WO2021040217A1 - 에너지저장시스템(ess)의 셀 안정화 방법 및 시스템 - Google Patents

에너지저장시스템(ess)의 셀 안정화 방법 및 시스템 Download PDF

Info

Publication number
WO2021040217A1
WO2021040217A1 PCT/KR2020/008589 KR2020008589W WO2021040217A1 WO 2021040217 A1 WO2021040217 A1 WO 2021040217A1 KR 2020008589 W KR2020008589 W KR 2020008589W WO 2021040217 A1 WO2021040217 A1 WO 2021040217A1
Authority
WO
WIPO (PCT)
Prior art keywords
soc
charging
battery module
minimum
maximum
Prior art date
Application number
PCT/KR2020/008589
Other languages
English (en)
French (fr)
Inventor
임보미
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2022512419A priority Critical patent/JP7378587B2/ja
Priority to US17/637,344 priority patent/US20220311255A1/en
Priority to EP20857233.9A priority patent/EP4007040A4/en
Publication of WO2021040217A1 publication Critical patent/WO2021040217A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/44Control modes by parameter estimation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a cell stabilization method and system of an energy storage system (ESS), and more specifically, to minimize deterioration and effects due to intermittent charging/discharging for a plurality of cells included in the energy storage system (ESS). It relates to a cell stabilization method and system of an energy storage system (ESS) capable of maintaining cell stability by controlling charge/discharge.
  • ESS energy storage system
  • the power storage device configures a plurality of battery packs by connecting a plurality of battery cells in series or parallel to maintain a driving voltage and output energy efficiently, and a plurality of battery racks in which the plurality of battery packs are connected in series. ) To configure the battery.
  • Patent Document 1 JP4433752 B2
  • the present invention is to solve the above-described problem, by differently charging/discharging a plurality of cells included in a battery rack in module units, so that charging/discharging can be performed uniformly without SOC deviation between cells. .
  • a method of controlling charging/discharging of a plurality of cells constituting each battery module included in an energy storage system (ESS) includes charging/discharging of a plurality of cells constituting each battery module.
  • calculating the SOC in the SOC calculation step is characterized in that it is calculated by the following equation (1).
  • the step of determining whether the charging/discharging operation is performed when the extracted maximum SOC reaches a maximum limit value UB of a preset operation limit range or the minimum SOC reaches a preset minimum limit value LB.
  • the second determination step when the difference between the maximum SOC and the minimum SOC exceeds a predetermined reference range, the maximum SOC reaches the maximum limit value UB or the minimum SOC is the minimum limit value. Even when (LB) is reached, it is characterized in that it is finally determined that the charging/discharging operation of the cells included in the corresponding battery module should be continued.
  • the second determination step if the difference between the maximum SOC and the minimum SOC is within a predetermined reference range, it is characterized in that it is finally determined that the charging/discharging operation of the cells included in the corresponding battery module should be stopped. do.
  • a cell stabilization system of an energy storage system (ESS) includes: a battery rack including at least one battery module composed of a plurality of cells; A charge/discharge control unit for controlling a charge/discharge operation of cells for each of the battery modules; A data measurement unit that measures SOC measurement data of cells being charged/discharged at regular intervals; An SOC calculator configured to calculate an SOC of each cell by using the SOC measurement data measured by the data measuring unit; A charge/discharge operation determination unit for determining whether a charge/discharge operation of the cells is performed for each battery module by using the SOC of each cell calculated by the SOC calculating unit; A memory unit storing reference data for determining whether a charging/discharging operation of cells is performed for each battery module by the charging/discharging operation determination unit; Consists of including.
  • the SOC calculation unit calculates the SOC of each cell by the following equation (1).
  • the charging/discharging operation determination unit extracts a maximum SOC that is the largest SOC value for each battery module and a minimum SOC that is the smallest SOC value for the same time point among SOCs of a plurality of cells calculated by the SOC calculator.
  • a maximum/minimum value extraction unit Compare whether the maximum SOC extracted for each battery module reaches the maximum limit value (UB) of the preset operation limit range or the minimum SOC reaches the minimum limit value (LB) of the preset operation limit range, and the comparison result
  • a first determination unit that first determines whether or not charging/discharging operations of cells included in the corresponding battery module are performed according to the first determination unit; It characterized in that it is configured to include.
  • the first determination unit may charge/discharge cells included in the corresponding battery module. It is characterized in that the first determination as to stop the operation and outputting a first determination signal, the maximum SOC is less than the maximum limit value (UB), the minimum SOC exceeds the minimum limit value (LB) If the state is, it is determined that the charging/discharging operation of the cells included in the corresponding battery module is continued, and a sustain signal is output.
  • a second determination unit that makes a final determination; It characterized in that it is configured to include.
  • the second determination unit when the difference between the maximum SOC and the minimum SOC exceeds a predetermined reference range, the second determination unit finally determines that the charging/discharging operation of the cells included in the corresponding battery module should be continued, and the charging/discharging operation is performed. If a sustain signal is output to the discharge control unit and the difference between the maximum SOC and the minimum SOC is within a predetermined reference range, it is finally determined that the charging/discharging operation of the cells included in the corresponding battery module should be stopped, and the charging It is characterized in that the second determination signal is output to the /discharge control unit.
  • the charging/discharging control unit controls the charging/discharging state of the cells included in the corresponding battery module to continue when receiving the sustain signal from the second determination unit, and when receiving the second determination signal, the corresponding It is characterized in that the charging/discharging operation is stopped by blocking the charging/discharging current of cells included in the battery module.
  • FIG. 1 is a flowchart illustrating a method of stabilizing an energy storage system (ESS) cell according to an embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating a method of stabilizing an energy storage system (ESS) cell according to another embodiment of the present invention.
  • FIG. 3 is a circuit diagram schematically showing a voltage model applied to the present invention.
  • FIG. 4 is a block diagram schematically showing an energy storage system (ESS) cell stabilization system according to the present invention.
  • ESS energy storage system
  • FIG. 1 is a flowchart illustrating an embodiment of the present invention
  • FIG. 2 is a flowchart illustrating another embodiment of the present invention. With reference to these, the cell stabilization method of the energy storage system (ESS) of the present invention will be described.
  • ESS energy storage system
  • the charging/discharging process step is a step of simultaneously charging/discharging a plurality of cells constituting each battery module included in the energy storage system (ESS). All of the cells in are in a charging/discharging state. In this way, controlling the charging/discharging progress of the cells is performed by the charging/discharging control unit 200 to be described later.
  • the data measurement step is a step of measuring data for SOC measurement of each cell at regular periodic intervals while a plurality of cells are simultaneously charging/discharging through the charging/discharging step (S100), which will be described later. Performed by the unit 300.
  • current, voltage, and resistance of each cell may be measured at predetermined periodic intervals.
  • the current, voltage, and resistance values of each cell measured through this step may be referred to as SOC measurement data and described.
  • the SOC calculation step is a step of calculating the SOC of the cell based on the SOC measurement data of each cell measured in the data measurement step S200, and is performed by the SOC calculation unit 400 to be described later.
  • calculating the SOC of the cell can be calculated by the following equation (1) based on the measured SOC measurement data. (See Fig. 3)
  • the SOC calculation step (S300) of calculating the SOC of each cell may be composed of a terminal voltage calculation step (S300) of calculating the terminal voltage (Vk) of each cell, which will be described later. It is performed by the terminal voltage calculation unit 400.
  • calculating the terminal voltage of the cell can be calculated by the following equation (2) based on the measured SOC measurement data. (See Fig. 3)
  • the maximum/minimum value extraction step among SOCs of each cell calculated through the SOC calculation step (S300), the maximum and minimum SOCs are extracted for each battery module at the same time point, and the charging/discharging operation determination unit It is performed by the maximum/minimum value extraction unit 510 of 500.
  • the SOC value of the cell with the largest SOC is the maximum SOC
  • the SOC value of the cell with the smallest SOC is the minimum SOC among the SOC values of the plurality of cells included in the battery module.
  • the voltage value of the cell with the largest voltage is the maximum terminal voltage
  • the terminal voltage value of the cell with the smallest voltage is the minimum terminal voltage.
  • the charging/discharging operation determination step is based on the maximum SOC and minimum SOC for each battery module at the same time point extracted by the maximum/minimum value extraction step (S400), for each battery module. It is possible to determine whether the included cells are charged/discharged.
  • the step of determining whether the charging/discharging operation is performed may include detailed steps as follows.
  • the extracted maximum SOC and minimum SOC are compared with the maximum limit value (UB) and the minimum limit value (LB) of a preset operation limit range, and whether or not the battery module is charged/discharged according to the comparison result. Can be judged. This is accomplished by the first determination unit 520 to be described later.
  • the maximum SOC (SOCmax) reaches the maximum limit value UB of the operation limit range (in the above state) or the minimum SOC (SOCmin) reaches the minimum limit value LB of the operation limit range ( In the following state), it may be determined primarily that the charging/discharging operation of the cells included in the corresponding battery module should be stopped (S512).
  • Example 2 the extracted maximum terminal voltage and minimum terminal voltage were compared with the maximum voltage value (OVW) and the minimum voltage value (UVW) of a preset operation limit range, respectively, and the corresponding battery according to the comparison result. It is possible to determine whether the module is charged/discharged.
  • the maximum terminal voltage (Vmax) reaches the maximum voltage value (Over Voltage Warning, OVW) of the operation limit range (over voltage warning, OVW), or the minimum terminal voltage (Vmin) is the minimum voltage value of the operation limit range.
  • (Under Voltage Warning, UVW) it can be determined primarily that the charging/discharging operation of the cells included in the corresponding battery module should be stopped.
  • the deviation calculation step is a step of calculating a difference between a maximum SOC and a minimum SOC of the corresponding battery module, which is first determined to stop the charging/discharging operation in the first determination step S510, and the maximum/minimum extraction step It can be calculated using the maximum SOC and minimum SOC values for each battery module extracted in (S400).
  • the difference between the maximum SOC and the minimum SOC calculated as described above determines whether the charging/discharging operation of the cells included in the corresponding battery module, which is primarily determined to be stopped in the first determination step (S510), is determined. It can be used to judge as.
  • the difference between the maximum terminal voltage and the minimum terminal voltage for each battery module extracted in the maximum/minimum extraction step (S400) is calculated. It may be performed when it is determined in step S510 that the charging/discharging operation should be stopped. Through this, a deviation between the maximum terminal voltage and the minimum terminal voltage is calculated for each battery module.
  • the difference between the maximum terminal voltage and the minimum terminal voltage calculated as described above is the charging/discharging operation of cells included in the corresponding battery module, which is primarily determined to be stopped in the first condition comparison step (S510). It can be used to finally determine whether or not.
  • This operation is performed by the deviation calculation unit 530 to be described later.
  • the second determination step is a cell included in the corresponding battery module for the first determination of the first determination step (S510) by using the difference value between the maximum SOC and the minimum SOC calculated through the deviation calculation step (S520). It is possible to finally determine whether the charging/discharging operation is performed.
  • the corresponding battery in the first determination step S510. Even if it is determined that the charging/discharging operation of the cells included in the module should be stopped, it may be finally determined that the charging/discharging operation of the cells included in the corresponding battery module should be continued (S522).
  • the deviation between the maximum SOC and the minimum SOC is within a predetermined reference range, it is the same as the result of the first determination that the charging/discharging operation of the cells in the corresponding battery module should be stopped in the first determination step (S510). It may be finally determined that the charging/discharging operation should be stopped (S524).
  • the maximum SOC and the minimum SOC are compared with a predetermined maximum limit value UB and a minimum limit value LB to determine whether the cells in the corresponding battery module are charged/discharged. And if it is determined that the charging/discharging operation should be stopped as a result of the determination, the second determination step (S510) compares whether the deviation between the maximum SOC and the minimum SOC exceeds a predetermined reference range. Even if it is determined that the charging/discharging operation should be stopped in the first determination step S510, it is finally determined that the charging/discharging operation of the cells in the corresponding battery module should be continued.
  • the first determination step Even if it is determined in S510 that the charging/discharging operation of the cells included in the corresponding battery module should be stopped, it may be finally determined that the charging/discharging operation of the cells of the corresponding battery module should be continued (S522).
  • the charging/discharging operation of the cells in the corresponding battery module is primarily determined. It is determined and compared whether the deviation between the maximum terminal voltage and the minimum terminal voltage exceeds a predetermined reference range, and if it is exceeded, even when it is determined that the charging/discharging operation should be stopped in the first condition comparison step (S510), It can be finally determined that the charging/discharging operation of the cells in the corresponding battery module should be continued. On the other hand, if the deviation between the maximum terminal voltage and the minimum terminal voltage is within a predetermined reference range, it may be finally determined that the charging/discharging operation of the cells in the corresponding battery module should be stopped in the same manner as the first determination result.
  • OVW maximum voltage value
  • UVW minimum voltage value
  • Example 1 the first determination is made using the maximum SOC and the minimum SOC, and the first determination is finally determined by using the deviation between the values
  • Example 2 is the maximum terminal voltage and the minimum terminal voltage. The first judgment is made by using, and the first judgment is finally judged by using the deviation between the values.
  • This step is performed by the second determination unit 540 to be described later.
  • the predetermined reference range in the first embodiment and the predetermined reference range in the second embodiment are set to different values.
  • the charging/discharging operation control step is a step of controlling the charging/discharging operation of the cells included in the corresponding battery module according to the result finally determined in the second determination step S530, and the charging/discharging control unit 200 Carried out by
  • the charging/discharging current of the cells of the corresponding battery module is maintained to flow, and the charging/discharging may be controlled to continue.
  • the charging/discharging operation in progress may be stopped by blocking the charging/discharging current flowing through the cells of the corresponding battery module. .
  • the battery rack includes one or more battery modules 110, and each battery module 110 may include a plurality of battery cells 111.
  • Each battery module 110 constituting the battery rack is assigned a corresponding module identification number, and each battery cell 111 included in the battery module is also assigned a corresponding cell identification number.
  • the charging/discharging operation can be stopped, or the charging/discharging progress state can be maintained.
  • the charge/discharge control unit may control the charge/discharge operation of cells in the corresponding battery module according to a control signal output from the charge/discharge operation determination unit 400 to be described later.
  • the data measuring unit includes a current of each cell 111 at a predetermined periodic interval in a state in which a plurality of cells 111 included in each battery module 110 constituting the battery rack 100 are in charge/discharge, Voltage and resistance values can be measured.
  • the data measurement unit includes a current measurement unit, a voltage measurement unit, and a resistance measurement unit (hereinafter, not shown), and measures current, voltage, and resistance values of each cell being charged/discharged at predetermined periodic intervals. I can.
  • SOC measurement data The current and voltage values of each cell measured in this way are referred to as SOC measurement data.
  • the SOC calculator may calculate the SOC of the cell by Equation (1) below, based on the SOC measurement data of each cell being charged/discharged measured by the data measuring unit 300. (See Fig. 3)
  • the terminal voltage calculation unit 400 is configured instead of the SOC calculation unit described above, and the terminal voltage Vk of each cell can be calculated and used to determine whether to charge/discharge.
  • Vk terminal voltage
  • the charging/discharging operation determination unit may determine whether a charging/discharging operation of the corresponding cells is performed for each battery module by using the SOC of each cell calculated by the SOC calculating unit 400.
  • the charging/discharging operation determination unit uses the terminal voltage of each cell being charged/discharged calculated by the terminal voltage calculating unit 400 to determine whether the respective cells are charged/discharged for each battery module. I can judge.
  • the charging/discharging operation determination unit may include detailed configurations as follows.
  • the maximum/minimum value extracting unit is configured to extract a maximum SOC and a minimum SOC for each battery module at the same time point among SOCs of each cell calculated by the SOC calculating unit 400.
  • the SOC value of the cell with the largest SOC is the maximum SOC (SOCmax), and the SOC value of the cell with the smallest SOC is the minimum SOC ( SOCmin).
  • SOCmax the maximum SOC
  • SOCmin the minimum SOC
  • the maximum SOC and minimum SOC are extracted for each battery module, and the extracted maximum SOC and minimum SOC is a state in which the charging/discharging operation of the cells included in the corresponding battery module should be stopped or can be continued. Can be used to judge.
  • the maximum/minimum value extraction unit may extract a maximum terminal voltage and a minimum terminal voltage for each battery module at the same time point among the terminal voltages of each cell calculated by the terminal voltage calculation unit 400. .
  • the terminal voltage value of the cell having the largest terminal voltage is the maximum terminal voltage (Vmax), and the terminal of the cell having the smallest terminal voltage.
  • the voltage value can be extracted as the minimum terminal voltage (Vmin).
  • the first determination unit stops the charging/discharging operation of cells included in the corresponding battery module by using the maximum SOC and minimum SOC for each battery module extracted by the maximum/minimum value extraction unit 510 You can decide whether to continue or not.
  • the extracted maximum SOC and minimum SOC for each battery module are compared with the maximum limit value (UB) and the minimum limit value (LB) of a preset operation limit range, respectively, and can be determined according to the comparison result. have.
  • the ongoing charging/discharging operation of cells included in the corresponding battery module should be stopped.
  • the first determination may be made, and a first determination signal indicating this may be generated and output.
  • the maximum SOC is less than the maximum limit value (UB) and the minimum SOC exceeds the minimum limit value (LB), it is possible to continue the ongoing charging/discharging operation of cells included in the corresponding battery module. It is determined that it is, and a continuous signal indicating this may be generated and output.
  • the first determination unit uses the maximum terminal voltage and minimum terminal voltage of each battery module extracted by the maximum/minimum value extraction unit 510 to determine whether or not the cells included in the corresponding battery module are charged/discharged. You can decide whether to stop or continue.
  • the extracted maximum terminal voltage and minimum terminal voltage for each battery module are compared with the maximum voltage value (OVW) and the minimum voltage value (UVW) of a preset operating limit range, and determined according to the comparison result. can do.
  • the ongoing charging/discharging operation of cells included in the corresponding battery module is performed. It is possible to first determine that it is to be stopped, and generate and output a first determination signal indicating this.
  • the ongoing charging/discharging operation of cells included in the corresponding battery module is performed. It is determined that it is acceptable to continue, and a continuous signal indicating this may be generated and output.
  • the first determination signal and the sustain signal include a module identification number of a corresponding battery module and a cell identification number of cells included therein.
  • the deviation calculation unit may be configured to calculate a difference between the maximum SOC and the minimum SOC for each battery module extracted by the maximum/minimum value extraction unit 410.
  • the deviation calculation unit operates when a first determination signal indicating a result of determining that the charging/discharging operation should be stopped from the first determination unit 520 is output, and is included in the output first determination signal. Using the module identification number and the cell identification number, the deviation between the maximum SOC and the minimum SOC of the corresponding battery module can be calculated.
  • the deviation calculator may calculate the difference by using the maximum terminal voltage and the minimum terminal voltage for each battery module extracted by the maximum/minimum value extraction unit 510.
  • the deviation calculation unit operates when a first determination signal indicating a result of determining that the charging/discharging operation should be stopped from the first determination unit 520 is output, and is included in the output first determination signal. Using the module identification number and the cell identification number, the deviation between the maximum terminal voltage and the minimum terminal voltage of the corresponding battery module can be calculated.
  • the second determination unit stops charging/discharging of cells included in the corresponding battery module by using a difference between the maximum SOC and the minimum SOC of the battery module corresponding to the first determination signal calculated by the deviation calculation unit 530. It is possible to finally judge the result of the first judgment determined to be.
  • the first determination unit 520 In the same manner as determined, it is finally determined that the charging/discharging operation of the cells included in the corresponding battery module should be stopped, and a second determination signal is output to the charging/discharging control unit 200 to charge/discharge the cells in the corresponding battery module. Allows the discharge operation to be stopped.
  • the difference between the maximum SOC and the minimum SOC exceeds a predetermined reference range. If this is the case, it is finally determined that the charging/discharging operation of the cells included in the corresponding battery module is continued, and the maximum SOC of the battery module reaches the maximum limit value UB or the minimum SOC reaches the minimum limit value LB. In the reached state, when the difference between the maximum SOC and the minimum SOC is within a predetermined reference range, it is finally determined that the charging/discharging operation of the cells included in the corresponding battery module is stopped.
  • the second determination unit uses the difference between the maximum terminal voltage and the minimum terminal voltage of the battery module corresponding to the first determination signal calculated by the deviation calculation unit 530 to determine a cell included in the corresponding battery module. It is possible to finally determine the result of the first determination determined to stop the charging/discharging operation of the devices.
  • the first decision is finally determined according to the comparison result. I can.
  • charging/recharging the cells included in the corresponding battery module is the same as the first determination by the first determination unit 520. It is finally determined that the discharging operation should be stopped, and a second determination signal is output to the charge/discharge control unit 200 so that the ongoing charging/discharging operation of the cells in the corresponding battery module can be stopped.
  • the difference between the maximum terminal voltage and the minimum terminal voltage is a predetermined reference range. If the state exceeds, it is finally determined that the charging/discharging operation of the cells included in the corresponding battery module should be continued, and the maximum terminal voltage of the battery module reaches the maximum voltage value (OVW) or the minimum terminal voltage is the same.
  • the minimum voltage value (UVW) is reached and the difference between the maximum terminal voltage and the minimum terminal voltage is within a predetermined reference range, it is finally determined that the charging/discharging operation of the cells included in the corresponding battery module is stopped. will be.
  • the second determination signal also includes the module identification number of the corresponding battery module and the cell identification number included therein, and the charge/discharge control unit 200 that receives it identifies the corresponding battery module among several battery modules, and It is possible to stop the charging/discharging operation by blocking the charging/discharging current of the included cells.
  • the predetermined reference range in the first embodiment and the predetermined reference range in the second embodiment are different values. Is set.
  • the memory unit includes a maximum limit value UB of a preset operation limit range, which is a reference for determining whether the cells are charged/discharged by the first determination unit 520 and the second determination unit 540, and Values such as a minimum limit value LB and a predetermined reference range are stored.
  • a maximum limit value UB of a preset operation limit range which is a reference for determining whether the cells are charged/discharged by the first determination unit 520 and the second determination unit 540.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

본 발명은 에너지저장시스템(ESS)에 포함된 다수의 셀에 대하여 간헐적 충/방전에 의한 퇴화 및 영향을 최소화하도록 배터리 랙에 포함된 다수의 셀들을 모듈 단위로 서로 다르게 충/방전 구동하여, 셀들 간의 SOC 편차 발생 없이 균일하게 충/방전이 가능하도록 하는 에너지저장시스템(ESS)의 셀 안정화 방법 및 시스템에 관한 것이다.

Description

에너지저장시스템(ESS)의 셀 안정화 방법 및 시스템
본 발명은 에너지저장시스템(ESS)의 셀 안정화 방법 및 시스템에 관한 것으로서, 보다 구체적으로는 에너지저장시스템(ESS)에 포함된 다수의 셀에 대하여, 간헐적 충/방전에 의한 퇴화 및 영향을 최소화하도록 충/방전을 제어하여 셀의 안정성을 유지시킬 수 있는 에너지저장시스템(ESS)의 셀 안정화 방법 및 시스템에 관한 것이다.
환경 파괴, 자원 고갈 등이 심각한 문제로 제기되면서, 에너지를 저장하고, 저장된 에너지를 효율적으로 활용할 수 있는 전력 저장 장치(Energy Storage System, ESS)에 대한 관심이 높아지고 있다. 전력 저장 장치(ESS)는 구동전압의 유지 및 효율적인 에너지 출력을 위해 복수의 배터리 셀을 직렬 또는 병렬로 연결하여 복수의 배터리 팩을 구성하고, 복수의 배터리 팩이 직렬로 연결된 복수의 배터리 랙(rack)을 구성하여 배터리를 구성한다.
한편, 종래에는 이러한 배터리 랙(rack)을 구성하는 다수의 셀들의 충/방전을 제어하는 방식으로서, 상기 배터리 랙(rack)에 포함된 다수의 셀들의 평 균 SOC를 산출하고, 이를 기준으로 하여 셀들의 충/방전을 수행하는 방식을 사용하였다.
그러나, 충/방전 시 하나의 배터리 랙(rack)에 포함된 다수의 셀들의 평균 SOC(State of Charge)를 기준으로 사용하는 경우, 셀들의 충/방전 상태에 편차가 발생하는 문제가 있다.
구체적으로, SOC가 평균보다 높은 셀은 필요 이상으로 충전하게 되고, SOC가 평균보다 낮은 셀은 필요 이상 방전하게 되어, 방전심도(Depth of Discharge, DOD)의 상/하한 한계선에서 일부 셀들이 간헐적으로 충/방전을 지속하게 되고, 이러한 현상은 셀의 퇴화를 발생시키는 주요 요인으로 작용하여, 배터리 성능을 저하시키는 문제점을 초래하게 된다.
(특허문헌 1) JP4433752 B2
본 발명은 상술한 문제점을 해결하고자 하는 것으로서, 배터리 랙에 포함된 다수의 셀들을 모듈 단위로 서로 다르게 충/방전 구동하여, 셀들 간의 SOC 편차 발생 없이 균일하게 충/방전을 수행할 수 있도록 하고자 한다.
본 발명의 일 실시 예에 따른 에너지저장시스템(ESS)에 포함된 각 배터리 모듈을 구성하는 다수의 셀들의 충/방전을 제어하는 방법은, 각 배터리 모 듈을 구성하는 다수의 셀들의 충/방전을 진행하는 충/방전 진행단계; 상기 충/방전 진행단계에 의해 다수의 셀들이 동시에 충/방전 중인 상태에서, 일정 주기 간격으로 각 셀의 SOC 측정 데이터를 측정하는 데이터 측정단계; 상기 측정된 각 셀의 SOC 측정 데이터를 이용하여 SOC를 산출하는 SOC 산출단계; 상기 산출된 각 셀의 SOC를 이용하여, 동일한 시점에 대하여, 각 배터리 모듈 별로 가장 큰 SOC 값인 최대 SOC와 가장 작은 SOC 값인 최소 SOC를 추출하는 최대/최소 값 추출단계; 상기 추출한 최대 SOC와 최소 SOC를 바탕으로, 각 배터리 모듈에 포함된 셀들의 충/방전 동작여부를 판단하는 충/방전 동작여부 판단단계; 상기 판단 결과에 따라, 해당 배터리 모듈에 포함된 셀들의 충/방전 동작을 제어하는 충/방전 동작 제어단계; 를 포함하여 구성된다.
여기서, 상기 SOC 산출단계에서 SOC를 산출하는 것은, 하기의 식(1)에 의해 산출하는 것을 특징으로 한다.
식(1):
Figure PCTKR2020008589-appb-I000001
(Cd: 커패시터, Rd: Voltage Model에서 커패시터와 병렬로 연결된 저항, Vd: Voltage Model에서 Rd, Cd 영역에서의 전압, △t: 시간 변화량, capacity: 용량, d=1.d: 주기)
한편, 상기 충/방전 동작여부 판단단계는, 상기 추출한 최대 SOC가 미리 설정한 동작 한계 범위의 최대 한계 값(UB)에 도달하거나 또는 상기 최소 SOC가 미리 설정한 최소 한계 값(LB)에 도달하면, 해당 배터리 모듈에 포함된 셀들의 충/방전 동작을 중지해야 하는 것으로 1차 판단하는 제1 판단단계; 상기 제1 판단단계에서 충/방전 동작을 중지해야 하는 것으로 1차 판단하면, 해당 배터리 모듈의 최대 SOC와 최소 SOC 간의 차이를 산출하는 편차 산출단계; 상기 산출한 최대 SOC와 최소 SOC 간의 차이가 소정의 기준 범위를 초과하는지를 비교하여, 그 비교 결과에 따라 상기 제1 판단단계에서의 1차 판단에 대하여 최종적으로 판단하는 제2 판단단계; 를 포함하여 구성되는 것을 특징으로 한다.
구체적으로, 상기 제2 판단단계는, 상기 최대 SOC와 최소 SOC 간의 차이가 소정의 기준 범위를 초과하면, 상기 최대 SOC가 상기 최대 한계 값(UB)에 도달하거나 또는 상기 최소 SOC가 상기 최소 한계 값(LB)에 도달한 경우라도, 해당 배터리 모듈에 포함된 셀들의 충/방전 동작을 지속해야 하는 것으로 최종 판단하는 것을 특징으로 한다.
반면, 상기 제2 판단단계는, 상기 최대 SOC와 최소 SOC 간의 차이가 소정의 기준 범위 이내인 경우이면, 해당 배터리 모듈에 포함된 셀들의 충/방전 동작을 중지해야 하는 것으로 최종 판단하는 것을 특징으로 한다.
본 발명의 일 실시 예에 따른 에너지저장시스템(ESS)의 셀 안정화 시스템은, 다수의 셀들로 구성된 배터리 모듈을 하나 이상 포함하는 배터리 랙; 상기 배터리 모듈 별로 셀들의 충/방전 동작을 제어하는 충/방전 제어부; 일정 주기 간격으로, 충/방전 중인 셀들의 SOC 측정 데이터를 측정하는 데이터 측정부; 상기 데이터 측정부에 의해 측정된 SOC 측정 데이터를 이용하여, 각각의 셀의 SOC를 산출하는 SOC 산출부; 상기 SOC 산출부에서 산출된 각각의 셀들의 SOC를 이용하여, 배터리 모듈 별로 해당 셀들의 충/방전 동작여부를 판단하는 충/방전 동작여부 판단부; 상기 충/방전 동작여부 판단부에서 각 배터리 모듈 별로 셀들의 충/방전 동작여부 판단을 위한 기준 데이터들이 저장되는 메모리부; 를 포함하여 구성된다.
여기서, 상기 SOC 산출부에서 각 셀의 SOC를 산출하는 것은, 하기의 식(1)에 의해 산출하는 것을 특징으로 한다.
식(1):
Figure PCTKR2020008589-appb-I000002
(Cd: 커패시터, Rd: Voltage Model에서 커패시터와 병렬로 연결된 저항, Vd: Voltage Model에서 Rd, Cd 영역에서의 전압, △t: 시간 변화량, capacity: 용량, d=1.d: 주기)
한편, 상기 충/방전 동작여부 판단부는, 상기 SOC 산출부에서 산출된 다수의 셀들의 SOC 중, 동일한 시점에 대하여, 각 배터리 모듈 별로 가장 큰 SOC 값인 최대 SOC와 가장 작은 SOC 값인 최소 SOC를 추출하는 최대/최소 값 추출부; 배터리 모듈 별로 추출한 최대 SOC가 미리 설정한 동작 한계 범위의 최대 한계 값(UB)에 도달하거나 또는 상기 최소 SOC가 미리 설정한 동작 한계 범위의 최소 한계 값(LB)에 도달하는지를 비교하여, 그 비교 결과에 따라 해당 배터리 모듈에 포함된 셀들의 충/방전 동작여부를 1차 판단하는 제1 판단부; 를 포함하여 구성되는 것을 특징으로 한다.
구체적으로, 상기 제1 판단부는, 상기 최대 SOC가 상기 최대 한계 값(UB)에 도달하거나 또는 상기 최소 SOC가 상기 최소 한계 값(LB)에 도달하면, 해당 배터리 모듈에 포함된 셀들의 충/방전 동작을 중지해야 하는 것으로 1차 판단하고, 1차 판단 신호를 출력하는 것을 특징으로 하며, 상기 최대 SOC가 상기 최대 한계 값(UB) 미만이고, 상기 최소 SOC가 상기 최소 한계 값(LB)을 초과하는 상태이면, 해당 배터리 모듈에 포함된 셀들의 충/방전 동작을 지속하는 것으로 판단하고, 지속 신호를 출력하는 것을 특징으로 한다.
한편, 상기 제1 판단부로부터 1차 판단 신호가 출력되면, 해당 배터리 모듈의 최대 SOC와 최소 SOC 간의 차이를 산출하는 편차 산출부; 상기 산출된 최대 SOC와 최소 SOC 간의 차이가 소정의 기준 범위를 초과하는지를 비교하여, 그 비교 결과에 따라 해당 배터리 모듈에 포함된 셀들의 충/방전 동작을 중지해야 하는 것으로 1차 판단한 결과에 대하여, 최종 판단하는 제2 판단부; 를 포함하여 구성되는 것을 특징으로 한다.
구체적으로, 상기 제2 판단부는, 상기 최대 SOC와 최소 SOC 간의 차이가 소정의 기준 범위를 초과하면, 해당 배터리 모듈에 포함된 셀들의 충/방전 동작을 지속해야 하는 것으로 최종 판단하여, 상기 충/방전 제어부로 지속 신호를 출력하고, 상기 최대 SOC와 최소 SOC 간의 차이가 소정의 기준 범위 이내인 경우라면, 해당 배터리 모듈에 포함된 셀들의 충/방전 동작을 중지해야 하는 것으로 최종 판단하고, 상기 충/방전 제어부로 제2 판단 신호를 출력하는 것을 특징으로 한다.
이에, 상기 충/방전 제어부는, 상기 제2 판단부로부터 지속 신호를 전달 받으면, 해당 배터리 모듈에 포함된 셀들의 충/방전 중인 상태가 지속되도록 제어하고, 상기 제2 판단 신호를 전달 받으면, 해당 배터리 모듈에 포함된 셀들의 충/방전 전류를 차단하여 충/방전 동작을 중지하는 것을 특징으로 한다.
본 발명은 다수의 셀들에 대하여 셀들 간의 SOC 편차 발생 없이 동일하게 충/방전 수행이 가능하기 때문에, SOC 편차 발생으로 인한 셀의 퇴화를 방지할 수 있고, 나아가 배터리 성능의 저하를 최소화할 수 있어 배터리의 효율성을 향상시킬 수 있다.
도 1은 본 발명의 일 실시 예에 따른 에너지저장시스템(ESS) 셀 안정화 방법을 나타내는 흐름도이다.
도 2는 본 발명의 다른 실시 예에 따른 에너지저장시스템(ESS) 셀 안정화 방법을 나타내는 흐름도이다.
도 3은 본 발명에 적용되는 Voltage model을 개략적으로 나타내는 회로도이다.
도 4는 본 발명에 따른 에너지저장시스템(ESS) 셀 안정화 시스템을 개략적으로 나타내는 블록도이다.
아래에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시 예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시 예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면부호를 붙였다.
이하, 도면을 참조하여 본 발명에 대하여 상세히 설명한다.
1. 본 발명에 따른 에너지저장시스템(ESS)의 셀 안정화 방법
도 1은 본 발명의 일 실시 예를 나타내는 흐름도이고, 도 2는 본 발명의 다른 실시 예를 나타내는 흐름도이다. 이들을 참조하여, 본 발명의 에너지저장시스템(ESS)의 셀 안정화 방법을 설명한다.
1.1. 충/방전 진행단계(S100)
충/방전 진행단계는, 에너지저장시스템(ESS)에 포함된 각 배터리 모듈을 구성하는 다수의 셀들에 대하여 동시에 충/방전 동작을 진행하는 단계로서, 이를 통해 에너지저장시스템(ESS)을 구성하는 다수의 모든 셀들은 충/방전 중인 상태가 된다. 이와 같이, 셀들의 충/방전 진행을 제어하는 것은, 후술하는 충/방전 제어부(200)에 의해 수행된다.
1.2. 데이터 측정단계(S200)
데이터 측정단계는, 상기 충/방전 진행단계(S100)를 통해 다수의 셀들이 동시에 충/방전 중인 상태에서, 일정 주기 간격으로 각 셀의 SOC 측정을 위한 데이터들을 측정하는 단계로서, 후술하는 데이터 측정부(300)에 의해 수행된다.
구체적으로, 충/방전 중인 다수의 셀들에 대하여, 소정의 주기 간격으로 각 셀의 전류, 전압, 저항을 측정할 수 있다.
본 명세서에서는, 이 단계를 통해 측정되는 각 셀의 전류, 전압, 저항 값을 SOC 측정 데이터로 지칭하여 설명할 수 있다.
1.3. SOC 산출단계(S300)
<실시 예 1: SOC를 이용하는 경우>
SOC 산출단계는, 상기 데이터 측정단계(S200)에서 측정된 각 셀의 SOC 측정 데이터를 바탕으로 해당 셀의 SOC를 산출하는 단계로서, 후술하는 SOC 산출부(400)에 의해 수행된다.
구체적으로, 셀의 SOC를 산출하는 것은, 상기 측정된 SOC 측정 데이터를 바탕으로 하기의 식(1)에 의해 산출할 수 있다. (도 3 참조)
식(1):
Figure PCTKR2020008589-appb-I000003
(Cd: 커패시터, Rd: Voltage Model에서 커패시터와 병렬로 연결된 저항, Vd: Voltage Model에서 Rd, Cd 영역에서의 전압, △t: 시간 변화량, capacity: 용량, d=1.d: 주기)
이 단계에 의해, 충/방전 중인 각 셀에 대한 SOC 값을 획득할 수 있다.
<실시 예 2: 단자전압을 이용하는 경우>
실시 예 2의 경우, 각 셀의 SOC를 산출하는 SOC 산출단계(S300)가 아닌, 각 셀의 단자전압(Vk)을 산출하는 단자전압 산출단계(S300)로 구성될 수 있으며, 이 경우 후술하는 단자전압 산출부(400)에 의해 수행된다.
구체적으로, 셀의 단자전압을 산출하는 것은, 상기 측정된 SOC 측정 데이터를 바탕으로, 하기의 식(2)에 의해 산출할 수 있다. (도 3 참조)
식(2): Vk = Vd + (Ri x Ik) + OCV
(Vd: Voltage Model에서 Rd에 걸리는 전압, Ri: Rd와 직렬로 연결된 저항, Ik: Ri에 흐르는 전류 값, k: 상수)
이 단계에 의해, 충/방전 중인 각 셀에 대한 단자전압 값을 획득할 수 있다.
1.4. 최대/최소 값 추출단계(S400)
<실시 예 1: SOC를 이용하는 경우
최대/최소 값 추출단계에서는, 상기 SOC 산출단계(S300)를 통해 산출된 각 셀의 SOC 중, 동일한 시점에 대하여 각 배터리 모듈 별로 최대 및 최소 SOC를 추출하는 단계로서, 충/방전 동작여부 판단부(500)의 최대/최소 값 추출부(510)에 의해 수행된다.
각 배터리 모듈 별로, 해당 배터리 모듈 내에 포함된 다수의 셀들의 각 SOC 값들 중에서, 가장 큰 SOC를 가지는 셀의 SOC 값을 최대 SOC로, 가장 작은 SOC를 가지는 셀의 SOC 값을 최소 SOC로 추출할 수 있다. 이 단계를 통해, 각 배터리 모듈 별로 최대 SOC 및 최소 SOC가 추출되며, 상기 추출되는 최대 SOC 및 최소 SOC는, 해당 배터리 모듈에 포함된 셀들에 대하여 진행 중인 충/방전 동작을 중지해야 하는 상태인지 또는 지속해도 되는 상태인지를 판단하는 데에 이용될 수 있다.
<실시 예 2: 단자전압을 이용하는 경우>
실시 예 2에 따른 최대/최소 값 추출단계는, 상기 단자전압 산출단 계(S300)에서 산출된 각 셀의 단자전압 값(Vk) 중, 동일한 시점에 대하여 각 배터리 모듈 별로 최대 및 최소 단자전압 값을 추출할 수 있다.
각 배터리 모듈 별로, 해당 배터리 모듈 내에 포함된 다수의 셀들의 각 단자전압 값들 중에서, 가장 큰 전압을 가지는 셀의 전압 값을 최대 단자전압으로, 가장 작은 전압을 가지는 셀의 단자전압 값을 최소 단자전압으로 추출할 수 있다. 이에 따라, 각 배터리 모듈 별로 최대 전압 측정 값 및 최소 전압 측정 값이 추출되며, 상기 추출되는 최대 단자전압 및 최소 단자전압은, 후술하는 단계들을 통하여 해당 배터리 모듈을 구성하는 다수의 셀들의 충/방전 동작을 중지해야 하는 상태인지 또는 지속해도 되는 상태인지를 판단하는 데에 이용될 수 있다.
1.5. 충/방전 동작여부 판단단계(S500)
<실시 예 1: SOC를 이용하는 경우>
충/방전 동작여부 판단단계는, 실시 예 1의 경우, 상기 최대/최소 값 추출단계(S400)에 의해 추출된 동일한 시점에 대한 각 배터리 모듈 별 최대 SOC 및 최소 SOC를 바탕으로, 각 배터리 모듈에 포함된 셀들의 충/방전 동작여부를 판단할 수 있다.
<실시 예 2: 단자전압을 이용하는 경우>
실시 예 2의 경우에는, 상기 최대/최소 값 추출단계(S400)에 의해 추출된 동일한 시점에 대한 각 배터리 모듈 별 최대 단자전압 및 최소 단자전압을 바탕으로, 해당 배터리 모듈에 포함된 셀들의 충/방전 동작여부를 판단할 수 있다.
이러한 충/방전 동작여부 판단단계는 하기와 같은 세부단계를 포함하여 구성될 수 있다.
가. 제1 판단단계(S510)
<실시 예 1: SOC를 이용하는 경우>
먼저, 상기 추출된 최대 SOC와 최소 SOC를 미리 설정한 동작 한계 범위의 최대 한계 값(UB) 및 최소 한계 값(LB)과 각각 비교하여, 그 비교 결과에 따라 해당 배터리 모듈의 충/방전 동작여부를 판단할 수 있다. 이는 후술하는 제1 판단부(520)에 의해 이루어진다.
구체적으로, 상기 최대 SOC(SOCmax)가 상기 동작 한계 범위의 최대 한계 값(UB)에 도달(이상인 상태)하거나 또는 상기 최소 SOC(SOCmin)가 상기 동작 한계 범위의 최소 한계 값(LB)에 도달(이하인 상태)하면, 해당 배터리 모듈에 포함된 셀들의 충/방전 동작을 중지해야 하는 것으로 1차적으로 판단(S512)할 수 있다.
즉, 상기 최대 SOC와 최소 SOC 중 어느 하나라도 최대 한계 값(UB) 이상인 상태이거나 또는 최소 한계 값(LB) 이하인 상태가 되면, 해당 배터리 모듈의 충/방전 중인 셀들의 충/방전 동작을 중지해야 하는 것으로 1차 판단하는 것이다.
반면, 상기 최대 SOC가 최대 한계 값(UB) 미만이고, 최소 SOC도 최소 한계 값(LB)에 도달하지 않은 상태이면, 해당 배터리 모듈에 포함된 셀들의 충/방전 동작을 지속하는 것으로 판단(S514)한다.
<실시 예 2: 단자전압을 이용하는 경우>
실시 예 2의 경우는, 상기 추출된 최대 단자전압과 최소 단자전압을 미리 설정한 동작 한계 범위의 최대 전압 값(OVW) 및 최소 전압 값(UVW)과 각각 비교하여, 그 비교 결과에 따라 해당 배터리 모듈의 충/방전 동작여부를 판단할 수 있다.
구체적으로, 상기 최대 단자전압(Vmax)이 상기 동작 한계 범위의 최대 전압 값(Over Voltage Warning, OVW)에 도달(이상인 상태)하거나 또는 상기 최소 단자전압(Vmin)이 상기 동작 한계 범위의 최소 전압 값(Under Voltage Warning, UVW)에 도달(이하인 상태)가 되면, 해당 배터리 모듈에 포함된 셀들의 충/방전 동작을 중지해야 하는 것으로 1차적으로 판단할 수 있다.
즉, 상기 최대 단자전압과 최소 단자전압 중 어느 하나라도 최대 전압 값(OVW) 또는 최소 전압 값(UVW) 이하인 상태가 되면, 해당 배터리 모듈의 충/방전 중인 셀들의 충/방전 동작을 중지해야 하는 것으로 판단하는 것이다.
반면, 상기 최대 단자전압이 최대 단자전압(Vmax) 미만이고, 최소 단자전압도 최소 단자전압(Vmin)에 도달하지 않은 상태이면, 해당 배터리 모듈에 포함된 셀들의 충/방전 동작을 지속하는 것으로 판단(S514)한다.
나. 편차 산출단계(S520)
<실시 예 1: SOC를 이용하는 경우>
편차 산출단계는, 상기 제1 판단단계(S510)에서 충/방전 동작을 중지해야 하는 것으로 1차 판단된 해당 배터리 모듈의 최대 SOC와 최소 SOC 간의 차이를 산출하는 단계로서, 상기 최대/최소 추출단계(S400)에서 추출한 배터리 모듈 별 최대 SOC와 최소 SOC 값을 이용하여 산출할 수 있다. 이와 같이 산출된 최대 SOC와 최소 SOC 간 편차는, 상기 제1 판단단계(S510)에서 충/방전 동작을 중지해야 하는 것으로 1차 판단된 해당 배터리 모듈에 포함된 셀들의 충/방전 동작여부를 최종적으로 판단하는 데에 이용될 수 있다.
<실시 예 2: 단자전압을 이용하는 경우>
실시 예 2의 경우, 상기 최대/최소 추출단계(S400)에서 추출된 각 배터리 모듈 별 최대 단자전압과 최소 단자전압 간의 차이를 산출하는 것으로, 상술한 실시 예 1과 동일하게, 상기 제1 조건 비교단계(S510)에서 충/방전 동작을 중지해야 하는 것으로 판단된 경우 수행될 수 있다. 이를 통해, 각 배터리 모듈 별로 최대 단자전압과 최소 단자전압 간 편차가 산출된다. 이와 같이 산출된 최대 단자전압과 최소 단자전압 간 편차는, 상기 제1 조건 비교단계(S510)에서 충/방전 동작을 중지해야 하는 것으로 1차 판단된 해당 배터리 모듈에 포함된 셀들의 충/방전 동작여부를 최종적으로 판단하는 데에 이용될 수 있다.
이러한 동작은, 후술하는 편차 산출부(530)에 의해 수행된다.
다. 제2 판단단계(S530)
<실시 예 1: SOC를 이용하는 경우>
제2 판단단계는, 상기 편차 산출단계(S520)를 통해 산출된 최대 SOC와 최소 SOC 간의 차이 값을 이용하여, 상기 제1 판단단계(S510)의 1차 판단에 대한 해당 배터리 모듈에 포함된 셀들의 충/방전 동작여부를 최종적으로 판단할 수 있다.
구체적으로, 상기 최대 SOC와 최소 SOC 간 편차가 소정의 기준 범위를 초과하는지를 비교하여, 상기 최대 SOC와 최소 SOC 간 편차가 소정의 기준 범위를 초과하면, 상기 제1 판단단계(S510)에서 해당 배터리 모듈에 포함된 셀들의 충/방전 동작을 중지해야 하는 것으로 판단한 경우라도, 해당 배터리 모듈에 포함된 셀들의 충/방전 동작을 지속해야 하는 것으로 최종적으로 판단(S522)할 수 있다.
반면, 상기 최대 SOC와 최소 SOC 간 편차가 소정의 기준 범위 이내인 경우라면, 상기 제1 판단단계(S510)에서 해당 배터리 모듈 내의 셀들의 충/방전 동작을 중지해야 하는 것으로 1차 판단한 결과와 동일하게 충/방전 동작을 중지해야 하는 것으로 최종 판단(S524)할 수 있다.
다시 말해, 상기 제1 판단단계(S510)에서 최대 SOC와 최소 SOC를 소정의 최대 한계 값(UB)과 최소 한계 값(LB)과 비교하여 해당 배터리 모듈 내의 셀들의 충/방전 동작여부를 1차적으로 판단하고, 그 판단 결과 충/방전 동작을 중지해야 하는 것으로 판단되면, 상기 제2 판단단계(S510)에서 최대 SOC와 최소 SOC 간 편차가 소정의 기준 범위를 초과하는지를 비교하여, 초과하면 상기 제1 판단단계(S510)에서 충/방전 동작을 중지해야 하는 것으로 판단한 경우라도, 해당 배터리 모듈 내의 셀들의 충/방전 동작을 지속해야 하는 것으로 최종적으로 판단하는 것이다.
<실시 예 2: 단자전압을 이용하는 경우>
실시 예 2의 경우, 상기 편차 산출단계(S520)를 통해 산출된 최대 단자전압과 최소 단자전압 간의 차이 값으로 상기 제1 판단단계(S510)에서 해당 배터리 모듈에 포함된 셀들의 충/방전 동작여부에 대하여 1차 판단한 결과에 대하여 최종적으로 판단할 수 있다.
구체적으로, 상기 최대 단자전압과 최소 단자전압 간 편차가 소정의 기준 범위에 포함되는지를 비교하여, 상기 최대 단자전압과 최소 단자전압 간 편차가 소정의 기준 범위를 초과하면, 상기 제1 판단단계(S510)에서 해당 배터리 모듈에 포함된 셀들의 충/방전 동작을 중지해야 하는 것으로 판단한 경우라도, 해당 배터리 모듈의 셀들의 충/방전 동작을 지속해야 하는 것으로 최종적으로 판단(S522)할 수 있다.
반면, 상기 최대 단자전압과 최소 단자전압 간 편차가 소정의 기준 범위 이내인 경우라면, SOC 간 편차가 SOC 오차 범위 이내일 수도 있고, 사용할 수 있는 전력 혹은 충전할 수 있는 전력이 적은 경우인 것으로 보고, 상기 제1 판단단계(S510)에서 해당 배터리 모듈 내의 셀들의 충/방전 동작을 중지해야 하는 것으로 판단한 결과와 동일하게, 충/방전 동작을 중지해야 하는 것으로 최종 판단(S524)할 수 있다.
이와 같이, 실시 예 2의 경우는 최대 단자전압과 최소 단자전압을 소정의 최대 전압 값(OVW)과 최소 전압 값(UVW)과 비교하여 해당 배터리 모듈 내의 셀들의 충/방전 동작여부를 1차적으로 판단하고, 상기 최대 단자전압과 최소 단자 전압 간 의 편차가 소정의 기준 범위를 초과하는지를 비교하여, 초과하면 상기 제1 조건 비교단계(S510)에서 충/방전 동작을 중지해야 하는 것으로 판단한 경우라도, 해당 배터리 모듈 내의 셀들의 충/방전 동작을 지속해야 하는 것으로 최종적으로 판단할 수 있다. 반면, 최대 단자전압과 최소 단자전압 간 편차가 소정의 기준 범위 이내이면 상기 1차 판단 결과와 동일하게 해당 배터리 모듈 내의 셀들의 충/방전 동작을 중지해야 하는 것으로 최종 판단할 수 있다.
정리하면, 실시 예 1은 최대 SOC와 최소 SOC를 이용하여 1차적으로 판단하고, 그 값 간의 편차를 이용하여 1차 판단에 대해 최종적으로 판단하는 것이고, 실시 예 2는 최대 단자전압과 최소 단자전압을 이용하여 1차적으로 판단하고, 그 값 간의 편차를 이용하여 1차 판단에 대해 최종적으로 판단하는 것이다.
이와 같은 단계는, 후술하는 제2 판단부(540)에 의해 이루어진다.
여기서, 실시 예 1과 실시 예 2는 SOC와 단자전압을 이용한다는 차이가 있으므로, 상술한 실시 예 1에서의 소정의 기준 범위와 실시 예 2에서의 소정의 기준 범위는 서로 다른 값으로 설정된다.
1.6. 충/방전 동작 제어단계(S600)
충/방전 동작 제어단계는, 상기 제2 판단단계(S530)에서 최종적으로 판단한 결과에 따라, 해당 배터리 모듈에 포함된 셀들의 충/방전 동작을 제어하는 단계로서, 충/방전 제어부(200)에 의해 수행된다.
상기 제2 판단단계(S530)에서 충/방전 동작을 지속해야 하는 것으로 판단되면, 해당 배터리 모듈의 셀들의 충/방전 전류가 흐르는 상태를 유지하여 충/방전을 지속적으로 진행하도록 제어할 수 있다. 반면, 상기 제2 판단단계(S530)에서 충/방전 동작을 중지해야 하는 것으로 판단된 경우라면, 해당 배터리 모듈의 셀들에 흐르는 충/방전 전류를 차단하여 진행 중인 충/방전 동작을 중지시킬 수 있다.
이와 같이, 배터리 랙(100, rack)을 구성하는 다수의 셀들을, 충/방전 중인 셀들의 충/방전 동작 지속여부를 2단계에 걸쳐 2가지 조건의 충족 여부에 따라 모듈 단위로 판단하여 제어함으로써, 배터리 랙(100, rack)을 구성하는 다수의 셀들 간의 편차를 최소화하여 균일하게 충/방전 가능하도록 하여, 충/방전 상태 편차로 인한 셀의 간헐적 충/방전에 따른 퇴화 및 악영향을 방지할 수 있다. 이에 따라, 셀의 안정성을 유지할 수 있고, 나아가 에너지저장시스템(ESS)을 보다 안정적으로 운영하는 것이 가능하다.
2. 본 발명에 따른 에너지저장시스템(ESS)의 셀 안정화 시스템
2.1. 배터리 랙(100)
배터리 랙은, 하나 이상의 배터리 모듈(110)을 포함하여 구성되며, 각 배터리 모듈(110)은 다수의 배터리 셀(111)을 포함하여 구성될 수 있다.
상기 배터리 랙을 구성하는 각 배터리 모듈(110)에는 해당 모듈 식별번호가 부여되어 있고, 상기 배터리 모듈 내에 포함되는 각 배터리 셀(111) 또한 그에 해당하는 셀 식별번호가 부여되어 있다.
2.2. 충/방전 제어부(200)
이는 각 배터리 모듈(110)에 포함된 셀들의 충/방전 동작을 제어하는 구성으로서, 후술하는 충/방전 동작여부 판단부(400)의 판단에 따라 충/방전 중인 셀의 충/방전 전류를 차단하여 충/방전 동작을 중지시킬 수 있고, 또는 충/방전 진행 상태를 유지시킬 수도 있다.
이러한 충/방전 제어부는, 후술하는 충/방전 동작여부 판단부(400)로부터 출력되는 제어신호에 따라 해당 배터리 모듈에 셀들의 충/방전 동작을 제어할 수 있다.
2.3. 데이터 측정부(300)
데이터 측정부는, 상기 배터리 랙(100)를 구성하는 각 배터리 모듈(110)에 포함된 다수의 셀(111)들이 충/방전 진행 중인 상태에서, 소정의 주기 간격으로 각 셀(111)의 전류, 전압, 저항 값을 측정할 수 있다.
상기 데이터 측정부는, 전류 측정부, 전압 측정부, 저항 측정부(이하, 미도시)를 포함하여 구성되어, 소정의 주기 간격으로, 충/방전 중인 각 셀의 전류, 전압, 저항 값을 측정할 수 있다.
이와 같이 측정되는 각 셀의 전류, 전압 값을 SOC 측정 데이터로 지칭한다.
2.4. SOC 산출부(400)
<실시 예 1: SOC를 이용하는 경우>
SOC 산출부는, 상기 데이터 측정부(300)에 의해 측정된 충/방전 중인 각 셀의 SOC 측정 데이터를 바탕으로, 하기의 식(1)에 의해 해당 셀의 SOC를 산출할 수 있다. (도 3 참조)
식(1):
Figure PCTKR2020008589-appb-I000004
(Cd: 커패시터, Rd: Voltage Model에서 커패시터와 병렬로 연결된 저항, Vd: Voltage Model에서 Rd, Cd 영역에서의 전압, △t: 시간 변화량, capacity: 용량, d=1.d: 주기)
이를 통해, 충/방전 중인 각 셀에 대한 SOC 값을 획득할 수 있다.
<실시 예 2: 단자전압을 이용하는 경우>
실시 예 2의 경우, 상술한 SOC 산출부가 아닌 단자전압 산출부(400)로 구성되는 것으로서, 각 셀의 단자전압(Vk)을 산출하여 충/방전 여부 판단에 이용할 수 있다.
각 셀의 단자전압(Vk)을 산출하는 것은, 상기 데이터 측정부(300)에 의해 측정된 충/방전 중인 각 셀의 SOC 측정 데이터를 바탕으로, 하기의 식(2)에 의해 해당 셀의 단자전압을 산출할 수 있다. (도 3 참조)
식(2): Vk = Vd + (Ri x Ik) + OCV
(Vd: Voltage Model에서 Rd, Cd 영역에서의 전압, Ri: Rd와 직렬로 연결된 저항, Ik: Ri에 흐르는 전류 값, k: 상수)
이를 통해, 충/방전 중인 각 셀에 대한 단자전압 값을 획득할 수 있다.
2.5. 충/방전 동작여부 판단부(500)
<실시 예 1: SOC를 이용하는 경우>
충/방전 동작여부 판단부는, 상기 SOC 산출부(400)에서 산출한 각 셀의 SOC를 이용하여, 각 배터리 모듈 별로 해당 셀들의 충/방전 동작여부를 판단할 수 있다.
<실시 예 2: 단자전압을 이용하는 경우>
실시 예 2에 따른 충/방전 동작여부 판단부는, 상기 단자전압 산출부(400)에서 산출된 충/방전 중인 각 셀의 단자전압을 이용하여, 각 배터리 모듈 별로 해당 셀들의 충/방전 동작여부를 판단할 수 있다.
이러한 충/방전 동작여부 판단부는, 하기와 같은 세부구성을 포함하여 구성될 수 있다.
가. 최대/최소 값 추출부(510)
<실시 예 1: SOC를 이용하는 경우>
최대/최소 값 추출부는, 상기 SOC 산출부(400)에서 산출한 각 셀의 SOC 중, 동일한 시점에 대하여 각 배터리 모듈 별로 최대 SOC 및 최소 SOC를 추출하는 구성이다.
각 배터리 모듈 별로, 해당 배터리 모듈 내에 포함된 다수의 셀들의 각 SOC 값들 중에서, 가장 큰 SOC를 가지는 셀의 SOC 값을 최대 SOC(SOCmax)로, 가장 작은 SOC를 가지는 셀의 SOC 값을 최소 SOC(SOCmin)로 추출할 수 있다. 이를 통해, 각 배터리 모듈 별로 최대 SOC 및 최소 SOC가 추출되며, 상기 추출된 최대 SOC 및 최소 SOC는, 해당 배터리 모듈에 포함된 셀들의 충/방전 동작을 중지해야 하는 상태인지 또는 지속해도 되는 상태인지를 판단하는 데에 이용될 수 있다.
<실시 예 2: 단자전압을 이용하는 경우>
실시 예 2에 따른 최대/최소 값 추출부는, 상기 단자전압 산출부(400)에서 산출한 각 셀의 단자전압 중, 동일한 시점에 대하여 각 배터리 모듈 별로 최대 단자전압 및 최소 단자전압을 추출할 수 있다.
각 배터리 모듈 별로, 해당 배터리 모듈 내에 포함된 다수의 셀들의 각 단자전압 값들 중에서, 가장 큰 단자전압을 가지는 셀의 단자전압 값을 최대 단자전압(Vmax)로, 가장 작은 단자전압을 가지는 셀의 단자전압 값을 최소 단자전압(Vmin)로 추출할 수 있다. 이를 통해, 각 배터리 모듈 별로 최대 단자전압 및 단자전압이 추출되며, 상기 추출된 최대 단자전압 및 최소 단자전압은, 해당 배터리 모듈에 포함된 셀들의 충/방전 동작을 중지해야 하는 상태인지 또는 지속해도 되는 상태인지를 판단하는 데에 이용될 수 있다.
나. 제1 판단부(520)
<실시 예 1: SOC를 이용하는 경우>
실시 예 1에 따른 제1 판단부는, 상기 최대/최소 값 추출부(510)에서 추출된 각 배터리 모듈 별 최대 SOC 및 최소 SOC를 이용하여, 해당 배터리 모듈에 포함된 셀들의 충/방전 동작을 중지할 것인지 지속할 것인지를 판단할 수 있다.
구체적으로, 상기 추출된 각 배터리 모듈 별 최대 SOC와 최소 SOC를, 미리 설정한 동작 한계 범위의 최대 한계 값(UB), 최소 한계 값(LB)과 각각 비교하여, 그 비교 결과에 따라 판단할 수 있다.
비교 결과, 상기 최대 SOC가 상기 최대 한계 값(UB) 도달하거나 또는 상기 최소 SOC가 상기 최소 한계 값(LB) 도달하면, 해당 배터리 모듈에 포함된 셀들의 진행 중인 충/방전 동작을 중지해야 하는 것으로 1차 판단하고, 이를 나타내는 제1 판단 신호를 생성하여 출력할 수 있다.
반면, 상기 최대 SOC가 최대 한계 값(UB) 미만이고, 상기 최소 SOC가 상기 최소 한계 값(LB)을 초과하는 상태이면, 해당 배터리 모듈에 포함된 셀들 의 진행 중인 충/방전 동작을 지속해도 되는 것으로 판단하고, 이를 나타내는 지속신호를 생성하여 출력할 수 있다.
<실시 예 2: 단자전압을 이용하는 경우>
실시 예 2에 따른 제1 판단부는, 상기 최대/최소 값 추출부(510)에서 추출한 각 배터리 모듈 별 최대 단자전압 및 최소 단자전압을 이용하여, 해당 배터리 모듈에 포함된 셀들의 충/방전 동작여부를 중지할 것인지 지속할 것인지를 판단할 수 있다.
구체적으로, 상기 추출된 각 배터리 모듈 별 최대 단자전압과 최소 단자전압을, 미리 설정한 동작 한계 범위의 최대 전압 값(OVW), 최소 전압 값(UVW)과 각각 비교하여, 그 비교 결과에 따라 판단할 수 있다.
비교 결과, 상기 최대 단자전압이 상기 최대 전압 값(OVW)에 도달하거나 또는 상기 최소 단자전압이 상기 최소 전압 값(UVW)에 도달하면, 해당 배터리 모듈에 포함된 셀들의 진행 중인 충/방전 동작을 중지해야 하는 것으로 1차 판단하고, 이를 나타내는 1차 판단 신호를 생성하여 출력할 수 있다.
반면, 상기 최대 단자전압이 상기 최대 전압 값(OVW) 미만이고, 상기 최소 단자전압이 상기 최소 전압 값(UVW)을 초과하는 상태이면, 해당 배터리 모듈에 포함된 셀들의 진행 중인 충/방전 동작을 지속해도 되는 것으로 판단하고, 이를 나타내는 지속신호를 생성하여 출력할 수 있다.
여기서, 이 때, 상기 제1 판단 신호와 지속 신호는, 해당 배터리 모듈의 모듈 식별번호 및 그에 포함된 셀들의 셀 식별번호를 포함한다.
다. 편차 산출부(530)
<실시 예 1: SOC를 이용하는 경우>
편차 산출부는, 상기 최대/최소 값 추출부(410)에서 추출한 각 배터리 모듈 별 최대 SOC와 최소 SOC를 이용하여, 그 차이를 산출하는 구성일 수 있다.
구체적으로, 상기 편차 산출부는, 상기 제1 판단부(520)로부터 충/방전 동작을 중지해야 하는 것으로 판단한 결과를 나타내는 제1 판단 신호가 출력되면 동작하며, 상기 출력된 제1 판단 신호에 포함된 모듈 식별번호 및 셀 식별번호를 이용하여, 해당 배터리 모듈의 최대 SOC와 최소 SOC 간 편차를 산출할 수 있다.
<실시 예 2: 단자전압을 이용하는 경우>
편차 산출부는, 상기 최대/최소 값 추출부(510)에 추출한 각 배터리 모듈 별 최대 단자전압과 최소 단자전압을 이용하여, 그 차이를 산출할 수 있다.
구체적으로, 상기 편차 산출부는, 상기 제1 판단부(520)로부터 충/방전 동작을 중지해야 하는 것으로 판단한 결과를 나타내는 제1 판단 신호가 출력되면 동작하며, 상기 출력된 제1 판단 신호에 포함된 모듈 식별번호 및 셀 식별번호를 이용하여, 해당 배터리 모듈의 최대 단자전압과 최소 단자전압 간 편차를 산출할 수 있다.
라. 제2 판단부(540)
<실시 예 1: SOC를 이용하는 경우>
제2 판단부는, 상기 편차 산출부(530)에서 산출된 제1 판단 신호에 해당하는 배터리 모듈의 최대 SOC와 최소 SOC 간 편차를 이용하여, 해당 배터리 모듈에 포함된 셀들의 충/방전을 중지하는 것으로 판단한 1차 판단 결과에 대하여 최종적으로 판단할 수 있다.
구체적으로, 상기 편차 산출부(530)에서 산출된 최대 SOC와 최소 SOC 간 편차가 소정의 기준 범위를 초과하는지를 비교하여, 그 비교 결과에 따라 1차 판단에 대하여 최종적으로 판단할 수 있다.
그 비교 결과, 상기 산출된 최대 SOC와 최소 SOC 간 편차가 소정의 기준 범위를 초과한 경우라면, 해당 배터리 모듈에 포함된 셀들의 충/방전 동작을 지속해도 되는 것으로 최종 판단하고, 상기 충/방전 제어부(200)로 지속 신호를 출력하여 진행 중인 충/방전 동작이 지속될 수 있도록 한다.
반면, 상기 산출된 최대 SOC와 최소 SOC 간 편차가 소정의 기준 범위 이내인 상태이면, 사용할 수 있는 전력 혹은 충전할 수 있는 전력이 적은 상태인 것으로 보고, 상기 제1 판단부(520)에서 1차 판단한 것과 동일하게, 해당 배터리 모듈에 포함된 셀들의 충/방전 동작을 중지해야 하는 것으로 최종 판단하고, 상기 충/방전 제어부(200)로 제2 판단 신호를 출력하여 해당 배터리 모듈 내의 셀들의 충/방전 동작이 중지될 수 있도록 한다.
정리하면, 배터리 모듈의 최대 SOC가 상기 최대 한계 값(UB)에 도달하거나 또는 최소 SOC가 상기 최소 한계 값(LB)에 도달하더라도, 상기 최대 SOC와 최소 SOC 간의 차이가 소정의 기준 범위를 초과한 경우이면, 해당 배터리 모듈에 포함된 셀들의 충/방전 동작을 지속하는 것으로 최종 판단하는 것이고, 배터리 모듈의 최대 SOC가 상기 최대 한계 값(UB) 도달하거나 최소 SOC가 상기 최소 한계 값(LB)에 도달한 상태이면서, 상기 최대 SOC와 최소 SOC 간의 차이가 소정의 기준 범위 이내인 경우에는 해당 배터리 모듈에 포함된 셀들의 충/방전 동작을 중지하는 것으로 최종 판단하는 것이다.
<실시 예 2: 단자전압을 이용하는 경우>
실시 예 2에 따른 제2 판단부는, 상기 편차 산출부(530)에서 산출된 제1 판단 신호에 해당하는 배터리 모듈의 최대 단자전압과 최소 단자전압 간 편차를 이용하여, 해당 배터리 모듈에 포함된 셀들의 충/방전 동작을 중지하는 것으로 판단한 1차 판단 결과에 대하여 최종적으로 판단할 수 있다.
구체적으로, 상기 편차 산출부(530)에서 산출된 최대 단자전압과 최소 단자전압 간 편차가 소정의 기준 범위를 초과한 상태인지를 비교하여, 그 비교 결과에 따라 1차 판단에 대하여 최종적으로 판단할 수 있다.
그 비교 결과, 상기 산출된 최대 단자전압과 최소 단자전압 간의 편차가 소정의 기준 범위를 초과한 경우라면, 해당 배터리 모듈에 포함된 셀들의 충/방전 동작을 지속해도 되는 것으로 최종 판단하고, 상기 충/방전 제어부(200)로 지속 신호를 출력하여 진행 중인 충/방전 동작이 지속될 수 있도록 한다.
반면, 상기 산출된 최대 단자전압과 최소 단자전압 간 편차가 소정의 기준 범위 이내인 상태이면, 상기 제1 판단부(520)에서 1차 판단한 것과 동일하게, 해당 배터리 모듈에 포함된 셀들의 충/방전 동작을 중지해야 하는 것으로 최종 판단하고, 상기 충/방전 제어부(200)로 제2 판단 신호를 출력하여 해당 배터리 모듈 내의 셀들의 진행 중인 충/방전 동작이 중지될 수 있도록 한다.
정리하면, 배터리 모듈의 최대 단자전압이 상기 최대 전압 값(OVW)에 도달하거나 최소 단자전압이 상기 최소 전압 값(UVW)에 도달하더라도, 상기 최대 단자전압과 최소 단자전압 간의 차이가 소정의 기준 범위를 초과한 상태이면, 해당 배터리 모듈에 포함된 셀들의 충/방전 동작을 지속해야 하는 것으로 최종 판단하는 것이고, 배터리 모듈의 최대 단자전압이 상기 최대 전압 값(OVW)에 도달하거나 최소 단자전압이 상기 최소 전압 값(UVW)에 도달한 상태이면서, 상기 최대 단자전압과 최소 단자전압 간의 차이가 소정의 기준 범위 이내인 경우에는 해당 배터리 모듈에 포함된 셀들의 충/방전 동작을 중지하는 것으로 최종 판단하는 것이다.
여기서, 상기 제2 판단 신호 또한 해당 배터리 모듈의 모듈 식별번호 및 그에 포함된 셀 식별번호를 포함하고 있어, 이를 전달받은 충/방전 제어부(200)에서 여러 배터리 모듈 중 해당 배터리 모듈을 식별하고, 그에 포함된 셀들의 충/방전 전류를 차단하여 충/방전 동작을 중지하도록 할 수 있도록 한다.
또한, 상술한 실시 예 1과 실시 예 2는, SOC와 단자전압을 이용한다는 차이가 있으므로, 상기 실시 예 1에서의 소정의 기준 범위와 상기 실시 예 2에서의 소정의 기준 범위는 서로 다른 값으로 설정된다.
2.6. 메모리부(600)
메모리부에는, 상기 제1 판단부(520)와 제2 판단부(540)에서 셀들의 충/방전 동작 여부를 판단하는 데에 기준이 되는 미리 설정한 동작 한계 범위의 최대 한계 값(UB) 및 최소 한계 값(LB), 소정의 기준 범위 등의 값들이 저장된다.
한편, 본 발명의 기술적 사상은 상기 실시 예에 따라 구체적으로 기술되었으나, 상기 실시 예는 그 설명을 위한 것이며, 그 제한을 위한 것이 아님을 주지해야 한다. 또한, 본 발명의 기술분야에서 당업자는 본 발명의 기술 사상의 범위 내에서 다양한 실시 예가 가능함을 이해할 수 있을 것이다.

Claims (12)

  1. 에너지저장시스템(ESS)에 포함된 각 배터리 모듈을 구성하는 다수의 셀들의 충/방전을 제어하는 방법에 있어서,
    각 배터리 모듈을 구성하는 다수의 셀들의 충/방전을 진행하는 충/방전 진행단계;
    상기 충/방전 진행단계에 의해 다수의 셀들이 동시에 충/방전 중인 상태에서, 일정 주기 간격으로 각 셀의 SOC 측정 데이터를 측정하는 데이터 측정단계;
    상기 측정된 각 셀의 SOC 측정 데이터를 이용하여 SOC를 산출하는 SOC 산출단계;
    상기 산출된 각 셀의 SOC를 이용하여, 동일한 시점에 대하여, 각 배터리 모듈 별로 가장 큰 SOC 값인 최대 SOC와 가장 작은 SOC 값인 최소 SOC를 추출하는 최대/최소 값 추출단계;
    상기 추출한 최대 SOC와 최소 SOC를 바탕으로, 각 배터리 모듈에 포함된 셀들의 충/방전 동작여부를 판단하는 충/방전 동작여부 판단단계;
    상기 판단 결과에 따라, 해당 배터리 모듈에 포함된 셀들의 충/방전 동작을 제어하는 충/방전 동작 제어단계;
    를 포함하여 구성되는 에너지저장시스템(ESS)의 셀 안정화 방법.
  2. 제1항에 있어서,
    상기 SOC 산출단계에서 SOC를 산출하는 것은, 하기의 식(1)에 의해 산출하는 것을 특징으로 하는 에너지저장시스템(ESS)의 셀 안정화 시스템.
    식(1):
    Figure PCTKR2020008589-appb-I000005
    (Cd: 커패시터, Rd: Voltage Model에서 커패시터와 병렬로 연결된 저항, Vd: Voltage Model에서 Rd, Cd 영역에서의 전압, △t: 시간 변화량, capacity: 용량, d=1.d: 주기)
  3. 제1항에 있어서,
    상기 충/방전 동작여부 판단단계는,
    상기 추출한 최대 SOC가 미리 설정한 동작 한계 범위의 최대 한계 값(UB)에 도달하거나 또는 상기 최소 SOC가 미리 설정한 최소 한계 값(LB)에 도달하면, 해당 배터리 모듈에 포함된 셀들의 충/방전 동작을 중지해야 하는 것으로 1차 판단하는 제1 판단단계;
    상기 제1 판단단계에서 충/방전 동작을 중지해야 하는 것으로 1차 판단하면, 해당 배터리 모듈의 최대 SOC와 최소 SOC 간의 차이를 산출하는 편차 산출단계;
    상기 산출한 최대 SOC와 최소 SOC 간의 차이가 소정의 기준 범위를 초과한 상태인지를 비교하여, 그 비교 결과에 따라 상기 제1 판단단계에서의 1차 판단에 대하여 최종적으로 판단하는 제2 판단단계;
    를 포함하여 구성되는 것을 특징으로 하는 에너지저장시스템(ESS)의 셀 안정화 방법.
  4. 제3항에 있어서,
    상기 제2 판단단계는,
    상기 최대 SOC와 최소 SOC 간의 차이가 소정의 기준 범위를 초과한 상태이면, 상기 최대 SOC가 상기 최대 한계 값(UB)에 도달하거나 또는 상기 최소 SOC가 상기 최소 한계 값(LB)에 도달한 경우라도, 해당 배터리 모듈에 포함된 셀들의 충/방전 동작을 지속해야 하는 것으로 최종 판단하는 것을 특징으로 하는 에너지저장시스템(ESS)의 셀 안정화 방법.
  5. 제3항에 있어서,
    상기 제2 판단단계는,
    상기 최대 SOC와 최소 SOC 간의 차이가 소정의 기준 범위 이내인 경우이면, 해당 배터리 모듈에 포함된 셀들의 충/방전 동작을 중지해야 하는 것으로 최종 판단하는 것을 특징으로 하는 에너지저장시스템(ESS)의 셀 안정화 방법.
  6. 다수의 셀들로 구성된 배터리 모듈을 하나 이상 포함하는 배터리 랙;
    상기 배터리 모듈 별로 셀들의 충/방전 동작을 제어하는 충/방전 제어부;
    일정 주기 간격으로, 충/방전 중인 셀들의 SOC 측정 데이터를 측정하는 데이터 측정부;
    상기 데이터 측정부에 의해 측정된 SOC 측정 데이터를 이용하여, 각각의 셀의 SOC를 산출하는 SOC 산출부;
    상기 SOC 산출부에서 산출된 각각의 셀들의 SOC를 이용하여, 배터리 모듈 별로 해당 셀들의 충/방전 동작여부를 판단하는 충/방전 동작여부 판단부;
    상기 충/방전 동작여부 판단부에서 각 배터리 모듈 별로 셀들의 충/방전 동작여부 판단을 위한 기준 데이터들이 저장되는 메모리부;
    를 포함하여 구성되는 에너지저장시스템(ESS)의 셀 안정화 시스템.
  7. 제6항에 있어서,
    상기 SOC 산출부에서 각 셀의 SOC를 산출하는 것은, 하기의 식(1)에 의해 산출하는 것을 특징으로 하는 에너지저장시스템(ESS)의 셀 안정화 시스템.
    식(1):
    Figure PCTKR2020008589-appb-I000006
    (Cd: 커패시터, Rd: Voltage Model에서 커패시터와 병렬로 연결된 저항, Vd: Voltage Model에서 Rd, Cd 영역에서의 전압, △t: 시간 변화량, capacity: 용량, d=1.d: 주기)
  8. 제6항에 있어서,
    상기 충/방전 동작여부 판단부는,
    상기 SOC 산출부에서 산출된 다수의 셀들의 SOC 중, 동일한 시점에 대하여, 각 배터리 모듈 별로 가장 큰 SOC 값인 최대 SOC와 가장 작은 SOC 값인 최소 SOC를 추출하는 최대/최소 값 추출부;
    배터리 모듈 별로 추출한 최대 SOC가 미리 설정한 동작 한계 범위의 최대 한계 값(UB)에 도달하거나 또는 상기 최소 SOC가 미리 설정한 동작 한계 범위의 최소 한계 값(LB)에 도달하는지를 비교하여, 그 비교 결과에 따라 해당 배터리 모듈에 포함된 셀들의 충/방전 동작여부를 1차 판단하는 제1 판단부;
    를 포함하여 구성되는 것을 특징으로 하는 에너지저장시스템(ESS)의 셀 안정화 시스템.
  9. 제8항에 있어서,
    상기 제1 판단부는,
    상기 최대 SOC가 상기 최대 한계 값(UB)에 도달하거나 또는 상기 최소 SOC가 상기 최소 한계 값(LB)에 도달하면, 해당 배터리 모듈에 포함된 셀들의 충/방전 동 작을 중지해야 하는 것으로 1차 판단하고, 1차 판단 신호를 출력하는 것을 특징으로 하며,
    상기 최대 SOC가 상기 최대 한계 값(UB) 미만이고, 상기 최소 SOC가 상기 최소 한계 값(LB)을 초과하는 상태이면, 해당 배터리 모듈에 포함된 셀들의 충/방전 동작을 지속하는 것으로 판단하고, 지속 신호를 출력하는 것을 특징으로 하는 에너지저장시스템(ESS)의 셀 안정화 시스템.
  10. 제9항에 있어서,
    상기 충/방전 동작여부 판단부는,
    상기 제1 판단부로부터 1차 판단 신호가 출력되면, 해당 배터리 모듈의 최대 SOC와 최소 SOC 간의 차이를 산출하는 편차 산출부;
    상기 산출된 최대 SOC와 최소 SOC 간의 차이가 소정의 기준 범위를 초과하는지를 비교하여, 그 비교 결과에 따라 해당 배터리 모듈에 포함된 셀들의 충/방전 동작을 중지해야 하는 것으로 1차 판단한 결과에 대하여, 최종 판단하는 제2 판단부;
    를 포함하여 구성되는 것을 특징으로 하는 에너지저장시스템(ESS)의 셀 안정화 시스템.
  11. 제10항에 있어서,
    상기 제2 판단부는,
    상기 최대 SOC와 최소 SOC 간의 차이가 소정의 기준 범위를 초과한 상태 이면, 해당 배터리 모듈에 포함된 셀들의 충/방전 동작을 지속해야 하는 것으로 최종 판단하여, 상기 충/방전 제어부로 지속 신호를 출력하고,
    상기 최대 SOC와 최소 SOC 간의 차이가 소정의 기준 범위 이내인 경우라면, 해당 배터리 모듈에 포함된 셀들의 충/방전 동작을 중지해야 하는 것으로 최종 판단하고, 상기 충/방전 제어부로 제2 판단 신호를 출력하는 것을 특징으로 하는 에너지저장시스템(ESS)의 셀 안정화 시스템.
  12. 제11항에 있어서,
    상기 충/방전 제어부는,
    상기 제2 판단부로부터 지속 신호를 전달 받으면, 해당 배터리 모듈에 포함된 셀들의 충/방전 중인 상태가 지속되도록 제어하고, 상기 제2 판단 신호를 전달 받으면, 해당 배터리 모듈에 포함된 셀들의 충/방전 전류를 차단하여 충/방전 동작을 중지하는 것을 특징으로 하는 에너지저장시스템(ESS)의 셀 안정화 시스템.
PCT/KR2020/008589 2019-08-23 2020-07-01 에너지저장시스템(ess)의 셀 안정화 방법 및 시스템 WO2021040217A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022512419A JP7378587B2 (ja) 2019-08-23 2020-07-01 エネルギー貯蔵システム(ess)のセル安定化方法及びシステム
US17/637,344 US20220311255A1 (en) 2019-08-23 2020-07-01 Cell stabilizing method and system of energy storage system (ess)
EP20857233.9A EP4007040A4 (en) 2019-08-23 2020-07-01 CELL STABILIZATION METHOD AND SYSTEM OF AN ENERGY STORAGE SYSTEM (ESS)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0103486 2019-08-23
KR1020190103486A KR20210023377A (ko) 2019-08-23 2019-08-23 에너지저장시스템(ess)의 셀 안정화 방법 및 시스템

Publications (1)

Publication Number Publication Date
WO2021040217A1 true WO2021040217A1 (ko) 2021-03-04

Family

ID=74684512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/008589 WO2021040217A1 (ko) 2019-08-23 2020-07-01 에너지저장시스템(ess)의 셀 안정화 방법 및 시스템

Country Status (5)

Country Link
US (1) US20220311255A1 (ko)
EP (1) EP4007040A4 (ko)
JP (1) JP7378587B2 (ko)
KR (1) KR20210023377A (ko)
WO (1) WO2021040217A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102536187B1 (ko) 2021-03-19 2023-05-26 주식회사 휴로 태양광 발전의 분산형 에너지 저장시스템 및 이를 이용한 태양광 발전시스템
KR102431801B1 (ko) * 2022-03-23 2022-08-11 주식회사 크레스트 Soc 인덱스를 이용한 배터리 밸런싱 장치 및 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4433752B2 (ja) 2003-10-03 2010-03-17 日産自動車株式会社 組電池の充放電制御装置
KR20120088064A (ko) * 2010-11-19 2012-08-08 주식회사 포스코아이씨티 배터리 에너지 저장 시스템
KR20140038622A (ko) * 2012-09-21 2014-03-31 한국전력공사 전력저장시스템의 충방전 분배장치 및 그 방법
KR20150037406A (ko) * 2013-09-30 2015-04-08 주식회사 엘지화학 배터리 관리 장치 및 이를 이용한 배터리 관리 방법
KR20160057905A (ko) * 2014-11-14 2016-05-24 주식회사 엘지화학 출력 제어를 통한 에너지 저장 시스템 제어 장치 및 방법
KR20160129617A (ko) * 2015-04-30 2016-11-09 삼성에스디아이 주식회사 셀 밸런싱 방법 및 배터리 관리 시스템

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9625533B2 (en) 2013-04-16 2017-04-18 Johnson Controls Technology Company Lead acid state of charge estimation for auto-stop applications
JP6725201B2 (ja) 2014-07-24 2020-07-15 矢崎総業株式会社 充電率平準化装置及び電源システム
KR102377394B1 (ko) * 2015-05-14 2022-03-22 삼성에스디아이 주식회사 에너지 저장 시스템 및 그 구동 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4433752B2 (ja) 2003-10-03 2010-03-17 日産自動車株式会社 組電池の充放電制御装置
KR20120088064A (ko) * 2010-11-19 2012-08-08 주식회사 포스코아이씨티 배터리 에너지 저장 시스템
KR20140038622A (ko) * 2012-09-21 2014-03-31 한국전력공사 전력저장시스템의 충방전 분배장치 및 그 방법
KR20150037406A (ko) * 2013-09-30 2015-04-08 주식회사 엘지화학 배터리 관리 장치 및 이를 이용한 배터리 관리 방법
KR20160057905A (ko) * 2014-11-14 2016-05-24 주식회사 엘지화학 출력 제어를 통한 에너지 저장 시스템 제어 장치 및 방법
KR20160129617A (ko) * 2015-04-30 2016-11-09 삼성에스디아이 주식회사 셀 밸런싱 방법 및 배터리 관리 시스템

Also Published As

Publication number Publication date
JP7378587B2 (ja) 2023-11-13
KR20210023377A (ko) 2021-03-04
US20220311255A1 (en) 2022-09-29
EP4007040A1 (en) 2022-06-01
JP2022545116A (ja) 2022-10-25
EP4007040A4 (en) 2022-10-05

Similar Documents

Publication Publication Date Title
WO2018139764A2 (ko) 배터리 관리 장치 및 방법
WO2017082705A1 (ko) 이차 전지의 출력 파라미터를 조정하는 시스템 및 그 방법
WO2019074221A1 (ko) 이차 전지의 충전 상태를 추정하기 위한 장치 및 그 방법
WO2016053055A1 (ko) 신속하게 절연 저항을 측정할 수 있는 절연 저항 측정 장치 및 방법
WO2018105881A1 (ko) 배터리 관리 장치 및 방법
WO2019088440A1 (ko) 배터리의 내부 저항을 최적화하기 위한 배터리 관리 시스템 및 방법
WO2022114871A1 (ko) 배터리 진단 장치, 배터리 진단 방법, 배터리 팩 및 자동차
WO2017034277A1 (ko) 이차 전지의 퇴화도 추정 장치 및 방법
WO2021040217A1 (ko) 에너지저장시스템(ess)의 셀 안정화 방법 및 시스템
WO2020189914A1 (ko) 배터리 상태 추정 장치
WO2021118118A1 (ko) 배터리 퇴화도 진단 장치 및 방법
WO2019199064A1 (ko) 배터리 진단 장치 및 방법
WO2020189918A1 (ko) 배터리 관리 장치
WO2020153637A1 (ko) 배터리 관리 장치, 배터리 관리 방법 및 배터리 팩
WO2018151431A1 (ko) 에너지 저장장치 충전상태 추정방법
WO2021080161A1 (ko) 배터리 관리 시스템, 배터리 팩, 전기 차량 및 배터리 관리 방법
WO2018194225A1 (ko) 배터리 모니터링 및 보호 시스템
WO2019009530A1 (ko) 이차 전지의 용량유지율을 추정하는 장치 및 방법
WO2020189919A1 (ko) 배터리 상태 추정 장치
WO2022075708A1 (ko) 배터리 상태 진단 장치 및 방법
WO2020166914A1 (ko) 충전 상태 추정 장치 및 방법
WO2021230639A1 (ko) 충전 심도 설정 장치 및 방법
WO2021246655A1 (ko) 배터리 상태 진단 장치 및 방법
WO2021060900A1 (ko) 배터리 관리 장치 및 방법
WO2021157920A1 (ko) 배터리 랙의 개별 방전 시스템 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20857233

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022512419

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020857233

Country of ref document: EP

Effective date: 20220222