
 第1の有機層と第2の有機層とは、本発明の発光素子の輝度寿命がより優れるので、隣接していることが好ましい。
 第2の有機層は、本発明の発光素子の輝度寿命がより優れるので、陽極及び第1の有機層の間に設けられた層であることが好ましく、陽極及び第1の有機層の間に設けられた正孔輸送層又は第2の発光層であることがより好ましい。
 第2の有機層が陽極及び第1の有機層の間に設けられた正孔輸送層である場合、本発明の発光素子の輝度寿命がより優れるので、陽極と第2の有機層との間に、正孔注入層を更に有することが好ましい。第2の有機層が陽極及び第1の有機層の間に設けられた正孔輸送層である場合、本発明の発光素子の輝度寿命がより優れるので、陰極と第1の有機層との間に、電子注入層及び電子輸送層のうちの少なくとも1つの層を更に有することが好ましい。
 第2の有機層が陽極及び第1の有機層の間に設けられた第2の発光層である場合、本発明の発光素子の輝度寿命がより優れるので、陽極と第2の有機層との間に、正孔注入層及び正孔輸送層のうちの少なくとも1つの層を更に有することが好ましい。第2の有機層が陽極及び第1の有機層の間に設けられた第2の発光層である場合、本発明の発光素子の輝度寿命がより優れるので、陰極と第1の有機層との間に、電子注入層及び電子輸送層のうちの少なくとも1つの層を更に有することが好ましい。
 第2の有機層が陰極及び第1の有機層の間に設けられた第2の発光層である場合、本発明の発光素子の輝度寿命がより優れるので、陽極と第1の有機層との間に、正孔注入層及び正孔輸送層のうちの少なくとも1つの層を更に有することが好ましい。第2の有機層が陰極及び第1の有機層の間に設けられた第2の発光層である場合、本発明の発光素子の輝度寿命がより優れるので、陰極と第2の有機層との間に、電子注入層及び電子輸送層のうちの少なくとも1つの層を更に有することが好ましい。
 第2の有機層が陰極及び第1の有機層の間に設けられた電子輸送層である場合、本発明の発光素子の輝度寿命がより優れるので、陽極と第1の有機層との間に、正孔注入層及び正孔輸送層のうちの少なくとも1つの層を更に有することが好ましい。第2の有機層が陰極及び第1の有機層の間に設けられた電子輸送層である場合、本発明の発光素子の輝度寿命がより優れるので、陰極と第2の有機層との間に、電子注入層を更に有することが好ましい。
 本発明の発光素子の具体的な層構成としては、例えば、(D1)~(D15)で表される層構成が挙げられる。本発明の発光素子は、通常、基板を有するが、基板上に陽極から積層されていてもよく、基板上に陰極から積層されていてもよい。
(D1)陽極/第2の発光層(第2の有機層)/第1の発光層(第1の有機層)/陰極
(D2)陽極/正孔輸送層(第2の有機層)/第1の発光層(第1の有機層)/陰極
(D3)陽極/正孔注入層/第2の発光層(第2の有機層)/第1の発光層(第1の有機層)/陰極
(D4)陽極/正孔注入層/第2の発光層(第2の有機層)/第1の発光層(第1の有機層)/電子輸送層/陰極
(D5)陽極/正孔注入層/第2の発光層(第2の有機層)/第1の発光層(第1の有機層)/電子注入層/陰極
(D6)陽極/正孔注入層/第2の発光層(第2の有機層)/第1の発光層(第1の有機層)/電子輸送層/電子注入層/陰極
(D7)陽極/正孔注入層/正孔輸送層(第2の有機層)/第1の発光層(第1の有機層)/陰極
(D8)陽極/正孔注入層/正孔輸送層(第2の有機層)/第1の発光層(第1の有機層)/電子輸送層/陰極
(D9)陽極/正孔注入層/正孔輸送層(第2の有機層)/第1の発光層(第1の有機層)/電子注入層/陰極
(D10)陽極/正孔注入層/正孔輸送層(第2の有機層)/第1の発光層(第1の有機層)/電子輸送層/電子注入層/陰極
(D11)陽極/正孔注入層/正孔輸送層/第2の発光層(第2の有機層)/第1の発光層(第1の有機層)/電子輸送層/電子注入層/陰極
(D12)陽極/正孔注入層/正孔輸送層(第2の有機層)/第1の発光層(第1の有機層)/第2の発光層/電子輸送層/電子注入層/陰極
(D13)陽極/正孔注入層/正孔輸送層/第1の発光層(第1の有機層)/第2の発光層(第2の有機層)/電子輸送層/電子注入層/陰極
(D14)陽極/正孔注入層/正孔輸送層/第1の発光層(第1の有機層)/電子輸送層(第2の有機層)/電子注入層/陰極
(D15)陽極/正孔注入層/正孔輸送層(第2の有機層)/第2の発光層/第1の発光層(第1の有機層)/電子輸送層/電子注入層/陰極
 (D1)~(D15)中、「/」は、その前後の層が隣接して積層していることを意味する。具体的には、「第2の発光層(第2の有機層)/第1の発光層(第1の有機層)」とは、第2の発光層(第2の有機層)と第1の発光層(第1の有機層)とが隣接して積層していることを意味する。
 本発明の発光素子の輝度寿命がより優れるので、(D3)~(D12)で表される層構成が好ましい。
 本発明の発光素子において、陽極、正孔注入層、正孔輸送層、第2の発光層、電子輸送層、電子注入層及び陰極は、それぞれ、必要に応じて、2層以上設けられていてもよい。
 陽極、正孔注入層、正孔輸送層、第2の発光層、電子輸送層、電子注入層及び陰極が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。
 陽極、正孔注入層、正孔輸送層、第1の発光層、第2の発光層、電子輸送層、電子注入層及び陰極の厚さは、通常、1nm~1μmであり、好ましくは2nm~500nmであり、更に好ましくは5nm~150nmである。
 本発明の発光素子において、積層する層の順番、数、及び厚さは、発光素子の輝度寿命、駆動電圧及び素子寿命を勘案して調整すればよい。
 ・第2の発光層
 第2の発光層は、通常、第2の有機層又は発光材料を含有する層であり、好ましくは、発光材料を含有する層である。第2の発光層が発光材料を含有する層である場合、第2の発光層に含有される発光材料としては、例えば、前述の第1の組成物が含有していてもよい発光材料が挙げられる。第2の発光層に含有される発光材料は、1種単独が含有されていてもよく、2種以上が含有されていてもよい。
 本発明の発光素子が第2の発光層を有し、且つ、第2の有機層が正孔輸送層及び電子輸送層ではない場合、第2の発光層は第2の有機層であることが好ましい。
 ・正孔輸送層
 正孔輸送層は、通常、第2の有機層又は正孔輸送材料を含有する層であり、好ましくは、第2の有機層である。正孔輸送層が正孔輸送材料を含有する層である場合、正孔輸送材料としては、例えば、前述の第1の組成物が含有していてもよい正孔輸送材料が挙げられる。正孔輸送層に含有される正孔輸送材料は、1種単独が含有されていてもよく、2種以上が含有されていてもよい。
 本発明の発光素子が正孔輸送層を有し、且つ、第2の有機層が第2の発光層及び電子輸送層ではない場合、正孔輸送層は第2の有機層であることが好ましい。
 ・電子輸送層
 電子輸送層は、通常、第2の有機層又は電子輸送材料を含有する層であり、好ましくは、電子輸送材料を含有する層である。電子輸送層が電子輸送材料を含有する層である場合、電子輸送層に含有される電子輸送材料としては、例えば、前述の第1の組成物が含有していてもよい電子輸送材料が挙げられる。電子輸送層に含有される電子輸送材料は、1種単独が含有されていてもよく、2種以上が含有されていてもよい。
 本発明の発光素子が電子輸送層を有し、且つ、第2の有機層が第2の発光層及び正孔輸送層ではない場合、電子輸送層は第2の有機層であることが好ましい。
 ・正孔注入層及び電子注入層
 正孔注入層は、正孔注入材料を含有する層である。正孔注入層に含有される正孔注入材料としては、例えば、前述の第1の組成物が含有していてもよい正孔注入材料が挙げられる。正孔注入層に含有される正孔注入材料は、1種単独で含有されていても、2種以上が含有されていてもよい。
 電子注入層は、電子注入材料を含有する層である。電子注入層に含有される電子注入材料としては、例えば、前述の第1の組成物が含有していてもよい電子注入材料が挙げられる。電子注入層に含有される電子注入材料は、1種単独が含有されていても、2種以上が含有されていてもよい。
 ・基板/電極
 発光素子における基板は、電極を形成することができ、かつ、有機層を形成する際に化学的に変化しない基板であればよく、例えば、ガラス、プラスチック、シリコン等の材料からなる基板である。不透明な基板を使用する場合には、基板から最も遠くにある電極が透明又は半透明であることが好ましい。
 陽極の材料としては、例えば、導電性の金属酸化物、半透明の金属が挙げられ、好ましくは、酸化インジウム、酸化亜鉛、酸化スズ;インジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド等の導電性化合物;銀とパラジウムと銅との複合体(APC);NESA、金、白金、銀、銅である。
 陰極の材料としては、例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、亜鉛、インジウム等の金属;それらのうち2種以上の合金;それらのうち1種以上と、銀、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうち1種以上との合金;並びに、グラファイト及びグラファイト層間化合物が挙げられる。合金としては、例えば、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、カルシウム-アルミニウム合金が挙げられる。
 本発明の発光素子において、陽極及び陰極の少なくとも一方は、通常、透明又は半透明であるが、陽極が透明又は半透明であることが好ましい。
 陽極及び陰極の形成方法としては、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法及びラミネート法が挙げられる。
 [製造方法]
 本発明の発光素子において、第1の発光層、第2の発光層、正孔輸送層、電子輸送層、正孔注入層、電子注入層等の各層の形成方法としては、低分子化合物を用いる場合、例えば、粉末からの真空蒸着法、溶液又は溶融状態からの成膜による方法が挙げられ、高分子化合物を用いる場合、例えば、溶液又は溶融状態からの成膜による方法が挙げられる。
 第1の発光層、第2の発光層、正孔輸送層、電子輸送層、正孔注入層及び電子注入層は、第1のインク、第2のインク、並びに、上述した発光材料、正孔輸送材料、電子輸送材料、正孔注入材料及び電子注入材料をそれぞれ含有するインクを用いて、スピンコート法、インクジェット印刷法等の塗布法により形成することができる。
 [用途]
 発光素子を用いて面状の発光を得るためには、面状の陽極と陰極が重なり合うように配置すればよい。パターン状の発光を得るためには、面状の発光素子の表面にパターン状の窓を設けたマスクを設置する方法、非発光部にしたい層を極端に厚く形成し実質的に非発光とする方法、陽極若しくは陰極、又は両方の電極をパターン状に形成する方法がある。これらのいずれかの方法でパターンを形成し、いくつかの電極を独立にON/OFFできるように配置することにより、数字、文字等を表示できるセグメントタイプの表示装置が得られる。ドットマトリックス表示装置とするためには、陽極と陰極を共にストライプ状に形成して直交するように配置すればよい。複数の種類の発光色の異なる高分子化合物を塗り分ける方法、カラーフィルター又は蛍光変換フィルターを用いる方法により、部分カラー表示、マルチカラー表示が可能となる。ドットマトリックス表示装置は、パッシブ駆動も可能であるし、TFT等と組み合わせてアクティブ駆動も可能である。これらの表示装置は、コンピュータ、テレビ、携帯端末等のディスプレイに用いることができる。面状の発光素子は、液晶表示装置のバックライト用の面状光源、又は、面状の照明用光源として好適に用いることができる。フレキシブルな基板を用いれば、曲面状の光源及び表示装置としても使用できる。
 以下、実施例によって本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
 実施例において、高分子化合物のポリスチレン換算の数平均分子量(Mn)及びポリスチレン換算の重量平均分子量(Mw)は、移動相にテトラヒドロフランを用い、下記のサイズエクスクルージョンクロマトグラフィー(SEC)により求めた。
 測定する高分子化合物を約0.05質量%の濃度でテトラヒドロフランに溶解させ、SECに10μL注入した。移動相は、1.0mL/分の流量で流した。カラムとして、PLgel MIXED-B(ポリマーラボラトリーズ製)を用いた。検出器にはUV-VIS検出器(東ソー製、商品名:UV-8320GPC)を用いた。
 NMRは、下記の方法で測定した。
 5~10mgの測定試料を約0.5mLの重クロロホルム(CDCl3)、重テトラヒドロフラン、重ジメチルスルホキシド、重アセトン、重N,N-ジメチルホルムアミド、重トルエン、重メタノール、重エタノール、重2-プロパノール又は重塩化メチレンに溶解させ、NMR装置(JEOL RESONANCE製、商品名:JNM-ECZ400S/L1)を用いて測定した。
 化合物の純度の指標として、高速液体クロマトグラフィー(HPLC)面積百分率の値を用いた。この値は、特に記載がない限り、HPLC(島津製作所製、商品名:LC-20A)でのUV=254nmにおける値とする。この際、測定する化合物は、0.01~0.2質量%の濃度になるようにテトラヒドロフラン又はクロロホルムに溶解させ、濃度に応じてHPLCに1~10μL注入した。HPLCの移動相には、アセトニトリル/テトラヒドロフランの比率を100/0~0/100(容積比)まで変化させながら用い、1.0mL/分の流量で流した。カラムは、SUMIPAX ODS Z-CLUE(住化分析センター製、内径:4.6mm、長さ:250mm、粒径3μm)又は同等の性能を有するODSカラムを用いた。検出器には、フォトダイオードアレイ検出器(島津製作所製、商品名:SPD-M20A)を用いた。
 <合成例M1> 化合物M1~M5及び金属錯体RM1の合成
 化合物M1、M2及びM3は、国際公開第2013/146806号に記載の方法に従って合成した。
 化合物M4は、特開2012-33845号公報に記載の方法に従って合成した。
 化合物M5は、特開2010-189630号公報に記載の方法に従って合成した。
 金属錯体RM1は、国際公開第2009/157424号に記載の方法に従って合成した。
Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000129
 <合成例HTL1> 高分子化合物HTL-1の合成
 反応容器内を不活性ガス雰囲気とした後、化合物M1(0.800g)、化合物M2(0.149g)、化合物M3(1.66g)、ジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(1.4mg)及びトルエン(45mL)を加え、100℃に加熱した。その後、そこに、20質量%水酸化テトラエチルアンモニウム水溶液(16mL)を滴下し、7時間還流させた。その後、そこに、2-エチルフェニルボロン酸(90mg)及びジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(1.3mg)を加え、17.5時間還流させた。その後、そこに、ジエチルジチアカルバミン酸ナトリウム水溶液を加え、85℃で2時間撹拌した。得られた反応液を冷却した後、3.6質量%塩酸、2.5質量%アンモニア水、水でそれぞれ洗浄した。得られた溶液をメタノールに滴下したところ、沈澱が生じた。得られた沈殿物をトルエンに溶解させ、アルミナカラム、シリカゲルカラムの順番で通すことにより精製した。得られた溶液をメタノールに滴下し、撹拌した後、得られた沈殿物をろ取し、乾燥させることにより、高分子化合物HTL-1を1.64g得た。高分子化合物HTL-1のMnは3.5×104であり、Mwは2.2×105であった。
 高分子化合物HTL-1は、仕込み原料の量から求めた理論値では、化合物M1から誘導される構成単位と、化合物M2から誘導される構成単位と、化合物M3から誘導される構成単位とが、40:10:50のモル比で構成されてなる共重合体である。
 <合成例HTL2> 高分子化合物HTL-2の合成
 反応容器内を不活性ガス雰囲気とした後、化合物M1(2.52g)、化合物M2(0.470g)、化合物M3(4.90g)、金属錯体RM1(0.530g)、ジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(4.2mg)及びトルエン(158mL)を加え、100℃に加熱した。その後、そこに、20質量%水酸化テトラエチルアンモニウム水溶液(16mL)を滴下し、8時間還流させた。その後、そこに、フェニルボロン酸(116mg)及びジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(4.2mg)を加え、15時間還流させた。その後、そこに、ジエチルジチアカルバミン酸ナトリウム水溶液を加え、85℃で2時間撹拌した。得られた反応液を冷却した後、3.6質量%塩酸、2.5質量%アンモニア水、水でそれぞれ洗浄した。得られた溶液をメタノールに滴下したところ、沈澱が生じた。得られた沈殿物をトルエンに溶解させ、アルミナカラム、シリカゲルカラムの順番で通すことにより精製した。得られた溶液をメタノールに滴下し、撹拌した後、得られた沈殿物をろ取し、乾燥させることにより、高分子化合物HTL-2を6.02g得た。高分子化合物HTL-2のMnは3.8×104であり、Mwは4.5×105であった。
 高分子化合物HTL-2は、仕込み原料の量から求めた理論値では、化合物M1から誘導される構成単位と、化合物M2から誘導される構成単位と、化合物M3から誘導される構成単位と、金属錯体RM1から誘導される構成単位とが、40:10:47:3のモル比で構成されてなる共重合体である。
 <化合物HTL-M1、化合物HM-1及び化合物HM-8>
 化合物HTL-M1及び化合物HM-1は、Luminescense Technology社より購入した。
 化合物HM-8は、1-Material社より購入した。
Figure JPOXMLDOC01-appb-C000130
 <合成例HM-6、HM-7、HM-9及びHM-12> 化合物HM-6、HM-7、HM-9及びHM-12の合成
 化合物HM-6は、国際公開第2014/023388号に記載の方法に準じて合成した。
 化合物HM-7は、国際公開第2013/045408号に記載の方法に準じて合成した。
 化合物HM-9は、国際公開第2013/045410号に記載の方法に準じて合成した。
 化合物HM-12は、国際公開第2013/045411号に記載の方法に準じて合成した。
Figure JPOXMLDOC01-appb-C000131
 <合成例HM-2> 化合物HM-2の合成
Figure JPOXMLDOC01-appb-C000132
 反応容器内を窒素ガス雰囲気とした後、化合物HM-2a(15.6g)、化合物HM-2b(10.3g)、トルエン(390mL)、テトラキス(トリフェニルホスフィン)パラジウム(0)(2.2g)及び20質量%水酸化テトラブチルアンモニウム水溶液(194g)を加え、90℃で4時間撹拌した。得られた反応液を室温まで冷却した後、セライトを敷いたろ過器でろ過した。得られたろ液をイオン交換水で洗浄した後、得られた有機層を無水硫酸ナトリウムで乾燥させ、ろ過した。得られたろ液を減圧濃縮することにより、固体を得た。得られた固体をトルエン及び2-プロパノールの混合溶媒を用いて晶析した後、50℃で減圧乾燥させることにより、化合物HM-2(15.2g)を得た。化合物HM-2のHPLC面積百分率値は99.5%以上であった。
 化合物HM-2の分析結果は以下のとおりであった。
 1H-NMR(CD2Cl2、400MHz):δ(ppm)=6.70-6.83 (4H、m)、7.15(3H、t)、7.39(3H、t)、7.48(3H、t)、7.59(2H、t)、7.83-7.93(4H、m)、8.18-8.23(3H、m).
 <合成例HM-3> 化合物HM-3の合成
Figure JPOXMLDOC01-appb-C000133
 反応容器内を窒素ガス雰囲気とした後、化合物HM-3a(13.5g)、化合物HM-2b(8.9g)、トルエン(404mL)、テトラキス(トリフェニルホスフィン)パラジウム(0)(2.0g)及び20質量%水酸化テトラブチルアンモニウム水溶液(166g)を加え、90℃で3時間撹拌した。得られた反応液を室温まで冷却した後、セライトを敷いたろ過器でろ過した。得られたろ液をイオン交換水で洗浄した後、得られた有機層を無水硫酸ナトリウムで乾燥させ、ろ過した。得られたろ液を減圧濃縮することにより、固体を得た。得られた固体を、シリカゲルカラムクロマトグラフィー(ヘキサン及びクロロホルムの混合溶媒)により精製し、更に、トルエン及びメタノールの混合溶媒を用いて晶析した後、50℃で減圧乾燥させることにより、化合物HM-3(10.5g)を得た。化合物HM-3のHPLC面積百分率値は99.5%以上であった。
 化合物HM-3の分析結果は以下のとおりであった。
 1H-NMR(CD2Cl2、400MHz):δ(ppm)=6.51(1H、d)、6.60(1H、d)、6.80(4H、m)、6.92(1H、t)、7.21(3H、m)、7.34(1H、d)、7.39-7.50(4H、m)、7.65(1H、d)、7.71(1H、t)、7.81(1H、d)、7.88(2H、d)、8.28-8.35(2H、m).
 <合成例HM-4> 化合物HM-4の合成
Figure JPOXMLDOC01-appb-C000134
 反応容器内を窒素ガス雰囲気とした後、化合物HM-4a(1.6g)、化合物HM-4b(1.3g)、キシレン(63mL)、酢酸パラジウム(II)(22mg)、トリ-tert-ブチルホスホニウムテトラフルオロボラート(63mg)及びナトリウムtert-ブトキシド(1.9g)を加え、加熱還流下で54時間撹拌した。得られた反応液を室温まで冷却した後、シリカゲル及びセライトを敷いたろ過器でろ過した。得られたろ液をイオン交換水で洗浄した後、得られた有機層を無水硫酸ナトリウムで乾燥させ、ろ過した。得られたろ液を減圧濃縮することにより、固体を得た。得られた固体を、シリカゲルカラムクロマトグラフィー(ヘキサン及びクロロホルムの混合溶媒)により精製し、更に、クロロホルム及び2-プロパノールの混合溶媒を用いて晶析した後、50℃で減圧乾燥させることにより、化合物HM-4(1.0g)を得た。化合物HM-4のHPLC面積百分率値は99.5%以上であった。
 化合物HM-4の分析結果は以下のとおりであった。
 1H-NMR(CD2Cl2、400MHz):δ(ppm)=7.08(4H、t)、7.34(6H、m)、7.47-7.57(12H、m)、8.02(2H、d)、8.12(2H、s)、8.22(4H、d).
 <合成例HM-5> 化合物HM-5の合成
Figure JPOXMLDOC01-appb-C000135
 反応容器内を窒素ガス雰囲気とした後、化合物HM-2a(1.64g)、化合物HM-5b(1.00g)、トルエン(40mL)、テトラキス(トリフェニルホスフィン)パラジウム(0)(0.24g)及び20質量%水酸化テトラブチルアンモニウム水溶液(20g)を加え、90℃で3時間撹拌した。得られた反応液を室温まで冷却した後、トルエンを加え、イオン交換水で洗浄した。得られた有機層を無水硫酸マグネシウムで乾燥させた後、シリカゲル及びセライトを敷いたろ過器でろ過した。得られたろ液を減圧濃縮することにより、固体を得た。得られた固体をトルエン及び2-プロパノールの混合溶媒を用いて晶析した後、50℃で減圧乾燥させることにより、化合物HM-5(1.7g)を得た。化合物HM-5のHPLC面積百分率値は99.5%以上であった。
 化合物HM-5の分析結果は以下のとおりであった。
 1H-NMR(CDCl、400MHz):δ(ppm)=8.36(d,1H),8.03-7.99(m,1H),7.98-7.93(m,2H),7.89-7.86(m,2H),7.70-7.60(m,3H),7.51-7.35(m,6H),7.17-7.12(m,3H),6.89(d,1H),6.86-6.82(m,2H),6.78(d,1H).
 <合成例HM-10> 化合物HM-10の合成
Figure JPOXMLDOC01-appb-C000136
 反応容器内を窒素ガス雰囲気とした後、化合物HM-10a(3.0g)、化合物HM-10b(2.8g)、トルエン(150mL)、酢酸パラジウム(II)(43mg)、トリ-tert-ブチルホスホニウムテトラフルオロボラート(0.12g)及びナトリウム tert-ブトキシド(3.7g)を加え、105℃で3時間撹拌した。得られた反応液を室温まで冷却したところ、固体が析出した。得られた固体をろ取した後、クロロホルムに溶解させた。得られたクロロホルム溶液に活性炭を加えて、撹拌した後、セライト及びシリカゲルを敷いたろ過器でろ過した。得られたろ液を減圧濃縮することにより、固体を得た。得られた固体を、トルエンを用いて晶析した後、50℃で減圧乾燥させることにより、化合物HM-10(3.0g)を得た。化合物HM-10のHPLC面積百分率値は99.5%であった。
 化合物HM-10の分析結果は以下のとおりであった。
 1H-NMR(CD2Cl2、400MHz):δ(ppm)= 6.09 (2H、d)、6.72-6.77(5H、m)、6.85-6.92(3H、m)、7.11-7.21(1H、m)、7.32(1H、t)、7.45(1H、d)、7.79(1H、d)、8.15(1H、d).
 <合成例HM-11> 化合物HM-11の合成
Figure JPOXMLDOC01-appb-C000137
 反応容器内を窒素ガス雰囲気とした後、化合物HM-10a(1.5g)、化合物HM-11b(1.5g)、トルエン(75mL)、酢酸パラジウム(II)(21mg)、トリ-tert-ブチルホスホニウムテトラフルオロボラート(61mg)及びナトリウム tert-ブトキシド(1.2g)を加え、105℃で3時間撹拌した。得られた反応液を室温まで冷却した後、トルエン及びイオン交換水を加え、セライトを敷いたろ過器でろ過した。得られたろ液から水層を除去した後、得られた有機層をイオン交換水で洗浄した。得られた有機層を無水硫酸ナトリウムで乾燥させ、ろ過した。得られたろ液を減圧濃縮することにより、固体を得た。得られた固体をクロロホルムに溶解させた。得られたクロロホルム溶液に活性炭を加えて、撹拌した後、セライト及びシリカゲルを敷いたろ過器でろ過した。得られたろ液を減圧濃縮することにより、固体を得た。得られた固体を、トルエンを用いて晶析した後、50℃で減圧乾燥させることにより、化合物HM-11(1.3g)を得た。化合物HM-11のHPLC面積百分率値は99.5%以上であった。
 化合物HM-11の分析結果は以下のとおりであった。
 1H-NMR(CD2Cl2、400MHz):δ(ppm)= 1.54(6H、s)、6.16 (2H、d)、6.70(1H、s)、6.80-6.94(5H、m)、7.15(1H、t)、7.28-7.39(4H、m)、7.74(1H、d)、8.19(1H、d).
 <合成例B1> 燐光発光性化合物B1~B3の合成
 燐光発光性化合物B1は、国際公開第2006/121811号及び特開2013-048190号公報に記載の方法に準じて合成した。
 燐光発光性化合物B2は、国際公開第2006/121811号に記載の方法に準じて合成した。
 燐光発光性化合物B3は、特開2013-147551号公報に記載の方法に従って合成した。
Figure JPOXMLDOC01-appb-C000138
 <合成例G1> 燐光発光性化合物G1及びG2の合成
 燐光発光性化合物G1は、国際公開第2009/131255号に記載の方法に準じて合成した。
 燐光発光性化合物G2は、特開2014-224101号公報に記載の方法に従って合成した。
Figure JPOXMLDOC01-appb-C000139
 <合成例R1> 燐光発光性化合物R1及びR2の合成
 燐光発光性化合物R1は、特開2006-188673号公報に記載の方法に準じて合成した。
 燐光発光性化合物R2は、特開2008-179617号公報に記載の方法に従って合成した。
Figure JPOXMLDOC01-appb-C000140
 <合成例ETL1> 高分子化合物ETL-1の合成
 反応容器内を不活性ガス雰囲気とした後、化合物M4(9.23g)、化合物M5(4.58g)、ジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(8.6mg)、メチルトリオクチルアンモニウムクロライド(シグマアルドリッチ社製、商品名Aliquat336(登録商標))(0.098g)及びトルエン(175mL)を加え、105℃に加熱した。その後、そこに、12質量%炭酸ナトリウム水溶液(40.3mL)を滴下し、29時間還流させた。その後、そこに、フェニルボロン酸(0.47g)及びジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(8.7mg)を加え、14時間還流させた。その後、そこに、ジエチルジチアカルバミン酸ナトリウム水溶液を加え、80℃で2時間撹拌した。得られた反応液を冷却後、メタノールに滴下したところ、沈澱が生じた。得られた沈殿物をろ取し、メタノール、水でそれぞれ洗浄後、乾燥させた。得られた固体をクロロホルムに溶解させ、予めクロロホルムを通液したアルミナカラム及びシリカゲルカラムに順番に通すことにより精製した。得られた精製液をメタノールに滴下し、撹拌したところ、沈殿が生じた。得られた沈殿物をろ取し、乾燥させることにより、高分子化合物ETL-1a(7.15g)を得た。高分子化合物ETL-1aのMnは3.2×104、Mwは6.0×104であった。
 高分子化合物ETL-1aは、仕込み原料の量から求めた理論値では、化合物M4から誘導される構成単位と、化合物M5から誘導される構成単位とが、50:50のモル比で構成されてなる共重合体である。
 反応容器内をアルゴンガス雰囲気下とした後、高分子化合物ETL-1a(3.1g)、テトラヒドロフラン(130mL)、メタノール(66mL)、水酸化セシウム一水和物(2.1g)及び水(12.5mL)を加え、60℃で3時間撹拌した。その後、そこに、メタノール(220mL)を加え、2時間撹拌した。得られた反応混合物を濃縮した後、イソプロピルアルコールに滴下し、撹拌したところ、沈殿が生じた。得られた沈殿物をろ取し、乾燥させることにより、高分子化合物ETL-1(3.5g)を得た。高分子化合物ETL-1の1H-NMR解析により、高分子化合物ETL-1中のエチルエステル部位のシグナルが消失し、反応が完結したことを確認した。
 高分子化合物ETL-1は、高分子化合物ETL-1aの仕込み原料の量から求めた理論値では、下記式で表される構成単位と、化合物M5から誘導される構成単位とが、50:50のモル比で構成されてなる共重合体である。
Figure JPOXMLDOC01-appb-C000141
 <実施例D1> 発光素子D1の作製と評価
(陽極及び正孔注入層の形成)
 ガラス基板にスパッタ法により45nmの厚みでITO膜を付けることにより陽極を形成した。該陽極上に、正孔注入材料であるND-3202(日産化学工業製)をスピンコート法により35nmの厚さで成膜した。大気雰囲気下において、ホットプレート上で50℃、3分間加熱し、更に230℃、15分間加熱することにより正孔注入層を形成した。
(第2の有機層の形成)
 キシレンに高分子化合物HTL-1及び化合物HM-3(高分子化合物HTL-1/化合物HM-3=75質量%/25質量%)を0.7質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔注入層の上にスピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で180℃、60分間加熱させることにより第2の有機層(正孔輸送層)を形成した。この加熱により、高分子化合物HTL-1は、架橋体となった。
(第1の有機層の形成)
 トルエンに、化合物HM-3及び燐光発光性化合物B1(化合物HM-3/燐光発光性化合物B1=75質量%/25質量%)を2.0質量%の濃度で溶解させた。得られたトルエン溶液を用いて、第2の有機層の上にスピンコート法により75nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより第1の有機層(発光層)を形成した。
(電子輸送層の形成)
 2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノールに、高分子化合物ETL-1を0.25質量%の濃度で溶解させた。得られた2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノール溶液を用いて、第1の有機層の上にスピンコート法により10nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより電子輸送層を形成した。
(陰極の形成)
 電子輸送層を形成した基板を蒸着機内において、1.0×10-4Pa以下にまで減圧した後、陰極として、電子輸送層の上にフッ化ナトリウムを約4nm、次いで、フッ化ナトリウム層の上にアルミニウムを約80nm蒸着した。蒸着後、ガラス基板を用いて封止することにより、発光素子D1を作製した。
(発光素子の評価)
 発光素子D1に電圧を印加することによりEL発光が観測された。1000cd/m2におけるCIE色度座標(x,y)は(0.19,0.44)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の85%となるまでの時間を測定した。
 <実施例D2> 発光素子D2の作製と評価
 実施例D1において、(第2の有機層の形成)の「化合物HM-3」に代えて、「化合物HM-1」を用い、更に、(第1の有機層の形成)の「化合物HM-3」に代えて、「化合物HM-1」を用いた以外は、実施例D1と同様にして、発光素子D2を作製した。
 発光素子D2に電圧を印加することによりEL発光が観測された。1000cd/m2におけるCIE色度座標(x,y)は(0.19,0.43)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の85%となるまでの時間を測定した。
 <実施例D3> 発光素子D3の作製と評価
 実施例D1において、(第2の有機層の形成)の「化合物HM-3」に代えて、「化合物HM-2」を用い、更に、(第1の有機層の形成)の「化合物HM-3」に代えて、「化合物HM-2」を用いた以外は、実施例D1と同様にして、発光素子D3を作製した。
 発光素子D3に電圧を印加することによりEL発光が観測された。1000cd/m2におけるCIE色度座標(x,y)は(0.19,0.42)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の85%となるまでの時間を測定した。
 <実施例D4> 発光素子D4の作製と評価
 実施例D1において、(第2の有機層の形成)の「化合物HM-3」に代えて、「化合物HM-5」を用い、更に、(第1の有機層の形成)の「化合物HM-3」に代えて、「化合物HM-5」を用いた以外は、実施例D1と同様にして、発光素子D4を作製した。
 発光素子D4に電圧を印加することによりEL発光が観測された。1000cd/m2におけるCIE色度座標(x,y)は(0.19,0.43)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の85%となるまでの時間を測定した。
 <実施例D5> 発光素子D5の作製と評価
 実施例D1において、(第2の有機層の形成)の「化合物HM-3」に代えて、「化合物HM-7」を用い、更に、(第1の有機層の形成)の「化合物HM-3」に代えて、「化合物HM-2」を用いた以外は、実施例D1と同様にして、発光素子D5を作製した。
 発光素子D5に電圧を印加することによりEL発光が観測された。1000cd/m2におけるCIE色度座標(x,y)は(0.20,0.45)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の85%となるまでの時間を測定した。
 <実施例D6> 発光素子D6の作製と評価
 実施例D1において、(第2の有機層の形成)の「化合物HM-3」に代えて、「化合物HM-8」を用い、更に、(第1の有機層の形成)の「化合物HM-3」に代えて、「化合物HM-2」を用いた以外は、実施例D1と同様にして、発光素子D6を作製した。
 発光素子D6に電圧を印加することによりEL発光が観測された。1000cd/m2におけるCIE色度座標(x,y)は(0.22,0.47)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の85%となるまでの時間を測定した。
 <実施例D7> 発光素子D7の作製と評価
 実施例D1において、(第2の有機層の形成)の「化合物HM-3」に代えて、「化合物HM-9」を用い、更に、(第1の有機層の形成)の「化合物HM-3」に代えて、「化合物HM-2」を用いた以外は、実施例D1と同様にして、発光素子D7を作製した。
 発光素子D7に電圧を印加することによりEL発光が観測された。1000cd/m2におけるCIE色度座標(x,y)は(0.20,0.43)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の85%となるまでの時間を測定した。
 <実施例D8> 発光素子D8の作製と評価
 実施例D1において、(第2の有機層の形成)の「化合物HM-3」に代えて、「化合物HM-10」を用い、更に、(第1の有機層の形成)の「化合物HM-3」に代えて、「化合物HM-2」を用いた以外は、実施例D1と同様にして、発光素子D8を作製した。
 発光素子D8に電圧を印加することによりEL発光が観測された。1000cd/m2におけるCIE色度座標(x,y)は(0.22,0.46)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の85%となるまでの時間を測定した。
 <比較例CD1> 発光素子CD1の作製と評価
 実施例D1において、(第2の有機層の形成)の「高分子化合物HTL-1及び化合物HM-3(高分子化合物HTL-1/化合物HM-3=75質量%/25質量%)」に代えて、「高分子化合物HTL-1(高分子化合物HTL-1=100質量%)」を用い、更に、(第1の有機層の形成)の「化合物HM-3」に代えて、「化合物HM-1」を用いた以外は、実施例D1と同様にして、発光素子CD1を作製した。
 発光素子CD1に電圧を印加することによりEL発光が観測された。1000cd/m2におけるCIE色度座標(x,y)は(0.20,0.46)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の85%となるまでの時間を測定した。
 実施例D1~D9及び比較例CD1の結果を表2に示す。発光素子CD1の輝度が初期輝度の85%となるまでの時間を1.0としたときの発光素子D1~D9の輝度が初期輝度の85%となるまでの時間の相対値を示す。
Figure JPOXMLDOC01-appb-T000142
 <実施例D11> 発光素子D11の作製と評価
(陽極及び正孔注入層の形成)
 ガラス基板にスパッタ法により45nmの厚みでITO膜を付けることにより陽極を形成した。該陽極上に、正孔注入材料であるND-3202(日産化学工業製)をスピンコート法により35nmの厚さで成膜した。大気雰囲気下において、ホットプレート上で50℃、3分間加熱し、更に230℃、15分間加熱することにより正孔注入層を形成した。
(第2の有機層の形成)
 キシレンに高分子化合物HTL-2及び化合物HM-3(高分子化合物HTL-2/化合物HM-3=75質量%/25質量%)を0.7質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔注入層の上にスピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で180℃、60分間加熱させることにより第2の有機層(第2の発光層)を形成した。この加熱により、高分子化合物HTL-2は、架橋体となった。
(第1の有機層の形成)
 トルエンに、化合物HM-3及び燐光発光性化合物B1(化合物HM-3/燐光発光性化合物B1=75質量%/25質量%)を2.0質量%の濃度で溶解させた。得られたトルエン溶液を用いて、第2の有機層の上にスピンコート法により75nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより第1の有機層(第1の発光層)を形成した。
(電子輸送層の形成)
 2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノールに、高分子化合物ETL-1を0.25質量%の濃度で溶解させた。得られた2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノール溶液を用いて、第1の有機層の上にスピンコート法により10nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより電子輸送層を形成した。
(陰極の形成)
 電子輸送層を形成した基板を蒸着機内において、1.0×10-4Pa以下にまで減圧した後、陰極として、電子輸送層の上にフッ化ナトリウムを約4nm、次いで、フッ化ナトリウム層の上にアルミニウムを約80nm蒸着した。蒸着後、ガラス基板を用いて封止することにより、発光素子D11を作製した。
(発光素子の評価)
 発光素子D11に電圧を印加することによりEL発光が観測された。1000cd/m2におけるCIE色度座標(x,y)は(0.46,0.41)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の95%となるまでの時間を測定した。
 <実施例D12> 発光素子D12の作製と評価
 実施例D11において、(第2の有機層の形成)の「化合物HM-3」に代えて、「化合物HM-1」を用い、更に、(第1の有機層の形成)の「化合物HM-3」に代えて、「化合物HM-1」を用いた以外は、実施例D11と同様にして、発光素子D12を作製した。
 発光素子D12に電圧を印加することによりEL発光が観測された。1000cd/m2におけるCIE色度座標(x,y)は(0.46,0.41)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の95%となるまでの時間を測定した。
 <実施例D13> 発光素子D13の作製と評価
 実施例D11において、(第2の有機層の形成)の「化合物HM-3」に代えて、「化合物HM-1」を用い、更に、(第1の有機層の形成)の「化合物HM-3及び燐光発光性化合物B1(化合物HM-3/燐光発光性化合物B1=75質量%/25質量%)」に代えて、「化合物HM-1、燐光発光性化合物B1及び燐光発光性化合物G1(化合物HM-1/燐光発光性化合物B1/燐光発光性化合物G1=74質量%/25質量%/1質量%)」を用いた以外は、実施例D11と同様にして、発光素子D13を作製した。
 発光素子D13に電圧を印加することによりEL発光が観測された。1000cd/m2におけるCIE色度座標(x,y)は(0.47,0.45)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の95%となるまでの時間を測定した。
 <比較例CD2> 発光素子CD2の作製と評価
 実施例D11において、(第2の有機層の形成)の「高分子化合物HTL-2及び化合物HM-3(高分子化合物HTL-2/化合物HM-3=75質量%/25質量%)」に代えて、「高分子化合物HTL-2(高分子化合物HTL-2=100質量%)」を用い、更に、(第1の有機層の形成)の「化合物HM-3」に代えて、「化合物HM-1」を用いた以外は、実施例D11と同様にして、発光素子CD2を作製した。
 発光素子CD2に電圧を印加することによりEL発光が観測された。1000cd/m2におけるCIE色度座標(x,y)は(0.45,0.41)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の95%となるまでの時間を測定した。
 実施例D11~D13及び比較例CD2の結果を表3に示す。発光素子CD2の輝度が初期輝度の95%となるまでの時間を1.0としたときの発光素子D11~D13の輝度が初期輝度の95%となるまでの時間の相対値を示す。
Figure JPOXMLDOC01-appb-T000143
 <実施例D14> 発光素子D14の作製と評価
 実施例D11において、(第2の有機層の形成)の「化合物HM-3」に代えて、「化合物HM-2」を用い、更に、(第1の有機層の形成)の「化合物HM-3」に代えて、「化合物HM-2」を用いた以外は、実施例D11と同様にして、発光素子D14を作製した。
 発光素子D14に電圧を印加することによりEL発光が観測された。1000cd/m2におけるCIE色度座標(x,y)は(0.47,0.40)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の70%となるまでの時間を測定した。
 <実施例D15> 発光素子D15の作製と評価
 実施例D11において、(第2の有機層の形成)の「化合物HM-3」に代えて、「化合物HM-4」を用い、更に、(第1の有機層の形成)の「化合物HM-3」に代えて、「化合物HM-4」を用いた以外は、実施例D11と同様にして、発光素子D15を作製した。
 発光素子D15に電圧を印加することによりEL発光が観測された。1000cd/m2におけるCIE色度座標(x,y)は(0.32,0.40)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の70%となるまでの時間を測定した。
 <実施例D16> 発光素子D16の作製と評価
 実施例D11において、(第2の有機層の形成)の「化合物HM-3」に代えて、「化合物HM-4」を用い、更に、(第1の有機層の形成)の「化合物HM-3」に代えて、「化合物HM-2」を用いた以外は、実施例D11と同様にして、発光素子D16を作製した。
 発光素子D16に電圧を印加することによりEL発光が観測された。1000cd/m2におけるCIE色度座標(x,y)は(0.48,0.41)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の70%となるまでの時間を測定した。
 <実施例D17> 発光素子D17の作製と評価
 実施例D11において、(第2の有機層の形成)の「化合物HM-3」に代えて、「化合物HM-5」を用い、更に、(第1の有機層の形成)の「化合物HM-3」に代えて、「化合物HM-5」を用いた以外は、実施例D11と同様にして、発光素子D17を作製した。
 発光素子D17に電圧を印加することによりEL発光が観測された。1000cd/m2におけるCIE色度座標(x,y)は(0.47,0.40)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の70%となるまでの時間を測定した。
 <実施例D18> 発光素子D18の作製と評価
 実施例D11において、(第2の有機層の形成)の「化合物HM-3」に代えて、「化合物HM-6」を用い、更に、(第1の有機層の形成)の「化合物HM-3」に代えて、「化合物HM-6」を用いた以外は、実施例D11と同様にして、発光素子D18を作製した。
 発光素子D18に電圧を印加することによりEL発光が観測された。1000cd/m2におけるCIE色度座標(x,y)は(0.48,0.40)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の70%となるまでの時間を測定した。
 <実施例D19> 発光素子D19の作製と評価
 実施例D11において、(第2の有機層の形成)の「化合物HM-3」に代えて、「化合物HM-7」を用い、更に、(第1の有機層の形成)の「化合物HM-3」に代えて、「化合物HM-2」を用いた以外は、実施例D11と同様にして、発光素子D19を作製した。
 発光素子D19に電圧を印加することによりEL発光が観測された。1000cd/m2におけるCIE色度座標(x,y)は(0.48,0.40)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の70%となるまでの時間を測定した。
 <実施例D20> 発光素子D20の作製と評価
 実施例D11において、(第2の有機層の形成)の「化合物HM-3」に代えて、「化合物HM-8」を用い、更に、(第1の有機層の形成)の「化合物HM-3」に代えて、「化合物HM-2」を用いた以外は、実施例D11と同様にして、発光素子D20を作製した。
 発光素子D20に電圧を印加することによりEL発光が観測された。1000cd/m2におけるCIE色度座標(x,y)は(0.49,0.40)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の70%となるまでの時間を測定した。
 <実施例D21> 発光素子D21の作製と評価
 実施例D11において、(第2の有機層の形成)の「化合物HM-3」に代えて、「化合物HM-9」を用い、更に、(第1の有機層の形成)の「化合物HM-3」に代えて、「化合物HM-2」を用いた以外は、実施例D11と同様にして、発光素子D21を作製した。
 発光素子D21に電圧を印加することによりEL発光が観測された。1000cd/m2におけるCIE色度座標(x,y)は(0.49,0.41)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の70%となるまでの時間を測定した。
 <実施例D22> 発光素子D22の作製と評価
 実施例D11において、(第2の有機層の形成)の「化合物HM-3」に代えて、「化合物HM-10」を用い、更に、(第1の有機層の形成)の「化合物HM-3」に代えて、「化合物HM-2」を用いた以外は、実施例D11と同様にして、発光素子D22を作製した。
 発光素子D22に電圧を印加することによりEL発光が観測された。1000cd/m2におけるCIE色度座標(x,y)は(0.49,0.41)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の70%となるまでの時間を測定した。
 <実施例D23> 発光素子D23の作製と評価
 実施例D11において、(第2の有機層の形成)の「化合物HM-3」に代えて、「化合物HM-11」を用い、更に、(第1の有機層の形成)の「化合物HM-3」に代えて、「化合物HM-2」を用いた以外は、実施例D11と同様にして、発光素子D23を作製した。
 発光素子D23に電圧を印加することによりEL発光が観測された。1000cd/m2におけるCIE色度座標(x,y)は(0.49,0.40)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の70%となるまでの時間を測定した。
 <実施例D24> 発光素子D24の作製と評価
 実施例D11において、(第2の有機層の形成)の「化合物HM-3」に代えて、「化合物HM-12」を用い、更に、(第1の有機層の形成)の「化合物HM-3」に代えて、「化合物HM-2」を用いた以外は、実施例D11と同様にして、発光素子D23を作製した。
 発光素子D23に電圧を印加することによりEL発光が観測された。1000cd/m2におけるCIE色度座標(x,y)は(0.48,0.40)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の70%となるまでの時間を測定した。
 <比較例CD3> 発光素子CD3の作製と評価
 実施例D11において、(第2の有機層の形成)の「高分子化合物HTL-2及び化合物HM-3(高分子化合物HTL-2/化合物HM-3=75質量%/25質量%)」に代えて、「高分子化合物HTL-2(高分子化合物HTL-2=100質量%)」を用い、更に、(第1の有機層の形成)の「化合物HM-3」に代えて、「化合物HM-4」を用いた以外は、実施例D11と同様にして、発光素子CD3を作製した。
 発光素子CD3に電圧を印加することによりEL発光が観測された。1000cd/m2におけるCIE色度座標(x,y)は(0.32,0.40)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の70%となるまでの時間を測定した。
 実施例D14~D24及び比較例CD3の結果を表4に示す。発光素子CD3の輝度が初期輝度の70%となるまでの時間を1.0としたときの発光素子D14~D24の輝度が初期輝度の70%となるまでの時間の相対値を示す。
Figure JPOXMLDOC01-appb-T000144
 <実施例D25> 発光素子D25の作製と評価
 実施例D1において、(第2の有機層の形成)の「化合物HM-3」に代えて、「化合物HM-4」を用い、更に、(第1の有機層の形成)の「化合物HM-3」に代えて、「化合物HM-4」を用いた以外は、実施例D1と同様にして、発光素子D25を作製した。
 発光素子D25に電圧を印加することによりEL発光が観測された。1000cd/m2におけるCIE色度座標(x,y)は(0.18,0.40)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の70%となるまでの時間を測定した。
 <実施例D26> 発光素子D26の作製と評価
 実施例D1において、(第2の有機層の形成)の「化合物HM-3」に代えて、「化合物HM-4」を用い、更に、(第1の有機層の形成)の「化合物HM-3」に代えて、「化合物HM-2」を用いた以外は、実施例D1と同様にして、発光素子D26を作製した。
 発光素子D26に電圧を印加することによりEL発光が観測された。1000cd/m2におけるCIE色度座標(x,y)は(0.20,0.44)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の70%となるまでの時間を測定した。
 <比較例CD4> 発光素子CD4の作製と評価
 実施例D1において、(第2の有機層の形成)の「高分子化合物HTL-1及び化合物HM-3(高分子化合物HTL-1/化合物HM-3=75質量%/25質量%)」に代えて、「高分子化合物HTL-1(高分子化合物HTL-1=100質量%)」を用い、更に、(第1の有機層の形成)の「化合物HM-3」に代えて、「化合物HM-4」を用いた以外は、実施例D1と同様にして、発光素子CD4を作製した。
 発光素子CD4に電圧を印加することによりEL発光が観測された。1000cd/m2におけるCIE色度座標(x,y)は(0.21,0.47)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の70%となるまでの時間を測定した。
 実施例D25、実施例D26及び比較例CD4の結果を表5に示す。発光素子CD4の輝度が初期輝度の70%となるまでの時間を1.0としたときの発光素子D25及びD26の輝度が初期輝度の70%となるまでの時間の相対値を示す。
Figure JPOXMLDOC01-appb-T000145
 <実施例D27> 発光素子D27の作製と評価
 実施例D1において、(第2の有機層の形成)の「化合物HM-3」に代えて、「化合物HM-1」を用い、更に、(第1の有機層の形成)の「化合物HM-3及び燐光発光性化合物B1(化合物HM-3/燐光発光性化合物B1=75質量%/25質量%)」に代えて、「化合物HM-1、燐光発光性化合物B1、燐光発光性化合物G1及び燐光発光性化合物R1(化合物HM-1/燐光発光性化合物B1/燐光発光性化合物G1/燐光発光性化合物R1=73.9質量%/25質量%/1質量%/0.1質量%)」を用いた以外は、実施例D1と同様にして、発光素子D27を作製した。
 発光素子D27に電圧を印加することによりEL発光が観測された。1000cd/m2におけるCIE色度座標(x,y)は(0.35,0.50)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の95%となるまでの時間を測定した。
 <比較例CD5> 発光素子CD5の作製と評価
 実施例D1において、(第2の有機層の形成)の「高分子化合物HTL-1及び化合物HM-3(高分子化合物HTL-1/化合物HM-3=75質量%/25質量%)」に代えて、「高分子化合物HTL-1(高分子化合物HTL-1=100質量%)」を用い、更に、(第1の有機層の形成)の「化合物HM-3及び燐光発光性化合物B1(化合物HM-3/燐光発光性化合物B1=75質量%/25質量%)」に代えて、「化合物HM-1、燐光発光性化合物B1、燐光発光性化合物G1及び燐光発光性化合物R1(化合物HM-1/燐光発光性化合物B1/燐光発光性化合物G1/燐光発光性化合物R1=73.9質量%/25質量%/1質量%/0.1質量%)」を用いた以外は、実施例D1と同様にして、発光素子CD5を作製した。
 発光素子CD5に電圧を印加することによりEL発光が観測された。1000cd/m2におけるCIE色度座標(x,y)は(0.35,0.49)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の95%となるまでの時間を測定した。
 実施例D27及び比較例CD5の結果を表6に示す。発光素子CD5の輝度が初期輝度の95%となるまでの時間を1.0としたときの発光素子D27の輝度が初期輝度の95%となるまでの時間の相対値を示す。
Figure JPOXMLDOC01-appb-T000146
 <実施例D28> 発光素子D28の作製と評価
 実施例D1において、(第2の有機層の形成)の「化合物HM-3」に代えて、「化合物HM-1」を用い、更に、(第1の有機層の形成)の「化合物HM-3及び燐光発光性化合物B1(化合物HM-3/燐光発光性化合物B1=75質量%/25質量%)」に代えて、「化合物HM-1、燐光発光性化合物B3、燐光発光性化合物G2及び燐光発光性化合物R2(化合物HM-1/燐光発光性化合物B3/燐光発光性化合物G2/燐光発光性化合物R2=62.05質量%/37.5質量%/0.25質量%/0.2質量%)」を用いた以外は、実施例D1と同様にして、発光素子D28を作製した。
 発光素子D28に電圧を印加することによりEL発光が観測された。1000cd/m2におけるCIE色度座標(x,y)は(0.34,0.37)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の90%となるまでの時間を測定した。
 <比較例CD6> 発光素子CD6の作製と評価
 実施例D1において、(第2の有機層の形成)の「高分子化合物HTL-1及び化合物HM-3(高分子化合物HTL-1/化合物HM-3=75質量%/25質量%)」に代えて、「高分子化合物HTL-1(高分子化合物HTL-1=100質量%)」を用い、更に、(第1の有機層の形成)の「化合物HM-3及び燐光発光性化合物B1(化合物HM-3/燐光発光性化合物B1=75質量%/25質量%)」に代えて、「化合物HM-1、燐光発光性化合物B3、燐光発光性化合物G2及び燐光発光性化合物R2(化合物HM-1/燐光発光性化合物B3/燐光発光性化合物G2/燐光発光性化合物R2=62.05質量%/37.5質量%/0.25質量%/0.2質量%)」を用いた以外は、実施例D1と同様にして、発光素子CD6を作製した。
 発光素子CD6に電圧を印加することによりEL発光が観測された。1000cd/m2におけるCIE色度座標(x,y)は(0.34,0.38)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の90%となるまでの時間を測定した。
 実施例D28及び比較例CD6の結果を表7に示す。発光素子CD6の輝度が初期輝度の90%となるまでの時間を1.0としたときの発光素子D28の輝度が初期輝度の90%となるまでの時間の相対値を示す。
Figure JPOXMLDOC01-appb-T000147
 <実施例D29> 発光素子D29の作製と評価
 実施例D1において、(第2の有機層の形成)に代えて、下記(第2の有機層の形成-D29)とし、更に、(第1の有機層の形成)の「化合物HM-3及び燐光発光性化合物B1(化合物HM-3/燐光発光性化合物B1=75質量%/25質量%)」に代えて、「化合物HM-1及び燐光発光性化合物B2(化合物HM-1/燐光発光性化合物B2=75質量%/25質量%)」を用いた以外は、実施例D1と同様にして、発光素子D29を作製した。
 (第2の有機層の形成-D29)
 キシレンに化合物HTL-M1及び化合物HM-1(化合物HTL-M1/化合物HM-1=75質量%/25質量%)を0.7質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔注入層の上にスピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で180℃、60分間加熱させることにより第2の有機層(正孔輸送層)を形成した。この加熱により、化合物HTL-M1は、架橋体となった。
 発光素子D29に電圧を印加することによりEL発光が観測された。1000cd/m2におけるCIE色度座標(x,y)は(0.21,0.45)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の60%となるまでの時間を測定した。
 <比較例CD7> 発光素子CD7の作製と評価
 実施例D29において、(第2の有機層の形成-D29)の「化合物HTL-M1及び化合物HM-1(化合物HTL-M1/化合物HM-1=75質量%/25質量%)」に代えて、「化合物HTL-M1(化合物HTL-M1=100質量%)」を用いた以外は、実施例D29と同様にして、発光素子CD7を作製した。
 発光素子CD7に電圧を印加することによりEL発光が観測された。1000cd/m2におけるCIE色度座標(x,y)は(0.22,0.47)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の60%となるまでの時間を測定した。
 実施例D29及び比較例CD7の結果を表8に示す。発光素子CD7の輝度が初期輝度の60%となるまでの時間を1.0としたときの発光素子D29の輝度が初期輝度の60%となるまでの時間の相対値を示す。
Figure JPOXMLDOC01-appb-T000148
 <実施例D30> 発光素子D30の作製と評価
 実施例D29において、(第1の有機層の形成)の「燐光発光性化合物B2」に代えて、「燐光発光性化合物B1」を用いた以外は、実施例D29と同様にして、発光素子D30を作製した。
 発光素子D30に電圧を印加することによりEL発光が観測された。1000cd/m2におけるCIE色度座標(x,y)は(0.21,0.46)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の95%となるまでの時間を測定した。
 <比較例CD8> 発光素子CD8の作製と評価
 実施例D29において、(第2の有機層の形成-D29)の「化合物HTL-M1及び化合物HM-1(化合物HTL-M1/化合物HM-1=75質量%/25質量%)」に代えて、「化合物HTL-M1(化合物HTL-M1=100質量%)」を用い、更に、(第1の有機層の形成)の「燐光発光性化合物B2」に代えて、「燐光発光性化合物B1」を用いた以外は、実施例D29と同様にして、発光素子CD8を作製した。
 発光素子CD8に電圧を印加することによりEL発光が観測された。1000cd/m2におけるCIE色度座標(x,y)は(0.21,0.47)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の95%となるまでの時間を測定した。
Figure JPOXMLDOC01-appb-T000149
 本発明によれば、輝度寿命に優れる発光素子を提供することができる。

Claims (15)

  1.  陽極と、
     陰極と、
     陽極及び陰極の間に設けられた第1の有機層と、
     陽極及び陰極の間に設けられた第2の有機層とを有する発光素子であって、
     第1の有機層が、式(C-1)で表される化合物を含有する層であり、
     第2の有機層が、式(C-1)で表される化合物と、架橋材料の架橋体とを含有する層
    である、発光素子。
    Figure JPOXMLDOC01-appb-C000001
    [式中、
     環R1C及び環R2Cは、それぞれ独立に、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
     RCは、酸素原子、硫黄原子、又は、式(C’-1)で表される基を表す。]
    Figure JPOXMLDOC01-appb-C000002
    [式中、
     環R3C及び環R4Cは、それぞれ独立に、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
     RC'は、炭素原子、ケイ素原子、ゲルマニウム原子、スズ原子又は鉛原子を表す。]
  2.  前記第1の有機層に含有される前記式(C-1)で表される化合物及び前記第2の有機層に含有される前記式(C-1)で表される化合物のうちの少なくとも1つが、式(C-2-1)で表される化合物又は式(C-2-2)で表される化合物である、請求項1に記載の発光素子。
    Figure JPOXMLDOC01-appb-C000003
    [式中、
     RC'は、前記と同じ意味を表す。
     RC''は、酸素原子又は硫黄原子を表す。
     E11C、E12C、E13C、E14C、E21C、E22C、E23C、E24C、E31C、E32C、E33C、E34C、E41C、E42C、E43C及びE44Cは、それぞれ独立に、窒素原子又は炭素原子を表す。
     環R1C'、環R2C'、環R3C'及び環R4C'は、それぞれ独立に、ベンゼン環、ピリジン環又はジアザベンゼン環を表す。
     R11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。
     E11Cが窒素原子の場合、R11Cは存在しない。E12Cが窒素原子の場合、R12Cは存在しない。E13Cが窒素原子の場合、R13Cは存在しない。E14Cが窒素原子の場合、R14Cは存在しない。E21Cが窒素原子の場合、R21Cは存在しない。E22Cが窒素原子の場合、R22Cは存在しない。E23Cが窒素原子の場合、R23Cは存在しない。E24Cが窒素原子の場合、R24Cは存在しない。E31Cが窒素原子の場合、R31Cは存在しない。E32Cが窒素原子の場合、R32Cは存在しない。E33Cが窒素原子の場合、R33Cは存在しない。E34Cが窒素原子の場合、R34Cは存在しない。E41Cが窒素原子の場合、R41Cは存在しない。E42Cが窒素原子の場合、R42Cは存在しない。E43Cが窒素原子の場合、R43Cは存在しない。E44Cが窒素原子の場合、R44Cは存在しない。
     R11CとR12C、R12CとR13C、R13CとR14C、R14CとR34C、R34CとR33C、R33CとR32C、R32CとR31C、R31CとR41C、R41CとR42C、R42CとR43C、R43CとR44C、R44CとR24C、R24CとR23C、R23CとR22C、R22CとR21C、及び、R21CとR11Cは、それぞれ結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。]
  3.  前記第1の有機層に含有される前記式(C-1)で表される化合物及び前記第2の有機層に含有される前記式(C-1)で表される化合物のうちの少なくとも1つが、式(C-2-1)で表される化合物であり、
     前記式(C-2-1)で表される化合物が、式(C-3-1)で表される化合物である、請求項2に記載の発光素子。
    Figure JPOXMLDOC01-appb-C000004
    [式中、RC'、R11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cは、前記と同じ意味を表す。]
  4.  前記第1の有機層に含有される前記式(C-1)で表される化合物及び前記第2の有機層に含有される前記式(C-1)で表される化合物のうちの少なくとも1つが、式(C-2-2)で表される化合物であり、
     前記式(C-2-2)で表される化合物が、式(C-3-2)で表される化合物である、請求項2に記載の発光素子。
    Figure JPOXMLDOC01-appb-C000005
    [式中、RC''、R11C、R12C、R13C、R14C、R21C、R22C、R23C及びR24Cは、前記と同じ意味を表す。]
  5.  前記第1の有機層が、更に燐光発光性化合物を含有する層であり、
     前記燐光発光性化合物が、式(1)で表される燐光発光性化合物である、請求項1~4のいずれか一項に記載の発光素子。
    Figure JPOXMLDOC01-appb-C000006
    [式中、
     Mは、ルテニウム原子、ロジウム原子、パラジウム原子、イリジウム原子又は白金原子を表す。
     n1は1以上の整数を表し、n2は0以上の整数を表す。但し、Mがルテニウム原子、ロジウム原子又はイリジウム原子の場合、n1+n2は3であり、Mがパラジウム原子又は白金原子の場合、n1+n2は2である。
     E1及びE2は、それぞれ独立に、炭素原子又は窒素原子を表す。但し、E1及びE2の少なくとも一方は炭素原子である。E1及びE2が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。
     環L1は、芳香族複素環を表し、この芳香族複素環は置換基を有していてもよい。該置換基が複数存在する場合、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環L1が複数存在する場合、それらは同一でも異なっていてもよい。
     環L2は、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環L2が複数存在する場合、それらは同一でも異なっていてもよい。
     環L1が有していてもよい置換基と、環L2が有していてもよい置換基とは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
     A1-G1-A2は、アニオン性の2座配位子を表す。A1及びA2は、それぞれ独立に、炭素原子、酸素原子又は窒素原子を表し、これらの原子は環を構成する原子であってもよい。G1は、単結合、又は、A1及びA2とともに2座配位子を構成する原子団を表す。A1-G1-A2が複数存在する場合、それらは同一でも異なっていてもよい。]
  6.  前記式(1)で表される燐光発光性化合物が、式(1-B)で表される燐光発光性化合物である、請求項5に記載の発光素子。
    Figure JPOXMLDOC01-appb-C000007
    [式中、
     M、n1、n2及びA1-G1-A2は、前記と同じ意味を表す。
     E11B、E12B、E13B、E14B、E21B、E22B、E23B及びE24Bは、それぞれ独立に、窒素原子又は炭素原子を表す。E11B、E12B、E13B、E14B、E21B、E22B、E23B及びE24Bが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。E11Bが窒素原子の場合、R11Bは存在しない。E12Bが窒素原子の場合、R12Bは存在しない。E13Bが窒素原子の場合、R13Bは存在しない。E14Bが窒素原子の場合、R14Bは存在しない。E21Bが窒素原子の場合、R21Bは存在しない。E22Bが窒素原子の場合、R22Bは存在しない。E23Bが窒素原子の場合、R23Bは存在しない。E24Bが窒素原子の場合、R24Bは存在しない。
     R11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。R11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。R11BとR12B、R12BとR13B、R13BとR14B、R11BとR21B、R21BとR22B、R22BとR23B、及び、R23BとR24Bは、それぞれ結合して、それぞれが結合する原子とともに環を形成していてもよい。
     環L1Bは、ピリジン環又はジアザベンゼン環を表す。
     環L2Bは、ベンゼン環、ピリジン環又はジアザベンゼン環を表す。]
  7.  前記式(1-B)で表される燐光発光性化合物が、式(1-B1)で表される燐光発光性化合物、式(1-B2)で表される燐光発光性化合物、式(1-B3)で表される燐光発光性化合物、式(1-B4)で表される燐光発光性化合物又は式(1-B5)で表される燐光発光性化合物である、請求項6に記載の発光素子。
    Figure JPOXMLDOC01-appb-C000008
    [式中、
     M、n1、n2、A1-G1-A2、R11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bは、前記と同じ意味を表す。
     n11及びn12は、それぞれ独立に、1以上の整数を表す。但し、Mがルテニウム原子、ロジウム原子又はイリジウム原子の場合、n11+n12は3であり、Mがパラジウム原子又は白金原子の場合、n11+n12は2である。
     R15B、R16B、R17B及びR18Bは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。R15B、R16B、R17B及びR18Bが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。R13BとR15B、R15BとR16B、R16BとR17B、R17BとR18B、及び、R18BとR21Bは、それぞれ結合して、それぞれが結合する原子とともに環を形成していてもよい。]
  8.  前記式(1)で表される燐光発光性化合物が、式(1-A)で表される燐光発光性化合物である、請求項5に記載の発光素子。
    Figure JPOXMLDOC01-appb-C000009
    [式中、
     M、n1、n2、E1及びA1-G1-A2は、前記と同じ意味を表す。
     E11A、E12A、E13A、E21A、E22A、E23A及びE24Aは、それぞれ独立に、窒素原子又は炭素原子を表す。E11A、E12A、E13A、E21A、E22A、E23A及びE24Aが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。E11Aが窒素原子の場合、R11Aは存在しても存在しなくてもよい。E12Aが窒素原子の場合、R12Aは存在しても存在しなくてもよい。E13Aが窒素原子の場合、R13Aは存在しても存在しなくてもよい。E21Aが窒素原子の場合、R21Aは存在しない。E22Aが窒素原子の場合、R22Aは存在しない。E23Aが窒素原子の場合、R23Aは存在しない。E24Aが窒素原子の場合、R24Aは存在しない。
     R11A、R12A、R13A、R21A、R22A、R23A及びR24Aは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。R11A、R12A、R13A、R21A、R22A、R23A及びR24Aが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。R11AとR12A、R12AとR13A、R11AとR21A、R21AとR22A、R22AとR23A、及び、R23AとR24Aは、それぞれ結合して、それぞれが結合する原子とともに環を形成していてもよい。
     環L1Aは、トリアゾール環又はジアゾール環を表す。
     環L2Aは、ベンゼン環、ピリジン環又はジアザベンゼン環を表す。]
  9.  前記式(1-A)で表される燐光発光性化合物が、式(1-A1)で表される燐光発光性化合物、式(1-A2)で表される燐光発光性化合物、式(1-A3)で表される燐光発光性化合物、式(1-A4)で表される燐光発光性化合物又は式(1-A5)で表される燐光発光性化合物である、請求項8に記載の発光素子。
    Figure JPOXMLDOC01-appb-C000010
    Figure JPOXMLDOC01-appb-C000011
    Figure JPOXMLDOC01-appb-C000012
    [式中、M、n1、n2、R11A、R12A、R13A、R21A、R22A、R23A、R24A及びA1-G1-A2は、前記と同じ意味を表す。]
  10.  前記架橋材料が、
     架橋基A群から選ばれる少なくとも1種の架橋基を有する低分子化合物、又は、架橋基A群から選ばれる少なくとも1種の架橋基を有する架橋構成単位を含む高分子化合物である、請求項1~9のいずれか一項に記載の発光素子。
    (架橋基A群)
    Figure JPOXMLDOC01-appb-C000013
    [式中、RXLは、メチレン基、酸素原子又は硫黄原子を表し、nXLは、0~5の整数を表す。RXLが複数存在する場合、それらは同一でも異なっていてもよく、nXLが複数存在する場合、それらは同一でも異なっていてもよい。*1は結合位置を表す。これらの架橋基は置換基を有していてもよい。]
  11.  前記架橋材料が、架橋基A群から選ばれる少なくとも1種の架橋基を有する架橋構成単位を含む高分子化合物であり、
     前記架橋構成単位が、式(2)で表される構成単位又は式(2’)で表される構成単位である、請求項10に記載の発光素子。
    Figure JPOXMLDOC01-appb-C000014
    [式中、
     nAは0~5の整数を表し、nは1又は2を表す。nAが複数存在する場合、それらは同一でも異なっていてもよい。
     Ar3は、芳香族炭化水素基又は複素環基を表し、これらの基は置換基を有していてもよい。
     LAは、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-NR’-で表される基、酸素原子又は硫黄原子を表し、これらの基は置換基を有していてもよい。R’は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。LAが複数存在する場合、それらは同一でも異なっていてもよい。
     Xは、前記架橋基A群から選ばれる架橋基を表す。Xが複数存在する場合、それらは同一でも異なっていてもよい。]
    Figure JPOXMLDOC01-appb-C000015
    [式中、
     mAは0~5の整数を表し、mは1~4の整数を表し、cは0又は1を表す。mAが複数存在する場合、それらは同一でも異なっていてもよい。
     Ar5は、芳香族炭化水素基、複素環基、又は、少なくとも1種の芳香族炭化水素環と少なくとも1種の複素環とが直接結合した基を表し、これらの基は置換基を有していてもよい。
     Ar4及びAr6は、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。
     Ar4、Ar5及びAr6はそれぞれ、当該基が結合している窒素原子に結合している当該基以外の基と、直接又は酸素原子もしくは硫黄原子を介して結合して、環を形成していてもよい。
     KAは、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-NR’’-で表される基、酸素原子又は硫黄原子を表し、これらの基は置換基を有していてもよい。R’’は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。KAが複数存在する場合、それらは同一でも異なっていてもよい。
     X’は、前記架橋基A群から選ばれる架橋基、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。但し、少なくとも1つのX’は、前記架橋基A群から選ばれる架橋基である。]
  12.  前記架橋材料が、式(3)で表される低分子化合物である、請求項10に記載の発光素子。
    Figure JPOXMLDOC01-appb-C000016
    [式中、
     mB1、mB2及びmB3は、それぞれ独立に、0以上10以下の整数を表す。複数存在するmB1は、同一でも異なっていてもよい。mB3が複数存在する場合、それらは同一でも異なっていてもよい。
     Ar7は、芳香族炭化水素基、複素環基、又は、少なくとも1種の芳香族炭化水素環と少なくとも1種の複素環とが直接結合した基を表し、これらの基は置換基を有していてもよい。Ar7が複数存在する場合、それらは同一でも異なっていてもよい。
     LB1は、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-NR’’’-で表される基、酸素原子又は硫黄原子を表し、これらの基は置換基を有していてもよい。R’’’は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。LB1が複数存在する場合、それらは同一でも異なっていてもよい。
     X’’は、架橋基A群から選ばれる架橋基、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するX’’は、同一でも異なっていてもよい。但し、複数存在するX’’のうち、少なくとも1つは、架橋基A群から選ばれる架橋基である。]
  13.  前記第1の有機層が、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料及び発光材料からなる群より選ばれる少なくとも1種の材料を更に含有する、請求項1~12のいずれか一項に記載の発光素子。
  14.  前記第1の有機層と前記第2の有機層とが隣接している、請求項1~13のいずれか一項に記載の発光素子。
  15.  前記第2の有機層が、前記陽極及び前記第1の有機層との間に設けられた層である、請求項1~14のいずれか一項に記載の発光素子。
PCT/JP2018/016310 2017-04-27 2018-04-20 発光素子 WO2018198975A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880027269.5A CN110546781B (zh) 2017-04-27 2018-04-20 发光元件
KR1020197034216A KR102468541B1 (ko) 2017-04-27 2018-04-20 발광 소자
US16/500,903 US11588119B2 (en) 2017-04-27 2018-04-20 Light emitting device
EP18792310.7A EP3618134A4 (en) 2017-04-27 2018-04-20 LIGHT EMITTING ELEMENT
JP2018568995A JP6519719B2 (ja) 2017-04-27 2018-04-20 発光素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017088011 2017-04-27
JP2017-088011 2017-04-27

Publications (1)

Publication Number Publication Date
WO2018198975A1 true WO2018198975A1 (ja) 2018-11-01

Family

ID=63918298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016310 WO2018198975A1 (ja) 2017-04-27 2018-04-20 発光素子

Country Status (6)

Country Link
US (1) US11588119B2 (ja)
EP (1) EP3618134A4 (ja)
JP (2) JP6519719B2 (ja)
KR (1) KR102468541B1 (ja)
CN (1) CN110546781B (ja)
WO (1) WO2018198975A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020167388A (ja) * 2019-03-29 2020-10-08 住友化学株式会社 発光素子及び発光素子用組成物
CN113874467A (zh) * 2019-05-20 2021-12-31 三菱化学株式会社 有机电致发光元件用组合物、有机电致发光元件及其制造方法、以及显示装置
JP7015406B1 (ja) 2020-09-24 2022-02-02 住友化学株式会社 発光素子及び組成物
WO2022065099A1 (ja) 2020-09-24 2022-03-31 住友化学株式会社 発光素子及び組成物
WO2022065098A1 (ja) 2020-09-24 2022-03-31 住友化学株式会社 発光素子及び組成物
WO2022065100A1 (ja) 2020-09-24 2022-03-31 住友化学株式会社 発光素子及び組成物
WO2022065102A1 (ja) 2020-09-24 2022-03-31 住友化学株式会社 発光素子及び組成物

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11889751B2 (en) 2018-04-26 2024-01-30 Sumitomo Chemical Company, Limited Light emitting element
KR20220065412A (ko) * 2020-11-13 2022-05-20 고려대학교 세종산학협력단 스피로비플로렌계 화합물, 이로 이루어진 정공 수송층 및 이를 포함하는 유기발광소자
CN112802970B (zh) * 2020-12-27 2022-07-05 浙江华显光电科技有限公司 一种组合物及包含其的有机电致发光元件
WO2022157879A1 (ja) * 2021-01-21 2022-07-28 シャープディスプレイテクノロジー株式会社 発光素子、表示装置及び表示装置の製造方法
KR102370782B1 (ko) 2021-06-13 2022-03-07 넷플러스 주식회사 기업현황 예측경영 시스템 및 그 구동방법

Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997033193A2 (en) 1996-02-23 1997-09-12 The Dow Chemical Company Cross-linkable or chain extendable polyarylpolyamines and films thereof
WO2002044189A1 (fr) 2000-11-30 2002-06-06 Canon Kabushiki Kaisha Element luminescent et afficheur
WO2005035221A1 (de) 2003-10-14 2005-04-21 Bühler AG Verfahren zur herstellung eines formkörpers aus einem polykondensat
WO2005049548A1 (en) 2003-11-17 2005-06-02 Sumitomo Chemical Company, Limited Crosslinkable substituted fluorene compounds
JP2006188673A (ja) 2004-12-07 2006-07-20 Sumitomo Chemical Co Ltd 高分子材料およびそれを用いた素子
WO2006121811A1 (en) 2005-05-06 2006-11-16 Universal Display Corporation Stability oled materials and devices with improved stability
WO2007114244A1 (ja) * 2006-03-30 2007-10-11 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、照明装置及びディスプレイ装置
WO2007119473A1 (ja) * 2006-03-30 2007-10-25 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法、照明装置及びディスプレイ装置
WO2008029729A1 (fr) * 2006-09-08 2008-03-13 Konica Minolta Holdings, Inc. Dispositif électroluminescent organique, dispositif d'éclairage et affichage utilisant un tel dispositif
JP2008179617A (ja) 2006-12-27 2008-08-07 Sumitomo Chemical Co Ltd 金属錯体、高分子化合物及びこれらを含む素子
JP2009046408A (ja) 2007-08-17 2009-03-05 Konica Minolta Holdings Inc ジハロ多環芳香族化合物、ピロリル多環芳香族化合物、及びそれらの製造方法
WO2009086028A2 (en) 2007-12-28 2009-07-09 Universal Display Corporation Carbazole-containing materials in phosphorescent light emitting diodes
WO2009096202A1 (ja) 2008-01-31 2009-08-06 Konica Minolta Holdings, Inc. ハロ多環芳香族化合物及びその製造方法
WO2009131255A1 (ja) 2008-04-25 2009-10-29 住友化学株式会社 含窒素複素環式化合物の残基を有する高分子化合物
JP2009267255A (ja) 2008-04-28 2009-11-12 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
WO2009157424A1 (ja) 2008-06-23 2009-12-30 住友化学株式会社 金属錯体の残基を含む高分子化合物及びそれを用いた素子
JP2010189630A (ja) 2009-01-20 2010-09-02 Sumitomo Chemical Co Ltd メタフェニレン系高分子化合物及びそれを用いた発光素子
WO2011006574A1 (de) 2009-07-14 2011-01-20 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2011024761A1 (ja) 2009-08-27 2011-03-03 住友化学株式会社 金属錯体組成物及び錯体高分子
JP2012033845A (ja) 2009-09-30 2012-02-16 Sumitomo Chemical Co Ltd 積層構造体、重合体、電界発光素子及び光電変換素子
WO2012048819A1 (en) 2010-10-11 2012-04-19 Solvay (Societe Anonyme) Novel spirobifluorene compounds
WO2012048820A1 (en) 2010-10-11 2012-04-19 Solvay (Societe Anonyme) A spirobifluorene compound for light emitting devices
JP2013048190A (ja) 2011-08-29 2013-03-07 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子および照明装置
WO2013045408A1 (en) 2011-09-28 2013-04-04 Solvay Sa Spirobifluorene compounds for light emitting devices
WO2013045410A1 (en) 2011-09-28 2013-04-04 Solvay Sa Spirobifluorene compounds for light emitting devices
JP2013147551A (ja) 2012-01-18 2013-08-01 Sumitomo Chemical Co Ltd 燐光性発光化合物及び高分子化合物を含む組成物、並びにそれを用いた発光素子
JP2013177361A (ja) * 2012-02-02 2013-09-09 Konica Minolta Inc イリジウム錯体化合物、有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、照明装置及び表示装置
WO2013146806A1 (ja) 2012-03-27 2013-10-03 住友化学株式会社 高分子化合物およびそれを用いた発光素子
WO2014023388A1 (de) 2012-08-10 2014-02-13 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
JP2014224101A (ja) 2013-04-15 2014-12-04 住友化学株式会社 金属錯体およびそれを用いた発光素子
WO2015159744A1 (ja) 2014-04-18 2015-10-22 住友化学株式会社 組成物およびそれを用いた発光素子
WO2016194695A1 (ja) * 2015-05-29 2016-12-08 住友化学株式会社 発光素子及びその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010045405A1 (de) * 2010-09-15 2012-03-15 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
KR102040350B1 (ko) 2012-04-17 2019-11-04 메르크 파텐트 게엠베하 가교성 및 가교된 중합체, 그의 제조 방법 및 그의 용도
WO2015156235A1 (ja) 2014-04-09 2015-10-15 住友化学株式会社 発光素子およびそれに用いる組成物
EP3136462A4 (en) * 2014-04-25 2017-12-20 Sumitomo Chemical Company Limited Light-emitting element
JP5867580B2 (ja) 2014-06-04 2016-02-24 住友化学株式会社 発光素子
WO2017221822A1 (ja) * 2016-06-24 2017-12-28 住友化学株式会社 発光素子
CN110574181A (zh) * 2017-04-27 2019-12-13 住友化学株式会社 发光元件
EP3618131A4 (en) * 2017-04-27 2021-01-06 Sumitomo Chemical Company Limited ELECTROLUMINESCENT ELEMENT
WO2018198973A1 (ja) * 2017-04-27 2018-11-01 住友化学株式会社 組成物及びそれを用いた発光素子

Patent Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997033193A2 (en) 1996-02-23 1997-09-12 The Dow Chemical Company Cross-linkable or chain extendable polyarylpolyamines and films thereof
WO2002044189A1 (fr) 2000-11-30 2002-06-06 Canon Kabushiki Kaisha Element luminescent et afficheur
WO2005035221A1 (de) 2003-10-14 2005-04-21 Bühler AG Verfahren zur herstellung eines formkörpers aus einem polykondensat
WO2005049548A1 (en) 2003-11-17 2005-06-02 Sumitomo Chemical Company, Limited Crosslinkable substituted fluorene compounds
JP2006188673A (ja) 2004-12-07 2006-07-20 Sumitomo Chemical Co Ltd 高分子材料およびそれを用いた素子
WO2006121811A1 (en) 2005-05-06 2006-11-16 Universal Display Corporation Stability oled materials and devices with improved stability
WO2007114244A1 (ja) * 2006-03-30 2007-10-11 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、照明装置及びディスプレイ装置
WO2007119473A1 (ja) * 2006-03-30 2007-10-25 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法、照明装置及びディスプレイ装置
WO2008029729A1 (fr) * 2006-09-08 2008-03-13 Konica Minolta Holdings, Inc. Dispositif électroluminescent organique, dispositif d'éclairage et affichage utilisant un tel dispositif
JP2008179617A (ja) 2006-12-27 2008-08-07 Sumitomo Chemical Co Ltd 金属錯体、高分子化合物及びこれらを含む素子
JP2009046408A (ja) 2007-08-17 2009-03-05 Konica Minolta Holdings Inc ジハロ多環芳香族化合物、ピロリル多環芳香族化合物、及びそれらの製造方法
WO2009086028A2 (en) 2007-12-28 2009-07-09 Universal Display Corporation Carbazole-containing materials in phosphorescent light emitting diodes
WO2009096202A1 (ja) 2008-01-31 2009-08-06 Konica Minolta Holdings, Inc. ハロ多環芳香族化合物及びその製造方法
WO2009131255A1 (ja) 2008-04-25 2009-10-29 住友化学株式会社 含窒素複素環式化合物の残基を有する高分子化合物
JP2009267255A (ja) 2008-04-28 2009-11-12 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
WO2009157424A1 (ja) 2008-06-23 2009-12-30 住友化学株式会社 金属錯体の残基を含む高分子化合物及びそれを用いた素子
JP2010189630A (ja) 2009-01-20 2010-09-02 Sumitomo Chemical Co Ltd メタフェニレン系高分子化合物及びそれを用いた発光素子
WO2011006574A1 (de) 2009-07-14 2011-01-20 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2011024761A1 (ja) 2009-08-27 2011-03-03 住友化学株式会社 金属錯体組成物及び錯体高分子
JP2012033845A (ja) 2009-09-30 2012-02-16 Sumitomo Chemical Co Ltd 積層構造体、重合体、電界発光素子及び光電変換素子
WO2012048819A1 (en) 2010-10-11 2012-04-19 Solvay (Societe Anonyme) Novel spirobifluorene compounds
WO2012048820A1 (en) 2010-10-11 2012-04-19 Solvay (Societe Anonyme) A spirobifluorene compound for light emitting devices
JP2013048190A (ja) 2011-08-29 2013-03-07 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子および照明装置
WO2013045408A1 (en) 2011-09-28 2013-04-04 Solvay Sa Spirobifluorene compounds for light emitting devices
WO2013045410A1 (en) 2011-09-28 2013-04-04 Solvay Sa Spirobifluorene compounds for light emitting devices
WO2013045411A1 (en) 2011-09-28 2013-04-04 Solvay Sa Spirobifluorene compounds for light emitting devices
JP2013147551A (ja) 2012-01-18 2013-08-01 Sumitomo Chemical Co Ltd 燐光性発光化合物及び高分子化合物を含む組成物、並びにそれを用いた発光素子
JP2013177361A (ja) * 2012-02-02 2013-09-09 Konica Minolta Inc イリジウム錯体化合物、有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、照明装置及び表示装置
WO2013146806A1 (ja) 2012-03-27 2013-10-03 住友化学株式会社 高分子化合物およびそれを用いた発光素子
WO2014023388A1 (de) 2012-08-10 2014-02-13 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
JP2014224101A (ja) 2013-04-15 2014-12-04 住友化学株式会社 金属錯体およびそれを用いた発光素子
WO2015159744A1 (ja) 2014-04-18 2015-10-22 住友化学株式会社 組成物およびそれを用いた発光素子
WO2016194695A1 (ja) * 2015-05-29 2016-12-08 住友化学株式会社 発光素子及びその製造方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CHEMICAL REVIEW, vol. 109, 2009, pages 897 - 1091
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 106, 1984, pages 6647 - 6653
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 107, 1985, pages 1431 - 1432
LIAPTSIS G., ET AL.: "Solution Processed Organic Double Light-Emitting Layer Diode Based on Cross- Linkable Small Molecular Systems", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, 3 July 2013 (2013-07-03), pages 9563 - 9567, XP055189367 *
ORGANIC ELECTRONICS, vol. 14, 2013, pages 902 - 908
See also references of EP3618134A4

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020167388A (ja) * 2019-03-29 2020-10-08 住友化学株式会社 発光素子及び発光素子用組成物
WO2020203209A1 (ja) * 2019-03-29 2020-10-08 住友化学株式会社 発光素子及び発光素子用組成物
CN113874467A (zh) * 2019-05-20 2021-12-31 三菱化学株式会社 有机电致发光元件用组合物、有机电致发光元件及其制造方法、以及显示装置
JP7015406B1 (ja) 2020-09-24 2022-02-02 住友化学株式会社 発光素子及び組成物
WO2022065099A1 (ja) 2020-09-24 2022-03-31 住友化学株式会社 発光素子及び組成物
WO2022065098A1 (ja) 2020-09-24 2022-03-31 住友化学株式会社 発光素子及び組成物
WO2022065101A1 (ja) 2020-09-24 2022-03-31 住友化学株式会社 発光素子及び組成物
WO2022065100A1 (ja) 2020-09-24 2022-03-31 住友化学株式会社 発光素子及び組成物
WO2022065102A1 (ja) 2020-09-24 2022-03-31 住友化学株式会社 発光素子及び組成物
JP2022053497A (ja) * 2020-09-24 2022-04-05 住友化学株式会社 発光素子及び組成物
JP2022053496A (ja) * 2020-09-24 2022-04-05 住友化学株式会社 発光素子及び組成物
JP2022053494A (ja) * 2020-09-24 2022-04-05 住友化学株式会社 発光素子及び組成物
JP2022053493A (ja) * 2020-09-24 2022-04-05 住友化学株式会社 発光素子及び組成物
JP2022053495A (ja) * 2020-09-24 2022-04-05 住友化学株式会社 発光素子及び組成物
JP7058792B2 (ja) 2020-09-24 2022-04-22 住友化学株式会社 発光素子及び組成物
JP7079883B2 (ja) 2020-09-24 2022-06-02 住友化学株式会社 発光素子及び組成物
JP7086258B2 (ja) 2020-09-24 2022-06-17 住友化学株式会社 発光素子及び組成物
JP7086259B2 (ja) 2020-09-24 2022-06-17 住友化学株式会社 発光素子及び組成物
KR20230070280A (ko) 2020-09-24 2023-05-22 스미또모 가가꾸 가부시키가이샤 발광 소자 및 조성물
KR20230073271A (ko) 2020-09-24 2023-05-25 스미또모 가가꾸 가부시키가이샤 발광 소자 및 조성물
KR20230074203A (ko) 2020-09-24 2023-05-26 스미또모 가가꾸 가부시키가이샤 발광 소자 및 조성물
KR20230074204A (ko) 2020-09-24 2023-05-26 스미또모 가가꾸 가부시키가이샤 발광 소자 및 조성물
KR20230074202A (ko) 2020-09-24 2023-05-26 스미또모 가가꾸 가부시키가이샤 발광 소자 및 조성물

Also Published As

Publication number Publication date
CN110546781A (zh) 2019-12-06
JP6519719B2 (ja) 2019-05-29
US20200136062A1 (en) 2020-04-30
EP3618134A1 (en) 2020-03-04
JPWO2018198975A1 (ja) 2019-06-27
EP3618134A4 (en) 2021-01-06
KR20200003387A (ko) 2020-01-09
KR102468541B1 (ko) 2022-11-21
US11588119B2 (en) 2023-02-21
JP2019169717A (ja) 2019-10-03
CN110546781B (zh) 2022-05-10

Similar Documents

Publication Publication Date Title
JP6519719B2 (ja) 発光素子
JP6562168B2 (ja) 組成物及びそれを用いた発光素子
JP6566050B2 (ja) 発光素子
JP6614370B2 (ja) 組成物及びそれを用いた発光素子
WO2018198972A1 (ja) 組成物及びそれを用いた発光素子
JP6573041B2 (ja) 発光素子
JP6399243B2 (ja) 発光素子
JP2019195057A (ja) 発光素子
JP6332557B2 (ja) 発光素子の駆動方法および発光装置
JP7319251B2 (ja) 発光素子
WO2017038613A1 (ja) 組成物及びそれを用いた発光素子
WO2019208647A1 (ja) ブロック共重合体及びそれを用いた発光素子
WO2017221822A1 (ja) 発光素子
JP2018188515A (ja) 組成物及び発光素子
JP6399248B2 (ja) 発光素子
JP2019186576A (ja) 発光素子
JP2023158646A (ja) 組成物及びそれを用いた発光素子
WO2018199283A1 (ja) 組成物及びそれを用いた発光素子

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018568995

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18792310

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197034216

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018792310

Country of ref document: EP

Effective date: 20191127