WO2018194249A1 - 과충전 방지 장치 및 방법 - Google Patents

과충전 방지 장치 및 방법 Download PDF

Info

Publication number
WO2018194249A1
WO2018194249A1 PCT/KR2018/001819 KR2018001819W WO2018194249A1 WO 2018194249 A1 WO2018194249 A1 WO 2018194249A1 KR 2018001819 W KR2018001819 W KR 2018001819W WO 2018194249 A1 WO2018194249 A1 WO 2018194249A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell stack
bypass
overcharge
controller
cell
Prior art date
Application number
PCT/KR2018/001819
Other languages
English (en)
French (fr)
Inventor
이재찬
김수령
김현식
송현진
이원태
최양림
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2019529262A priority Critical patent/JP7001229B2/ja
Priority to EP18787678.4A priority patent/EP3525314B1/en
Priority to CN201880004064.5A priority patent/CN110062994B/zh
Priority to US16/340,265 priority patent/US11165262B2/en
Publication of WO2018194249A1 publication Critical patent/WO2018194249A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00308Overvoltage protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00036Charger exchanging data with battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an overcharge preventing device and method, and more particularly, to an apparatus and method for protecting each of the plurality of cell stacks included in the battery pack from overcharge.
  • lithium batteries have almost no memory effect compared to nickel-based batteries, and thus are free of charge and discharge, and have a very high self discharge rate. Its low and high energy density has attracted much attention.
  • a battery pack mounted on an electric vehicle or the like generally includes a plurality of cell stacks connected in series or in parallel with each other. At this time, each cell stack includes one or two or more battery cells connected in series with each other.
  • the state of each cell stack included in the battery pack is monitored by a controller equipped with a battery management system (BMS).
  • BMS battery management system
  • the controller may output a signal for controlling a balancing operation, a cooling operation, a charging operation, a discharge operation, and the like based on the monitored state from each cell stack.
  • Patent Document 1 exists as a prior art for preventing overcharging.
  • the battery pack according to Patent Document 1 below includes a battery (corresponding to the cell stack) and a current interruption device, and when an overvoltage occurs in the battery, the current interruption device electrically disconnects the battery from the large current path.
  • Patent Document 1 Republic of Korea Patent Publication No. 10-2014-0017043 (published date: February 11, 2014)
  • the present invention has been made to solve the above problems, and when some of the cell stacks included in the battery pack are overcharged, the charging current can be supplied to the remaining cell stacks by bypassing the overcharged some cell stacks. It is an object to provide an apparatus and method.
  • An overcharge preventing device is to prevent overcharging of a plurality of cell stacks connected in series with each other in a high current path.
  • the overcharge preventing device may include: a voltage measuring unit measuring a voltage of each cell stack and generating a first monitoring signal indicating a measured voltage; A current regulator configured to selectively provide a bypass path to each cell stack; And a controller communicatively coupled to the voltage measuring unit and the current adjusting unit. The controller controls the current adjuster based on the first monitoring signal from the voltage measurer.
  • the controller may determine whether there is an overcharged cell stack among the plurality of cell stacks based on the first monitoring signal from the voltage measuring unit, and, if there is an overcharged cell stack, bypasses the overcharged cell stack.
  • the current regulator can be controlled to provide a path.
  • the current regulator may include a plurality of bypass circuits.
  • Each of the bypass circuits may include a plurality of bypass switches connected in parallel to the cell stacks.
  • the controller may determine whether there is an overcharged cell stack among the plurality of cell stacks based on the first monitoring signal from the voltage measuring unit, and when there is an overcharged cell stack, parallel to the overcharged cell stack. At least one of the connected bypass switches can be controlled to an on state.
  • the apparatus may further include a current measuring unit measuring a charging current supplied to each cell stack and generating a second monitoring signal representing the measured charging current.
  • the controller may calculate an internal resistance value of at least one of the cell stacks based on the first monitoring signal from the voltage measuring unit and the second monitoring signal from the current measuring unit.
  • the controller may control the number of bypass switches corresponding to the internal resistance of the overcharged cell stack to an ON state among the plurality of bypass switches connected in parallel to the overcharged cell stack, and the remaining bypass switches. Can be controlled to the off state.
  • the apparatus may further include a cooling unit configured to cool each cell stack.
  • the cooling unit may include a plurality of cooling elements operated by charging currents supplied through the bypass paths provided to the respective cell stacks, respectively, to cool the respective cell stacks.
  • each of the cooling elements may be a Peltier element having a heat absorbing part and a heat radiating part, wherein the heat absorbing part is disposed closer to each cell stack than the heat radiating part.
  • the voltage measuring unit may include a plurality of voltage sensors connected to the respective cell stacks in parallel.
  • the overcharge preventing device As Battery pack according to another aspect of the present invention, the overcharge preventing device; And a plurality of cell stacks connected in series with each other.
  • the overcharge preventing device performs an overcharge preventing operation for each cell stack.
  • the charging current when a part of the plurality of cell stacks included in the battery pack is overcharged, at least a part of the charging current may be supplied to the remaining cell stacks by bypassing each of the overcharged cell stacks.
  • the remaining cell stacks that are not overcharged can be continuously charged.
  • the overcharged cell stack of the plurality of cell stacks included in the battery pack may be electrically separated from the high current path.
  • a bypass path constituting the high current path is provided in the battery pack in place of each cell stack electrically separated from the high current path.
  • each bypass path constituting the high current path may be adjusted in place of each cell stack electrically separated from the high current path.
  • the resistance value of each bypass path is adjusted according to the internal resistance value of each cell stack electrically isolated from the high current path, so that the overcurrent is not supplied to each cell stack remaining electrically connected to the high current path. Can be.
  • FIG. 1 is a view showing a schematic configuration of a battery pack according to an embodiment of the present invention.
  • FIG. 2 shows an embodiment of the battery pack shown in FIG. 1.
  • FIG. 3 and 4 illustrate different implementations of the bypass circuit shown in FIG. 2.
  • 5 to 7 are views referred to for explaining the operation of the overcharge protection device according to the embodiment shown in FIG.
  • FIG. 8 and 9 show different implementations of the battery pack shown in FIG. 1.
  • FIG. 10 to 13 are views referred to for explaining the operation of the overcharge protection device according to the embodiment shown in FIG.
  • 17 is a flowchart illustrating a method for preventing overcharge according to another embodiment of the present invention.
  • control unit> means a unit for processing at least one function or operation, which may be implemented in hardware or software, or a combination of hardware and software.
  • FIG. 1 is a view showing a schematic configuration of a battery pack 1 according to an embodiment of the present invention.
  • the battery pack 1 includes a battery module 10 and an overcharge preventing device 100.
  • the battery module 10 includes a plurality of cell stacks 20.
  • the overcharge preventing device 100 basically includes a voltage measuring unit 110, a current adjusting unit 120, and a controller 170, and optionally, a disconnecting unit 140, a current measuring unit 150, and a cooling unit 160. It may further include at least one of).
  • the overcharge preventing device 100 includes the disconnecting unit 140, the discharge inducing unit 180 may be added.
  • the plurality of cell stacks 20 are connected in series with each other and are installed on a large current path between two power supply terminals of the battery pack 1.
  • the voltage measuring unit 110 measures the voltage of each cell stack 20 and generates a first monitoring signal indicating the measured voltage.
  • the first monitoring signal generated by the voltage measuring unit 110 is transmitted to the controller 170.
  • the current adjuster 120 is configured to selectively provide a bypass path connected to each cell stack 20 in parallel. That is, the current adjuster 120 may provide a bypass path to the plurality of cell stacks 20 individually. That is, the current adjuster 120 may provide a bypass path to only some of the cell stacks 20 and may not provide a bypass path to the remaining cell stacks 20.
  • the current adjusting unit 120 may adjust the resistance value of each bypass path. Accordingly, the current flowing through each bypass path is adjusted according to the resistance value of each bypass path. For example, as the resistance value of the bypass path increases, the charging current flowing through the bypass path may decrease.
  • the disconnecting unit 140 is configured to selectively separate each cell stack 20 from the battery pack 1. That is, the disconnecting unit 140 electrically separates each stack 20 from the high current path.
  • the current adjusting unit 120 and the disconnecting unit 140 may operate in conjunction with each other. For example, when any cell stack 20 is separated from the high current path by the disconnecting unit 140, the current adjuster 120 may provide a bypass path only to the separated cell stack 20.
  • the bypass path provided to the separated cell stack 20 constitutes a large current path in place of the separated cell stack 20.
  • the current measuring unit 150 measures the charging current supplied to each cell stack 20, and generates a second monitoring signal indicating the measured charging current.
  • the second monitoring signal generated by the current measuring unit 150 is transmitted to the controller 170.
  • the current measuring unit 150 may include a shunt resistor provided in a large current path, and measure the charging current from the voltage generated in the shunt resistor by the charging current.
  • the cooling unit 160 is configured to individually cool the plurality of cell stacks 20. More specifically, the cooling unit 160 is at least partially activated by the charging current flowing through the bypass path provided to each cell stack 20. The activated cooling unit 160 cools a region of a predetermined range.
  • the discharge induction unit 180 supplies a discharge path to each cell stack 20 electrically separated from the high current path by the disconnecting unit 140 while charging current is supplied through two power terminals of the battery pack 1. It is configured to provide.
  • the discharge induction part 140 may be configured to be naturally activated in response to the charging current flowing through the bypass path provided by the disconnecting part 140.
  • the controller 170 in hardware, includes application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), and microprocessors. (microprocessors), and may be implemented using at least one of the electrical unit for performing other functions.
  • the controller 170 is communicatively connected to the current adjuster 120, the voltage measurer 110, the current measurer 150, and / or the cooling unit 160 to control overall operations thereof.
  • two different components communicatively connected may mean that one component is connected via wired and / or wireless to transmit signals or data to other components.
  • the controller 170 is configured to execute an overcharge prevention operation for the plurality of cell stacks 20.
  • the controller 170 controls the current adjuster 120 based on the first monitoring signal from the voltage measuring unit 110 and / or the second monitoring signal from the current measuring unit 150.
  • the current adjuster 120 may provide a bypass path to each cell stack 20 or block a provided bypass path.
  • the controller 170 may control the current adjuster 120 to adjust the resistance value of each of the bypass paths provided to the at least one cell stack 20 within a predetermined range.
  • the battery pack 1 includes three cell stacks 20-1 to 20-3 connected in series with each other.
  • FIG. 2 shows an embodiment of the battery pack 1 shown in FIG. 1.
  • the plurality of cell stacks 20 included in the battery pack 1 are installed in a large current path between two power terminals (+,-) of the battery pack 1.
  • each cell stack 20 includes at least one battery cell 21. When a plurality of battery cells 21 are included in each cell stack 20, they may be connected in series or in parallel.
  • each cell stack 20 may include a case 22 having a structure at least partially covering each battery cell 21 included therein.
  • the case 22 may be made of a metal material for efficient heat dissipation.
  • the voltage measuring unit 110 may include a plurality of voltage sensors 111.
  • the number of voltage sensors 111 may be equal to the number of cell stacks 20.
  • a voltage sensor 111 may be provided for each cell stack 20. That is, the voltage sensor 111 may correspond one-to-one to the cell stack 20.
  • Each voltage sensor 111 is connected to each cell stack 20 in parallel. That is, each of the first voltage sensor 111-1, the second voltage sensor 111-2, and the third voltage sensor 111-3 is the first cell stack 20-1 and the second cell stack 20. -2) and a third cell stack 20-3 in parallel. Each voltage sensor 111 measures the voltage of any cell stack 20 connected in parallel thereto.
  • the first monitoring signal representing the voltage of each cell stack 20 measured by the plurality of voltage sensors 111 is transmitted to the controller 170.
  • the current adjuster 120 may include a plurality of bypass circuits 130-1 to 130-3.
  • the number of bypass circuits 130 may be equal to the number of cell stacks 20. In this case, one bypass circuit 130 may be provided for each cell stack 20. That is, the bypass circuit 130 and the cell stack 20 may correspond one-to-one.
  • Each bypass circuit 130 may be connected in parallel to each cell stack 20. That is, each of the first bypass circuit 130-1, the second bypass circuit 130-2, and the third bypass circuit 130-3 includes the first cell stack 20-1 and the second cell. The stack 20-2 and the third cell stack 20-3 may be connected in parallel.
  • the activated bypass circuit 130 passes the bypass path to the cell stack 20 connected in parallel thereto. To provide.
  • the controller 170 determines whether any of the plurality of cell stacks 20-1 to 20-3 is overcharged based on the first monitoring signal from the voltage measuring unit 110. In addition, the controller 170 may calculate the number of overcharged cell stacks based on the first monitoring signal from the voltage measuring unit 110. To this end, the controller 170 compares the voltage measured from each cell stack 20 with the first reference voltage and / or the second reference voltage. In this case, the second reference voltage is higher than the first reference voltage.
  • Each of the first reference voltage and the second reference voltage is used as a reference for determining whether each cell stack 20 is overcharged. That is, the controller 170 determines that the cell stack 20 charged to a voltage equal to or higher than the first reference voltage is in an overcharge state. In addition, the controller 170 controls the current adjuster 120 such that only a part of the charging current is supplied to the cell stack 20 charged to a voltage equal to or higher than the first reference voltage and lower than the second reference voltage.
  • a state charged to a voltage equal to or higher than the first reference voltage and lower than the second reference voltage will be referred to as a first overcharge state.
  • the controller 170 controls the current adjusting unit 120 and the disconnecting unit 140 such that the charging current is not supplied to the cell stack 20 charged to a voltage equal to or higher than the second reference voltage.
  • a state charged to a voltage equal to or higher than the second reference voltage will be referred to as a second overcharge state.
  • FIG. 3 and 4 illustrate different implementations of the bypass circuit 130 shown in FIG. 2.
  • each bypass circuit 130 illustrated in FIG. 1 may include one or more bypass switches 131 connected in parallel with one another.
  • Each bypass switch 131 may be on / off control in response to a signal from the outside such as a relay or a MOSFET.
  • bypass switches 131-1 to 131-3 are shown to be included in each bypass circuit 130. However, this is merely an example, and two or more bypass switches are provided. 131 may be included in each bypass circuit 130. When at least one bypass switch 131 included in each bypass circuit 130 is turned on, a bypass path is provided to the cell stack 20 connected in parallel to each bypass circuit 130.
  • Each bypass switch 131 may have a predetermined resistance value in an on state.
  • the resistance values of the plurality of bypass switches 131-1 to 131-3 included in each bypass circuit 130 may be the same or different. According to the on / off combination of each bypass switch 131, the resistance value of the bypass path is adjusted.
  • the resistance value of the bypass path provided by the cell stack 20 is R.
  • FIG. If only one of the first to third bypass switches 131-1 to 131-3 is on and the other is off, the resistance value of the bypass path provided from the first stack 20 is R. / 2. If all of the first to third bypass switches 131-1 to 131-3 are on, the resistance value of the bypass path provided to the cell stack 20 is R / 3. That is, as the number of bypass switches 131 turned on in each bypass circuit 130 increases, the resistance value of the bypass path provided to the cell stack 20 connected in parallel thereto decreases.
  • each bypass circuit 130 may further include one or more bypass resistors 132.
  • Each bypass resistor 132 is connected in series to any one of the plurality of bypass switches 131-1 to 131-3. That is, in each bypass circuit 130, one bypass switch 131 and one bypass resistor 132 may be connected in series. In this case, the resistance values of two or more bypass resistors 132 included in each bypass circuit 130 may be the same or different.
  • the first to third bypass switches 131-1 to 131-3 included in the first bypass circuit 130-1 corresponding to the first cell stack 20-1 may have the same resistance value R.
  • FIG. The resistance values of each of the first bypass resistor 132-1, the second bypass resistor 132-2, and the third bypass resistor 132-3 are R1, R2, and R3, and R1 ⁇ R2. Let's say R3. If only the first bypass switch 131-1 included in the first bypass circuit 130-1 is in an on state, the resistance value of the bypass path provided to the first cell stack 20-1 is R + R1. If only the first and second bypass switches 131-1 and 131-2 included in the first bypass circuit 130-1 are in an on state, they are provided to the first cell stack 20-1.
  • the resistance value of the bypass path becomes ⁇ (R + R1) ⁇ (R + R2) ⁇ / ⁇ (2 ⁇ R) + R1 + R2 ⁇ by combining (R + R1) and (R + R2).
  • each bypass circuit 130 described above with reference to FIGS. 3 and 4 may be applied to the overcharge preventing apparatus 100 according to embodiments to be described below with reference to FIGS. 5 to 12.
  • each bypass circuit 130 is configured as shown in FIG. 3, and it is assumed that resistance values of all bypass switches 131 are the same as R.
  • FIG. 5 illustrates an operation when the first to third cell stacks 20-1 to 20-3 are not all overcharged.
  • the controller 170 controls the current adjuster 120 to turn off all bypass switches 131 of the first to third bypass circuits 130-1 to 130-3. Accordingly, since there is no single bypass path in the battery pack 1, the charging current is sequentially supplied to each cell stack 20.
  • FIG. 6 illustrates an operation when only the first cell stack 20-1 of the first to third cell stacks 20 is in the first overcharge state. In this case, it is necessary to lower the charging current supplied to the first cell stack 20-1.
  • the controller 170 controls all bypass switches 131 of the second and third bypass circuits 130-2 and 130-3 to an off state. In addition, the controller 170 controls the at least one bypass switch 131 to the first bypass circuit 130-1 in an on state.
  • the first bypass circuit 130-1 may transmit the first cell stack 20-1 to the first cell stack 20-1.
  • the resistance of the provided bypass path is R. Accordingly, part of the charging current supplied through the power terminals (+,-) of the battery pack 1 is transferred through the first cell stack 20-1 to the second and third cell stacks 20-2, 20-. 3), the remaining charge current is supplied to the second and third cell stacks 20-2 and 20-3 through a bypass path provided to the first cell stack 20-1.
  • the first cell stack 20-1 is slower than the second and third cell stacks 20-2, 20-3.
  • FIG. 7 illustrates an operation when the first cell stack 20-1 is in the second overcharge state and the second cell stack 20-2 is in the first overcharge state.
  • the controller 170 controls one or more bypass switches 131 included in the second bypass circuit 130-2 to an on state.
  • the controller 170 controls the resistance value of the bypass path provided to the first cell stack 20-1 by the first bypass circuit 130-1 to be smaller than R.
  • bypass switch 131-1 included in the second bypass circuit 130-2 is turned on, and the first bypass circuit 130-1 is turned on. Only two bypass switches 131-1 and 131-2 that are included may be turned on. Accordingly, the resistance values of the two bypass paths provided by the first and second bypass circuits 130-1 and 130-2 become R / 2 and R, respectively, and are charged to the battery pack 1. At least a portion of the current is sequentially supplied to the third cell stack 20-3 via two bypass paths. As a result, the first and second cell stacks 20-1 and 20-2 are slower to charge than the third cell stack 20-3.
  • FIG. 8 shows another embodiment of the battery pack 1 shown in FIG. 1.
  • the overcharge preventing apparatus 100 according to the embodiment illustrated in FIG. 8 differs only in that it further includes a disconnecting unit 140. Therefore, like reference numerals refer to like elements, and repetitive descriptions of the same elements are omitted.
  • the disconnecting unit 140 may include a plurality of disconnecting switches 141.
  • the number of disconnect switches 141 may be the same as the number of cell stacks 20.
  • Each disconnect switch 141 may be any one that can be turned on or off in response to a signal from the outside, such as a relay or a MOSFET.
  • Each disconnect switch 141 is connected in series to each cell stack 20, and is controlled on and off by the controller 170.
  • a circuit in which one cell stack 20 and one disconnect switch 141 are connected in series is connected in parallel to each bypass circuit 130.
  • the first disconnect switch 141 is connected in series to the first cell stack 20-1, and the first cell stack 20-1 and the first disconnect switch 141 are connected to the first cell. It is connected in parallel to the bypass circuit 130.
  • FIG. 9 shows another embodiment of the battery pack 1 shown in FIG. 1, and FIGS. 10 to 13 are views referred to for explaining the operation of the overcharge preventing device according to the embodiment shown in FIG. 9. .
  • each bypass circuit 130 is configured as shown in FIG. 3, and it is assumed that resistance values of all bypass switches 131 are the same as R.
  • the overcharge preventing apparatus 100 according to the embodiment illustrated in FIG. 9 is different in that it further includes a current measuring unit 150. Therefore, like reference numerals refer to like elements, and repetitive descriptions of the same elements are omitted.
  • the controller 170 controls the disconnect switch 141 connected in series to each cell stack 20 determined as the second overcharge state to an off state. On the contrary, the controller 170 controls the disconnect switch 141 connected in series to each cell stack 20 which is not determined to be in the second overcharge state.
  • the cell stack 20 connected in series to the disconnect switch 141 having the off state, that is, the cell stack 20 in the second overcharge state is completely electrically disconnected from the high current path.
  • the current measuring unit 150 is installed on a large current path and is communicatively connected to the controller 170.
  • the current measuring unit 150 measures the magnitude of the charging current and generates a second monitoring signal indicating the measured charging current.
  • the second monitoring signal is transmitted to the controller 170.
  • the controller 170 may adjust an internal resistance value of at least one of the cell stacks 20 based on the first monitoring signal from the voltage measuring unit 110 and the second monitoring signal from the current measuring unit 150. Calculate. Preferably, the controller 170 calculates the internal resistance value of each cell stack 20 while the cell stack 20 is not in an overcharged state. In addition, the controller 170 periodically updates the internal resistance value of each cell stack 20. Techniques for calculating the internal resistance value are well known, and a detailed description thereof will be omitted.
  • controller 170 may include the inside of the cell stack 20 in the second overcharge state among the plurality of bypass switches 131-1 to 131-3 connected in parallel to each cell stack 20 in the second overcharge state. Only the number of bypass switches 131 corresponding to the resistance value is controlled to the on state.
  • FIG. 10 illustrates an operation when the first to third cell stacks 20 are not all overcharged.
  • the controller 170 controls the current adjuster 120 to turn off all bypass switches 131 of the first to third bypass circuits 130.
  • the controller 170 controls the disconnecting unit 140 to turn on all disconnecting switches 141 included in the disconnecting unit 140. Accordingly, since no single bypass path is provided in the battery pack 1 and no single cell stack 20 is electrically isolated from the high current path, all of the charging current is transferred to each cell stack 20. Sequentially supplied.
  • the controller 170 based on the internal resistance value of each cell stack 20 in the second overcharged state, 2 controls the bypass circuit 130 connected in parallel to each cell stack 20 in an overcharge state.
  • FIG. 11 illustrates that only the first cell stack 20-1 is determined to be in the second overcharge state, and the second and third cell stacks 20-2 and 20-3 are not determined to be in the first and second overcharge states. Illustrates the operation of.
  • the controller 170 controls the first disconnect switch 141-1 to the off state, and the second and third disconnect switches 141-2 and 141-3 to the on state. Accordingly, only the first cell stack 20-1 is completely electrically disconnected from the high current path. That is, no charging current is supplied to the first cell stack 20-1.
  • the controller 170 may select one or more bypass switches 131 included in the first bypass circuit 130-1 based on the internal resistance of the first cell stack 20-1 calculated most recently. Control on. In this case, the controller 170 may reduce the number of bypass switches 131 to be controlled in an on state as the internal resistance value of the first cell stack 20-1 increases.
  • the controller 170 includes all bypass switches included in the first bypass circuit 130-1 as shown in FIG. 11. (131-1 to 131-3) are turned on. In this case, the resistance value of the first bypass path is R / 3. If the internal resistance of the first cell stack 20-1 is greater than Ra and less than Rb, the controller 170 may include any two bypass switches included in the first bypass circuit 130-1. 131-1 and 131-2 are controlled to the on state, and the other bypass switch (eg, 131-3) is controlled to the off state. In this case, the resistance value of the bypass path provided to the first cell stack 20-1 becomes R / 2.
  • the controller 170 may include one bypass switch (eg, 131-1) included in the first bypass circuit 130-1. Only the on state is controlled, and the remaining bypass switches (eg, 131-2 and 131-3) are controlled to the off state. In this case, the resistance value of the first bypass path becomes R.
  • the controller 170 increases the resistance value of the bypass path provided to each cell stack 20 having the second overcharge state as the resistance value of each cell stack 20 having the second overcharge state increases. As a result, the magnitude of the charging current supplied to the remaining cell stack 20 that is not overcharged may be reduced.
  • the first cell stack 20-1 is determined to be in the second overcharge state
  • the second cell stack 20-2 is determined to be in the first overcharge state
  • the third cell stack 20-3 is overcharged. The case is not illustrated. For convenience of explanation, it is assumed that the internal resistance of the first cell stack 20-1 is larger than Rb.
  • the controller 170 may be such that the resistance value of the bypass path provided to the first cell stack 20-1 having an internal resistance value greater than Rb is closest to the internal resistance value of the first cell stack 20-1. Only one bypass switch (eg, 131-1) of the first bypass circuit 131-1 is controlled in an on state.
  • controller 170 may switch one or more bypass switches (eg, 131-1) of the second bypass circuit 131-2 such that only a part of the charging current is supplied to the second cell stack 20-2. Control on.
  • the charging current flows through the second and third cell stacks 20-2 and 20-3, and the remaining charging current is provided to the first and second cell stacks 20-1 and 20-2. It flows through two bypass paths.
  • charging current may be concentrated in the remaining cell stacks 20.
  • the second reference voltage is 21V and the voltages of the first to third cell stacks 20-1 to 20-3 are measured to be 22V, 20V, and 18V, respectively
  • the first cell stack 20-1 may become negative. 2
  • the overcharge state is determined, it is electrically disconnected from the high current path. In this case, a sudden increase in the charging current may be instantaneously caused by corresponding to the voltage 22V of the first cell stack 20-1, thereby damaging the second and third cell stacks 20-2, 20-3. have.
  • the overcharge preventing device 100 needs to operate so that the charging current exceeding a prescribed value is not supplied to each cell stack 20 which is not in the second overcharge state.
  • FIG. 13 illustrates an operation when the first and second cell stacks 20-1 and 20-2 are determined to be in the second overcharge state, and the third cell stack 20-3 is not determined to be in the second overcharge state.
  • the third cell stack 20-3 may be in a first overcharge state or a non-overcharge state.
  • the controller 170 electrically separates the first and second cell stacks 20-1 and 20-2 in the second overcharge state from the high current path based on the second monitoring signal from the current measuring unit 150.
  • the minimum value of the charging current to be supplied to the third cell stack 20-3 may be predicted instead of the second overcharge state.
  • the minimum value of the charging current to be supplied to the third cell stack 20-3 is adjusted to the maximum value of the resistance value of each of the bypass paths provided to the first and second cell stacks 20-1 and 20-2. This corresponds to the magnitude of the current flowing during that period.
  • the controller 170 may switch the first and second disconnect switches 141.
  • the third disconnecting switch 141-3 as well as the -1 and 141-2 may be controlled to the off state.
  • the controller 170 controls all of the bypass switches 131 included in the first to third bypass circuits 130-1 to 130-3 to an off state.
  • the first and second cell stacks 20-1 and 20-2, as well as the third cell stack 20-3 are electrically separated from the high current path and are completely bypassed. Also not provided. That is, the charging current is cut off in the battery pack 1.
  • FIG. 14 shows another embodiment of the battery pack 1 shown in FIG. 1.
  • the overcharge preventing apparatus 100 may further include a cooling unit 160 in the embodiment illustrated in FIG. 2, 8, or 9.
  • the cooling unit 160 is configured to simultaneously or individually cool one or more cell stacks 20 included in the battery pack 1.
  • Like reference numerals refer to like elements, and repeated description thereof will be omitted.
  • FIG. 14 illustrates the overcharge preventing device 100 in which the cooling unit 160 is added to the embodiment shown in FIG. 8.
  • the cooling unit 160 includes a plurality of cooling elements 161.
  • Each cooling element 161 is connected in series to each bypass circuit 130.
  • a circuit in which one bypass circuit 130 and one cooling element 161 are connected in series is connected in parallel to each cell stack 20.
  • a circuit in which one bypass circuit 130 and one cooling element 161 are connected in series is connected in parallel to a circuit in which one cell stack 20 and one disconnect switch 141 are connected in series.
  • each cooling element 161 constitutes a part of each bypass path and is operated by the charging current.
  • the cooling element 161 is a Peltier element.
  • each Peltier element 161 has a heat absorbing part 162 and a heat radiating part 163. While the Peltier effect occurs, the heat absorbed by the heat absorbing part 162 escapes through the heat radiating part 163. Therefore, to cool each cell stack 20, the heat absorbing part 162 of each Peltier element may be disposed closer to each cell stack 20 than the heat radiating part 163. For example, the heat absorbing part 162 of each Peltier element may be at least partially in contact with the case 22 of each cell stack 20.
  • the voltage and temperature of the cell stack 20 are approximately proportional.
  • Each bypass path is provided only to the overcharged cell stack 20, and each Peltier element 161 generates a Peltier effect only when a charging current flows through the bypass path in which it is installed. Therefore, since the heat absorbing part 162 of each Peltier element 161 absorbs heat from the overcharged cell stack 20, heat generation of the overcharged cell stack 20 can be suppressed.
  • the cooling element 161 is not limited to the Peltier element, it may be replaced by a cooling fan.
  • the cooling fan may provide a cooling medium such as air to each cell stack 20 by rotating by using a charging current supplied through a bypass path in which the cooling element 161 is installed. .
  • the controller 170 selectively controls each bypass circuit 130 based on the first monitoring signal, so that each of the overcharged cell stacks 20 By lowering the SOC, voltage variations between the plurality of cell stacks 20 can be alleviated. That is, the current adjuster 120 may perform voltage balancing operations for the plurality of cell stacks 20.
  • FIG. 15 shows another embodiment of the battery pack 1 shown in FIG. 1.
  • the overcharge prevention apparatus 100 may further include a plurality of electromagnetic contactors 181 in the embodiment illustrated in FIG. 8, 9, or 14.
  • the plurality of electromagnetic contactors 181 are included in the discharge induction unit 180.
  • the embodiment shown in FIG. 15 illustrates an overcharge protection device 100 in which a plurality of electromagnetic contactors 181 have been added to the embodiment shown in FIG. 8.
  • the number of electromagnetic contactors 181 may be equal to the number of cell stacks 20 so that one electromagnetic contactor 181 corresponds to one cell stack 20. That is, the first electromagnetic contactor 181-1 corresponds to the first cell stack 20-1, the second electromagnetic contactor 181-2 corresponds to the second cell stack 20-2, The third electromagnetic contactor 181-3 corresponds to the third cell stack 20-3.
  • the first electromagnetic contactor 181-1 may discharge the discharge path to the first cell stack 20-1 at least temporarily during the period in which the first cell stack 20-1 is electrically separated from the high current path. to provide.
  • the second electromagnetic contactor 181-2 provides the discharge path to the second cell stack 20-2 at least temporarily during the period in which the second cell stack 20-2 is electrically isolated from the high current path.
  • the third electromagnetic contactor 181-3 provides the discharge path to the first cell stack 20-3 at least temporarily during the period in which the first cell stack 20-3 is electrically isolated from the high current path. do.
  • Each electromagnetic contactor 181 includes a coil 182 and a contact 183.
  • the contact 183 is configured to be connected in parallel to any one cell stack 20 with a predetermined resistance value.
  • each coil 182 is provided in a bypass path corresponding to any one cell stack 20. That is, each coil 182 is connected in series with each bypass circuit 130. Each coil 182 is activated while charging current flows through a bypass path in which it is installed, thereby generating a magnetic force. The higher the magnitude of the charging current flowing through the bypass path, the greater the magnetic force generated by the coil 182 provided in the bypass path.
  • each contact 183 may be connected to a first electrode (eg, an anode) of each cell stack 20, and the other end may be connected to a second electrode (eg, a cathode) of each cell stack 20.
  • the contact 183 normally has an off state (ie, when the level of the magnetic force from the coil 182 is less than a predetermined value).
  • each coil 182 When the magnetic force generated in each coil 182 becomes more than a predetermined level, the contact 183 is switched on by the magnetic force of the coil 182.
  • the discharge path is provided to the cell stack 20 connected in parallel to the contacts 183 switched to the on state.
  • the second and third electromagnetic contactors 181 since only a part of the charging current flows through the second bypass circuit 130-2 and no charging current flows through the third bypass circuit 130-3, the second and third electromagnetic contactors 181. No magnetic force is generated from the coil 182 of each of the second and third electromagnetic contactors 181 to turn each contact 183 on. Accordingly, the contact 183 of the second electromagnetic contactor 181 and the contact 183 of the third electromagnetic contactor 181 are maintained in the off state.
  • the discharge path is provided to the first cell stack 20-1 by the contact 183 of the first electromagnetic contactor 181 that is turned on. On the other hand, the discharge path is not provided to the second and third cell stacks 20-2 and 20-3.
  • the discharge path and the bypass path provided to each cell stack 20 electrically isolated from the high current path among the plurality of cell stacks 20 are mutually connected by the plurality of electromagnetic contactors 181. It is completely insulated. Therefore, the discharging process of each cell stack 20 electrically isolated from the high current path and the charging process of each cell stack 20 not electrically isolated from the high current path may be simultaneously performed independently of each other.
  • FIG. 16 shows another embodiment of the battery pack 1 shown in FIG. 1.
  • the overcharge prevention apparatus 100 may further include a plurality of optocouplers 185 in the embodiment illustrated in FIG. 8, 9, or 14.
  • the optocouplers 185 are included in the discharge induction unit 180.
  • the embodiment shown in FIG. 16 illustrates an overcharge preventing device 100 in which a plurality of optocouplers 185 are added to the embodiment shown in FIG. 8.
  • the number of opto couplers 185 may be equal to the number of cell stacks 20 so that one opto coupler 185 corresponds to one cell stack 20. That is, the first opto coupler 185-1 corresponds to the first cell stack 20-1, the second opto coupler 185-2 corresponds to the second cell stack 20-2, and the third The optocoupler 185-3 corresponds to the third cell stack 20-3.
  • the first opto coupler 185-1 provides the discharge path to the first cell stack 20-1 at least temporarily during the period in which the first cell stack 20-1 is electrically isolated from the high current path. do.
  • the second optocoupler 185-2 provides a discharge path to the second cell stack 20-2 at least temporarily during the period in which the second cell stack 20-2 is electrically isolated from the high current path.
  • the third optocoupler 185-3 provides the discharge path to the first cell stack 20-3 at least temporarily during the period in which the first cell stack 20-3 is electrically isolated from the high current path. .
  • Each optocoupler 185 includes a light emitting element 186 and a photodetecting element 187.
  • a photodetecting element 187 a photodiode or a phototransistor can be used.
  • the light emitting element 186 gallium, arsenic or a light emitting diode may be used.
  • photodetecting element 187 replaces contact 183 and light emitting element 186 replaces coil 182.
  • each light emitting element 186 is provided in a bypass path corresponding to any one cell stack 20. That is, each light emitting element 186 is connected in series to each bypass circuit 130. Each light emitting element 186 is activated while charging current flows through a bypass path in which the light emitting element 186 is installed, and outputs an optical signal. The higher the magnitude of the charging current flowing through the bypass path, the larger the level of the optical signal output from the light emitting element 186 provided in the bypass path.
  • the photodetecting element 187 is configured to be connected in parallel to any one cell stack 20 with a predetermined resistance value.
  • One end of each photodetector 187 may be connected to a first electrode (eg, an anode) of each cell stack 20, and the other end may be connected to a second electrode (eg, a cathode) of each cell stack 20.
  • the photodetecting element 187 has an off state in normal (ie, when the level of the optical signal from the light emitting element 186 is less than a predetermined value).
  • the photodetecting element 187 When the level of the optical signal output from each light emitting element 186 is equal to or higher than a predetermined value, the photodetecting element 187 is turned on in response to the optical signal of the light emitting element 186.
  • the discharge path is provided to the cell stack 20 connected in parallel to the photodetecting device 187 turned on.
  • the optocoupler 185 based on the case where only the first cell stack 20-1 of the first to third cell stacks 20-1 to 20-3 is in the second overcharge state as illustrated in FIG. 11. Let's explain the operation of).
  • the second and third optocouplers 185 since only a part of the charging current flows through the second bypass circuit 130-2, and no charging current flows through the third bypass circuit 130-3, respectively, the second and third optocouplers 185, respectively.
  • An optical signal having a level sufficient to turn the photodetecting element 187 in the on state is not output from the light emitting element 186 of each of the second and third optocouplers 185. Accordingly, the photodetecting element 187 of the second optocoupler 185 and the photodetecting element 187 of the third optocoupler 185 are maintained in an off state.
  • the discharge path is provided to the first cell stack 20-1 by the photodetecting element 187 of the first optocoupler 185 that is turned on. On the other hand, the discharge path is not provided to the second and third cell stacks 20-2 and 20-3.
  • the voltage of the first cell stack 20-1 gradually decreases to escape from the second overcharge state when a certain amount of time passes. . That is, the discharge of the first cell stack 20-1 and the charge of the second and third cell stacks 20-2 and 20-3 may be simultaneously performed.
  • the discharge path and the bypass path provided to each cell stack 20 electrically separated from the high current path among the plurality of cell stacks 20 are completely mutually provided by the plurality of optocouplers 185. Insulated.
  • the discharging process of each cell stack 20 electrically separated from the high current path and the charging process of each cell stack 20 electrically disconnected from the high current path are simultaneously performed independently of each other. Can be.
  • 17 is a flowchart illustrating a method for preventing overcharge according to another embodiment of the present invention.
  • step S171 the controller 170 receives a first monitoring signal indicating a voltage of each cell stack 20.
  • the first monitoring signal received by the controller 170 is output from the voltage measuring unit 120.
  • step S172 the controller 170 determines whether an overcharged cell stack exists in the battery pack 1 based on the first monitoring signal. If the result of step 152 is "YES”, step S173 proceeds. On the other hand, when the result of step S172 is "NO", it can return to step S171.
  • the controller 170 controls at least one of the plurality of bypass switches connected in parallel to the overcharged cell stack to provide an bypass path to the overcharged cell stack. At this time, the controller 170 may control only the number corresponding to the internal resistance value of the overcharged cell stack among the plurality of bypass switches connected in parallel to the overcharged cell stack in the on state and the rest in the off state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Protection Of Static Devices (AREA)

Abstract

배터리팩에 포함되는 복수의 셀 스택 각각을 과충전으로부터 보호하기 위한 장치 및 방법이 제공된다. 본 발명의 일 측면에 따른 과충전 방지 장치는, 대전류 경로 내에서 서로 직렬 연결된 복수의 셀 스택의 과충전을 방지하기 위한 것이다. 상기 과충전 방지 장치는, 상기 각 셀 스택의 전압을 측정하고, 측정된 전압을 나타내는 제1 모니터링 신호를 생성하는 전압 측정부; 상기 각 셀 스택에게 바이패스 경로를 선택적으로 제공하도록 구성된 전류 조정부; 상기 전압 측정부 및 상기 전류 조정부와 통신 가능하게 연결되는 컨트롤러;를 포함한다. 상기 컨트롤러는, 상기 전압 측정부로부터의 제1 모니터링 신호를 기초로, 상기 전류 조정부를 제어한다.

Description

과충전 방지 장치 및 방법
본 발명은 과충전 방지 장치 및 방법에 관한 것으로서, 보다 상세하게는, 배터리팩에 포함되는 복수의 셀 스택 각각을 과충전으로부터 보호하기 위한 장치 및 방법에 관한 것이다.
본 출원은 2017년 04월 17일자로 출원된 한국 특허출원 번호 제10-2017-0049372호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
최근, 노트북, 비디오 카메라, 휴대용 전화기 등과 같은 휴대용 전자 제품의 수요가 급격하게 증대되고, 전기 자동차, 에너지 저장용 축전지, 로봇, 위성 등의 개발이 본격화됨에 따라, 반복적인 충방전이 가능한 고성능 배터리에 대한 연구가 활발히 진행되고 있다.
현재 상용화된 배터리로는 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지, 리튬 배터리 등이 있는데, 이 중에서 리튬 배터리는 니켈 계열의 배터리에 비해 메모리 효과가 거의 일어나지 않아 충방전이 자유롭고, 자가 방전율이 매우 낮으며 에너지 밀도가 높은 장점으로 각광을 받고 있다.
전기 자동차 등에 탑재되는 배터리 팩은 서로 직렬 또는 병렬로 연결되는 복수의 셀 스택을 포함하는 것이 일반적이다. 이때, 각 셀 스택은, 하나 또는 서로 직렬 접속된 둘 이상의 전지 셀을 포함한다.
이러한 배터리 팩에 포함된 각각의 셀 스택의 상태는 BMS(Battery Management System)가 탑재된 컨트롤러에 의해 모니터링된다. 컨트롤러는 각 셀 스택으로부터 모니터링된 상태를 기초로, 밸런싱 동작, 냉각 동작, 충전 동작, 방전 동작 등을 제어하기 위한 신호를 출력할 수 있다.
배터리 팩에 충전 전류가 공급됨에 따라, 각 셀 스택의 전압은 점차적으로 상승하여 과충전될 수 있다. 과충전으로 인해 셀 스택이 폭발하는 등의 위험 상황이 발생할 수 있는바, 과충전을 방지하기 위한 종래기술로서 특허문헌 1이 존재한다. 하기의 특허문헌 1에 따른 배터리 팩은 배터리(상기 셀 스택에 대응) 및 전류 차단 장치를 포함하며, 배터리에 과전압이 발생하는 경우 전류 차단 장치가 배터리를 대전류 경로로부터 전기적으로 분리한다.
그런데, 배터리의 과충전 시에 단순히 배터리를 대전류 경로로부터 전기적으로 분리해버릴 경우, 주요한 문제가 발생할 수 있다. 예를 들어, 전기 자동차에 탑재되는 배터리 팩의 배터리가 대전류 경로로부터 전기적으로 분리될 경우, 전기 자동차가 갑자기 정지하게 되는 위험이 있다.
특허문헌 1: 대한민국 공개특허공보 제10-2014-0017043호(공개일자: 2014년 2월 11일)
본 발명은, 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 배터리팩에 포함된 일부 셀 스택이 과충전된 경우, 충전 전류가 과충전된 일부 셀 스택을 바이패스하여 나머지 셀 스택으로 공급될 수 있도록 하는 장치 및 방법을 제공하는 것을 목적으로 한다.
본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허청구범위에 나타난 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
상기 목적을 달성하기 위한 본 발명의 다양한 실시예는 다음과 같다.
본 발명의 일 측면에 따른 과충전 방지 장치는, 대전류 경로 내에서 서로 직렬 연결된 복수의 셀 스택의 과충전을 방지하기 위한 것이다. 상기 과충전 방지 장치는, 상기 각 셀 스택의 전압을 측정하고, 측정된 전압을 나타내는 제1 모니터링 신호를 생성하는 전압 측정부; 상기 각 셀 스택에게 바이패스 경로를 선택적으로 제공하도록 구성된 전류 조정부; 상기 전압 측정부 및 상기 전류 조정부와 통신 가능하게 연결되는 컨트롤러;를 포함한다. 상기 컨트롤러는, 상기 전압 측정부로부터의 제1 모니터링 신호를 기초로, 상기 전류 조정부를 제어한다.
또한, 상기 컨트롤러는, 상기 전압 측정부로부터의 제1 모니터링 신호를 기초로, 상기 복수의 셀 스택 중 과충전된 셀 스택이 있는지 판정하고, 과충전된 셀 스택이 있는 경우, 과충전된 셀 스택에게 바이패스 경로를 제공하도록 상기 전류 조정부를 제어할 수 있다.
또한, 상기 전류 조정부는, 복수의 바이패스 회로;를 포함한다. 상기 각 바이패스 회로는, 상기 각 셀 스택에 병렬 접속된 복수의 바이패스 스위치;를 포함할 수 있다.
또한, 상기 컨트롤러는, 상기 전압 측정부로부터의 제1 모니터링 신호를 기초로, 상기 복수의 셀 스택 중 과충전된 셀 스택이 있는지 판정하고, 과충전된 셀 스택이 있는 경우, 상기 과충전된 셀 스택에 병렬 접속된 복수의 바이패스 스위치 중 적어도 하나를 온 상태로 제어할 수 있다.
또한, 상기 각 셀 스택에 공급되는 충전 전류를 측정하고, 측정된 충전 전류를 나타내는 제2 모니터링 신호를 생성하는 전류 측정부;를 더 포함할 수 있다.
또한, 상기 컨트롤러는, 상기 전압 측정부로부터의 제1 모니터링 신호 및 상기 전류 측정부로부터의 제2 모니터링 신호를 기초로, 상기 복수의 셀 스택 중 적어도 하나의 내부 저항값을 산출할 수 있다.
또한, 상기 컨트롤러는, 상기 과충전된 셀 스택에 병렬 접속된 복수의 바이패스 스위치 중, 상기 과충전된 셀 스택의 내부 저항값에 대응하는 개수의 바이패스 스위치를 온 상태로 제어하고, 나머지 바이패스 스위치를 오프 상태로 제어할 수 있다.
또한, 상기 각 셀 스택을 냉각하도록 구성된 냉각부;를 더 포함할 수 있다. 상기 냉각부는, 각각 상기 각 셀 스택에게 제공된 바이패스 경로를 통해 공급되는 충전 전류에 의해 동작하여, 상기 각 셀 스택을 냉각하는 복수의 냉각 소자;를 포함할 수 있다.
또한, 상기 각 냉각 소자는, 흡열 파트 및 방열 파트를 가지고, 상기 흡열 파트가 상기 방열 파트보다 상기 각 셀 스택에 인접하도록 배치된 펠티어 소자일 수 있다.
또한, 상기 전압 측정부는, 각각 상기 각 셀 스택에 병렬 접속된 복수의 전압 센서;를 포함할 수 있다.
본 발명의 다른 측면에 따른 배터리팩은, 상기 과충전 방지 장치; 및 서로 직렬 연결되는 복수의 셀 스택;을 포함한다. 상기 과충전 방지 장치는, 상기 각 셀 스택에 대한 과충전 방지 동작을 수행한다.
본 발명의 실시예들에 따르면, 배터리팩에 포함된 복수의 셀 스택 중에서 일부가 과충전된 경우, 충전 전류의 적어도 일부가 과충전된 각 셀 스택을 바이패스하여 나머지 셀 스택으로 공급될 수 있다. 따라서, 일부 셀 스택이 과충전 상태에 이르더라도, 과충전되지 않은 나머지 셀 스택을 계속적으로 충전할 수 있다.
또한, 배터리팩에 포함된 복수의 셀 스택 중, 과충전된 셀 스택을 대전류 경로로부터 전기적으로 분리할 수 있다. 이때, 대전류 경로로부터 전기적으로 분리된 각 셀 스택을 대신하여 대전류 경로를 구성하는 바이패스 경로가 배터리팩 내에 제공된다. 따라서, 일부 셀 스택이 대전류 경로로부터 전기적으로 분리되더라도, 과충전되지 않은 나머지 셀 스택을 충방전할 수 있다.
또한, 대전류 경로로부터 전기적으로 분리된 각 셀 스택을 대신하여 대전류 경로를 구성하는 각 바이패스 경로의 저항값을 조절할 수 있다. 이 경우, 각 바이패스 경로의 저항값이 대전류 경로로부터 전기적으로 분리된 각 셀 스택의 내부 저항값에 따라 조절됨으로써, 대전류 경로에 전기적으로 접속된 채로 남아있는 각 셀 스택에게 과전류가 공급되지 않도록 할 수 있다.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술되는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명의 일 실시예에 따른 배터리팩의 개략적인 구성을 보여주는 도면이다.
도 2는 도 1에 도시된 배터리팩의 일 구현예를 보여준다.
도 3 및 도 4는 도 2에 도시된 바이패스 회로의 서로 다른 구현예를 보여주는 도면이다.
도 5 내지 도 7은 도 2에 도시된 구현예에 따른 과충전 방지 장치의 동작을 설명하는 데에 참조되는 도면이다.
도 8 및 도 9는 도 1에 도시된 배터리팩의 서로 다른 구현예를 보여준다.
도 10 내지 도 13은 도 9에 도시된 구현예에 따른 과충전 방지 장치의 동작을 설명하는 데에 참조되는 도면이다.
도 14 내지 도 16은 도 1에 도시된 배터리팩의 서로 다른 구현예를 보여준다.
도 17은 본 발명의 다른 실시예에 따른 과충전 방지 방법을 보여주는 순서도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
또한, 본 발명을 설명함에 있어 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
제1, 제2 등과 같이 서수를 포함하는 용어들은, 다양한 구성요소들 중 어느 하나를 나머지와 구별하는 목적으로 사용되는 것이고, 그러한 용어들에 의해 구성요소들을 한정하기 위해 사용되는 것은 아니다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라, 다른 구성요소를 더 포함할 수 있다는 것을 의미한다. 또한, 명세서에 기재된 <제어 유닛>과 같은 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어, 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.
덧붙여, 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다.
도 1은 본 발명의 일 실시예에 따른 배터리팩(1)의 개략적인 구성을 보여주는 도면이다.
도 1을 참조하면, 배터리팩(1)은 배터리 모듈(10) 및 과충전 방지 장치(100)를 포함한다. 배터리 모듈(10)은, 복수의 셀 스택(20)을 포함한다. 과충전 방지 장치(100)는, 기본적으로 전압 측정부(110), 전류 조정부(120) 및 컨트롤러(170)를 포함하고, 선택적으로 단로부(140), 전류 측정부(150) 및 냉각부(160) 중 적어도 하나를 더 포함할 수 있다. 또한, 과충전 방지 장치(100)가 단로부(140)를 포함하는 경우, 방전 유도부(180)가 추가될 수 있다.
복수의 셀 스택(20)은, 서로 직렬 연결되고, 배터리팩(1)의 두 전원 단자 사이의 대전류 경로 상에 설치된다.
전압 측정부(110)는, 각 셀 스택(20)의 전압을 측정하고, 측정된 전압을 나타내는 제1 모니터링 신호를 생성한다. 전압 측정부(110)에 의해 생성된 제1 모니터링 신호는, 컨트롤러(170)에게 전송된다.
전류 조정부(120)는, 각 셀 스택(20)에 병렬 연결되는 바이패스 경로를 선택적으로 제공하도록 구성된다. 즉, 전류 조정부(120)는 복수의 셀 스택(20)에게 개별적으로 바이패스 경로를 제공할 수 있다. 즉, 전류 조정부(120)는 일부의 셀 스택(20)에게만 바이패스 경로를 제공하고 나머지 셀 스택(20)에게는 바이패스 경로를 제공하지 않을 수 있다.
각 바이패스 경로를 통해 충전 전류의 일부 또는 전부가 흐르게 된다. 따라서, 배터리팩(1)에 충전 전류가 공급되는 동안에, 바이패스 경로가 제공된 셀 스택(20)의 충전은 중지되거나 매우 느리게 진행된다.
또한, 전류 조정부(120)는, 각 바이패스 경로의 저항값을 조절할 수 있다. 이에 따라, 각 바이패스 경로를 통해 흐르는 전류는, 각 바이패스 경로의 저항값에 따라 조절된다. 예컨대, 바이패스 경로의 저항값이 증가할수록 그 바이패스 경로를 통해 흐르는 충전 전류는 줄어들 수 있다.
단로부(140)는, 각 셀 스택(20)을 배터리팩(1)으로부터 선택적으로 분리하도록 구성된다. 즉, 단로부(140)는, 대전류 경로로부터 각 스택(20)을 전기적으로 분리한다. 컨트롤러(170)에 의해, 전류 조정부(120)와 단로부(140)는 연동하여 동작할 수 있다. 예컨데, 단로부(140)에 의해 대전류 경로로부터 어느 한 셀 스택(20)이 분리된 경우, 전류 조정부(120)는 분리된 셀 스택(20)에게만 바이패스 경로를 제공할 수 있다. 분리된 셀 스택(20)에게 제공된 바이패스 경로는, 분리된 셀 스택(20)을 대신하여 대전류 경로를 구성하게 된다.
전류 측정부(150)는, 각 셀 스택(20)에 공급되는 충전 전류를 측정하고, 측정된 충전 전류를 나타내는 제2 모니터링 신호를 생성한다. 전류 측정부(150)에 의해 생성된 제2 모니터링 신호는, 컨트롤러(170)에게 전송된다. 전류 측정부(150)는, 대전류 경로에 설치되는 션트 저항을 포함하고, 충전 전류에 의해 션트 저항에 발생한 전압으로부터 충전 전류를 측정할 수 있다.
냉각부(160)는, 복수의 셀 스택(20)을 개별적으로 냉각하도록 구성된다. 보다 상세히는, 냉각부(160)는 각 셀 스택(20)에 제공된 바이패스 경로를 통해 흐르는 충전 전류에 의해 적어도 부분적으로 활성화된다. 활성화된 냉각부(160)는 소정 범위의 영역을 냉각한다.
방전 유도부(180)는, 배터리팩(1)의 두 전원 단자를 통해 충전 전류가 공급되는 동안, 단로부(140)에 의해 대전류 경로로부터 전기적으로 분리되어 있는 각 셀 스택(20)에게 방전 경로를 제공하도록 구성된다. 방전 유도부(140)는, 단로부(140)에 의해 제공되는 바이패스 경로를 통해 흐르는 충전 전류에 응답하여 자연적으로 활성화되도록 구성될 수 있다.
컨트롤러(170)는, 하드웨어적으로, ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 마이크로 프로세서(microprocessors), 기타 기능 수행을 위한 전기적 유닛 중 적어도 하나를 이용하여 구현될 수 있다. 컨트롤러(170)는, 전류 조정부(120), 전압 측정부(110), 전류 측정부(150) 및/또는 냉각부(160)와 통신 가능하게 연결되어, 이들의 동작을 전반적으로 제어한다. 여기서, 서로 다른 두 구성요소가 통신 가능하게 연결된다는 것은, 어느 한 구성요소가 다른 구성요소에게 신호나 데이터를 전송할 수 있도록 유선 및/또는 무선을 통해 연결된다는 것일 의미할 수 있다.
컨트롤러(170)는, 복수의 셀 스택(20)에 대한 과충전 방지 동작을 실행하도록 구성된다. 특히, 컨트롤러(170)는, 전압 측정부(110)로부터의 제1 모니터링 신호 및/또는 전류 측정부(150)로부터의 제2 모니터링 신호를 기초로, 전류 조정부(120)를 제어한다. 컨트롤러(170)로부터의 제어 신호에 따라, 전류 조정부(120)는 각 셀 스택(20)에게 바이패스 경로를 제공하거나, 기 제공된 바이패스 경로를 차단할 수 있다. 또한, 컨트롤러(170)는, 적어도 하나의 셀 스택(20)에게 제공되는 바이패스 경로 각각의 저항값을 소정 범위 내에서 조절하도록, 전류 조정부(120)를 제어할 수 있다.
이하에서는, 이해를 돕기 위해, 서로 직렬 연결되는 3개의 셀 스택(20-1~20-3)이 배터리팩(1)에 포함되는 것으로 가정한다.
도 2는 도 1에 도시된 배터리팩(1)의 일 구현예를 보여준다.
배터리팩(1)에 포함된 복수의 셀 스택(20)은 배터리팩(1)의 두 전원 단자(+,-) 사이의 대전류 경로에 설치된다.
도 1 및 도 2를 참조하면, 각 셀 스택(20)은, 적어도 하나의 배터리 셀(21)을 포함한다. 각 셀 스택(20)에 복수의 배터리 셀(21)이 포함된 경우, 직렬 또는 병렬 연결될 수 있다. 또한, 각 셀 스택(20)은, 이에 포함되는 각 배터리 셀(21)을 적어도 부분적으로 커버하는 구조를 가지는 케이스(22)를 포함할 수 있다. 케이스(22)는, 효율적인 열 방출을 위해 금속 재질로 이루어질 수 있다.
전압 측정부(110)는, 복수의 전압 센서(111)를 포함할 수 있다. 전압 센서(111)의 개수는 셀 스택(20)의 개수와 동일할 수 있다. 이 경우, 각 셀 스택(20)마다 전압 센서(111)가 제공될 수 있다. 즉, 전압 센서(111)는 셀 스택(20)에 일대일로 대응할 수 있다.
각 전압 센서(111)는, 각 셀 스택(20)에 병렬 연결된다. 즉, 제1 전압 센서(111-1), 제2 전압 센서(111-2) 및 제3 전압 센서(111-3) 각각은, 제1 셀 스택(20-1), 제2 셀 스택(20-2) 및 제3 셀 스택(20-3)에 병렬 연결된다. 각 전압 센서(111)는, 그것에 병렬 연결된 어느 한 셀 스택(20)의 전압을 측정한다. 복수의 전압 센서(111)에 의해 측정된 각 셀 스택(20)의 전압을 나타내는 제1 모니터링 신호는 컨트롤러(170)에게 전송된다.
전류 조정부(120)는, 복수의 바이패스 회로(130-1~130-3)를 포함할 수 있다. 바이패스 회로(130)의 개수는 셀 스택(20)의 개수와 동일할 수 있다. 이 경우, 각 셀 스택(20)마다 바이패스 회로(130)가 하나씩 제공될 수 있다. 즉, 바이패스 회로(130)와 셀 스택(20)은 일대일로 대응할 수 있다.
각 바이패스 회로(130)는, 각 셀 스택(20)에 병렬 연결될 수 있다. 즉, 제1 바이패스 회로(130-1), 제2 바이패스 회로(130-2) 및 제3 바이패스 회로(130-3) 각각은, 제1 셀 스택(20-1), 제2 셀 스택(20-2) 및 제3 셀 스택(20-3)에 병렬 연결될 수 있다.
복수의 바이패스 회로(130-1~130-3) 중 적어도 하나가 컨트롤러(170)에 의해 활성화된 경우, 활성화된 바이패스 회로(130)는, 그것에 병렬 연결된 셀 스택(20)에게 바이패스 경로를 제공한다.
컨트롤러(170)는, 전압 측정부(110)로부터의 제1 모니터링 신호를 기초로, 복수의 셀 스택(20-1~20-3) 중 과충전된 것이 있는지 판정한다. 또한, 컨트롤러(170)는, 전압 측정부(110)로부터의 제1 모니터링 신호를 기초로, 과충전된 셀 스택의 개수를 산출할 수 있다. 이를 위해, 컨트롤러(170)는 각 셀 스택(20)으로부터 측정된 전압을 제1 기준 전압 및/또는 제2 기준 전압과 비교한다. 이때, 제2 기준 전압은 제1 기준 전압보다 높다.
제1 기준 전압과 제2 기준 전압 각각은, 각 셀 스택(20)의 과충전 여부를 판정하기 위한 기준으로 활용된다. 즉, 컨트롤러(170)는, 제1 기준 전압과 같거나 더 높은 전압까지 충전된 셀 스택(20)은 과충전 상태에 있는 것으로 판정한다. 또한, 컨트롤러(170)는, 제1 기준 전압과 같거나 더 높으면서 제2 기준 전압보다는 낮은 전압까지 충전된 셀 스택(20)에게는 충전 전류의 일부만이 공급되도록 전류 조정부(120)를 제어한다. 이하에서는, 제1 기준 전압과 같거나 더 높으면서 제2 기준 전압보다는 낮은 전압까지 충전된 상태를 제1 과충전 상태라고 하겠다.
또한, 컨트롤러(170)는, 제2 기준 전압과 같거나 더 높은 전압까지 충전된 셀 스택(20)에게는 충전 전류가 공급되지 않도록 전류 조정부(120) 및 단로부(140)를 제어한다. 이하에서는, 제2 기준 전압과 같거나 더 높은 전압까지 충전된 상태를 제2 과충전 상태라고 하겠다.
도 3 및 도 4는 도 2에 도시된 바이패스 회로(130)의 서로 다른 구현예를 보여주는 도면이다.
먼저 도 3을 참조하면, 도 1에 도시된 각 바이패스 회로(130)는, 하나 또는 서로 병렬 연결되는 둘 이상의 바이패스 스위치(131)를 포함할 수 있다. 각 바이패스 스위치(131)는, 릴레이나 MOSFET 등과 같이 외부로부터의 신호에 응답하여 온오프 제어 가능한 것이라면 무방하다.
도 3에는 3개의 바이패스 스위치(131-1~131-3)가 각 바이패스 회로(130)에 포함되는 것으로 도시되어 있으나, 이는 하나의 예시에 불과하고, 2개 또는 4개 이상의 바이패스 스위치(131)가 각 바이패스 회로(130)에 포함될 수 있다. 각 바이패스 회로(130)에 포함된 적어도 하나의 바이패스 스위치(131)가 온 상태로 된 경우, 각 바이패스 회로(130)에 병렬 연결된 셀 스택(20)에게 바이패스 경로가 제공된다.
각 바이패스 스위치(131)는 온 상태에서 소정의 저항값을 가질 수 있다. 이때, 각 바이패스 회로(130)에 포함되는 복수의 바이패스 스위치(131-1~131-3)의 저항값은, 서로 같거나 다를 수 있다. 각 바이패스 스위치(131)의 온오프 조합에 따라, 바이패스 경로의 저항값이 조절된다.
가령, 제1 내지 제3 바이패스 스위치(131-1~131-3)가 서로 동일한 저항값 R을 가진다고 해보자. 만약, 제1 내지 제3 바이패스 스위치(131-1~131-3) 중 어느 하나만이 온 상태이면서 나머지는 오프 상태인 동안, 셀 스택(20)에서 제공되는 바이패스 경로의 저항값은 R이다. 만약, 제1 내지 제3 바이패스 스위치(131-1~131-3) 중 어느 둘만이 온 상태이면서 나머지는 오프 상태인 동안, 제1 스택(20)에서 제공되는 바이패스 경로의 저항값은 R/2이다. 만약, 제1 내지 제3 바이패스 스위치(131-1~131-3) 모두 온 상태인 동안, 셀 스택(20)에게 제공되는 바이패스 경로의 저항값은 R/3이다. 즉, 각 바이패스 회로(130) 내에서 온 상태가 되는 바이패스 스위치(131)의 개수가 증가할수록, 그에 병렬 연결되는 셀 스택(20)에게 제공되는 바이패스 경로의 저항값은 감소한다.
다음으로, 도 4를 참조하면, 도 3과 비교할 때, 각 바이패스 회로(130)는 하나 또는 둘 이상의 바이패스 저항(132)을 더 포함할 수 있다. 각 바이패스 저항(132)은, 복수의 바이패스 스위치(131-1~131-3) 중 어느 하나에 직렬 연결된다. 즉, 각 바이패스 회로(130) 내에서, 하나의 바이패스 스위치(131)와 하나의 바이패스 저항(132)이 직렬 연결될 수 있다. 이때, 각 바이패스 회로(130)에 포함되는 둘 이상의 바이패스 저항(132)의 저항값은 서로 같거나 다를 수 있다.
가령, 제1 셀 스택(20-1)에 대응하는 제1 바이패스 회로(130-1)에 포함된 제1 내지 제3 바이패스 스위치(131-1~131-3)가 서로 동일한 저항값 R을 가지고, 제1 바이패스 저항(132-1), 제2 바이패스 저항(132-2) 및 제3 바이패스 저항(132-3) 각각의 저항값은 R1, R2, R3이며, R1 < R2 < R3라고 해보자. 만약, 제1 바이패스 회로(130-1)에 포함된 제1 바이패스 스위치(131-1)만이 온 상태인 경우, 제1 셀 스택(20-1)에게 제공되는 바이패스 경로의 저항값은 R+R1이다. 만약, 제1 바이패스 회로(130-1)에 포함된 제1 및 제2 바이패스 스위치(131-1, 131-2)만이 온 상태인 동안, 제1 셀 스택(20-1)에게 제공되는 바이패스 경로의 저항값은 (R+R1)과 (R+R2)의 합성에 의해 {(R+R1)×(R+R2)}/{(2×R)+R1+R2}이 된다.
한편, 도 3 및 도 4을 참조하여 기 설명된 각 바이패스 회로(130)는 도 5 내지 도 12를 참조하여 후술할 실시예들에 따른 과충전 방지 장치(100)에게 적용될 수 있다.
도 5 내지 도 7은 도 2에 도시된 구현예에 따른 과충전 방지 장치의 동작을 설명하는 데에 참조되는 도면이다. 설명의 편의를 위해, 각 바이패스 회로(130)는 도 3과 같이 구성되고, 모든 바이패스 스위치(131)의 저항값은 R로 동일한 것으로 가정한다.
먼저 도 5는 제1 내지 제3 셀 스택(20-1~20-3)이 모두 과충전되지 않은 경우의 동작을 예시한다. 이 경우, 컨트롤러(170)는, 제1 내지 제3 바이패스 회로(130-1~130-3)의 모든 바이패스 스위치(131)를 오프시키도록 전류 조정부(120)를 제어한다. 이에 따라, 배터리팩(1) 내에는 단 하나의 바이패스 경로도 존재하지 않게 되므로, 충전 전류는 각 셀 스택(20)에게 순차적으로 공급된다.
다음으로, 도 6은 제1 내지 제3 셀 스택(20) 중 제1 셀 스택(20-1)만이 제1 과충전 상태인 경우의 동작을 예시한다. 이 경우, 제1 셀 스택(20-1)에 공급되는 충전 전류를 낮춰줘야할 필요가 있다. 이를 위해, 컨트롤러(170)는 제2 및 제3 바이패스 회로(130-2, 130-3)의 모든 바이패스 스위치(131)를 오프 상태로 제어한다. 이와 함께, 컨트롤러(170)는 제1 바이패스 회로(130-1)에 하나 이상의 바이패스 스위치(131)는 온 상태로 제어한다.
만약, 제1 바이패스 회로(130)의 어느 한 바이패스 스위치(131-1)만이 온 상태로 제어된 경우, 제1 바이패스 회로(130-1)가 제1 셀 스택(20-1)에게 제공하는 바이패스 경로의 저항값은 R이 된다. 이에 따라, 배터리팩(1)의 전원 단자(+,-)를 통해 공급되는 충전 전류의 일부는 제1 셀 스택(20-1)을 통해 제2 및 제3 셀 스택(20-2, 20-3)에게 공급되고, 나머지 충전 전류는 제1 셀 스택(20-1)에게 제공된 바이패스 경로 통해 제2 및 제3 셀 스택(20-2, 20-3)에게 공급된다. 결과적으로, 제1 셀 스택(20-1)은 제2 및 제3 셀 스택(20-2, 20-3)보다 더디게 충전된다.
이어서, 도 7은 제1 셀 스택(20-1)이 제2 과충전 상태이면서 제2 셀 스택(20-2)이 제1 과충전 상태가 된 경우의 동작을 예시한다. 이 경우, 제3 바이패스 회로(130-3)의 모든 바이패스 스위치(131-1~131-3)는 컨트롤러(170)에 의해 오프 상태로 유지된다. 반면, 컨트롤러(170)는, 제2 바이패스 회로(130-2)에 포함된 하나 이상의 바이패스 스위치(131)를 온 상태로 제어한다. 이와 함께, 컨트롤러(170)는, 제1 바이패스 회로(130-1)에 의해 제1 셀 스택(20-1)에 제공되는 바이패스 경로의 저항값이 R보다 작아지도록 제어한다.
예컨대, 도 7에 도시된 바와 같이, 제2 바이패스 회로(130-2)에 포함된 하나의 바이패스 스위치(131-1)만이 온 상태가 되고, 제1 바이패스 회로(130-1)에 포함된 두 바이패스 스위치(131-1, 131-2)만이 온 상태가 될 수 있다. 이에 따라, 제1 및 제2 바이패스 회로(130-1, 130-2)에 의해 제공되는 두 바이패스 경로의 저항값은 각각 R/2과 R이 되고, 배터리팩(1)으로 공급되는 충전 전류의 적어도 일부는 두 바이패스 경로를 순차적으로 거쳐 제3 셀 스택(20-3)에게 공급된다. 결과적으로, 제1 및 제2 셀 스택(20-1, 20-2)은 제3 셀 스택(20-3)보다 더디게 충전된다.
도 6과 비교할 때, 제1 셀 스택(20-1)에게 제공되는 바이패스 경로의 저항값이 R에서 R/2로 낮아진바, 제1 셀 스택(20-1)에게 공급되는 충전 전류는 도 6에서보다 낮아진다.
도 8은 도 1에 도시된 배터리팩(1)의 다른 구현예를 보여준다. 도 2에 도시된 구현예와 비교할 때, 도 8에 도시된 구현예에 따른 과충전 방지 장치(100)는, 단로부(140)를 더 포함하는 점만이 상이하다. 따라서, 동일한 구성 요소에 대하여는 동일한 참조 부호를 부여하고, 각각에 대한 반복적인 설명은 생략한다.
도 1 및 도 8을 참조하면, 단로부(140)는, 복수의 단로 스위치(141)를 포함할 수 있다. 단로 스위치(141)의 개수는 셀 스택(20)의 개수와 동일할 수 있다. 각 단로 스위치(141)는, 릴레이나 MOSFET 등과 같이 외부로부터의 신호에 응답하여 온오프 제어 가능한 것이라면 무방하다. 각 단로 스위치(141)는, 각 셀 스택(20)에 직렬 연결되고, 컨트롤러(170)에 의해 온오프가 제어된다. 하나의 셀 스택(20)과 하나의 단로 스위치(141)가 직렬 연결된 회로는, 각 바이패스 회로(130)에 병렬 연결된다.
일 예로, 도 8과 같이, 제1 단로 스위치(141)는 제1 셀 스택(20-1)에 직렬 연결되고, 제1 셀 스택(20-1)과 제1 단로 스위치(141)는 제1 바이패스 회로(130)에 병렬 연결된다.
도 9는 도 1에 도시된 배터리팩(1)의 다른 구현예를 보여주고, 도 10 내지 도 13은 도 9에 도시된 구현예에 따른 과충전 방지 장치의 동작을 설명하는 데에 참조되는 도면이다. 설명의 편의를 위해, 각 바이패스 회로(130)는 도 3과 같이 구성되며, 모든 바이패스 스위치(131)의 저항값은 R로 동일한 것으로 가정한다. 도 8에 도시된 구현예와 비교할 때, 도 9에 도시된 구현예에 따른 과충전 방지 장치(100)는, 전류 측정부(150)를 더 포함하는 점만이 상이하다. 따라서, 동일한 구성 요소에 대하여는 동일한 참조 부호를 부여하고, 각각에 대한 반복적인 설명은 생략한다.
컨트롤러(170)는, 제2 과충전 상태로 판정된 각 셀 스택(20)에 직렬 연결된 단로 스위치(141)를 오프 상태로 제어한다. 반대로, 컨트롤러(170)는, 제2 과충전 상태로 판정되지 않은 각 셀 스택(20)에 직렬 연결된 단로 스위치(141)는 온 상태로 제어한다. 오프 상태를 가지는 단로 스위치(141)에 직렬 연결된 셀 스택(20) 즉, 제2 과충전 상태의 셀 스택(20)은 대전류 경로로부터 전기적으로 완전히 분리된다.
도 9를 참조하면, 전류 측정부(150)는, 대전류 경로 상에 설치되고, 컨트롤러(170)와 통신 가능하게 연결된다. 전류 측정부(150)는, 충전 전류의 크기를 측정하고, 측정된 충전 전류를 나타내는 제2 모니터링 신호를 생성한다. 제2 모니터링 신호는 컨트롤러(170)에게 전송된다.
컨트롤러(170)는, 전압 측정부(110)로부터의 제1 모니터링 신호 및 전류 측정부(150)로부터의 제2 모니터링 신호를 기초로, 복수의 셀 스택(20) 중 적어도 하나의 내부 저항값을 산출한다. 바람직하게는, 컨트롤러(170)는, 각 셀 스택(20)이 과충전되지 않은 상태인 동안에, 각 셀 스택(20)의 내부 저항값을 산출하는 것이 좋다. 또한, 컨트롤러(170)는, 각 셀 스택(20)의 내부 저항값을 주기적으로 업데이트한다. 내부 저항값을 산출하는 기법은 널리 공지된 것인바, 그에 대한 자세한 설명은 생략한다.
또한, 컨트롤러(170)는, 제2 과충전 상태인 각 셀 스택(20)에 병렬 연결된 복수의 바이패스 스위치(131-1~131-3) 중에서, 제2 과충전 상태인 셀 스택(20)의 내부 저항값에 대응하는 개수의 바이패스 스위치(131)만을 온 상태로 제어한다.
먼저 도 10은 제1 내지 제3 셀 스택(20)이 모두 과충전되지 않은 경우의 동작을 예시한다. 이 경우, 컨트롤러(170)는, 제1 내지 제3 바이패스 회로(130)의 모든 바이패스 스위치(131)를 오프시키도록 전류 조정부(120)를 제어한다. 이와 함께, 컨트롤러(170)는, 단로부(140)에 포함된 모든 단로 스위치(141)를 온시키도록 단로부(140)를 제어한다. 이에 따라, 배터리팩(1) 내에 단 하나의 바이패스 경로도 제공되지 않으면서 단 하나의 셀 스택(20)도 대전류 경로로부터 전기적으로 분리되지 않으므로, 충전 전류의 전부는 각 셀 스택(20)에게 순차적으로 공급된다.
한편, 제1 내지 제3 셀 스택(20) 중 적어도 하나가 제2 과충전 상태로 판정된 경우, 컨트롤러(170)는 제2 과충전 상태인 각 셀 스택(20)의 내부 저항값을 기초로, 제2 과충전 상태인 각 셀 스택(20)에 병렬 연결된 바이패스 회로(130)를 제어한다.
도 11은 제1 셀 스택(20-1)만이 제2 과충전 상태로 판정되고, 제2 및 제3 셀 스택(20-2, 20-3)은 제1 및 제2 과충전 상태로 판정되지 않은 경우의 동작을 예시한다. 컨트롤러(170)는 제1 단로 스위치(141-1)를 오프 상태로 제어하고, 제2 및 제3 단로 스위치(141-2, 141-3)는 온 상태로 제어한다. 이에 따라, 제1 셀 스택(20-1)만이 대전류 경로로부터 전기적으로 완전히 분리된다. 즉, 제1 셀 스택(20-1)에는 충전 전류가 전혀 공급되지 않는다.
이와 함께, 컨트롤러(170)는 가장 최근에 산출된 제1 셀 스택(20-1)의 내부 저항을 기초로 제1 바이패스 회로(130-1)에 포함된 하나 이상의 바이패스 스위치(131)를 온 상태로 제어한다. 이때, 컨트롤러(170)는, 제1 셀 스택(20-1)의 내부 저항값이 클수록 온 상태로 제어할 바이패스 스위치(131)의 개수를 감소시킬 수 있다.
가령, Ra < Rb 라고 해보자. 만약, 제1 셀 스택(20-1)의 내부 저항값이 Ra보다 작으면, 컨트롤러(170)는 도 11에 도시된 바와 같이 제1 바이패스 회로(130-1)에 포함된 모든 바이패스 스위치(131-1~131-3)를 온 상태로 제어한다. 이 경우, 제1 바이패스 경로의 저항값은 R/3이 된다. 만약, 제1 셀 스택(20-1)의 내부 저항값이 Ra보다 크고 Rb보다 작으면, 컨트롤러(170)는 제1 바이패스 회로(130-1)에 포함된 어느 두 바이패스 스위치(예, 131-1, 131-2)를 온 상태로 제어하고, 나머지 한 바이패스 스위치(예, 131-3)는 오프 상태로 제어한다. 이 경우, 제1 셀 스택(20-1)에 제공되는 바이패스 경로의 저항값은 R/2이 된다. 만약, 제1 셀 스택(20-1)의 내부 저항값이 Rb보다 크면, 컨트롤러(170)는 제1 바이패스 회로(130-1)에 포함된 하나의 바이패스 스위치(예, 131-1)만을 온 상태로 제어하고, 나머지 바이패스 스위치(예, 131-2, 131-3)는 오프 상태로 제어한다. 이 경우, 제1 바이패스 경로의 저항값은 R이 된다.
즉, 컨트롤러(170)는, 제2 과충전 상태를 가지는 각 셀 스택(20)의 저항값이 증가할수록, 제2 과충전 상태를 가지는 각 셀 스택(20)에 제공되는 바이패스 경로의 저항값을 증가시킴으로써, 과충전되지 않은 나머지 셀 스택(20)에 공급되는 충전 전류의 크기를 낮출 수 있다.
도 12는 제1 셀 스택(20-1)이 제2 과충전 상태로 판정되고, 제2 셀 스택(20-2)은 제1 과충전 상태로 판정되며, 제3 셀 스택(20-3)은 과충전되지 않은 경우를 예시한다. 설명의 편의를 위해, 제1 셀 스택(20-1)의 내부 저항값이 Rb보다 커진 것으로 가정한다.
컨트롤러(170)는, Rb보다 큰 내부 저항값을 가지는 제1 셀 스택(20-1)에게 제공되는 바이패스 경로의 저항값이 제1 셀 스택(20-1)의 내부 저항값에 가장 근접해지도록, 제1 바이패스 회로(131-1)의 어느 한 바이패스 스위치(예, 131-1)만을 온 상태로 제어한다.
또한, 컨트롤러(170)는, 충전 전류의 일부만이 제2 셀 스택(20-2)에게 공급되도록, 제2 바이패스 회로(131-2)의 하나 이상의 바이패스 스위치(예, 131-1)를 온 상태로 제어한다.
이에 따라, 충전 전류의 일부는 제2 및 제3 셀 스택(20-2, 20-3)을 통해 흐르고, 나머지 충전 전류는 제1 및 제2 셀 스택(20-1, 20-2)에게 제공된 두 바이패스 경로를 통해 흐르게 된다.
한편, 복수의 셀 스택이 직렬 연결되어 있으므로, 일부 셀 스택(20)이 대전류 경로로부터 전기적으로 완전히 분리되면, 나머지 셀 스택(20)으로 충전 전류가 집중될 수 있다. 예컨대, 제2 기준 전압이 21V이고, 제1 내지 제3 셀 스택(20-1~20-3)의 전압이 각각 22V, 20V, 18V로 측정된다면, 제1 셀 스택(20-1)이 제2 과충전 상태가 판정됨에 따라, 대전류 경로로부터 전기적으로 분리된다. 이 경우, 제1 셀 스택(20-1)의 전압 22V에 대응하는만큼 충전 전류의 급작스런 상승이 순간적으로 야기되어, 제2 및 제3 셀 스택(20-2, 20-3)가 손상될 수 있다.
따라서, 과충전 방지 장치(100)는, 제2 과충전 상태가 아닌 각 셀 스택(20)에게 규정값을 넘어서는 충전 전류가 공급되지 않도록 동작할 필요가 있다.
도 13은 제1 및 제2 셀 스택(20-1, 20-2)이 제2 과충전 상태로 판정되고, 제3 셀 스택(20-3)은 제2 과충전 상태로 판정되지 않은 경우의 동작을 예시한다. 이때, 제3 셀 스택(20-3)은 제1 과충전 상태이거나 과충전되지 않은 상태일 수 있다.
컨트롤러(170)는, 전류 측정부(150)로부터의 제2 모니터링 신호를 기초로, 제2 과충전 상태인 제1 및 제2 셀 스택(20-1, 20-2)을 대전류 경로로부터 전기적으로 분리할 경우, 제2 과충전 상태가 아닌 제3 셀 스택(20-3)으로 공급될 충전 전류의 최소치를 예측할 수 있다. 여기서, 제3 셀 스택(20-3)으로 공급될 충전 전류의 최소치는, 제1 및 제2 셀 스택(20-1, 20-2)에 제공되는 바이패스 경로 각각의 저항값이 최대치로 조절된 동안에 흐르게 되는 전류의 크기에 대응한다.
만약, 제2 과충전 상태가 아닌 제3 셀 스택(20-3)으로 공급될 충전 전류의 최소치가 규정값을 초과하는 것으로 예측된 경우, 컨트롤러(170)는, 제1 및 제2 단로 스위치(141-1, 141-2)는 물론 제3 단로 스위치(141-3)까지도 오프 상태로 제어할 수 있다. 이와 함께, 컨트롤러(170)는, 제1 내지 제3 바이패스 회로(130-1~130-3)에 포함된 모든 바이패스 스위치(131)를 오프 상태로 제어한다.
이에 따라, 도 13과 같이, 제1 및 제2 셀 스택(20-1, 20-2)은 물론 제3 셀 스택(20-3)까지도 대전류 경로로부터 전기적으로 완전히 분리되면서 단 하나의 바이패스 경로도 제공되지 않는다. 즉, 배터리팩(1) 내에서 충전 전류가 차단된다.
도 14는 도 1에 도시된 배터리팩(1)의 다른 구현예를 보여준다. 도 14에 도시된 구현예에 따른 과충전 방지 장치(100)는, 도 2, 도 8 또는 도 9에 도시된 구현예에 냉각부(160)가 더 포함된 것일 수 있다. 냉각부(160)는 배터리팩(1)에 포함된 하나 또는 둘 이상의 셀 스택(20)을 동시에 또는 개별적으로 냉각하도록 구성된다. 기 설명된 동일한 구성 요소에 대하여는 동일한 참조 부호를 부여하고, 각각에 대한 반복적인 설명은 생략한다.
도 14에 도시된 구현예는, 도 8에 도시된 구현예에 냉각부(160)가 추가된 과충전 방지 장치(100)를 예시한다.
냉각부(160)는 복수의 냉각 소자(161)를 포함한다. 각 냉각 소자(161)는, 각 바이패스 회로(130)에 직렬 연결된다. 상세히는, 하나의 바이패스 회로(130)와 하나의 냉각 소자(161)가 직렬 연결된 회로는, 각 셀 스택(20)에 병렬 연결된다. 또는, 하나의 바이패스 회로(130)와 하나의 냉각 소자(161)가 직렬 연결된 회로는, 하나의 셀 스택(20)과 하나의 단로 스위치(141)가 직렬 연결된 회로에 병렬 연결된다. 이에 따라, 각 냉각 소자(161)는, 각 바이패스 경로의 일부분을 구성하고, 충전 전류에 의해 동작한다.
바람직하게는, 냉각 소자(161)는 펠티어 소자다. 도 14를 참조하면, 각 펠티어 소자(161)는, 흡열 파트(162) 및 방열 파트(163)를 가진다. 펠티어 효과가 발생되는 동안, 흡열 파트(162)로 흡수된 열은 방열 파트(163)를 통해 빠져나간다. 따라서, 각 셀 스택(20)의 냉각을 위해, 각 펠티어 소자의 흡열 파트(162)는 방열 파트(163)보다 각 셀 스택(20)에 인접하게 배치될 수 있다. 예컨대, 각 펠티어 소자의 흡열 파트(162)는 각 셀 스택(20)의 케이스(22)에 적어도 부분적으로 접촉될 수 있다.
일반적으로, 셀 스택(20)의 전압과 온도는 대략 비례한다.
각 바이패스 경로는 과충전된 셀 스택(20)에게만 제공되고, 각 펠티어 소자(161)는 자신이 설치된 바이패스 경로를 통해 충전 전류가 흐르는 경우에만 펠티어 효과를 발생시킨다. 따라서, 각 펠티어 소자(161)의 흡열 파트(162)가 과충전된 셀 스택(20)으로부터 열을 흡수하므로, 과충전된 셀 스택(20)의 발열을 억제할 수 있다.
한편, 냉각 소자(161)가 펠티어 소자로 한정되는 것은 아니며, 냉각팬 등으로 대체될 수도 있다. 냉각 소자(161)가 냉각팬인 경우, 냉각팬은 자신이 설치된 바이패스 경로를 통해 공급되는 충전 전류를 이용하여 회전 동작함으로써, 공기와 같은 냉각 매체를 각 셀 스택(20)에게 제공할 수 있다.
한편, 배터리팩(1)에 충전 전원이 연결되지 않는 동안, 컨트롤러(170)는 제1 모니터링 신호를 기초로 각 바이패스 회로(130)를 선택적으로 제어하여, 과충전된 각 셀 스택(20)의 SOC를 낮춤으로써, 복수의 셀 스택(20) 간의 전압 편차를 완화할 수 있다. 즉, 전류 조정부(120)는 복수의 셀 스택(20)을 위한 전압 밸런싱 동작을 수행할 수도 있다.
도 15는 도 1에 도시된 배터리팩(1)의 다른 구현예를 보여준다. 도 15에 도시된 구현예에 따른 과충전 방지 장치(100)는, 도 8, 도 9 또는 도 14에 도시된 구현예에 복수의 전자기 컨택터(181)가 더 포함된 것일 수 있다. 복수의 전자기 컨택터(181)는, 방전 유도부(180)에 포함되는 것이다.
도 15에 도시된 구현예는, 도 8에 도시된 구현예에 복수의 전자기 컨택터(181)가 추가된 과충전 방지 장치(100)를 예시한다. 바람직하게는, 하나의 전자기 컨택터(181)가 하나의 셀 스택(20)에 대응하도록, 전자기 컨택터(181)의 개수는 셀 스택(20)의 개수와 동일할 수 있다. 즉, 제1 전자기 컨택터(181-1)는 제1 셀 스택(20-1)에 대응하고, 제2 전자기 컨택터(181-2)는 제2 셀 스택(20-2)에 대응하며, 제3 전자기 컨택터(181-3)는 제3 셀 스택(20-3)에 대응한다.
구체적으로, 제1 전자기 컨택터(181-1)는 제1 셀 스택(20-1)이 대전류 경로로부터 전기적으로 분리되어 있는 기간 동안 적어도 일시적으로 제1 셀 스택(20-1)에게 방전 경로를 제공한다. 또한, 제2 전자기 컨택터(181-2)는 제2 셀 스택(20-2)이 대전류 경로로부터 전기적으로 분리되어 있는 기간 동안 적어도 일시적으로 제2 셀 스택(20-2)에게 방전 경로를 제공한다. 또한, 제3 전자기 컨택터(181-3)는 제1 셀 스택(20-3)이 대전류 경로로부터 전기적으로 분리되어 있는 기간 동안 적어도 일시적으로 제1 셀 스택(20-3)에게 방전 경로를 제공한다.
각 전자기 컨택터(181)는, 코일(182)과 접점(183)을 포함한다. 접점(183)은, 소정의 저항값을 가지고 어느 한 셀 스택(20)에 병렬 연결 가능하도록 구성된다.
구체적으로, 각 코일(182)은, 어느 한 셀 스택(20)에 대응하는 바이패스 경로에 설치된다. 즉, 각 코일(182)은, 각 바이패스 회로(130)에 직렬 연결된다. 각 코일(182)은, 자신이 설치된 바이패스 경로를 통해 충전 전류가 흐르는 동안 활성화되어, 자기력을 발생시킨다. 바이패스 경로를 통해 흐르는 충전 전류의 크기가 높을수록, 그 바이패스 경로에 설치된 코일(182)이 발생시키는 자기력도 커진다.
각 접점(183)의 일단은 각 셀 스택(20)의 제1 전극(예, 양극)에 연결되고, 타단은 각 셀 스택(20)의 제2 전극(예, 음극)에 연결될 수 있다. 접점(183)은, 평상시(즉, 코일(182)로부터의 자기력의 레벨이 소정치 미만일 때)에는 오프 상태를 가진다.
각 코일(182)에서 발생하는 자기력이 소정 레벨 이상이 되면, 접점(183)은 코일(182)의 자기력에 의해 온 상태로 전환된다. 온 상태로 전환된 접점(183)에 병렬 연결된 셀 스택(20)에게는 방전 경로가 제공된다.
이해를 돕기 위해, 도 11과 같이 제1 내지 제3 셀 스택(20-1~20-3) 중에서 제1 셀 스택(20-1)만이 제2 과충전 상태가 된 경우를 기준으로 전자기 컨택터(181)의 동작을 설명해보겠다.
대전류 경로로부터 제1 셀 스택(20-1)이 전기적으로 분리되면, 충전 전류의 전부가 제1 바이패스 회로(130-1)와 제1 전자기 컨택터(181)의 코일(182)을 통해 흐르게 된다. 이에 따라, 제1 전자기 컨택터(181)의 접점(183)을 온 상태로 전환시키기에 충분한 자기력이 제1 전자기 컨택터(181)의 코일(182)로부터 발생한다.
반면, 제2 바이패스 회로(130-2)를 통해서는 충전 전류의 일부만이 흐르고, 제3 바이패스 회로(130-3)에는 충전 전류가 흐르지 않으므로, 제 제2 및 제3 전자기 컨택터(181) 각각의 접점(183)을 온 상태로 전환시키기에 충분한 자기력이 2 및 제3 전자기 컨택터(181) 각각의 코일(182)로부터 발생하지 않는다. 이에 따라, 제2 전자기 컨택터(181)의 접점(183)과 제3 전자기 컨택터(181)의 접점(183)은 오프 상태로 유지된다.
온 상태로 전환된 제1 전자기 컨택터(181)의 접점(183)에 의해 제1 셀 스택(20-1)에게 방전 경로가 제공된다. 반면, 제2 및 제3 셀 스택(20-2, 20-3)에게는 방전 경로가 제공되지 않는다.
결과적으로, 충전 전류의 전부가 제1 바이패스 회로(130-1)와 제1 전자기 컨택터(181)의 코일(182)을 통해 흐르는 동안, 제1 셀 스택(20-1)에 저장된 전기 에너지가 제1 전자기 컨택터(181)의 접점(183)에 의해 소모됨으로써, 제1 셀 스택(20-1)의 전압이 서서히 하강하여 어느 정도의 시간이 흐르면 제2 과충전 상태로부터 탈출할 수 있다. 즉, 제1 셀 스택(20-1)의 방전과 제2 및 제3 셀 스택(20-2, 20-3)이 충전이 동시에 이루어질 수 있다.
도 15의 구현예에 따르면, 복수의 셀 스택(20) 중 대전류 경로로부터 전기적으로 분리된 각 셀 스택(20)에게 제공되는 방전 경로와 바이패스 경로는 복수의 전자기 컨택터(181)에 의해 상호 완벽히 절연(isolate)된다. 따라서, 대전류 경로로부터 전기적으로 분리된 각 셀 스택(20)의 방전 과정과 대전류 경로로부터 전기적으로 분리되지 않은 각 셀 스택(20)의 충전 과정이 서로 독립적으로 동시에 이루어질 수 있다.
도 16은 도 1에 도시된 배터리팩(1)의 다른 구현예를 보여준다. 도 16에 도시된 구현예에 따른 과충전 방지 장치(100)는, 도 8, 도 9 또는 도 14에 도시된 구현예에 복수의 옵토 커플러(185)가 더 포함된 것일 수 있다. 복수의 옵토 커플러(185)는, 방전 유도부(180)에 포함되는 것이다.
도 16에 도시된 구현예는, 도 8에 도시된 구현예에 복수의 옵토 커플러(185)가 추가된 과충전 방지 장치(100)를 예시한다. 바람직하게는, 하나의 옵토 커플러(185)가 하나의 셀 스택(20)에 대응하도록, 옵토 커플러(185)의 개수는 셀 스택(20)의 개수와 동일할 수 있다. 즉, 제1 옵토 커플러(185-1)는 제1 셀 스택(20-1)에 대응하고, 제2 옵토 커플러(185-2)는 제2 셀 스택(20-2)에 대응하며, 제3 옵토 커플러(185-3)는 제3 셀 스택(20-3)에 대응한다.
구체적으로, 제1 옵토 커플러(185-1)는 제1 셀 스택(20-1)이 대전류 경로로부터 전기적으로 분리되어 있는 기간 동안 적어도 일시적으로 제1 셀 스택(20-1)에게 방전 경로를 제공한다. 또한, 제2 옵토 커플러(185-2)는 제2 셀 스택(20-2)이 대전류 경로로부터 전기적으로 분리되어 있는 기간 동안 적어도 일시적으로 제2 셀 스택(20-2)에게 방전 경로를 제공한다. 또한, 제3 옵토 커플러(185-3)는 제1 셀 스택(20-3)이 대전류 경로로부터 전기적으로 분리되어 있는 기간 동안 적어도 일시적으로 제1 셀 스택(20-3)에게 방전 경로를 제공한다.
각 옵토 커플러(185)는, 발광 소자(186)와 광검출 소자(187)를 포함한다. 광검출 소자(187)로서는, 포토다이오드나 포토트랜지스터가 사용될 수 있다. 발광 소자(186)로서는, 갈륨, 비소 또는 발광 다이오드가 사용될 수 있다. 도 15의 구현예와 비교할 때, 광검출 소자(187)는 접점(183)을 대체하고, 발광 소자(186)는 코일(182)을 대체한다.
구체적으로, 각 발광 소자(186)는, 어느 한 셀 스택(20)에 대응하는 바이패스 경로에 설치된다. 즉, 각 발광 소자(186)는, 각 바이패스 회로(130)에 직렬 연결된다. 각 발광 소자(186)는, 자신이 설치된 바이패스 경로를 통해 충전 전류가 흐르는 동안 활성화되어, 광신호를 출력한다. 바이패스 경로를 통해 흐르는 충전 전류의 크기가 높을수록, 그 바이패스 경로에 설치된 발광 소자(186)로부터 출력되는 광신호의 레벨도 커진다.
광검출 소자(187)는, 소정의 저항값을 가지고 어느 한 셀 스택(20)에 병렬 연결 가능하도록 구성된다. 각 광검출 소자(187)의 일단은 각 셀 스택(20)의 제1 전극(예, 양극)에 연결되고, 타단은 각 셀 스택(20)의 제2 전극(예, 음극)에 연결될 수 있다. 광검출 소자(187)는, 평상시(즉, 발광 소자(186)로부터의 광신호의 레벨이 소정치 미만일 때)에는 오프 상태를 가진다.
각 발광 소자(186)가 출력하는 광신호의 레벨이 소정치 이상이 되면, 광검출 소자(187)는 발광 소자(186)의 광신호에 응답하여 온 상태로 전환된다. 온 상태로 전환된 광검출 소자(187)에 병렬 연결된 셀 스택(20)에게는 방전 경로가 제공된다.
이해를 돕기 위해, 도 11과 같이 제1 내지 제3 셀 스택(20-1~20-3) 중에서 제1 셀 스택(20-1)만이 제2 과충전 상태가 된 경우를 기준으로 옵토 커플러(185)의 동작을 설명해보겠다.
대전류 경로로부터 제1 셀 스택(20-1)이 전기적으로 분리되면, 충전 전류의 전부가 제1 바이패스 회로(130-1)와 제1 옵토 커플러(185)의 발광 소자(186)를 통해 흐르게 된다. 이에 따라, 제1 옵토 커플러(185)의 광검출 소자(187)를 온 상태로 전환시키기에 충분한 레벨의 광신호가 제1 옵토 커플러(185)의 발광 소자(186)로부터 출력된다.
반면, 제2 바이패스 회로(130-2)를 통해서는 충전 전류의 일부만이 흐르고, 제3 바이패스 회로(130-3)에는 충전 전류가 흐르지 않으므로, 제2 및 제3 옵토 커플러(185) 각각의 광검출 소자(187)를 온 상태로 전환시키기에 충분한 레벨을 가지는 광신호가 제2 및 제3 옵토 커플러(185) 각각의 발광 소자(186)로부터 출력되지 않는다. 이에 따라, 제2 옵토 커플러(185)의 광검출 소자(187)와 제3 옵토 커플러(185)의 광검출 소자(187)는 오프 상태로 유지된다.
온 상태로 전환된 제1 옵토 커플러(185)의 광검출 소자(187)에 의해 제1 셀 스택(20-1)에게 방전 경로가 제공된다. 반면, 제2 및 제3 셀 스택(20-2, 20-3)에게는 방전 경로가 제공되지 않는다.
결과적으로, 충전 전류의 전부가 제1 바이패스 회로(130-1)와 제1 옵토 커플러(185)의 발광 소자(186)를 통해 흐르는 동안, 제1 셀 스택(20-1)에 저장된 전기 에너지가 제1 옵토 커플러(185)의 광검출 소자(187)에 의해 소모됨으로써, 제1 셀 스택(20-1)의 전압이 서서히 하강하여 어느 정도의 시간이 흐르면 제2 과충전 상태로부터 탈출할 수 있다. 즉, 제1 셀 스택(20-1)의 방전과 제2 및 제3 셀 스택(20-2, 20-3)이 충전이 동시에 이루어질 수 있다.
도 16의 구현예에 따르면, 복수의 셀 스택(20) 중 대전류 경로로부터 전기적으로 분리된 각 셀 스택(20)에게 제공되는 방전 경로와 바이패스 경로는 복수의 옵토 커플러(185)에 의해 상호 완벽히 절연(isolate)된다. 따라서, 도 15의 구현예와 마찬가지로, 대전류 경로로부터 전기적으로 분리된 각 셀 스택(20)의 방전 과정과 대전류 경로로부터 전기적으로 분리되지 않은 각 셀 스택(20)의 충전 과정이 서로 독립적으로 동시에 이루어질 수 있다.
도 17은 본 발명의 다른 실시예에 따른 과충전 방지 방법을 보여주는 순서도이다.
도 17을 참조하면, 단계 S171에서, 컨트롤러(170)는, 각 셀 스택(20)의 전압을 나타내는 제1 모니터링 신호를 수신한다. 컨트롤러(170)에 의해 수신되는 제1 모니터링 신호는, 전압 측정부(120)로부터 출력된 것이다.
단계 S172에서, 컨트롤러(170)는, 제1 모니터링 신호를 기초로, 배터리팩(1) 내에 과충전된 셀 스택이 존재하는지 판정한다. 단계 152의 결과가 "YES"인 경우, 단계 S173이 진행된다. 반면, 단계 S172의 결과가 "NO"인 경우, 단계 S171로 회귀할 수 있다.
단계 S173에서, 컨트롤러(170)는, 과충전된 셀 스택에 병렬 연결된 복수의 바이패스 스위치 중 적어도 하나를 온 상태로 제어하여, 과충전된 셀 스택에게 바이패스 경로를 제공한다. 이때, 컨트롤러(170)는, 과충전된 셀 스택에 병렬 연결된 복수의 바이패스 스위치 중에서, 과충전된 셀 스택의 내부 저항값에 대응하는 개수만을 온 상태로 제어하고 나머지는 오프 상태로 제어할 수 있다.
이상에서 설명한 본 발명의 실시예는 장치 및 방법을 통해서만 구현이 되는 것은 아니며, 본 발명의 실시예의 구성에 대응하는 기능을 실현하는 프로그램 또는 그 프로그램이 기록된 기록 매체를 통해 구현될 수도 있으며, 이러한 구현은 앞서 설명한 실시예의 기재로부터 본 발명이 속하는 기술분야의 전문가라면 쉽게 구현할 수 있는 것이다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
또한, 이상에서 설명한 본 발명은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하므로 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니라, 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수 있다.

Claims (11)

  1. 대전류 경로 내에서 서로 직렬 연결된 복수의 셀 스택의 과충전을 방지하기 위한 장치에 있어서,
    상기 각 셀 스택의 전압을 측정하고, 측정된 전압을 나타내는 제1 모니터링 신호를 생성하는 전압 측정부;
    상기 각 셀 스택에게 바이패스 경로를 선택적으로 제공하도록 구성된 전류 조정부;
    상기 전압 측정부 및 상기 전류 조정부와 통신 가능하게 연결되는 컨트롤러;를 포함하되,
    상기 컨트롤러는,
    상기 전압 측정부로부터의 제1 모니터링 신호를 기초로, 상기 전류 조정부를 제어하는, 과충전 방지 장치.
  2. 제1항에 있어서,
    상기 컨트롤러는,
    상기 전압 측정부로부터의 제1 모니터링 신호를 기초로, 상기 복수의 셀 스택 중 과충전된 셀 스택이 있는지 판정하고,
    과충전된 셀 스택이 있는 경우, 과충전된 셀 스택에게 바이패스 경로를 제공하도록 상기 전류 조정부를 제어하는, 과충전 방지 장치.
  3. 제1항에 있어서,
    상기 전류 조정부는,
    복수의 바이패스 회로;를 포함하되,
    상기 각 바이패스 회로는,
    상기 각 셀 스택에 병렬 연결된 복수의 바이패스 스위치;
    를 포함하는, 과충전 방지 장치.
  4. 제3항에 있어서,
    상기 컨트롤러는,
    상기 전압 측정부로부터의 제1 모니터링 신호를 기초로, 상기 복수의 셀 스택 중 과충전된 셀 스택이 있는지 판정하고,
    과충전된 셀 스택이 있는 경우, 상기 과충전된 셀 스택에 병렬 연결된 복수의 바이패스 스위치 중 적어도 하나를 온 상태로 제어하는, 과충전 방지 장치.
  5. 제4항에 있어서,
    상기 각 셀 스택에 공급되는 충전 전류를 측정하고, 측정된 충전 전류를 나타내는 제2 모니터링 신호를 생성하는 전류 측정부;
    를 더 포함하는, 과충전 방지 장치.
  6. 제5항에 있어서,
    상기 컨트롤러는,
    상기 전압 측정부로부터의 제1 모니터링 신호 및 상기 전류 측정부로부터의 제2 모니터링 신호를 기초로, 상기 복수의 셀 스택 중 적어도 하나의 내부 저항값을 산출하는, 과충전 방지 장치.
  7. 제6항에 있어서,
    상기 컨트롤러는,
    상기 과충전된 셀 스택에 병렬 연결된 복수의 바이패스 스위치 중, 상기 과충전된 셀 스택의 내부 저항값에 대응하는 개수의 바이패스 스위치를 온 상태로 제어하고, 나머지 바이패스 스위치를 오프 상태로 제어하는, 과충전 방지 장치.
  8. 제1항에 있어서,
    상기 각 셀 스택을 냉각하도록 구성된 냉각부;를 더 포함하되,
    상기 냉각부는,
    각각 상기 각 셀 스택에게 제공된 바이패스 경로를 통해 공급되는 충전 전류에 의해 동작하여, 상기 각 셀 스택을 냉각하는 복수의 냉각 소자;
    를 포함하는, 과충전 방지 장치.
  9. 제8항에 있어서,
    상기 각 냉각 소자는,
    흡열 파트 및 방열 파트를 가지고, 상기 흡열 파트가 상기 방열 파트보다 상기 각 셀 스택에 인접하도록 배치된 펠티어 소자인, 과충전 방지 장치.
  10. 제1항에 있어서,
    상기 전압 측정부는,
    각각 상기 각 셀 스택에 병렬 연결된 복수의 전압 센서;
    를 포함하는, 과충전 방지 장치.
  11. 제1항 내지 제10항 중 어느 한 항에 따른 과충전 방지 장치; 및
    서로 직렬 연결되는 복수의 셀 스택;을 포함하고,
    상기 과충전 방지 장치는, 상기 각 셀 스택에 대한 과충전 방지 동작을 수행하는, 배터리 팩.
PCT/KR2018/001819 2017-04-17 2018-02-12 과충전 방지 장치 및 방법 WO2018194249A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019529262A JP7001229B2 (ja) 2017-04-17 2018-02-12 過充電防止装置及び方法
EP18787678.4A EP3525314B1 (en) 2017-04-17 2018-02-12 Apparatus and method for preventing overcharge
CN201880004064.5A CN110062994B (zh) 2017-04-17 2018-02-12 用于防止过充电的装置和方法
US16/340,265 US11165262B2 (en) 2017-04-17 2018-02-12 Apparatus and method for preventing overcharge

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170049372A KR102192188B1 (ko) 2017-04-17 2017-04-17 과충전 방지 장치 및 방법
KR10-2017-0049372 2017-04-17

Publications (1)

Publication Number Publication Date
WO2018194249A1 true WO2018194249A1 (ko) 2018-10-25

Family

ID=63856638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/001819 WO2018194249A1 (ko) 2017-04-17 2018-02-12 과충전 방지 장치 및 방법

Country Status (6)

Country Link
US (1) US11165262B2 (ko)
EP (1) EP3525314B1 (ko)
JP (1) JP7001229B2 (ko)
KR (1) KR102192188B1 (ko)
CN (1) CN110062994B (ko)
WO (1) WO2018194249A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3809513A4 (en) * 2018-11-29 2021-09-01 Lg Chem, Ltd. ENHANCED HEAT DISSIPATING BATTERY MODULE, BATTERY PACK INCLUDING LEDIT BATTERY MODULE AND VEHICLE INCLUDING LEDIT BATTERY PACK
EP3836294A4 (en) * 2018-11-29 2021-11-03 LG Chem, Ltd. BATTERY MODULE WITH IMPROVED THERMAL DISSIPATION, BATTERY PACK INCLUDING BATTERY MODULE, AND VEHICLE INCLUDING BATTERY PACK

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102236384B1 (ko) 2017-10-27 2021-04-05 주식회사 엘지화학 배터리 밸런싱을 위한 장치 및 그것을 포함하는 배터리팩
KR102256094B1 (ko) * 2017-11-28 2021-05-25 주식회사 엘지에너지솔루션 배터리 팩
US11025072B2 (en) * 2018-10-17 2021-06-01 Ess Tech, Inc. System and method for operating an electrical energy storage system
JP7096193B2 (ja) * 2019-04-04 2022-07-05 矢崎総業株式会社 電池制御ユニット及び電池システム
WO2020215154A1 (en) 2019-04-23 2020-10-29 Dpm Technologies Inc. Fault tolerant rotating electric machine
DK201970832A1 (en) * 2019-12-23 2021-07-26 Kk Wind Solutions As Monitoring system for an energy storage
KR20210098738A (ko) * 2020-02-03 2021-08-11 주식회사 엘지화학 배터리 랙의 개별 방전 시스템 및 방법
DE102021200924A1 (de) 2021-02-02 2022-08-04 Inform Gmbh Entwicklung Und Konstruktion Schaltungsanordnung und elektrischer Energiespeicher
EP4315556A1 (en) * 2021-05-04 2024-02-07 Exro Technologies Inc. Battery control systems and methods
EP4324089A4 (en) 2021-05-13 2024-10-23 Exro Tech Inc METHOD AND APPARATUS FOR DRIVING COILS OF A POLYPHASE ELECTRIC MACHINE
CA3223051A1 (en) 2021-07-08 2023-01-12 Eric HUSTEDT Dynamically reconfigurable power converter utilizing windings of electrical machine
KR102369224B1 (ko) * 2021-07-16 2022-03-18 주식회사 모큐라텍 배터리 관리 시스템 및 그 동작방법
DE102022110861B3 (de) 2022-05-03 2023-08-03 SWJ Germany GmbH Schaltungsanordnung, elektrischer Energiespeicher, Verwendung einer Schaltungsanordnung und Verfahren zum Betreiben einer Schaltungsanordnung
KR20230167855A (ko) * 2022-06-03 2023-12-12 삼성전자주식회사 전자 장치 및 배터리 제어 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7352155B2 (en) * 2006-06-12 2008-04-01 O2Micro International Ltd. Apparatus and method for detecting battery pack voltage
JP2011101517A (ja) * 2009-11-06 2011-05-19 Sanyo Electric Co Ltd パック電池
KR20110133433A (ko) * 2010-06-04 2011-12-12 세이코 인스트루 가부시키가이샤 배터리 상태 감시 회로 및 배터리 장치
KR20140017043A (ko) 2012-07-24 2014-02-11 삼성에스디아이 주식회사 전류차단장치와 이를 구비하는 배터리 팩
KR101584322B1 (ko) * 2014-07-23 2016-01-13 티에스 주식회사 공냉식 냉각 기반의 밀폐형 배터리팩을 구비한 차량 구동 시스템
KR101707150B1 (ko) * 2015-11-04 2017-02-16 국민대학교산학협력단 배터리 팩의 셀 밸런싱 장치 및 셀 밸런싱 방법
KR20170049372A (ko) 2015-10-27 2017-05-10 주식회사 테그웨이 유연 열전소자 및 이의 제조방법

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6316917B1 (en) * 1999-03-09 2001-11-13 Asahi Glass Company, Limited Apparatus having plural electric double layer capacitors and method for adjusting voltages of the capacitors
JP3669234B2 (ja) * 1999-11-15 2005-07-06 新神戸電機株式会社 組電池の充電制御装置
JP2001339803A (ja) 2000-05-24 2001-12-07 Fuji Heavy Ind Ltd ハイブリッド電気自動車の充電装置
CN1165103C (zh) * 2002-01-07 2004-09-01 北京航空航天大学 一种串联电池组自动均衡充电装置
CN1332490C (zh) * 2002-12-06 2007-08-15 长沙交通学院 半导体制冷式均衡充电方法及装置
JP3872057B2 (ja) 2003-12-24 2007-01-24 三菱電機株式会社 バッテリ装置の過電圧保護回路
KR20060078967A (ko) 2004-12-31 2006-07-05 주식회사 엠피에스 직렬 연결된 2차 조합전지의 밸런스 충전 제어 방법
DE102006016138B4 (de) 2006-04-06 2014-11-20 Robert Bosch Gmbh Hybridantrieb mit Notstartmöglichkeit
JP2007305451A (ja) 2006-05-12 2007-11-22 Nec Tokin Corp 過充電保護機能付き二次電池パック
JP2008010295A (ja) * 2006-06-29 2008-01-17 Hokuriku Electric Power Co Inc:The 二次電池の保温方法及び保温装置
JP2008123868A (ja) * 2006-11-13 2008-05-29 Gs Yuasa Corporation:Kk 二次電池のセル電圧バランス装置
US9270133B2 (en) * 2007-04-02 2016-02-23 Linear Technology Corporation Monitoring cells in energy storage system
JP2008288109A (ja) 2007-05-18 2008-11-27 Nissan Motor Co Ltd 電池制御システムおよび電池制御システムの制御方法
JP5279261B2 (ja) 2007-12-27 2013-09-04 三洋電機株式会社 充電状態均等化装置及びこれを具えた組電池システム
JP5439000B2 (ja) * 2009-03-19 2014-03-12 株式会社東芝 組電池システム及び組電池の保護装置
EP2463985B1 (en) * 2009-08-05 2016-04-27 GS Yuasa International Ltd. Battery system
KR101073196B1 (ko) 2009-12-09 2011-10-12 주식회사 엘지화학 배터리 팩 충전 장치 및 방법
KR101578867B1 (ko) * 2010-09-02 2015-12-18 주식회사 그린파워셋 균형 충전 회로를 포함하는 배터리 충전회로
CN103314477B (zh) 2010-12-28 2016-04-13 株式会社Lg化学 用于控制电池组系统的设备和方法
CN202111481U (zh) * 2011-04-21 2012-01-11 无锡市凌翔电气驱动技术有限公司 一种动力锂离子电池的主动均衡系统
JP2012244812A (ja) * 2011-05-20 2012-12-10 Toyota Industries Corp 2次電池の端子間電圧均等化装置及び均等化方法
KR20130006077A (ko) * 2011-07-08 2013-01-16 삼성전기주식회사 전기에너지 저장장치, 그의 전압균등화 모듈 및 전압균등화 방법
KR101317270B1 (ko) 2012-01-02 2013-10-14 ㈜태양기술 충전지 강제 방전장치
JP2013146159A (ja) * 2012-01-16 2013-07-25 Ntt Facilities Inc 組電池の充電制御システムおよび充電制御方法
JP2015056928A (ja) * 2013-09-10 2015-03-23 株式会社東芝 過充電保護装置
CN103715735B (zh) * 2013-11-25 2016-06-29 贺焕林 蓄电池组充放电循环投切冗余控制方法及其装置
JP2015119605A (ja) * 2013-12-20 2015-06-25 オートモーティブエナジーサプライ株式会社 電池間電圧バランス補正回路
KR102372817B1 (ko) 2014-12-30 2022-03-14 에이치그린파워 주식회사 배터리 모듈간 전위차를 이용한 과충전 방지 장치 및 방법
EP3118965B1 (en) 2015-07-15 2019-10-30 Hyundai Motor Company Apparatus for controlling supply of power of battery
KR101724877B1 (ko) 2015-07-21 2017-04-07 현대자동차주식회사 차량의 릴레이 제어 장치 및 방법
KR102258826B1 (ko) * 2017-04-25 2021-06-07 주식회사 엘지에너지솔루션 과충전 방지 장치 및 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7352155B2 (en) * 2006-06-12 2008-04-01 O2Micro International Ltd. Apparatus and method for detecting battery pack voltage
JP2011101517A (ja) * 2009-11-06 2011-05-19 Sanyo Electric Co Ltd パック電池
KR20110133433A (ko) * 2010-06-04 2011-12-12 세이코 인스트루 가부시키가이샤 배터리 상태 감시 회로 및 배터리 장치
KR20140017043A (ko) 2012-07-24 2014-02-11 삼성에스디아이 주식회사 전류차단장치와 이를 구비하는 배터리 팩
KR101584322B1 (ko) * 2014-07-23 2016-01-13 티에스 주식회사 공냉식 냉각 기반의 밀폐형 배터리팩을 구비한 차량 구동 시스템
KR20170049372A (ko) 2015-10-27 2017-05-10 주식회사 테그웨이 유연 열전소자 및 이의 제조방법
KR101707150B1 (ko) * 2015-11-04 2017-02-16 국민대학교산학협력단 배터리 팩의 셀 밸런싱 장치 및 셀 밸런싱 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3525314A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3809513A4 (en) * 2018-11-29 2021-09-01 Lg Chem, Ltd. ENHANCED HEAT DISSIPATING BATTERY MODULE, BATTERY PACK INCLUDING LEDIT BATTERY MODULE AND VEHICLE INCLUDING LEDIT BATTERY PACK
EP3836294A4 (en) * 2018-11-29 2021-11-03 LG Chem, Ltd. BATTERY MODULE WITH IMPROVED THERMAL DISSIPATION, BATTERY PACK INCLUDING BATTERY MODULE, AND VEHICLE INCLUDING BATTERY PACK
US11342613B2 (en) * 2018-11-29 2022-05-24 Lg Energy Solution, Ltd. Battery module with improved heat dissipation, battery pack including the battery module and vehicle including the battery pack

Also Published As

Publication number Publication date
US20200044459A1 (en) 2020-02-06
KR20180116707A (ko) 2018-10-25
JP2020502969A (ja) 2020-01-23
EP3525314A4 (en) 2019-10-30
JP7001229B2 (ja) 2022-01-19
KR102192188B1 (ko) 2020-12-16
US11165262B2 (en) 2021-11-02
EP3525314B1 (en) 2022-04-06
CN110062994B (zh) 2023-01-06
CN110062994A (zh) 2019-07-26
EP3525314A1 (en) 2019-08-14

Similar Documents

Publication Publication Date Title
WO2018194249A1 (ko) 과충전 방지 장치 및 방법
WO2019088440A1 (ko) 배터리의 내부 저항을 최적화하기 위한 배터리 관리 시스템 및 방법
WO2017082705A1 (ko) 이차 전지의 출력 파라미터를 조정하는 시스템 및 그 방법
WO2018128257A1 (ko) 전압 검출 집적회로 및 이를 포함하는 배터리 관리 시스템
WO2019027190A1 (ko) 배터리 관리 장치 및 이를 포함하는 배터리 팩
WO2019093769A1 (ko) Bms 웨이크업 장치, 이를 포함하는 bms 및 배터리팩
WO2019017596A1 (ko) 무선 배터리 관리 시스템 및 이를 포함하는 배터리팩
WO2017222186A1 (ko) 전기 자동차용 구동 회로 및 그 제어 방법
WO2020017817A1 (ko) 스위치 진단 장치 및 방법
WO2018070684A2 (ko) 진단 장치 및 이를 포함하는 전원 시스템
WO2014030914A1 (ko) 전기 자동차용 파워 릴레이 어셈블리 및 파워 릴레이 어셈블리가 구비된 전기자동차용 에너지 시스템의 작동 방법
WO2021006571A1 (ko) 배터리 팩의 결함 검출 장치 및 방법
WO2018186573A1 (ko) 차량 구동용 전력 공급 시스템
WO2015012587A1 (ko) 배터리 과충전 방지 장치
WO2020141772A1 (ko) 배터리 밸런싱 장치 및 그것을 포함하는 배터리 팩
WO2021085893A1 (ko) 누전 검출 장치, 누전 검출 방법 및 전기 차량
WO2020153637A1 (ko) 배터리 관리 장치, 배터리 관리 방법 및 배터리 팩
WO2019151781A1 (ko) 릴레이 구동 회로 진단 장치
WO2018117386A1 (ko) 배터리 팩
WO2021080161A1 (ko) 배터리 관리 시스템, 배터리 팩, 전기 차량 및 배터리 관리 방법
WO2022211269A1 (ko) 배터리 보호 장치 및 그 배터리 보호 장치의 제어 방법
WO2021157920A1 (ko) 배터리 랙의 개별 방전 시스템 및 방법
WO2019059540A1 (ko) 배터리 보호 회로
WO2024058555A1 (ko) 릴레이 진단 장치 및 이를 포함하는 배터리 팩
WO2020111899A1 (ko) 스위치 제어 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18787678

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018787678

Country of ref document: EP

Effective date: 20190510

ENP Entry into the national phase

Ref document number: 2019529262

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE