WO2018066839A1 - 전압 분배를 이용한 퓨즈 진단 장치 및 방법 - Google Patents

전압 분배를 이용한 퓨즈 진단 장치 및 방법 Download PDF

Info

Publication number
WO2018066839A1
WO2018066839A1 PCT/KR2017/010305 KR2017010305W WO2018066839A1 WO 2018066839 A1 WO2018066839 A1 WO 2018066839A1 KR 2017010305 W KR2017010305 W KR 2017010305W WO 2018066839 A1 WO2018066839 A1 WO 2018066839A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuse
unit
resistor
voltage
battery
Prior art date
Application number
PCT/KR2017/010305
Other languages
English (en)
French (fr)
Inventor
김태윤
최일훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/094,435 priority Critical patent/US10901002B2/en
Priority to JP2019503182A priority patent/JP6694548B2/ja
Priority to PL17858634.3T priority patent/PL3432012T3/pl
Priority to CN201790000756.3U priority patent/CN209167457U/zh
Priority to EP17858634.3A priority patent/EP3432012B1/en
Publication of WO2018066839A1 publication Critical patent/WO2018066839A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/20Modifications of basic electric elements for use in electric measuring instruments; Structural combinations of such elements with such instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/20Modifications of basic electric elements for use in electric measuring instruments; Structural combinations of such elements with such instruments
    • G01R1/203Resistors used for electric measuring, e.g. decade resistors standards, resistors for comparators, series resistors, shunts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/20Modifications of basic electric elements for use in electric measuring instruments; Structural combinations of such elements with such instruments
    • G01R1/206Switches for connection of measuring instruments or electric motors to measuring loads
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/04Voltage dividers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16528Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values using digital techniques or performing arithmetic operations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16566Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533
    • G01R19/16576Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533 comparing DC or AC voltage with one threshold
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/74Testing of fuses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/30Means for indicating condition of fuse structurally associated with the fuse
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • G01R19/16542Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies for batteries

Definitions

  • the present invention relates to an apparatus and method for diagnosing fuses using voltage distribution.
  • a resistor and a diagnostic resistor are connected to one side of the fuse to be connected in parallel with a battery
  • the present invention relates to a fuse diagnosis apparatus and method using voltage distribution capable of diagnosing a state of a fuse by calculating a voltage of a battery applied to a diagnostic resistor.
  • the secondary battery having high applicationability and high electrical energy density according to the product range is not only portable device but also electric vehicle (EV), hybrid vehicle (HV, hybrid vehicle) or household driven by an electric driving source.
  • EV electric vehicle
  • HV hybrid vehicle
  • BACKGROUND ART It is commonly applied to energy storage systems (ESSs) and uninterruptible power supply (UPS) systems using medium and large batteries used for industrial purposes.
  • the secondary battery is attracting attention as a new energy source for improving eco-friendliness and energy efficiency in that not only the primary advantage of significantly reducing the use of fossil fuels is generated, but also no by-products of energy use are generated.
  • the secondary battery When the secondary battery is implemented as a battery such as a mobile terminal, this may not necessarily be the case. However, as described above, a battery applied to an electric vehicle or an energy storage source is typically a plurality of secondary battery cells. Can be used for high capacity environments.
  • a safety device including a fuse is designed to protect a load from an over current generated from a battery cell and an external short. But if the fuse does not work normally. Since the load could not be safely protected from over current and external shorts, a separate system for diagnosing the state of the fuse was required, or a configuration for diagnosing the fuse in the battery management system (BMS) was required.
  • BMS battery management system
  • the volume and price of the battery pack and the battery management system are increased by having a separate system and additional configuration. Since the increase in volume and price adversely affects the efficiency and high energy density of the secondary battery, it is necessary to reduce the volume of the fuse diagnosis device and reduce the price.
  • An object of the present invention is to connect one or more resistors and diagnostic resistors to one side of one or more fuses so as to be connected in parallel with a battery to diagnose the state of one or more fuses connected in parallel with one or more terminals, and using voltage distribution
  • the present invention provides a fuse diagnosis apparatus and method using voltage distribution capable of diagnosing a fuse state by calculating a battery voltage applied to a diagnostic resistor.
  • an apparatus and method for fuse diagnosis using voltage distribution that can reduce the volume and price by receiving a voltage-divided voltage and diagnosing the state of one or more fuses based on the voltage-divided voltage using an external ADC converter.
  • a fuse diagnosis apparatus using voltage distribution may include: a fuse unit connected to a battery and at least one terminal to block overvoltage and overcurrent generated from the battery; A diagnostic resistor for diagnosing a state of the fuse unit; A controller configured to calculate a voltage applied to the diagnostic resistor from a voltage of the battery applied to the resistor unit and the diagnostic resistor using the voltage distribution, and to diagnose a state of the fuse unit based on the calculated voltage; It may include.
  • the fuse unit may include one or more fuses connected in parallel to each of the one or more terminals, and the resistor unit may include one side of one or more resistors connected to the one or more fuses, respectively, and the sizes of the one or more resistors may be different from each other. Can be.
  • the fuse diagnosis apparatus using the voltage distribution may further include an ADC converter configured to convert the voltage of the battery applied to the diagnostic resistor into a digital signal.
  • the controller may further include the controller based on the converted digital signal. The state of the fuse part can be diagnosed.
  • the fuse diagnosis apparatus using the voltage distribution may further include a reference voltage generator configured to generate a reference voltage for diagnosing a state of the battery, wherein the controller is applied to the diagnostic resistor based on the reference voltage.
  • the voltage to be calculated may be calculated, and the state of the fuse unit may be diagnosed by comparing the voltage applied to the diagnostic resistor with the calculated voltage.
  • the fuse diagnostic apparatus using the voltage distribution may further include a switch unit positioned between the resistor unit and the diagnostic resistor and configured to connect and short-circuit the resistor unit and the diagnostic resistor.
  • the control unit may include the switch. The opening and closing of the negative part may be controlled to apply the voltage of the battery to the diagnostic resistor, and diagnose the state of the fuse part based on the applied voltage.
  • the fuse unit, the resistor unit, and the diagnostic resistor may be configured as one fuse diagnosis unit, and the control unit may be located outside the fuse diagnosis unit.
  • the fuse diagnosis apparatus using the voltage distribution may include: a charge / discharge unit connected to the one or more terminals to perform charging and discharging of the battery; A primary protection unit controlling the charging and discharging unit based on the charging potential of the battery; And a secondary protection unit configured to operate the fuse unit based on a state of charge of the battery, wherein the parts other than the battery are made of a printed circuit board and then coupled to the battery.
  • the fuse part and the secondary protection part may be formed to be spatially independent from other components.
  • a fuse diagnosis method using voltage distribution includes: connecting a fuse unit to a battery and at least one terminal to block overvoltage and overcurrent generated from the battery; Diagnosing a state of the fuse unit through a diagnosis resistor; Connecting one side to the fuse unit and a second side to the diagnostic resistor through a resistor unit; And calculating, by a controller, a voltage applied to the diagnostic resistor from voltages of the battery applied to the resistor unit and the diagnostic resistor using voltage distribution, and diagnosing a state of the fuse unit based on the calculated voltage. It may include.
  • the blocking may include connecting one or more fuses connected in parallel with each of the one or more terminals; And connecting one side of one or more resistors having different sizes to each other with the one or more fuses.
  • the fuse diagnosis method using the voltage distribution may further include converting a voltage of the battery applied to the diagnostic resistor by an ADC converter into a digital signal.
  • the diagnosing may include: And diagnosing a state of the fuse unit based on the diagnosis result.
  • the fuse diagnosis method using the voltage distribution may further include generating a reference voltage for diagnosing a state of the battery, wherein the diagnosing may be applied to the diagnostic resistor based on the reference voltage. And calculating a voltage and diagnosing a state of the fuse unit by comparing the voltage applied to the diagnostic resistor with the calculated voltage.
  • the fuse diagnosis method using the voltage distribution may further include a switch unit being positioned between the resistor unit and the diagnostic resistor, and connecting and shorting the resistor unit and the diagnostic resistor. And controlling the opening and closing of the switch unit to apply a voltage of the battery to the diagnostic resistor, and diagnosing a state of the fuse unit based on the applied voltage.
  • the fuse diagnosis method using the voltage distribution may include configuring the fuse unit, the resistor unit, and the diagnostic resistor as one fuse diagnosis unit; And positioning the control unit outside the fuse diagnosis unit.
  • the fuse diagnosis method using the voltage distribution may include: charging and discharging the battery to be connected to the at least one terminal to charge and discharge the battery; Controlling, by the primary protection unit, the charging and discharging unit based on the charging potential of the battery; A secondary protection unit operating the fuse unit based on a state of charge of the battery; And the parts other than the battery are made of a printed circuit board and then coupled to the battery, and when the printed circuit board is made of the printed circuit board, forming the fuse part and the secondary protection part so as to be spatially independent from other parts. It may further include;
  • one or more resistors and diagnostic resistors are connected to one side of the one or more fuses so as to be connected in parallel with the battery, and the voltage distribution is improved.
  • an apparatus and method for fuse diagnosis using voltage distribution that can reduce the volume and price by receiving a voltage-divided voltage and diagnosing the state of one or more fuses based on the voltage-divided voltage using an external ADC converter. Can provide.
  • FIG. 1 is a view schematically illustrating an electric vehicle to which a fuse diagnosis apparatus using voltage distribution according to an embodiment of the present invention may be applied.
  • FIGS. 2 and 3 are schematic diagrams of a fuse diagnosis apparatus using voltage distribution according to an exemplary embodiment of the present invention.
  • FIG. 4 is a diagram schematically illustrating a fuse diagnosis apparatus 100 using voltage distribution according to another exemplary embodiment of the present invention.
  • FIG. 5 is a flowchart illustrating a fuse diagnosis method using voltage distribution according to an embodiment of the present invention.
  • ... unit described in the specification means a unit for processing one or more functions or operations, which may be implemented in hardware or software or a combination of hardware and software.
  • FIG. 1 is a view schematically illustrating an electric vehicle to which a fuse diagnosis apparatus using voltage distribution according to an embodiment of the present invention may be applied.
  • FIG. 1 illustrates an example in which a fuse diagnosis apparatus using voltage distribution according to an embodiment of the present invention is applied to an electric vehicle 1, the current measuring apparatus using a shunt resistor according to an embodiment of the present invention may be used in addition to an electric vehicle.
  • Any technical field may be applied as long as secondary batteries may be applied, such as an energy storage system (ESS) or an uninterruptible power supply (UPS) system.
  • ESS energy storage system
  • UPS uninterruptible power supply
  • the electric vehicle 1 may include a battery 10, a battery management system (BMS) 20, an electronic control unit (ECU) 30, an inverter 40, and a motor 50.
  • BMS battery management system
  • ECU electronice control unit
  • inverter 40 inverter 40
  • motor 50 a motor 50.
  • the battery 10 is an electric energy source for driving the electric vehicle 1 by providing a driving force to the motor 50.
  • the battery 10 may be charged or discharged by the inverter 40 according to the driving of the motor 50 and / or the internal combustion engine (not shown).
  • the type of the battery 10 is not particularly limited, and the battery 10 may be, for example, a lithium ion battery, a lithium polymer battery, a nickel cadmium battery, a nickel hydrogen battery, a nickel zinc battery, or the like.
  • the battery 10 is formed of a battery pack in which a plurality of battery cells are connected in series and / or in parallel.
  • the battery 10 may include one or more battery packs.
  • the BMS 20 estimates the state of the battery 10 and manages the battery 10 using the estimated state information. For example, the BMS 20 estimates and manages battery 10 state information such as a state of charging (SOC), a state of health (SOH), a maximum input / output power allowance, an output voltage, and the like of the battery 10. do. In addition, the BMS 20 controls the charging or discharging of the battery 10 by using the state information, and further, it is possible to estimate the replacement time of the battery 10.
  • SOC state of charging
  • SOH state of health
  • the BMS 20 controls the charging or discharging of the battery 10 by using the state information, and further, it is possible to estimate the replacement time of the battery 10.
  • the BMS 20 may include a fuse diagnostic apparatus 100 using voltage distribution according to an embodiment of the present invention described below or may be connected to the fuse diagnostic apparatus 100 using voltage distribution.
  • the BMS 20 connects the fuse unit 110, the resistor unit 130, and the diagnostic resistor 140 to be connected in parallel with the battery 10, and compares the voltage applied to the diagnostic resistor 140 with a reference voltage.
  • the fuse unit 110 may be diagnosed.
  • the ECU 30 is an electronic control device for controlling the state of the electric vehicle 1. For example, the ECU 30 determines the torque degree based on information such as an accelerator, a break, a speed, and the like, and controls the output of the motor 50 to match the torque information.
  • the ECU 30 sends a control signal to the inverter 40 so that the battery 10 can be charged or discharged by the BMS 20.
  • the inverter 40 causes the battery 10 to be charged or discharged based on the control signal of the ECU 30.
  • the motor 50 drives the electric vehicle 1 based on the control information (for example, torque information) transmitted from the ECU 30 using the electric energy of the battery 10.
  • control information for example, torque information
  • FIGS. 2 and 3 are schematic views illustrating a fuse diagnosis apparatus using voltage distribution according to an embodiment of the present invention.
  • the fuse diagnostic apparatus 100 using voltage distribution includes a fuse unit 110, a reference voltage generator 120, a resistor unit 130, and a diagnostic resistor. 140, the switch unit 150, the ADC converter 160, and the controller 170 may be included.
  • the fuse diagnostic apparatus 100 using the voltage distribution shown in FIGS. 2 and 3 is according to an embodiment, and its components are not limited to the embodiment shown in FIGS. 2 and 3, and may be added as necessary. , Can be changed or deleted.
  • the fuse unit 110 may be connected to the battery 10 and one or more terminals to block overvoltage and overcurrent generated from the battery.
  • the fuse unit 110 may include one or more fuses.
  • One or more fuses may be connected in parallel to each of the one or more terminals. For example, when two terminals are configured in one battery 10, two terminals and two fuses may be connected by placing a fuse between the battery 10 and each terminal. When overvoltage and overcurrent occur in the battery 10, the fuse connected to each of the two terminals may be operated separately, thereby protecting the load from overvoltage and overcurrent.
  • the reference voltage generator 120 may generate a reference voltage for diagnosing a state of the battery 10.
  • the reference voltage may be a voltage value measured at the time when the battery 10 operates normally, and may be a reference value for diagnosing the state of the battery 10 or diagnosing the state of the fuse unit 110 through the controller 170 to be described later.
  • the reference voltage may be 400V, and when the voltage measured by the battery 10 is 400 V or more, the state of the battery 10 may be diagnosed as an abnormal state through the controller 170 to be described later.
  • a reference voltage to be applied to the diagnostic resistor 140 to be described later may be calculated through the reference voltage 400V, and the fuse unit may be compared by comparing the reference voltage to be applied to the diagnostic resistor 140 with the resistance applied to the diagnostic resistor 140.
  • the state of 110 can be diagnosed.
  • the reference voltage generator 120 may include one or more resistors, and may generate a reference voltage using a voltage division law.
  • the controller 170 to be described later is a micro controller unit (MCU)
  • the MCU may support a voltage value of 4V to 5V.
  • the battery 10 has a relatively high voltage of 400 V to 500 V, it is difficult to directly receive and use the power output from the battery 10. Therefore, by lowering the voltage applied from the battery 10 by using the voltage distribution law, it is possible to adjust the voltage size of the degree supported by the MCU.
  • the reference voltage generator 120 may include a resistor having a size of 1 M ⁇ and 10 k ⁇ . When the voltage of the battery 10 is 400V, the voltage of 400V is applied to 1M ⁇ and 10k ⁇ and becomes (400V * 10k ⁇ ) / 1010k ⁇ by the voltage distribution law, thereby generating a reference voltage of 3.96V.
  • the reference voltage generator 120 may include one or more switches between one or more resistors, thereby operating the switch only when generating a reference voltage, thereby preventing unnecessary power loss and leakage current from occurring. Can be.
  • the resistor unit 130 may be connected to the diagnostic unit 140, one side of which is connected to the fuse unit 110 and the other side of which is described later.
  • the resistor unit 130 may include one or more resistors to be connected to one or more fuses, respectively.
  • one or more resistors may be connected in parallel to each to one or more fuses connected in parallel.
  • One or more resistors included in the resistor unit 130 may have different sizes, and when an abnormality occurs in a state of one or more fuses, the controller 170 to be described later may determine which fuse has occurred. .
  • the diagnostic resistor 140 may be connected to the resistor 130 to diagnose a state of the fuse 110.
  • the resistor unit 130 and the diagnostic resistor 140 are resistors used for voltage distribution, and the size of one or more resistors included in the resistor unit 130 may be greater than the diagnostic resistor 140.
  • the sizes of the resistors included in the resistor unit 130 may be 2M ⁇ and 3M ⁇ , and the size of the diagnostic resistor 140 may be 10k ⁇ .
  • the switch unit 150 may be positioned between the resistor unit 130 and the diagnostic resistor 140, and may connect and short-circuit the resistor unit 130 and the diagnostic resistor 140.
  • the switch unit 150 may include one or more switching elements.
  • the switch unit 150 may connect and short-circuit the resistor unit 130 and the diagnostic resistor 140 by performing on / off operation under the control of the controller 170 to be described later. By controlling the operation of the switch unit 150 only when diagnosing the state of the fuse unit 110 by connecting the resistor unit 130 and the diagnostic resistor 140, unnecessary power loss and leakage current is generated. It can prevent.
  • the ADC converter 160 may convert the voltage of the battery 10 applied to the diagnostic resistor 140 into a digital signal.
  • the ADC converter 160 receives the reference voltage generated by the reference voltage generator 120 and the voltage of the battery 10 measured from the diagnostic resistor 140 as an analog signal, and digitally converts the signal into a controller 170 to be described later.
  • the controller 170 to be described later may diagnose the state of the fuse unit 110 based on the digital signal.
  • the controller 170 may calculate a voltage applied to the diagnostic resistor 140 from voltages of the battery 10 applied to the resistor 130 and the diagnostic resistor 140 using voltage division. In addition, it is possible to diagnose the state of the fuse based on the calculated voltage.
  • controller 170 may calculate a voltage to be applied to the diagnostic resistor 140 based on the reference voltage generated by the reference voltage generator 120.
  • the state of the fuse unit 110 may be diagnosed by comparing the voltage applied to the diagnosis resistor 140 with the calculated reference voltage.
  • the resistor 1 130 when the reference voltage of the battery 10 is 400 V, the resistor 1 130 may be connected to the fuse 1 110-1 and the fuse 2 110-2 in parallel. -1) and the resistor 130-2 may be connected to each other.
  • the sizes of the resistors 1 130-1 and 2 130-2 may be 2 M ⁇ and 3 M ⁇ , respectively, and the actual sizes may be 1.996 M ⁇ and 2.994 M ⁇ .
  • the size of the diagnostic resistor 140 may be 10k ⁇ .
  • the controller 170 may calculate a voltage to be applied to the diagnostic resistor 140 whenever the voltage of the battery 10 is 100V to 500V based on the reference voltage provided from the reference voltage generator 120.
  • the voltage value measured by the diagnostic resistor 140 may be 3.312V. Can be. However, if the fuse 2 110-2 is turned off due to an error in the fuse 2 110-2, the resistor 2 130-2 connected to the fuse 2 110-2 is also turned off and the battery is turned off. The voltage of 10 may be applied only to the fuse 1 110-1 and the resistor 1 130-1, so that the voltage value applied to the diagnostic resistor 140 may be 1.987V. When the fuse 1 110-1 is turned off, the resistor 1 130-1 connected to the fuse 1 110-1 is also turned off so that the voltage of the battery 10 is changed to the fuse 2 110-2.
  • the voltage value applied to the diagnostic resistor 140 may be 1.332V. Therefore, when the voltage applied to the diagnostic resistor 140 is 3.312V, the control unit 170 may diagnose that the fuse unit 110 is in a normal state. Diagnosis is possible.
  • Reference voltage Fuse 1 Fuse 2 Resistance 1 Resistance2 Diagnostic resistance Expected voltage 200 200 200 1.996M ⁇ 2.994M ⁇ 10K ⁇ 1.656 400 400 400 1.996M ⁇ 2.994M ⁇ 10K ⁇ 3.312 400 400 -400 1.996M ⁇ 2.994M ⁇ 10K ⁇ 0.662 400 400 -200 1.996M ⁇ 2.994M ⁇ 10K ⁇ 1.325 400 400 0 1.996M ⁇ 2.994M ⁇ 10K ⁇ 1.987 400 400 200 1.996M ⁇ 2.994M ⁇ 10K ⁇ 2.650 400 0 400 1.996M ⁇ 2.994M ⁇ 10K ⁇ 1.332
  • the fuse diagnostic apparatus 100 using voltage distribution may configure the fuse unit 110, the resistor unit 130, and the diagnostic resistor 140 as one fuse diagnosis unit 180.
  • the controller 170 may be located outside the fuse diagnosis unit 180. For example, when a state of a fuse is to be diagnosed with respect to a plurality of fuses connected in series, the resistor 130 and the diagnostic resistor 140 are connected to the plurality of fuses, respectively, and the plurality of fuses are applied to the diagnostic resistor 140. By providing a voltage to the ADC converter 160 and the controller 170 located outside, the state of the plurality of fuses can be diagnosed by one ADC converter 160 and the controller 170 located outside.
  • the fuse unit 110 may be replaced with another component to be diagnosed.
  • diagnosis the state of the relay by connecting the resistor unit 130 and the diagnostic resistor 140 to the relay in the same manner as described above and by measuring the magnitude of the voltage applied to the diagnostic resistor 140, Diagnose the condition. It can also be used to measure the condition of the terminals that connect and short-circuit the battery with the load. Through this, the state of a plurality of components located in the battery 10 pack or BMS may be measured by one external ADC converter 160 and the controller 170.
  • the state of a plurality of components located in the battery 10 pack or the BMS may be measured by one external ADC converter 160 and the controller 170, and the diagnosis may be performed.
  • the volume and cost of the battery 10 pack and BMS can be saved.
  • FIG. 4 is a diagram schematically illustrating a fuse diagnosis apparatus 100 using voltage distribution according to another exemplary embodiment of the present invention.
  • a fuse diagnosis apparatus 100 using voltage distribution may include a charge / discharge unit 190, a primary protection unit 200, and a secondary protection unit 210. Can be.
  • the charging and discharging unit 190 may be connected to one or more terminals to charge and discharge the battery 10.
  • the primary protection unit 200 may control the charging and discharging unit 190 based on the charging potential of the battery 10. For example, when the charging potential of the battery 10 is greater than or equal to the reference potential, the primary protection unit 200 may prevent the charging potential of the battery 10 from being increased by off-controlling the operation of the charging and discharging unit.
  • the secondary protection unit 210 may control the fuse unit 110 based on the state of charge of the battery 10. For example, when the state of charge of the battery 10 is an overcharge state, the secondary protection unit 210 controls the fuse unit 110 to operate normally so that the overcharged battery 10 is discharged to lower the charging potential. can do.
  • the secondary protection part 210 and the fuse part 110 may be formed to be spatially independent from other components.
  • components other than the battery 10 may be manufactured on a printed circuit board and then combined with the battery 10.
  • the fuse unit 110 may be affected. Due to this effect, one or more fuses included in the fuse unit 110 may not operate normally, and a load may not be protected from the battery 10 in an abnormal state. Therefore, the fuse unit 110 and the secondary protection unit 210 controlling the same may be separated from other components to be independent of each other, thereby preventing the fuse 10 from being affected by the battery 10 in an abnormal state. In addition, it is possible to safely protect the load from the battery 10 in the abnormal state based on this.
  • FIG. 5 is a flowchart illustrating a fuse diagnosis method using voltage distribution according to an embodiment of the present invention.
  • a voltage of a battery is applied to a resistor and a diagnosis resistor connected to a fuse to be diagnosed (S101).
  • the voltage applied to the diagnostic resistor is calculated based on the voltage of the battery and the voltage distribution law applied in step S101 (S102).
  • the reference voltage generation unit measures the reference voltage of the battery, and calculates a voltage to be applied to the diagnostic resistor based on this, and sets the reference voltage to be applied to the diagnostic resistor (S103 and S104).
  • the voltage applied to the diagnostic resistor calculated in step S102 and the reference voltage calculated in step S104 are converted into a digital signal by the ADC converter S104.
  • the digital signal converted in step S104 is provided to the controller, and the controller compares the voltage applied to the diagnostic resistor with the reference voltage (S105). If the voltage applied to the diagnostic resistor and the calculated reference voltage in the step (S105) is the same or included in the tolerance range, the fuse is diagnosed as a normal state and normal operation is performed (S106). On the other hand, when the voltage applied to the diagnostic resistor and the calculated reference voltage are not the same or not included in the tolerance range, the fuse is diagnosed as an abnormal state and an abnormality is diagnosed (S107). In the case of diagnosing one or more fuses, by using a resistor having a different size, it is possible to know which of the fuses has occurred in step S107, thereby controlling the fuse in which the abnormalities have occurred (S108). In another embodiment, the result is output to the outside of the fuse having an error so that the user can know.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Protection Of Static Devices (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

본 발명은 전압 분배를 이용한 퓨즈 진단 장치 및 방법에 관한 것으로, 병렬 연결된 하나 이상의 퓨즈의 상태를 진단하기 위하여, 배터리와 병렬 연결되도록 퓨즈의 일측에 저항부와 진단 저항을 연결하고 전압 분배를 이용하여 진단 저항에 인가되는 배터리의 전압을 산출함으로써, 퓨즈의 상태를 진단할 수 있는 전압 분배를 이용한 퓨즈 진단 장치 및 방법에 관한 것이다.

Description

전압 분배를 이용한 퓨즈 진단 장치 및 방법
본 출원은 2016년 10월 05일자 한국 특허 출원 제10-2016-0128488호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 전압 분배를 이용한 퓨즈 진단 장치 및 방법에 관한 것으로, 병렬 연결된 하나 이상의 퓨즈의 상태를 진단하기 위하여, 배터리와 병렬 연결되도록 퓨즈의 일측에 저항부와 진단 저항을 연결하고 전압 분배를 이용하여 진단 저항에 인가되는 배터리의 전압을 산출함으로써, 퓨즈의 상태를 진단할 수 있는 전압 분배를 이용한 퓨즈 진단 장치 및 방법에 관한 것이다.
제품군에 따른 적용 용이성이 높고, 높은 에너지 밀도 등의 전기적 특성을 가지는 이차전지는 휴대용 기기뿐만 아니라 전기적 구동원에 의하여 구동하는 전기차량(EV, Electric Vehicle), 하이브리드 차량(HV, Hybrid Vehicle) 또는 가정용 또는 산업용으로 이용되는 중대형 배터리를 이용하는 에너지 저장 시스템(Energy Storage System; ESS)이나 무정전 전원 공급 장치(Uninterruptible Power Supply; UPS) 시스템 등에 보편적으로 응용되고 있다.
이러한 이차 전지는 화석 연료의 사용을 획기적으로 감소시킬 수 있다는 일차적인 장점뿐만 아니라 에너지의 사용에 따른 부산물이 전혀 발생되지 않는다는 점에서 친환경 및 에너지 효율성 제고를 위한 새로운 에너지원으로 주목 받고 있다.
2차 전지는 휴대 단말 등의 배터리로 구현되는 경우는 반드시 그러하지 않을 수 있으나, 상기와 같이 전기 차량 또는 에너지 저장원 등에 적용되는 배터리는 통상적으로 단위 이차전지 셀(cell)이 복수 개 집합되는 형태로 사용되어 고용량 환경에 적합성을 높이게 된다.
이와 같이 복수 개 집합되는 형태로 사용되는 경우, 과전류가 흐르는 등의 동작 이상이 발생했을 경우 과열에 의하여 단위 셀이 부풀어서 파손되는 등의 문제가 생길 수 있다. 따라서 퓨즈와 같은 보호 소자를 사용함으로써, 과전류로부터 단위 셀의 파손을 방지하고, 과전류로부터 부하를 분리시켜 부하를 보호해야 한다.
종래에는 배터리 셀에서 발생하는 과전류 및 외부의 쇼트로부터 부하를 보호하기 위해 퓨즈를 포함하는 안전장치가 설계되어 있다. 그러나 퓨즈가 정상 동작하지 않는 경우. 과전류 및 외부의 쇼트로부터 부하를 안전하게 보호할 수 없기 때문에, 퓨즈의 상태를 진단하기 위한 별도의 시스템을 구축하거나, 배터리 관리 시스템(Battery Management System; BMS)에 퓨즈를 진단하는 구성이 필요했다. 그러나 별도의 시스템 및 추가적인 구성을 구비함으로써 배터리 팩 및 배터리 관리 시스템의 부피 및 가격이 증가한다는 단점이 있다. 이러한 부피 및 가격의 증가는 2차 전지의 고효율화 및 고 에너지 밀도화에 악영향을 끼치기 때문에 퓨즈 진단 장치의 부피를 감소시키고, 가격을 절감시킬 필요성이 있다.
본 발명의 목적은, 병렬 연결된 하나 이상의 단자와 각각 연결된 하나 이상의 퓨즈의 상태를 진단하기 위하여 배터리와 병렬 연결 되도록 하나 이상의 퓨즈의 일측에 하나 이상의 저항을 및 진단 저항을 연결하고, 전압 분배를 이용하여 진단 저항에 인가되는 배터리 전압을 산출함으로써, 퓨즈의 상태를 진단할 수 있는 전압 분배를 이용한 퓨즈 진단 장치 및 방법을 제공하는 것이다.
또한, 외부에 위치하는 하나의 ADC 변환기를 사용하여 전압 분배된 전압을 입력 받고 이를 기반으로 하나 이상의 퓨즈의 상태를 진단함으로써, 부피 및 가격을 감소시킬 수 있는 전압 분배를 이용한 퓨즈 진단 장치 및 방법을 제공하는 것이다.
본 발명의 일 실시예에 따른, 전압 분배를 이용한 퓨즈 진단 장치는, 배터리 및 하나 이상의 단자와 연결되어 배터리로부터 발생하는 과전압 및 과전류를 차단하는 퓨즈부; 상기 퓨즈부의 상태를 진단하기 위한 진단 저항; 일측이 상기 전압 분배를 이용하여 상기 저항부 및 상기 진단 저항에 인가되는 상기 배터리의 전압으로부터 상기 진단 저항에 인가되는 전압을 산출하고, 상기 산출된 전압에 기반하여 상기 퓨즈부의 상태를 진단하는 제어부;를 포함할 수 있다.
상기 퓨즈부는, 병렬 연결된 하나 이상의 퓨즈가 상기 하나 이상의 단자와 각각 연결될 수 있으며, 상기 저항부는, 하나 이상의 저항의 일측이 상기 하나 이상의 퓨즈와 각각 연결될 수 있으며, 상기 하나 이상의 저항의 크기는 서로 상이할 수 있다.
상기 전압 분배를 이용한 퓨즈 진단 장치는, 상기 진단 저항에 인가되는 상기 배터리의 전압을 디지털 신호로 변환하는 ADC 변환부;를 더 포함할 수 있으며, 상기 제어부는, 상기 변환된 디지털 신호에 기반하여 상기 퓨즈부의 상태를 진단할 수 있다.
상기 전압 분배를 이용한 퓨즈 진단 장치는, 상기 배터리의 상태를 진단하기 위한 기준전압을 생성하는 기준전압 생성부;를 더 포함할 수 있으며, 상기 제어부는, 상기 기준전압에 기반하여 상기 진단 저항에 인가될 전압을 산출하고, 상기 진단 저항에 인가된 전압과 상기 산출된 전압을 비교하여 상기 퓨즈부의 상태를 진단할 수 있다.
상기 전압 분배를 이용한 퓨즈 진단 장치는, 상기 저항부와 상기 진단 저항 사이에 위치하며, 상기 저항부와 상기 진단 저항을 연결 및 단락하는 스위치부;를 더 포함할 수 있으며, 상기 제어부는, 상기 스위치부의 개폐를 제어하여 상기 진단 저항에 상기 배터리의 전압을 인가시키고, 상기 인가된 전압에 기반하여 상기 퓨즈부의 상태를 진단할 수 있다.
상기 퓨즈부, 상기 저항부 및 상기 진단 저항은 하나의 퓨즈 진단부로 구성될 수 있으며, 상기 제어부는 상기 퓨즈 진단부 외부에 위치할 수 있다.
상기 전압 분배를 이용한 퓨즈 진단 장치는, 상기 하나 이상의 단자와 연결되어 상기 배터리의 충전 및 방전을 수행하는 충방전부; 상기 배터리의 충전 전위에 기반하여 상기 충방전부를 제어하는 1차 보호부; 및 상기 배터리의 충전 상태에 기반하여 상기 퓨즈부를 동작시키는 2차 보호부;를 더 포함할 수 있으며, 상기 배터리를 제외한 부품들은 인쇄 회로 기판으로 제작된 후, 상기 배터리와 결합되며, 상기 인쇄 회로 기판으로 제작될 때, 상기 퓨즈부와 상기 2차 보호부는 다른 부품들과 공간적으로 독립되도록 형성될 수 있다.
본 발명의 일 실시예에 따른 전압 분배를 이용한 퓨즈 진단 방법은, 퓨즈부가 배터리 및 하나 이상의 단자와 연결되어 배터리로부터 발생하는 과전압 및 과전류를 차단하는 단계; 진단 저항을 통해 상기 퓨즈부의 상태를 진단하는 단계; 저항부를 통해 일측이 상기 퓨즈부와 연결되고 타측이 상기 진단 저항과 연결하는 단계; 및 제어부가 전압 분배를 이용하여 상기 저항부 및 상기 진단 저항에 인가되는 상기 배터리의 전압으로부터 상기 진단 저항에 인가되는 전압을 산출하고, 상기 산출된 전압에 기반하여 상기 퓨즈부의 상태를 진단하는 단계;를 포함할 수 있다.
상기 차단하는 단계는, 병렬 연결된 하나 이상의 퓨즈가 상기 하나 이상의 단자와 각각 연결하는 단계; 및 크기는 서로 상이한 하나 이상의 저항의 일측이 상기 하나 이상의 퓨즈와 각각 연결하는 단계;를 포함할 수 있다.
상기 전압 분배를 이용한 퓨즈 진단 방법은, ADC 변환부가 상기 진단 저항에 인가되는 상기 배터리의 전압을 디지털 신호로 변환하는 단계;를 더 포함할 수 있으며, 상기 진단하는 단계는, 상기 변환된 디지털 신호에 기반하여 상기 퓨즈부의 상태를 진단하는 단계;를 포함할 수 있다.
상기 전압 분배를 이용한 퓨즈 진단 방법은, 상기 배터리의 상태를 진단하기 위한 기준전압을 생성하는 단계;를 더 포함할 수 있으며, 상기 진단하는 단계는, 상기 기준전압에 기반하여 상기 진단 저항에 인가될 전압을 산출하고, 상기 진단 저항에 인가된 전압과 상기 산출된 전압을 비교하여 상기 퓨즈부의 상태를 진단하는 단계;를 더 포함할 수 있다.
상기 전압 분배를 이용한 퓨즈 진단 방법은, 스위치부가 상기 저항부와 상기 진단 저항 사이에 위치하며, 상기 저항부와 상기 진단 저항을 연결 및 단락하는 단계;를 더 포함할 수 있으며, 상기 진단하는 단계는, 상기 스위치부의 개폐를 제어하여 상기 진단 저항에 상기 배터리의 전압을 인가시키고, 상기 인가된 전압에 기반하여 상기 퓨즈부의 상태를 진단하는 단계;를 더 포함할 수 있다.
상기 전압 분배를 이용한 퓨즈 진단 방법은, 상기 퓨즈부, 상기 저항부 및 상기 진단 저항을 하나의 퓨즈 진단부로 구성하는 단계; 및 상기 제어부를 상기 퓨즈 진단부 외부에 위치시키는 단계;를 더 포함할 수 있다.
상기 전압 분배를 이용한 퓨즈 진단 방법은, 충방전부가 상기 하나 이상의 단자와 연결되어 상기 배터리의 충전 및 방전을 수행하는 단계; 1차 보호부가 상기 배터리의 충전 전위에 기반하여 상기 충방전부를 제어하는 단계; 2차 보호부가 상기 배터리의 충전 상태에 기반하여 상기 퓨즈부를 동작시키는 단계; 및 상기 배터리를 제외한 부품들은 인쇄 회로 기판으로 제작된 후, 상기 배터리와 결합되며, 상기 인쇄 회로 기판으로 제작될 때, 상기 퓨즈부와 상기 2차 보호부는 다른 부품들과 공간적으로 독립되도록 형성하는 단계;를 더 포함할 수 있다.
본 발명의 일 측면에 따르면, 병렬 연결된 하나 이상의 단자와 각각 연결된 하나 이상의 퓨즈의 상태를 진단하기 위하여 배터리와 병렬 연결 되도록 하나 이상의 퓨즈의 일측에 하나 이상의 저항을 및 진단 저항을 연결하고, 전압 분배를 이용하여 진단 저항에 인가되는 배터리 전압을 산출함으로써, 퓨즈의 상태를 진단할 수 있는 전압 분배를 이용한 퓨즈 진단 장치 및 방법을 제공할 수 있다.
또한, 외부에 위치하는 하나의 ADC 변환기를 사용하여 전압 분배된 전압을 입력 받고 이를 기반으로 하나 이상의 퓨즈의 상태를 진단함으로써, 부피 및 가격을 감소시킬 수 있는 전압 분배를 이용한 퓨즈 진단 장치 및 방법을 제공할 수 있다.
도 1은 본 발명의 일 실시예에 따른 전압 분배를 이용한 퓨즈 진단 장치가 적용될 수 있는 전기 자동차를 개략적으로 도시한 도면이다.
도 2 및 도 3은 본 발명의 일 실시예에 따른 전압 분배를 이용한 퓨즈 진단 장치를 개략적으로 도시한 도면이다.
도 4는 본 발명의 다른 일 실시예에 따른 전압 분배를 이용한 퓨즈 진단 장치(100)를 개략적으로 도시한 도면이다.
도 5는 본 발명의 일 실시예에 따른 전압 분배를 이용한 퓨즈 진단 방법을 설명하기 위한 순서도이다.
본 발명을 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다. 여기서, 반복되는 설명, 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능, 및 구성에 대한 상세한 설명은 생략한다. 본 발명의 실시형태는 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다. 따라서, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있다.
명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
또한, 명세서에 기재된 "...부"의 용어는 하나 이상의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.
도 1은 본 발명의 일 실시예에 따른 전압 분배를 이용한 퓨즈 진단 장치가 적용될 수 있는 전기 자동차를 개략적으로 도시한 도면이다.
도 1에서 본 발명의 일 실시예에 따른 전압 분배를 이용한 퓨즈 진단 장치가 전기 자동차(1)에 적용된 예를 도시하고 있으나, 본 발명의 일 실시예에 따른 션트저항를 이용한 전류 측정 장치는 전기 자동차 이외에도 가정용 또는 산업용 에너지 저장 시스템(Energy Storage System; ESS)이나 무정전 전원 공급 장치(Uninterruptible Power Supply; UPS) 시스템 등 이차 전지가 적용될 수 있는 분야라면 어떠한 기술 분야라도 적용될 수 있다.
전기 자동차(1)는 배터리(10), BMS(Battery Management System, 20), ECU(Electronic Control Unit, 30), 인버터(40) 및 모터(50)를 포함하여 구성될 수 있다
배터리(10)는 모터(50)에 구동력을 제공하여 전기 자동차(1)를 구동시키는 전기 에너지원이다. 배터리(10)는 모터(50) 및/또는 내연 기관(미도시)의 구동에 따라 인버터(40)에 의해 충전되거나 방전될 수 있다.
여기서, 배터리(10)의 종류는 특별히 한정되지 않으며, 예컨대 배터리(10)는 리튬 이온 전지, 리튬 폴리머 전지, 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지 등으로 구성될 수 있다.
또한, 배터리(10)는 복수의 전지 셀이 직렬 및/또는 병렬로 연결되어 있는 전지 팩으로 형성된다. 그리고, 배터리(10)는 하나 이상의 전지 팩을 포함할 수 있다.
BMS(20)는 배터리(10)의 상태를 추정하고, 추정한 상태 정보를 이용하여 배터리(10)를 관리한다. 예컨대, BMS(20)는 배터리(10)의 잔존 용량(State Of Charging; SOC), 잔존 수명(State Of Health; SOH), 최대 입출력 전력 허용량, 출력 전압 등 배터리(10) 상태 정보를 추정하고 관리한다. 그리고, BMS(20)는 이러한 상태 정보를 이용하여 배터리(10)의 충전 또는 방전을 제어하며, 나아가 배터리(10)의 교체 시기 추정도 가능하다.
BMS(20)는 후술하는 본 발명의 일 실시예에 따른 전압 분배를 이용한 퓨즈 진단 장치(100)를 포함하거나 전압 분배를 이용한 퓨즈 진단 장치(100)에 연결되어 동작할 수 있다. BMS(20)는 배터리(10)와 병렬 연결되도록 퓨즈부(110)와 저항부(130) 및 진단 저항(140)을 연결하고, 진단 저항(140)에 인가된 전압과 기준전압을 비교함으로써, 퓨즈부(110)를 진단 할 수 있다.
ECU(30)는 전기 자동차(1)의 상태를 제어하는 전자적 제어 장치이다. 예컨대, ECU(30)는 액셀러레이터(accelerator), 브레이크(break), 속도 등의 정보에 기초하여 토크 정도를 결정하고, 모터(50)의 출력이 토크 정보에 맞도록 제어한다.
또한, ECU(30)는 BMS(20)에 의해 배터리(10)가 충전 또는 방전될 수 있도록 인버터(40)에 제어 신호를 보낸다.
인버터(40)는 ECU(30)의 제어 신호에 기초하여 배터리(10)가 충전 또는 방전되도록 한다.
모터(50)는 배터리(10)의 전기 에너지를 이용하여 ECU(30)로부터 전달되는 제어 정보(예컨대, 토크 정보)에 기초하여 전기 자동차(1)를 구동한다.
이하 도 2 및 도 3을 참조하여, 본 발명의 일 실시예에 따른 전압 분배를 이용한 퓨즈 진단 장치에 대해서 설명하도록 한다.
도 2 및 도 3은 본 발명의 일 실시예에 따른 전압 분배를 이용한 퓨즈 진단 장치를 개략적으로 도시한 도면이다
도 2 및 도 3을 참조하면, 본 발명의 일 실시예에 따른 전압 분배를 이용한 퓨즈 진단 장치(100)는 퓨즈부(110), 기준전압 생성부(120), 저항부(130), 진단 저항(140), 스위치부(150), ADC 변환부(160) 및 제어부(170)을 포함할 수 있다.
도 2 및 도 3에 도시된 전압 분배를 이용한 퓨즈 진단 장치(100)는 일 실시예에 따른 것이고, 그 구성요소들이 도 2 및 도 3에 도시된 실시예에 한정되는 것은 아니며, 필요에 따라 부가, 변경 또는 삭제 될 수 있다.
퓨즈부(110)는 배터리(10) 및 하나 이상의 단자와 연결되어 배터리로부터 발생하는 과전압 및 과전류를 차단할 수 있다. 이를 위해 퓨즈부(110)는 하나 이상의 퓨즈를 포함할 수 있다. 하나 이상의 퓨즈는 병렬 연결되어 하나 이상의 단자와 각각 연결될 수 있다. 예를 들어, 하나의 배터리(10)에 2개의 단자가 구성되는 경우, 배터리(10)와 각각의 단자 사이에 퓨즈를 위치시킴으로써, 2개의 단자와 2개의 퓨즈를 연결시킬 수 있다. 배터리(10)에서 과전압 및 과전류가 발생하는 경우, 각각의 2개의 단자와 각각 연결된 퓨즈가 개별적으로 동작함으로써, 과전압 및 과전류로부터 부하를 보호할 수 있다.
기준전압 생성부(120)는 배터리(10)의 상태를 진단하기 위한 기준전압을 생성할 수 있다. 여기서 기준전압은 배터리(10)가 정상 작동하는 시점에서 측정된 전압값일 수 있으며, 후술되는 제어부(170)을 통해 배터리(10)의 상태를 진단 또는 퓨즈부(110)의 상태를 진단하는 기준값일 수 있다. 일 예로, 기준전압은 400V일 수 있으며, 배터리(10)에서 측정된 전압이 기준 직류전압 400V이상인 경우, 후술되는 제어부(170)를 통해 배터리(10)의 상태를 이상 상태로 진단할 수 있다. 또한 기준전압 400V를 통해 후술되는 진단 저항(140)에 인가될 기준전압을 산출할 수 있고, 진단 저항(140)에 인가될 기준전압과 진단 저항(140)에 인가된 저항을 비교함으로써 퓨즈부(110)의 상태를 진단할 수 있다.
기준전압 생성부(120)는 하나 이상의 저항을 포함할 수 있으며, 전압 분배법칙을 이용하여 기준전압을 생성할 수 있다. 일 예로, 후술되는 제어부(170)가 마이크로 컨트롤러 유닛(Micro Controller Unit; MCU)인 경우, MCU는 4V 내지 5V 크기의 전압값을 지원할 수 있다. 그러나 배터리(10)는 400V 내지 500V 크기로 비교적 고전압이기 때문에 배터리(10)에서 출력되는 전원을 바로 인가받아 사용하는데 어려움이 있다. 따라서 전압 분배법칙을 이용하여 배터리(10)에서 인가되는 전압을 낮춰줌으로써, MCU가 지원하는 정도의 전압크기로 조절할 수 있다. 예를 들어, 기준전압 생성부(120)는 1MΩ 크기의 저항과 10kΩ를 포함할 수 있다. 배터리(10)의 전압이 400V인 경우, 400V의 전압은 1MΩ 및 10kΩ에 인가되고 전압 분배법칙에 의하여 (400V * 10kΩ) /1010kΩ이 됨으로써, 3.96V의 기준전압이 생성되게 된다.
추가적으로 기준전압 생성부(120)는 하나 이상의 저항 사이에 하나 이상의 스위치를 포함시킬 수 있으며, 이를 통해 기준전압을 생성하고자 하는 경우에만 스위치를 동작시킴으로써, 불필요한 전력 손실 및 누설전류가 발생하는 것을 방지할 수 있다.
저항부(130)는 일측이 퓨즈부(110)와 연결되고 타측이 후술되는 진단 저항(140)에 연결될 수 있다. 저항부(130)는 하나 이상의 퓨즈에 각각 연결되기 위하여 하나 이상의 저항을 포함할 수 있다. 또한, 하나 이상의 저항은 병렬 연결된 하나 이상의 퓨즈에 각각 연결하기 위해 병렬 연결될 수 있다.
저항부(130)에 포함된 하나 이상의 저항은 크기가 서로 상이할 수 있으며, 이를 통해 하나 이상의 퓨즈의 상태에 이상이 발생한 경우, 후술되는 제어부(170)에서 어떤 퓨즈에서 이상이 발생하였는지를 확인할 수 있다.
진단 저항(140)은 퓨즈부(110)의 상태를 진단하기 위해 저항부(130)에 연결될 수 있다. 여기서 저항부(130)와 진단 저항(140)은 전압 분배를 위해 사용되는 저항이며, 저항부(130)에 포함된 하나 이상의 저항의 크기가 진단 저항(140)보다 큰 값일 수 있다. 일 예로, 저항부(130)에 포함된 저항의 크기가 2MΩ 및 3MΩ일 수 있으며, 진단 저항(140)의 크기는 10kΩ일 수 있다.
스위치부(150)는 저항부(130)와 진단 저항(140) 사이에 위치할 수 있으며, 저항부(130)와 진단 저항(140)을 연결 및 단락할 수 있다. 스위치부(150)는 하나 이상의 스위칭 소자를 포함할 수 있다. 스위치부(150)는 후술되는 제어부(170)에 제어를 받아 온/오프 동작을 함으로써, 저항부(130) 및 진단 저항(140)을 연결 및 단락할 수 있다. 이를 통해 퓨즈부(110)의 상태를 진단하고자 하는 경우에만 스위치부(150)의 동작을 제어하여 저항부(130)와 진단 저항(140)을 연결함으로써, 불필요한 전력 손실 및 누설전류가 발생하는 것을 방지할 수 있다.
ADC 변환부(160)는 진단 저항(140)에 인가되는 배터리(10)의 전압을 디지털 신호로 변환할 수 있다. ADC 변환부(160)는 기준전압 생성부(120)으로부터 생성된 기준전압 및 진단 저항(140)으로부터 측정된 배터리(10)의 전압을 아날로그로 입력받아 이를 디지털 신호화하여 후술되는 제어부(170)으로 출력함으로써, 후술되는 제어부(170)가 디지털 신호를 기반으로 퓨즈부(110)의 상태를 진단하도록 할 수 있다.
제어부(170)는 전압 분배를 이용하여 저항부(130) 및 진단 저항(140)에 인가되는 배터리(10)의 전압으로부터 진단 저항(140)에 인가되는 전압을 산출할 수 있다. 또한 산출된 전압에 기반하여 퓨즈의 상태를 진단할 수 있다.
또한, 제어부(170)는 기준전압 생성부(120)에서 생성된 기준전압에 기반하여 진단 저항(140)에 인가될 전압을 산출할 수 있다. 또한 진단 저항(140)에 인가된 전압과 산출된 기준전압을 비교하여 퓨즈부(110)의 상태를 진단할 수 있다.
표 1 및 도 3을 참조하여 예를 들어 설명하면, 배터리(10)의 기준전압이 400V인 경우, 퓨즈1(110-1) 및 퓨즈2(110-2)가 병렬 연결된 상태에서 저항1(130-1) 및 저항(130-2)가 각각 연결될 수 있다. 저항1(130-1) 및 저항2(130-2)의 크기는 각각 2MΩ 및 3MΩ일 수 있으며, 실제 크기는 1.996MΩ 및 2.994MΩ일 수 있다. 또한 진단 저항(140)의 크기는 그 10kΩ일 수 있다. 제어부(170)는 기준전압 생성부(120)에서 제공받은 기준전압을 토대로 배터리(10)의 전압이 100V 내지 500V인 경우마다 진단 저항(140)에 인가될 전압을 산출할 수 있다. 표 1에서와 같이 배터리(10)의 전압이 400V이고 퓨즈1(110-1) 및 퓨즈2(110-2)에 이상이 없는 경우, 진단 저항(140)에서 측정되는 전압값은 3.312V가 될 수 있다. 그러나 만약 퓨즈2(110-2)에 이상이 발생하여 퓨즈2(110-2)가 오프 상태가 되면, 퓨즈2(110-2)와 연결된 저항2(130-2)도 역시 오프상태가 되어 배터리(10)의 전압이 퓨즈1(110-1)과 저항1(130-1)에만 인가되게 되어, 진단 저항(140)에 인가되는 전압값은 1.987V가 될 수 있다. 또한 퓨즈1(110-1)가 오프 상태가 되면, 퓨즈1(110-1)과 연결된 저항1(130-1)도 역시 오프 상태가 되어 배터리(10)의 전압이 퓨즈2(110-2)와 저항2(130-2)에만 인가되게 되어, 진단 저항(140)에 인가되는 전압값은 1.332V가 될 수 있다. 따라서 제어부(170)은 진단 저항(140)에 인가된 전압이 3.312V인 경우, 퓨즈부(110)가 정상 상태라고 진단할 수 있으며, 1.987V인 경우, 퓨즈2(110-2)의 상태에 이상이 있다는 것을 진단 할 수 있다.
기준전압 퓨즈1 퓨즈2 저항1 저항2 진단 저항 예상 전압
200 200 200 1.996MΩ 2.994MΩ 10KΩ 1.656
400 400 400 1.996MΩ 2.994MΩ 10KΩ 3.312
400 400 -400 1.996MΩ 2.994MΩ 10KΩ 0.662
400 400 -200 1.996MΩ 2.994MΩ 10KΩ 1.325
400 400 0 1.996MΩ 2.994MΩ 10KΩ 1.987
400 400 200 1.996MΩ 2.994MΩ 10KΩ 2.650
400 0 400 1.996MΩ 2.994MΩ 10KΩ 1.332
본 발명의 일 실시예에 따른 전압 분배를 이용한 퓨즈 진단 장치(100)는 퓨즈부(110), 저항부(130) 및 진단 저항(140)을 하나의 퓨즈 진단부(180)로 구성 할 수 있으며, 제어부(170)는 퓨즈 진단부(180) 외부에 위치할 수 있다. 일 예로, 직렬로 연결된 복수의 퓨즈에 대하여 퓨즈의 상태를 진단하고자 하는 경우, 복수의 퓨즈에 저항부(130) 및 진단 저항(140)을 각각 연결하고, 진단 저항(140)에 인가되는 복수의 전압을 외부에 위치한 ADC 변환부(160) 및 제어부(170)에 제공함으로써, 외부에 위치한 하나의 ADC 변환부(160) 및 제어부(170)로 복수의 퓨즈의 상태를 진단할 수 있다.
다른 일 실시예에서, 퓨즈부(110)는 진단하고자 하는 다른 구성 요소로 대체하여 사용할 수 있다. 일 예로, 릴레이의 상태를 진단하고자 하는 경우, 상기와 같은 방법으로 릴레이에 저항부(130) 및 진단 저항(140)을 연결하고 진단 저항(140)에 인가되는 전압의 크기를 측정함으로써, 릴레이의 상태를 진단할 수 있다. 또한 배터리와 부하를 연결 및 단락하는 단자의 상태를 측정하고자 하는 경우에도 사용할 수 있다. 이를 통해 배터리(10) 팩 또는 BMS 내부에 위치하는 복수의 구성요소들의 상태를 하나의 외부 ADC 변환부(160) 및 제어부(170)로 측정할 수 있다.
이와 같이 퓨즈부(110), 릴레이 및 단자와 같이 배터리(10) 팩 또는 BMS 내부에 위치하는 복수의 구성요소들의 상태를 하나의 외부 ADC 변환부(160) 및 제어부(170)로 측정하고 진단을 위한 추가 구성요소를 사용하지 않음으로써, 또는 별도의 시스템을 구축하지 않음으로써, 배터리(10) 팩 및 BMS의 부피 및 가격을 절감시킬 수 있다.
도 4는 본 발명의 다른 일 실시예에 따른 전압 분배를 이용한 퓨즈 진단 장치(100)를 개략적으로 도시한 도면이다.
도 4를 참조하면, 본 발명의 다른 일 실시예에 따른 전압 분배를 이용한 퓨즈 진단 장치(100)는 충방전부(190), 1차 보호부(200) 및 2차 보호부(210)를 포함할 수 있다.
충방전부(190)는 하나 이상의 단자와 연결되어 배터리(10)의 충전 및 방전을 수행할 수 있다.
1차 보호부(200)는 배터리(10)의 충전 전위에 기반하여 충방전부(190)를 제어할 수 있다. 일 예로, 1차 보호부(200)는 배터리(10)의 충전 전위가 기준 전위 이상인 경우, 충방전부의 동작을 오프제어 함으로써, 배터리(10)의 충전 전위가 높아지는 것을 방지할 수 있다.
2차 보호부(210)는 배터리(10)의 충전 상태에 기반하여 퓨즈부(110)를 제어할 수 있다. 일 예로, 2차 보호부(210)는 배터리(10)의 충전 상태가 과충전 상태인 경우, 퓨즈부(110)를 정상 동작하도록 제어함으로써, 과충전된 배터리(10)가 방전하여 충전 전위가 낮아지도록 할 수 있다.
여기서 2차 보호부(210) 및 퓨즈부(110)는 다른 부품들과 공간적으로 독립되도록 형성될 수 있다.
일반적으로 배터리(10)를 제외한 부품들은 인쇄 회로 기판에 제작된 후 배터리(10)와 결합될 수 있다. 이때, 배터리(10)의 과전류 및 과전압이 발생하는 경우 또는 온도가 높아지는 경우 퓨즈부(110)에 영향을 줄 수 있다. 이러한 영향으로 퓨즈부(110)에 포함된 하나 이상의 퓨즈는 정상 동작하지 않을 수 있으며, 이상 상태의 배터리(10)로부터 부하를 안전하게 보호할 수 없다. 따라서 퓨즈부(110) 및 이를 제어하는 2차 보호부(210)를 다른 부품들과 공간적으로 분리하여 독립시킴으로써, 이상 상태의 배터리(10)로부터 영향을 받지 않도록 할 수 있다. 또한 이를 바탕으로 이상 상태의 배터리(10)로부터 안전하게 부하를 보호할 수 있다.
이하 도 5를 참조하여 본 발명의 일 실시예에 따른, 전압 분배를 이용한 퓨즈 진단 방법(S100)에 대해서 설명하도록 한다.
도 5는 본 발명의 일 실시예에 따른 전압 분배를 이용한 퓨즈 진단 방법을 설명하기 위한 순서도이다.
도 5를 참조하면, 본 발명의 일 실시예에 따른 전압 분배를 이용한 퓨즈 진단 방법(S110)이 개시되면, 배터리의 전압이 진단하고자 하는 퓨즈와 연결된 저항부 및 진단 저항에 인가된다(S101). 단계(S101)에서 인가된 배터리의 전압 및 전압 분배 법칙을 기반으로 진단 저항에 인가된 전압을 산출한다(S102). 이때, 기준전압 생성부는 배터리의 기준전압을 측정하고, 이를 바탕으로 진단 저항에 인가될 전압을 산출하여 진단 저항에 인가될 기준전압을 설정한다(S103 및 S104). 단계(S102)에서 산출된 진단 저항에 인가된 전압과 단계(S104)에서 산출된 기준전압을 ADC변환부에서 디지털 신호로 변환한다(S104). 단계(S104)에서 변환된 디지털 신호는 제어부로 제공되며, 제어부에서 진단 저항에 인가된 전압과 기준전압을 비교한다(S105). 단계(S105)에서 진단 저항에 인가된 전압과 산출된 기준전압이 동일한 경우 또는, 허용 오차범위 내에 포함된 경우, 퓨즈의 상태를 정상 상태로 진단하고, 정상 동작을 수행한다(S106). 반면, 진단 저항에 인가된 전압과 산출된 기준전압이 동일하지 않는 경우 또는, 허용 오차범위 내에 포함되지 않는 경우, 퓨즈의 상태를 이상 상태로 진단하고 이상을 진단한다(S107). 하나 이상의 퓨즈를 진단 한 경우 크기가 상이한 저항을 사용함으로써, 단계(S107)에서 어떤 퓨즈에 이상이 발생했는지 알 수 있으며, 이를 통해 이상이 발생한 퓨즈를 제어한다(S108). 다른 일 실시예에서 이상이 발생한 퓨즈에 대하여 외부로 결과를 출력하여, 사용자로 하여금 알 수 있도록 한다.
전술한 전압 분배를 이용한 퓨즈 진단 방법은 도면에 제시된 순서도를 참조로 하여 설명되었다. 간단히 설명하기 위하여 상기 방법은 일련의 블록들로 도시되고 설명되었으나, 본 발명은 상기 블록들의 순서에 한정되지 않고, 몇몇 블록들은 다른 블록들과 본 명세서에서 도시되고 기술된 것과 상이한 순서로 또는 동시에 일어날 수도 있으며, 동일한 또는 유사한 결과를 달성하는 다양한 다른 분기, 흐름 경로, 및 블록의 순서들이 구현될 수 있다. 또한, 본 명세서에서 기술되는 방법의 구현을 위하여 도시된 모든 블록들이 요구되지 않을 수도 있다.
이상 본 발명의 특정 실시예를 도시하고 설명하였으나, 본 발명의 기술사상은 첨부된 도면과 상기한 설명내용에 한정하지 않으며 본 발명의 사상을 벗어나지 않는 범위 내에서 다양한 형태의 변형이 가능함은 이 분야의 통상의 지식을 가진 자에게는 자명한 사실이며, 이러한 형태의 변형은, 본 발명의 정신에 위배되지 않는 범위 내에서 본 발명의 특허청구범위에 속한다고 볼 것이다.

Claims (14)

  1. 배터리 및 하나 이상의 단자와 연결되어 배터리로부터 발생하는 과전압 및 과전류를 차단하는 퓨즈부;
    상기 퓨즈부의 상태를 진단하기 위한 진단 저항;
    일측이 상기 퓨즈부와 연결되고 타측이 상기 진단 저항과 연결된 저항부; 및
    전압 분배를 이용하여 상기 저항부 및 상기 진단 저항에 인가되는 상기 배터리의 전압으로부터 상기 진단 저항에 인가되는 전압을 산출하고, 상기 산출된 전압에 기반하여 상기 퓨즈부의 상태를 진단하는 제어부;를 포함하는 것을 특징으로 하는,
    전압 분배를 이용한 퓨즈 진단 장치.
  2. 제1항에 있어서,
    상기 퓨즈부는,
    병렬 연결된 하나 이상의 퓨즈가 상기 하나 이상의 단자와 각각 연결되며,
    상기 저항부는,
    하나 이상의 저항의 일측이 상기 하나 이상의 퓨즈와 각각 연결되며, 상기 하나 이상의 저항의 크기는 서로 상이한 것을 특징으로 하는,
    전압 분배를 이용한 퓨즈 진단 장치.
  3. 제1항에 있어서,
    상기 진단 저항에 인가되는 상기 배터리의 전압을 디지털 신호로 변환하는 ADC 변환부;를 더 포함하며,
    상기 제어부는,
    상기 변환된 디지털 신호에 기반하여 상기 퓨즈부의 상태를 진단하는 것을 특징으로 하는,
    전압 분배를 이용한 퓨즈 진단 장치.
  4. 제1항에 있어서,
    상기 퓨즈부의 상태를 진단하기 위한 기준전압을 생성하는 기준전압 생성부;를 더 포함하며,
    상기 제어부는,
    상기 기준전압에 기반하여 상기 진단 저항에 인가될 전압을 산출하고, 상기 진단 저항에 인가된 전압과 상기 산출된 전압을 비교하여 상기 퓨즈부의 상태를 진단하는 것을 특징으로 하는,
    전압 분배를 이용한 퓨즈 진단 장치.
  5. 제1항에 있어서,
    상기 저항부와 상기 진단 저항 사이에 위치하며, 상기 저항부와 상기 진단 저항을 연결 및 단락하는 스위치부;를 더 포함하며,
    상기 제어부는,
    상기 스위치부의 개폐를 제어하여 상기 진단 저항에 상기 배터리의 전압을 인가시키고, 상기 인가된 전압에 기반하여 상기 퓨즈부의 상태를 진단하는 것을 특징으로 하는,
    전압 분배를 이용한 퓨즈 진단 장치.
  6. 제1항에 있어서,
    상기 퓨즈부, 상기 저항부 및 상기 진단 저항은 하나의 퓨즈 진단부로 구성되며, 상기 제어부는 상기 퓨즈 진단부 외부에 위치하는 것을 특징으로 하는,
    전압 분배를 이용한 퓨즈 진단 장치.
  7. 제1항에 있어서,
    상기 하나 이상의 단자와 연결되어 상기 배터리의 충전 및 방전을 수행하는 충방전부;
    상기 배터리의 충전 전위에 기반하여 상기 충방전부를 제어하는 1차 보호부; 및
    상기 배터리의 충전 상태에 기반하여 상기 퓨즈부를 동작시키는 2차 보호부;를 더 포함하며,
    상기 배터리를 제외한 부품들은 인쇄 회로 기판으로 제작된 후, 상기 배터리와 결합되며, 상기 인쇄 회로 기판으로 제작될 때, 상기 퓨즈부와 상기 2차 보호부는 다른 부품들과 공간적으로 독립되도록 형성되는 것을 특징으로 하는,
    전압 분배를 이용한 퓨즈 진단 장치.
  8. 퓨즈부가 배터리 및 하나 이상의 단자와 연결되어 배터리로부터 발생하는 과전압 및 과전류를 차단하는 단계;
    진단 저항을 통해 상기 퓨즈부의 상태를 진단하는 단계;
    저항부를 통해 일측이 상기 퓨즈부와 연결되고 타측이 상기 진단 저항과 연결하는 단계; 및
    제어부가 전압 분배를 이용하여 상기 저항부 및 상기 진단 저항에 인가되는 상기 배터리의 전압으로부터 상기 진단 저항에 인가되는 전압을 산출하고, 상기 산출된 전압에 기반하여 상기 퓨즈부의 상태를 진단하는 단계;를 포함하는 것을 특징으로 하는,
    전압 분배를 이용한 퓨즈 진단 방법.
  9. 제8항에 있어서,
    상기 차단하는 단계는,
    병렬 연결된 하나 이상의 퓨즈가 상기 하나 이상의 단자와 각각 연결하는 단계; 및
    크기는 서로 상이한 하나 이상의 저항의 일측이 상기 하나 이상의 퓨즈와 각각 연결하는 단계;를 포함하는 것을 특징으로 하는,
    전압 분배를 이용한 퓨즈 진단 방법.
  10. 제8항에 있어서,
    상기 전압 분배를 이용한 퓨즈 진단 방법은,
    ADC 변환부가 상기 진단 저항에 인가되는 상기 배터리의 전압을 디지털 신호로 변환하는 단계;를 더 포함하며,
    상기 진단하는 단계는,
    상기 변환된 디지털 신호에 기반하여 상기 퓨즈부의 상태를 진단하는 단계;를 포함하는 것을 특징으로 하는,
    전압 분배를 이용한 퓨즈 진단 방법.
  11. 제8항에 있어서,
    상기 전압 분배를 이용한 퓨즈 진단 방법은,
    상기 퓨즈부의 상태를 진단하기 위한 기준전압을 생성하는 단계;;를 더 포함하며,
    상기 진단하는 단계는,
    상기 기준전압에 기반하여 상기 진단 저항에 인가될 전압을 산출하고, 상기 진단 저항에 인가된 전압과 상기 산출된 전압을 비교하여 상기 퓨즈부의 상태를 진단하는 단계;를 더 포함하는 것을 특징으로 하는,
    전압 분배를 이용한 퓨즈 진단 방법.
  12. 제8항에 있어서,
    스위치부가 상기 저항부와 상기 진단 저항 사이에 위치하며, 상기 저항부와 상기 진단 저항을 연결 및 단락하는 단계;를 더 포함하며,
    상기 진단하는 단계는,
    상기 스위치부의 개폐를 제어하여 상기 진단 저항에 상기 배터리의 전압을 인가시키고, 상기 인가된 전압에 기반하여 상기 퓨즈부의 상태를 진단하는 단계;를 더 포함하는 것을 특징으로 하는,
    전압 분배를 이용한 퓨즈 진단 방법.
  13. 제8항에 있어서,
    상기 전압 분배를 이용한 퓨즈 진단 방법은,
    상기 퓨즈부, 상기 저항부 및 상기 진단 저항을 하나의 퓨즈 진단부로 구성하는 단계; 및
    상기 제어부를 상기 퓨즈 진단부 외부에 위치시키는 단계;를 더 포함하는 것을 특징으로 하는,
    전압 분배를 이용한 퓨즈 진단 방법.
  14. 제8항에 있어서,
    상기 전압 분배를 이용한 퓨즈 진단 방법은,
    충방전부가 상기 하나 이상의 단자와 연결되어 상기 배터리의 충전 및 방전을 수행하는 단계;
    1차 보호부가 상기 배터리의 충전 전위에 기반하여 상기 충방전부를 제어하는 단계;
    2차 보호부가 상기 배터리의 충전 상태에 기반하여 상기 퓨즈부를 동작시키는 단계; 및
    상기 배터리를 제외한 부품들은 인쇄 회로 기판으로 제작된 후, 상기 배터리와 결합되며, 상기 인쇄 회로 기판으로 제작될 때, 상기 퓨즈부와 상기 2차 보호부는 다른 부품들과 공간적으로 독립되도록 형성하는 단계;를 더 포함하는 것을 특징으로 하는,
    전압 분배를 이용한 퓨즈 진단 방법.
PCT/KR2017/010305 2016-10-05 2017-09-20 전압 분배를 이용한 퓨즈 진단 장치 및 방법 WO2018066839A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/094,435 US10901002B2 (en) 2016-10-05 2017-09-20 Fuse diagnosis device and method using voltage distribution
JP2019503182A JP6694548B2 (ja) 2016-10-05 2017-09-20 電圧分配を用いたヒューズ診断装置および方法
PL17858634.3T PL3432012T3 (pl) 2016-10-05 2017-09-20 Urządzenie i sposób diagnozowania bezpieczników przy zastosowaniu rozdziału napięcia
CN201790000756.3U CN209167457U (zh) 2016-10-05 2017-09-20 使用电压分布的熔丝诊断装置
EP17858634.3A EP3432012B1 (en) 2016-10-05 2017-09-20 Fuse diagnosis device and method using voltage division

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0128488 2016-10-05
KR1020160128488A KR102051176B1 (ko) 2016-10-05 2016-10-05 전압 분배를 이용한 퓨즈 진단 장치 및 방법

Publications (1)

Publication Number Publication Date
WO2018066839A1 true WO2018066839A1 (ko) 2018-04-12

Family

ID=61831593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/010305 WO2018066839A1 (ko) 2016-10-05 2017-09-20 전압 분배를 이용한 퓨즈 진단 장치 및 방법

Country Status (7)

Country Link
US (1) US10901002B2 (ko)
EP (1) EP3432012B1 (ko)
JP (1) JP6694548B2 (ko)
KR (1) KR102051176B1 (ko)
CN (1) CN209167457U (ko)
PL (1) PL3432012T3 (ko)
WO (1) WO2018066839A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112630704A (zh) * 2020-12-22 2021-04-09 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种熔断器状态在线监测装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170116472A (ko) * 2016-04-11 2017-10-19 주식회사 엘지화학 검전기 및 시그널 퓨즈를 이용한 모스펫 릴레이 보호 장치 및 보호 방법
KR102533201B1 (ko) * 2018-06-12 2023-05-15 삼성에스디아이 주식회사 전압 평형 장치
KR102437323B1 (ko) * 2019-01-11 2022-08-26 주식회사 엘지에너지솔루션 배터리 팩 진단 장치
KR20210007245A (ko) * 2019-07-10 2021-01-20 주식회사 엘지화학 배터리 팩의 결함 검출 장치 및 방법
KR102345908B1 (ko) * 2021-06-16 2022-01-03 (주)화신코리아 입력전원 이상 및 자기 고장 검출 smps 회로 및 이를 포함하는 led 컨버터 장치
KR20230000573A (ko) * 2021-06-25 2023-01-03 주식회사 엘지에너지솔루션 배터리 상태 검출 장치 및 배터리 보호 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030081934A (ko) * 2002-04-15 2003-10-22 삼성에스디아이 주식회사 공간적으로 분리된 2차 보호회로를 갖는 배터리 팩
KR20080082869A (ko) * 2007-03-09 2008-09-12 주식회사 엘지화학 2차전지 보호회로 및 그의 제어방법
KR20130081215A (ko) * 2010-05-28 2013-07-16 산요덴키가부시키가이샤 전원 장치
KR20140007180A (ko) * 2012-07-09 2014-01-17 주식회사 엘지화학 전기 접촉기 진단 장치 및 방법
JP2016127769A (ja) * 2015-01-08 2016-07-11 三洋電機株式会社 電池パック

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0241617A (ja) * 1988-08-01 1990-02-09 Olympus Optical Co Ltd 保護回路
KR19980039461U (ko) 1996-12-20 1998-09-15 양재신 자동차의 단선퓨즈 자동진단 장치
US7019534B2 (en) * 2004-03-26 2006-03-28 Taiwan Semiconductor Manufacturing Co., Ltd. Detecting the status of an electrical fuse
JP4867408B2 (ja) 2006-03-10 2012-02-01 日本電気株式会社 携帯機器および電源異常通知方法
JP4180088B2 (ja) 2006-06-09 2008-11-12 シャープ株式会社 光結合素子および電子機器
JP5221468B2 (ja) * 2009-02-27 2013-06-26 株式会社日立製作所 電池監視装置
KR101093888B1 (ko) 2009-12-28 2011-12-13 삼성에스디아이 주식회사 배터리 팩 및 이의 단선 검출 방법
WO2012029221A1 (ja) * 2010-08-31 2012-03-08 パナソニック株式会社 電池電源装置、及び電池電源システム
DE102012213159A1 (de) 2012-07-26 2014-01-30 Robert Bosch Gmbh Batteriesystem mit Batterieschützen und einer Diagnosevorrichtung zum Überwachen des Funktionszustandes der Schütze sowie dazugehöriges Diagnoseverfahren
KR101394751B1 (ko) 2012-12-28 2014-05-15 현대자동차주식회사 Dc-dc 컨버터의 퓨즈 단선 검출 방법
CN105191487B (zh) * 2013-03-14 2019-06-11 威斯控件有限公司 双极三端双向交流开关短路检测和安全电路及方法
JP6129095B2 (ja) * 2014-02-13 2017-05-17 Jmエナジー株式会社 蓄電装置の電流遮断検出回路及び電流遮断検出方法
US9709620B2 (en) * 2014-09-17 2017-07-18 Peregrine Semiconductor Corporation Fuse sense circuit and method
DE102014221790B3 (de) * 2014-10-27 2016-03-24 Siemens Aktiengesellschaft Elektrische Heizung und Verfahren zum Betrieb einer elektrischen Heizung
US10598703B2 (en) * 2015-07-20 2020-03-24 Eaton Intelligent Power Limited Electric fuse current sensing systems and monitoring methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030081934A (ko) * 2002-04-15 2003-10-22 삼성에스디아이 주식회사 공간적으로 분리된 2차 보호회로를 갖는 배터리 팩
KR20080082869A (ko) * 2007-03-09 2008-09-12 주식회사 엘지화학 2차전지 보호회로 및 그의 제어방법
KR20130081215A (ko) * 2010-05-28 2013-07-16 산요덴키가부시키가이샤 전원 장치
KR20140007180A (ko) * 2012-07-09 2014-01-17 주식회사 엘지화학 전기 접촉기 진단 장치 및 방법
JP2016127769A (ja) * 2015-01-08 2016-07-11 三洋電機株式会社 電池パック

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3432012A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112630704A (zh) * 2020-12-22 2021-04-09 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种熔断器状态在线监测装置

Also Published As

Publication number Publication date
CN209167457U (zh) 2019-07-26
PL3432012T3 (pl) 2022-11-14
KR102051176B1 (ko) 2019-12-02
US10901002B2 (en) 2021-01-26
JP2019514340A (ja) 2019-05-30
EP3432012B1 (en) 2022-06-29
US20190120878A1 (en) 2019-04-25
EP3432012A4 (en) 2019-04-03
JP6694548B2 (ja) 2020-05-13
KR20180037812A (ko) 2018-04-13
EP3432012A1 (en) 2019-01-23

Similar Documents

Publication Publication Date Title
WO2018066839A1 (ko) 전압 분배를 이용한 퓨즈 진단 장치 및 방법
WO2018074744A1 (ko) 전압 분배를 이용한 스위치 진단 장치 및 방법
WO2018021661A1 (ko) 션트저항을 이용한 전류 측정 장치
WO2011102576A1 (ko) 셀 밸런싱 회로의 이상 진단 장치 및 방법
WO2015126035A1 (ko) 전압 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법
WO2018021664A1 (ko) 배터리 밸런싱 장치 및 방법
WO2018038348A1 (ko) 배터리 관리 시스템
WO2011083993A2 (ko) 배터리 제어 장치 및 방법
WO2012165879A2 (en) Secondary battery management system and method for exchanging battery cell information
WO2015016600A1 (ko) 배터리 제어 장치 및 방법
WO2019221368A1 (ko) 메인 배터리와 서브 배터리를 제어하기 위한 장치, 배터리 시스템 및 방법
WO2012157855A1 (ko) 안전성이 향상된 전지팩
WO2020076127A1 (ko) 배터리 관리 장치 및 방법
WO2020055117A1 (ko) 배터리 관리 장치
WO2021101059A1 (ko) 절연저항 측정 장치 및 그 장치를 적용하는 배터리 시스템
WO2015034144A1 (ko) 배터리 팩의 프리차지 저항 산출 장치 및 방법
WO2018048128A1 (ko) 배터리 팩 고장 검출 장치 및 방법
WO2019151631A1 (ko) 배터리 보호 회로 및 이를 포함하는 배터리 팩
WO2019093667A1 (ko) 릴레이 진단 회로
WO2016064224A1 (ko) 전류 제어 장치 및 방법
WO2019093625A1 (ko) 충전 제어 장치 및 방법
US11193986B2 (en) Failure diagnostic device
WO2020076126A1 (ko) 배터리 관리 장치 및 방법
WO2023063625A1 (ko) 배터리 진단 장치, 배터리 팩, 전기 차량, 및 배터리 진단 방법
EP3872953A1 (en) Battery system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019503182

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017858634

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017858634

Country of ref document: EP

Effective date: 20181019

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17858634

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE