WO2018117386A1 - 배터리 팩 - Google Patents

배터리 팩 Download PDF

Info

Publication number
WO2018117386A1
WO2018117386A1 PCT/KR2017/011603 KR2017011603W WO2018117386A1 WO 2018117386 A1 WO2018117386 A1 WO 2018117386A1 KR 2017011603 W KR2017011603 W KR 2017011603W WO 2018117386 A1 WO2018117386 A1 WO 2018117386A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
circuits
circuit
cell
voltage detection
Prior art date
Application number
PCT/KR2017/011603
Other languages
English (en)
French (fr)
Inventor
히다카타카오
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to US16/349,944 priority Critical patent/US11001150B2/en
Publication of WO2018117386A1 publication Critical patent/WO2018117386A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/19Switching between serial connection and parallel connection of battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/30Sensors
    • B60Y2400/308Electric sensors
    • B60Y2400/3084Electric currents sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/30Sensors
    • B60Y2400/308Electric sensors
    • B60Y2400/3086Electric voltages sensors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • An embodiment relates to a battery pack.
  • Green vehicles use high voltage batteries to store electrical energy from a variety of energy sources.
  • the high voltage battery needs to supply 200V to 800V high voltage electrical energy to the inverter to drive the vehicle's drive motor.
  • the high voltage battery is configured to include a plurality of battery modules connected in series with each other.
  • Battery management system for managing high voltage batteries.
  • One of the main functions of the battery management system is a cell balancing function that monitors the voltage of each cell constituting the battery module and compensates for the voltage variation between cells.
  • the battery management system includes a monitoring circuit for monitoring the cell voltage for each battery module for cell balancing.
  • the technical problem to be solved by the embodiment is to provide a battery pack that minimizes the unbalance between the battery modules by minimizing the current consumption variation between the monitoring circuits.
  • a battery pack includes a plurality of cell stacks, a plurality of supervisory circuits that detect voltages of a plurality of cells included in corresponding cell stacks of the plurality of cell stacks, and the plurality of cell stacks.
  • a plurality of current measuring circuits for measuring current consumption of a corresponding monitoring circuit among the monitoring circuits, a plurality of current adjusting circuits for adjusting a discharge current of a corresponding cell stack among the plurality of cell stacks, and the plurality of current measuring circuits; Receives a current consumption measurement result of a plurality of supervisory circuits, calculates a current consumption variation between the plurality of supervisory circuits based on the current consumption measurement results of the plurality of supervisory circuits, and based on the current consumption variation It may include a battery controller for controlling the.
  • the battery pack further includes a plurality of current detection resistors respectively connected between the plurality of cell stacks and the plurality of supervisory circuits, wherein each of the plurality of current measurement circuits is one of the plurality of current detection resistors.
  • the current flowing through the corresponding current detecting resistor may be measured and output as a measured value of the current consumption.
  • the plurality of supervisory circuits may each include a voltage detection integrated circuit, and the plurality of current detection resistors may be respectively connected between a corresponding cell stack of the plurality of cell stacks and a power supply terminal of the voltage detection integrated circuit.
  • the plurality of current measuring circuits may be located inside the voltage detection integrated circuit of a corresponding monitoring circuit among the plurality of monitoring circuits.
  • the plurality of current adjustment circuits may be located inside the voltage detection integrated circuit of a corresponding monitoring circuit among the plurality of monitoring circuits.
  • the battery pack further includes a plurality of short-circuit switches respectively connected between the plurality of cell stacks and the plurality of supervisory circuits, each of the plurality of short-circuit switches detecting a corresponding current among the plurality of current detection resistors. Can be connected in parallel with the dragon resistor.
  • the battery controller may turn off the plurality of short-circuit switches during a period in which the current consumption is measured using the plurality of current measuring circuits.
  • the battery controller may turn on the plurality of short-circuit switches during a period of detecting a cell voltage using the plurality of monitoring circuits.
  • Each of the plurality of current detection resistors includes a negative terminal of a lowest potential cell among a plurality of cells included in a corresponding cell stack among the plurality of cell stacks, and a ground power supply terminal of a corresponding monitoring circuit among the plurality of voltage monitoring circuits. Can be connected between.
  • Each of the plurality of current adjustment circuits is connected to a plurality of resistors connected between both ends of a corresponding cell stack among the plurality of cell stacks, and a corresponding one of the plurality of resistors, and to control a current flow of the corresponding resistor. It may include a plurality of switches for blocking or conducting.
  • the battery controller may adjust a discharge current of a corresponding cell stack among the plurality of cell stacks by adjusting the number of switches turned on among the plurality of switches.
  • Each of the plurality of current adjustment circuits includes a plurality of balancing resistors connected between a corresponding cell stack among the plurality of cell stacks and a corresponding monitoring circuit among the plurality of monitoring circuits, and a corresponding balancing resistor among the plurality of balancing resistors. And a plurality of switches which are connected to and which block or conduct current flow of the corresponding balancing resistor.
  • the battery controller receives a cell voltage detection result for each of the plurality of cell stacks through the plurality of monitoring circuits, and controls the plurality of switches based on the cell voltage detection result to control each of the plurality of cell stacks. Cell balancing may be controlled.
  • the battery controller may turn on the plurality of switches included in a corresponding current adjusting circuit of the plurality of current adjusting circuits with respect to the monitoring circuit having a relatively low current consumption among the plurality of monitoring circuits.
  • the battery controller may adjust turn-on duty of the plurality of switches included in each of the plurality of current adjustment circuits to adjust current consumption of the plurality of current adjustment circuits.
  • a battery pack may include a cell stack including a plurality of cells, a voltage detection integrated circuit electrically connected to the plurality of cells, and detecting cell voltages of the plurality of cells, and both ends of the cell stack.
  • a current measuring resistor connected between any one of the power supply terminals of the voltage detecting integrated circuit, a short switch connected in parallel with the current measuring resistor, a current measuring circuit measuring a current flowing through the current measuring resistor, and the cell
  • a current regulation circuit connected between both ends of the stack and controlling the discharge current of the cell stack, and controlling the turn-on of the short switch, and the current measurement result from the current measuring circuit with the short switch turned off.
  • a battery controller configured to control the current regulation circuit based on the result of the current measurement.
  • FIG. 1 schematically illustrates a battery pack according to a first embodiment.
  • FIG. 2 schematically illustrates a battery module according to a first embodiment.
  • FIG. 3 schematically illustrates a battery module according to a second embodiment.
  • FIG. 4 schematically illustrates a battery module according to a third embodiment.
  • FIG. 5 schematically illustrates a battery module according to a fourth embodiment.
  • FIG. 6 schematically illustrates a battery pack according to a fifth embodiment.
  • FIG. 7 schematically illustrates a battery module according to a fifth embodiment.
  • FIG 8 is a schematic view of a battery pack according to a sixth embodiment.
  • FIG 9 is a schematic view of a battery module according to a sixth embodiment.
  • Electrically connecting two components includes not only connecting the two components directly, but also connecting the two components via other components.
  • Other components may include switches, resistors, capacitors, and the like.
  • the expression “connecting”, when there is no expression “directly connecting”, means to connect electrically.
  • BMS battery management system
  • 1 schematically illustrates a battery pack according to a first embodiment.
  • 2 schematically illustrates a battery module according to a first embodiment.
  • 3, 4, and 5 schematically illustrate battery modules according to the second, third, and fourth embodiments, respectively.
  • the battery pack 100 may include a plurality of battery modules 101, a battery controller 102, and a battery blocking circuit 103.
  • FIG. 1 illustrates an example in which the battery pack 100 includes three battery modules 101 connected in series with each other, the present invention is not limited thereto, and the battery pack 100 is included in the battery pack 100.
  • the number of battery modules 101 may vary according to embodiments.
  • Each battery module 101 includes a cell stack 110 and a voltage detection integrated circuit (IC) 120.
  • Each battery module 101 may further include a monitoring circuit 130 such as a temperature sensor in addition to the voltage detection IC 120.
  • Each cell stack 110 may include a plurality of cells 111 electrically connected to each other.
  • FIG. 1 illustrates a case where one cell stack 110 includes a plurality of cells 111 connected in series with each other, the present invention is not limited thereto.
  • a plurality of cells connected in parallel may form a cell group, and a plurality of cell groups may be connected in series to form a cell stack.
  • the voltage detection IC 120 is a supervisory circuit for monitoring the voltage of the corresponding cell stack 110.
  • the voltage detection IC 120 may perform a function of detecting a cell voltage of each of the plurality of cells 111 included in the corresponding cell stack 110.
  • the voltage detection IC 120 may perform a function of detecting the total voltage of the corresponding cell stack 110.
  • the voltage detection IC 120 may include a voltage detection circuit (not shown) for voltage detection.
  • the voltage detection IC may include an analog front end (AFE) IC including a voltage detection function, a cell voltage monitoring (CVM) IC, and the like.
  • AFE analog front end
  • CVM cell voltage monitoring
  • the voltage detection IC 120 may control cell balancing of the corresponding cell stack 110.
  • Cell balancing is a function of equalizing cell voltages between cells 111 included in one cell stack 110.
  • the battery module 101 includes balancing resistors (not shown) connected to each of a plurality of cells constituting the cell stack 210 for cell balancing. Cell balancing of the battery module 101 may be controlled by the conduction or blocking of bypass currents of the respective balancing resistors by cell balancing switches (not shown) located inside the voltage detection IC 120.
  • the voltage detection IC 120 may be connected to the corresponding cell stack 110 through the power terminals VCC and GND, thereby receiving operating power from the cell stack 110.
  • Each power supply terminal VCC, GND of the voltage detection IC 120 is electrically connected to a corresponding terminal of both ends of the cell stack 110.
  • the power supply terminal VCC is connected to the positive terminal of the highest potential cell among the plurality of cells included in the corresponding cell stack 110, and the ground power supply terminal GND is included in the corresponding cell stack 110. It can be connected to the negative terminal of the lowest potential cell of the plurality of cells.
  • Each battery module 101 may include a current measuring resistor R1 for measuring current.
  • the current measuring resistor R1 may be positioned on a path through which a current supplied from the cell stack 110 to the voltage detection IC 120 and the monitoring circuit 130 flows.
  • the current measuring resistor R1 is connected between the negative terminal of the lowest potential cell of the plurality of cells included in the cell stack 110 and the ground terminal of the voltage detection IC 120 and the supervisory circuit 130. It can be located on the current path to be.
  • the current measuring resistor R1 is the negative power terminal of the voltage detection IC 120, that is, the negative terminal of the lowest potential cell among the plurality of cells included in the cell stack 110 corresponding to the ground power terminal GND. It can be electrically connected between.
  • the voltage detection IC 120 may perform a function of measuring a current consumption of the corresponding battery module 101 and adjusting a current consumption of the corresponding battery module 101 under the control of the battery controller 102.
  • the voltage detection IC 120 may include a current measuring circuit.
  • the current measuring circuit may include a current monitoring circuit 121 and an analog to digital converter (ADC) 122.
  • ADC analog to digital converter
  • the current monitoring circuit 121 is electrically connected to both ends of the current measuring resistor R1 through the current measuring terminals IS0 and IS1, and measures a current flowing through the current measuring resistor R1.
  • the voltage between both ends of the current measuring resistor R1 is proportional to the current flowing through the current measuring resistor R1. Accordingly, the current monitoring circuit 121 may output a corresponding voltage value of the current flowing through the current measuring resistor R1 as a measured value. Since the current measuring resistor R1 is positioned on the path through which the current bypasses the supervisory circuit (voltage detection IC 120 and supervisory circuit 130), the measured value of the current monitoring circuit 121 is a corresponding voltage. It may be a value corresponding to the current consumed by the detection IC 120 and the monitoring circuit 130.
  • the ADC 122 converts the measurement result of the current monitoring circuit 121 into a digital value and outputs it.
  • the voltage detection IC 120 may further include a current adjustment circuit 125.
  • the current adjustment circuit 125 may adjust the current consumption of the voltage detection IC 120 by increasing or decreasing the current path between the power terminals VCC and GND of the voltage detection IC 120.
  • the current adjusting circuit 125 may include a plurality of current adjusting resistors R11, R12, R13, and R14 connected in parallel between the power supply terminals VCC and GND of the voltage detection IC 120.
  • the current adjustment circuit 125 further includes a plurality of switches S11, S12, S13 connected between each current adjustment resistor R11, R12, R13, R14 and a power supply terminal (for example, a ground power supply terminal GND). , S14).
  • Each switch S11, S12, S13, S14 is used to conduct or disconnect between the corresponding resistors R11, R12, R13, R14 and a power supply terminal (e.g., a ground power supply terminal GND).
  • Each switch S11, S12, S13, S14 is turned on / off off under the control of the battery controller 102.
  • the number of switches turned on among the switches S11, S12, S13, and S14 increases, the number of resistors connected in parallel between the power terminals VCC and GND of the voltage detection IC 120 increases. Accordingly, by the turn on / turn off control of the plurality of switches S11, S12, S13, and S14, the current path between the power supply terminals VCC and GND of the voltage detection IC 120 is increased and decreased to thereby detect the voltage detection IC ( 120) the current consumption inside can be adjusted. As the current consumed by the voltage detection IC 120 is adjusted, the discharge current of the cell stack 110 may be adjusted accordingly.
  • FIG. 2 illustrates an example in which four current adjusting resistors are connected in parallel between power supply terminals VCC and GND of the voltage detection IC 120
  • the present invention is not limited thereto.
  • the number of current adjusting resistors connected in parallel between the power supply terminals VCC and GND of the detection IC 120 may be changed.
  • the voltage detection IC 120 may include a resistor 123 and a transceiver 124 to communicate with the battery controller 102.
  • the register 123 may record the output value of the ADC 122 and transmit the same to the battery controller 102 through the transceiver 124.
  • the register 123 receives the control information of the switches S11, S12, S13, and S14 constituting the current regulation circuit 125 from the battery controller 102 through the transceiver 124, and then switches the based on the control information. It is possible to control the turn on / off of the fields S11, S12, S13, and S14.
  • each voltage detection IC 120 communicates with other voltage detection ICs in a daisy chain manner and can communicate with the battery controller 102 via a daisy chain interface. have.
  • the battery controller 102 constitutes a battery management system (BMS) of the battery pack 100 together with the supervisory circuits (voltage detection IC 120 and supervisory circuit 130) of each battery module 101. .
  • BMS battery management system
  • the battery controller 102 may receive a cell voltage detection result from each voltage detection IC 120, and may control cell balancing of each battery module 101 based on the result. In addition, the battery controller 102 may receive the total voltage of the corresponding cell stack 110 from each voltage detection IC 120, and control the balancing between the battery modules 101 based on the total voltage of the corresponding cell stack 110.
  • the battery controller 102 may control the battery cutoff circuit 103 that controls charging / discharging of the battery pack 100 based on the cell voltage detection result of each voltage detection IC 120.
  • the battery controller 102 receives a current consumption measurement result of the corresponding battery module 101, that is, a current consumption measurement result of the monitoring circuit including the voltage detection IC 120, from each voltage detection IC 120 and based on the result. As a result, the current consumption deviation between the battery modules 101 (the current consumption variation between the monitoring circuits) is calculated.
  • the battery controller 102 controls the current adjustment circuit 125 of each voltage detection IC 120 so that the consumption current imbalance between the battery modules 101 is resolved based on the deviation of the current consumption between the battery modules 101. can do.
  • the battery controller 102 may increase the current consumption by controlling the current adjusting circuit 125 in the corresponding voltage detection IC 120 for the battery module 101 having a relatively low current consumption. .
  • the current measuring resistor R1 may be connected to the negative electrode of the lowest potential cell among a plurality of cells included in the corresponding cell stack 110 as an example, but the present invention relates to this. It is not limited. 3, for example, the current measuring resistor R1 may be connected to the anode of the highest potential cell among a plurality of cells included in the corresponding cell stack 110. In this case, the current measuring resistor R1 is electrically connected between the positive power supply terminal VCC of the voltage detection IC 120 and the positive terminal of the highest potential cell of the plurality of cells included in the corresponding cell stack 110. Thus, the current output from the cell stack 110 may be located in a path supplied to the supervisory circuit (voltage detection IC 120 and supervisory circuit 130).
  • the supervisory circuit voltage detection IC 120 and supervisory circuit 130
  • the current measuring circuit may be located outside the voltage detection IC 120.
  • the current monitoring circuit 121 of the current measuring circuit may be located outside the voltage detection IC 120.
  • the current monitoring circuit 121 measures the voltage between both ends of the current measuring resistor R1 in response to the current flowing through the current measuring resistor R1, and then converts the voltage from the ADC 122 inside the voltage detection IC 120. ) Can be delivered.
  • both the current monitoring circuit 121 and the ADC 122 may be located outside the voltage detection IC 120. In this case, the measurement result of the current measuring circuit can be transferred directly to the battery controller 102 without passing through the voltage detection IC 120.
  • the battery module 101 may further include a short switch S15 for controlling a connection between the current measuring resistor R1 and the cell stack 110.
  • the short switch S15 is connected in parallel with the current measuring resistor R1 between the power supply terminal GND of the voltage detection IC 120 and the cell stack 110. The short switch S15 is turned on or off according to a control command of the battery controller 102 transmitted through the voltage detection IC 120.
  • the battery controller 102 may turn on the short switch S15 to short both ends of the current measuring resistor R1 in a period or voltage detection period in which the current consumption is not measured, thereby enabling stable voltage detection. If the current consumption measurement is necessary, the battery controller 102 turns off the short-circuit switch S15 to allow the current to flow through the current measuring resistor R1.
  • FIGS. 1 to 5 illustrate a case in which a separate current adjustment circuit is provided inside the voltage detection IC 120, and the current consumption of the battery module 101 is adjusted based on the example, the present invention is thus described. It is not limited.
  • the variation of the current consumption between the battery modules may be eliminated by using the cell balancing circuit of each battery module.
  • FIG. 6 schematically illustrates a battery pack according to a fifth embodiment, and illustrates a case in which a current consumption of a battery module is adjusted using a cell balancing circuit.
  • FIG. 7 schematically illustrates a battery module according to a fifth embodiment.
  • the battery pack 200 may include a plurality of battery modules 201, a battery controller 202, and a battery blocking circuit 203.
  • Each battery module 201 includes a cell stack 210, a plurality of balancing resistors Rb, and a voltage detection IC 220. Each battery module 201 may further include a monitoring circuit 230 such as a temperature sensor in addition to the voltage detection IC 220.
  • Each cell stack 210 may include a plurality of cells 211 electrically connected to each other.
  • the balancing resistors Rb are connected between the corresponding cell and the voltage detection IC 220 and may perform a function of discharging the corresponding cell.
  • the voltage detection IC 220 detects the cell voltage of each cell 211 included in the corresponding cell stack 210 and the total voltage of the corresponding cell stack 210 through a voltage detection circuit (not shown). Can be performed.
  • the voltage detection IC 220 may control cell balancing between the plurality of cells 211 included in the corresponding cell stack 210.
  • the voltage detection IC 220 may control cell balancing of the corresponding cell stack 210 by conducting or blocking current flowing through the corresponding balancing resistors Rb.
  • the voltage detection IC 220 is connected to the corresponding cell stack 210 through the power terminals VCC and GND, thereby receiving operating power from the cell stack 210.
  • the power supply terminal VCC of the voltage detection IC 220 is connected to the positive terminal of the highest potential cell among the plurality of cells included in the corresponding cell stack 210, and the power supply terminal GND is connected to the corresponding cell stack 210. It may be connected to the negative terminal of the lowest potential cell of the plurality of cells included in.
  • Each battery module 201 may further include a resistor R2 for measuring current.
  • the current measuring resistor R2 may be positioned on a path through which a current supplied from the cell stack 210 to the supervisory circuit (voltage detecting IC 220 and supervisory circuit 230) flows.
  • the current measuring resistor R2 is the ground terminal of the negative terminal of the lowest potential cell among the plurality of cells included in the cell stack 210 and the supervisory circuit (voltage detection IC 220 and supervisory circuit 230). It can be located on a current path connected between stages. In this case, as illustrated in FIG.
  • the current measuring resistor R2 includes a plurality of negative power supply terminals of the voltage detection IC 220, that is, the plurality of cell stacks 210 corresponding to the ground power supply terminal GND. It can be electrically connected between the negative terminal of the lowest potential cell of the cell.
  • the present invention is not limited thereto, so that the current measuring resistor R2 is the highest potential among the plurality of cells included in the cell stack 210 corresponding to the positive power supply terminal VCC of the voltage detection IC 220. It may be electrically connected between the positive terminal of the cell.
  • the voltage detection IC 220 may perform a function of measuring a current consumption of the corresponding battery module 201 and adjusting a current consumption of the corresponding battery module 201 under the control of the battery controller 202.
  • the voltage detection IC 220 may include a current measuring circuit.
  • the current measuring circuit can include a current monitoring circuit 221 and an ADC 222.
  • the current monitoring circuit 221 may be electrically connected to both ends of the current measuring resistor R2 through the current measuring terminals IS0 and IS1, and may measure a current flowing through the current measuring resistor R2. Since the current measuring resistor R2 is located on the path through which the current bypasses the supervisory circuit (voltage detection IC 220 and supervisory circuit 230), the measured value of the current monitoring circuit 221 corresponds to the corresponding voltage. It may be a value corresponding to the current consumed by the detection IC 220 and the monitoring circuit 230.
  • the ADC 222 converts the measurement result of the current monitoring circuit 221 into a digital value and outputs it.
  • the voltage detection IC 220 may include a plurality of cell balancing switches S2. Each cell balancing switch S2 is connected between both ends of the corresponding cell, and under the control of the battery controller 202 may block or conduct a current path through the corresponding balancing resistor Rb.
  • the cell balancing switches S2 and the balancing resistors Rb may be used as current adjustment circuits for adjusting the current consumption of the battery module 201 under the control of the battery controller 202.
  • the current path between the cell stack 210 and the voltage detection IC 220 increases, which increases the current consumption of the battery module 201, that is, the cell stack 210.
  • the current consumption of the battery module 201 may be adjusted using the cell balancing switches S2 and the balancing resistors Rb without a separate current adjustment circuit.
  • the voltage detection IC 220 may include a register 223 and a transceiver 224 to communicate with the battery controller 202.
  • the register 223 may record the output value of the ADC 222 and transfer it to the battery controller 202 through the transceiver 224.
  • the register 223 receives the control information of the cell balancing switches S2 constituting the current regulation circuit from the battery controller 202 through the transceiver 224, based on the control information of the cell balancing switches S2 based on the received information. Turn on / off can be controlled.
  • the battery controller 202 receives the cell voltage detection result from each voltage detection IC 220, and controls the cell balancing switches S2 based on this to control the cells of each battery module 201. You can control balancing.
  • the battery controller 202 may receive the total voltage of the corresponding cell stack 210 from the voltage detection IC 220, and control the balancing between the battery modules 201 based on this.
  • the battery controller 202 may control the battery cutoff circuit 203 that controls charging / discharging of the battery pack 200 based on the cell voltage detection result of each voltage detection IC 220.
  • the battery controller 202 may receive a consumption current measurement value of the corresponding battery module 201 from each voltage detection IC 220, and calculate a deviation of the consumption current between the battery modules 201 based on the measured value.
  • the battery controller 202 may control the cell balancing switches S2 such that the consumption current imbalance between the battery modules 201 is eliminated based on the deviation of the current consumption between the battery modules 201.
  • the battery controller 202 may increase the current consumption by conducting a current path of the corresponding balancing resistors Rb for the battery module 201 having a relatively low current consumption.
  • the battery controller 202 uses the corresponding cell balancing switches S2 for the battery module 201 requiring the consumption current adjustment to minimize the influence of the current consumption adjustment using the balancing resistors Rb on the cell balancing. Both can be turned on simultaneously to adjust the supply current.
  • the battery controller 202 calculates the discharge amount of each battery module 201 based on the deviation of current consumption between the battery modules 201, and based on this, the cell balancing switches included in each battery module 201 ( By controlling the turn-on duty of S2, the current consumption of each battery module 201 can be adjusted.
  • the battery pack 200 having the above-described structure measures the current consumption of the battery modules 201, and controls the consumption current to be equalized among the battery modules 201 based on this, thereby preventing the balance breakdown between the battery modules 201. Can be.
  • the current consumption since the current consumption is equalized between the battery modules 201 using the balancing resistor Rb and the cell balancing switch S2 without a separate current adjustment circuit, the current consumption may be equalized without additional cost.
  • each battery module includes a separate current adjustment circuit outside the voltage detection IC, and thus the current consumption variation between the battery modules may be eliminated.
  • FIG. 8 schematically illustrates a battery pack according to a sixth embodiment, and illustrates a case in which a current consumption of the battery module is adjusted by using a separate current adjustment circuit provided outside the voltage detection IC.
  • 9 schematically illustrates a battery module according to a sixth embodiment.
  • the battery pack 300 may include a plurality of battery modules 301, a battery controller 302, and a battery blocking circuit 303.
  • Each battery module 301 includes a cell stack 310, a voltage detection IC 320 and a current adjustment circuit 340. Each battery module 301 may further include a monitoring circuit 330 such as a temperature sensor in addition to the voltage detection IC 320.
  • Each cell stack 310 may include a plurality of cells 311 electrically connected to each other.
  • the voltage detection IC 320 detects the cell voltage of each cell 311 included in the corresponding cell stack 310 and the total voltage of the corresponding cell stack 310 through a voltage detection circuit (not shown). Can be performed.
  • the voltage detection IC 320 may control cell balancing among the plurality of cells 311 included in the corresponding cell stack 310.
  • the voltage detection IC 320 may control cell balancing by conducting or blocking a bypass current of a balancing resistor (not shown) connected to each cell 311.
  • the voltage detection IC 320 is connected to the cell stack 310 through power terminals VCC and GND, thereby receiving operating power from the cell stack 310.
  • the battery module 301 may further include a current measuring resistor R2 for measuring current.
  • the current measuring resistor R3 may be positioned on a path through which a current supplied from the cell stack 310 to the voltage detection IC 320 and the monitoring circuit 330 flows.
  • the current measuring resistor R3 is connected between the negative terminal of the lowest potential cell of the plurality of cells included in the cell stack 310 and the ground terminal of the voltage detection IC 320 and the supervisory circuit 330. It can be located on the current path to be.
  • the current measuring resistor R3 includes a plurality of negative power supply terminals of the voltage detection IC 320, that is, the cell stack 310 corresponding to the ground power supply terminal GND.
  • the present invention is not limited thereto, and the current measuring resistor R3 is the highest potential among the plurality of cells included in the cell stack 310 corresponding to the positive power supply terminal VCC of the voltage detection IC 320. It may be electrically connected between the positive terminal of the cell.
  • the voltage detection IC 320 may measure the current consumption of the corresponding battery module 301.
  • the voltage detection IC 320 may include a current measuring circuit.
  • the current measuring circuit can include a current monitoring circuit 321 and an ADC 322.
  • the current monitoring circuit 321 may be electrically connected to both ends of the current measuring resistor R3 through the current measuring terminals IS0 and IS1, and may measure a current flowing through the current measuring resistor R3. Since the current measuring resistor R3 is located on a path through which the current bypasses the supervisory circuits (voltage detecting IC 320 and the supervisory circuit 330), the measured value of the current monitoring circuit 321 corresponds to a corresponding voltage. It may be a value corresponding to the current consumed by the detection IC 320 and the monitoring circuit 330.
  • the ADC 322 converts the measurement result of the current monitoring circuit 321 into a digital value and outputs it.
  • the voltage detection IC 320 may include a register 323 and a transceiver 324 to communicate with the battery controller 302.
  • the register 323 may record the output value of the ADC 322 and transfer it to the battery controller 302 through the transceiver 324.
  • the register 323 receives the control information of the switches S31, S32, S33, and S34 constituting the current adjustment circuit 340 from the battery controller 302 through the transceiver 324, and based on the switch 324, the switch 324 receives the control information.
  • the turn on / turn off of the fields S31, S32, S33, and S34 may be controlled.
  • the current adjustment circuit 340 may perform a function of adjusting the current consumption of the corresponding battery module 301 under the control of the battery controller 302.
  • the current adjusting circuit 340 may include a plurality of current adjusting resistors R31, R32, R33, and R34 connected in parallel between both ends of the corresponding cell stack 310.
  • the current regulation circuit 340 may also include a plurality of switches S31, S32, S33, S34 connected between each current regulation resistor R31, R32, R33, R34 and the corresponding cell stack 310. have.
  • Each switch S31, S32, S33, S34 is used to conduct or interrupt the current path of the corresponding resistors R31, R32, R33, R34.
  • Each switch S31, S32, S33, S34 is turned on / off off by a control command of the battery controller 102 transmitted through the voltage detection IC 320.
  • the current discharged by the current adjustment circuit 340 is reduced, and the current consumed by the current adjustment circuit 340 can be adjusted. .
  • the battery controller 302 may receive a cell voltage detection result from each voltage detection IC 320 and control cell balancing of the corresponding cell stack 310 based on the result. In addition, the battery controller 302 may receive the total voltage of the corresponding cell stack 310 from the voltage detection IC 320, and control the balancing between the cell stacks 310 based on the received voltage.
  • the battery controller 302 may control the battery cutoff circuit 303 that controls charging / discharging of the battery pack 300 based on the cell voltage detection result of each voltage detection IC 320.
  • the battery controller 302 receives the consumption current measurement value of the corresponding battery module 301 from each voltage detection IC 320, and based on this, the current adjusting circuit (or the current adjusting circuit) is solved so that the consumption current imbalance between the battery modules 301 is eliminated. 340 may be controlled.
  • the battery controller 302 may adjust the current consumption by increasing or decreasing the current path in the corresponding current regulation circuit 340 with respect to the battery module 301 requiring the current consumption adjustment.
  • the number of switches turned on among the switches S31, S32, S33, and S34 of the current adjusting circuit 340 increases, the number of resistors connected to the corresponding cell stack 310 increases. Accordingly, a current path through which the current discharged from the cell stack 310 flows through the current adjustment circuit 340 increases, so that the current consumption of the battery module 301 also increases.
  • the battery controller 302 may increase the current consumption by adjusting the discharge time of the corresponding current regulation circuit 340 for the battery module 301 that requires the current consumption adjustment.
  • the battery controller 302 calculates the discharge amount of each battery module 301 based on the deviation of the current consumption between the battery modules 301. Then, based on this, the turn-on time of the switches S31, S32, S33, and S34 constituting the current adjusting circuit 340 may be adjusted to solve an unbalanced current consumption between the battery modules 301.
  • a current measuring resistor is used to measure the current consumption of the battery module
  • the present invention is not limited thereto, and the current measuring circuit used to measure the current consumption of the battery module is illustrated. May be replaced by another circuit capable of current detection.
  • the battery management system may measure the current consumption of the battery modules, respectively, and control the consumption current to be equalized among the battery modules based on this, thereby preventing the balance breakdown between the battery modules.
  • R1, R2, R3 resistance for current measurement

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

배터리 팩은, 복수의 셀 스택, 상기 복수의 셀 스택 중 대응하는 셀 스택에 포함된 복수의 셀의 전압을 검출하는 복수의 감시 회로, 상기 복수의 감시 회로 중 대응하는 감시 회로의 소비 전류를 측정하는 복수의 전류 측정 회로, 상기 복수의 셀 스택 중 대응하는 셀 스택의 방전 전류를 조정하는 복수의 전류 조정 회로, 및 상기 복수의 전류 측정 회로로부터 상기 복수의 감시 회로의 소비 전류 측정 결과를 수신하고, 상기 복수의 감시 회로의 소비 전류 측정 결과를 기초로 상기 복수의 감시 회로 간의 소비 전류 편차를 산출하며, 상기 소비 전류 편차를 기초로 상기 전류 조정 회로를 제어하는 배터리 제어기를 포함할 수 있다.

Description

배터리 팩
실시 예는 배터리 팩에 관한 것이다.
최근 CO2 규제 등 환경 규제가 강화됨에 따라 친환경 차량에 대한 관심이 증가하고 있다. 이에 따라 자동차 회사들은 하이브리드(Hybrid) 차량이나 플러그인 하이브리드(Plug-in Hybrid) 차량뿐만 아니라, 순수 전기 차량 또는 수소 차량에 대해 연구 및 제품 개발을 활발히 진행하고 있다.
친환경 차량에는 다양한 에너지원으로부터 얻어지는 전기 에너지를 저장하기 위해 고전압 배터리가 적용된다. 고전압 배터리는 차량의 구동 모터를 구동하기 위해 200V ~ 800V의 고전압 전기 에너지를 인버터로 공급할 필요가 있다. 이를 위해, 고전압 배터리는 서로 직렬 연결되는 복수의 배터리 모듈을 포함하도록 구성된다.
고전압 배터리가 적용되는 차량에는 고전압 배터리를 관리하기 위한 배터리 관리 시스템(Battery Managemnet System, BMS)이 탑재된다. 배터리 모듈을 구성하는 각 셀의 전압을 모니터링하여 셀 간 전압 편차를 보상하는 셀 밸런싱(cell balancing) 기능은 배터리 관리 시스템의 주요 기능 중 하나이다. 배터리 관리 시스템은, 셀 밸런싱을 위해 배터리 모듈마다 셀 전압을 모니터링하기 위한 감시 회로를 구비한다.
한편, 고전압 배터리의 효율적인 사용을 위해서는 셀 밸런싱뿐만 아니라, 배터리 모듈 간의 밸런싱을 유지하는 것 또한 중요하다. 셀 전압 모니터링을 위한 감시 회로의 소비 전류 편차는, 배터리 모듈 간 전압 불균형을 가져오는 요인으로 작용할 수 있다. 즉, 감시 회로는 대응하는 배터리 모듈의 전체 전압을 전원으로 공급받아 사용하므로, 감시 회로들 간의 소비 전류 편차는 대응하는 배터리 모듈 간의 전압 불균형을 가져올 수 있다.
실시 예를 통해 해결하고자 하는 기술적 과제는 감시 회로들 간의 소비 전류 편차를 최소화하여 배터리 모듈들 간의 불균형을 최소화하는 배터리 팩을 제공하는 것이다.
상기한 과제를 해결하기 위한 일 실시 예에 따른 배터리 팩은, 복수의 셀 스택, 상기 복수의 셀 스택 중 대응하는 셀 스택에 포함된 복수의 셀의 전압을 검출하는 복수의 감시 회로, 상기 복수의 감시 회로 중 대응하는 감시 회로의 소비 전류를 측정하는 복수의 전류 측정 회로, 상기 복수의 셀 스택 중 대응하는 셀 스택의 방전 전류를 조정하는 복수의 전류 조정 회로, 및 상기 복수의 전류 측정 회로로부터 상기 복수의 감시 회로의 소비 전류 측정 결과를 수신하고, 상기 복수의 감시 회로의 소비 전류 측정 결과를 기초로 상기 복수의 감시 회로 간의 소비 전류 편차를 산출하며, 상기 소비 전류 편차를 기초로 상기 전류 조정 회로를 제어하는 배터리 제어기를 포함할 수 있다.
상기 배터리 팩은, 상기 복수의 셀 스택과 상기 복수의 감시 회로 사이에 각각 연결되는 복수의 전류 검출용 저항을 더 포함하며, 상기 복수의 상기 전류 측정 회로 각각은, 상기 복수의 전류 검출용 저항 중 대응하는 전류 검출용 저항을 흐르는 전류를 측정하여 상기 소비 전류의 측정값으로 출력할 수 있다.
상기 복수의 감시 회로는 전압 검출 집적회로를 각각 포함하며, 상기 복수의 전류 검출용 저항은 각각, 상기 복수의 셀 스택 중 대응하는 셀 스택과 상기 전압 검출 집적회로의 전원 단자 사이에 연결될 수 있다.
상기 복수의 전류 측정 회로는, 상기 복수의 감시 회로 중 대응하는 감시 회로의 상기 전압 검출 집적회로 내부에 위치할 수 있다.
상기 복수의 전류 조정 회로는, 상기 복수의 감시 회로 중 대응하는 감시 회로의 상기 전압 검출 집적회로 내부에 위치할 수 있다.
상기 배터리 팩은, 상기 복수의 셀 스택과 상기 복수의 감시 회로 사이에 각각 연결되는 복수의 단락 스위치를 더 포함하며, 상기 복수의 단락 스위치 각각은, 상기 복수의 전류 검출용 저항 중 대응하는 전류 검출용 저항과 병렬 연결될 수 있다.
상기 배터리 제어기는, 상기 복수의 전류 측정 회로를 이용하여 소비 전류를 측정하는 구간 동안에는 상기 복수의 단락 스위치를 턴 오프 제어할 수 있다.
상기 배터리 제어기는, 상기 복수의 감시 회로를 이용하여 셀 전압을 검출하는 구간 동안에는 상기 복수의 단락 스위치를 턴 온 제어할 수 있다.
상기 복수의 전류 검출용 저항은 각각, 상기 복수의 셀 스택 중 대응하는 셀 스택에 포함된 복수의 셀 중 최하위 전위 셀의 음극 단자와, 상기 복수의 전압 감시 회로 중 대응하는 감시 회로의 접지 전원 단자 사이에 연결될 수 있다.
상기 복수의 전류 조정 회로는 각각, 상기 복수의 셀 스택 중 대응하는 셀 스택의 양단 사이에 연결되는 복수의 저항, 및 상기 복수의 저항 중 대응하는 저항과 연결되며, 상기 대응하는 저항의 전류 흐름을 차단하거나 도통시키는 복수의 스위치를 포함할 수 있다.
상기 배터리 제어기는, 상기 복수의 스위치 중 턴 온되는 스위치의 개수를 조정하여 상기 복수의 셀 스택 중 대응하는 셀 스택의 방전 전류를 조정할 수 있다.
상기 복수의 전류 조정 회로는 각각, 상기 복수의 셀 스택 중 대응하는 셀 스택과 상기 복수의 감시 회로 중 대응하는 감시 회로 사이에 연결되는 복수의 밸런싱 저항, 및 상기 복수의 밸런싱 저항 중 대응하는 밸런싱 저항과 연결되며, 상기 대응하는 밸런싱 저항의 전류 흐름을 차단하거나 도통시키는 복수의 스위치를 포함할 수 있다.
상기 배터리 제어기는, 상기 복수의 감시 회로를 통해 상기 복수의 셀 스택 각각에 대한 셀 전압 검출 결과를 수신하고, 상기 셀 전압 검출 결과를 기초로 상기 복수의 스위치를 제어하여 상기 복수의 셀 스택 각각에 대한 셀 밸런싱을 제어할 수 있다.
상기 배터리 제어기는, 상기 복수의 감시 회로 중 소비 전류가 상대적으로 적은 감시 회로에 대해, 상기 복수의 전류 조정 회로 중 대응하는 전류 조정 회로에 포함된 상기 복수의 스위치를 턴 온 시킬 수 있다.
상기 배터리 제어기는, 상기 복수의 전류 조정 회로 각각에 포함된 상기 복수의 스위치의 턴 온 듀티를 제어하여 상기 복수의 전류 조정 회로의 전류 소비량을 조정할 수 있다.
또한, 다른 실시 예에 따른 배터리 팩은, 복수의 셀을 포함하는 셀 스택, 상기 복수의 셀과 전기적으로 연결되며, 상기 복수의 셀의 셀 전압을 검출하는 전압 검출 집적회로, 상기 셀 스택의 양단 중 어느 하나와 상기 전압 검출 집적회로의 전원 단자 사이에 연결되는 전류 측정용 저항, 상기 전류 측정용 저항과 병렬 연결되는 단락 스위치, 상기 전류 측정용 저항에 흐르는 전류를 측정하는 전류 측정 회로, 상기 셀 스택의 양단 사이에 연결되며, 상기 셀 스택의 방전 전류를 조정하는 전류 조정 회로, 및 상기 단락 스위치의 턴 온을 제어하며, 상기 단락 스위치가 턴 오프된 상태에서 상기 상기 전류 측정 회로로부터 전류 측정 결과를 수신하고, 상기 전류 측정 결과를 기초로 상기 전류 조정 회로를 제어하는 배터리 제어기를 포함할 수 있다.
실시 예에 따르면, 감시 회로들 간의 소비 전류 편차를 최소화하여 배터리 모듈들 간의 불균형을 최소화하는 효과가 있다.
도 1은 제1 실시 예에 따른 배터리 팩을 개략적으로 도시한 것이다.
도 2는 제1 실시 예에 따른 배터리 모듈을 개략적으로 도시한 것이다.
도 3은 제2 실시 예에 따른 배터리 모듈을 개략적으로 도시한 것이다.
도 4는 제3 실시 예에 따른 배터리 모듈을 개략적으로 도시한 것이다.
도 5는 제4 실시 예에 따른 배터리 모듈을 개략적으로 도시한 것이다.
도 6은 제5 실시 예에 따른 배터리 팩을 개략적으로 도시한 것이다.
도 7은 제5 실시 예에 따른 배터리 모듈을 개략적으로 도시한 것이다.
도 8은 제6 실시 예에 따른 배터리 팩을 개략적으로 도시한 것이다.
도 9는 제6 실시 예에 따른 배터리 모듈을 개략적으로 도시한 것이다.
이하, 첨부한 도면을 참고로 하여 여러 실시 예들에 대하여 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 실시 예들은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시 예들에 한정되지 않는다.
실시 예들을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 번호를 붙이도록 한다. 따라서 이전 도면에 사용된 구성요소의 참조 번호를 다음 도면에서 사용할 수 있다.
또한, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 실시 예들은 반드시 도시된 바에 한정되지 않는다. 도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께 및 영역을 과장하여 나타낼 수 있다.
2개의 구성요소를 전기적으로 연결한다는 것은 2개의 구성요소를 직접(directly) 연결할 경우뿐만 아니라, 2개의 구성요소 사이에 다른 구성요소를 거쳐서 연결하는 경우도 포함한다. 다른 구성요소는 스위치, 저항, 커패시터 등을 포함할 수 있다. 실시 예들을 설명함에 있어서 연결한다는 표현은, 직접 연결한다는 표현이 없는 경우에는, 전기적으로 연결한다는 것을 의미한다.
이하, 필요한 도면들을 참조하여 실시 예들에 따른 배터리 관리 시스템(battery management system, BMS) 및 이를 포함하는 배터리 팩(battery pack)에 대해 상세히 설명하기로 한다.
도 1은 제1 실시 예에 따른 배터리 팩을 개략적으로 도시한 것이다. 또한, 도 2는 제1 실시 예에 따른 배터리 모듈을 개략적으로 도시한 것이다. 또한, 도 3, 도 4 및 도 5는 각각 제2, 제3 및 제4실시 예에 따른 배터리 모듈들을 개략적으로 도시한 것이다.
도 1을 참조하면, 제1 실시 예에 따른 배터리 팩(100)은 복수의 배터리 모듈(101), 배터리 제어기(102) 및 배터리 차단 회로(103)를 포함할 수 있다. 한편, 도 1에서는 배터리 팩(100)이 서로 직렬 연결되는 3개의 배터리 모듈(101)을 포함하는 경우를 예로 들어 도시하였으나, 본 발명은 이에 한정되는 것은 아니어서, 배터리 팩(100)에 포함되는 배터리 모듈(101)의 개수는 실시 예에 따라 변경될 수 있다.
각 배터리 모듈(101)은 셀 스택(110) 및 전압 검출 집적회로(Integrated Circuit, IC, 120)를 포함한다. 각 배터리 모듈(101)은 전압 검출 IC(120) 외에 온도 센서 등의 감시 회로(130)를 추가로 포함할 수 있다.
각 셀 스택(110)은 전기적으로 서로 연결되는 복수의 셀(111)을 포함할 수 있다. 한편, 도 1에서는 하나의 셀 스택(110)이 서로 직렬 연결되는 복수의 셀(111)을 포함하는 경우를 예로 들어 도시하였으나, 본 발명이 이로 한정되는 것은 아니다. 다른 실시 예에 따르면, 병렬 연결된 복수의 셀이 셀 그룹을 구성하고, 복수의 셀 그룹이 서로 직렬 연결되어 하나의 셀 스택을 구성할 수도 있다.
전압 검출 IC(120)는 대응하는 셀 스택(110)의 전압을 모니터링하기 위한 감시 회로이다. 전압 검출 IC(120)는 대응하는 셀 스택(110)에 포함된 복수의 셀(111) 각각의 셀 전압을 검출하는 기능을 수행할 수 있다. 또한, 전압 검출 IC(120)는 대응하는 셀 스택(110)의 전체 전압을 검출하는 기능을 수행할 수도 있다. 이를 위해, 전압 검출 IC(120)는 전압 검출을 위한 전압 검출 회로(미도시)를 포함할 수 있다. 본 문서에서, 전압 검출 IC는, 전압 검출 기능을 포함하는 아날로그 프론트 엔드(Analog Front End, AFE) IC, 셀 전압 모니터링(Cell Voltage Monitoring, CVM) IC 등을 포함할 수 있다.
전압 검출 IC(120)는 대응하는 셀 스택(110)의 셀 밸런싱을 제어할 수 있다. 셀 밸런싱은, 하나의 셀 스택(110)에 포함된 셀(111)들 간의 셀 전압을 균등화시키는 기능이다. 배터리 모듈(101)은 셀 밸런싱을 위해 셀 스택(210)을 구성하는 복수의 셀 각각에 연결되는 밸런싱 저항(미도시)들을 포함한다. 배터리 모듈(101)의 셀 밸런싱은, 전압 검출 IC(120) 내부에 위치하는 셀 밸런싱 스위치들(미도시)에 의해 각 밸런싱 저항의 바이패스 전류가 도통 또는 차단됨으로써 제어될 수 있다.
전압 검출 IC(120)는 전원 단자들(VCC, GND)을 통해 대응하는 셀 스택(110)에 연결됨으로써, 셀 스택(110)으로부터 동작 전원을 공급 받을 수 있다. 전압 검출 IC(120)의 각 전원 단자(VCC, GND)는 셀 스택(110)의 양 단 중 대응하는 단자에 전기적으로 연결된다. 예를 들어, 전원 단자(VCC)는 대응하는 셀 스택(110)에 포함된 복수의 셀 중 최고 전위 셀의 양극 단자에 연결되고, 접지 전원 단자(GND)는 대응하는 셀 스택(110)에 포함된 복수의 셀 중 최하위 전위 셀의 음극 단자에 연결될 수 있다.
각 배터리 모듈(101)은 전류 측정을 위해 전류 측정용 저항(R1)을 포함할 수 있다. 전류 측정용 저항(R1)은 셀 스택(110)으로부터 전압 검출 IC(120) 및 감시 회로(130)로 공급된 전류가 흐르는 경로 상에 위치할 수 있다. 예를 들어, 전류 측정용 저항(R1)은, 셀 스택(110)에 포함된 복수의 셀 중 최하위 전위 셀의 음극 단자와 전압 검출 IC(120) 및 감시 회로(130)의 접지단 사이에 연결되는 전류 경로 상에 위치할 수 있다. 이 경우, 전류 측정용 저항(R1)은 전압 검출 IC(120)의 네거티브 전원 단자 즉, 접지 전원 단자(GND)와 대응하는 셀 스택(110)에 포함된 복수의 셀 중 최하위 전위 셀의 음극 단자 사이에 전기적으로 연결될 수 있다.
전압 검출 IC(120)는 대응하는 배터리 모듈(101)의 소비 전류를 측정하고, 배터리 제어기(102)의 제어에 따라 대응하는 배터리 모듈(101)의 소비 전류를 조정하는 기능을 수행할 수 있다.
도 2를 참조하면, 전압 검출 IC(120)는 전류 측정 회로를 포함할 수 있다.
전류 측정 회로는 전류 모니터링 회로(121) 및 아날로그 디지털 컨버터(Analog to Digital Converter, ADC, 122)를 포함할 수 있다.
전류 모니터링 회로(121)는 전류 측정용 단자들(IS0, IS1)을 통해 전류 측정용 저항(R1)의 양단에 전기적으로 연결되며, 전류 측정용 저항(R1)을 흐르는 전류를 측정한다.
전류 측정용 저항(R1)의 양단 사이의 전압은 전류 측정용 저항(R1)에 흐르는 전류에 비례한다. 따라서, 전류 모니터링 회로(121)는 전류 측정용 저항(R1)을 흐르는 전류의 대응하는 전압값을 측정값으로 출력할 수 있다. 전류 측정용 저항(R1)은 감시 회로(전압 검출 IC(120) 및 감시 회로(130))를 바이패스한 전류가 흐르는 경로상에 위치하므로, 전류 모니터링 회로(121)의 측정값은 대응하는 전압 검출 IC(120) 및 감시 회로(130)에서 소비되는 전류에 대응하는 값일 수 있다.
ADC(122)는 전류 모니터링 회로(121)의 측정 결과를 디지털 값으로 변환하여 출력한다.
전압 검출 IC(120)는 전류 조정 회로(125)를 더 포함할 수 있다.
전류 조정 회로(125)는 전압 검출 IC(120)의 전원 단자들(VCC, GND) 사이의 전류 경로를 증감함으로써, 전압 검출 IC(120)의 소비 전류를 조정할 수 있다.
전류 조정 회로(125)는 전압 검출 IC(120)의 전원 단자들(VCC, GND) 사이에 병렬 연결되는 복수의 전류 조정용 저항(R11, R12, R13, R14)을 포함할 수 있다. 전류 조정 회로(125)는 또한, 각 전류 조정용 저항(R11, R12, R13, R14)과 전원 단자(예를 들어, 접지 전원 단자(GND)) 사이에 연결되는 복수의 스위치(S11, S12, S13, S14)를 포함할 수 있다. 각 스위치(S11, S12, S13, S14)는 대응하는 저항(R11, R12, R13, R14)과 전원 단자(예를 들어, 접지 전원 단자(GND)) 사이를 도통 또는 차단시키기 위해 사용된다. 각 스위치(S11, S12, S13, S14)는 배터리 제어기(102)의 제어에 의해 턴 온/턴 오프 제어된다.
스위치들(S11, S12, S13, S14) 중 턴 온 되는 스위치의 개수가 증가할수록, 전압 검출 IC(120)의 전원 단자들(VCC, GND) 사이에 병렬 연결되는 저항의 개수가 증가한다. 따라서, 복수의 스위치(S11, S12, S13, S14)의 턴 온/턴 오프 제어에 의해, 전압 검출 IC(120)의 전원 단자들(VCC, GND) 사이의 전류 경로가 증감되어 전압 검출 IC(120) 내부의 소비 전류가 조정될 수 있다. 전압 검출 IC(120)가 소비하는 전류가 조정됨에 따라, 이에 대응하여 셀 스택(110)의 방전 전류가 조정될 수 있다.
한편, 도 2에서는, 전압 검출 IC(120)의 전원 단자들(VCC, GND) 사이에 4개의 전류 조정용 저항이 병렬 연결되는 경우를 예로 들어 도시하였으나, 본 발명은 이에 한정되는 것은 아니어서, 전압 검출 IC(120)의 전원 단자들(VCC, GND) 사이에 병렬 연결되는 전류 조정용 저항의 개수는 변경이 가능하다.
전압 검출 IC(120)는 배터리 제어기(102)와 통신하기 위해 레지스터(123) 및 송수신기(Tranceiver, 124)를 포함할 수 있다.
레지스터(123)는 ADC(122)의 출력값을 기록하였다가 송수신기(124)를 통해 배터리 제어기(102)로 전달할 수 있다.
또한, 레지스터(123)는 송수신기(124)를 통해 배터리 제어기(102)로부터 전류 조정 회로(125)를 구성하는 스위치들(S11, S12, S13, S14)의 제어 정보가 수신되면, 이를 기초로 스위치들(S11, S12, S13, S14)의 턴 온/턴 오프를 제어할 수 있다.
다시, 도 1을 보면, 각 전압 검출 IC(120)의 송수신기(124)는 데이지 체인(Daisy Chain) 방식으로 다른 전압 검출 IC와 통신하며, 데이지 체인 인터페이스를 통해 배터리 제어기(102)와 통신할 수 있다.
배터리 제어기(102)는 각 배터리 모듈(101)의 감시회로(전압 검출 IC(120) 및 감시 회로(130))와 함께 배터리 팩(100)의 배터리 관리 시스템(Battery Management System, BMS)을 구성한다.
배터리 제어기(102)는 각 전압 검출 IC(120)로부터 셀 전압 검출 결과를 수신하며, 이를 기초로 각 배터리 모듈(101)의 셀 밸런싱을 제어할 수 있다. 또한, 배터리 제어기(102)는 각 전압 검출 IC(120)로부터 대응하는 셀 스택(110)의 전체 전압을 수신하며, 이를 기초로 배터리 모듈들(101) 간의 밸런싱을 제어할 수 있다.
배터리 제어기(102)는 각 전압 검출 IC(120)의 셀 전압 검출 결과를 기초로, 배터리 팩(100)의 충/방전을 제어하는 배터리 차단 회로(103)를 제어할 수도 있다.
배터리 제어기(102)는 각 전압 검출 IC(120)로부터 대응하는 배터리 모듈(101)의 소비 전류 측정결과 즉, 전압 검출 IC(120)를 포함하는 감시 회로의 소비 전류 측정 결과를 수신하고, 이를 기초로 배터리 모듈들(101) 간의 소비 전류 편차(감시 회로들 간의 소비 전류 편차)를 산출한다.
배터리 제어기(102)는, 배터리 모듈들(101) 간의 소비 전류 편차를 기초로, 배터리 모듈들(101) 간의 소비 전류 불균형이 해소되도록 각 전압 검출 IC(120)의 전류 조정 회로(125)를 제어할 수 있다. 예를 들어, 배터리 제어기(102)는, 소비 전류가 상대적으로 작은 배터리 모듈(101)에 대해서, 대응하는 전압 검출 IC(120) 내 전류 조정 회로(125)를 제어하여 소비 전류를 증가시킬 수 있다.
한편, 도 1 및 도 2에서는, 전류 측정용 저항(R1)이 대응하는 셀 스택(110)에 포함된 복수의 셀 중 최하위 전위 셀의 음극에 연결되는 경우를 예로 들어 도시하였으나, 본 발명이 이에 한정되는 것은 아니다. 도 3을 예로 들면, 전류 측정용 저항(R1)은 대응하는 셀 스택(110)에 포함된 복수의 셀 중 최고 전위 셀의 양극에 연결될 수도 있다. 이 경우, 전류 측정용 저항(R1)은 전압 검출 IC(120)의 포지티브 전원 단자(VCC)와 대응하는 셀 스택(110)에 포함된 복수의 셀 중 최고 전위 셀의 양극 단자 사이에 전기적으로 연결되어, 셀 스택(110)으로부터 출력된 전류가 감시 회로(전압 검출 IC(120) 및 감시 회로(130))로 공급되는 경로에 위치할 수 있다.
또한, 도 1 및 도 2에서는, 전류 측정 회로가 각 전압 검출 IC 내부에 위치하는 경우를 예로 들어 도시하였으나, 본 발명이 이로 한정되는 것은 아니다. 다른 실시 예에 따르면, 전류 측정 회로의 적어도 일부가 전압 검출 IC(120) 외부에 위치할 수도 있다. 도 4를 예로 들면, 전류 측정 회로 중 전류 모니터링 회로(121)가 전압 검출 IC(120) 외부에 위치할 수도 있다. 이 경우, 전류 모니터링 회로(121)는 전류 측정용 저항(R1)에 흐르는 전류에 대응하여 전류 측정용 저항(R1)의 양단 사이 전압을 측정하고, 이를 전압 검출 IC(120) 내부의 ADC(122)로 전달할 수 있다. 또한, 예를 들면, 전류 모니터링 회로(121) 및 ADC(122)가 모두 전압 검출 IC(120) 외부에 위치할 수도 있다. 이 경우, 전류 측정 회로의 측정 결과는 전압 검출 IC(120)를 경유하지 않고 배터리 제어기(102)로 직접 전달될 수 있다.
한편, 전류 측정용 저항(R1)을 대응하는 셀 스택(110)에 포함된 복수의 셀 중 최하 전위 셀의 음극에 연결하는 경우, 전압 검출 IC(120)의 기준 전위가 흔들려 전압 검출 IC(120)의 전압 검출 결과에 영향을 미칠 수 있다. 따라서, 배터리 모듈(101)은, 도 5에 도시된 바와 같이, 전류 측정용 저항(R1)과 셀 스택(110) 간의 연결을 제어하기 위한 단락 스위치(S15)를 추가로 포함할 수 있다. 도 5를 참조하면, 단락 스위치(S15)는 전압 검출 IC(120)의 전원 단자(GND)와 셀 스택(110) 사이에 전류 측정용 저항(R1)과 병렬로 연결된다. 단락 스위치(S15)는 전압 검출 IC(120)를 통해 전달되는 배터리 제어기(102)의 제어 명령에 따라 턴 온 또는 턴 오프된다. 배터리 제어기(102)는 소비 전류를 측정하지 않는 기간 또는 전압 검출 구간에는 단락 스위치(S15)를 턴 온 시켜 전류 측정용 저항(R1)의 양단을 단락시킴으로써, 안정적인 전압 검출이 가능하도록 한다. 배터리 제어기(102)는 소비 전류 측정이 필요하면, 단락 스위치(S15)를 턴 오프시켜 전류 측정용 저항(R1)을 통해 소비 전류가 흐르도록 한다.
한편, 도 1 내지 도 5에서는 전압 검출 IC(120) 내부에 별도의 전류 조정 회로를 구비하고, 이를 기초로 배터리 모듈(101)의 소비 전류를 조정하는 경우를 예로 들어 도시하였으나, 본 발명이 이로 한정되는 것은 아니다.
다른 실시 예에 따르면, 각 배터리 모듈의 셀 밸런싱 회로를 이용하여 배터리 모듈들 간의 소비 전류 편차를 해소할 수 있다.
도 6은 제5 실시 예에 따른 배터리 팩을 개략적으로 도시한 것으로서, 셀 밸런싱 회로를 이용하여 배터리 모듈의 소비 전류를 조정하는 경우를 나타낸다. 또한, 도 7은 제5 실시 예에 따른 배터리 모듈을 개략적으로 도시한 것이다. 아래에서는 배터리 팩(200)을 구성하는 구성요소들 중 전술한 배터리 팩(100)의 구성요소와 동일하거나 유사한 구성요소에 대해서는 상세한 설명을 생략한다.
도 6을 참조하면, 제5 실시 예에 따른 배터리 팩(200)은 복수의 배터리 모듈(201), 배터리 제어기(202) 및 배터리 차단 회로(203)를 포함할 수 있다.
각 배터리 모듈(201)은 셀 스택(210), 복수의 밸런싱 저항(Rb) 및 전압 검출 IC(220)를 포함한다. 각 배터리 모듈(201)은 전압 검출 IC(220) 외에 온도 센서 등 감시 회로(230)를 추가로 포함할 수도 있다.
각 셀 스택(210)은 전기적으로 서로 연결되는 복수의 셀(211)을 포함할 수 있다.
밸런싱 저항들(Rb)은 대응하는 셀과 전압 검출 IC(220) 사이에 연결되며, 대응하는 셀을 방전시키는 기능을 수행할 수 있다.
전압 검출 IC(220)는 전압 검출 회로(미도시)를 통해 대응하는 셀 스택(210)에 포함된 각 셀(211)의 셀 전압과, 대응하는 셀 스택(210)의 전체 전압을 검출하는 기능을 수행할 수 있다.
전압 검출 IC(220)는 대응하는 셀 스택(210)에 포함된 복수의 셀(211) 간의 셀 밸런싱을 제어할 수 있다. 전압 검출 IC(220)는 대응하는 밸런싱 저항들(Rb)에 흐르는 전류를 도통시키거나 차단하여 대응하는 셀 스택(210)의 셀 밸런싱을 제어할 수 있다.
전압 검출 IC(220)는 전원 단자들(VCC, GND)을 통해 대응하는 셀 스택(210)에 연결됨으로써, 셀 스택(210)으로부터 동작 전원을 공급 받는다. 전압 검출 IC(220)의 전원 단자(VCC)는 대응하는 셀 스택(210)에 포함된 복수의 셀 중 최고 전위 셀의 양극 단자에 연결되고, 전원 단자(GND)는 대응하는 셀 스택(210)에 포함된 복수의 셀 중 최하위 전위 셀의 음극 단자에 연결될 수 있다.
각 배터리 모듈(201)은 전류 측정을 위해 전류 측정용 저항(R2)을 더 포함할 수 있다. 전류 측정용 저항(R2)은, 셀 스택(210)으로부터 감시 회로(전압 검출 IC(220) 및 감시 회로(230))로 공급된 전류가 흐르는 경로 상에 위치할 수 있다. 예를 들어, 전류 측정용 저항(R2)은, 셀 스택(210)에 포함된 복수의 셀 중 최하위 전위 셀의 음극 단자와 감시 회로(전압 검출 IC(220) 및 감시 회로(230))의 접지단 사이에 연결되는 전류 경로 상에 위치할 수 있다. 이 경우, 전류 측정용 저항(R2)은 도 6에 도시된 바와 같이, 전압 검출 IC(220)의 네거티브 전원 단자 즉, 접지 전원 단자(GND)와 대응하는 셀 스택(210)에 포함된 복수의 셀 중 최하위 전위 셀의 음극 단자 사이에 전기적으로 연결될 수 있다. 그러나, 본 발명은 이에 한정되는 것은 아니어서, 전류 측정용 저항(R2)은 전압 검출 IC(220)의 포지티브 전원 단자(VCC)와 대응하는 셀 스택(210)에 포함된 복수의 셀 중 최고 전위 셀의 양극 단자 사이에 전기적으로 연결될 수도 있다.
전압 검출 IC(220)는 대응하는 배터리 모듈(201)의 소비 전류를 측정하고, 배터리 제어기(202)의 제어에 따라 대응하는 배터리 모듈(201)의 소비 전류를 조정하는 기능을 수행할 수 있다.
도 7을 참조하면, 전압 검출 IC(220)는 전류 측정 회로를 포함할 수 있다. 전류 측정 회로는 전류 모니터링 회로(221) 및 ADC(222)를 포함할 수 있다.
전류 모니터링 회로(221)는 전류 측정용 단자들(IS0, IS1)을 통해 전류 측정용 저항(R2)의 양단에 전기적으로 연결되며, 전류 측정용 저항(R2)을 흐르는 전류를 측정할 수 있다. 전류 측정용 저항(R2)은 감시 회로(전압 검출 IC(220) 및 감시 회로(230))를 바이패스한 전류가 흐르는 경로상에 위치하므로, 전류 모니터링 회로(221)의 측정값은 대응하는 전압 검출 IC(220) 및 감시 회로(230)에서 소비되는 전류에 대응하는 값일 수 있다.
ADC(222)는 전류 모니터링 회로(221)의 측정 결과를 디지털 값으로 변환하여 출력한다.
전압 검출 IC(220)는 복수의 셀 밸런싱 스위치(S2)를 포함할 수 있다. 각 셀 밸런싱 스위치(S2)는 대응하는 셀의 양단 사이에 연결되며, 배터리 제어기(202)의 제어에 따라 대응하는 밸런싱 저항(Rb)를 통한 전류 경로를 차단하거나 도통시킬 수 있다.
셀 밸런싱 스위치들(S2)과 밸런싱 저항들(Rb)은 배터리 제어기(202)의 제어에 의해 배터리 모듈(201)의 소비 전류 조정을 위한 전류 조정 회로로 사용될 수도 있다. 셀 밸런싱 스위치들(S2)을 텅 온 시킬 경우, 셀 스택(210)과 전압 검출 IC(220) 사이의 전류 경로가 증가하고, 이는 배터리 모듈(201)의 소비 전류 증가 즉, 셀 스택(210)의 방전 전류 증가를 야기한다. 따라서, 도 1의 배터리 팩(100)에서와는 다르게 별도의 전류 조정 회로 없이 셀 밸런싱 스위치들(S2)과 밸런싱 저항들(Rb)을 이용하여 배터리 모듈(201)의 소비 전류를 조정할 수 있다.
전압 검출 IC(220)는 배터리 제어기(202)와 통신하기 위해 레지스터(223) 및 송수신기(224)를 포함할 수 있다.
레지스터(223)는 ADC(222)의 출력값을 기록하였다가 송수신기(224)를 통해 배터리 제어기(202)로 전달할 수 있다.
또한, 레지스터(223)는 송수신기(224)를 통해 배터리 제어기(202)로부터 전류 조정 회로를 구성하는 셀 밸런싱 스위치들(S2)의 제어 정보가 수신되면, 이를 기초로 셀 밸런싱 스위치들(S2)의 턴 온/턴 오프를 제어할 수 있다.
다시, 도 6을 보면, 배터리 제어기(202)는 각 전압 검출 IC(220)로부터 셀 전압 검출 결과를 수신하며, 이를 기초로 셀 밸런싱 스위치들(S2)을 제어하여 각 배터리 모듈(201)의 셀 밸런싱을 제어할 수 있다. 또한, 배터리 제어기(202)는 전압 검출 IC(220)로부터 대응하는 셀 스택(210)의 전체 전압을 수신하며, 이를 기초로 배터리 모듈(201)들 간 밸런싱을 제어할 수 있다.
배터리 제어기(202)는 각 전압 검출 IC(220)의 셀 전압 검출 결과를 기초로, 배터리 팩(200)의 충/방전을 제어하는 배터리 차단 회로(203)를 제어할 수도 있다.
배터리 제어기(202)는 각 전압 검출 IC(220)로부터 대응하는 배터리 모듈(201)의 소비 전류 측정값을 수신하고, 이를 기초로 배터리 모듈들(201) 간의 소비 전류 편차를 산출할 수 있다. 배터리 제어기(202)는 배터리 모듈들(201) 간의 소비 전류 편차를 기초로, 배터리 모듈들(201) 간의 소비 전류 불균형이 해소되도록 셀 밸런싱 스위치들(S2)을 제어할 수 있다. 예를 들어, 배터리 제어기(202)는, 소비 전류가 상대적으로 작은 배터리 모듈(201)에 대해서, 대응하는 밸런싱 저항들(Rb)의 전류 경로를 도통시킴으로써, 소비 전류를 증가시킬 수 있다.
배터리 제어기(202)는 밸런싱 저항들(Rb)을 이용한 소비 전류 조정이 셀 밸런싱에 미치는 영향을 최소화하기 위해, 소비 전류 조정이 필요한 배터리 모듈(201)에 대해서는 대응하는 셀 밸런싱 스위치들(S2)을 모두 동시에 턴 온시켜 소비 전류를 조정할 수 있다. 배터리 제어기(202)는 배터리 모듈(201)들 간의 소비 전류 편차를 기초로, 각 배터리 모듈(201)의 방전량을 산출하고, 이를 기초로 각 배터리 모듈(201)에 포함된 셀 밸런싱 스위치들(S2)의 턴 온 듀티(duty)를 제어함으로써 각 배터리 모듈(201)의 소비 전류를 조정할 수 있다.
전술한 구조의 배터리 팩(200)은 배터리 모듈(201)들의 소비 전류를 측정하고, 이를 기초로 배터리 모듈(201)들 간에 소비 전류가 균등화되도록 제어함으로써 배터리 모듈(201) 간의 균형 붕괴를 방지할 수 있다. 또한, 별도의 전류 조정 회로 없이 밸런싱 저항(Rb)과 셀 밸런싱 스위치(S2)를 이용하여 배터리 모듈(201)들 간에 소비 전류가 균등화함으로써, 추가적인 비용 없이 소비 전류 균등화가 가능한 효과가 있다.
또 다른 실시 예에 따르면, 각 배터리 모듈은 전압 검출 IC 외부에 별도의 전류 조정 회로를 구비하고, 이를 통해 배터리 모듈들 간의 소비 전류 편차가 해소될 수도 있다.
도 8은 제6 실시 예에 따른 배터리 팩을 개략적으로 도시한 것으로서, 전압 검출 IC 외부에 마련된 별도의 전류 조정 회로를 이용하여 배터리 모듈의 소비 전류를 조정하는 경우를 도시한 것이다. 또한, 도 9는 제6 실시 예에 따른 배터리 모듈을 개략적으로 도시한 것이다. 아래에서는 제6 실시 예에 따른 배터리 팩(300)을 구성하는 구성요소들 중 전술한 제1 실시 예에 따른 배터리 팩(100)의 구성요소와 동일하거나 유사한 구성요소에 대해서는 상세한 설명을 생략한다.
도 8을 참조하면, 제6 실시 예에 따른 배터리 팩(300)은 복수의 배터리 모듈(301), 배터리 제어기(302) 및 배터리 차단 회로(303)를 포함할 수 있다.
각 배터리 모듈(301)은 셀 스택(310), 전압 검출 IC(320) 및 전류 조정 회로(340)를 포함한다. 각 배터리 모듈(301)은 전압 검출 IC(320) 외에 온도 센서 등 감시 회로(330)를 추가로 포함할 수 있다.
각 셀 스택(310)은 전기적으로 서로 연결되는 복수의 셀(311)을 포함할 수 있다.
전압 검출 IC(320)는 전압 검출 회로(미도시)를 통해 대응하는 셀 스택(310)에 포함된 각 셀(311)의 셀 전압과, 대응하는 셀 스택(310)의 전체 전압을 검출하는 기능을 수행할 수 있다.
전압 검출 IC(320)는 대응하는 셀 스택(310)에 포함된 복수의 셀(311) 간의 셀 밸런싱을 제어할 수 있다. 전압 검출 IC(320)는 각 셀(311)에 연결된 밸런싱 저항(미도시)의 바이패스 전류를 도통시키거나 차단하여 셀 밸런싱을 제어할 수 있다.
전압 검출 IC(320)는 전원 단자들(VCC, GND)을 통해 셀 스택(310)에 연결됨으로써, 셀 스택(310)으로부터 동작 전원을 공급 받는다.
배터리 모듈(301)은 전류 측정을 위해 전류 측정용 저항(R2)을 더 포함할 수 있다. 전류 측정용 저항(R3)은, 셀 스택(310)으로부터 전압 검출 IC(320) 및 감시 회로(330)로 공급된 전류가 흐르는 경로 상에 위치할 수 있다. 예를 들어, 전류 측정용 저항(R3)은, 셀 스택(310)에 포함된 복수의 셀 중 최하위 전위 셀의 음극 단자와 전압 검출 IC(320) 및 감시 회로(330)의 접지단 사이에 연결되는 전류 경로 상에 위치할 수 있다. 이 경우, 전류 측정용 저항(R3)은 도 8에 도시된 바와 같이, 전압 검출 IC(320)의 네거티브 전원 단자 즉, 접지 전원 단자(GND)와 대응하는 셀 스택(310)에 포함된 복수의 셀 중 최하위 전위 셀의 음극 단자 사이에 전기적으로 연결될 수 있다. 그러나, 본 발명은 이에 한정되는 것은 아니어서, 전류 측정용 저항(R3)은 전압 검출 IC(320)의 포지티브 전원 단자(VCC)와 대응하는 셀 스택(310)에 포함된 복수의 셀 중 최고 전위 셀의 양극 단자 사이에 전기적으로 연결될 수도 있다.
전압 검출 IC(320)는 대응하는 배터리 모듈(301)의 소비 전류를 측정할 수 있다.
도 9를 참조하면, 전압 검출 IC(320)는 전류 측정 회로를 포함할 수 있다. 전류 측정 회로는 전류 모니터링 회로(321) 및 ADC(322)를 포함할 수 있다.
전류 모니터링 회로(321)는 전류 측정용 단자들(IS0, IS1)을 통해 전류 측정용 저항(R3)의 양단에 전기적으로 연결되며, 전류 측정용 저항(R3)을 흐르는 전류를 측정할 수 있다. 전류 측정용 저항(R3)은 감시 회로(전압 검출 IC(320) 및 감시 회로(330))를 바이패스한 전류가 흐르는 경로상에 위치하므로, 전류 모니터링 회로(321)의 측정값은 대응하는 전압 검출 IC(320) 및 감시 회로(330)에서 소비되는 전류에 대응하는 값일 수 있다.
ADC(322)는 전류 모니터링 회로(321)의 측정 결과를 디지털 값으로 변환하여 출력한다.
전압 검출 IC(320)는 배터리 제어기(302)와 통신하기 위해 레지스터(323) 및 송수신기(324)를 포함할 수 있다.
레지스터(323)는 ADC(322)의 출력값을 기록하였다가 송수신기(324)를 통해 배터리 제어기(302)로 전달할 수 있다.
또한, 레지스터(323)는 송수신기(324)를 통해 배터리 제어기(302)로부터 전류 조정 회로(340)를 구성하는 스위치들(S31, S32, S33, S34)의 제어 정보가 수신되면, 이를 기초로 스위치들(S31, S32, S33, S34)의 턴 온/턴 오프를 제어할 수 있다.
전류 조정 회로(340)는 배터리 제어기(302)의 제어에 따라 대응하는 배터리 모듈(301)의 소비 전류를 조정하는 기능을 수행할 수 있다.
전류 조정 회로(340)는 대응하는 셀 스택(310)의 양단 사이에 병렬 연결되는 복수의 전류 조정용 저항(R31, R32, R33, R34)을 포함할 수 있다. 전류 조정 회로(340)는 또한, 각 전류 조정용 저항(R31, R32, R33, R34)과 대응하는 셀 스택(310) 사이에 연결되는 복수의 스위치(S31, S32, S33, S34)를 포함할 수 있다. 각 스위치(S31, S32, S33, S34)는 대응하는 저항(R31, R32, R33, R34)의 전류 경로를 도통 또는 차단시키기 위해 사용된다. 각 스위치(S31, S32, S33, S34)는 전압 검출 IC(320)를 통해 전달되는 배터리 제어기(102)의 제어 명령에 의해 턴 온/턴 오프 제어된다.
복수의 스위치(S31, S32, S33, S34)가 턴온 또는 턴 오프됨에 따라, 전류 조정 회로(340)에 의해 방전되는 전류가 경감되어, 전류 조정 회로(340)에 의해 소비되는 전류가 조정될 수 있다.
다시, 도 8을 보면, 배터리 제어기(302)는 각 전압 검출 IC(320)로부터 셀 전압 검출 결과를 수신하며, 이를 기초로 대응하는 셀 스택(310)의 셀 밸런싱을 제어할 수 있다. 또한, 배터리 제어기(302)는 전압 검출 IC(320)로부터 대응하는 셀 스택(310)의 전체 전압을 수신하며, 이를 기초로 셀 스택(310) 간 밸런싱을 제어할 수 있다.
배터리 제어기(302)는 각 전압 검출 IC(320)의 셀 전압 검출 결과를 기초로, 배터리 팩(300)의 충/방전을 제어하는 배터리 차단 회로(303)를 제어할 수도 있다.
배터리 제어기(302)는 각 전압 검출 IC(320)로부터 대응하는 배터리 모듈(301)의 소비 전류 측정값을 수신하고, 이를 기초로 배터리 모듈들(301) 간의 소비 전류 불균형이 해소되도록 전류 조정 회로(340)를 제어할 수 있다.
예를 들어, 배터리 제어기(302)는, 소비 전류 조정이 필요한 배터리 모듈(301)에 대해서는, 대응하는 전류 조정 회로(340) 내 전류 경로를 증감시켜 소비 전류를 조정할 수 있다. 전류 조정 회로(340)의 스위치(S31, S32, S33, S34)들 중 턴 온 되는 스위치의 개수가 증가할수록, 대응하는 셀 스택(310)에 연결되는 저항의 개수가 증가한다. 이에 따라, 셀 스택(310)으로부터 방전된 전류가 전류 조정 회로(340)를 흐르는 전류 경로가 증가하여, 배터리 모듈(301)의 소비 전류 또한 증가하게 된다.
또한, 예를 들어, 배터리 제어기(302)는 소비 전류 조정이 필요한 배터리 모듈(301)에 대해서는, 대응하는 전류 조정 회로(340)의 방전 시간을 조정하여 소비 전류를 증가시킬 수 있다. 이 경우, 배터리 제어기(302)는 배터리 모듈(301)들 간의 소비 전류 편차를 기초로 각 배터리 모듈(301)의 방전량을 산출한다. 그리고, 이를 기초로 전류 조정 회로(340)를 구성하는 스위치(S31, S32, S33, S34)들의 턴온 시간을 조정하여 배터리 모듈(301)들 간 소비 전류 불균형을 해소할 수 있다.
한편, 전술한 실시 예들에서는 배터리 모듈의 소비 전류 측정을 위해 전류 측정용 저항을 이용하는 경우를 예로 들어 도시하였으나, 본 발명이 이에 한정되는 것은 아니어서, 배터리 모듈의 소비 전류 측정에 사용되는 전류 측정 회로는 전류 검출이 가능한 다른 회로로 대체될 수도 있다.
전술한 실시 예들에 따르면, 배터리 관리 시스템은 배터리 모듈들의 소비 전류를 각각 측정하고, 이를 기초로 배터리 모듈들 간에 소비 전류가 균등화되도록 제어함으로써 배터리 모듈 간의 균형 붕괴를 방지할 수 있다.
지금까지 참조한 도면과 기재된 발명의 상세한 설명은 단지 본 발명의 예시적인 것으로서, 이는 단지 본 발명을 설명하기 위한 목적에서 사용된 것이지 의미 한정이나 특허청구범위에 기재된 본 발명의 범위를 제한하기 위하여 사용된 것은 아니다. 그러므로 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시 예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.
(부호의 설명)
100, 200, 300: 배터리 팩
101, 201, 301: 배터리 모듈
102, 202, 302: 배터리 제어기
103, 203, 303: 배터리 차단 회로
110, 210, 310: 셀 스택
111, 211, 311: 셀
120, 220, 320: 전압 검출 IC
121, 221, 321: 전류 모니터링 회로
122, 222, 322: ADC
123, 223, 323: 레지스터
124, 224, 324: 송수신기
125, 340: 전류 조정 회로
130, 230, 330: 감시 회로
R1, R2, R3: 전류 측정용 저항

Claims (16)

  1. 복수의 셀 스택,
    상기 복수의 셀 스택 중 대응하는 셀 스택에 포함된 복수의 셀의 전압을 검출하는 복수의 감시 회로,
    상기 복수의 감시 회로 중 대응하는 감시 회로의 소비 전류를 측정하는 복수의 전류 측정 회로,
    상기 복수의 셀 스택 중 대응하는 셀 스택의 방전 전류를 조정하는 복수의 전류 조정 회로, 및
    상기 복수의 전류 측정 회로로부터 상기 복수의 감시 회로의 소비 전류 측정 결과를 수신하고, 상기 복수의 감시 회로의 소비 전류 측정 결과를 기초로 상기 복수의 감시 회로 간의 소비 전류 편차를 산출하며, 상기 소비 전류 편차를 기초로 상기 전류 조정 회로를 제어하는 배터리 제어기를 포함하는 배터리 팩.
  2. 제1항에 있어서,
    상기 복수의 셀 스택과 상기 복수의 감시 회로 사이에 각각 연결되는 복수의 전류 검출용 저항을 더 포함하며,
    상기 복수의 상기 전류 측정 회로 각각은, 상기 복수의 전류 검출용 저항 중 대응하는 전류 검출용 저항을 흐르는 전류를 측정하여 상기 소비 전류의 측정값으로 출력하는 배터리 팩.
  3. 제2항에 있어서,
    상기 복수의 감시 회로는 전압 검출 집적회로를 각각 포함하며,
    상기 복수의 전류 검출용 저항은 각각, 상기 복수의 셀 스택 중 대응하는 셀 스택과 상기 전압 검출 집적회로의 전원 단자 사이에 연결되는 배터리 팩.
  4. 제3항에 있어서,
    상기 복수의 전류 측정 회로는, 상기 복수의 감시 회로 중 대응하는 감시 회로의 상기 전압 검출 집적회로 내부에 위치하는 배터리 팩.
  5. 제3항에 있어서,
    상기 복수의 전류 조정 회로는, 상기 복수의 감시 회로 중 대응하는 감시 회로의 상기 전압 검출 집적회로 내부에 위치하는 배터리 팩.
  6. 제2항에 있어서,
    상기 복수의 셀 스택과 상기 복수의 감시 회로 사이에 각각 연결되는 복수의 단락 스위치를 더 포함하며,
    상기 복수의 단락 스위치 각각은, 상기 복수의 전류 검출용 저항 중 대응하는 전류 검출용 저항과 병렬 연결되는 배터리 팩.
  7. 제6항에 있어서,
    상기 배터리 제어기는, 상기 복수의 전류 측정 회로를 이용하여 소비 전류를 측정하는 구간 동안에는 상기 복수의 단락 스위치를 턴 오프 제어하는 배터리 팩.
  8. 제7항에 있어서,
    상기 배터리 제어기는, 상기 복수의 감시 회로를 이용하여 셀 전압을 검출하는 구간 동안에는 상기 복수의 단락 스위치를 턴 온 제어하는 배터리 팩.
  9. 제2항에 있어서,
    상기 복수의 전류 검출용 저항은 각각, 상기 복수의 셀 스택 중 대응하는 셀 스택에 포함된 복수의 셀 중 최하위 전위 셀의 음극 단자와, 상기 복수의 전압 감시 회로 중 대응하는 감시 회로의 접지 전원 단자 사이에 연결되는 배터리 팩.
  10. 제1항에 있어서,
    상기 복수의 전류 조정 회로는 각각,
    상기 복수의 셀 스택 중 대응하는 셀 스택의 양단 사이에 연결되는 복수의 저항, 및
    상기 복수의 저항 중 대응하는 저항과 연결되며, 상기 대응하는 저항의 전류 흐름을 차단하거나 도통시키는 복수의 스위치를 포함하는 배터리 팩.
  11. 제10항에 있어서,
    상기 배터리 제어기는, 상기 복수의 스위치 중 턴 온되는 스위치의 개수를 조정하여 상기 복수의 셀 스택 중 대응하는 셀 스택의 방전 전류를 조정하는 배터리 팩.
  12. 제1항에 있어서,
    상기 복수의 전류 조정 회로는 각각,
    상기 복수의 셀 스택 중 대응하는 셀 스택과 상기 복수의 감시 회로 중 대응하는 감시 회로 사이에 연결되는 복수의 밸런싱 저항, 및
    상기 복수의 밸런싱 저항 중 대응하는 밸런싱 저항과 연결되며, 상기 대응하는 밸런싱 저항의 전류 흐름을 차단하거나 도통시키는 복수의 스위치를 포함하는 배터리 팩.
  13. 제12항에 있어서,
    상기 배터리 제어기는, 상기 복수의 감시 회로를 통해 상기 복수의 셀 스택 각각에 대한 셀 전압 검출 결과를 수신하고, 상기 셀 전압 검출 결과를 기초로 상기 복수의 스위치를 제어하여 상기 복수의 셀 스택 각각에 대한 셀 밸런싱을 제어하는 배터리 팩.
  14. 제12항에 있어서,
    상기 배터리 제어기는, 상기 복수의 감시 회로 중 소비 전류가 상대적으로 적은 감시 회로에 대해, 상기 복수의 전류 조정 회로 중 대응하는 전류 조정 회로에 포함된 상기 복수의 스위치를 턴 온 시키는 배터리 팩.
  15. 제14항에 있어서,
    상기 배터리 제어기는, 상기 복수의 전류 조정 회로 각각에 포함된 상기 복수의 스위치의 턴 온 듀티를 제어하여 상기 복수의 전류 조정 회로의 전류 소비량을 조정하는 배터리 팩.
  16. 복수의 셀을 포함하는 셀 스택,
    상기 복수의 셀과 전기적으로 연결되며, 상기 복수의 셀의 셀 전압을 검출하는 전압 검출 집적회로,
    상기 셀 스택의 양단 중 어느 하나와 상기 전압 검출 집적회로의 전원 단자 사이에 연결되는 전류 측정용 저항,
    상기 전류 측정용 저항과 병렬 연결되는 단락 스위치,
    상기 전류 측정용 저항에 흐르는 전류를 측정하는 전류 측정 회로,
    상기 셀 스택의 양단 사이에 연결되며, 상기 셀 스택의 방전 전류를 조정하는 전류 조정 회로, 및
    상기 단락 스위치의 턴 온을 제어하며, 상기 단락 스위치가 턴 오프된 상태에서 상기 상기 전류 측정 회로로부터 전류 측정 결과를 수신하고, 상기 전류 측정 결과를 기초로 상기 전류 조정 회로를 제어하는 배터리 제어기를 포함하는 배터리 팩.
PCT/KR2017/011603 2016-12-21 2017-10-19 배터리 팩 WO2018117386A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/349,944 US11001150B2 (en) 2016-12-21 2017-10-19 Battery pack

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160175833A KR102319239B1 (ko) 2016-12-21 2016-12-21 배터리 팩
KR10-2016-0175833 2016-12-21

Publications (1)

Publication Number Publication Date
WO2018117386A1 true WO2018117386A1 (ko) 2018-06-28

Family

ID=62627562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/011603 WO2018117386A1 (ko) 2016-12-21 2017-10-19 배터리 팩

Country Status (3)

Country Link
US (1) US11001150B2 (ko)
KR (1) KR102319239B1 (ko)
WO (1) WO2018117386A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110392956B (zh) 2017-01-09 2023-06-23 米沃奇电动工具公司 电池组
KR20200112248A (ko) 2019-03-21 2020-10-05 주식회사 엘지화학 배터리 뱅크 제어 장치 및 방법
WO2021040900A1 (en) * 2019-08-23 2021-03-04 Stafl Systems, LLC Location-determinant fault monitoring for battery management system
US11592891B2 (en) * 2019-10-15 2023-02-28 Dell Products L.P. System and method for diagnosing resistive shorts in an information handling system
KR20220005347A (ko) * 2020-07-06 2022-01-13 현대자동차주식회사 차량의 배터리 충전 장치 및 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10290536A (ja) * 1997-04-11 1998-10-27 Yutaka Denki Seisakusho:Kk 充電装置
JP2011019329A (ja) * 2009-07-08 2011-01-27 Toshiba Corp 二次電池装置及び車両
US20130147433A1 (en) * 2011-12-12 2013-06-13 Powerflash Technology Corporation Method of controlling the power status of a battery pack and related smart battery device
KR101494081B1 (ko) * 2013-05-31 2015-02-16 국립대학법인 울산과학기술대학교 산학협력단 퍼지 알고리즘을 이용한 배터리 전압 밸런싱 장치
JP2015202046A (ja) * 2009-10-01 2015-11-12 ソニー株式会社 電池パック

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51303A (ja) 1974-06-19 1976-01-06 Matsushita Electric Ind Co Ltd Taanteeburusochi
JP4770522B2 (ja) 2006-03-07 2011-09-14 日産自動車株式会社 組電池の容量調整装置
JP4237804B2 (ja) * 2007-03-28 2009-03-11 株式会社東芝 組電池の保護装置及び電池パック装置
KR20100033509A (ko) * 2007-06-08 2010-03-30 파나소닉 주식회사 전원 시스템 및 전지 팩의 제어 방법
JP5126251B2 (ja) * 2010-03-01 2013-01-23 株式会社デンソー 電池電圧監視装置
JP5618359B2 (ja) * 2010-08-02 2014-11-05 Necエナジーデバイス株式会社 二次電池パック接続制御方法、および、蓄電システム
JP2013153596A (ja) * 2012-01-25 2013-08-08 Hitachi Ulsi Systems Co Ltd 充放電監視装置およびバッテリパック
KR101537093B1 (ko) 2013-01-07 2015-07-15 엘지전자 주식회사 전기자동차 및 그 제어방법
JP2016015839A (ja) 2014-07-02 2016-01-28 日産自動車株式会社 バッテリの制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10290536A (ja) * 1997-04-11 1998-10-27 Yutaka Denki Seisakusho:Kk 充電装置
JP2011019329A (ja) * 2009-07-08 2011-01-27 Toshiba Corp 二次電池装置及び車両
JP2015202046A (ja) * 2009-10-01 2015-11-12 ソニー株式会社 電池パック
US20130147433A1 (en) * 2011-12-12 2013-06-13 Powerflash Technology Corporation Method of controlling the power status of a battery pack and related smart battery device
KR101494081B1 (ko) * 2013-05-31 2015-02-16 국립대학법인 울산과학기술대학교 산학협력단 퍼지 알고리즘을 이용한 배터리 전압 밸런싱 장치

Also Published As

Publication number Publication date
KR102319239B1 (ko) 2021-10-28
KR20180072353A (ko) 2018-06-29
US20190334356A1 (en) 2019-10-31
US11001150B2 (en) 2021-05-11

Similar Documents

Publication Publication Date Title
WO2018117386A1 (ko) 배터리 팩
WO2018128257A1 (ko) 전압 검출 집적회로 및 이를 포함하는 배터리 관리 시스템
WO2018194249A1 (ko) 과충전 방지 장치 및 방법
WO2013119070A1 (ko) 양방향 디씨-디씨 컨버터를 이용한 배터리 관리 시스템의 셀 밸런싱 회로 장치
WO2018021664A1 (ko) 배터리 밸런싱 장치 및 방법
WO2016056768A1 (ko) 엘씨 공진을 이용한 배터리 셀 밸런싱 시스템 및 방법
WO2018021661A1 (ko) 션트저항을 이용한 전류 측정 장치
WO2020055117A1 (ko) 배터리 관리 장치
WO2014084628A1 (ko) 배터리 전류 측정 장치 및 그 방법
WO2016056740A1 (ko) 스위치 열화 검출 장치 및 방법
WO2018066839A1 (ko) 전압 분배를 이용한 퓨즈 진단 장치 및 방법
WO2023153651A1 (ko) 배터리 충방전 장치
WO2018074809A1 (ko) 셀 밸런싱 시스템 및 제어방법
WO2018074744A1 (ko) 전압 분배를 이용한 스위치 진단 장치 및 방법
WO2020141772A1 (ko) 배터리 밸런싱 장치 및 그것을 포함하는 배터리 팩
WO2018216954A1 (ko) 충방전 수단을 구비한 전류 계측 장치 및 이를 이용하는 전류 계측 방법
WO2018139741A1 (ko) 배터리 팩 및 배터리 팩이 연결된 차량
WO2021033956A1 (ko) 배터리 시스템 및 배터리 시스템의 운용 방법
WO2021085866A1 (ko) 에너지저장시스템(ess)에 포함된 배터리 모듈의 냉각 시스템 및 그 방법
WO2019151631A1 (ko) 배터리 보호 회로 및 이를 포함하는 배터리 팩
WO2020190009A1 (ko) 배터리 안전성 시험 장치 및 방법
WO2020145768A1 (ko) 배터리 팩 진단 장치
WO2019093625A1 (ko) 충전 제어 장치 및 방법
WO2021085816A1 (ko) 충전 스위치부 이상 감지 방법 및 이를 적용한 배터리 시스템
WO2020076126A1 (ko) 배터리 관리 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17885219

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17885219

Country of ref document: EP

Kind code of ref document: A1