WO2018196570A1 - 一种真空玻璃的感应加热焊接方法 - Google Patents

一种真空玻璃的感应加热焊接方法 Download PDF

Info

Publication number
WO2018196570A1
WO2018196570A1 PCT/CN2018/081812 CN2018081812W WO2018196570A1 WO 2018196570 A1 WO2018196570 A1 WO 2018196570A1 CN 2018081812 W CN2018081812 W CN 2018081812W WO 2018196570 A1 WO2018196570 A1 WO 2018196570A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal layer
glass substrate
center
frequency induction
width direction
Prior art date
Application number
PCT/CN2018/081812
Other languages
English (en)
French (fr)
Inventor
李彦兵
王章生
Original Assignee
洛阳兰迪玻璃机器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 洛阳兰迪玻璃机器股份有限公司 filed Critical 洛阳兰迪玻璃机器股份有限公司
Priority to US16/607,182 priority Critical patent/US11384593B2/en
Priority to EP18792086.3A priority patent/EP3584232A4/en
Priority to KR1020197033454A priority patent/KR102216059B1/ko
Priority to CA3056164A priority patent/CA3056164C/en
Priority to RU2019136479A priority patent/RU2736268C1/ru
Priority to AU2018259536A priority patent/AU2018259536B2/en
Priority to JP2019557869A priority patent/JP6902624B2/ja
Publication of WO2018196570A1 publication Critical patent/WO2018196570A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • C03C27/08Joining glass to glass by processes other than fusing with the aid of intervening metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • C03C27/10Joining glass to glass by processes other than fusing with the aid of adhesive specially adapted for that purpose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/002Soldering by means of induction heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/19Soldering, e.g. brazing, or unsoldering taking account of the properties of the materials to be soldered
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/20Uniting glass pieces by fusing without substantial reshaping
    • C03B23/24Making hollow glass sheets or bricks
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/20Uniting glass pieces by fusing without substantial reshaping
    • C03B23/24Making hollow glass sheets or bricks
    • C03B23/245Hollow glass sheets
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/6612Evacuated glazing units
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/663Elements for spacing panes
    • E06B3/66309Section members positioned at the edges of the glazing unit
    • E06B3/66342Section members positioned at the edges of the glazing unit characterised by their sealed connection to the panes
    • E06B3/66357Soldered connections or the like
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/673Assembling the units
    • E06B3/67326Assembling spacer elements with the panes
    • E06B3/67334Assembling spacer elements with the panes by soldering; Preparing the panes therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/54Glass
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/663Elements for spacing panes
    • E06B3/66309Section members positioned at the edges of the glazing unit
    • E06B3/66333Section members positioned at the edges of the glazing unit of unusual substances, e.g. wood or other fibrous materials, glass or other transparent materials
    • E06B2003/66338Section members positioned at the edges of the glazing unit of unusual substances, e.g. wood or other fibrous materials, glass or other transparent materials of glass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/249Glazing, e.g. vacuum glazing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/22Glazing, e.g. vaccum glazing

Definitions

  • the invention relates to the field of vacuum glass technology, in particular to an induction heating welding method for vacuum glass.
  • Vacuum glass is an emerging glass category, generally composed of two pieces of glass. It is a vacuum layer between two pieces of glass. Due to the existence of this vacuum layer, vacuum glass has good performance in sound insulation, heat insulation and anti-condensation. Performance is also more in line with the country's development requirements for energy conservation and environmental protection.
  • the sealing quality of vacuum glass directly affects the performance of vacuum glass.
  • the sealing of vacuum glass mainly adopts two methods: one is to seal with low glass powder, and the other is to seal with metal.
  • the metal is used for sealing, the metal layer is first prepared at the edge of the opposite surface of the two glass substrates, and then the brazing process is used to firmly connect the metal layer and the solder, thereby achieving airtight sealing of the two glass substrates. .
  • the solder can be heated by high frequency induction heating, and the high frequency induction welding head is coiled by the high frequency induction coil, as shown in FIG.
  • the center line of the high-frequency induction welding head is aligned with the center line of the welding strip, and the high-frequency induction welding head advances at a constant speed along the center line of the welding belt, thereby achieving gas-tight welding around the vacuum glass.
  • the metal layer in the sealing region is heated during operation of the high frequency induction soldering tip.
  • the glass substrate often has a phenomenon of over-burning of the metal layer at its corner position, and the position of the corner refers to the position of the high-frequency induction soldering tip in FIG. 2, so that the bonding strength between the metal layer and the glass substrate is greatly reduced.
  • the metal layer is a silver film layer sintered on a glass substrate
  • silver in the silver film in the corner region of the glass substrate is melted into the brazing material with excessive heating, so that the vacuum glass produced at the corner portion is welded.
  • the sharp drop has affected the reliability and service life of vacuum glass welding.
  • the inventors have found that the high-frequency induction welding head must have a process of deceleration-direction-acceleration at the corner region, and therefore, the vacuum
  • the induction heating time of the inner corner of the glass corner area is too long, and the heating speed of the edge of the metal layer during heating is significantly greater than the heating speed of the center of the metal layer, which is the main cause of overburning of the metal layer in the corner area, the corner area
  • the inner corners are particularly hot.
  • the inventors have found that in theory, the above problem can be solved by reducing the power of induction heating, speeding up the traveling speed of the high-frequency induction welding head, and changing the height between the high-frequency induction welding head and the metal layer, in the actual implementation process. It is found that the above-mentioned means are not operability and have certain effects, but are not obvious.
  • the object of the present invention is to provide an induction heating welding method for vacuum glass, which changes the relative position of the running track of the center of the high-frequency induction welding head and the center line of the width direction of the metal layer, so that the running track of the center of the high-frequency induction welding head and the width of the metal layer
  • the direction of the center line is deviated, thereby reducing the inductive power of the metal layer in the corner region, thereby avoiding over-burning of the metal layer in the corner region.
  • the corner area is explained, and the area where the metal layer is redirected in the width direction center line is the corner area.
  • An induction heating welding method for vacuum glass the vacuum glass comprises an upper glass substrate and a lower glass substrate, a metal layer is prepared in a region to be sealed of the upper glass substrate and the lower glass substrate, and a continuous layer is arranged on the metal layer of the lower glass substrate to be sealed
  • the solder is laminated on the glass substrate and the lower glass substrate.
  • the relative position of the running track and the center line in the width direction of the metal layer causes the running track of the center of the high-frequency induction welding head to deviate from the center line of the width direction of the metal layer, thereby reducing the induced power of the metal layer in the corner area to avoid the metal layer in the area. Overheated.
  • the manner of changing the relative position of the running track of the center of the high-frequency induction welding head to the center line of the width direction of the metal layer is such that the running track of the center of the high-frequency induction welding head in the corner area is outside the center line of the width direction of the metal layer.
  • the manner of changing the relative position of the running track of the center of the high-frequency induction welding head to the center line of the width direction of the metal layer is to change the shape of the metal layer such that the inner and outer edges of the metal layer in the corner area are curved.
  • the metal layer has a width of 8 mm, the metal layer has an arc radius of 3 mm at the inner edge of the corner region, and the metal layer has an arc radius of 11 mm at the outer edge of the corner region.
  • the metal layer disposed in the area to be sealed of the glass substrate has a circular shape
  • the width of the ring is d
  • the radius of the inner circle of the ring is r
  • the high frequency induction welding head The running track of the center is a circle concentric with a circular circle, and the radius of the circle is R, r + d / 2 ⁇ R ⁇ r + d.
  • the distance between the running track of the center of the high-frequency induction welding head and the center line of the width direction of the metal layer is less than half of the width of the metal layer .
  • the method reduces the running position of the center of the high-frequency induction welding head and the center line of the width direction of the metal layer by changing the relative position of the running track of the center of the high-frequency induction welding head and the center line in the width direction of the metal layer, thereby reducing the metal layer in the corner area.
  • Inductive power in order to avoid over-burning of the metal layer.
  • the vacuum glass obtained by the method improves the sealing performance of the sealing area, improves the product qualification rate, and prolongs the service life of the vacuum glass.
  • Figure 1 is a schematic view of a high frequency induction welding joint
  • Embodiment 3 is a schematic view of welding of Embodiment 1;
  • Figure 4 is an enlarged schematic view of a region A in Figure 3;
  • Figure 5 is a schematic view of welding of Embodiment 2.
  • Figure 6 is a schematic view of welding of Embodiment 3.
  • Figure 7 is a schematic view of welding of Embodiment 4.
  • Figure 8 is a schematic view showing the welding of the embodiment 5;
  • 1 glass substrate 1 glass substrate, 2 metal layers, 21 metal layer corner region outer edge, 22 metal layer corner region inner edge, 23 metal layer width direction center line, 3 high frequency induction welding head, 4 travel route.
  • spatially relative terms such as “upper”, “lower”, “left”, “right”, etc. may be used herein to describe the relationship of one element or feature shown in the figure to another element or feature. . It will be understood that the spatial terms are intended to encompass different orientations of the device in use or operation. For example, elements in the “a” or “an” Thus, the exemplary term “lower” can encompass both an s. The device may be otherwise positioned (rotated 90 degrees or at other orientations), and the relative description of the space used herein may be interpreted accordingly.
  • FIG. 3 and FIG. 4 show a first embodiment of the induction heating welding method for vacuum glass according to the present invention.
  • the glass substrate 1 to be sealed is square glass, and is surrounded by the glass substrate 1.
  • the metal layer 2 is pre-set in the sealing area, and the metal layer 2 has a right angle at the inner edge and the outer edge of the four corner regions, and the continuous solder is disposed on the metal layer 2, and the straight line of the metal layer 2 is performed.
  • the center of the high-frequency induction welding head 3 is aligned with the center line in the width direction of the metal layer 2 at a constant speed, and the traveling path 4 is a straight line; when the corner portion of the metal layer 2 is welded, the high-frequency induction welding head is offset to the outside.
  • the traveling route 4 of 3 causes the center of the high-frequency induction welding head 3 to deviate from the center line in the width direction of the metal layer 2 during the traveling, thereby reducing the inductive power of the metal layer 2 in the corner region, and the offset distance should be less than half of the metal layer. 2 width.
  • FIG. 5 is a second embodiment of the induction heating welding method for vacuum glass according to the present invention.
  • the glass substrate 1 to be sealed is square glass, and the periphery of the glass substrate 1 is sealed.
  • a metal layer 2 is preliminarily disposed in the region, and continuous solder is disposed on the metal layer 2.
  • the traveling route 4 is a straight line; when the corner region of the metal layer 2 is welded, the traveling route of the high-frequency induction welding head 3 is kept unchanged, and referring to FIG.
  • the width of the metal layer is preferably 8 mm, the radius of the arc of the metal layer at the inner edge of the corner region is preferably 3 mm, and the radius of the arc of the metal layer at the outer edge of the corner region is preferably 11 mm.
  • FIG. 6 is a third embodiment of the induction heating welding method for vacuum glass according to the present invention.
  • the glass substrate 1 to be sealed is circular, and the periphery of the glass substrate 1 is sealed.
  • a circular metal layer 2 is preset in the region, the width of the ring is d, and the radius of the inner circle of the ring is r.
  • the metal layer 2 in this embodiment has no straight line segments, all of which are corner regions, and for the corner regions.
  • the welding method is substantially the same as that described in Embodiment 1, and the traveling path 4 of the high-frequency induction welding head 3 is shifted to the outside so that the center line of the high-frequency induction welding head 3 is offset from the width direction center line 23 of the metal layer 2 during traveling.
  • the inductive power of the metal layer 2 in the corner region is reduced, and the running track of the center of the high-frequency induction welding head 3 is a circle concentric with the annular metal layer 2, and the radius of the circle is R, r+d/2 ⁇ R ⁇ r + d.
  • FIG. 7 shows a fourth embodiment of the induction heating welding method for vacuum glass according to the present invention, which is basically the same as the welding method of the first embodiment, except that the glass substrate 1 has a trapezoidal shape in this embodiment.
  • FIG. 8 shows a fifth embodiment of the induction heating welding method for vacuum glass according to the present invention, which is basically the same as the welding method of the first embodiment, except that the glass substrate 1 has a triangular shape in the embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Securing Of Glass Panes Or The Like (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Abstract

一种真空玻璃的感应加热焊接方法,真空玻璃包括上玻璃基板和下玻璃基板,在上玻璃基板和下玻璃基板待封接区域制备有金属层,在下玻璃基板待封接区域金属层上面布设连续的焊料,叠合上玻璃基板和下玻璃基板,焊接时,高频感应焊接头中心沿着金属层宽度方向中线行进,在对金属层拐角区域进行感应加热时,改变高频感应焊接头中心的运行轨迹与金属层宽度方向中线的相对位置,使高频感应焊接头中心的运行轨迹与金属层宽度方向中线相偏离,从而降低拐角区域内金属层的感应功率,以避免该区域内的金属层过度加热。

Description

一种真空玻璃的感应加热焊接方法 技术领域
本发明涉及真空玻璃技术领域,尤其是一种对真空玻璃的感应加热焊接方法。
背景技术
真空玻璃是一种新兴的玻璃品类,一般由两片玻璃构成,在两片玻璃之间是真空层,由于此真空层的存在使得真空玻璃在隔音、隔热、防结露方面具有良好的性能表现,也更加符合国家对节能、环保的发展要求。
真空玻璃的封接质量直接影响到真空玻璃的性能,目前真空玻璃的封接主要采用两种方法:一种是采用低玻粉进行封接,一种是采用金属进行封接。当采用金属进行封接时,需先在两块玻璃基板相对面的边缘部位制备金属层,然后再采用钎焊工艺使得金属层与焊料之间牢固连接,从而实现两块玻璃基板的气密封接。
在封接过程中,可以采用高频感应加热的方式对钎焊料进行加热,高频感应焊接头由高频感应线圈盘绕而成,参考图1。在焊接过程中,高频感应焊接头的中心线对准焊带中线,高频感应焊接头沿着焊带中线匀速前行,从而实现真空玻璃周边的气密焊接。
由于焊料和金属层共同存在于封接区域,在高频感应焊接头工作时,除了对焊料进行加热外,还对封接区域内的金属层进行加热。在实际生产过程中发现,玻璃基板在其拐角位置经常出现金属层过烧现象,拐角位置参考图2中高频感应焊接头的位置,使得金属层与玻璃基板的结合强度大幅度降低。例如:当金属层为烧结在玻璃基板上的银膜层时,在玻璃基板拐角区域银膜中的银随着过度加热会熔入钎焊料中,从而使生产的真空玻璃在拐角部位焊接强度大幅下降,影响真空玻璃焊接的可靠性和使用寿命。
发明内容
针对现有技术中存在的感应加热焊接会使真空玻璃拐角处焊接强度降低的问题,发明人研究发现:高频感应焊接头在拐角区域处必然存在减速-变向-加速的过程,因此,真空玻璃拐角区域的内角部位的感应加热时间过长,同时加热过程中金属层的边部加热速度明显大于金属层中心的加热速度,这是是导致拐角区域的金属层过烧的主要原因,拐角区域的内角部位过烧尤为严重。发明人研究发现,理论上可以通过降低感应加热的功率、加快高频感应焊接头的行进速度、改变高频感应焊接头与金属层之间的高度来解决上述问题,在进行实际实施的过程中发现,上述的手段可操作性不强,具有一定效果,但并不明显。
本发明的目的在于提供一种真空玻璃的感应加热焊接方法,改变高频感应焊接头中心的运行轨迹与金属层宽度方向中线的相对位置,使高频感应焊接头中心的运行轨迹与金属层宽度方向中线相偏离,从而降低拐角区域内金属层的感应功率,从而避免拐角区域的金属层出现过烧现象。此处对拐角区域加以解释,金属层在宽度方向中线发生变向的区域即为拐角区域。
为实现上述目的,本发明的技术方案如下:
一种真空玻璃的感应加热焊接方法,真空玻璃包括上玻璃基板和下玻璃基板,在上玻璃基板和下玻璃基板待封接区域制备有金属层,在下玻璃基板待封接区域金属层上面布设连续的焊料,叠合上玻璃基板和下玻璃基板,焊接时,高频感应焊接头中心沿着金属层宽度方向中线行进,在对金属层拐角区域进行感应加热时,改变高频感应焊接头中心的运行轨迹与金属层宽度方向中线的相对位置,使高频感应焊接头中心的运行轨迹与金属层宽度方向中线相偏离,从而降低拐角区域内金属层的感应功率,以避免该区域内的金属层过度加热。
进一步,所述改变高频感应焊接头中心的运行轨迹与金属层宽度方向中线的相对位置的方式为:高频感应焊接头中心在拐角区域的运行轨迹位于金属层宽度方向中线外侧。
进一步,所述改变高频感应焊接头中心的运行轨迹与金属层宽度方向中线的相对位置的方式为:改变金属层的形状,使金属层在拐角区域的内缘和外缘均为弧形。
进一步,所述金属层在拐角区域内缘的弧形半径为r,金属层在拐角区域外缘的弧形半径为R,金属层直线段的宽度为d,d=R-r。
进一步,所述金属层的宽度为8mm,金属层在拐角区域内缘的弧形半径为3mm,金属层在拐角区域外缘的弧形半径为11mm。
进一步,所述玻璃基板幅面为圆形时,设置在玻璃基板待封接区域的金属层形状为圆环形,圆环的宽度为d,圆环内圆的半径为r,高频感应焊接头中心的运行轨迹是与圆环形同心的圆形,圆形的半径为R,r+d/2<R<r+d。
进一步,所述改变高频感应焊接头中心的运行轨迹与金属层宽度方向中线的相对位置,使高频感应焊接头中心的运行轨迹与金属层宽度方向中线相偏离的距离小于一半的金属层宽度。
本方法通过改变高频感应焊接头中心的运行轨迹与金属层宽度方向中线的相对位置,使高频感应焊接头中心的运行轨迹与金属层宽度方向中线相偏离,从而降低拐角区域内金属层的感应功率,进而避免金属层过烧。使用本方法制得的真空玻璃改善了封接区域的密封性能,提高产品合格率,延长了真空玻璃 的使用寿命。
附图说明
图1为高频感应焊接头的示意图;
图2为现有技术中感应加热焊接的示意图;
图3为实施例1的焊接示意图;
图4为图3中区域A的放大示意图;
图5为实施例2的焊接示意图;
图6为实施例3的焊接示意图;
图7为实施例4的焊接示意图;
图8为实施例5的焊接示意图;
其中,1玻璃基板、2金属层、21金属层拐角区域的外缘、22金属层拐角区域的内缘、23金属层宽度方向中线、3高频感应焊接头、4行进路线。
具体实施方式
下面利用实施例对本发明进行更全面的说明。本发明可以体现为多种不同形式,并不应理解为局限于这里叙述的示例性实施例。
为了易于说明,在这里可以使用诸如“上”、“下”、“左”、“右”等空间相对术语,用于说明图中示出的一个元件或特征相对于另一个元件或特征的关系。应该理解的是,除了图中示出的方位之外,空间术语意在于包括装置在使用或操作中的不同方位。例如,如果图中的装置被倒置,被叙述为位于其他元件或特征“下”的元件将定位在其他元件或特征“上”。因此,示例性术语“下”可以包含上和下方位两者。装置可以以其他方式定位(旋转90度或位于其他方位),这里所用的空间相对说明可相应地解释。
实施例1
如图3和图4所示为本发明真空玻璃的感应加热焊接方法的第一种具体实施方式,在本实施例中,待封接的玻璃基板1幅面为方形玻璃,在玻璃基板1的周边的封接区域内预先设置了金属层2,金属层2在其4个拐角区域的内缘和外缘均为直角,在金属层2上布设有连续的焊料,在对金属层2直线段进行焊接时,高频感应焊接头3的中心与金属层2宽度方向中线对准匀速行进,其行进路线4为直线;对金属层2的拐角区域进行焊接时,向外侧偏移高频感应焊接头3的行进路线4,使高频感应焊接头3在行进过程中,其中心偏离金属层2宽度方向中线,从而降低拐角区域内金属层2的感应功率,偏移离距离应小于一半的金属层2的宽度。
实施例2
如图5所示为本发明真空玻璃的感应加热焊接方法的第二种具体实施方式,在本实施例中,待封接的玻璃基板1幅面为方形玻璃,在玻璃基板1的周边的封接区域内预先设置了金属层2,在金属层2上布设有连续的焊料,在对金属层2直线段进行焊接时,高频感应焊接头3的中心与金属层2宽度方向中线对准匀速行进,其行进路线4为直线;对金属层2的拐角区域进行焊接时,保持高频感应焊接头3的行进路线不变,参考图2,即金属层2宽度方向中线相交后,所连接形成的闭合图形的边。通过改变拐角区域的金属层2的形状,使金属层拐角区域的外缘21和内缘22成弧形,由此使高频感应焊接头3在行进过程中,其中心向外偏离金属层2中线,从而降低拐角区域内金属层2的感应功率,偏移离距离应小于一半的金属层2的宽度。金属层的宽度优选8mm,金属层在拐角区域内缘的弧形半径优选3mm,金属层在拐角区域外缘的弧形半径优选11mm。
实施例3
如图6所示为本发明真空玻璃的感应加热焊接方法的第三种具体实施方式,在本实施例中,待封接的玻璃基板1幅面为圆形,在玻璃基板1的周边的封接区域内预先设置了圆环形的金属层2,圆环的宽度为d,圆环内圆的半径为r,本实施例中的金属层2无直线段,全部为拐角区域,对于拐角区域的焊接方法与实施例1中描述的基本相同,向外侧偏移高频感应焊接头3的行进路线4,使高频感应焊接头3在行进过程中,其中心线偏离金属层2宽度方向中线23,从而降低拐角区域内金属层2的感应功率,高频感应焊接头3中心的运行轨迹是与圆环形金属层2同心的圆形,该圆形的半径为R,r+d/2<R<r+d。
实施例4
如图7所示为本发明真空玻璃的感应加热焊接方法的第四种具体实施方式,与实施例1的焊接方式基本相同,不同之处在于,本实施例中玻璃基板1幅面为梯形。
实施例5
如图8所示为本发明真空玻璃的感应加热焊接方法的第五种具体实施方式,与实施例1的焊接方式基本相同,不同之处在于,本实施例中玻璃基板1幅面为三角形。
以上结合附图仅描述了本申请的几个优选实施例,但本申请不限于此,凡是本领域普通技术人员在不脱离本申请的精神下,做出的任何改进和/或变形,均属于本申请的保护范围。

Claims (7)

  1. 一种真空玻璃的感应加热焊接方法,真空玻璃包括上玻璃基板和下玻璃基板,在上玻璃基板和下玻璃基板待封接区域制备有金属层,在下玻璃基板待封接区域金属层上面布设连续的焊料,叠合上玻璃基板和下玻璃基板,对真空玻璃待封接区域进行感应加热焊接,焊接时,高频感应焊接头中心沿着金属层宽度方向中线行进,其特征在于,在对金属层拐角区域进行感应加热时,改变高频感应焊接头中心的运行轨迹与金属层宽度方向中线的相对位置,使高频感应焊接头中心的运行轨迹与金属层宽度方向中线相偏离,从而降低拐角区域内金属层的感应功率,以避免该区域内的金属层过度加热。
  2. 如权利要求1所述的焊接方法,其特征在于,所述改变高频感应焊接头中心的运行轨迹与金属层宽度方向中线的相对位置的方式为:高频感应焊接头中心在拐角区域的运行轨迹位于金属层宽度方向中线外侧。
  3. 如权利要求1所述的焊接方法,其特征在于,所述改变高频感应焊接头中心的运行轨迹与金属层宽度方向中线的相对位置的方式为:改变金属层的形状,使金属层在拐角区域的内缘和外缘均为弧形。
  4. 如权利要求3所述的焊接方法,其特征在于,所述金属层在拐角区域内缘的弧形半径为r,金属层在拐角区域外缘的弧形半径为R,金属层直线段的宽度为d,d=R-r。
  5. 如权利要求4所述的焊接方法,其特征在于,所述金属层的宽度为8mm,金属层在拐角区域内缘的弧形半径为3mm,金属层在拐角区域外缘的弧形半径为11mm。
  6. 如权利要求1所述的焊接方法,其特征在于,所述玻璃基板幅面为圆形时,设置在玻璃基板待封接区域的金属层形状为圆环形,圆环的宽度为d,圆环内圆的半径为r,高频感应焊接头中心的运行轨迹是与圆环形同心的圆形,圆形的半径为R,r+d/2<R<r+d。
  7. 如权利要求1至3中任一所述的焊接方法,其特征在于,所述改变高频感应焊接头中心的运行轨迹与金属层宽度方向中线的相对位置,使高频感应焊接头中心的运行轨迹与金属层宽度方向中线相偏离的距离小于一半的金属层宽度。
PCT/CN2018/081812 2017-04-26 2018-04-04 一种真空玻璃的感应加热焊接方法 WO2018196570A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US16/607,182 US11384593B2 (en) 2017-04-26 2018-04-04 Induction-heating welding method for vacuum insulated glass
EP18792086.3A EP3584232A4 (en) 2017-04-26 2018-04-04 INDUCTION HEATING WELDING METHOD FOR VACUUM GLASS
KR1020197033454A KR102216059B1 (ko) 2017-04-26 2018-04-04 진공 유리의 유도 가열 용접 방법
CA3056164A CA3056164C (en) 2017-04-26 2018-04-04 Induction-heating welding method for vacuum insulated glass
RU2019136479A RU2736268C1 (ru) 2017-04-26 2018-04-04 Способ пайки вакуумного стеклопакета индукционным нагревом
AU2018259536A AU2018259536B2 (en) 2017-04-26 2018-04-04 Induction-heating welding method for vacuum glass
JP2019557869A JP6902624B2 (ja) 2017-04-26 2018-04-04 真空ガラスの誘導加熱溶接方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710282659 2017-04-26
CN201710282659.4 2017-04-26

Publications (1)

Publication Number Publication Date
WO2018196570A1 true WO2018196570A1 (zh) 2018-11-01

Family

ID=60430289

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2017/110309 WO2018196334A1 (zh) 2017-04-26 2017-11-10 一种真空玻璃产品
PCT/CN2018/081812 WO2018196570A1 (zh) 2017-04-26 2018-04-04 一种真空玻璃的感应加热焊接方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/110309 WO2018196334A1 (zh) 2017-04-26 2017-11-10 一种真空玻璃产品

Country Status (9)

Country Link
US (2) US11459814B2 (zh)
EP (2) EP3584231A4 (zh)
JP (2) JP7023982B2 (zh)
KR (2) KR102360064B1 (zh)
CN (2) CN207002586U (zh)
AU (2) AU2017412184B2 (zh)
CA (2) CA3056172C (zh)
RU (2) RU2736249C1 (zh)
WO (2) WO2018196334A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207002586U (zh) * 2017-04-26 2018-02-13 洛阳兰迪玻璃机器股份有限公司 一种真空玻璃产品
CN109494196B (zh) * 2018-12-21 2021-01-01 西安赛尔电子材料科技有限公司 一种高硅铝合金封装外壳及其制作方法
CN114735952A (zh) * 2021-01-08 2022-07-12 洛阳兰迪玻璃机器股份有限公司 真空玻璃封接方法及真空玻璃、真空玻璃封接用焊料带
CN115745429A (zh) * 2022-11-23 2023-03-07 四川零零昊科技有限公司 真空玻璃在线封口系统、在线封口方法和连续生产系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5985069A (en) * 1996-10-11 1999-11-16 Fujitsu Limited Method of manufacturing a flat display panel and flat display panel
CN102079619A (zh) * 2009-11-27 2011-06-01 洛阳兰迪玻璃机器有限公司 一种玻璃板复合封接方法
US20140216645A1 (en) * 2013-02-04 2014-08-07 Semiconductor Energy Laboratory Co., Ltd. Method for Forming Glass Layer and Method for Manufacturing Sealed Structure
CN106277850A (zh) * 2015-05-24 2017-01-04 上海微电子装备有限公司 激光准同步扫描方法
CN107417140A (zh) * 2017-04-26 2017-12-01 洛阳兰迪玻璃机器股份有限公司 一种真空玻璃的感应加热焊接方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2235680A (en) * 1937-07-14 1941-03-18 Libbey Owens Ford Glass Co Multiple glass sheet glazing unit and method of making the same
US2624979A (en) * 1950-03-14 1953-01-13 Pittsburgh Corning Corp Method of producing welded double glazed units
JPH11268934A (ja) * 1998-03-24 1999-10-05 Asahi Glass Co Ltd 真空複層ガラスの製造方法
CN100482605C (zh) * 2004-09-08 2009-04-29 淮安市淮阴辉煌真空镀膜有限公司 制造层板真空玻璃的新方法
US7371143B2 (en) * 2004-10-20 2008-05-13 Corning Incorporated Optimization of parameters for sealing organic emitting light diode (OLED) displays
DE102007029031A1 (de) * 2007-06-23 2008-12-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum dauerhaften Verbinden zweier Komponenten durch Löten mit Glas- oder Metalllot
CN101215076B (zh) * 2008-01-07 2012-07-04 左树森 一种真空玻璃的制备方法
KR20100110544A (ko) * 2009-04-03 2010-10-13 김현승 고주파 유도가열을 이용한 전기히터
JP2011011925A (ja) * 2009-06-30 2011-01-20 Asahi Glass Co Ltd 封着材料層付きガラス部材とそれを用いた電子デバイスおよびその製造方法
CN102079632A (zh) * 2009-11-27 2011-06-01 洛阳兰迪玻璃机器有限公司 一种真空玻璃封接方法及真空玻璃产品
CN102020415B (zh) * 2010-03-02 2014-06-04 青岛亨达玻璃科技有限公司 弧形真空玻璃
JP2012041196A (ja) * 2010-08-12 2012-03-01 Asahi Glass Co Ltd 封着材料層付きガラス部材とそれを用いた電子デバイスおよびその製造方法
CN102452801B (zh) * 2010-10-29 2016-05-25 洛阳兰迪玻璃机器股份有限公司 一种真空玻璃封接方法及其产品
CN102476926B (zh) * 2010-11-23 2013-12-18 洛阳兰迪玻璃机器股份有限公司 一种真空玻璃封接装置
WO2012075724A1 (en) * 2010-12-10 2012-06-14 Luoyang Landglass Technology Co., Ltd. Vacuum glass component
US9784027B2 (en) * 2013-12-31 2017-10-10 Guardian Glass, LLC Vacuum insulating glass (VIG) unit with metallic peripheral edge seal and/or methods of making the same
CN105645743A (zh) * 2014-11-19 2016-06-08 戴长虹 两道或多道密封的真空玻璃及其制备方法
CN105669006A (zh) * 2014-11-19 2016-06-15 戴长虹 复合密封的真空玻璃及其制备方法
CN104478202A (zh) * 2014-12-19 2015-04-01 洛阳兰迪玻璃机器股份有限公司 一种真空玻璃的封接方法及真空玻璃产品
CN104591527B (zh) * 2015-02-09 2017-07-04 王磊 一种后支撑的真空玻璃制作方法
CA3013908A1 (en) * 2015-02-11 2016-08-18 Eversealed Windows, Inc. Vacuum insulated glass unit with glass-to-metal seal and methods of assembling same
CN105906222B (zh) * 2016-07-05 2018-08-31 洛阳兰迪玻璃机器股份有限公司 一种钢化真空玻璃
CN110207961B (zh) 2019-05-21 2020-08-21 南京航空航天大学 一种对狭小空间内部位置准确打击的空气炮试验装置及试验方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5985069A (en) * 1996-10-11 1999-11-16 Fujitsu Limited Method of manufacturing a flat display panel and flat display panel
CN102079619A (zh) * 2009-11-27 2011-06-01 洛阳兰迪玻璃机器有限公司 一种玻璃板复合封接方法
US20140216645A1 (en) * 2013-02-04 2014-08-07 Semiconductor Energy Laboratory Co., Ltd. Method for Forming Glass Layer and Method for Manufacturing Sealed Structure
CN106277850A (zh) * 2015-05-24 2017-01-04 上海微电子装备有限公司 激光准同步扫描方法
CN107417140A (zh) * 2017-04-26 2017-12-01 洛阳兰迪玻璃机器股份有限公司 一种真空玻璃的感应加热焊接方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3584232A4 *

Also Published As

Publication number Publication date
US11384593B2 (en) 2022-07-12
CN207002586U (zh) 2018-02-13
CN107417140A (zh) 2017-12-01
JP7023982B2 (ja) 2022-02-22
CN107417140B (zh) 2020-01-14
RU2736249C1 (ru) 2020-11-12
US20200378177A1 (en) 2020-12-03
KR102360064B1 (ko) 2022-02-09
JP2020517569A (ja) 2020-06-18
WO2018196334A1 (zh) 2018-11-01
KR20200015478A (ko) 2020-02-12
CA3056164C (en) 2021-11-09
EP3584231A4 (en) 2020-04-01
CA3056172A1 (en) 2018-11-01
KR20200014278A (ko) 2020-02-10
JP2020517568A (ja) 2020-06-18
KR102216059B1 (ko) 2021-02-16
AU2018259536A1 (en) 2019-11-07
EP3584232A4 (en) 2020-04-08
AU2017412184A1 (en) 2019-11-07
AU2018259536B2 (en) 2020-08-13
JP6902624B2 (ja) 2021-07-14
RU2736268C1 (ru) 2020-11-12
US11459814B2 (en) 2022-10-04
CA3056172C (en) 2022-08-30
AU2017412184B2 (en) 2020-12-10
EP3584231A1 (en) 2019-12-25
EP3584232A1 (en) 2019-12-25
US20200384559A1 (en) 2020-12-10
CA3056164A1 (en) 2018-11-01

Similar Documents

Publication Publication Date Title
WO2018196570A1 (zh) 一种真空玻璃的感应加热焊接方法
JP5958823B2 (ja) ガラス板積層体及びその製造方法
CN108856987A (zh) 一种无需拖罩保护的钛合金钨极氩弧焊接方法
CN106927696A (zh) 一种真空玻璃封边用感应焊接设备
CN109338294A (zh) 激光焊接金属掩模板的方法和金属掩模板
JP2010253493A (ja) パラレルシーム溶接方法及びパラレルシーム溶接装置
JPH05277721A (ja) ロー付け方法
CN114211090B (zh) 利用机器人双弧协同焊接实现闭环焊缝无接头的连接方法
CN206705974U (zh) 一种真空玻璃封边用感应焊接设备
JP4850053B2 (ja) 管加工装置及びランプ製造装置
JP2007294466A (ja) 高周波誘導加熱方法
JPH0565476B1 (zh)
EP3187297B1 (en) Hermetic electrical feedthrough with substrate piece and a method for implementing it
CN218403996U (zh) 一种真空玻璃的焊料结构
CN107999949A (zh) 一种钛合金多层钣材的电子束焊接封装方法
JP3557813B2 (ja) 鋼管の製造方法
JPH07275974A (ja) 金属缶の加熱装置
JPH01265550A (ja) 高周波誘導加熱装置
CN105234557A (zh) 一种密封器件的激光焊接方法
JPS60174288A (ja) 金属クラツド板の製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18792086

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018792086

Country of ref document: EP

Effective date: 20190916

ENP Entry into the national phase

Ref document number: 2019557869

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018259536

Country of ref document: AU

Date of ref document: 20180404

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197033454

Country of ref document: KR

Kind code of ref document: A