WO2018128257A1 - 전압 검출 집적회로 및 이를 포함하는 배터리 관리 시스템 - Google Patents

전압 검출 집적회로 및 이를 포함하는 배터리 관리 시스템 Download PDF

Info

Publication number
WO2018128257A1
WO2018128257A1 PCT/KR2017/011933 KR2017011933W WO2018128257A1 WO 2018128257 A1 WO2018128257 A1 WO 2018128257A1 KR 2017011933 W KR2017011933 W KR 2017011933W WO 2018128257 A1 WO2018128257 A1 WO 2018128257A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
temperature
voltage detection
controller
cell balancing
Prior art date
Application number
PCT/KR2017/011933
Other languages
English (en)
French (fr)
Inventor
김화수
히다카타카오
손철기
정지원
조원경
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to US16/467,483 priority Critical patent/US11327122B2/en
Priority to CN201780082162.6A priority patent/CN110140057B/zh
Priority to EP17889917.5A priority patent/EP3567390B1/en
Publication of WO2018128257A1 publication Critical patent/WO2018128257A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/32Compensating for temperature change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/374Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with means for correcting the measurement for temperature or ageing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • G01R31/388Determining ampere-hour charge capacity or SoC involving voltage measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • Green vehicles use high voltage batteries to store electrical energy from a variety of energy sources.
  • the high voltage battery includes a plurality of cells connected in series or in parallel to provide high voltage electrical energy.
  • Vehicles with high voltage batteries are equipped with a battery management system (BMS) for managing high voltage batteries.
  • BMS battery management system
  • Cell balancing which monitors the voltage of each cell to compensate for voltage variations between cells, is one of the main functions of a battery management system.
  • the battery management system calculates a state of charge (SOC) based on voltage, current, and temperature information of each cell constituting the high voltage battery, and compensates the voltage deviation when the SOC difference between the cells is a predetermined level or more. Perform balancing.
  • SOC state of charge
  • SOC is used to predict the usable capacity and lifetime of a battery. Therefore, in order to improve usability and stability of the battery, it is necessary to accurately calculate the SOC.
  • the calculation accuracy of the SOC is closely related to the measurement accuracy of the cell voltage and temperature.
  • Cell voltage measurement in a battery management system is performed by an integrated circuit (IC) with a voltage detection circuit, for example, an analog front end (AFE) IC.
  • IC integrated circuit
  • AFE analog front end
  • the technical problem to be solved through the embodiment is to provide a voltage detection integrated circuit and a battery management system including the same for improving the cell voltage measurement accuracy in a low temperature environment.
  • a voltage detection integrated circuit for solving the above problems is a voltage detection circuit electrically connected to a plurality of cells and detecting a cell voltage of a corresponding cell among the plurality of cells, among the plurality of cells.
  • a plurality of cell balancing switches for conducting or interrupting balancing current flow of corresponding cells, a temperature sensor for detecting an internal temperature of a voltage detecting integrated circuit, and simultaneously turning on in accordance with the internal temperature when the internal temperature is less than a first threshold
  • a controller for differently selecting the number of cell balancing switches to be turned on and turning on the selected switch.
  • the controller groups the plurality of cell balancing switches into a plurality of groups, and if the internal temperature is less than a first threshold, alternately turn on the plurality of groups. Can be.
  • the controller may control the turn on times of the plurality of groups to be the same.
  • the controller simultaneously turns on the plurality of cell balancing switches when the internal temperature is less than the first threshold, and then turns off the cell balancing as the internal temperature increases.
  • the number of switches can be increased gradually.
  • the voltage detection circuit may include a multiplexer for selecting any one of the plurality of cells, a differential amplifier for amplifying and outputting voltages of both ends of the cell selected by the multiplexer, and a reference voltage.
  • a reference voltage supply circuit for supplying, and an analog-digital converter for outputting a digital value corresponding to the cell voltage of the cell selected by the multiplexer based on the reference voltage, wherein the temperature sensor is in contact with the reference voltage supply circuit. Or may be arranged adjacently.
  • the voltage detection integrated circuit further includes a heating circuit, wherein the controller is configured to receive an ambient temperature of the voltage detection integrated circuit from a temperature sensor external to the voltage detection integrated circuit, and wherein the internal temperature reaches above the first threshold.
  • the heating circuit may be controlled to generate heat.
  • the heating circuit may include a heating switch connected between the positive terminal of the first cell of the plurality of cells and the negative terminal of the second cell of the plurality of cells.
  • the controller may turn off the heating switch when the ambient temperature is greater than or equal to the second threshold.
  • the controller may calculate a heat generation amount of the heat generation circuit based on the internal temperature and the ambient temperature, and PWM control the heat generation switch at a duty ratio corresponding to the heat generation amount.
  • the controller may calculate a heat generation amount of the heat generating circuit based on the internal temperature and the ambient temperature, and control a turn on / off cycle of the heat generation switch according to the heat generation amount.
  • the voltage detecting integrated circuit may further include a heat generating resistor connected between the heat generating switch and the positive terminal of the first cell or between the heat switch and the negative terminal of the second cell.
  • the battery management system is electrically connected to a plurality of cells, the voltage detection circuit for detecting the cell voltage of the corresponding cell of the plurality of cells, conduction or blocking the flow of balancing current of the corresponding cell of the plurality of cells
  • An integrated circuit including a plurality of cell balancing switches and a first temperature sensor, and a cell turned on simultaneously according to the internal temperature when an internal temperature of the integrated circuit obtained through the first temperature sensor is less than a first threshold.
  • a battery controller for differently selecting the number of balancing switches and turning on the selected switches.
  • the battery controller may group the plurality of cell balancing switches into a plurality of groups, and turn on the plurality of groups alternately when the first temperature is less than the first threshold.
  • the battery controller may control the turn on time of the plurality of groups to be the same.
  • the battery controller when the internal temperature is less than the first threshold, the battery controller simultaneously turns on the plurality of cell balancing switches, and then gradually increases the number of cell balancing switches that are turned off as the internal temperature increases. Can be increased.
  • the battery management system may further include a second temperature sensor that detects an ambient temperature of the integrated circuit, and the integrated circuit may further include a heating circuit that generates heat according to the ambient temperature.
  • the heating circuit when the internal temperature reaches or exceeds the first threshold and the plurality of cell balancing switches are turned off, when the ambient temperature is less than the second threshold, the heating circuit generates heat. Can be controlled.
  • the heating circuit may include a heating switch connected between the positive terminal of the first cell of the plurality of cells and the negative terminal of the second cell of the plurality of cells.
  • the battery controller may turn off the heat switch when the ambient temperature is greater than or equal to the second threshold.
  • the battery controller may calculate a heat generation amount of the heating circuit based on the internal temperature and the ambient temperature, and control the turn on / off of the heat generation switch according to the heat generation amount.
  • the battery management system according to the embodiment has the effect of improving the cell voltage measurement accuracy in a low temperature environment.
  • FIG. 1 schematically illustrates a battery management system according to an exemplary embodiment.
  • FIG. 2 schematically illustrates a configuration of a voltage detection IC according to an embodiment.
  • FIG. 3 is a diagram for describing heat generation of a cell balancing switch in a battery management system according to an exemplary embodiment.
  • FIG. 4 schematically illustrates a cell balancing switch control method of a battery management system according to an exemplary embodiment.
  • FIG. 5 is a schematic view of a battery management system according to another exemplary embodiment.
  • FIG. 6 schematically illustrates a method for controlling a cell balancing switch of a battery management system according to another exemplary embodiment.
  • FIG. 7 is a schematic view of a battery management system according to another exemplary embodiment.
  • FIG. 8 schematically illustrates a cell balancing switch control method of a battery management system according to another exemplary embodiment.
  • FIG. 9 is a schematic view of a battery management system according to another exemplary embodiment.
  • Electrically connecting two components includes not only connecting the two components directly, but also connecting the two components via other components.
  • Other components may include switches, resistors, capacitors, and the like.
  • the expression “connecting”, when there is no expression “directly connecting”, means to connect electrically.
  • the voltage detection IC may include an analog front end (AFE) IC, a cell voltage monitoring (CVM) IC, and the like including a cell voltage detection function of a battery.
  • AFE analog front end
  • CVM cell voltage monitoring
  • FIG. 1 schematically illustrates a battery management system according to an exemplary embodiment.
  • 2 schematically illustrates the configuration of the voltage detection IC of FIG. 1
  • FIG. 3 is a diagram for describing heat generation of the cell balancing switch.
  • a battery management system may include a voltage detection IC 100 and a battery controller 200.
  • the voltage detection IC 100 may include a plurality of cell balancing switches SW, a voltage detection circuit 110, an interface 130, and a controller 140.
  • the voltage detection IC 100 may be electrically connected to the cell group 20, and detect the cell voltage of each cell constituting the cell group 20 through the voltage detection circuit 110.
  • FIG. 1 illustrates an example in which the cell group 20 connected to the voltage detection IC 100 includes six cells connected in series with each other, the present invention is not limited thereto. The number of unit cells connected to the detection IC may be changed to be more or less than that.
  • the voltage detection circuit 110 may include a multiplexer (MUX) 111, a differential amplifier 112, and an analog to digital converter (ADC) 113.
  • the voltage detection circuit 110 may further include a reference voltage supply circuit 114 for supplying a reference voltage Vref to the ADC 113.
  • the input channel of the multiplexer 111 is electrically connected to each cell constituting the cell group 20 through the input resistor Rc.
  • the multiplexer 111 selects one of the input channels and connects it with the output channel. That is, the multiplexer 111 selects any one of a plurality of cells connected to the input channel and connects both ends of the selected cell to the positive output terminal and the negative output terminal of the output channel, respectively.
  • the input resistor Rc connected to the input channel of the multiplexer 111 forms an RC filter together with the input capacitor Cc to perform a function of filtering noise included in the cell voltage.
  • the voltage across the cell selected by the multiplexer 111 is amplified by the differential amplifier 112 and output.
  • the reference voltage supply circuit 114 supplies the reference voltage Vref to the ADC 113.
  • the ADC 113 converts the output of the differential amplifier 112, which is an analog value, to a digital value based on the reference voltage Vref and outputs the digital value to the controller 140. That is, the ADC 113 converts and outputs the voltages of the both ends of the cell selected by the multiplexer 111 into corresponding digital values.
  • the cell voltage detection result output to the controller 140 by the ADC 113 is transmitted to the battery controller 200 through the interface 130.
  • the interface 130 may transmit / receive data with the battery controller 200 in a serial peripheral interface (SPI) method such as controller area network (CAN) communication.
  • SPI serial peripheral interface
  • CAN controller area network
  • the battery controller 200 may control cell balancing, charging / discharging, and the like of the cell group 20.
  • the voltage detection IC 100 may control cell balancing of cells constituting the cell group 20.
  • Each cell balancing switch SW is connected between both ends of the corresponding cell through a corresponding balancing resistor Rb. Each cell balancing switch SW conducts or blocks the cell balancing current flow of the corresponding cell under the control of the controller 140. When each cell balancing switch SW is turned on, a balancing current flows through the corresponding balancing resistor Rb to discharge the corresponding cell. On the other hand, when each cell balancing switch SW is turned off, the balancing current flow of the corresponding cell is blocked.
  • the cell balancing switch SW may be formed of a field effect transistor (FET).
  • FET field effect transistor
  • the controller 140 receives the cell balancing control information from the battery controller 200 through the interface 130, and controls the turn on / off of each cell balancing switch SW based on this.
  • the voltage detection accuracy of the voltage detection circuit 110 tends to be remarkably inferior to room temperature.
  • the reference voltage supply circuit 114 that supplies the reference voltage Vref to the ADC 113 is affected by temperature, so that the level of the reference voltage Vref output by the reference voltage supply circuit 114 is low and room temperature. Because they are different from each other.
  • the conversion of the ADC 113 is made based on the reference voltage Vref. Therefore, the level change of the reference voltage Vref in the low temperature environment may operate as a factor of increasing the error of the output value of the ADC 113.
  • the voltage detection IC 100 may further include a temperature sensor 120.
  • the temperature sensor 120 may detect a temperature inside the voltage detection IC 100.
  • the temperature sensor 120 is in contact with the reference voltage supply circuit 114 to detect the ambient temperature of the reference voltage supply circuit 114 that is sensitive to temperature and causes a cell voltage detection error in a low temperature region. May be arranged adjacently.
  • the controller 140 may turn on at least one cell balancing switch SW to increase the internal temperature of the voltage detection IC 100. That is, if the temperature detected by the temperature sensor 120 is less than the threshold, the controller 140 may turn on at least one cell balancing switch SW to understand the temperature rise.
  • the threshold is a threshold value for determining the low temperature region, and may be set differently according to the environment in which the battery management system is mounted.
  • the balancing current Ib flows to the internal resistance Rsw of the cell balancing switch SW to generate the cell balancing switch SW.
  • the heat generated by the cell balancing switch SW may operate as a heat source for increasing the temperature inside the voltage detection IC 100.
  • the internal resistance Rsw of the cell balancing switch SW depends on the manufacturing process and the design of the voltage detection IC 100, and the characteristics of the FET constituting the cell balancing switch SW (for example, the temperature characteristic, The voltage across the drain-source, etc.).
  • the internal resistance Rsw of the cell balancing switch SW may appear as small as 0.2 ohm to as large as several tens of ohm.
  • the cell balancing current Ib is 300 mA and the internal resistance Rsw of each cell balancing switch SW is designed to be 5 ohms
  • the inside of one cell balancing switch SW is The amount of energy P generated by heat generation by the resistor Rsw is 0.45W. Therefore, when all six cell balancing switches SW are turned on, the amount of energy P generated by the internal resistances Rsw of the six cell balancing switches SW is 2.7W.
  • the controller 140 may divide the cell balancing switches SW included in the voltage detection IC 100 into a plurality of groups, and turn on each cell balancing switch group alternately.
  • the voltage detection IC 100 may group three or four cell balancing switches SW and turn on each cell balancing switch group alternately.
  • the voltage detection IC 100 groups odd-numbered cell balancing switches SW and even-numbered cell balancing switches SW into different groups, and turns on the two cell balancing switch groups alternately. You can also
  • the temperature rising rate for turning on the cell balancing switch SW is too fast, the temperature rising may be continued for a predetermined time even when the desired temperature range is reached to turn off all the cell balancing switches SW. This may cause an unwanted additional temperature rise, resulting in damage to the voltage detection IC 100.
  • the controller 140 simultaneously turns on the cell balancing switch according to the temperature detected by the temperature sensor 120 so that the temperature of the voltage detection IC 100 reaches the normal temperature region while minimizing unnecessary additional temperature rise.
  • the number of (SW) may be controlled differently. For example, when the voltage detection IC 100 is connected to 12 cells, the number of cell balancing switches SW turned on at the same time to increase the temperature is 12 at -40 ° C or lower and -40 ° C. 10 in the -30 ° C range, 8 in the -30 ° C to -20 ° C range, 6 in the -20 ° C to -10 ° C range, and 4 in the -10 ° C to 0 ° C range. Can be controlled.
  • the controller 140 may turn on all the cell balancing switches SW at the same time, and then control the number of cell balancing switches SW that are turned off as the temperature rises to gradually increase. have.
  • the turn-on control of the cell balancing switch SW to increase the temperature may exacerbate the balancing deviation between cells or the cell calculated in advance by the battery controller 200. There is a need to minimize the impact on liver deviation information. However, if turn-on is allowed only for cells that require cell balancing, the temperature rise may take too long to degrade the effect of temperature rise.
  • the controller 140 controls the time that the corresponding cell balancing switch SW is turned on for the temperature rise to be the same for all cells, so that the turn-on of the cell balancing switch SW for the temperature rise is cell balancing. Minimize the impact on
  • the controller 140 turns off all of the turned on cell balancing switches SW to stop the temperature increase using the cell balancing switches SW.
  • FIG. 4 schematically illustrates a cell balancing switch control method of the battery management system of FIG. 1.
  • the cell balancing switch control method of FIG. 4 may be performed by the controller 140 of the voltage detection IC 100 described with reference to FIGS. 1 to 3.
  • the controller 140 detects a temperature inside the voltage detection IC 100 through the temperature sensor 120 (S100).
  • the controller 140 determines whether the temperature detected by the temperature sensor 120 is included in the low temperature region by comparing the temperature detected by the temperature sensor 120 with a threshold value (S110).
  • the controller 140 controls the at least one cell balancing switch SW to be turned on to increase the temperature inside the voltage detection IC 100 ( S120).
  • the controller 140 may divide the cell balancing switches SW included in the voltage detection IC 100 into a plurality of groups, and turn on each of the cell balancing switch groups.
  • the controller 140 may differently control the number of cell balancing switches SW that are simultaneously turned on according to the temperature detected by the temperature sensor 120. In this case, the controller 140 may control the number of cell balancing switches SW that are turned on at the same time to increase as the temperature detected by the temperature sensor 120 is lower.
  • step S120 the controller 140 may turn on all cell balancing switches SW at the same time and then control the number of cell balancing switches SW to be turned off gradually as the temperature rises.
  • step S120 the controller 140 may control such that the time when the corresponding cell balancing switch SW is turned on for the temperature rise is the same for all the cells.
  • the controller 140 continuously detects the temperature inside the voltage detection IC 100 through the temperature sensor 120 while the temperature inside the voltage detection IC 100 is increased through the turn-on control of the cell balancing switch SW. (S130). In addition, it is determined whether the temperature detected by the temperature sensor 120 is out of the low temperature region (S140).
  • the controller 140 When the temperature detected by the temperature sensor 120 is out of the low temperature region, the controller 140 turns off all of the cell balancing switches SW that are turned on to increase the temperature (S150), thereby adjusting the cell balancing switches SW. To stop fever).
  • FIG. 5 is a schematic view of a battery management system according to another exemplary embodiment.
  • a battery management system may include a voltage detection IC 300 and a battery controller 200.
  • a voltage detection IC 300 may include a voltage detection IC 300 and a battery controller 200.
  • the voltage detection IC 300 may include a plurality of cell balancing switches SW, a voltage detection circuit 310, an interface 330, and a controller 340.
  • the voltage detection IC 300 is electrically connected to the cell group 20, and detects the cell voltage of each cell constituting the cell group 20 through the voltage detection circuit 310.
  • the voltage detection circuit 310 includes a multiplexer (see 111 in FIG. 2), a differential amplifier (see 112 in FIG. 2), an ADC (see 113 in FIG. 2) and a reference voltage supply circuit (in FIG. 2). (See numeral 114).
  • the voltage detection circuit 310 When a cell is selected by the multiplexer, the voltage detection circuit 310 outputs the cell voltage of the selected cell to the controller 340 through the differential amplifier and the ADC.
  • the controller 340 transmits the cell voltage to the battery controller 200 through the interface 330.
  • the battery controller 200 receiving the cell voltage detection result from the voltage detection IC 300 may control cell balancing, charging / discharging, etc. of the cell group 20 based on this.
  • the voltage detection IC 300 may control cell balancing of cells constituting the cell group 20.
  • Each cell balancing switch SW is connected between both ends of the corresponding cell through the corresponding balancing resistor Rb, and conducts or blocks the cell balancing current flow of the corresponding cell under the control of the controller 340.
  • the controller 340 receives the cell balancing control information from the battery controller 200 through the interface 330, and controls the turn on / off of each cell balancing switch SW based on this.
  • the reference voltage supply circuit for supplying the reference voltage Vref from the voltage detection circuit 310 to the ADC is temperature sensitive. Accordingly, in the low temperature environment, the level of the reference voltage Vref output from the reference voltage supply circuit is different from that at room temperature. The conversion of the ADC is based on the reference voltage (Vref). Therefore, the level change of the reference voltage Vref in the low temperature environment may operate as a factor of increasing the error of the output value of the ADC.
  • the controller 140 continuously monitors the reference voltage Vref supplied from the voltage detection circuit 310 to the ADC, and when the reference voltage Vref is out of a predetermined range, the voltage detection IC 300 Control to raise the internal temperature. That is, when the reference voltage Vref is out of a predetermined range, the controller 140 determines that the temperature inside the voltage detection IC 300 is included in the low temperature region, and increases the temperature inside the voltage detection IC 300. At least one cell balancing switch SW may be turned on.
  • the predetermined range corresponds to the level range of the reference voltage Vref output from the reference voltage supply circuit in the room temperature region.
  • the controller 340 divides the cell balancing switches SW included in the voltage detection IC 300 into a plurality of groups,
  • the cell balancing switch groups can be turned on alternately.
  • the voltage detection IC 300 may group three or four cell balancing switches SW and turn on each of the cell balancing switch groups.
  • the voltage detecting IC 300 groups odd-numbered cell balancing switches SW and even-numbered cell balancing switches SW into different groups, and turns on two cell balancing switch groups alternately. You can also
  • the controller 340 causes the time that the corresponding cell balancing switch SW is turned on for the temperature rise to be the same for all cells. You can also control it. In this case, it is possible to minimize the effect of the turn-on control of the cell balancing switch (SW) for increasing the temperature on the cell balancing.
  • the controller 340 turns off all of the cell balancing switches SW turned on for the temperature increase to turn off the cell balancing switch. Stop the temperature rise using SW).
  • FIG. 6 schematically illustrates a method of controlling a cell balancing switch of the battery management system of FIG. 5.
  • the cell balancing switch control method of FIG. 6 may be performed by the controller 340 of the voltage detection IC 300 described with reference to FIG. 5.
  • the controller 340 monitors the reference voltage Vref supplied from the voltage detection circuit 310 to the ADC (S300).
  • the controller 340 determines whether the reference voltage Vref is out of a predetermined range (S310).
  • the controller 340 determines that the temperature of the voltage detection IC 300 is included in the low temperature region, and at least one cell for increasing the temperature inside the voltage detection IC 300.
  • the balancing switch SW is turned on (S320).
  • the controller 340 may divide the cell balancing switches SW included in the voltage detection IC 300 into a plurality of groups, and turn on each of the cell balancing switch groups.
  • step S320 the controller 340 may control the time that the corresponding cell balancing switch SW is turned on for the temperature rise to be the same for all the cells.
  • the controller 340 continuously monitors the reference voltage Vref while increasing the temperature inside the voltage detection IC 300 through the turn-on control of the cell balancing switch SW (S330). In addition, it is determined whether the reference voltage Vref enters within a predetermined range (S340).
  • the controller 340 determines that the voltage detection IC 300 temperature reaches the normal range (room temperature region), and turns on the cell balancing switch SW that is turned on to increase the temperature. ) Are all turned off (S350) to stop the heat generation of the cell balancing switch (SW).
  • FIG. 7 is a schematic view of a battery management system according to another exemplary embodiment.
  • a battery management system may include a voltage detection IC 500 and a battery controller 200.
  • a voltage detection IC 500 may include a voltage detection IC 500 and a battery controller 200.
  • the voltage detection IC 500 may include a plurality of cell balancing switches SW, a voltage detection circuit 510, a temperature sensor 520, an interface 530, and a controller 540.
  • the voltage detection IC 500 is electrically connected to the cell group 20, and detects the cell voltage of each cell constituting the cell group 20 through the voltage detection circuit 510.
  • the voltage detection circuit 510 includes a multiplexer (see 111 in FIG. 2), a differential amplifier (see 112 in FIG. 2), an ADC (see 113 in FIG. 2) and a reference voltage supply circuit (in FIG. 2). (See numeral 114).
  • the voltage detection circuit 510 When any cell is selected by the multiplexer, the voltage detection circuit 510 outputs the cell voltage of the selected cell to the controller 540 through the differential amplifier and the ADC.
  • the controller 540 transmits the cell voltage to the battery controller 200 through the interface 530.
  • the battery controller 200 receiving the cell voltage detection result from the voltage detection IC 500 may control cell balancing, charging / discharging, etc. of the cell group 20 based on this.
  • the voltage detection IC 500 may control cell balancing of cells constituting the cell group 20.
  • Each cell balancing switch SW is connected between both ends of the corresponding cell through the corresponding balancing resistor Rb, and conducts or blocks the cell balancing current flow of the corresponding cell under the control of the controller 540.
  • the controller 540 receives the cell balancing control information from the battery controller 200 through the interface 530, and controls the turn on / off of each cell balancing switch SW based on this.
  • the temperature sensor 520 may detect a temperature inside the voltage detection IC 500.
  • the reference voltage supply circuit (see reference numeral 114 in FIG. 2) is sensitive to temperature and serves as a cause of cell voltage detection error in the low temperature region. Therefore, the temperature sensor 520 may be disposed in contact with or adjacent to the reference voltage supply circuit so as to detect the ambient temperature of the reference voltage supply circuit.
  • the controller 540 may turn on at least one cell balancing switch SW to increase the internal temperature of the voltage detection IC 500. . That is, the controller 540 may turn on the at least one cell balancing switch SW when the temperature detected by the temperature sensor 520 is less than the threshold value.
  • the threshold is a threshold value for determining the low temperature region, and may be set differently according to the environment in which the battery management system is mounted.
  • the balancing current Ib flows to the internal resistance of the cell balancing switch SW (see reference numeral Rsw in FIG. 3) so that the cell balancing switch SW generates heat.
  • the heat generated by the cell balancing switch SW may operate as a heat source for increasing the temperature inside the voltage detection IC 500.
  • the controller 540 divides the cell balancing switches SW included in the voltage detection IC 500 into a plurality of groups,
  • the cell balancing switch groups can be turned on alternately.
  • the voltage detection IC 500 may group three or four cell balancing switches SW and turn on each cell balancing switch group alternately.
  • the voltage detection IC 500 groups the odd-numbered cell balancing switches SW and the even-numbered cell balancing switches SW into different groups, and turns on the two cell balancing switch groups alternately. You can also
  • the controller 540 causes the time that the corresponding cell balancing switch SW is turned on for temperature rise to be the same for all cells. You can also control it. In this case, it is possible to minimize the effect of the turn-on control of the cell balancing switch (SW) for increasing the temperature on the cell balancing.
  • the controller 540 turns off all of the cell balancing switches SW that are turned on to increase the temperature, thereby balancing the cell balancing switches. Stop the temperature rise using (SW).
  • the temperature inside the voltage detection IC 500 when the temperature inside the voltage detection IC 500 is increased by using the cell balancing switches SW, the temperature inside the voltage detection IC 500 may be quickly increased within a short time. However, when the temperature inside the voltage detection IC 500 is out of the low temperature range and the cell balancing switch SW is turned off, the voltage detection IC (for example, the temperature of the cell) of the voltage detection IC 500 is turned off. A situation where the temperature of 500) falls back to the low temperature region may occur. In addition, to prevent this, if the cell balancing switch SW is continuously turned on, excessive discharge of the cell may adversely affect cell life and cell balancing.
  • the voltage detection IC for example, the temperature of the cell
  • the battery management system may further include a temperature sensor 410 for detecting the ambient temperature of the voltage detection IC 500, as shown in FIG. 7.
  • the voltage detection IC 500 may further include a heating circuit 550 to maintain the internal temperature of the voltage detection IC 500.
  • the temperature sensor 410 is disposed adjacent to the voltage detection IC 500 and may detect a temperature around the voltage detection IC 500. For example, when a printed circuit board (PCB) including the voltage detection IC 500 is attached to the cell group 20, the temperature sensor 410 may be attached to the cell group 20. . Also, for example, the temperature sensor 410 may be attached to a printed circuit board including the voltage detection IC 500.
  • PCB printed circuit board
  • the controller 540 When the temperature inside the voltage detection IC 500 is out of the low temperature region and the cell balancing switches SW are turned off, the controller 540 based on the ambient temperature of the voltage detection IC 500 detected by the temperature sensor 410.
  • the heating circuit 550 may be controlled.
  • the controller 540 includes the internal temperature of the voltage detection IC 500.
  • the heating circuit 550 may be controlled to generate heat in order to prevent the temperature from being lowered again by the temperature.
  • the controller 540 may control the heating circuit 550 to stop the heating when the ambient temperature detected by the temperature sensor 410 is out of the low temperature region.
  • the heating circuit 550 may be disposed in contact with or adjacent to the reference voltage supply circuit (see reference numeral 114 of FIG. 2) serving as a cause of the cell voltage detection error in the low temperature region.
  • the heating circuit 550 may be implemented in various forms capable of generating heat.
  • the heating circuit 550 may include a heating switch (SW heat ), as shown in FIG. 7.
  • the controller 540 may control the heating of the heating circuit 550 by controlling the turn on / off of the heating switch SW heat .
  • the heating switch SW heat When the heating switch (SW heat) is turned on, the current flows in the internal resistance of the heating switch (SW heat) the heating switch (SW heat) is exothermic.
  • the heat generated by the heating switch SW heat may operate as a heat source for increasing or maintaining the temperature inside the voltage detection IC 500.
  • the heat switch SW heat may be connected between the positive terminal of any one of the cells constituting the cell group 20 and the negative terminal of any one of the cells constituting the cell group 20. Referring to FIG. 7, the heating switch SW heat may be connected between the positive terminal of the highest potential cell and the negative terminal of the lowest potential cell among the plurality of cells constituting the cell group 20.
  • the present invention is not limited thereto, and the cell to which the heat switch SW heat is connected in the cell group 20 may be changed.
  • the heating switch (SW heat) is, but showing a case which is connected to the cell group 20 through the input resistor (Rc) for example, come not mean the present invention is not limited to, the heating switch (SW heat) Both ends may be connected to the cell group 20 through a separate resistor (not shown). In this case, the resistors connected to both ends of the heating switch SW heat and the cell group 20 may be located inside the voltage detection IC 500 to form the heating circuit 550 together with the heating switch SW heat . have.
  • FIG. 8 schematically illustrates a method of controlling a cell balancing switch of the battery management system of FIG. 7.
  • the cell balancing switch control method of FIG. 8 may be performed by the controller 540 of the voltage detection IC 500 described with reference to FIG. 7.
  • the controller 540 detects a temperature inside the voltage detection IC 100 through the temperature sensor 520 (S500).
  • the controller 540 determines whether the temperature detected by the temperature sensor 520 is included in the low temperature region by comparing the temperature detected by the temperature sensor 520 with a threshold value (S510).
  • the controller 540 controls the at least one cell balancing switch SW to turn on in order to increase the temperature inside the voltage detection IC 500 ( S520).
  • the controller 540 may divide the cell balancing switches SW included in the voltage detection IC 500 into a plurality of groups, and turn on each cell balancing switch group alternately.
  • the controller 540 may differently control the number of cell balancing switches SW that are simultaneously turned on according to the temperature detected by the temperature sensor 520. In this case, the controller 540 may control the number of cell balancing switches SW that are turned on at the same time to increase as the temperature detected by the temperature sensor 520 is lower.
  • step S520 the controller 540 may turn on all cell balancing switches SW at the same time, and then control the number of cell balancing switches SW turned off gradually as the temperature rises.
  • step S520 the controller 540 may control the time that the corresponding cell balancing switch SW is turned on for the temperature rise to be the same for all the cells.
  • the controller 540 continuously detects the temperature inside the voltage detection IC 500 through the temperature sensor 520 while the temperature inside the voltage detection IC 500 is increased through the turn-on control of the cell balancing switch SW. (S530). In addition, it is determined whether the temperature detected by the temperature sensor 520 is out of the low temperature region (S540).
  • the controller 540 turns off all of the cell balancing switches SW that are turned on to increase the temperature (S550), thereby adjusting the cell balancing switches SW. To stop fever).
  • the controller 540 detects the ambient temperature of the voltage detection IC 500 through the temperature sensor 410 (S560). The controller 540 compares the temperature detected by the temperature sensor 410 with the threshold, and determines whether the ambient temperature detected by the temperature sensor 410 is included in the low temperature region (S570).
  • the controller 540 turns on the heating switch SWheat to generate heat to prevent the temperature inside the voltage detection IC 500 from lowering.
  • the circuit 550 generates heat (S580).
  • the controller 540 continuously detects the ambient temperature of the voltage detection IC 500 through the temperature sensor 410 even when the heat switch SW heat is turned on (S590). In addition, it is determined whether the ambient temperature detected by the temperature sensor 410 is out of the low temperature region (S600).
  • the controller 540 turns off the heating switch SW heat that is turned on to maintain the temperature (S6100), and generates the heating circuit 500. Stops fever.
  • the controller 540 controls the amount of heat generated by the heating circuit 550 through the turn-on time of the heating switch SW heat .
  • the controller 540 controls the heating value of the heating switch (SW heat), the duty ratio by the PWM control for varying the heating switch (SW heat) depending on the heat output required for the ambient temperature of the voltage detection IC (500) staying in the low temperature region can do.
  • the controller 540 may control the amount of heat generated by adjusting the turn on / turn off period of the heat switch SW heat .
  • the controller 540 calculates a calorific value required on the basis of the difference between the internal temperature detected by the ambient temperature and the temperature sensor 520, detected through the temperature sensor 410, heating switch (SW heat) based on this Duty ratio or turn on / turn off period can be controlled.
  • the heating switch SW heat is turned on after the cell balancing switch SW is turned off due to an increase in temperature inside the voltage detection IC 500.
  • the cell balancing switch SW and the heating switch SW heat may be turned on at the same time to increase the temperature inside. In this case, even when the temperature inside the voltage detection IC 500 rises and the cell balancing switch SW is turned off, the heating switch SW heat may remain turned on until the ambient temperature leaves the low temperature region.
  • the cell voltage measurement path and the cell balancing path for each cell of the voltage detection ICs 100 and 300 share an input resistance Rc connected to the cathode of each cell.
  • the voltage detection IC 700 measures a cell voltage through input resistors Rb connected to both ends of the cell, and a balancing resistor Rb connected to both ends of the cell separately from the input resistor Rb.
  • Cell balancing can be performed through
  • the voltage detection IC 700 of FIG. 9 differs from the voltage detection ICs 100, 300, and 500 in which the cell balancing path shares one of the terminals Cin for measuring the cell voltage. Terminals Cin and terminals Bin for cell balancing may be separately provided.
  • the capacitor Cb connected between the balancing terminals Bin is for preventing a malfunction due to noise such as a ripple voltage when diagnosing the balancing switch SW.
  • the function of controlling the cell balancing switch SW to increase the internal temperature of the voltage detection ICs 100, 300, and 500 may include a controller 140 within the voltage detection ICs 100, 300 and 500.
  • the cell balancing switch control function for increasing the internal temperature of the voltage detection IC (100, 300, 500) is a battery controller May be performed by 200.
  • the controller inside the voltage detecting IC transmits the temperature information inside or around the voltage detecting IC or the level information of the reference voltage Vref to the battery controller through the interface, and the cell balancing switch SW for increasing the temperature or Control information of the heat switch SW heat may be received from the battery controller.
  • the available capacity of the battery is calculated with sufficient internal margin as the SOC error to ensure safety. For example, if the battery's usable range is 10% to 90% of the battery's full capacity and the SOC calculation error is ⁇ 5%, the available section of the battery will be reduced to 15% to 85% of the battery's full capacity in actual use. That is, the usable capacity of the battery is 80% of the total capacity of the battery, but due to SOC error, actual battery usage is within 70% of the total capacity of the battery. Therefore, reducing the SOC error can increase the actual capacity of the battery.
  • the temperature of the voltage detection IC may be increased without additional cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

전압 검출 집적회로는, 복수의 셀과 전기적으로 연결되며, 상기 복수의 셀 중 대응하는 셀의 셀 전압을 검출하는 전압 검출 회로, 상기 복수의 셀 중 대응하는 셀의 밸런싱 전류 흐름을 도통 또는 차단시키는 복수의 셀 밸런싱 스위치, 상기 전압 검출 집적회로의 온도를 검출하는 온도 센서, 및 상기 온도가 임계치 미만일 때, 상기 온도에 따라서 동시에 턴 온되는 셀 밸런싱 스위치의 개수를 다르게 선택하고, 상기 선택된 스위치를 턴 온 시키는 제어기를 포함할 수 있다.

Description

전압 검출 집적회로 및 이를 포함하는 배터리 관리 시스템
최근 CO2 규제 등 환경 규제가 강화됨에 따라 친환경 차량에 대한 관심이 증가하고 있다. 이에 따라 자동차 회사들은 하이브리드(Hybrid) 차량이나 플러그인 하이브리드(Plug-in Hybrid) 차량뿐만 아니라, 순수 전기 차량 또는 수소 차량에 대해 연구 및 제품 개발을 활발히 진행하고 있다.
친환경 차량에는 다양한 에너지원으로부터 얻어지는 전기 에너지를 저장하기 위해 고전압 배터리가 적용된다. 고전압 배터리는 고전압의 전기 에너지를 제공하기 위해 직렬 또는 병렬로 연결되는 복수의 셀을 포함한다.
고전압 배터리가 적용되는 차량에는 고전압 배터리를 관리하기 위한 배터리 관리 시스템(Battery Managemnet System, BMS)이 탑재된다. 각 셀의 전압을 모니터링하여 셀 간 전압 편차를 보상하는 셀 밸런싱(cell balancing) 기능은 배터리 관리 시스템의 주요 기능 중 하나이다. 배터리 관리 시스템은, 고전압 배터리를 구성하는 각 셀의 전압, 전류, 온도 정보 등을 토대로 충전 상태(State Of Charge, SOC)를 계산하고, 셀 간의 SOC 차이가 소정 수준 이상이면 전압 편차를 보상하는 셀 밸런싱을 수행한다.
SOC는 셀 밸런싱 외에도 배터리의 가용 용량, 수명 등을 예측하기 위해 사용된다. 따라서, 배터리의 사용성 및 안정성을 향상시키기 위해서는 SOC를 정확하게 산출할 필요가 있다. SOC의 산출 정확도는, 셀 전압 및 온도의 측정 정밀도와 밀접하게 연관된다.
배터리 관리 시스템에서의 셀 전압 측정은 전압 검출 회로가 내장된 집적회로(Integrated Circuit, IC), 예를 들어, 아날로그 프론트 엔드(Analog Front End, AFE) IC에 의해 수행된다. 통상적으로 저온에서는 상온에 비해 집적회로의 셀 전압 측정 정밀도가 현저히 떨어지며, 이로 인해 SOC 산출 정확도 또한 떨어지는 문제가 있다.
실시 예를 통해 해결하고자 하는 기술적 과제는 저온 환경에서의 셀 전압 측정 정밀도를 향상시키기 위한 전압 검출 집적회로 및 이를 포함하는 배터리 관리 시스템을 제공하는 것이다.
상기한 과제를 해결하기 위한 일 실시 예에 따른 전압 검출 집적회로는, 복수의 셀과 전기적으로 연결되며, 상기 복수의 셀 중 대응하는 셀의 셀 전압을 검출하는 전압 검출 회로, 상기 복수의 셀 중 대응하는 셀의 밸런싱 전류 흐름을 도통 또는 차단시키는 복수의 셀 밸런싱 스위치, 전압 검출 집적회로의 내부 온도를 검출하는 온도 센서, 및 상기 내부 온도가 제1 임계치 미만일 때, 상기 내부 온도에 따라서 동시에 턴 온되는 셀 밸런싱 스위치의 개수를 다르게 선택하고, 상기 선택된 스위치를 턴 온 시키는 제어기를 포함할 수 있다.
상기 일 실시 예에 따른 전압 검출 집적회로에서, 상기 제어기는, 상기 복수의 셀 밸런싱 스위치를 복수의 그룹으로 그룹핑하고, 상기 내부 온도가 제1 임계치 미만이면, 상기 복수의 그룹을 번갈아가며 턴 온시킬 수 있다.
상기 일 실시 예에 따른 전압 검출 집적회로에서, 상기 제어기는, 상기 복수의 그룹의 턴 온 시간이 동일하도록 제어할 수 있다.
상기 일 실시 예에 따른 전압 검출 집적회로에서, 상기 제어기는 상기 내부 온도가 상기 제1 임계치 미만이면 상기 복수의 셀 밸런싱 스위치를 동시에 턴 온 시킨 후, 상기 내부 온도가 상승함에 따라 턴 오프되는 셀 밸런싱 스위치의 개수를 점차적으로 증가시킬 수 있다.
상기 일 실시 예에 따른 전압 검출 집적회로에서, 상기 전압 검출 회로는, 상기 복수의 셀 중 어느 하나를 선택하는 멀티플렉서, 상기 멀티플렉서에 의해 선택된 셀의 양단 전압을 증폭하여 출력하는 차등 증폭기, 기준 전압을 공급하는 기준 전압 공급회로, 및 상기 기준 전압을 토대로, 상기 멀티플렉서에 의해 선택된 셀의 셀 전압에 대응하는 디지털 값을 출력하는 아날로그 디지털 변환기를 포함하며, 상기 온도 센서는, 상기 기준 전압 공급회로와 접하거나 인접하게 배치될 수 있다.
상기 전압 검출 집적회로는 발열 회로를 더 포함하며, 상기 제어기는, 상기 전압 검출 집적회로 외부의 온도 센서로부터 상기 전압 검출 집적회로의 주변 온도를 수신하며, 상기 내부 온도가 상기 제1 임계치 이상에 도달하여 상기 복수의 셀 밸런싱 스위치가 턴 오프된 상태에서 상기 주변 온도가 제2 임계치 미만이면, 상기 발열 회로가 발열하도록 제어할 수 있다.
상기 전압 검출 집적회로에서 상기 발열 회로는 상기 복수의 셀 중 제1 셀의 양극 단자와 상기 복수의 셀 중 제2 셀의 음극 단자 사이에 연결되는 발열 스위치를 포함할 수 있다.
상기 전압 검출 집적회로에서 상기 제어기는 상기 주변 온도가 상기 제2 임계치 이상이면 상기 발열 스위치를 턴 오프 시킬 수 있다.
상기 전압 검출 집적회로에서 상기 제어기는 상기 내부 온도와 상기 주변 온도를 토대로 상기 발열 회로의 발열량을 산출하고, 상기 발열량에 대응하는 듀티비로 상기 발열 스위치를 PWM 제어할 수 있다.
상기 전압 검출 집적회로에서 상기 제어기는 상기 내부 온도와 상기 주변 온도를 토대로 상기 발열 회로의 발열량을 산출하고, 상기 발열량에 따라 상기 발열 스위치의 턴 온/턴 오프 주기를 제어할 수 있다.
상기 전압 검출 집적회로는 상기 발열 스위치와 상기 제1 셀의 양극 단자 사이 또는 상기 발열 스위치와 상기 제2 셀의 음극 단자 사이에 연결되는 발열 저항을 더 포함할 수 있다.
또한, 배터리 관리 시스템은, 복수의 셀과 전기적으로 연결되며, 상기 복수의 셀 중 대응하는 셀의 셀 전압을 검출하는 전압 검출 회로, 상기 복수의 셀 중 대응하는 셀의 밸런싱 전류 흐름을 도통 또는 차단시키는 복수의 셀 밸런싱 스위치 및 제1 온도 센서를 포함하는 집적회로, 및 상기 제1 온도 센서를 통해 획득한 상기 집적회로의 내부 온도가 제1 임계치 미만일 때, 상기 내부 온도에 따라서 동시에 턴 온되는 셀 밸런싱 스위치의 개수를 다르게 선택하고, 상기 선택된 스위치를 턴 온 제어하는 배터리 제어기를 포함할 수 있다.
상기 배터리 관리 시스템에서, 상기 배터리 제어기는, 상기 복수의 셀 밸런싱 스위치를 복수의 그룹으로 그룹핑하고, 상기 제1 온도가 상기 제1 임계치 미만이면, 상기 복수의 그룹을 번갈아가며 턴 온시킬 수 있다.
상기 배터리 관리 시스템에서, 상기 배터리 제어기는, 상기 복수의 그룹의 턴 온 시간이 동일하도록 제어할 수 있다.
상기 배터리 관리 시스템에서, 상기 배터리 제어기는 상기 내부 온도가 상기 제1 임계치 미만이면 상기 복수의 셀 밸런싱 스위치를 동시에 턴 온 시킨 후, 상기 내부 온도가 상승함에 따라 턴 오프되는 셀 밸런싱 스위치의 개수를 점차적으로 증가시킬 수 있다.
상기 배터리 관리 시스템은 상기 집적회로의 주변 온도를 검출하는 제2온도 센서를 더 포함하며, 상기 집적회로는 상기 주변 온도에 따라 발열하는 발열 회로를 더 포함할 수 있다.
상기 배터리 관리 시스템에서 상기 배터리 제어기는, 상기 내부 온도가 상기 제1 임계치 이상에 도달하여 상기 복수의 셀 밸런싱 스위치가 턴 오프된 상태에서, 상기 주변 온도가 제2 임계치 미만이면, 상기 발열 회로가 발열하도록 제어할 수 있다.
상기 배터리 관리 시스템에서 상기 발열 회로는 상기 복수의 셀 중 제1 셀의 양극 단자와 상기 복수의 셀 중 제2 셀의 음극 단자 사이에 연결되는 발열 스위치를 포함할 수 있다.
상기 배터리 관리 시스템에서 상기 배터리 제어기는 상기 주변 온도가 상기 제2 임계치 이상이면 상기 발열 스위치를 턴 오프 시킬 수 있다.
상기 배터리 관리 시스템에서 상기 배터리 제어기는 상기 내부 온도와 상기 주변 온도를 토대로 상기 발열 회로의 발열량을 산출하고, 상기 발열량에 따라서 상기 발열 스위치의 턴 온/ 턴 오프를 제어할 수 있다.
실시 예에 따른 배터리 관리 시스템은, 저온 환경에서의 셀 전압 측정 정밀도를 향상시키는 효과가 있다.
도 1은 일 실시 예에 따른 배터리 관리 시스템을 개략적으로 도시한 것이다.
도 2는 일 실시 예에 따른 전압 검출 IC의 구성을 개략적으로 도시한 것이다.
도 3은 일 실시 예에 따른 배터리 관리 시스템에서 셀 밸런싱 스위치의 발열을 설명하기 위한 도면이다.
도 4는 일 실시 예에 따른 배터리 관리 시스템의 셀 밸런싱 스위치 제어 방법을 개략적으로 도시한 것이다.
도 5는 다른 실시 예에 따른 배터리 관리 시스템을 개략적으로 도시한 것이다.
도 6은 다른 실시 예에 따른 배터리 관리 시스템의 셀 밸런싱 스위치 제어 방법을 개략적으로 도시한 것이다.
도 7은 또 다른 실시 예에 따른 배터리 관리 시스템을 개략적으로 도시한 것이다.
도 8은 또 다른 실시 예에 따른 배터리 관리 시스템의 셀 밸런싱 스위치 제어 방법을 개략적으로 도시한 것이다.
도 9는 또 다른 실시 예에 따른 배터리 관리 시스템을 개략적으로 도시한 것이다.
이하, 첨부한 도면을 참고로 하여 여러 실시 예들에 대하여 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 실시 예들은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시 예들에 한정되지 않는다.
실시 예들을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 번호를 붙이도록 한다. 따라서 이전 도면에 사용된 구성요소의 참조 번호를 다음 도면에서 사용할 수 있다.
또한, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 실시 예들은 반드시 도시된 바에 한정되지 않는다. 도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께 및 영역을 과장하여 나타낼 수 있다.
2개의 구성요소를 전기적으로 연결한다는 것은 2개의 구성요소를 직접(directly) 연결할 경우뿐만 아니라, 2개의 구성요소 사이에 다른 구성요소를 거쳐서 연결하는 경우도 포함한다. 다른 구성요소는 스위치, 저항, 커패시터 등을 포함할 수 있다. 실시 예들을 설명함에 있어서 연결한다는 표현은, 직접 연결한다는 표현이 없는 경우에는, 전기적으로 연결한다는 것을 의미한다.
이하, 필요한 도면들을 참조하여 실시 예들에 따른 전압 검출 집적회로(Integrated Circuit, IC) 및 이를 포함하는 배터리 관리 시스템(Battery Management System, BMS)에 대해 상세히 설명하기로 한다. 본 문서에서, 전압 검출 IC는, 배터리의 셀 전압 검출 기능을 포함하는 아날로그 프론트 엔드(Analog Front End, AFE) IC, 셀 전압 모니터링(Cell Voltage Monitoring, CVM) IC 등을 포함할 수 있다.
도 1은 일 실시 예에 따른 배터리 관리 시스템을 개략적으로 도시한 것이다. 또한, 도 2는 도 1의 전압 검출 IC의 구성을 개략적으로 도시한 것이고, 도 3은 셀 밸런싱 스위치의 발열을 설명하기 위한 도면이다.
도 1을 참조하면, 일 실시 예에 따른 배터리 관리 시스템은 전압 검출 IC(100) 및 배터리 제어기(200)를 포함할 수 있다.
전압 검출 IC(100)는 복수의 셀 밸런싱 스위치(SW), 전압 검출 회로(110), 인터페이스(130) 및 제어기(140)를 포함할 수 있다.
전압 검출 IC(100)는 셀 그룹(20)과 전기적으로 연결되며, 전압 검출 회로(110)를 통해 셀 그룹(20)을 구성하는 각 셀(cell)의 셀 전압을 검출할 수 있다. 한편, 도 1에서는 전압 검출 IC(100)에 연결되는 셀 그룹(20)이 서로 직렬 연결되는 6개의 셀을 포함하는 경우를 예로 들어 도시하였으나, 본 발명이 이에 한정되는 것은 아니어서, 하나의 전압 검출 IC에 연결되는 단위 셀의 개수는 그보다 많거나 그보다 더 적도록 변경될 수 있다.
도 2를 참조하면, 전압 검출 회로(110)는 멀티플렉서(Multiplexer, MUX, 111), 차등 증폭기(112) 및 아날로그 디지털 변환기(Analog to Digital Converter, ADC, 113)를 포함할 수 있다. 전압 검출 회로(110)는 ADC(113)로 기준 전압(Vref)을 공급하는 기준 전압 공급회로(114)를 더 포함할 수 있다.
멀티플렉서(111)의 입력 채널은 입력 저항(Rc)을 통해 셀 그룹(20)을 구성하는 각 셀에 전기적으로 연결된다. 멀티플렉서(111)는 입력 채널들 중 어느 하나를 선택하여 출력 채널과 연결한다. 즉, 멀티플렉서(111)는 입력 채널에 연결된 복수의 셀 중 어느 하나를 선택하고, 선택된 셀의 양단을 출력 채널의 양극 출력단과 음극 출력단에 각각 연결한다.
멀티플렉서(111)의 입력 채널에 연결되는 입력 저항(Rc)은 입력 커패시터(Cc)와 함께 RC 필터를 구성해, 셀 전압에 포함된 노이즈를 필터링하는 기능을 수행할 수 있다.
멀티플렉서(111)에 의해 선택된 셀의 양단 전압은 차등 증폭기(112)에 의해 증폭되어 출력된다.
기준 전압 공급회로(114)는 ADC(113)로 기준 전압(Vref)을 공급한다.
ADC(113)는 기준 전압(Vref)을 토대로, 아날로그 값인 차등 증폭기(112)의 출력을 디지털 값으로 변환하여 제어기(140)로 출력한다. 즉, ADC(113)는 멀티플렉서(111)에 의해 선택된 셀의 양단 전압을 대응하는 디지털 값으로 변환하여 출력한다.
ADC(113)에 의해 제어기(140)로 출력된 셀 전압 검출 결과는, 인터페이스(130)를 통해 배터리 제어기(200)로 전달된다.
인터페이스(130)는 CAN(Controller Area Network) 통신 등의 직렬 주변장치 인터페이스(Serial Peripheral Interface, SPI) 방식으로 배터리 제어기(200)와 데이터를 송수신할 수 있다.
전압 검출 IC(100)로부터 셀 전압 검출 결과를 수신한 배터리 제어기(200)는 이를 토대로 셀 그룹(20)의 셀 밸런싱, 충/방전 등을 제어할 수 있다.
다시, 도 1을 보면, 전압 검출 IC(100)는 셀 그룹(20)을 구성하는 셀들의 셀 밸런싱을 제어할 수 있다.
각 셀 밸런싱 스위치(SW)는 대응하는 밸런싱 저항(Rb)을 통해 대응하는 셀의 양단 사이에 연결된다. 각 셀 밸런싱 스위치(SW)는 제어기(140)의 제어에 따라 대응하는 셀의 셀 밸런싱 전류 흐름을 도통하거나 차단시킨다. 각 셀 밸런싱 스위치(SW)가 턴 온 되면, 대응하는 밸런싱 저항(Rb)을 통해 밸런싱 전류가 흘러 대응하는 셀의 방전이 진행된다. 반면에, 각 셀 밸런싱 스위치(SW)가 턴 오프 되면, 대응하는 셀의 밸런싱 전류 흐름이 차단된다.
셀 밸런싱 스위치(SW)는 전계 효과 트랜지스터(Field Effect Transistor, FET)로 이루어질 수 있다.
제어기(140)는 인터페이스(130)를 통해 배터리 제어기(200)로부터 셀 밸런싱 제어 정보를 수신하며, 이를 토대로 각 셀 밸런싱 스위치(SW)의 턴 온/턴 오프를 제어한다.
전압 검출 IC(100)는 저온 환경에 노출될 경우, 상온에 비해 전압 검출 회로(110)의 전압 검출 정밀도(Accuracy)가 현저히 떨어지는 경향이 있다. 이는 ADC(113)로 기준 전압(Vref)을 공급하는 기준 전압 공급회로(114)가 온도에 영향을 받아, 기준 전압 공급회로(114)에 의해 출력되는 기준 전압(Vref)의 레벨이 저온과 상온에서 서로 다르기 때문이다. ADC(113)의 변환은 기준 전압(Vref)을 기준으로 이루어진다. 따라서, 저온 환경에서의 기준 전압(Vref)의 레벨 변화는 ADC(113)의 출력값의 에러(error)를 증가시키는 요인으로 동작할 수 있다.
이러한 문제를 해결하기 위해, 전압 검출 IC(100)는 온도 센서(120)를 더 포함할 수 있다.
온도 센서(120)는 전압 검출 IC(100) 내부의 온도를 검출할 수 있다. 온도 센서(120)는 온도에 민감하여 저온 영역에서 셀 전압 검출 에러가 발생하는 원인으로 작용하는 기준 전압 공급회로(114)의 주변 온도를 검출할 수 있도록, 기준 전압 공급회로(114)와 접하거나 인접하게 배치될 수 있다.
제어기(140)는 온도 센서(120)를 통해 검출된 온도가 저온 영역에 포함되면, 전압 검출 IC(100)의 내부 온도 상승을 위해 적어도 하나의 셀 밸런싱 스위치(SW)를 턴 온 시킬 수 있다. 즉, 제어기(140)는 온도 센서(120)를 통해 검출된 온도가 임계치 미만이면, 온도 상승을 이해 적어도 하나의 셀 밸런싱 스위치(SW)를 턴 온 시킬 수 있다. 여기서, 임계치는 저온 영역을 판단하기 위한 경계 값으로서, 배터리 관리 시스템이 탑재되는 환경에 따라서 다르게 설정될 수 있다.
도 3을 참조하면, 셀 밸런싱 스위치(SW)가 턴 온되면, 셀 밸런싱 스위치(SW)의 내부 저항(Rsw)으로 밸런싱 전류(Ib)가 흘러 셀 밸런싱 스위치(SW)가 발열하게 된다. 셀 밸런싱 스위치(SW)의 발열은 전압 검출 IC(100) 내부의 온도 상승을 위한 열원으로 동작할 수 있다.
셀 밸런싱 스위치(SW)의 내부 저항(Rsw)은, 전압 검출 IC(100)의 제조 공정 및 설계에 따라 달라지며, 셀 밸런싱 스위치(SW)를 구성하는 FET의 특성(예를 들어, 온도 특성, 드레인-소스 양단 전압 등)에 따라 다르게 나타난다. 예를 들어, 셀 밸런싱 스위치(SW)의 내부 저항(Rsw)은 작게는 0.2 ohm 에서 크게는 수십 ohm까지 나타날 수 있다.
6개의 셀이 연결된 전압 검출 IC(100)에서 셀 밸런싱 전류(Ib)가 300mA, 각 셀 밸런싱 스위치(SW)의 내부 저항(Rsw)이 5ohm으로 설계된 경우, 하나의 셀 밸런싱 스위치(SW)의 내부 저항(Rsw)에 의해 발열되어 소비되는 에너지량(P)은 0.45W가 된다. 따라서, 6개의 셀 밸런싱 스위치(SW)가 모두 턴 온 될 경우, 6개의 셀 밸런싱 스위치(SW)의 내부 저항(Rsw)들에 의해 발열되어 소비되는 에너지량(P)은 2.7W가 된다.
한편, 전압 검출 IC(100) 내부의 온도 상승을 위해 모든 셀 밸런싱 스위치(SW)들을 동시에 턴 온 시킬 경우, 전압 검출 IC(100)가 견딜 수 있는 최대 소비 전력을 넘어서거나, 전압 검출 IC(100)의 과도한 온도 상승을 발생시켜 전압 검출 IC(100)의 손상을 가져올 수 있다.
이에 따라, 제어기(140)는 전압 검출 IC(100)에 포함된 셀 밸런싱 스위치(SW)들을 복수의 그룹으로 구분하고, 각 셀 밸런싱 스위치 그룹을 교대로 턴 온 시킬 수 있다. 예를 들어, 전압 검출 IC(100)는 셀 밸런싱 스위치(SW)들을 3개 또는 4개씩 그룹핑하고, 각 셀 밸런싱 스위치 그룹들을 번갈아가며 턴 온 시킬 수 있다. 또한, 예를 들어, 전압 검출 IC(100)는 홀수 번째 셀 밸런싱 스위치(SW)들과, 짝수 번째 셀 밸런싱 스위치(SW)들을 서로 다른 그룹으로 그룹핑하고, 두 셀 밸런싱 스위치 그룹을 번갈아가며 턴 온 시킬 수도 있다.
셀 밸런싱 스위치(SW)의 턴 온에 위한 온도 상승 속도가 너무 빠른 경우, 원하는 온도 범위에 도달하여 셀 밸런싱 스위치(SW)를 모두 턴 오프하더라도 소정 시간 온도 상승이 지속될 수 있다. 이는 원하지 않는 추가적인 온도 상승을 발생시켜, 전압 검출 IC(100)의 손상을 가져올 수도 있다.
따라서, 제어기(140)는 전압 검출 IC(100)의 온도가 상온 영역에 빠르게 도달하도록 하면서도 불필요한 추가적인 온도 상승을 최소화하도록, 온도 센서(120)를 통해 검출된 온도에 따라서 동시에 턴 온되는 셀 밸런싱 스위치(SW)의 개수를 다르게 제어할 수도 있다. 예를 들어, 전압 검출 IC(100)가 12개의 셀에 연결되는 경우, 온도 상승을 위해 동시에 턴 온되는 셀 밸런싱 스위치(SW)의 개수는, -40°C 이하에서는 12개, -40°C ~ -30°C 범위에서는 10 개, -30°C ~ -20°C 범위에서는 8 개, -20°C ~ -10°C 범위에서는 6 개, -10°C ~ 0°C 범위에서는 4개로 제어될 수 있다.
또한, 제어기(140)는 온도가 임계치 미만이면, 모든 셀 밸런싱 스위치(SW)를 동시에 턴 온 시킨 후, 온도 상승에 따라서 턴 오프되는 셀 밸런싱 스위치(SW)의 개수가 점차적으로 늘어나도록 제어할 수도 있다.
한편, 온도 상승을 위해 셀 밸런싱 스위치(SW)를 이용함에 따라, 온도 상승을 위한 셀 밸런싱 스위치(SW)의 턴 온 제어가 셀 간 밸런싱 편차를 악화시키거나 배터리 제어기(200)에서 미리 계산해 놓은 셀 간 편차 정보에 영향을 주는 것을 최소화할 필요가 있다. 그러나, 셀 밸런싱이 필요한 셀에 대해서만 턴 온이 허용될 경우, 온도 상승에 시간이 너무 오래 걸려 온도 상승 효과가 떨어질 수 있다.
따라서, 제어기(140)는 대응하는 셀 밸런싱 스위치(SW)가 온도 상승을 위해 턴 온되는 시간이 모든 셀에 대해 동일하도록 제어함으로써, 온도 상승을 위한 셀 밸런싱 스위치(SW)의 턴 온이 셀 밸런싱에 미치는 영향을 최소화할 수 있다.
제어기(140)는 온도 센서(120)를 통해 검출된 온도가 임계치 이상이면, 턴 온된 셀 밸런싱 스위치(SW)를 모두 턴 오프하여 셀 밸런싱 스위치(SW)를 이용한 온도 상승을 중단한다.
도 4는 도 1의 배터리 관리 시스템의 셀 밸런싱 스위치 제어 방법을 개략적으로 도시한 것이다. 도 4의 셀 밸런싱 스위치 제어 방법은 도 1 내지 도 3을 참조하여 설명한 전압 검출 IC(100)의 제어기(140)에 의해 수행될 수 있다.
도 4를 참조하면, 제어기(140)는 온도 센서(120)를 통해 전압 검출 IC(100) 내부의 온도를 검출한다(S100).
제어기(140)는 온도 센서(120)를 통해 검출한 온도를 임계치와 비교함으로써, 온도 센서(120)를 통해 검출된 온도가 저온 영역에 포함되는지를 판단한다(S110).
제어기(140)는 온도 센서(120)를 통해 검출된 온도가 저온 영역에 포함되는 경우, 전압 검출 IC(100) 내부의 온도 상승을 위해 적어도 하나의 셀 밸런싱 스위치(SW)를 턴 온 제어한다(S120).
상기 S120 단계에서, 제어기(140)는 전압 검출 IC(100)에 포함된 셀 밸런싱 스위치(SW)들을 복수의 그룹으로 구분하고, 각 셀 밸런싱 스위치 그룹을 교대로 턴 온 시킬 수 있다.
상기 S120 단계에서, 제어기(140)는 온도 센서(120)를 통해 검출된 온도에 따라서 동시에 턴 온되는 셀 밸런싱 스위치(SW)의 개수를 다르게 제어할 수도 있다. 이 경우, 제어기(140)는 온도 센서(120)를 통해 검출된 온도가 낮을수록 동시에 턴 온되는 셀 밸런싱 스위치(SW)의 개수가 증가하도록 제어할 수 있다.
상기 S120 단계에서, 제어기(140)는 모든 셀 밸런싱 스위치(SW)를 동시에 턴 온 시킨 후, 온도 상승에 따라서 턴 오프되는 셀 밸런싱 스위치(SW)의 개수가 점차적으로 늘어나도록 제어할 수도 있다.
상기 S120 단계에서, 제어기(140)는 대응하는 셀 밸런싱 스위치(SW)가 온도 상승을 위해 턴 온되는 시간이 모든 셀에 대해 동일하도록 제어할 수도 있다.
제어기(140)는 셀 밸런싱 스위치(SW)의 턴 온 제어를 통해 전압 검출 IC(100) 내부의 온도를 상승시키는 중에도 온도 센서(120)를 통해 전압 검출 IC(100) 내부의 온도를 지속적으로 검출한다(S130). 또한, 온도 센서(120)를 통해 검출된 온도가 저온 영역을 벗어나는지를 판단한다(S140).
제어기(140)는 온도 센서(120)를 통해 검출된 온도가 저온 영역을 벗어나는 경우, 온도 상승을 위해 턴 온 중인 셀 밸런싱 스위치(SW)를 모두 턴 오프 제어함으로써(S150), 셀 밸런싱 스위치(SW)의 발열을 중단시킨다.
도 5는 다른 실시 예에 따른 배터리 관리 시스템을 개략적으로 도시한 것이다.
도 5를 참조하면, 다른 실시 예에 따른 배터리 관리 시스템은 전압 검출 IC(300) 및 배터리 제어기(200)를 포함할 수 있다. 이하 설명에서는 도 1 내지 도 3을 참조하여 설명한 배터리 관리 시스템과 동일 또는 유사한 구성요소에 대해서는 상세한 설명을 생략한다.
전압 검출 IC(300)는 복수의 셀 밸런싱 스위치(SW), 전압 검출 회로(310), 인터페이스(330) 및 제어기(340)를 포함할 수 있다.
전압 검출 IC(300)는 셀 그룹(20)과 전기적으로 연결되며, 전압 검출 회로(310)를 통해 셀 그룹(20)을 구성하는 각 셀(cell)의 셀 전압을 검출할 수 있다.
전압 검출 회로(310)는 멀티플렉서(도 2의 도면부호 111 참조), 차등 증폭기(도 2의 도면부호 112 참조), ADC(도 2의 도면부호 113 참조) 및 기준 전압 공급회로(도 2의 도면부호 114 참조)를 포함할 수 있다.
전압 검출 회로(310)는 멀티플렉서에 의해 어느 하나의 셀이 선택되면, 차등 증폭기 및 ADC를 통해 선택된 셀의 셀 전압을 제어기(340)로 출력한다.
제어기(340)는 전압 검출 회로(310)로부터 셀 전압이 출력되면, 이를 인터페이스(330)를 통해 배터리 제어기(200)로 전달한다. 전압 검출 IC(300)로부터 셀 전압 검출 결과를 수신한 배터리 제어기(200)는 이를 토대로 셀 그룹(20)의 셀 밸런싱, 충/방전 등을 제어할 수 있다.
전압 검출 IC(300)는 셀 그룹(20)을 구성하는 셀들의 셀 밸런싱을 제어할 수 있다.
각 셀 밸런싱 스위치(SW)는 대응하는 밸런싱 저항(Rb)을 통해 대응하는 셀의 양단 사이에 연결되며, 제어기(340)의 제어에 따라 대응하는 셀의 셀 밸런싱 전류 흐름을 도통하거나 차단시킨다.
제어기(340)는 인터페이스(330)를 통해 배터리 제어기(200)로부터 셀 밸런싱 제어 정보를 수신하며, 이를 토대로 각 셀 밸런싱 스위치(SW)의 턴 온/턴 오프를 제어한다.
전압 검출 회로(310)에서 ADC로 기준 전압(Vref)을 공급하는 기준 전압 공급회로는 온도에 민감하다. 이에 따라, 저온 환경에서는 기준 전압 공급회로에서 출력되는 기준 전압(Vref)의 레벨이 상온에서와 차이가 발생한다. ADC의 변환은 기준 전압(Vref)을 기준으로 이루어진다. 따라서, 저온 환경에서의 기준 전압(Vref)의 레벨 변화는 ADC의 출력값의 에러를 증가시키는 요인으로 동작할 수 있다.
이러한 문제를 해결하기 위해, 제어기(140)는 전압 검출 회로(310)에서 ADC로 공급되는 기준 전압(Vref)을 지속적으로 모니터링하고, 기준 전압(Vref)이 소정 범위를 벗어나면 전압 검출 IC(300) 내부의 온도를 상승시키는 제어를 수행한다. 즉, 제어기(140)는 기준 전압(Vref)이 소정 범위를 벗어나면, 전압 검출 IC(300) 내부의 온도가 저온 영역에 포함된다고 판단하고, 전압 검출 IC(300) 내부의 온도를 상승시키기 위해 적어도 하나의 셀 밸런싱 스위치(SW)를 턴 온 시킬 수 있다. 여기서, 소정 범위는 상온 영역에서 기준 전압 공급회로로부터 출력되는 기준 전압(Vref)의 레벨 범위에 대응한다.
전압 검출 IC(300) 내부의 온도 상승을 위한 셀 밸런싱 스위치의 턴 온 제어시, 제어기(340)는 전압 검출 IC(300)에 포함된 셀 밸런싱 스위치(SW)들을 복수의 그룹으로 구분하고, 각 셀 밸런싱 스위치 그룹을 교대로 턴 온 시킬 수 있다. 예를 들어, 전압 검출 IC(300)는 셀 밸런싱 스위치(SW)들을 3개 또는 4개씩 그룹핑하고, 각 셀 밸런싱 스위치 그룹들을 번갈아가며 턴 온 시킬 수 있다. 또한, 예를 들어, 전압 검출 IC(300)는 홀수 번째 셀 밸런싱 스위치(SW)들과, 짝수 번째 셀 밸런싱 스위치(SW)들을 서로 다른 그룹으로 그룹핑하고, 두 셀 밸런싱 스위치 그룹을 번갈아가며 턴 온 시킬 수도 있다.
전압 검출 IC(300) 내부의 온도 상승을 위한 셀 밸런싱 스위치의 턴 온 제어시, 제어기(340)는 대응하는 셀 밸런싱 스위치(SW)가 온도 상승을 위해 턴 온되는 시간이 모든 셀에 대해 동일하도록 제어할 수도 있다. 이 경우, 온도 상승을 위한 셀 밸런싱 스위치(SW)의 턴 온 제어가, 셀 밸런싱에 미치는 영향을 최소화할 수 있다.
제어기(340)는 전압 검출 회로(310)에서 ADC로 공급되는 기준 전압(Vref)가 소정 범위 이내에 진입하면, 온도 상승을 위해 턴 온 된 셀 밸런싱 스위치(SW)들을 모두 턴 오프하여 셀 밸런싱 스위치(SW)를 이용한 온도 상승을 중단한다.
도 6은 도 5의 배터리 관리 시스템의 셀 밸런싱 스위치 제어 방법을 개략적으로 도시한 것이다. 도 6의 셀 밸런싱 스위치 제어 방법은 도 5를 참조하여 설명한 전압 검출 IC(300)의 제어기(340)에 의해 수행될 수 있다.
도 5를 참조하면, 제어기(340)는 전압 검출 회로(310)에서 ADC에 공급되는 기준 전압(Vref)으르 모니터링한다(S300).
제어기(340)는 기준 전압(Vref)이 소정 범위를 벗어나는지를 판단한다(S310).
제어기(340)는 기준 전압(Vref)이 소정 범위를 벗어나면, 전압 검출 IC(300) 온도가 저온 영역에 포함된 것으로 판단하고, 전압 검출 IC(300) 내부의 온도 상승을 위해 적어도 하나의 셀 밸런싱 스위치(SW)를 턴 온 제어한다(S320).
상기 S320 단계에서, 제어기(340)는 전압 검출 IC(300)에 포함된 셀 밸런싱 스위치(SW)들을 복수의 그룹으로 구분하고, 각 셀 밸런싱 스위치 그룹을 교대로 턴 온 시킬 수 있다.
상기 S320 단계에서, 제어기(340)는 대응하는 셀 밸런싱 스위치(SW)가 온도 상승을 위해 턴 온되는 시간이 모든 셀에 대해 동일하도록 제어할 수도 있다.
제어기(340)는 셀 밸런싱 스위치(SW)의 턴 온 제어를 통해 전압 검출 IC(300) 내부의 온도를 상승시키는 중에도 지속적으로 기준 전압(Vref)을 모니터링한다(S330). 또한, 기준 전압(Vref)이 소정 범위 이내로 진입하는지를 판단한다(S340).
제어기(340)는 기준 전압(Vref)이 소정 범위 이내로 진입하면, 전압 검출 IC(300) 온도가 정상 범위(상온 영역)에 도달한 것으로 판단하고, 온도 상승을 위해 턴 온 중인 셀 밸런싱 스위치(SW)를 모두 턴 오프 제어하여(S350), 셀 밸런싱 스위치(SW)의 발열을 중단시킨다.
도 7은 또 다른 실시 예에 따른 배터리 관리 시스템을 개략적으로 도시한 것이다.
도 7을 참조하면, 또 다른 실시 예에 따른 배터리 관리 시스템은 전압 검출 IC(500) 및 배터리 제어기(200)를 포함할 수 있다. 이하 설명에서는 도 1 내지 도 3을 참조하여 설명한 배터리 관리 시스템과 동일 또는 유사한 구성요소에 대해서는 상세한 설명을 생략한다.
전압 검출 IC(500)는 복수의 셀 밸런싱 스위치(SW), 전압 검출 회로(510), 온도 센서(520), 인터페이스(530) 및 제어기(540)를 포함할 수 있다.
전압 검출 IC(500)는 셀 그룹(20)과 전기적으로 연결되며, 전압 검출 회로(510)를 통해 셀 그룹(20)을 구성하는 각 셀(cell)의 셀 전압을 검출할 수 있다.
전압 검출 회로(510)는 멀티플렉서(도 2의 도면부호 111 참조), 차등 증폭기(도 2의 도면부호 112 참조), ADC(도 2의 도면부호 113 참조) 및 기준 전압 공급회로(도 2의 도면부호 114 참조)를 포함할 수 있다.
전압 검출 회로(510)는 멀티플렉서에 의해 어느 하나의 셀이 선택되면, 차등 증폭기 및 ADC를 통해 선택된 셀의 셀 전압을 제어기(540)로 출력한다.
제어기(540)는 전압 검출 회로(510)로부터 셀 전압이 출력되면, 이를 인터페이스(530)를 통해 배터리 제어기(200)로 전달한다. 전압 검출 IC(500)로부터 셀 전압 검출 결과를 수신한 배터리 제어기(200)는 이를 토대로 셀 그룹(20)의 셀 밸런싱, 충/방전 등을 제어할 수 있다.
전압 검출 IC(500)는 셀 그룹(20)을 구성하는 셀들의 셀 밸런싱을 제어할 수 있다.
각 셀 밸런싱 스위치(SW)는 대응하는 밸런싱 저항(Rb)을 통해 대응하는 셀의 양단 사이에 연결되며, 제어기(540)의 제어에 따라 대응하는 셀의 셀 밸런싱 전류 흐름을 도통하거나 차단시킨다.
제어기(540)는 인터페이스(530)를 통해 배터리 제어기(200)로부터 셀 밸런싱 제어 정보를 수신하며, 이를 토대로 각 셀 밸런싱 스위치(SW)의 턴 온/턴 오프를 제어한다.
온도 센서(520)는 전압 검출 IC(500) 내부의 온도를 검출할 수 있다. 기준 전압 공급 회로(도 2의 도면 부호 114 참조)는 온도에 민감하여 저온 영역에서 셀 전압 검출 에러가 발생하는 원인으로 작용한다. 따라서, 온도 센서(520)는 기준 전압 공급회로의 주변 온도를 검출할 수 있도록, 기준 전압 공급회로와 접하거나 인접하게 배치될 수 있다.
제어기(540)는 온도 센서(520)를 통해 검출된 내부 온도가 저온 영역에 포함되면, 전압 검출 IC(500)의 내부 온도 상승을 위해 적어도 하나의 셀 밸런싱 스위치(SW)를 턴 온 시킬 수 있다. 즉, 제어기(540)는 온도 센서(520)를 통해 검출된 온도가 임계치 미만이면, 온도 상승을 이해 적어도 하나의 셀 밸런싱 스위치(SW)를 턴 온 시킬 수 있다. 여기서, 임계치는 저온 영역을 판단하기 위한 경계 값으로서, 배터리 관리 시스템이 탑재되는 환경에 따라서 다르게 설정될 수 있다.
셀 밸런싱 스위치(SW)가 턴 온되면, 셀 밸런싱 스위치(SW)의 내부 저항(도 3의 도면 부호 Rsw 참조)으로 밸런싱 전류(Ib)가 흘러 셀 밸런싱 스위치(SW)가 발열하게 된다. 셀 밸런싱 스위치(SW)의 발열은 전압 검출 IC(500) 내부의 온도 상승을 위한 열원으로 동작할 수 있다.
전압 검출 IC(500) 내부의 온도 상승을 위한 셀 밸런싱 스위치의 턴 온 제어 시, 제어기(540)는 전압 검출 IC(500)에 포함된 셀 밸런싱 스위치(SW)들을 복수의 그룹으로 구분하고, 각 셀 밸런싱 스위치 그룹을 교대로 턴 온 시킬 수 있다. 예를 들어, 전압 검출 IC(500)는 셀 밸런싱 스위치(SW)들을 3개 또는 4개씩 그룹핑하고, 각 셀 밸런싱 스위치 그룹들을 번갈아가며 턴 온 시킬 수 있다. 또한, 예를 들어, 전압 검출 IC(500)는 홀수 번째 셀 밸런싱 스위치(SW)들과, 짝수 번째 셀 밸런싱 스위치(SW)들을 서로 다른 그룹으로 그룹핑하고, 두 셀 밸런싱 스위치 그룹을 번갈아가며 턴 온 시킬 수도 있다.
전압 검출 IC(500) 내부의 온도 상승을 위한 셀 밸런싱 스위치의 턴 온 제어시, 제어기(540)는 대응하는 셀 밸런싱 스위치(SW)가 온도 상승을 위해 턴 온되는 시간이 모든 셀에 대해 동일하도록 제어할 수도 있다. 이 경우, 온도 상승을 위한 셀 밸런싱 스위치(SW)의 턴 온 제어가, 셀 밸런싱에 미치는 영향을 최소화할 수 있다.
제어기(540)는 온도 센서(520)를 통해 검출한 전압 검출 IC(500) 내부 온도가 저온 영역을 벗어나면, 온도 상승을 위해 턴 온 된 셀 밸런싱 스위치(SW)들을 모두 턴 오프하여 셀 밸런싱 스위치(SW)를 이용한 온도 상승을 중단한다.
전술한 바와 같이 셀 밸런싱 스위치(SW)들을 이용하여 전압 검출 IC(500) 내부의 온도를 상승시킬 경우, 전압 검출 IC(500) 내부의 온도를 단 시간 내에 빠르게 상승시킬 수 있는 효과가 있다. 그러나, 전압 검출 IC(500) 내부 온도가 저온 범위를 벗어나 셀 밸런싱 스위치(SW)가 턴 오프 되면, 전압 검출 IC(500)의 주변 온도(예를 들어, 셀의 온도)에 의해 전압 검출 IC(500)의 온도가 다시 저온 영역으로 내려가는 상황이 발생할 수 있다. 또한, 이를 방지하기 위해 셀 밸런싱 스위치(SW)의 턴 온 상태를 지속적으로 유지할 경우 셀의 과도한 방전으로 셀 수명 및 셀 밸런싱에 악영향을 미칠 수도 있다.
따라서, 배터리 관리 시스템은 도 7에 도시된 바와 같이, 전압 검출 IC(500)의 주변 온도를 검출하기 위한 온도 센서(410)를 더 포함할 수 있다. 또한, 전압 검출 IC(500)는 전압 검출 IC(500)의 내부 온도를 유지시키기 위한 발열 회로(550)를 더 포함할 수 있다.
온도 센서(410)는 전압 검출 IC(500)와 인접하게 배치되며, 전압 검출 IC(500) 주변의 온도를 검출할 수 있다. 예를 들어, 전압 검출 IC(500)를 포함하는 인쇄회로기판(Printed Circuit Board, PCB)이 셀 그룹(20)에 부착되는 경우, 온도 센서(410)는 셀 그룹(20)에 부착될 수 있다. 또한, 예를 들어, 온도 센서(410)는 전압 검출 IC(500)를 포함하는 인쇄회로기판에 부착되어 사용될 수도 있다.
제어기(540)는 전압 검출 IC(500) 내부의 온도가 저온 영역을 벗어나 셀 밸런싱 스위치(SW)들이 턴 오프되면, 온도 센서(410)를 통해 검출된 전압 검출 IC(500)의 주변 온도를 토대로 발열 회로(550)를 제어할 수 있다.
제어기(540)는 전압 검출 IC(500) 내부의 온도가 저온 영역을 벗어난 상태에서 온도 센서(410)를 통해 검출된 주변 온도가 저온 영역에 포함되면, 전압 검출 IC(500)의 내부 온도가 주변 온도에 의해 다시 낮아지는 것을 방지하기 위해 발열 회로(550)가 발열하도록 제어할 수 있다. 또한, 제어기(540)는 온도 센서(410)를 통해 검출된 주변 온도가 저온 영역을 벗어나면, 발열을 중단하도록 발열 회로(550)를 제어할 수 있다.
발열 회로(550)는 저온 영역에서 셀 전압 검출 에러가 발생하는 원인으로 작용하는 기준 전압 공급회로(도 2의 도면부호 114 참조)와 접하거나 인접하게 배치될 수 있다.
발열 회로(550)는 발열이 가능한 다양한 형태로 구현될 수 있다.
예를 들어, 발열 회로(550)는 도 7에 도시된 바와 같이, 발열 스위치(SWheat)를 포함할 수 있다. 제어기(540)는 발열 스위치(SWheat)의 턴온/턴 오프를 제어함으로써 발열 회로(550)의 발열을 제어할 수 있다.
발열 스위치(SWheat)가 턴 온되면, 발열 스위치(SWheat)의 내부 저항으로 전류가 흘러 발열 스위치(SWheat)가 발열하게 된다. 발열 스위치(SWheat)의 발열은 전압 검출 IC(500) 내부의 온도 상승 또는 유지를 위한 열원으로 동작할 수 있다.
발열 스위치(SWheat)는 셀 그룹(20)을 구성하는 복수의 셀 중 어느 하나의 양극 단자와, 셀 그룹(20)을 구성하는 복수의 셀 중 어느 하나의 음극 단자 사이에 연결될 수 있다. 도 7을 예로 들면, 발열 스위치(SWheat)는 셀 그룹(20)을 구성하는 복수의 셀 중 최고 전위 셀의 양극 단자와 최하 전위 셀의 음극 단자 사이에 연결될 수 있다. 그러나, 본 발명이 이로 한정되는 것은 아니어서, 셀 그룹(20) 내에서 발열 스위치(SWheat)가 연결되는 셀은 변경될 수도 있다.
한편, 도 7에서는 발열 스위치(SWheat)가 입력 저항(Rc)을 통해 셀 그룹(20)에 연결되는 경우를 예로 들어 도시하였으나, 본 발명이 이로 한정되는 것은 아니어서, 발열 스위치(SWheat)는 별도의 저항(미도시)을 통해 셀 그룹(20)에 양 단이 연결될 수도 있다. 이 경우, 발열 스위치(SWheat)의 양 단과 셀 그룹(20) 상에 연결되는 저항은 전압 검출 IC(500) 내부에 위치하여 발열 스위치(SWheat)와 함께 발열 회로(550)를 구성할 수도 있다.
도 8은 도 7의 배터리 관리 시스템의 셀 밸런싱 스위치 제어 방법을 개략적으로 도시한 것이다. 도 8의 셀 밸런싱 스위치 제어 방법은 도 7을 참조하여 설명한 전압 검출 IC(500)의 제어기(540)에 의해 수행될 수 있다.
도 8을 참조하면, 제어기(540)는 온도 센서(520)를 통해 전압 검출 IC(100) 내부의 온도를 검출한다(S500).
제어기(540)는 온도 센서(520)를 통해 검출한 온도를 임계치와 비교함으로써, 온도 센서(520)를 통해 검출된 온도가 저온 영역에 포함되는지를 판단한다(S510).
제어기(540)는 온도 센서(520)를 통해 검출된 온도가 저온 영역에 포함되는 경우, 전압 검출 IC(500) 내부의 온도 상승을 위해 적어도 하나의 셀 밸런싱 스위치(SW)를 턴 온 제어한다(S520).
상기 S520 단계에서, 제어기(540)는 전압 검출 IC(500)에 포함된 셀 밸런싱 스위치(SW)들을 복수의 그룹으로 구분하고, 각 셀 밸런싱 스위치 그룹을 교대로 턴 온 시킬 수 있다.
상기 S520 단계에서, 제어기(540)는 온도 센서(520)를 통해 검출된 온도에 따라서 동시에 턴 온되는 셀 밸런싱 스위치(SW)의 개수를 다르게 제어할 수도 있다. 이 경우, 제어기(540)는 온도 센서(520)를 통해 검출된 온도가 낮을수록 동시에 턴 온되는 셀 밸런싱 스위치(SW)의 개수가 증가하도록 제어할 수 있다.
상기 S520 단계에서, 제어기(540)는 모든 셀 밸런싱 스위치(SW)를 동시에 턴 온 시킨 후, 온도 상승에 따라서 턴 오프되는 셀 밸런싱 스위치(SW)의 개수가 점차적으로 늘어나도록 제어할 수도 있다.
상기 S520 단계에서, 제어기(540)는 대응하는 셀 밸런싱 스위치(SW)가 온도 상승을 위해 턴 온되는 시간이 모든 셀에 대해 동일하도록 제어할 수도 있다.
제어기(540)는 셀 밸런싱 스위치(SW)의 턴 온 제어를 통해 전압 검출 IC(500) 내부의 온도를 상승시키는 중에도 온도 센서(520)를 통해 전압 검출 IC(500) 내부의 온도를 지속적으로 검출한다(S530). 또한, 온도 센서(520)를 통해 검출된 온도가 저온 영역을 벗어나는지를 판단한다(S540).
제어기(540)는 온도 센서(520)를 통해 검출된 온도가 저온 영역을 벗어나는 경우, 온도 상승을 위해 턴 온 중인 셀 밸런싱 스위치(SW)를 모두 턴 오프 제어함으로써(S550), 셀 밸런싱 스위치(SW)의 발열을 중단시킨다.
또한, 제어기(540)는 온도 센서(410)를 통해 전압 검출 IC(500)의 주변 온도를 검출한다(S560). 그리고 제어기(540)는 온도 센서(410)를 통해 검출한 온도를 임계치와 비교함으로써, 온도 센서(410)를 통해 검출된 주변 온도가 저온 영역에 포함되는지를 판단한다(S570).
제어기(540)는 온도 센서(410)를 통해 검출된 주변 온도가 저온 영역에 포함되는 경우, 전압 검출 IC(500) 내부의 온도가 낮아지는 것을 방지하기 위해 발열 스위치(SWheat)를 턴 온 시켜 발열 회로(550)를 발열 시킨다(S580).
제어기(540)는 발열 스위치(SWheat)가 턴 온된 상태에서도 온도 센서(410)를 통해 전압 검출 IC(500)의 주변 온도를 지속적으로 검출한다(S590). 또한, 온도 센서(410)를 통해 검출된 주변 온도가 저온 영역을 벗어나는지를 판단한다(S600).
제어기(540)는 온도 센서(410)를 통해 검출된 주변 온도가 저온 영역을 벗어나는 경우, 온도 유지를 위해 턴 온 중인 발열 스위치(SWheat)를 턴 오프 제어함으로써(S6100), 발열 회로(500)의 발열을 중단시킨다.
한편, 도 8에서는 제어기(540)가 발열 스위치(SWheat)의 턴 온 시간을 통해 발열 회로(550)의 발열량을 제어하는 경우를 예로 들어 도시하였으나, 본 발명이 이에 한정되는 것은 아니다. 제어기(540)는 전압 검출 IC(500)의 주변 온도가 저온 영역에 머무르는 동안 필요한 발열량에 따라 발열 스위치(SWheat)의 듀티비를 가변하는 PWM 제어를 통해 발열 스위치(SWheat)의 발열량을 제어할 수 있다. 또한 제어기(540)는 발열 스위치(SWheat)의 턴 온/턴 오프 주기를 조절함으로써 발열량을 제어할 수도 있다. 이 경우, 제어기(540)는 온도 센서(410)를 통해 검출된 주변 온도와 온도 센서(520)를 통해 검출된 내부 온도 간의 차이를 토대로 필요한 발열량을 산출하고, 이를 토대로 발열 스위치(SWheat)의 듀티비 또는 턴 온/턴 오프 주기를 제어할 수 있다.
또한, 도 8에서는 전압 검출 IC(500) 내부의 온도가 상승하여 셀 밸런싱 스위치(SW)가 턴 오프된 후에, 발열 스위치(SWheat)를 턴 온 시키는 경우를 예로 들어 도시하였으나, 전압 검출 IC(500) 내부의 온도 상승을 위해 셀 밸런싱 스위치(SW)와 발열 스위치(SWheat)가 동시에 턴 온 될 수도 있다. 이 경우, 전압 검출 IC(500) 내부의 온도가 상승하여 셀 밸런싱 스위치(SW)가 턴 오프되더라도, 발열 스위치(SWheat)는 주변 온도가 저온 영역을 벗어날 때까지 턴 온상태를 유지할 수 있다.
한편, 전술한 실시 예들에서는 전압 검출 IC(100, 300)의 각 셀에 대한 셀 전압 측정 경로와 셀 밸런싱 경로가 각 셀의 음극에 연결되는 입력 저항(Rc)을 공유하는 경우를 예로 들어 도시하였으나, 본 발명은 이에 한정되는 것은 아니다. 도 9를 예로 들면, 전압 검출 IC(700)는 셀의 양단에 각각 연결되는 입력 저항(Rb)들을 통해 셀 전압을 측정하고, 입력 저항(Rb)과 별도로 셀 양단에 각각 연결되는 밸런싱 저항(Rb)을 통해 셀 밸런싱을 수행할 수 있다. 도 9의 전압 검출 IC(700)는 셀 전압 측정을 위한 단자들(Cin) 중 어느 하나를 셀 밸런싱 경로가 공유하는 전압 검출 IC들(100, 300, 500)과는 달리, 셀 전압 측정을 위한 단자들(Cin)과, 셀 밸런싱을 위한 단자들(Bin)이 별도로 구비될 수 있다. 도 9에서, 밸런싱 단자들(Bin) 사이에 연결되는 커패시터(Cb)는 밸런싱 스위치(SW)의 진단 시 리플 전압 등의 노이즈로 인해 오동작이 발생하는 것을 방지하기 위한 것이다.
또한, 전술한 실시 예들에서는 전압 검출 IC(100, 300, 500)의 내부 온도를 상승시키기 위해 셀 밸런싱 스위치(SW)를 제어하는 기능이 전압 검출 IC(100, 300 500) 내부의 제어기(140, 340, 540)에 의해 수행되는 경우를 예로 들어 설명하였으나, 본 발명은 이에 한정되는 것은 아니어서, 전압 검출 IC(100, 300, 500)의 내부 온도를 상승시키기 위한 셀 밸런싱 스위치 제어 기능은 배터리 제어기(200)에 의해 수행될 수도 있다. 이 경우, 전압 검출 IC 내부의 제어기는 인터페이스를 통해 전압 검출 IC 내부 또는 주변의 온도 정보, 또는 기준 전압(Vref)의 레벨 정보를 배터리 제어기로 전달하고, 온도 상승을 위한 셀 밸런싱 스위치(SW) 또는 발열 스위치(SWheat)의 제어 정보를 배터리 제어기로부터 수신할 수 있다.
전술한 실시 예들에 따르면, 저온 환경에서의 전압 검출 IC 내부의 온도 상승 방법을 제시함으로써, 저온 환경에서 전압 검출 IC의 정밀도를 향상시키는 효과가 있으며, 이로 인해 SOC 정확도가 향상되는 효과가 있다.
통상적으로 배터리 관리 시스템에 의해 산출되는 SOC의 부정확성으로 인해, 배터리 팩 제작 시에는 안전성 확보를 위해 SOC 에러만큼 충분한 내부 마진을 두어 배터리의 가용 용량을 산출한다. 예를 들어, 배터리의 가용 구간이 배터리 전체 용량의 10% ~ 90%이고 SOC의 산출 에러가 ±5%인 경우, 실제 사용 시 배터리의 가용 구간은 배터리 전체 용량의 15% ~ 85%로 줄어든다. 즉, 배터리 가용 용량은 배터리 전체 용량의 80% 이지만, SOC 에러로 인해 실제 배터리 사용은 배터리 전체 용량의 70% 이내에서 이루어진다. 따라서 SOC 에러가 감소하면 배터리의 실제 사용 용량이 증대되는 효과를 가져올 수 있다.
또한, 실시 예들에서는 저온 환경에서 전압 검출 IC 내부의 온도를 상승시키기 위해 셀 밸런싱 스위치를 이용함으로써 별도의 추가 비용 없이 전압 검출 IC의 온도 상승이 가능한 효과가 있다.
지금까지 참조한 도면과 기재된 발명의 상세한 설명은 단지 본 발명의 예시적인 것으로서, 이는 단지 본 발명을 설명하기 위한 목적에서 사용된 것이지 의미 한정이나 특허청구범위에 기재된 본 발명의 범위를 제한하기 위하여 사용된 것은 아니다. 그러므로 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시 예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.
(부호의 설명)
20: 셀 그룹
100, 300, 500, 700: 전압 검출 IC
110, 310, 510: 전압 검출 회로
111: 멀티플렉서
112: 차등 증폭기
113: ADC
114: 기준 전압 공급회로
120, 410, 520: 온도 센서
130, 330, 530: 인터페이스
200: 배터리 제어기
550: 발열 회로
SW: 셀 밸런싱 스위치
SWheat: 발열 스위치

Claims (20)

  1. 복수의 셀과 전기적으로 연결되며, 상기 복수의 셀 중 대응하는 셀의 셀 전압을 검출하는 전압 검출 회로,
    상기 복수의 셀 중 대응하는 셀의 밸런싱 전류 흐름을 도통 또는 차단시키는 복수의 셀 밸런싱 스위치,
    전압 검출 집적회로의 내부 온도를 검출하는 온도 센서, 및
    상기 내부 온도가 제1 임계치 미만일 때,
    상기 내부 온도에 따라서 동시에 턴 온되는 셀 밸런싱 스위치의 개수를 다르게 선택하고, 상기 선택된 스위치를 턴 온 시키는 제어기를 포함하는 전압 검출 집적회로.
  2. 제1항에 있어서,
    상기 제어기는, 상기 복수의 셀 밸런싱 스위치를 복수의 그룹으로 그룹핑하고, 상기 내부 온도가 제1 임계치 미만이면, 상기 복수의 그룹을 번갈아가며 턴 온시키는 전압 검출 집적회로.
  3. 제2항에 있어서,
    상기 제어기는, 상기 복수의 그룹의 턴 온 시간이 동일하도록 제어하는 전압 검출 집적회로.
  4. 제1항에 있어서,
    상기 제어기는 상기 내부 온도가 제1 임계치 미만이면 상기 복수의 셀 밸런싱 스위치를 동시에 턴 온 시킨 후, 상기 내부 온도가 상승함에 따라 턴 오프되는 셀 밸런싱 스위치의 개수를 점차적으로 증가시키는 전압 검출 집적회로.
  5. 제1항에 있어서,
    상기 전압 검출 회로는,
    상기 복수의 셀 중 어느 하나를 선택하는 멀티플렉서,
    상기 멀티플렉서에 의해 선택된 셀의 양단 전압을 증폭하여 출력하는 차등 증폭기,
    기준 전압을 공급하는 기준 전압 공급회로, 및
    상기 기준 전압을 토대로, 상기 멀티플렉서에 의해 선택된 셀의 셀 전압에 대응하는 디지털 값을 출력하는 아날로그 디지털 변환기를 포함하며,
    상기 온도 센서는, 상기 기준 전압 공급회로와 접하거나 인접하게 배치되는 전압 검출 집적회로.
  6. 제1항에 있어서,
    발열 회로를 더 포함하며,
    상기 제어기는, 상기 전압 검출 집적회로 외부의 온도 센서로부터 상기 전압 검출 집적회로의 주변 온도를 수신하며, 상기 내부 온도가 상기 제1 임계치 이상에 도달하여 상기 복수의 셀 밸런싱 스위치가 턴 오프된 상태에서 상기 주변 온도가 제2 임계치 미만이면, 상기 발열 회로가 발열하도록 제어하는 전압 검출 집적회로.
  7. 제6항에 있어서,
    상기 발열 회로는 상기 복수의 셀 중 제1 셀의 양극 단자와 상기 복수의 셀 중 제2 셀의 음극 단자 사이에 연결되는 발열 스위치를 포함하는 전압 검출 집적회로.
  8. 제7항에 있어서,
    상기 제어기는 상기 주변 온도가 상기 제2 임계치 이상이면 상기 발열 스위치를 턴 오프 시키는 전압 검출 집적회로.
  9. 제7항에 있어서,
    상기 제어기는 상기 내부 온도와 상기 주변 온도를 토대로 상기 발열 회로의 발열량을 산출하고, 상기 발열량에 대응하는 듀티비로 상기 발열 스위치를 PWM 제어하는 전압 검출 집적회로.
  10. 제7항에 있어서,
    상기 제어기는 상기 내부 온도와 상기 주변 온도를 토대로 상기 발열 회로의 발열량을 산출하고, 상기 발열량에 따라 상기 발열 스위치의 턴 온/턴 오프 주기를 제어하는 전압 검출 집적회로.
  11. 제7항에 있어서,
    상기 발열 스위치와 상기 제1 셀의 양극 단자 사이 또는 상기 발열 스위치와 상기 제2 셀의 음극 단자 사이에 연결되는 발열 저항을 더 포함하는 전압 검출 집적회로.
  12. 복수의 셀과 전기적으로 연결되며, 상기 복수의 셀 중 대응하는 셀의 셀 전압을 검출하는 전압 검출 회로, 상기 복수의 셀 중 대응하는 셀의 밸런싱 전류 흐름을 도통 또는 차단시키는 복수의 셀 밸런싱 스위치 및 제1 온도 센서를 포함하는 집적회로, 및
    상기 제1 온도 센서를 통해 획득한 상기 집적회로의 내부 온도가 임계치 미만일 때, 상기 내부 온도에 따라서 동시에 턴 온되는 셀 밸런싱 스위치의 개수를 다르게 선택하고, 상기 선택된 스위치를 턴 온 제어하는 배터리 제어기를 포함하는 배터리 관리 시스템.
  13. 제12항에 있어서,
    상기 배터리 제어기는, 상기 복수의 셀 밸런싱 스위치를 복수의 그룹으로 그룹핑하고, 상기 내부 온도가 임계치 미만이면, 상기 복수의 그룹을 번갈아가며 턴 온시키는 배터리 관리 시스템.
  14. 제13항에 있어서,
    상기 배터리 제어기는, 상기 복수의 그룹의 턴 온 시간이 동일하도록 제어하는 배터리 관리 시스템.
  15. 제12항에 있어서,
    상기 배터리 제어기는 상기 내부 온도가 임계치 미만이면 상기 복수의 셀 밸런싱 스위치를 동시에 턴 온 시킨 후, 상기 내부 온도가 상승함에 따라 턴 오프되는 셀 밸런싱 스위치의 개수를 점차적으로 증가시키는 배터리 관리 시스템.
  16. 제12항에 있어서,
    상기 집적회로의 주변 온도를 검출하는 제2온도 센서를 더 포함하며,
    상기 집적회로는 상기 주변 온도에 따라 발열하는 발열 회로를 더 포함하는 배터리 관리 시스템.
  17. 제16항에 있어서,
    상기 배터리 제어기는, 상기 내부 온도가 상기 제1 임계치 이상에 도달하여 상기 복수의 셀 밸런싱 스위치가 턴 오프된 상태에서, 상기 주변 온도가 제2 임계치 미만이면, 상기 발열 회로가 발열하도록 제어하는 배터리 관리 시스템.
  18. 제17항에 있어서,
    상기 발열 회로는 상기 복수의 셀 중 제1 셀의 양극 단자와 상기 복수의 셀 중 제2 셀의 음극 단자 사이에 연결되는 발열 스위치를 포함하는 배터리 관리 시스템.
  19. 제18항에 있어서,
    상기 배터리 제어기는 상기 주변 온도가 상기 제2 임계치 이상이면 상기 발열 스위치를 턴 오프 시키는 배터리 관리 시스템.
  20. 제17항에 있어서,
    상기 배터리 제어기는 상기 내부 온도와 상기 주변 온도를 토대로 상기 발열 회로의 발열량을 산출하고, 상기 발열량에 따라서 상기 발열 스위치의 턴 온/ 턴 오프를 제어하는 배터리 관리 시스템.
PCT/KR2017/011933 2017-01-03 2017-10-26 전압 검출 집적회로 및 이를 포함하는 배터리 관리 시스템 WO2018128257A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/467,483 US11327122B2 (en) 2017-01-03 2017-10-26 Voltage detection integrated circuit and battery management system comprising same
CN201780082162.6A CN110140057B (zh) 2017-01-03 2017-10-26 电压检测集成电路和包括其的电池管理系统
EP17889917.5A EP3567390B1 (en) 2017-01-03 2017-10-26 Voltage detection integrated circuit and battery management system comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0000776 2017-01-03
KR1020170000776A KR102319241B1 (ko) 2017-01-03 2017-01-03 전압 검출 집적회로 및 이를 포함하는 배터리 관리 시스템

Publications (1)

Publication Number Publication Date
WO2018128257A1 true WO2018128257A1 (ko) 2018-07-12

Family

ID=62789279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/011933 WO2018128257A1 (ko) 2017-01-03 2017-10-26 전압 검출 집적회로 및 이를 포함하는 배터리 관리 시스템

Country Status (5)

Country Link
US (1) US11327122B2 (ko)
EP (1) EP3567390B1 (ko)
KR (1) KR102319241B1 (ko)
CN (1) CN110140057B (ko)
WO (1) WO2018128257A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109494850A (zh) * 2019-01-08 2019-03-19 奇瑞汽车股份有限公司 电池组均衡方法、装置及系统
CN109742458A (zh) * 2018-11-28 2019-05-10 上海松岳电源科技有限公司 一种用于动力电池系统锂电池组充放电能力提升的装置
IT201900009237A1 (it) * 2019-06-17 2020-12-17 St Microelectronics Srl Procedimento di funzionamento di sistemi di gestione di batterie, dispositivo e veicolo corrispondenti
IT201900009234A1 (it) * 2019-06-17 2020-12-17 St Microelectronics Srl Procedimento di funzionamento di sistemi di gestione di batterie, dispositivo e veicolo corrispondenti

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102284872B1 (ko) * 2017-10-31 2021-07-30 주식회사 엘지에너지솔루션 셀 밸런싱 장치 및 방법
JP7056113B2 (ja) * 2017-12-08 2022-04-19 株式会社デンソー 電池制御装置
JP7115439B2 (ja) * 2018-09-14 2022-08-09 トヨタ自動車株式会社 二次電池システムおよび二次電池の内部状態推定方法
KR20200127638A (ko) * 2019-05-03 2020-11-11 주식회사 엘지화학 배터리셀 진단 장치 및 방법
KR102686901B1 (ko) * 2019-05-09 2024-07-22 주식회사 엘지에너지솔루션 슬레이브 bms의 자동 id 할당 시스템
CN111969680B (zh) * 2020-08-10 2022-03-22 傲普(上海)新能源有限公司 一种优化的bms被动均衡方法
US11626633B2 (en) * 2020-08-31 2023-04-11 GM Global Technology Operations LLC Determination of battery module and sub-pack association in electrical energy storage systems
CN113188582B (zh) * 2021-04-14 2022-09-06 合肥国轩高科动力能源有限公司 一种电池管理系统数据采集精度测试系统及方法
KR20230039265A (ko) * 2021-09-14 2023-03-21 주식회사 엘지에너지솔루션 셀 밸런싱 회로 및 이를 포함하는 배터리 시스템
CN116666792B (zh) * 2023-06-30 2024-05-10 苏州融硅新能源科技有限公司 电池系统的充放电控制方法和电池系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008141953A (ja) * 2004-04-30 2008-06-19 Shin Kobe Electric Mach Co Ltd 多直列電池制御システム
KR20120059247A (ko) * 2010-11-30 2012-06-08 현대자동차주식회사 배터리 팩의 셀 밸런싱 제어장치 및 방법
KR20140084691A (ko) * 2012-12-27 2014-07-07 현대모비스 주식회사 배터리 전압 균등화 장치 및 방법
JP5683710B2 (ja) * 2011-09-08 2015-03-11 日立オートモティブシステムズ株式会社 電池システム監視装置
JP2015112007A (ja) * 2011-05-31 2015-06-18 日立オートモティブシステムズ株式会社 電池システム監視装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4168978B2 (ja) 2004-05-31 2008-10-22 新神戸電機株式会社 組電池用制御回路
KR100839382B1 (ko) * 2006-10-16 2008-06-20 삼성에스디아이 주식회사 배터리 관리 시스템 및 그의 구동 방법
JP4816705B2 (ja) 2008-10-01 2011-11-16 ソニー株式会社 バッテリの制御装置、バッテリの制御方法、及び、バッテリ
KR101093928B1 (ko) 2009-11-26 2011-12-13 삼성에스디아이 주식회사 배터리 셀의 고온 스웰링을 방지할 수 있는 배터리 팩 및 그 방법
JP2012083283A (ja) * 2010-10-14 2012-04-26 Yazaki Corp 複数組電池の電圧測定装置
JP5632723B2 (ja) 2010-11-26 2014-11-26 株式会社ケーヒン セルバランス制御装置
CN202121023U (zh) * 2011-05-20 2012-01-18 西安康本通讯科技有限公司 电池组智能在线监测补偿器
CN102916458B (zh) 2011-08-05 2015-06-17 凹凸电子(武汉)有限公司 电池均衡系统、电路及其方法
CN102427256B (zh) 2011-10-28 2013-10-23 山东大学 电动汽车锂电池组管理系统
US9071056B2 (en) * 2011-11-04 2015-06-30 Samsung Sdi Co., Ltd. Apparatus and method for managing battery cell, and energy storage system
KR101263385B1 (ko) * 2011-11-18 2013-05-21 자동차부품연구원 밸런싱 기능 검증이 가능한 bms 시뮬레이터 및 이를 이용한 검증 방법
CN104145399B (zh) * 2012-02-29 2016-11-02 Nec能源元器件株式会社 电池控制系统和电池组
CN202651843U (zh) * 2012-06-15 2013-01-02 凹凸电子(武汉)有限公司 电池监控装置、电池系统及用电设备
EP2696465B1 (en) * 2012-08-09 2016-12-21 Samsung SDI Co., Ltd. Battery management system and cell balancing method
KR20140111187A (ko) * 2013-03-08 2014-09-18 엘지전자 주식회사 배터리 모듈 및 배터리 기준온도 이상의 유지방법
CN203481854U (zh) * 2013-07-31 2014-03-12 比亚迪股份有限公司 一种电池管理装置、电源系统及储能电站
JP6205254B2 (ja) * 2013-11-29 2017-09-27 株式会社マキタ 充電制御装置
CN204694377U (zh) * 2015-04-20 2015-10-07 山东创恒科技发展有限公司 一种带开路检测的多路热电偶温度检测系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008141953A (ja) * 2004-04-30 2008-06-19 Shin Kobe Electric Mach Co Ltd 多直列電池制御システム
KR20120059247A (ko) * 2010-11-30 2012-06-08 현대자동차주식회사 배터리 팩의 셀 밸런싱 제어장치 및 방법
JP2015112007A (ja) * 2011-05-31 2015-06-18 日立オートモティブシステムズ株式会社 電池システム監視装置
JP5683710B2 (ja) * 2011-09-08 2015-03-11 日立オートモティブシステムズ株式会社 電池システム監視装置
KR20140084691A (ko) * 2012-12-27 2014-07-07 현대모비스 주식회사 배터리 전압 균등화 장치 및 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3567390A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109742458A (zh) * 2018-11-28 2019-05-10 上海松岳电源科技有限公司 一种用于动力电池系统锂电池组充放电能力提升的装置
CN109494850A (zh) * 2019-01-08 2019-03-19 奇瑞汽车股份有限公司 电池组均衡方法、装置及系统
CN109494850B (zh) * 2019-01-08 2022-05-03 奇瑞汽车股份有限公司 电池组均衡方法、装置及系统
IT201900009237A1 (it) * 2019-06-17 2020-12-17 St Microelectronics Srl Procedimento di funzionamento di sistemi di gestione di batterie, dispositivo e veicolo corrispondenti
IT201900009234A1 (it) * 2019-06-17 2020-12-17 St Microelectronics Srl Procedimento di funzionamento di sistemi di gestione di batterie, dispositivo e veicolo corrispondenti
EP3754354A1 (en) * 2019-06-17 2020-12-23 STMicroelectronics Srl A method of operating battery management systems, corresponding device and vehicle
EP3754355A1 (en) * 2019-06-17 2020-12-23 STMicroelectronics Srl A method of operating battery management systems, corresponding device and vehicle
US11312238B2 (en) 2019-06-17 2022-04-26 Stmicroelectronics S.R.L. Method of operating battery management systems, corresponding device and vehicle
US11370321B2 (en) 2019-06-17 2022-06-28 Stmicroelectronics S.R.L Method of operating battery management systems, corresponding device and vehicle

Also Published As

Publication number Publication date
EP3567390A1 (en) 2019-11-13
US11327122B2 (en) 2022-05-10
EP3567390B1 (en) 2024-10-09
CN110140057A (zh) 2019-08-16
KR102319241B1 (ko) 2021-10-28
US20190339335A1 (en) 2019-11-07
EP3567390A4 (en) 2020-09-02
KR20180079971A (ko) 2018-07-11
CN110140057B (zh) 2021-07-13

Similar Documents

Publication Publication Date Title
WO2018128257A1 (ko) 전압 검출 집적회로 및 이를 포함하는 배터리 관리 시스템
WO2018194249A1 (ko) 과충전 방지 장치 및 방법
WO2017142385A1 (ko) 스위치 부품의 고장 진단 장치 및 방법
WO2017082705A1 (ko) 이차 전지의 출력 파라미터를 조정하는 시스템 및 그 방법
WO2018093045A1 (ko) 배터리의 절연 저항 산출 장치 및 방법
WO2018139764A2 (ko) 배터리 관리 장치 및 방법
WO2019117606A1 (ko) 배터리 팩의 양극 컨택터 진단 장치 및 방법
WO2018105881A1 (ko) 배터리 관리 장치 및 방법
WO2018070684A2 (ko) 진단 장치 및 이를 포함하는 전원 시스템
WO2020017817A1 (ko) 스위치 진단 장치 및 방법
WO2019022377A1 (ko) 마스터 배터리 관리 유닛 및 이를 포함하는 배터리팩
WO2019199064A1 (ko) 배터리 진단 장치 및 방법
WO2019151779A1 (ko) 프리차지 저항 보호 장치
WO2018117386A1 (ko) 배터리 팩
WO2020153637A1 (ko) 배터리 관리 장치, 배터리 관리 방법 및 배터리 팩
WO2020145768A1 (ko) 배터리 팩 진단 장치
WO2022098096A1 (ko) 배터리 진단 장치 및 방법
WO2019078475A1 (ko) 병렬연결 구조의 배터리 팩의 히터 제어 시스템 및 그 방법
WO2020141772A1 (ko) 배터리 밸런싱 장치 및 그것을 포함하는 배터리 팩
WO2023153651A1 (ko) 배터리 충방전 장치
WO2021246655A1 (ko) 배터리 상태 진단 장치 및 방법
WO2021080161A1 (ko) 배터리 관리 시스템, 배터리 팩, 전기 차량 및 배터리 관리 방법
WO2022215962A1 (ko) 배터리 진단 장치 및 방법
WO2021157920A1 (ko) 배터리 랙의 개별 방전 시스템 및 방법
WO2021040217A1 (ko) 에너지저장시스템(ess)의 셀 안정화 방법 및 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889917

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017889917

Country of ref document: EP

Effective date: 20190805