WO2018151431A1 - 에너지 저장장치 충전상태 추정방법 - Google Patents

에너지 저장장치 충전상태 추정방법 Download PDF

Info

Publication number
WO2018151431A1
WO2018151431A1 PCT/KR2018/001026 KR2018001026W WO2018151431A1 WO 2018151431 A1 WO2018151431 A1 WO 2018151431A1 KR 2018001026 W KR2018001026 W KR 2018001026W WO 2018151431 A1 WO2018151431 A1 WO 2018151431A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
charge
soc
voltage
current
Prior art date
Application number
PCT/KR2018/001026
Other languages
English (en)
French (fr)
Inventor
임보미
조원태
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/469,292 priority Critical patent/US11112461B2/en
Publication of WO2018151431A1 publication Critical patent/WO2018151431A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0025Sequential battery discharge in systems with a plurality of batteries

Definitions

  • the present invention relates to a method of estimating the state of charge of an energy storage device, and more particularly, to estimate an accurate state of charge of an energy storage device using different state of charge (SOC) parameters according to the state of charge / discharge when using a voltage modeling technique.
  • SOC state of charge
  • the present invention relates to a method for estimating the state of charge of an energy storage device.
  • ESS Energy Storage System
  • the ESS is formed of a plurality of batteries
  • the general battery is a battery management system (Battery Management System, BMS) therein to efficiently control the charging or discharging of the battery.
  • BMS Battery Management System
  • the battery In order to maintain a long life of this battery and to use it safely, the battery must be operated within an appropriate charging range, and the life of the battery varies greatly depending on the number of charge / discharge cycles.
  • the method of estimating the state of charge (SOC) can be classified into four categories.
  • the current integration method of integrating charge / discharge currents, the electrochemical modeling technique that represents the chemical reaction in the cell in molecular units, Equation techniques are used to express the dynamic behavior of the state of charge (SOC) in a pure mathematical empirical formula, and voltage modeling techniques using the relationship between open circuit voltage (OCV) and state of charge (SOC) are used.
  • OCV open circuit voltage
  • SOC state of charge
  • the electrochemical model technique has a disadvantage that is vulnerable to temperature changes
  • the mathematical technique has a problem that the production cost increases due to the complexity of the algorithm in the BMS.
  • the method of estimating the state of charge (SOC) of the general ESS utilizes a current integration method and a voltage modeling method.
  • the voltage modeling method also has a less dependence on the current integration method than the voltage modeling method due to its lack of accuracy in charging and discharging.
  • the current integration method also accumulates charge / discharge currents using an integrator, which causes a problem in that the error of the current accumulation value due to an incorrect initial value and a current sensor having a high error rate when used for a long time becomes very large.
  • the present invention provides a method for estimating the state of charge of an energy storage device for improving the accuracy of the state of charge of the energy storage device estimated by the voltage modeling technique.
  • the method for estimating the state of charge of an energy storage device (ESS) is a method of estimating the state of charge (SOC) of an energy storage device (ESS) by using a voltage modeling method.
  • the first to fourth steps are repeated at a predetermined estimation period.
  • the third step of deriving the SOC parameter derives the SOC parameter based on the temperature measured in the first step and the SOC estimated at the previous estimation period. .
  • the state of charge (SOC) estimated by the current integration method is used as the state of charge (SOC) estimated by the previous estimation period.
  • the predetermined estimation period is changed according to the state of charge SOC.
  • Energy storage device (ESS) state of charge (SOC) estimation method is a method for estimating the state of charge (SOC) of the energy storage device (ESS), the current, voltage and temperature of the energy storage device
  • the state of charge (SOC) estimating step may include a current state of charge (SOC) estimating step of estimating a state of charge (SOC) of an energy storage device by applying the current measured in the state measuring step to a current integration method. And a voltage charge state (SOC) estimating step of estimating the state of charge (SOC) of the energy storage device by applying the measured current, voltage, and temperature to a voltage modeling technique.
  • SOC current state of charge
  • SOC voltage charge state
  • the error range comparison step may include: an estimation frequency comparison step of comparing whether the current state of charge (SOC) estimation step exceeds a predetermined estimation number; If the current state of charge (SOC) estimation step exceeds a predetermined number of times, the final state of charge (SOC) calculation step is performed.
  • ESS Energy storage device
  • An error range comparison unit for comparing whether the difference between SOC) and the state of charge (SOC) of the voltage modeling technique exceeds a predetermined error range, and the difference between the state of charge of the current integration method and the state of charge of the voltage modeling technique is predetermined in the error range comparison unit.
  • the final state of charge (SC) is calculated by applying a predetermined weight to the state of charge of the current integration method and the state of charge of the voltage modeling technique.
  • OC calculation unit and a memory for storing each state of charge (SOC) estimated by the state of charge (SOC) estimator.
  • the state of charge (SOC) estimator may include a current integrator for estimating the state of charge (SOC) of an energy storage device by applying the current measured by the state measurer to a current integrator, and the current, voltage, and the state measured by the state measurer. It includes a voltage modeling unit for estimating the state of charge (SOC) of the energy storage device by applying the temperature to the voltage modeling technique.
  • the voltage modeling unit may include a charge / discharge determination unit that determines whether the battery is in a charged state or a discharge state based on the current and voltage measured by the state measurer, and a charged state (SOC) based on the state determined by the charge / discharge determiner.
  • A) estimator for estimating the state of charge (SOC) of the energy storage device (ESS) based on the parameter derivation unit for deriving the parameter and the state of charge (SOC) parameter derived from the parameter derivation unit.
  • the parameter derivation unit derives a state of charge (SOC) parameter based on the temperature measured by the state measuring unit and the state of charge (SOC) estimated at a previous estimation period stored in the memory.
  • SOC state of charge
  • the error range comparator further includes an estimated frequency comparator for comparing whether the estimated number of state of charge (SOC) performed by the current integrator exceeds a predetermined estimated frequency.
  • SOC state of charge
  • the method of estimating the state of charge of an energy storage device derives different state of charge (SOC) parameters according to the state of charge / discharge.
  • SOC state of charge
  • FIG. 1 is a flow chart of a method for estimating a state of charge of an energy storage device (ESS) in accordance with one embodiment of the present invention.
  • SOC state of charge
  • FIG. 3 is a flow chart of a method for estimating a state of charge (ESS) charge state (SOC) in accordance with this embodiment.
  • ESS state of charge
  • SOC charge state
  • FIG. 4 is a flow chart of the state of charge (SOC) estimation step of the energy storage device (ESS) state of charge (SOC) estimation method according to this embodiment of the present invention.
  • SOC state of charge
  • FIG. 5 is a block diagram of an energy storage device (ESS) state of charge (SOC) estimation apparatus according to an embodiment of the present invention.
  • ESS energy storage device
  • SOC state of charge
  • FIG. 6 is a block diagram of an SOC estimator in an energy storage device (ESS) state of charge (SOC) estimating apparatus according to an exemplary embodiment of the present invention.
  • ESS energy storage device
  • SOC state of charge
  • first and second may be used to describe various components, but the components are not limited by the terms. The terms are used only for the purpose of identifying one component from another component.
  • first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • the terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise.
  • the energy storage device (ESS) state of charge (SOC) estimation method of the present invention derives different state of charge (SOC) parameters according to the state of charge / discharge and based on the state of charge (SOC) parameters derived from the accurate charge Allow SOC to be estimated.
  • SOC state of charge
  • FIG. 1 is a flowchart illustrating a method for estimating a state of charge (SO) of an energy storage device according to an embodiment of the present invention.
  • the method for estimating the state of charge of an energy storage device (ESS) first measures current, voltage, and temperature of the energy storage device (ESS) (first step / hereinafter). , State measurement step: S110), and determines whether the state of charge or discharge based on the measured current and voltage (second step / below, the charge / discharge determination step: S120).
  • the SOC parameter is derived based on the state of charge or discharge determined in the charge / discharge determination step (S120) (third step / less, parameter derivation step: S130), and derivation.
  • the state of charge (SOC) parameters Based on the state of charge (SOC) parameters, the state of charge (SOC) of the energy storage device is estimated (step 4 / hereinafter, state of charge (SOC) estimating step: S140).
  • the entire step is repeated at a predetermined estimation period in order to estimate an accurate state of charge (SOC).
  • the predetermined estimation period may be set to 30 seconds in one embodiment, but is not limited thereto.
  • the state measuring step S110 measures the current, voltage and temperature of the energy storage device ESS, and more specifically, measures the current, voltage and temperature of the battery rack in the energy storage device ESS.
  • a general energy storage device is formed with a plurality of battery racks, which are formed by stacking battery modules composed of a plurality of battery cells.
  • the current, voltage, and temperature of the battery rack to be measured are collected by the battery modules, and the current, voltage, and temperature measured at each battery cell, and the current, voltage, and temperature of each battery module collected are transferred to the battery rack and finally collected. The value is calculated after.
  • the estimation period is changed according to the state of charge (SOC).
  • SOC state of charge
  • SOC state of charge
  • SOC state of charge
  • the interval of 0 ⁇ 10, 90 ⁇ 100% of SOC is changed so that the SOC can be estimated in 1% units, and the other 10 ⁇ 90% of SOC is 20%.
  • SOC state of charge
  • the charge / discharge determination step (S120) determines the charge / discharge state based on the current and voltage measured in the state measurement step (S110).
  • the distinction between the normal charge state and the discharge state is determined by the polarization voltage inside the battery, and the polarity of the polarization voltage is determined by accumulating values according to the current direction.
  • the internal state of the battery may not be sufficiently reflected.
  • the final direction of the current is discharge, but the state inside the battery is closer to charging.
  • determining the state of charge and discharge of the battery can be determined in consideration of the magnitude and duration of the current flowing for a predetermined time.
  • the parameter derivation step (S130) derives the parameter according to the charged or discharged state determined in the charge / discharge determination step (S120).
  • the parameter is a variable appearing in the characteristics of the RC circuit.
  • the battery is a substance having chemical properties, so in order to analyze it, an RC circuit having the same characteristics as that of the battery is formed, and the circuit is analyzed to find out the performance of the battery. see.
  • Modeling using the R-C circuit is that the more complex the circuit is difficult to analyze, so that the configuration of the battery is simply expressed as a circuit composed of a resistor and a capacitor.
  • the battery model that models the battery as an R-C circuit stores information about internal component values of the R-C circuit that change according to temperature and state of charge (SOC).
  • RC circuit is composed of battery internal resistance component (R0) and polarization components (R1, C1) that change according to temperature and state of charge (SOC), which are the most basic elements, and are called parameters. Indicates.
  • Vt (t) and i (t) are the voltage and current measured in the R-C circuit at time t
  • V1 is the polarization voltage
  • v (t) is the value to compensate for the measurement error.
  • V1 (t) means the voltage across the RC stage at time t (that is, V1 (t) means the voltage across R1 and C1 stages), w1 (t) is a value for compensating measurement error.
  • the state of charge (SOC) parameters of each parameter value (internal component value / (internal resistance (R0), resistance (R1), capacitor (C1)) is updated by the temperature and state of charge (SOC) It consists of a table that derives each parameter value using the measured temperature and the state of charge (SOC) estimated in the previous estimation period.
  • state of charge (SOC) parameter table is configured separately according to each state of charge and discharge, it is possible to increase the accuracy that was reduced during the charge / discharge.
  • the state of charge SOC is first estimated by the current integration method, and the estimated state of charge SOC is set to the state of charge SOC of the previous estimation period.
  • the state of charge (SOC) estimating step (S140) estimates the state of charge (SOC) of the energy storage device based on the state of charge (SOC) parameter derived in the parameter derivation step (S130).
  • a voltage modeling technique is used to estimate the state of charge (SOC), which is a good linear relationship between the open circuit voltage (OCV) and the state of charge (SOC). Using the table shown, the state of charge (SOC) can be easily estimated.
  • OCV open circuit voltage
  • the method of calculating the open circuit voltage (OCV) is calculated by subtracting the voltage measured by the battery pack from the polarization voltage generated during the charging / discharging and the dropped voltage due to internal component values, which is represented by Equation (2).
  • the polarization voltage and the enhanced voltage are calculated by calculating the state of charge (SOC) parameter derived in the parameter derivation step S130 into Equation 1 above.
  • the state of charge (SOC) calculated with other parameters according to the state of charge / discharge can be seen that the error rate is reduced as compared to the state of charge (SOC) of the conventional state.
  • SOC state of charge
  • the dotted line is an error rate of the state of charge (SOC) calculated using the same state of charge (SOC) parameter at all times without considering the state of charge / discharge according to the magnitude of the current.
  • the solid line means the error rate of the state of charge (SOC) calculated using the state of charge (SOC) parameters different depending on the state of charge or discharge state, it can be seen that the error rate of the solid line is significantly reduced than the dotted line.
  • the energy storage device (ESS) state of charge (SOC) estimation method of the present invention estimates the accurate state of charge (SOC) by changing the weight according to the error range between the state of charge (SOC) estimated based on the current integration method and the voltage modeling technique. To be possible.
  • FIG. 3 is a flowchart of a method of estimating a state of charge of an energy storage device (ESS) according to this embodiment.
  • the battery cell manufacturing method first measures the current, voltage and temperature of the energy storage device (state measurement step: S310), and the measured current, voltage and temperature and current integration method And estimating each state of charge (SOC) by using a voltage modeling technique (a state of charge (SOC) estimating step: S320).
  • the final charge is applied by applying a predetermined weight to the state of charge of the current integration method and the state of charge of the voltage modeling technique.
  • the state SOC is calculated (final state of charge SOC: step S340).
  • the state measuring step S110 measures the current, voltage and temperature of the energy storage device ESS, and more specifically, measures the current, voltage and temperature of the battery rack in the energy storage device ESS.
  • a general energy storage device is formed with a plurality of battery racks, which are formed by stacking battery modules composed of a plurality of battery cells.
  • the measured current, voltage and temperature of the battery rack is collected by the battery module the current, voltage and temperature measured in each battery cell, and the current, voltage and temperature of each collected battery module is transferred to the battery rack and then Derived value.
  • the entire step is repeated at a predetermined estimation period, in order to estimate an accurate state of charge (SOC).
  • the predetermined estimation period may be set to 30 seconds in one embodiment, but is not limited thereto.
  • the estimation period is changed according to the state of charge (SOC).
  • SOC state of charge
  • SOC state of charge
  • SOC state of charge
  • the interval of 0 ⁇ 10, 90 ⁇ 100% of SOC is changed so that the SOC can be estimated in 1% units, and the other 10 ⁇ 90% of SOC is 20%.
  • SOC state of charge
  • the state of charge (SOC) estimating step (S320) estimates each state of charge (SOC) by using the current, voltage, temperature, current integration method, and voltage modeling technique measured in the state measuring step (S310).
  • SOC state of charge
  • ESS energy storage device
  • SOC state of charge
  • the state of charge (SOC) estimating step (S320) estimates the state of charge (SOC) of the energy storage device by applying the current measured in the state measuring step (S310) to a current integration method (current state of charge (SOC) estimating step). S321), and estimates the state of charge (SOC) of the energy storage device by applying the current, voltage and temperature measured in the state measurement step (S320) to the voltage modeling technique (voltage charge state (SOC) estimating step: S322) .
  • the current state of charge (SOC) estimating step (S321) is a method of estimating the state of charge (SOC) of the energy storage device by using the current integration method, measured in the state measurement step (S320) The state of charge (SOC) is estimated based on the current.
  • SOC_i is the state of charge (SOC) of the previous estimation period
  • Nominal Capacity is the nominal capacity
  • the amount of current that can be used at room temperature is the amount of current accumulated for a predetermined time.
  • the voltage state of charge (SOC) estimating step (S322) is a method of estimating the state of charge (SOC) of an energy storage device by applying a voltage modeling technique, and measures the current, voltage, and temperature measured in the state measuring step (S320). Based on the state of charge (SOC) is estimated.
  • the voltage modeling technique estimates the state of charge (SOC) based on the open circuit voltage (OCV), thereby reducing the accuracy during charging and discharging.
  • the open circuit voltage (OCV) is a voltage when no discharge or charging is performed (no current is applied).
  • the SOC parameters are tabled according to the state of charge and the state of discharge so that the state of charge (SOC) for each state can be estimated.
  • the voltage charging state (SOC) estimating step (S322) first, it is determined whether the battery is in a charged state or a discharged state, and the temperature measured in the state measuring step (S310) and the previous measurement cycle. Based on the measured state of charge (SOC), the state of charge (SOC) parameters are derived.
  • the SOC parameter has a different value depending on the battery charge / discharge state.
  • the polarization voltage and the dropped voltage required for the above equation (2) can be calculated.
  • the open circuit voltage (OCV) is calculated through Equation (2), and when the calculated open circuit voltage (OCV) is matched to the table between the state of charge (SOC) and the open circuit voltage (OCV), the state of charge (SOC) is calculated. It can be easily derived.
  • the error range comparison step (S330) is a difference between the state of charge (SOC) of the current integration method and the state of charge (SOC) of the voltage modeling method estimated in the state of charge (SOC) estimation step (S320) has a predetermined error range Compare if exceeded.
  • the predetermined range is preferably set to a value approximately 2 to 3 times larger than the error range generally generated.
  • the error range comparison step (S330) comprises: an estimated frequency comparison step of comparing whether the current state of charge (SOC) estimation step exceeds a predetermined estimated number of times; By further comprising a to prevent problems caused by temporary errors.
  • the final state of charge (SOC) calculation may be performed, and if the current state of charge (SOC) estimation is performed by a predetermined number of estimated times If less, it is assumed that a temporary error has occurred, and the state measurement step S310 is performed again.
  • the predetermined estimated number is a number of times that the error value increases when the current integration method is used, which means that the reliability of the state of charge (SOC) estimated by the current integration method is significantly lowered.
  • the final state of charge (SOC) calculation step (S340) the difference between the state of charge (SOC) of the current integration method and the state of charge (SOC) of the voltage modeling method in the error range comparison step (S330) has a predetermined error range
  • the final state of charge (SOC) is calculated by applying a predetermined weight to the state of charge of the current integration method and the state of charge of the voltage modeling technique.
  • the initial ratio of the state of charge (SOC) of the current integration method and the state of charge (SOC) of the voltage modeling method is 2: 1, the state is changed to 1: 4, the state of charge (SOC) of the current integration method Calculate the weight for 1/5 and the weight for the state of charge (SOC) of the voltage modeling technique to 4/5.
  • the voltage modeling technique also generates an error rate so that the accurate state of charge (SOC) can be calculated by adjusting the ratio of state of charge (SOC) in the current integration method.
  • the energy storage device (ESS) state of charge (SOC) estimating apparatus of the present invention estimates an accurate state of charge (SOC) according to a state of charge or discharge through a voltage modeling technique to calculate an accurate state of charge (SOC) over time. To help.
  • FIG. 5 is a configuration diagram of an energy storage device (ESS) state of charge (SOC) estimating apparatus according to an embodiment of the present invention.
  • ESS energy storage device
  • SOC state of charge
  • the energy storage device (ESS) state of charge (SOC) estimating apparatus 100 may include a state measuring unit 200 that measures current, voltage, and temperature of the energy storage device ESS. ), The state of charge (SOC) estimator 300 for estimating each state of charge (SOC) through the current integration method and the voltage modeling method based on the current, voltage and temperature measured by the state measurement unit 200, Error range comparison unit 400 comparing the difference between the state of charge (SOC) of the current integration method and the state of charge (SOC) of the voltage modeling technique estimated by the state (SOC) estimator 300, error, If the difference between the state of charge of the current integration method and the state of charge of the voltage modeling technique exceeds a predetermined error range in the range comparing unit 400, a predetermined weight is applied to the state of charge of the current integration method and the state of charge of the voltage modeling technique.
  • SOC final state of charge
  • Shipping is configured to include a memory 600 to store each state of charge
  • the energy storage device (ESS) state of charge (SOC) estimator 100 may be configured inside or outside the battery BMS.
  • the state measuring unit 200 measures the current, voltage and temperature of the energy storage device (ESS).
  • the state measuring unit 200 instructs each battery cell to measure current, voltage, and temperature through a temperature sensor, and collects and transmits the measured current, voltage, and temperature of each battery cell. To control.
  • the state measuring unit 200 is performed every predetermined period, which is changed according to the state of charge (SOC).
  • the low state of charge (SOC) and the high state of charge (SOC) have a high state of charge (SOC) estimation error
  • SOC state of charge
  • 0 to 10 90 to 100% of state of charge (SOC) is in units of 1%.
  • the estimation period is changed so that the SOC is estimated.
  • the state of charge (SOC) estimator 300 estimates each state of charge (SOC) applying the current, voltage, and temperature measured by the state measurer 200 to a current integration method and a voltage modeling technique.
  • state of charge (SOC) estimation unit 300 will be described in detail with reference to FIG.
  • FIG. 6 is a configuration diagram of an SOC estimator in an energy storage device (ESS) state of charge (SOC) estimating apparatus according to an exemplary embodiment of the present invention.
  • ESS energy storage device
  • SOC state of charge
  • the state of charge (SOC) estimator 300 applies a current measured by the state measurer 200 to a current integrator to estimate a state of charge (SOC) of an energy storage device.
  • a voltage modeling unit 320 that estimates a state of charge (SOC) of the energy storage device by applying the current, voltage, and temperature measured by the state measuring unit 200 to a voltage modeling technique.
  • the current integrating unit 310 is stored in the algorithm of the current integration method as shown in the equation (3) in advance, based on the current measured by the state measuring unit 200 based on the state of charge (SOC) of the energy storage device Estimate
  • the estimated state of charge (SOC) is stored in the memory 600 to be used in the next estimation period and the first estimation period in the voltage modeling unit 320.
  • the voltage modeling unit 320 is stored in the algorithm of the voltage modeling technique, such as the equation (1) and (2) in advance, and applies the current, voltage and temperature measured by the state measuring unit 200 To estimate the state of charge (SOC).
  • the voltage modeling unit 320 determines whether the battery is in a charged state or a discharge state based on the current and voltage measured by the state measuring unit 200.
  • the parameter derivation unit 322 for deriving a SOC parameter based on the state determined by the / discharge determination unit 321 and the SOC parameter derived from the parameter derivation unit 322.
  • a voltage state of charge (SOC) estimator (323 / hereinafter, SOC estimator) for estimating the state of charge (SOC) of the energy storage device (ESS) based on the variable.
  • the charge / discharge determination unit 321 accumulates the polarization voltage generated during the charge / discharge and determines whether it is in a charged state or a discharge state according to the polarity of the accumulated value.
  • the parameter derivation unit 322 is determined by the charge / discharge determination unit 321 based on the temperature measured by the state measurement unit 200 and the state of charge (SOC) estimated in a previous estimation period. Different SOC parameters are derived depending on the condition of the battery.
  • the state of charge (SOC) parameter has a different table for each state of charge and state of discharge so that the correct state of charge (SOC) can be estimated.
  • the charge state and discharge state tables are pre-stored in the memory 600.
  • the SOC estimator 323 since the SOC estimator 323 includes the algorithm of Equation 1 and Equation 2, the SOC estimator 323 calculates an open circuit voltage (OCV) based on the parameter derived from the parameter derivation unit 322.
  • OCV open circuit voltage
  • the voltage charge state SOC may be estimated by matching the calculated open circuit voltage OVC to a correlation table between the state of charge SOC and the open circuit voltage OVC.
  • the correlation table between the state of charge (SOC) and the open circuit voltage (OCV) is previously stored in the memory 600.
  • error range comparison unit 400 is a difference between the state of charge (SOC) of the current integration method and the state of charge (SOC) of the voltage modeling method estimated by the state of charge (SOC) estimation unit 300 has a predetermined error range Compare if exceeded.
  • SOC difference calculation unit for calculating the difference between the state of charge (SOC) of the current integration method and the state of charge (SOC) of the voltage modeling method estimated by the state of charge (SOC) estimation unit 300; It is configured to further include.
  • the estimated number comparison unit for comparing whether the estimated state of charge (SOC) performed by the current integrating unit 310 exceeds a predetermined estimated number; It is configured to further include to prevent the control of the state of charge (SOC) weight due to the temporary error occurs.
  • the final state of charge (SOC) calculation unit 500 is the current range when the difference between the state of charge of the current integration method and the state of charge of the voltage modeling method in the error range comparing unit 400 exceeds the predetermined error range,
  • the final state of charge (SOC) is calculated by applying a predetermined weight to the state of charge of the integration method and the state of charge of the voltage modeling technique.
  • the final state of charge (SOC) calculation unit 500 has a pre-stored algorithm for calculating the final state of charge (SOC) by applying a weight, the state of charge (SOC) estimated by the current integrating unit 310 and the The final state of charge SOC is calculated by changing and applying the state of charge SOC estimated by the voltage modeling unit 320 to a predetermined weight.
  • the memory 600 stores each state of charge (SOC) estimated by the state of charge (SOC) estimator 300, and the state of charge table and the state of discharge table used in the parameter derivation unit 322. This is already stored.
  • a correlation table between the state of charge (SOC) and the open circuit voltage (OCV) used in the SOC estimator 323 is stored in advance, and this table has the same value regardless of the state of charge and discharge of the battery. use.
  • the average value of the charged state and the discharge state is used.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

본 발명은 에너지 저장장치 충전상태 추정방법에 관한 것으로서, 보다 구체적으로는 충/방전 상태에 따라 다른 매개변수를 사용하는 전압 모델링 기법을 통해 에너지 저장장치의 충전상태를 추정하는 에너지 저장장치 충전상태 추정방법에 관한 것이다.

Description

에너지 저장장치 충전상태 추정방법
본 발명은 에너지 저장장치 충전상태 추정방법에 관한 것으로서, 보다 구체적으로는 전압 모델링 기법 사용 시 충/방전 상태에 따라 다른 충전상태(SOC) 매개변수를 사용하여 에너지 저장장치의 정확한 충전상태를 추정하는 에너지 저장장치 충전상태 추정방법에 관한 것이다.
산업의 발달과 더불어 전력의 수요가 증대되고 있으며 주야간, 계절간, 일별간의 전력 사용량의 격차가 점차 심화되고 있다. 최근에 이러한 이유로 계통의 잉여 전력을 활용하여 피크 부하를 삭감하기 위한 많은 기술들이 빠르게 개발되고 있다.
이러한 기술들 중에서 대표적인 것이 계통의 잉여 전력을 배터리에 저장하거나 계통의 부족 전력을 배터리에서 공급해주는 에너지 저장장치(Energy Storage System, 이하 ESS)이다.
또한, ESS는 복수개의 배터리로 구비되어 형성되는데, 일반적인 배터리는 내부에 배터리 관리 시스템(Battery Management System, 이하 BMS)을 구성하여 상기 배터리의 충전 또는 방전을 효율적으로 제어한다.
이러한 배터리의 수명을 오래 유지하고 안전하게 사용하기 위해서는 배터리의 적정 충전범위 안에서 구동되어야 하고, 배터리의 수명은 충/방전 횟수에 따라 크게 달라진다.
따라서 상기 BMS를 통해 배터리의 전류, 전압 및 온도를 측정하여 충전상태(SOC)를 정확히 추정함에 따라 배터리의 상태를 파악하는 것이 중요하다.
상기 충전상태(SOC)를 추정하는 방법은 크게 네 가지 범주로 구분할 수 있는데, 충/방전 전류를 적산하는 전류 적산법, 셀 내부의 화학적 반응을 분자단위로 나타내는 전기화학적 모델 기법, 배터리의 동작시간과 충전상태(SOC)의 동적특성(dynamic behavior)을 순 수학적 실험식으로 표현하는 수학식 기법, 그리고 개방회로 전압(Open Circuit Voltage, 이하 OCV)과 충전상태(SOC) 간의 관계를 이용한 전압 모델링 기법을 사용하여 충전상태(SOC)를 추정한다.
한편, 상기 전기화학적 모델 기법은 온도 변화에 취약한 단점이 있으며, 상기 수학식 기법은 BMS 내 알고리즘이 복잡해져 생산 비용이 증가하는 문제점이 있다.
그러므로 일반적인 ESS의 충전상태(SOC)를 추정하는 방법은 전류 적산법과 전압 모델링 기법을 같이 활용하는데, 상기 전압 모델링 기법도 충/방전 시에는 정확도가 떨어져 전압 모델링 기법보다 전류 적산법의 의존도가 높다.
그러나 상기 전류 적산법도 적분기를 사용하여 충/방전 전류를 누적시키기 때문에 부정확한 초기 값과 장시간 사용 시 오차율이 높은 전류센서에 의한 전류 누적 값의 오차가 매우 커지는 문제점이 있다.
또한, 배터리 수명예측을 위하여 노화상태(SOH)를 추정하는 방법에서 전류 적산법을 통해 추정된 충전상태(SOC)를 근거로 하여 노화상태(SOH)를 추정하는 경우, 상기와 같이 부정확한 초기 값과 장시간 사용 시 전류센서에 의한 전류 누적 값 오차가 커지는 이유로 인하여 배터리 셀이 퇴화가 되어 용량이 달라진 것 대비 정확한 용량추정을 하지 못하는 문제점이 발생된다.
따라서 장시간 사용 시에도 상기 ESS의 충전상태(SOC)를 정확하게 추정할 수 있는 기술 개발이 요구된다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) KR1227417 B
본 발명은 전압 모델링 기법으로 추정되는 에너지 저장장치의 충전상태의 정확성을 향상시키는 에너지 저장장치 충전상태 추정방법을 제공한다.
본 발명의 일 실시 예에 따른 에너지 저장장치(ESS) 충전상태(SOC) 추정방법은 전압 모델링 기법을 이용하여 에너지 저장장치(ESS)의 충전상태(SOC)를 추정하는 방법에 있어서, 추정주기마다 에너지 저장장치의 전류, 전압 및 온도를 측정하는 제1단계, 상기 제1단계에서 측정된 전류 및 전압을 근거로 충/방전상태를 판단하는 제2단계, 상기 제2단계에서 판단된 충전상태 또는 방전상태에 따라 충전상태(SOC) 매개변수를 도출하는 제3단계 및 상기 제3단계에서 도출된 충전상태(SOC) 매개변수를 근거로 하여 에너지 저장장치의 충전상태(SOC)를 추정하는 제4 단계를 포함하여 구성된다.
상기 제1단계 내지 제4단계를 소정의 추정주기로 반복한다.
상기 충전상태(SOC) 매개변수를 도출하는 제3단계는, 상기 제1단계에서 측정된 온도 및 이전 추정주기에 추정된 충전상태(SOC)를 근거로 하여 충전상태(SOC) 매개변수를 도출한다.
상기 제3단계가 첫 번째 추정주기인 경우, 전류 적산법으로 추정된 충전상태(SOC)를 상기 이전 추정주기에 추정된 충전상태(SOC)로 사용한다.
충전상태(SOC)에 따라 상기 소정의 추정주기가 변경된다.
본 발명의 이 실시 예에 따른 에너지 저장장치(ESS) 충전상태(SOC) 추정방법은 에너지 저장장치(ESS)의 충전상태(SOC)를 추정하는 방법에 있어서, 에너지 저장장치의 전류, 전압 및 온도를 측정하는 상태 측정단계, 상기 상태 측정단계에서 측정된 전류, 전압 및 온도를 전류 적산법 및 전압 모델링 기법에 적용하여 각 방법에 근거한 충전상태(SOC)를 추정하는 충전상태(SOC) 추정단계, 상기 충전상태(SOC) 추정단계에서 추정된 전류 적산법의 충전상태와 전압 모델링 기법의 충전상태 간의 차가 소정의 오차범위를 초과하는지 비교하는 오차범위 비교단계 및 상기 오차범위 비교단계에서 상기 전류 적산법의 충전상태(SOC)와 전압 모델링 기법의 충전상태(SOC) 간의 차가 소정의 오차범위를 초과하는 경우, 상기 전류 적산법의 충전상태와 전압 모델링 기법의 충전상태에 소정의 가중치를 적용하여 최종 충전상태(SOC)를 산출하는 최종 충전상태(SOC) 산출단계를 포함하여 구성된다.
상기 충전상태(SOC) 추정단계는, 상기 상태 측정단계에서 측정된 전류를 전류 적산법에 적용하여 에너지 저장장치의 충전상태(SOC)를 추정하는 전류 충전상태(SOC) 추정단계 및 상기 상태 측정단계에서 측정된 전류, 전압 및 온도를 전압 모델링 기법에 적용하여 에너지 저장장치의 충전상태(SOC)를 추정하는 전압 충전상태(SOC) 추정단계를 포함하여 구성된다.
상기 오차범위 비교단계는, 상기 전류 충전상태(SOC) 추정단계가 소정의 추정횟수를 초과하는 지를 비교하는 추정횟수 비교단계; 를 추가로 포함하여 구성되며, 상기 전류 충전상태(SOC) 추정단계가 소정의 추정횟수를 초과하는 경우, 상기 최종 충전상태(SOC) 산출단계를 수행한다.
본 발명의 실시 예에 따른 에너지 저장장치(ESS) 충전상태(SOC) 추정장치는, 에너지 저장장치(ESS)의 전류, 전압 및 온도를 측정하는 상태 측정부, 상기 상태 측정부에서 측정한 전류, 전압 및 온도를 전류 적산법 및 전압 모델링 기법에 적용하여 각 방법에 근거한 충전상태(SOC)를 추정하는 충전상태(SOC) 추정부, 상기 충전상태(SOC) 추정부에서 추정한 전류 적산법의 충전상태(SOC)와 전압 모델링 기법의 충전상태(SOC) 간의 차가 소정의 오차범위를 초과하는지 비교하는 오차범위 비교부, 상기 오차범위 비교부에서 상기 전류 적산법의 충전상태와 전압 모델링 기법의 충전상태 간의 차가 소정의 오차범위를 초과하는 경우, 상기 전류 적산법의 충전상태와 전압 모델링 기법의 충전상태에 소정의 가중치를 적용하여 최종 충전상태(SOC)를 산출하는 최종 충전상태(SOC) 산출부 및 상기 충전상태(SOC) 추정부에서 추정된 각각의 충전상태(SOC)를 저장하는 메모리를 포함하여 구성된다.
상기 충전상태(SOC) 추정부는, 상기 상태 측정부에서 측정한 전류를 전류 적산법에 적용하여 에너지 저장장치의 충전상태(SOC)를 추정하는 전류 적산부 및 상기 상태 측정부에서 측정한 전류, 전압 및 온도를 전압 모델링 기법에 적용하여 에너지 저장장치의 충전상태(SOC)를 추정하는 전압 모델링부를 포함하여 구성된다.
상기 전압 모델링부는, 상기 상태 측정부에서 측정된 전류 및 전압을 근거로 충전상태인지 방전상태인지 판단하는 충/방전 판단부, 상기 충/방전 판단부에서 판단된 상태를 근거로 하여 충전상태(SOC) 매개변수를 도출하는 매개변수 도출부 및 상기 매개변수 도출부에서 도출된 충전상태(SOC) 매개변수를 근거로 하여 에너지 저장장치(ESS)의 충전상태(SOC)를 추정하는 전압 충전상태(SOC) 추정부를 포함하여 구성된다.
상기 매개변수 도출부는, 상기 상태 측정부에서 측정된 온도 및 상기 메모리에 저장된 이전 추정주기에 추정된 충전상태(SOC)를 근거로 하여 충전상태(SOC) 매개변수를 도출한다.
상기 오차범위 비교부는, 상기 전류 적산부에서 수행한 충전상태(SOC) 추정횟수가 소정의 추정횟수를 초과하는지 비교하는 추정횟수 비교부를 추가로 포함하여 구성된다.
본 발명의 실시 예에 따른 에너지 저장장치 충전상태 추정방법은 충/방전 상태에 따라 다른 충전상태(SOC) 매개변수를 도출하므로 전류 적산법보다 전압 모델링 기법의 의존도가 높아지며 좀 더 정확한 에너지 저장장치의 충전상태가 추정될 수 있다.
도 1은 본 발명의 일 실시 예에 따른 에너지 저장장치(ESS) 충전상태(SOC) 추정방법의 순서도.
도 2는 본 발명의 일 실시 예를 적용한 충전상태(SOC)의 최대 오차율 및 종래의 추정방법을 적용한 충전상태(SOC)의 최대 오차율의 전류량에 따른 그래프.
도 3은 이 실시 예에 따른 에너지 저장장치(ESS) 충전상태(SOC) 추정방법의 순서도.
도 4는 본 발명의 이 실시 예에 따른 에너지 저장장치(ESS) 충전상태(SOC) 추정방법 중 충전상태(SOC) 추정단계의 순서도.
도 5는 본 발명의 실시 예에 따른 에너지 저장장치(ESS) 충전상태(SOC) 추정장치의 구성도.
도 6은 본 발명의 실시 예에 따른 에너지 저장장치(ESS) 충전상태(SOC) 추정장치 내 SOC 추정부의 구성도.
이하, 첨부된 도면들에 기재된 내용들을 참조하여 본 발명에 실시 예를 상세하게 설명한다. 다만, 본 발명이 실시 예들에 의해 제한되거나 한정되는 것은 아니다. 단지 실시 예들은 본 발명의 개시가 완전하도록 하며, 본 발명의 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다.
또한, 제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 식별하는 목적으로만 사용된다. 예컨대, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 발명에서 사용되는 용어는 본 발명에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 발명에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 발명의 전반에 걸친 내용을 토대로 정의되어야 한다.
<실시 예 1>
다음으로 본 발명의 일 실시 예에 따른 에너지 저장장치(ESS) 충전상태(SOC) 추정방법에 대하여 설명한다.
본 발명의 에너지 저장장치(ESS) 충전상태(SOC) 추정방법은 충/방전 상태에 따라 각기 다른 충전상태(SOC) 매개변수를 도출하고 도출된 충전상태(SOC) 매개변수를 근거로 하여 정확한 충전상태(SOC)가 추정될 수 있도록 한다.
도1 본 발명의 일 실시 예에 따른 에너지 저장장치(ESS) 충전상태(SOC) 추정방법의 순서도이다.
도 1을 참조하면, 본 발명의 일 실시 예에 따른 에너지 저장장치(ESS) 충전상태(SOC) 추정방법은 우선 에너지 저장장치(ESS)의 전류, 전압 및 온도를 측정하고(제1 단계/ 이하, 상태 측정단계: S110), 측정된 전류 및 전압을 근거로 충전상태인지 방전상태인지 판단한다(제2 단계/ 이하, 충/방전 판단단계: S120).
그런 후, 상기 충/방전 판단단계(S120)에서 판단된 충전상태 또는 방전상태를 근거로 하여 충전상태(SOC) 매개변수를 도출하고(제3단계/ 이하, 매개변수 도출단계: S130), 도출된 충전상태(SOC) 매개변수를 근거로 하여 에너지 저장장치의 충전상태(SOC)를 추정한다(제4단계/ 이하, 충전상태(SOC) 추정단계: S140).
또한, 상기 전체 단계는 소정의 추정주기로 반복되는데, 이는 정확한 충전상태(SOC)를 추정하기 위함이다. 여기서 소정의 추정주기는 일 실시 예로 30초로 설정할 수 있지만 이에 한정되지 않는다.
이러한 상기 에너지 저장장치(ESS) 충전상태(SOC) 추정방법의 각 단계는 하기에서 더욱 상세하게 설명한다.
상기 상태 측정단계(S110)는 에너지 저장장치(ESS)의 전류, 전압 및 온도를 측정하며, 좀 더 엄밀히 말하면 에너지 저장장치(ESS) 내 배터리 랙의 전류, 전압 및 온도를 측정한다.
또한, 일반적인 에너지 저장장치(ESS)는 복수 개의 배터리 랙이 구비되어 형성되는데, 이러한 배터리 랙은 복수 개의 배터리 셀로 구성된 배터리 모듈들을 겹겹이 쌓아 형성된다.
따라서 측정되는 배터리 랙의 전류, 전압 및 온도는 각 배터리 셀에서 측정되는 전류, 전압 및 온도를 배터리 모듈에 의해서 취합되고, 취합된 각 배터리 모듈의 전류, 전압 및 온도는 배터리 랙으로 전송되어 최종 취합 후 산출되는 값이다.
또한, 상기 추정주기는 충전상태(SOC)에 따라 변경되는데, 일반적으로 낮은 충전상태(SOC)와 높은 충전상태(SOC)는 충전상태(SOC) 추정 오차가 높아진다.
따라서 0~10, 90~100%의 충전상태(SOC)는 1% 단위로 충전상태(SOC)가 추정될 수 있도록 주기를 변경하고, 그 외 10~90%의 충전상태(SOC)는 20% 단위로 충전상태(SOC)가 추정될 수 있도록 주기를 변경하여 효율적이면서 정확한 값이 추정될 수 있도록 한다.
또한, 상기 충/방전 판단단계(S120)는 상태 측정단계(S110)에서 측정된 전류 및 전압을 근거로 충/방전상태를 판단한다.
일반적인 충전 상태와 방전 상태의 구분은 배터리 내부의 분극 전압에 의해 결정되며, 분극 전압의 극성은 전류 방향에 따라 값이 누적되어 결정된다.
전류가 방전(-)극성을 가지고 있을 경우에는 분극 전압에는 (-)값이 누적되고, 전류가 충전(+)극성일 경우에는 분극 전압에는 (+)값이 누적된다.
또한, 전류의 흐름이 없을 경우에는 분극 전압의 값은 0으로 수렴하게 된다.
이러한 분극 전압의 값이 0이 되었을 경우에는 직전의 최종 극성으로 충전상태(SOC)를 유지시킨다
따라서 충전 상태와 방전 상태를 구분 시 단순히 현재 전류의 방향에 따라 결정되면 배터리 내부의 상태를 충분히 반영하지 못하게 된다.
예를 들어, 15분간 8A의 전류로 충전을 하다가 4초간 2A로 방전한 경우 전류의 최종 방향은 방전이지만 배터리 내부의 상태는 충전에 더 가깝게 나타난다.
이와 같이 배터리의 충전과 방전 상태를 판단할 때는 소정의 시간동안 흐르는 전류의 크기와 지속 시간을 고려하여 판단될 수 있도록 한다.
또한, 상기 매개변수 도출단계(S130)는 충/방전 판단단계(S120)에서 판단된 충전상태 또는 방전상태에 따라 매개변수를 도출한다.
상기 매개변수는 R-C회로 특성에 나타나는 변수로서, 일반적으로 배터리는 화학적 특성을 가지는 물질이므로 이를 분석하기 위해서는 배터리의 특성과 동일한 특성을 가지는 R-C회로를 구성하고, 그 회로를 분석하여 배터리의 성능을 알아본다.
상기 R-C 회로를 이용하여 모델링 한다는 것은 회로가 복잡해질수록 분석하기 어렵기 때문에 간단하게 저항과 콘덴서로 구성된 회로로 배터리의 특성이 표현되도록 구성한다는 것이다.
또한, 배터리를 R-C 회로로 모델링한 배터리 모델에서는 온도 및 충전상태(SOC)에 따라 변화하는 상기 R-C 회로의 내부 성분 값에 대한 정보를 저장하고 있다.
따라서 R-C 회로는, 가장 기본적인 요소인 배터리 내부 저항 성분(R0) 및 온도 및 충전상태(SOC)에 따라 변화하는 분극 성분(R1, C1)으로 구성되어 이를 매개변수라고 하며, 이는 (식1)로 나타낸다.
(식1)
Figure PCTKR2018001026-appb-I000001
여기서 Vt(t), i(t)는 시간 t일 때 R-C회로에서 측정된 전압 및 전류이며, V1은 분극전압, v(t)는 측정 오차를 보상하기 위한 값이다.
또한, V1(t)의 1차 미분 관계로 정의되는 상태변수 방정식은 t 시점에서 RC 단에 걸리는 전압을 의미하며(즉, V1(t)는 R1과 C1 단에 걸리는 전압을 의미함), w1(t)은 측정 오차를 보상하기 위한 값이다.
한편, 상기 충전상태(SOC) 매개변수는 온도 및 충전상태(SOC)에 의해 갱신되는 각 매개변수 값(내부 성분 값/(내부저항(R0), 저항(R1), 콘텐서 (C1))의 테이블로 구성되어, 측정된 온도와 이전 추정주기에 추정된 충전상태(SOC)를 이용하여 각 매개변수 값을 도출한다.
또한, 상기 충전상태(SOC) 매개변수 테이블은 각각의 충전상태와 방전상태에 따라 따로 구성되어, 충/방전 시 감소하였던 정확성을 증가시킬 수 있다.
만약, 현재 추정주기가 첫 번째 추정주기인 경우, 전류 적산법으로 충전상태(SOC)를 먼저 추정하여 기 추정된 충전상태(SOC)를 이전 추정주기의 충전상태(SOC)로 설정한다.
또한, 상기 충전상태(SOC) 추정단계(S140)는 상기 매개변수 도출단계(S130)에서 도출된 충전상태(SOC) 매개변수를 근거로 하여 에너지 저장장치의 충전상태(SOC)를 추정한다.
본 발명의 일 실시 예에서 충전상태(SOC)를 추정하기 위하여 전압 모델링 기법을 사용하는데, 이는 개방회로전압(OCV, Open Circuit Voltage)과 충전상태(SOC) 간의 사이가 양호한 선형 관계를 띄고 있으므로 이를 나타낸 테이블을 이용해서 충전상태(SOC)를 쉽게 추정할 수 있다.
그러나 상기 개방회로전압(OCV)은 방전 또는 충전을 수행하지 않을 때(전류가 인가되지 않았을 때)의 전압이므로, 방전 또는 충전이 수행된 후에는 수 십분 또는 수 시간이 지난 다음에 양극과 음극의 양단 전압을 측정해야 한다.
그러므로 개방회로전압(OCV)을 산출하는 방법은 배터리 팩에서 측정된 전압에서 상기 충/방전 시 발생되는 분극 전압과 내부 성분 값들로 인한 강하된 전압을 빼서 산출하며, 이는 (식2)로 나타낸다.
(식2) 개방회로전압(OCV)= 배터리 팩의 전압 - 분극 전압 - 강하된 전압
여기서 분극 전압 및 강화된 전압은 상기 매개변수 도출단계(S130)에서 도출된 충전상태(SOC) 매개변수를 상기 (식1)에 넣어 연산하면 산출된다.
또한, 여기서 산출된 개방회로전압(OCV)을 상기 충전상태(SOC)와 개방회로전압(OCV) 간의 상관관계 테이블에 매칭하면 쉽게 충전상태(SOC)를 도출 할 수 있다.
이와 같이 충/방전 상태에 따라 다른 매개변수로 연산된 충전상태(SOC)는 도2와 같이 종래의 충전상태(SOC)보다 오차율이 감소된 것을 볼 수 있다.
도 2는 본 발명의 일 실시 예를 적용한 충전상태(SOC)의 최대 오차율 및 종래의 추정방법을 적용한 충전상태(SOC)의 최대 오차율의 전류량에 따른 그래프이다.
도 2를 참조하면, 점선은 전류의 크기에 따른 충/방전 상태를 고려하지 않고 항상 동일한 충전상태(SOC) 매개변수를 사용하여 산출된 충전상태(SOC)의 오차율이다.
또한, 실선은 충전상태 또는 방전상태에 따라 다른 충전상태(SOC) 매개변수를 사용하여 산출된 충전상태(SOC)의 오차율을 의미하여 점선보다 실선의 오차율이 크게 감소된 것을 확인할 수 있다.
<실시 예 2>
다음으로 본 발명의 이 실시 예에 따른 에너지 저장장치(ESS) 충전상태(SOC) 추정방법에 대하여 설명한다.
본 발명의 에너지 저장장치(ESS) 충전상태(SOC) 추정방법은 전류 적산법 및 전압 모델링 기법을 근거로 추정된 충전상태(SOC) 간의 오차범위에 따라 가중치를 변화시켜 정확한 충전상태(SOC)가 추정될 수 있도록 한다.
도 3은 이 실시 예에 따른 에너지 저장장치(ESS) 충전상태(SOC) 추정방법의 순서도이다.
도 3을 참조하면, 본 발명의 이 실시 예에 따른 배터리 셀 제조 방법은 우선 에너지 저장장치의 전류, 전압 및 온도를 측정하고(상태 측정단계: S310), 측정된 전류, 전압 및 온도와 전류 적산법 및 전압 모델링 기법을 이용하여 각각의 충전상태(SOC)를 추정한다(충전상태(SOC) 추정단계: S320).
그런 후, 상기 충전상태(SOC) 추정단계(S320)에서 추정된 전류 적산법의 충전상태와 전압 모델링 기법의 충전상태 간의 차가 소정의 오차범위를 초과하는지 비교하고(오차범위 비교단계: S330), 전류 적산법의 충전상태(SOC)와 전압 모델링 기법의 충전상태(SOC) 간의 차가 소정의 오차범위를 초과하는 경우, 상기 전류 적산법의 충전상태와 전압 모델링 기법의 충전상태에 소정의 가중치를 적용하여 최종 충전상태(SOC)를 산출한다(최종 충전상태(SOC) 산출단계: S340).
상기 에너지 저장장치(ESS) 충전상태(SOC) 추정 방법의 각 단계는 하기에서 더욱 상세하게 설명한다.
상기 상태 측정단계(S110)는 에너지 저장장치(ESS)의 전류, 전압 및 온도를 측정하며, 좀 더 엄밀히 말하면 에너지 저장장치(ESS) 내 배터리 랙의 전류, 전압 및 온도를 측정한다.
또한, 일반적인 에너지 저장장치(ESS)는 복수 개의 배터리 랙이 구비되어 형성되는데, 이러한 배터리 랙은 복수 개의 배터리 셀로 구성된 배터리 모듈들을 겹겹이 쌓아 형성된다.
따라서 측정되는 배터리 랙의 전류, 전압 및 온도는 각 배터리 셀에서 측정되는 전류, 전압 및 온도를 배터리 모듈에 의해서 취합되고, 취합된 각 배터리 모듈의 전류, 전압 및 온도는 배터리 랙으로 전송되어 취합 후 도출되는 값이다.
또한, 상기 전체단계는 소정의 추정주기로 반복되는데, 이는 정확한 충전상태(SOC)를 추정하기 위함이다. 여기서 소정의 추정주기는 일 실시 예로 30초로 설정할 수 있지만 이에 한정되지 않는다.
또한, 상기 추정주기는 충전상태(SOC)에 따라 변경되는데, 일반적으로 낮은 충전상태(SOC)와 높은 충전상태(SOC)는 충전상태(SOC) 추정 오차가 높아진다.
따라서 0~10, 90~100%의 충전상태(SOC)는 1% 단위로 충전상태(SOC)가 추정될 수 있도록 주기를 변경하고, 그 외 10~90%의 충전상태(SOC)는 20% 단위로 충전상태(SOC)가 추정될 수 있도록 주기를 변경하여 효율적이면서 정확한 값이 추정될 수 있도록 한다.
또한, 상기 충전상태(SOC) 추정단계(S320)는 상기 상태 측정단계(S310)에서 측정된 전류, 전압 및 온도와 전류 적산법 및 전압 모델링 기법을 이용하여 각각의 충전상태(SOC)를 추정한다.
또한, 상기 충전상태(SOC) 추정단계(S320)를 도 4를 들어 더욱 상세하게 설명한다.
도 4는 본 발명의 이 실시 예에 따른 에너지 저장장치(ESS) 충전상태(SOC) 추정방법 중 충전상태(SOC) 추정단계의 순서도이다.
상기 충전상태(SOC) 추정단계(S320)는 상기 상태 측정단계(S310)에서 측정된 전류를 전류 적산법에 적용하여 에너지 저장장치의 충전상태(SOC)를 추정하고(전류 충전상태(SOC) 추정단계: S321), 상기 상태 측정단계(S320)에서 측정된 전류, 전압 및 온도를 전압 모델링 기법에 적용하여 에너지 저장장치의 충전상태(SOC)를 추정한다(전압 충전상태(SOC) 추정단계: S322).
좀 더 상세하게 설명하면, 상기 전류 충전상태(SOC) 추정단계(S321)는 전류 적산법을 이용하여 에너지 저장장치의 충전상태(SOC)를 추정하는 방법으로서, 상기 상태 측정단계(S320)에서 측정된 전류를 근거로 하여 충전상태(SOC)가 추정된다.
또한, 전류 적산법은 단순히 전류로만 추정하는 방식이므로 알고리즘이 간단하고 이를 이용하여 빠르게 충전상태(SOC)가 추정될 수 있으며, 이는 (식3)으로 나타낸다.
(식3) SOC=SOC_i-(∫i dt)/ (Nominal Capacity)
여기서 SOC_i는 이전 추정주기의 충전상태(SOC)이고, Nominal Capacity는 공칭용량으로써 상온에서 일반적으로 사용할 수 있는 전류의 양이며, ∫i dt는 소정시간 동안 적산된 전류의 양이다.
상기 전압 충전상태(SOC) 추정단계(S322)는 에너지 저장장치의 충전상태(SOC)를 전압 모델링 기법에 적용하여 추정하는 방법으로서, 상기 상태 측정단계(S320)에서 측정된 전류, 전압 및 온도를 근거로 하여 충전상태(SOC)가 추정된다.
또한, 전압 모델링 기법은 개방회로전압(OCV)을 근거로 하여 충전상태(SOC)가 추정되므로 충/방전 시 정확성이 감소된다. 여기서 개방회로전압(OCV)은 방전 또는 충전을 수행하지 않을 때(전류가 인가되지 않았을 때)의 전압이다.
이를 해결하는 방안으로 충전 상태와 방전 상태에 따라 각기 다른 충전상태(SOC) 매개변수를 테이블화하여 각 상태에 따른 충전상태(SOC)가 추정될 수 있도록 한다.
또한, 상기 전압 충전상태(SOC) 추정단계(S322)를 좀 더 상세하게 설명한다면, 우선 배터리가 충전상태인지 방전상태인지 판단하고, 상기 상태 측정단계(S310)에서 측정된 온도 및 이전 측정주기에 측정된 충전상태(SOC)를 근거로 하여 충전상태(SOC) 매개변수를 도출한다.
여기서 충전상태(SOC) 매개변수는 배터리 충/방전 상태에 따라 다른 값을 가지고 있다.
배터리 상태에 따라 도출된 매개변수를 상기 (식1)에 넣어 연산하면, 상기 (식2)에 필요한 분극 전압과 강하된 전압을 산출할 수 있다.
상기 (식2)를 통해 개방회로전압(OCV)을 산출하고, 산출된 개방회로전압(OCV)을 상기 충전상태(SOC)와 개방회로전압(OCV) 간의 테이블에 매칭하면 충전상태(SOC)를 쉽게 도출 할 수 있다.
또한, 상기 오차범위 비교단계(S330)는 상기 충전상태(SOC) 추정단계(S320)에서 추정된 전류 적산법의 충전상태(SOC)와 전압 모델링 기법의 충전상태(SOC) 간의 차가 소정의 오차범위를 초과하는지 비교한다.
이는 상기 전류 충전상태(SOC) 추정단계(S321)에서 추정된 전류 충전상태(SOC)가 이전 추정주기에 산출된 충전상태(SOC)를 근거로 추정되고, 전류센서에서 측정된 전류 값에만 근거하여 추정되므로 전압센서보다 오차율이 큰 전류센서의 오차율이 누적되어 충전상태(SOC)의 정확도가 감소하기 때문이다.
따라서 시간이 지남에도 비교적 오차율이 낮은 전압 모델링 기법의 충전상태(SOC)와 시간이 지남에 따라 오차율이 증가하는 전류 적산법의 충전상태(SOC) 간의 차를 연산하여 그 차가 소정의 범위를 초과하는지 비교한다.
여기서 소정의 범위는 일반적으로 발생하는 오차범위보다 2~3배 크게 넘어서는 정도의 값으로 정하는 것이 좋다.
또한, 상기 오차범위 비교단계(S330)는 상기 전류 충전상태(SOC) 추정단계가 소정의 추정횟수를 초과하는 지를 비교하는 추정횟수 비교단계; 를 추가로 포함하여 구성됨에 따라 일시적인 오류로 인하여 발생되는 문제를 방지할 수 있다.
따라서 상기 전류 충전상태(SOC) 추정단계가 소정의 추정횟수를 초과하는 경우, 상기 최종 충전상태(SOC) 산출단계 수행할 수 있도록 하고, 만약 상기 전류 충전상태(SOC) 추정단계가 소정의 추정횟수 미만인 경우, 일시적인 오류가 발생된 것으로 간주하여 다시 상기 상태 측정단계(S310)를 수행한다.
여기서 소정의 추정횟수는 전류 적산법을 사용하는 경우, 일반적으로 오류 값이 커지는 횟수로 이는 전류적산법에 의해 추정된 충전상태(SOC)의 신뢰도가 현저히 낮아진 것을 의미한다.
또한, 상기 최종 충전상태(SOC) 산출단계(S340)는 상기 오차범위 비교단계(S330)에서 상기 전류 적산법의 충전상태(SOC)와 전압 모델링 기법의 충전상태(SOC) 간의 차가 소정의 오차범위를 초과하는 경우, 상기 전류 적산법의 충전상태와 전압 모델링 기법의 충전상태에 소정의 가중치를 적용하여 최종 충전상태(SOC)를 산출한다.
예를 들어 설명한다면, 상기 전류 적산법의 충전상태(SOC)와 전압 모델링 기법의 충전상태(SOC)의 초기 비율이 2:1인 경우, 1:4로 변경하여, 전류 적산법의 충전상태(SOC)에 대한 가중치는 1/5로, 전압 모델링 기법의 충전상태(SOC)에 대한 가중치는 4/5로 연산한다.
따라서 전류 적산법의 충전상태(SOC)가 90(%), 전압 모델링 기법의 충전상태(SOC)가 60(%)인 경우, 최종 SOC(%)=90*(1/5)+(60)*(4/5)로 최종 충전상태(SOC)는 66(%)로 산출된다.
이는 전압 모델링 기법도 또한 오차율이 발생하므로 전류 적산법의 충전상태(SOC)의 비율을 조정함에 따라 정확한 충전상태(SOC)가 산출될 수 있도록 한다.
<실시 예 3>
다음으로 본 발명의 실시 예에 따른 에너지 저장장치(ESS) 충전상태(SOC) 추정장치에 대하여 설명한다.
본 발명의 에너지 저장장치(ESS) 충전상태(SOC) 추정장치는 전압 모델링 기법을 통해 충전 또는 방전 상태에 따라 정확한 충전상태(SOC)를 추정하여 시간이 지남에도 정확한 충전상태(SOC)가 산출될 수 있도록 한다.
도 5는 본 발명의 실시 예에 따른 에너지 저장장치(ESS) 충전상태(SOC) 추정장치의 구성도이다.
도 5를 참조하면, 본 발명의 실시 예에 따른 에너지 저장장치(ESS) 충전상태(SOC) 추정장치(100)는 에너지 저장장치(ESS)의 전류, 전압 및 온도를 측정하는 상태 측정부(200), 상태 측정부(200)에서 측정한 전류, 전압 및 온도를 근거로 하여 전류 적산법 및 전압 모델링 기법을 통한 각각의 충전상태(SOC)를 추정하는 충전상태(SOC) 추정부(300), 충전상태(SOC) 추정부(300)에서 추정한 전류 적산법의 충전상태(SOC)와 전압 모델링 기법의 충전상태(SOC) 간의 차가 소정의 오차범위를 초과하는지 비교하는 오차범위 비교부(400), 오차범위 비교부(400)에서 상기 전류 적산법의 충전상태와 전압 모델링 기법의 충전상태 간의 차가 소정의 오차범위를 초과하는 경우, 상기 전류 적산법의 충전상태와 전압 모델링 기법의 충전상태에 소정의 가중치를 적용하여 최종 충전상태(SOC)를 산출하는 최종 충전상태(SOC) 산출부(500) 및 상기 충전상태(SOC) 추정부(300)에서 추정된 각각의 충전상태(SOC)를 저장하는 메모리(600)를 포함하여 구성된다.
이와 같은 상기 에너지 저장장치(ESS) 충전상태(SOC) 추정장치(100)는 배터리 BMS의 내부 또는 외부에 구성될 수 있다.
또한, 상기 에너지 저장장치(ESS) 충전상태(SOC) 추정장치의 각 구성은 하기에서 더욱 상세하게 설명한다.
상기 상태 측정부(200)는 에너지 저장장치(ESS)의 전류, 전압 및 온도를 측정한다.
좀 더 상세하게 설명하면, 상기 상태 측정부(200)는 각 배터리 셀이 온도 센서를 통해 전류, 전압 및 온도를 측정하도록 명령하고, 측정된 각 배터리 셀의 전류, 전압 및 온도가 취합되어 전송될 수 있도록 제어한다.
또한, 상태 측정부(200)는 소정의 추정주기마다 수행되는데, 이는 충전상태(SOC)에 따라 변경된다.
일반적으로 낮은 충전상태(SOC)와 높은 충전상태(SOC)는 충전상태(SOC) 추정 오차가 높으므로, 일 실시 예로써, 0~10, 90~100%의 충전상태(SOC)는 1% 단위로 충전상태(SOC)가 추정되도록 추정주기를 변경한다.
또한, 그 외 10~90%의 충전상태(SOC)는 20% 단위로 충전상태(SOC)가 추정되도록 추정주기를 변경하여 효율적이면서 정확한 값이 추정될 수 있도록 한다.
상기 충전상태(SOC) 추정부(300)는 상기 상태 측정부(200)에서 측정한 전류, 전압 및 온도를 전류 적산법 및 전압 모델링 기법에 적용한 각각의 충전상태(SOC)를 추정한다.
또한, 상기 충전상태(SOC) 추정부(300)는 도6을 들어 상세하게 설명한다.
도 6은 본 발명의 실시 예에 따른 에너지 저장장치(ESS) 충전상태(SOC) 추정장치 내 SOC 추정부의 구성도이다.
도 6을 참조하면, 상기 충전상태(SOC) 추정부(300)는 상기 상태 측정부(200)에서 측정한 전류를 전류 적산법에 적용하여 에너지 저장장치의 충전상태(SOC)를 추정하는 전류 적산부(310) 및 상기 상태 측정부(200)에서 측정한 전류, 전압 및 온도를 전압 모델링 기법에 적용하여 에너지 저장장치의 충전상태(SOC)를 추정하는 전압 모델링부(320)를 포함하여 구성된다.
또한, 상기 전류 적산부(310)는 상기 (식3)과 같은 전류 적산법의 알고리즘이 기 저장되어 있어 상기 상태 측정부(200)에서 측정한 전류를 근거로 하여 에너지 저장장치의 충전상태(SOC)를 추정한다.
또한, 추정된 충전상태(SOC)는 상기 메모리(600)에 저장하여 다음 추정주기와 상기 전압 모델링부(320)에서의 첫 번째 추정주기에 사용될 수 있도록 한다.
또한, 상기 전압 모델링부(320)는 상기 (식1) 및 (식2)와 같은 전압 모델링 기법의 알고리즘이 기 저장되어 있고, 상기 상태 측정부(200)에서 측정한 전류, 전압 및 온도를 적용하여 충전상태(SOC)를 추정한다.
상기 도 6을 참조하면, 상기 전압 모델링부(320)는 상기 상태 측정부(200)에서 측정된 전류 및 전압을 근거로 충전상태인지 방전상태인지 판단하는 충/방전 판단부(321), 상기 충/방전 판단부(321)에서 판단된 상태를 근거로 하여 충전상태(SOC) 매개변수를 도출하는 매개변수 도출부(322) 및 상기 매개변수 도출부(322)에서 도출된 충전상태(SOC) 매개변수를 근거로 하여 에너지 저장장치(ESS)의 충전상태(SOC)를 추정하는 전압 충전상태(SOC) 추정부(323/ 이하, SOC 추정부)를 포함하여 구성된다.
더욱 상세하게 설명한다면, 상기 충/방전 판단부(321)는 충/방전 시 발생되는 분극 전압을 누적하여 누적된 값의 극성에 따라 충전상태인지 방전상태인지 판단한다.
또한, 상기 매개변수 도출부(322)는 상기 상태 측정부(200)에서 측정된 온도와 이전 추정주기에 추정된 충전상태(SOC)를 근거로 하여 상기 충/방전 판단부(321)에서 판단된 배터리의 상태에 따라 다른 충전상태(SOC) 매개변수를 도출한다.
여기서 충전상태(SOC) 매개변수는 충전 상태와 방전 상태마다 다른 테이블을 가지고 있어 정확한 충전상태(SOC)가 추정될 수 있도록 한다.
여기서 상기 충전 상태와 방전 상태 테이블은 상기 메모리(600)에 기 저장되어 있다.
또한, 상기 SOC 추정부(323)는 상기 (식1) 및 (식2)의 알고리즘을 포함하므로 상기 매개변수 도출부(322)에서 도출된 매개변수를 근거로 하여 개방회로전압(OCV)을 산출하고, 산출된 개방회로전압(OCV)을 충전상태(SOC)와 개방회로전압(OCV) 간의 상관관계 테이블에 매칭하여 전압 충전상태(SOC)를 추정할 수 있다.
여기서 상기 충전상태(SOC)와 개방회로전압(OCV) 간의 상관관계 테이블은 상기 메모리(600)에 기 저장되어 있다.
또한, 상기 오차범위 비교부(400)는 상기 충전상태(SOC) 추정부(300)에서 추정한 전류 적산법의 충전상태(SOC)와 전압 모델링 기법의 충전상태(SOC) 간의 차가 소정의 오차범위를 초과하는지 비교한다.
여기에는 상기 충전상태(SOC) 추정부(300)에서 추정한 전류 적산법의 충전상태(SOC)와 전압 모델링 기법의 충전상태(SOC) 간의 차를 연산하는 SOC 차 연산부; 를 추가로 포함하여 구성된다.
또한, 상기 전류 적산부(310)에서 수행한 충전상태(SOC) 추정횟수가 소정의 추정횟수를 초과하는지 비교하는 추정횟수 비교부; 를 추가로 포함하여 구성됨에 따라 일시적인 오류발생으로 인한 충전상태(SOC) 가중치 조절을 방지한다.
또한, 상기 최종 충전상태(SOC) 산출부(500)는 상기 오차범위 비교부(400)에서 상기 전류 적산법의 충전상태와 전압 모델링 기법의 충전상태 간의 차가 소정의 오차범위를 초과하는 경우, 상기 전류 적산법의 충전상태와 전압 모델링 기법의 충전상태에 소정의 가중치를 적용하여 최종 충전상태(SOC)를 산출한다.
상기 최종 충전상태(SOC) 산출부(500)는 가중치를 적용하여 최종 충전상태(SOC)를 산출하는 알고리즘이 기 저장되어 있어, 상기 전류 적산부(310)에서 추정된 충전상태(SOC)와 상기 전압 모델링부(320)에서 추정된 충전상태(SOC)를 기 설정된 가중치로 변경 적용하여 최종 충전상태(SOC)를 산출한다.
또한, 상기 메모리(600)는 충전상태(SOC) 추정부(300)에서 추정된 각각의 충전상태(SOC)를 저장하고, 상기 매개변수 도출부(322)에서 사용되는 충전 상태 테이블과 방전상태 테이블이 기 저장되어 있다.
또한, 상기 SOC 추정부(323)에서 사용되는 충전상태(SOC)와 개방회로전압(OCV) 간의 상관관계 테이블이 기 저장되어 있으며, 이 테이블은 배터리의 충전상태와 방전상태에 상관없이 동일한 값을 사용한다.
이는 개방회로전압(OCV)에 충전상태와 방전상태에 관한 전압 값이 누적되어 있으므로 충전상태와 방전상태의 평균값을 사용한다.
한편, 본 발명의 기술적 사상은 상기 실시 예에 따라 구체적으로 기술되었으나, 상기 실시 예는 그 설명을 위한 것이며, 그 제한을 위한 것이 아님을 주지해야 한다. 또한, 본 발명의 기술분야에서 통상의 지식을 가진 자는 서술한 특허청구범위 기술 내에서 다양한 실시 예가 가능할 수 있을 것이다.
[부호의 설명]
100: 에너지 저장장치 충전상태 추정장치
200: 상태 측정부
300: SOC 추정부
310: 전류 적산부
320: 전압 모델링부
321: 충/방전 판단부
322: 매개변수 도출부
323: SOC 추정부
400: 오차범위 비교부
500: 최종 SOC 산출부
600: 메모리

Claims (13)

  1. 에너지 저장장치(ESS)의 충전상태(SOC)를 추정하는 방법에 있어서,
    에너지 저장장치의 전류, 전압 및 온도를 측정하는 제1단계;
    상기 제1단계에서 측정된 전류 및 전압을 근거로 충/방전상태를 판단하는 제2단계;
    상기 제2단계에서 판단된 충전상태 또는 방전상태에 따라 충전상태(SOC) 매개변수를 도출하는 제3단계; 및
    상기 제3단계에서 도출된 충전상태(SOC) 매개변수를 근거로 하여 에너지 저장장치의 충전상태(SOC)를 추정하는 제4단계;
    를 포함하여 구성되는 것을 특징으로 하는 에너지 저장장치(ESS) 충전상태(SOC) 추정방법.
  2. 청구항 1에 있어서,
    상기 제1단계 내지 제4단계를 소정의 추정주기로 반복하는 것을 특징으로 하는 에너지 저장장치(ESS) 충전상태(SOC) 추정방법.
  3. 청구항 2에 있어서,
    상기 충전상태(SOC) 매개변수를 도출하는 제3단계는,
    상기 제1단계에서 측정된 온도 및 이전 추정주기에 추정된 충전상태(SOC)를 근거로 하여 충전상태(SOC) 매개변수를 도출하는 것을 특징으로 하는 에너지 저장장치(ESS) 충전상태(SOC) 추정방법.
  4. 청구항 3에 있어서,
    상기 제3단계가 첫 번째 추정주기인 경우, 전류 적산법으로 추정된 충전상태(SOC)를 상기 이전 추정주기에 추정된 충전상태(SOC)로 사용하는 것을 특징으로 하는 에너지 저장장치(ESS) 충전상태(SOC) 추정방법.
  5. 청구항 2에 있어서,
    충전상태(SOC)에 따라 상기 소정의 추정주기가 변경되는 것을 특징으로 하는 에너지 저장장치(ESS) 충전상태(SOC) 추정방법.
  6. 에너지 저장장치(ESS)의 충전상태(SOC)를 추정하는 방법에 있어서,
    에너지 저장장치의 전류, 전압 및 온도를 측정하는 상태 측정단계;
    상기 상태 측정단계에서 측정된 전류, 전압 및 온도를 전류 적산법 및 전압 모델링 기법에 적용하여 각 방법에 근거한 충전상태(SOC)를 추정하는 충전상태(SOC) 추정단계;
    상기 충전상태(SOC) 추정단계에서 추정된 전류 적산법의 충전상태와 전압 모델링 기법의 충전상태 간의 차가 소정의 오차범위를 초과하는지 비교하는 오차범위 비교단계; 및
    상기 오차범위 비교단계에서 상기 전류 적산법의 충전상태(SOC)와 전압 모델링 기법의 충전상태(SOC) 간의 차가 소정의 오차범위를 초과하는 경우, 상기 전류 적산법의 충전상태와 전압 모델링 기법의 충전상태에 소정의 가중치를 적용하여 최종 충전상태(SOC)를 산출하는 최종 충전상태(SOC) 산출단계;
    를 포함하여 구성되는 것을 특징으로 하는 에너지 저장장치(ESS) 충전상태(SOC) 추정방법.
  7. 청구항 6에 있어서,
    상기 충전상태(SOC) 추정단계는,
    상기 상태 측정단계에서 측정된 전류를 전류 적산법에 적용하여 에너지 저장장치의 충전상태(SOC)를 추정하는 전류 충전상태(SOC) 추정단계; 및
    상기 상태 측정단계에서 측정된 전류, 전압 및 온도를 전압 모델링 기법에 적용하여 에너지 저장장치의 충전상태(SOC)를 추정하는 전압 충전상태(SOC) 추정단계;
    를 포함하여 구성되는 것을 특징으로 하는 에너지 저장장치(ESS) 충전상태(SOC) 추정방법.
  8. 청구항 6에 있어서,
    상기 오차범위 비교단계는, 전류 충전상태(SOC) 추정단계가 소정의 추정횟수를 초과하는 지를 비교하는 추정횟수 비교단계; 를 추가로 포함하여 구성되며,
    전류 충전상태(SOC) 추정단계가 소정의 추정횟수를 초과하는 경우, 상기 최종 충전상태(SOC) 산출단계를 수행하는 것을 특징으로 하는 에너지 저장장치(ESS) 충전상태(SOC) 추정방법.
  9. 에너지 저장장치(ESS)의 전류, 전압 및 온도를 측정하는 상태 측정부;
    상기 상태 측정부에서 측정한 전류, 전압 및 온도를 전류 적산법 및 전압 모델링 기법에 적용하여 각 방법에 근거한 충전상태(SOC)를 추정하는 충전상태(SOC) 추정부;
    상기 충전상태(SOC) 추정부에서 추정한 전류 적산법의 충전상태(SOC)와 전압 모델링 기법의 충전상태(SOC) 간의 차가 소정의 오차범위를 초과하는지 비교하는 오차범위 비교부;
    상기 오차범위 비교부에서 상기 전류 적산법의 충전상태와 전압 모델링 기법의 충전상태 간의 차가 소정의 오차범위를 초과하는 경우, 상기 전류 적산법의 충전상태와 전압 모델링 기법의 충전상태에 소정의 가중치를 적용하여 최종 충전상태(SOC)를 산출하는 최종 충전상태(SOC) 산출부; 및
    상기 충전상태(SOC) 추정부에서 추정된 각각의 충전상태(SOC)를 저장하는 메모리;
    를 포함하여 구성되는 에너지 저장장치(ESS) 충전상태(SOC) 추정장치.
  10. 청구항 9에 있어서,
    상기 충전상태(SOC) 추정부는,
    상기 상태 측정부에서 측정한 전류를 전류 적산법에 적용하여 에너지 저장장치의 충전상태(SOC)를 추정하는 전류 적산부; 및
    상기 상태 측정부에서 측정한 전류, 전압 및 온도를 전압 모델링 기법에 적용하여 에너지 저장장치의 충전상태(SOC)를 추정하는 전압 모델링부;
    를 포함하여 구성되는 에너지 저장장치(ESS) 충전상태(SOC) 추정장치.
  11. 청구항 10에 있어서,
    상기 전압 모델링부는,
    상태 측정부에서 측정된 전류 및 전압을 근거로 충전상태인지 방전상태인지 판단하는 충/방전 판단부;
    상기 충/방전 판단부에서 판단된 상태를 근거로 하여 충전상태(SOC) 매개변수를 도출하는 매개변수 도출부; 및
    상기 매개변수 도출부에서 도출된 충전상태(SOC) 매개변수를 근거로 하여 에너지 저장장치(ESS)의 충전상태(SOC)를 추정하는 전압 충전상태(SOC) 추정부;
    를 포함하여 구성되는 에너지 저장장치(ESS) 충전상태(SOC) 추정장치.
  12. 청구항 11에 있어서,
    상기 매개변수 도출부는,
    상태 측정부에서 측정된 온도 및 상기 메모리에 저장된 이전 추정주기에 추정된 충전상태(SOC)를 근거로 하여 충전상태(SOC) 매개변수를 도출하는 것을 특징으로 하는 에너지 저장장치(ESS) 충전상태(SOC) 추정방법.
  13. 청구항 9에 있어서,
    상기 오차범위 비교부는,
    상기 전류 적산부에서 수행한 충전상태(SOC) 추정횟수가 소정의 추정횟수를 초과하는 지 비교하는 추정횟수 비교부; 를 추가로 포함하여 구성되는 에너지 저장장치(ESS) 충전상태(SOC) 추정장치.
PCT/KR2018/001026 2017-02-17 2018-01-23 에너지 저장장치 충전상태 추정방법 WO2018151431A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/469,292 US11112461B2 (en) 2017-02-17 2018-01-23 Method for estimating state of charge of energy storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0021399 2017-02-17
KR1020170021399A KR102101912B1 (ko) 2017-02-17 2017-02-17 에너지 저장장치 충전상태 추정방법

Publications (1)

Publication Number Publication Date
WO2018151431A1 true WO2018151431A1 (ko) 2018-08-23

Family

ID=63169540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/001026 WO2018151431A1 (ko) 2017-02-17 2018-01-23 에너지 저장장치 충전상태 추정방법

Country Status (3)

Country Link
US (1) US11112461B2 (ko)
KR (1) KR102101912B1 (ko)
WO (1) WO2018151431A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102458526B1 (ko) * 2018-02-07 2022-10-25 주식회사 엘지에너지솔루션 배터리의 동작 상태에 따라 soc를 추정하는 장치 및 방법
US11554687B2 (en) * 2018-09-27 2023-01-17 Sanyo Electric Co., Ltd. Power supply system and management device capable of determining current upper limit for supressing cell deterioration and ensuring safety
KR102465294B1 (ko) 2019-01-23 2022-11-08 주식회사 엘지에너지솔루션 배터리 관리 장치, 배터리 관리 방법 및 배터리팩
KR20200097170A (ko) 2019-02-07 2020-08-18 주식회사 엘지화학 배터리 관리 장치, 배터리 관리 방법 및 배터리팩
US11186198B2 (en) * 2019-05-31 2021-11-30 Ford Global Technologies, Llc Methods and systems for vehicle battery cell failure detection and overcharge protection
KR20210016795A (ko) * 2019-08-05 2021-02-17 주식회사 엘지화학 에너지 허브 장치 및 에너지 관리 방법
KR102307865B1 (ko) * 2019-12-20 2021-10-05 한국생산기술연구원 Pcm이 적용된 배터리팩의 제어와 계측 알고리즘 및 pcm이 적용된 배터리팩의 제어와 계측 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006038495A (ja) * 2004-07-22 2006-02-09 Fuji Heavy Ind Ltd 蓄電デバイスの残存容量演算装置
KR20090077657A (ko) * 2008-01-11 2009-07-15 에스케이에너지 주식회사 배터리 관리 시스템에서 배터리의 soc 측정 방법 및 장치
JP2012225713A (ja) * 2011-04-18 2012-11-15 Honda Motor Co Ltd 充電率推定装置
JP2013217899A (ja) * 2012-03-13 2013-10-24 Nissan Motor Co Ltd バッテリの残存容量算出装置及びバッテリの残存容量算出方法
JP2013250234A (ja) * 2012-06-04 2013-12-12 Toyota Industries Corp 二次電池の電池容量を推定する方法および装置
KR20130142807A (ko) * 2012-06-20 2013-12-30 엘지이노텍 주식회사 배터리 용량 상태 추정 방법

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009257775A (ja) 2008-04-11 2009-11-05 Kawasaki Heavy Ind Ltd 二次電池の充電率推定方法及び装置
KR101227417B1 (ko) 2010-09-14 2013-01-29 충북대학교 산학협력단 리튬이온전지의 충전상태 추정방법 및 이 방법을 구현하기 위한 시스템
KR101731322B1 (ko) 2010-11-02 2017-05-02 에스케이이노베이션 주식회사 배터리의 교환 시기 통보 장치 및 방법
JP6081584B2 (ja) * 2012-06-13 2017-02-15 エルジー・ケム・リミテッド 混合正極材を含む二次電池の電圧推定装置及び方法
WO2013187582A1 (ko) * 2012-06-13 2013-12-19 주식회사 엘지화학 혼합 양극재를 포함하는 이차 전지의 충전 상태 추정 장치 및 방법
KR101996943B1 (ko) 2013-01-18 2019-10-01 엘지이노텍 주식회사 배터리 용량 상태 추정 장치 및 이의 방법
JP5997081B2 (ja) 2013-03-21 2016-09-21 プライムアースEvエナジー株式会社 二次電池の状態推定装置及び二次電池の状態推定方法
KR101749383B1 (ko) 2014-10-21 2017-06-20 주식회사 엘지화학 배터리의 soc 보정 시스템 및 방법
KR102014451B1 (ko) * 2015-11-13 2019-08-26 주식회사 엘지화학 이차 전지의 출력 파라미터를 조정하는 시스템 및 그 방법
KR102179677B1 (ko) * 2017-04-12 2020-11-17 주식회사 엘지화학 노이즈를 반영한 배터리 잔존 용량 산출 장치 및 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006038495A (ja) * 2004-07-22 2006-02-09 Fuji Heavy Ind Ltd 蓄電デバイスの残存容量演算装置
KR20090077657A (ko) * 2008-01-11 2009-07-15 에스케이에너지 주식회사 배터리 관리 시스템에서 배터리의 soc 측정 방법 및 장치
JP2012225713A (ja) * 2011-04-18 2012-11-15 Honda Motor Co Ltd 充電率推定装置
JP2013217899A (ja) * 2012-03-13 2013-10-24 Nissan Motor Co Ltd バッテリの残存容量算出装置及びバッテリの残存容量算出方法
JP2013250234A (ja) * 2012-06-04 2013-12-12 Toyota Industries Corp 二次電池の電池容量を推定する方法および装置
KR20130142807A (ko) * 2012-06-20 2013-12-30 엘지이노텍 주식회사 배터리 용량 상태 추정 방법

Also Published As

Publication number Publication date
US11112461B2 (en) 2021-09-07
KR20180095207A (ko) 2018-08-27
KR102101912B1 (ko) 2020-04-17
US20200003844A1 (en) 2020-01-02

Similar Documents

Publication Publication Date Title
WO2018151431A1 (ko) 에너지 저장장치 충전상태 추정방법
WO2018093045A1 (ko) 배터리의 절연 저항 산출 장치 및 방법
WO2019074221A1 (ko) 이차 전지의 충전 상태를 추정하기 위한 장치 및 그 방법
WO2010016647A1 (en) Apparatus and method for estimating state of health of battery based on battery voltage variation pattern
WO2019139335A1 (ko) 배터리 셀의 성능을 테스트하기 위한 장치 및 방법
WO2019066294A1 (ko) 리튬 이온 배터리 셀의 퇴화 정보를 획득하는 장치 및 방법
WO2016053055A1 (ko) 신속하게 절연 저항을 측정할 수 있는 절연 저항 측정 장치 및 방법
WO2022114871A1 (ko) 배터리 진단 장치, 배터리 진단 방법, 배터리 팩 및 자동차
WO2018038383A1 (ko) 배터리 셀의 성능 테스트 장치 및 방법
WO2019199064A1 (ko) 배터리 진단 장치 및 방법
WO2018194225A1 (ko) 배터리 모니터링 및 보호 시스템
WO2021118118A1 (ko) 배터리 퇴화도 진단 장치 및 방법
WO2015080537A1 (ko) 셀의 성능 측정방법
WO2023085906A1 (ko) 배터리 soh 추정시스템, 이를 위한 파라미터 추출시스템 및 방법
WO2020153637A1 (ko) 배터리 관리 장치, 배터리 관리 방법 및 배터리 팩
WO2020189914A1 (ko) 배터리 상태 추정 장치
WO2019156377A1 (ko) 배터리를 위한 등가 회로 모델의 파라미터를 추정하기 위한 방법 및 배터리 관리 시스템
WO2020189919A1 (ko) 배터리 상태 추정 장치
WO2021054716A1 (ko) 배터리 전압 데이터 및 온도 데이터를 이용한 이상 상태 사전 감지 시스템
WO2022055080A1 (ko) 배터리의 충전상태를 추정하는 방법
WO2018199437A1 (ko) 방전 제어 장치 및 방법
WO2022265357A1 (ko) 배터리 soh 추정 장치 및 방법
WO2022071776A1 (ko) 배터리 진단 장치, 방법 및 시스템
WO2022080837A1 (ko) 배터리 진단 장치 및 방법
WO2021230642A1 (ko) 배터리를 진단하기 위한 장치 및 그 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18754302

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18754302

Country of ref document: EP

Kind code of ref document: A1