WO2018021661A1 - 션트저항을 이용한 전류 측정 장치 - Google Patents

션트저항을 이용한 전류 측정 장치 Download PDF

Info

Publication number
WO2018021661A1
WO2018021661A1 PCT/KR2017/004690 KR2017004690W WO2018021661A1 WO 2018021661 A1 WO2018021661 A1 WO 2018021661A1 KR 2017004690 W KR2017004690 W KR 2017004690W WO 2018021661 A1 WO2018021661 A1 WO 2018021661A1
Authority
WO
WIPO (PCT)
Prior art keywords
shunt resistor
terminal
module
battery
current
Prior art date
Application number
PCT/KR2017/004690
Other languages
English (en)
French (fr)
Inventor
박재동
조현기
이상훈
성창현
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2018528707A priority Critical patent/JP6872549B2/ja
Priority to EP17834606.0A priority patent/EP3379279B1/en
Priority to US16/060,287 priority patent/US10802049B2/en
Priority to CN201780004998.4A priority patent/CN108431619B/zh
Priority to PL17834606T priority patent/PL3379279T3/pl
Publication of WO2018021661A1 publication Critical patent/WO2018021661A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/20Modifications of basic electric elements for use in electric measuring instruments; Structural combinations of such elements with such instruments
    • G01R1/203Resistors used for electric measuring, e.g. decade resistors standards, resistors for comparators, series resistors, shunts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/20Modifications of basic electric elements for use in electric measuring instruments; Structural combinations of such elements with such instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/146Measuring arrangements for current not covered by other subgroups of G01R15/14, e.g. using current dividers, shunts, or measuring a voltage drop
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • G01R19/16542Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies for batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/364Battery terminal connectors with integrated measuring arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4285Testing apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/507Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising an arrangement of two or more busbars within a container structure, e.g. busbar modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a current measuring device using a shunt resistor, and integrates two or more busbars including one shunt resistor into one busbar module and includes a plurality of busbar modules.
  • the present invention relates to a current measuring device using a shunt resistor that calculates a voltage of a battery module by measuring a voltage applied across the shunt resistor.
  • the secondary battery having high applicationability and high electrical density, etc. according to the product range is not only portable device but also electric vehicle (EV), hybrid vehicle (HV, hybrid vehicle) or household or BACKGROUND ART It is commonly applied to energy storage systems (ESSs) and uninterruptible power supply (UPS) systems using medium and large batteries used for industrial purposes.
  • EV electric vehicle
  • HV hybrid vehicle
  • UPS uninterruptible power supply
  • the secondary battery is attracting attention as a new energy source for improving eco-friendliness and energy efficiency in that not only the primary advantage of significantly reducing the use of fossil fuels is generated, but also no by-products of energy use are generated.
  • the secondary battery When the secondary battery is implemented as a battery such as a mobile terminal, this may not necessarily be the case. However, as described above, a battery applied to an electric vehicle or an energy storage source is typically a plurality of secondary battery cells. Can be used for high capacity environments.
  • the voltage measurement shunt resistance (shunt) for the secondary battery module and secondary battery pack such as busbar (Busbar) Installed in the component included in, and calculates the current of the battery module based on the measured voltage value through it, to diagnose the state of the secondary battery module.
  • busbar busbar
  • the secondary battery module is essential for improving the efficiency and energy density of the secondary battery, the reliability of voltage and current measurement of the secondary battery is improved, and the volume and cost of the bus bar including the shunt resistor are included. There is a need to make up for the shortcomings.
  • an integrated bus Provided is a current measuring device and method for measuring a voltage value using a bar.
  • the present invention provides a current measuring apparatus and method that can reduce the volume of the battery module and the battery pack, and reduce the price by measuring the voltage value using the shunt resistor included in the integrated bus bar. .
  • an apparatus for measuring current using a shunt resistor includes: one or more busbars connecting module terminals of two battery modules included in a battery pack to each other; At least two shunt resistors located on the busbars and separating the busbars into at least two regions; And at least one measurement unit measuring voltage values applied to the at least two shunt resistors, and calculating current values based on the measured voltage values, respectively.
  • the measuring unit includes: a voltage amplifier for amplifying a voltage value applied to the shunt resistor; And a current calculator configured to calculate a current value of the battery module based on the amplified voltage value.
  • the at least one measuring unit may include one measuring module, and the measuring module may include a control unit for controlling an operation of the at least one measuring unit.
  • the current measuring device using the shunt resistor may include a terminal shunt resistor having a through hole in at least a portion of the region; And a first connection terminal and a second connection terminal for measuring a voltage value applied across the terminal shunt resistor, wherein the terminal shunt resistor is interposed between the first and second connection terminals. Can be inserted into the through hole and installed.
  • the terminal shunt resistor may have a washer shape, and the module terminal may have a bolt shape, and the terminal shunt resistor may be electrically connected to the module terminal by screwing a through hole formed in the washer type shunt resistor to a bolt type module terminal.
  • an apparatus for measuring current using a shunt resistor includes: at least one busbar connecting module terminals of two battery modules included in a battery pack to each other; A shunt resistor located on the busbar and separating the busbar into two regions; And at least one measurement unit for selecting at least two nodes of three or more nodes included in the shunt resistor and measuring a current value of the battery module based on a voltage value applied between the selected two nodes.
  • a shunt resistor located on the busbar and separating the busbar into two regions.
  • at least one measurement unit for selecting at least two nodes of three or more nodes included in the shunt resistor and measuring a current value of the battery module based on a voltage value applied between the selected two nodes.
  • the measuring unit includes: a voltage amplifier for amplifying a voltage value applied to the shunt resistor; And a current calculator configured to calculate a current value of the battery module based on the amplified voltage value.
  • the at least one measuring unit may include one measuring module, and the measuring module may include a control unit configured to control an operation of the at least one measuring unit and to select a node for measuring a voltage value of the shunt resistor. .
  • the current measuring device using the shunt resistor may include a terminal shunt resistor having a through hole in at least a portion of the region; And a first connection terminal and a second connection terminal for measuring a voltage value applied across the terminal shunt resistor, wherein the terminal shunt resistor is interposed between the first and second connection terminals. Can be inserted into the through hole and installed.
  • the terminal shunt resistor may have a washer shape, and the module terminal may have a bolt shape, and the terminal shunt resistor may be electrically connected to the module terminal by screwing a through hole formed in the washer type shunt resistor to a bolt type module terminal.
  • a current measuring apparatus and method capable of integrating a busbar type component including a conventional shunt resistor into one without using a plurality of conventional shunt resistors to measure a reliable voltage value.
  • the present invention by measuring the voltage of the battery module through a plurality of shunt resistors included in the integrated busbar module, it is possible to reduce the volume of the battery module and the battery pack, and to reduce the price.
  • FIG. 1 is a view schematically showing an electric vehicle to which a current measuring device using a shunt resistor according to an embodiment of the present invention can be applied.
  • FIG. 2 is a diagram schematically illustrating a current measuring device using a bus bar including one shunt resistor.
  • FIG 3 is a view schematically showing a current measuring device using a shunt resistor according to an embodiment (1) of the present invention.
  • FIG. 4 is a view schematically showing a current measuring device using a shunt resistor according to an embodiment (2) of the present invention.
  • ... unit described in the specification means a unit for processing one or more functions or operations, which may be implemented in hardware or software or a combination of hardware and software.
  • FIG. 1 is a view schematically showing an electric vehicle to which a current measuring device using a shunt resistor according to an embodiment of the present invention can be applied.
  • FIG. 1 illustrates an example in which a current measuring device using a shunt resistor according to an embodiment of the present invention is applied to an electric vehicle 1, but the current measuring device using a shunt resistor according to an embodiment of the present invention may be used in addition to an electric vehicle.
  • Any technical field may be applied as long as secondary batteries may be applied, such as an energy storage system (ESS) or an uninterruptible power supply (UPS) system.
  • ESS energy storage system
  • UPS uninterruptible power supply
  • the electric vehicle 1 may include a battery 10, a battery management system (BMS) 20, an electronic control unit (ECU) 30, an inverter 40, and a motor 50.
  • BMS battery management system
  • ECU electronice control unit
  • inverter 40 inverter 40
  • motor 50 a motor 50.
  • the battery 10 is an electric energy source for driving the electric vehicle 1 by providing a driving force to the motor 50.
  • the battery 10 may be charged or discharged by the inverter 40 according to the driving of the motor 50 and / or the internal combustion engine (not shown).
  • the type of the battery 10 is not particularly limited, and the battery 10 may be, for example, a lithium ion battery, a lithium polymer battery, a nickel cadmium battery, a nickel hydrogen battery, a nickel zinc battery, or the like.
  • the battery 10 is formed of a battery pack in which a plurality of battery cells are connected in series and / or in parallel.
  • the battery 10 may include one or more battery packs.
  • the BMS 20 estimates the state of the battery 10 and manages the battery 10 using the estimated state information. For example, the BMS 20 estimates and manages battery 10 state information such as a state of charging (SOC), a state of health (SOH), a maximum input / output power allowance, an output voltage, and the like of the battery 10. do. In addition, the BMS 20 controls the charging or discharging of the battery 10 by using the state information, and further, it is possible to estimate the replacement time of the battery 10.
  • SOC state of charging
  • SOH state of health
  • the BMS 20 controls the charging or discharging of the battery 10 by using the state information, and further, it is possible to estimate the replacement time of the battery 10.
  • the BMS 20 includes a current measuring device (100 (a) of FIG. 3 and 100 (b) of FIG. 3) using a shunt resistor according to an embodiment of the present invention to be described later, or a current measuring device using a shunt resistance. It can be connected and operated.
  • the BMS 20 may measure the charge / discharge current value of the battery using the shunt resistors included in the current measuring devices 100 (a) and 100 (b) using the shunt resistor, and based on the battery 10
  • the abnormal operation state such as the low voltage and the overvoltage state can be determined.
  • the ECU 30 is an electronic control device for controlling the state of the electric vehicle 1. For example, the ECU 30 determines the torque degree based on information such as an accelerator, a break, a speed, and the like, and controls the output of the motor 50 to match the torque information.
  • the ECU 30 sends a control signal to the inverter 40 so that the battery 10 can be charged or discharged by the BMS 20.
  • the inverter 40 causes the battery 10 to be charged or discharged based on the control signal of the ECU 30.
  • the motor 50 drives the electric vehicle 1 based on the control information (for example, torque information) transmitted from the ECU 30 using the electric energy of the battery 10.
  • control information for example, torque information
  • FIG. 2 is a diagram schematically illustrating a current measuring device using a bus bar including one shunt resistor.
  • the current measuring device may measure a battery in the measuring unit 130 based on a voltage value applied across the shunt resistor 120 when a current flows in the shunt resistor 120 to measure the current of the battery module. 10) Calculate the current value of the module.
  • the current value of the battery module is calculated through one shunt resistor 120 and one measuring unit 130, since the reliability is not high, the high reliability shunt resistor 120 and the measuring unit 130 are used.
  • the current of the battery 10 module must be calculated through the plurality of shunt resistors 120 and the plurality of measurement units 130.
  • the current measuring apparatus has a high reliability shunt resistor 120 and the measuring unit 130 has a cost problem, when using a plurality of shunt resistor 120 and the measuring unit 130, the volume of the battery 10 module Because of the increase, it adversely affects the high efficiency and high energy density of the battery 10 module.
  • FIG 3 is a view schematically showing a current measuring device using a shunt resistor according to an embodiment (1) of the present invention.
  • the current measuring apparatus 100 (a) using the shunt resistor may include a bus bar 110, a shunt resistor 120, and a measuring unit 130.
  • the current measuring device 100 (a) using the shunt resistor shown in FIG. 3 is according to one embodiment, and its components are not limited to the embodiment shown in FIG. Can be deleted.
  • the bus bar 110 may connect module terminals of two battery 10 modules included in the battery 10 pack to each other.
  • the present invention is not limited thereto, and the bus bar 110 may connect module terminals of two or more battery 10 modules to each other according to the number of current measuring devices 100 (a) using a shunt resistor to be applied. have.
  • the shape of the bus bar 110 may also be variously formed according to the shape and arrangement of the battery 10 module to be connected. For example, when a user wants to use a bus bar to which a current measuring device 100 (a) using a shunt resistor is connected to connect module terminals of three or more battery 10 modules, three or more battery 10 modules are used. Module terminals of three or more battery 10 modules may be connected by using one bus bar 110 integrating three or more bus bars to connect the same.
  • bus bar 110 may include two or more shunt resistors 120 to be described later.
  • the shunt resistor 120 may be used to measure the voltage of the battery 10 module. Two or more shunt resistors 120 may be positioned on the bus bar 110 to move the bus bar 110 to at least two areas. Can be separated.
  • the current measuring device 100 (a) using the shunt resistor may further include a terminal shunt resistor (not shown).
  • the terminal shunt resistor may include a through hole in at least a portion of the terminal shunt resistor, and may be additionally installed in the module terminal of the battery 10 module to increase reliability of current measurement.
  • the through hole may be formed to have a diameter larger than that of the battery terminal module terminal so that the module terminal of the battery module 10 can be inserted.
  • terminal shunt resistor may include a first connection terminal (not shown) and a second connection terminal (not shown).
  • the first connection terminal and the second connection terminal may be provided to measure a voltage value applied to both ends of the terminal shunt resistor.
  • a through hole may be included in some areas of the first connection terminal and the second connection terminal, and a terminal shunt resistor is inserted between the first connection terminal and the second connection terminal and inserted into a module terminal of the battery 10 module.
  • the terminal shunt resistor, the first connection terminal and the second connection terminal may be formed in the form of a washer, and the module terminal of the battery 10 module may be formed in the form of a bolt.
  • the terminal shunt resistor, the first connection terminal, and the second connection terminal formed in the form of a washer may be electrically connected to each other by screwing a through hole formed therein into a module terminal having a bolt shape.
  • first connection terminal, the terminal shunt resistor and the second connection terminal may be manufactured in a combined form.
  • first connecting terminal, the second connecting terminal and the terminal shunt resistor may be manufactured in the form of one washer.
  • the measurement unit 130 may measure voltage values applied to two or more shunt resistors 120 and calculate current values based on the measured voltage values.
  • the measuring unit 130 may include one or more measurement unit 130.
  • the measuring unit 130 may include a voltage amplifier 131 and a current calculator 132.
  • the voltage amplifier 131 may serve to amplify a voltage value of the battery 10 module applied to the shunt resistor 120.
  • the resistance value of the shunt resistor uses a very small resistance value to minimize the effect on the load.
  • the resistance of the shunt resistor 120 may be 100 uohm. Therefore, since the voltage value of the battery 10 module applied to the shunt resistor 120 is very small, it is necessary to amplify it.
  • the voltage amplifier 131 may amplify a small voltage value applied to the shunt resistor.
  • the voltage amplifier 131 may be a circuit in which one or more operational amplifiers are connected in series and in parallel, and are applied to both ends of the shunt resistor 120 based on a gain value preset in the operational amplifier. The voltage value can be amplified.
  • the current measurement device may include one or more measurement units 130, and one or more measurement units 130 may constitute one measurement module 150.
  • the measurement module 150 may be configured of one or more measurement units 130 and may include a controller (not shown) for controlling the operation of the one or more measurement units 130.
  • the controller may control the operation of one or more measurement units on or off.
  • the control unit may turn off the operation of the measuring unit.
  • the control unit may selectively operate only some measuring units of the plurality of measuring units.
  • one or more measurement units 130 may be connected to a switch (not shown), respectively, and the controller may control the operation of the measurement unit 130 by controlling the on or off of the switch connected to the measurement unit 130. .
  • FIG. 4 is a view schematically showing a current measuring device using a shunt resistor according to an embodiment (2) of the present invention.
  • the current measuring apparatus 100 (b) using the shunt resistor is similar to the bus bar 110 ′, the shunt resistance 120 ′, and the measurement as in the current measuring apparatus 100 (a) using the shunt resistor. It may be configured to include a portion 130 '.
  • the bus bar 110 ′ may connect module terminals of two battery 10 modules included in the battery 10 pack to each other in the same manner as the bus bar 110 in the first embodiment.
  • the bus bar 110 ′ may connect module terminals of two or more battery 10 modules to each other according to the number of current measuring devices 100 (b) using a shunt resistor to be applied.
  • the shape of the bus bar 110 may also be variously formed according to the shape and arrangement of the battery 10 module to be connected.
  • the shunt resistor 120 ' may be used to measure the voltage of the battery 10 module.
  • the shunt resistor 120 ′ may be disposed on the bus bar 110 ′ to separate the bus bar 110 ′ into two regions.
  • the present invention is not limited thereto, and one or more shunt resistors 120 'may be located on the bus bar 110' according to a user's demand and usage environment, and at least two bus bars 120 'may be disposed. Can be separated into zones.
  • the shunt resistor 120 may be used to measure the voltage of the battery 10 module. Two or more shunt resistors 120 may be positioned on the bus bar 110 to move the bus bar 110 to at least two areas. Can be separated.
  • the current measuring device 100 (b) using the shunt resistor may further include a terminal shunt resistor (not shown).
  • the terminal shunt resistor may include a through hole having a module terminal diameter size in at least a portion of the terminal shunt resistor, and may be additionally installed in the module terminal of the battery 10 module to increase reliability of current measurement.
  • the terminal shunt resistor may include a first connection terminal (not shown) and a second connection terminal (not shown).
  • the first connection terminal and the second connection terminal may be provided to measure a voltage value applied to both ends of the terminal shunt resistor.
  • a through hole may be included in some areas of the first connection terminal and the second connection terminal, and a terminal shunt resistor is inserted between the first connection terminal and the second connection terminal and inserted into a module terminal of the battery 10 module.
  • the terminal shunt resistor, the first connection terminal, and the second connection terminal may be formed in a washer shape.
  • the first connection terminal, the terminal shunt resistor and the second connection terminal may be manufactured in a combined form.
  • the shunt resistor 120 ′ may include a node unit 140 to be described later.
  • the node unit 140 is a contact point for measuring the voltage value of the shunt resistor 120 ′, and may include at least three nodes 141, 142, and 143 in the shunt resistor.
  • the position and the number of the nodes 141, 142, and 143 may be formed according to the type and size of the shunt resistor 120 ′, the number of the measuring units 130 ′, and the user's request.
  • the measurement unit 130 ′ may be configured of one or more, and may select at least two nodes among three or more nodes 141, 142, and 143 included in the shunt resistor 120 ′.
  • the measurement unit 130 ′ may measure the current value of the battery module based on the voltage value applied between the selected nodes.
  • the measuring unit 130 ′ may include a voltage amplifier 131 ′ and a current calculating unit 132 ′ similarly to the measuring unit 130 in the first embodiment.
  • the role and principle of the voltage amplifier 131 ′ and the current calculator 132 ′ may be applied in the same manner as the voltage amplifier 131 and the current calculator 132 in the first embodiment.
  • the measurement unit 130 ′ may be configured with one or more to measure voltage values between the nodes 141, 142, and 143 included in the shunt resistor 120 ′.
  • One or more measurement units 130 ′ may constitute one measurement module 150 ′.
  • the measurement module 150 ′ may include one or more measurement units 130 ′ and may include a controller (not shown) for controlling the operation of the one or more measurement units 130 ′.
  • the controller may control the operation of one or more measurement units on or off, thereby turning off the operation of the measurement unit.
  • the control unit may selectively operate only some measurement units of the plurality of measurement units when high reliability is not required.
  • the controller may select at least two or more nodes among the three or more nodes 141, 142, and 143 included in the shunt resistor 120 ′.
  • each node 141, 142, 143 may have various combinations such as node 141 and node 142, node 141 and node 143, and node 142 and node 143.
  • a switch (not shown) may be connected.
  • the controller may select a combination consisting of at least two by controlling a switch connected between the combined nodes 141, 142, and 143.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 션트저항을 이용한 전류 측정 장치에 관한 것으로, 기존에 하나의 션트(Shunt)저항이 적용된 버스바(Busbar) 타입의 부품 두 개 이상을 하나의 버스바 모듈로 일체화 하고, 하나로 일체화된 버스바 모듈에 포함된 복수의 션트저항을 통해 배터리 모듈의 전압을 측정함으로써, 배터리 모듈 및 배터리 팩의 부피를 줄이고, 가격을 감소시킬 수 있으며, 복수의 측정부를 통해 복수의 션트저항을 각각 측정함으로써, 신뢰성있는 전압값을 측정할 수 있는 션트저항을 이용한 전류 측정 장치에 관한 것이다.

Description

션트저항을 이용한 전류 측정 장치
본 출원은 2016년 07월 29일자 한국 특허 출원 제10-2016-0097245호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 션트저항을 이용한 전류 측정 장치에 관한 것으로, 하나의 션트(Shunt)저항이 포함된 버스바(Busbar) 두 개 이상을 하나의 버스바 모듈로 일체화 하고, 일체화된 버스바에 포함된 복수 개의 션트저항 양단에 인가되는 전압을 측정함으로써, 배터리 모듈의 전압을 산출하는 션트저항을 이용한 전류 측정 장치에 관한 것이다.
제품군에 따른 적용 용이성이 높고, 높은 에너지 밀도 등의 전기적 특성을 가지는 이차전지는 휴대용 기기뿐만 아니라 전기적 구동원에 의하여 구동하는 전기차량(EV, Electric Vehicle), 하이브리드 차량(HV, Hybrid Vehicle) 또는 가정용 또는 산업용으로 이용되는 중대형 배터리를 이용하는 에너지 저장 시스템(Energy Storage System; ESS)이나 무정전 전원 공급 장치(Uninterruptible Power Supply; UPS) 시스템 등에 보편적으로 응용되고 있다.
이러한 이차 전지는 화석 연료의 사용을 획기적으로 감소시킬 수 있다는 일차적인 장점뿐만 아니라 에너지의 사용에 따른 부산물이 전혀 발생되지 않는다는 점에서 친환경 및 에너지 효율성 제고를 위한 새로운 에너지원으로 주목 받고 있다.
2차 전지는 휴대 단말 등의 배터리로 구현되는 경우는 반드시 그러하지 않을 수 있으나, 상기와 같이 전기 차량 또는 에너지 저장원 등에 적용되는 배터리는 통상적으로 단위 이차전지 셀(cell)이 복수 개 집합되는 형태로 사용되어 고용량 환경에 적합성을 높이게 된다.
이와 같이 복수 개 집합되는 형태로 사용되는 경우, 과전류가 흐르는 등의 동작 이상이 발생했을 경우 과열에 의하여 단위 셀이 부풀어서 파손되는 등의 문제가 생길 수 있어, 항상 각 개별 셀의 전압, 온도 등의 여러 상태 값들을 측정 및 모니터링 하여 단위 셀에 과충전 또는 과방전이 인가되는 것을 방지해야 한다는 점이 고려되어야 한다.
종래에는 이러한 2차 전지 모듈의 전압 및 전류를 측정하고, 이를 통해 과전압 및 과전압 상태를 판단하기 위해서 전압 측정용 션트(Shunt)저항을 버스바(Busbar)와 같은 2차 전지 모듈 및 2차 전지 팩에 포함되는 부품에 설치하고, 이를 통해 측정된 전압값에 기반하여 배터리 모듈의 전류를 산출함으로써, 2차 전지 모듈의 상태를 진단한다. 그러나 신뢰성이 높은 측정값을 얻기 위해 복수 개의 션트저항 및 측정소자를 사용할 경우, 버스바의 개수가 많아지기 때문에 2차 전지 모듈 및 2차 전지 팩의 부피 및 가격이 증가하는 문제점이 있다. 이러한 2차 전지 모듈의 부피 증가는 2차 전지의 고효율화 및 고 에너지 밀도화에 악영향을 끼치게 된다.
따라서 2차 전지의 효율 및 에너지밀도 개선을 위해 2차 전지 모듈의 소형화가 필수적인 만큼, 2차전지의 전압 및 전류 측정의 신뢰도를 향상시키고, 션트저항이 포함된 버스바가 가지고 있는 부피적 및 가격적 단점을 보완해야 할 필요성이 있다.
본 발명의 일 실시예에 따르면, 신뢰성 높은 전압값을 측정하기 위해 종래의 션트저항이 포함된 버스바 타입의 부품을 복수 개 사용함으로써 발생하는 부피적 및 가격적 단점을 보완하기 위하여, 일체화된 버스바를 이용하여 전압값을 측정할 수 있는 전류 측정 장치 및 방법을 제공한다.
또한, 본 발명의 일 실시 예에 따르면, 일체화된 버스바에 포함된 션트저항를 이용하여 전압값을 측정함으로써 배터리 모듈 및 배터리 팩의 부피를 줄이고, 가격을 감소시킬 수 있는 전류 측정 장치 및 방법을 제공한다.
또한, 본 발명의 일 실시 예에 따르면, 복수 개의 측정부를 통해 복수 개의 션트저항을 각각 측정함으로써, 신뢰성있는 전압값을 측정할 수 있는 션트저항을 이용한 전류 측정 장치를 제공한다
본 발명의 일 실시예에 따른, 션트저항을 이용한 전류 측정 장치는, 배터리 팩 내에 포함된 두 개의 배터리 모듈의 모듈 단자를 서로 연결하는 하나 이상의 버스바(Busbar); 상기 버스바 상에 위치하며, 상기 버스바를 적어도 두 개 이상의 영역으로 분리시키는 적어도 둘 이상의 션트저항; 및 상기 둘 이상의 션트저항에 인가되는 전압값을 각각 측정하고, 상기 측정된 전압값에 기반하여 전류값을 각각 산출하는 하나 이상의 측정부;를 포함하여 구성될 수 있다.
상기 측정부는, 상기 션트저항에 인가되는 전압값을 증폭하는 전압 증폭부; 및 상기 증폭된 전압값에 기반하여 상기 배터리 모듈의 전류값을 산출하는 전류 산출부;를 포함할 수 있다.
상기 하나 이상의 측정부는, 하나의 측정 모듈로 구성되며, 상기 측정 모듈은, 상기 하나 이상의 측정부의 동작을 제어할 수 있는 제어부;를 포함할 수 있다.
상기 션트저항을 이용한 전류 측정 장치는 적어도 일부 영역에 관통홀을 가지는 단자 션트저항; 및 상기 단자 션트저항 양단에 인가되는 전압값을 측정하기 위한 제1 접속 단자 및 제2 접속 단자;를 더 포함하며, 상기 단자 션트저항을 상기 제 1 및 제2 접속 단자로 사이에 두어 상기 모듈 단자를 상기 관통홀에 삽입해 설치할 수 있다.
상기 단자 션트저항은 와셔 형태, 상기 모듈 단자는 볼트 형태이며, 상기 와셔 형태 션트저항 내부에 형성된 관통홀을 볼트 형태 모듈 단자에 나사 결합하여 상기 단자 션트저항과 상기 모듈 단자를 전기적으로 연결할 수 있다.
본 발명의 일 실시예에 따른, 션트저항을 이용한 전류 측정 장치는, 배터리 팩 내에 포함된 두 개의 배터리 모듈의 모듈 단자를 서로 연결하는 하나 이상의 버스바(Busbar); 상기 버스바 상에 위치하며, 상기 버스바를 두 개의 영역으로 분리시키는 션트저항; 및 상기 션트저항에 포함된 세 개 이상의 노드 중 적어도 두 개의 노드를 선택하여 상기 선택된 두 개의 노드 사이에 인가되는 전압값을 기반으로, 상기 배터리 모듈의 전류값을 측정하는 하나 이상의 측정부;를 포함하여 구성될 수 있다.
상기 측정부는, 상기 션트저항에 인가되는 전압값을 증폭하는 전압 증폭부; 및 상기 증폭된 전압값에 기반하여 상기 배터리 모듈의 전류값을 산출하는 전류 산출부;를 포함할 수 있다.
상기 하나 이상의 측정부는, 하나의 측정 모듈로 구성되며, 상기 측정 모듈은, 상기 하나 이상의 측정부의 동작을 제어하고, 상기 션트저항의 전압값을 측정하기 위한 노드를 선택하는 제어부;를 포함할 수 있다.
상기 션트저항을 이용한 전류 측정 장치는 적어도 일부 영역에 관통홀을 가지는 단자 션트저항; 및 상기 단자 션트저항 양단에 인가되는 전압값을 측정하기 위한 제1 접속 단자 및 제2 접속 단자;를 더 포함하며, 상기 단자 션트저항을 상기 제 1 및 제2 접속 단자로 사이에 두어 상기 모듈 단자를 상기 관통홀에 삽입해 설치할 수 있다.
상기 단자 션트저항은 와셔 형태, 상기 모듈 단자는 볼트 형태이며, 상기 와셔 형태 션트저항 내부에 형성된 관통홀을 볼트 형태 모듈 단자에 나사 결합하여 상기 단자 션트저항과 상기 모듈 단자를 전기적으로 연결할 수 있다.
본 발명의 일 측면에 따르면, 신뢰성 높은 전압값을 측정하기 위해 종래의 션트저항이 포함된 버스바 타입의 부품을 복수 개 사용하지 않고 하나로 일체화할 수 있는 전류 측정 장치 및 방법을 제공할 수 있다.
또한, 본 발명의 일 측면에 따르면, 일체화된 버스바 모듈에 포함된 복수의 션트저항을 통해 배터리 모듈의 전압을 측정함으로써, 배터리 모듈 및 배터리 팩의 부피를 줄이고, 가격을 감소시킬 수 있다.
또한, 본 발명의 일 측면에 따르면, 복수 개의 버스바 타입의 부품을 사용하지 않고도 복수 개의 측정부를 통해 복수 개의 션트저항을 각각 측정함으로써, 신뢰성있는 전압값을 측정할 수 있는 션트저항을 이용한 전류 측정 장치를 제공할 수 있다.
도 1은 본 발명의 일 실시예에 따른 션트저항을 이용한 전류 측정 장치가 적용될 수 있는 전기 자동차를 개략적으로 도시한 도면이다.
도 2는 하나의 션트저항을 포함하는 버스바를 이용한 전류 측정 장치를 개략적으로 도시한 도면이다.
도 3은 본 발명의 일 실시예(1)에 따른 션트저항을 이용한 전류 측정 장치를 개략적으로 도시한 도면이다.
도 4는 본 발명의 일 실시예(2)에 따른 션트저항을 이용한 전류 측정 장치를 개략적으로 도시한 도면이다.
본 발명을 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다. 여기서, 반복되는 설명, 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능, 및 구성에 대한 상세한 설명은 생략한다. 본 발명의 실시형태는 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다. 따라서, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있다.
명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
또한, 명세서에 기재된 "...부"의 용어는 하나 이상의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.
도 1은 본 발명의 일 실시예에 따른 션트(Shunt)저항을 이용한 전류 측정 장치가 적용될 수 있는 전기 자동차를 개략적으로 도시한 도면이다.
도 1에서 본 발명의 일 실시예에 따른 션트저항을 이용한 전류 측정 장치가 전기 자동차(1)에 적용된 예를 도시하고 있으나, 본 발명의 일 실시예에 따른 션트저항를 이용한 전류 측정 장치는 전기 자동차 이외에도 가정용 또는 산업용 에너지 저장 시스템(Energy Storage System; ESS)이나 무정전 전원 공급 장치(Uninterruptible Power Supply; UPS) 시스템 등 이차 전지가 적용될 수 있는 분야라면 어떠한 기술 분야라도 적용될 수 있다.
전기 자동차(1)는 배터리(10), BMS(Battery Management System, 20), ECU(Electronic Control Unit, 30), 인버터(40) 및 모터(50)를 포함하여 구성될 수 있다
배터리(10)는 모터(50)에 구동력을 제공하여 전기 자동차(1)를 구동시키는 전기 에너지원이다. 배터리(10)는 모터(50) 및/또는 내연 기관(미도시)의 구동에 따라 인버터(40)에 의해 충전되거나 방전될 수 있다.
여기서, 배터리(10)의 종류는 특별히 한정되지 않으며, 예컨대 배터리(10)는 리튬 이온 전지, 리튬 폴리머 전지, 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지 등으로 구성될 수 있다.
또한, 배터리(10)는 복수의 전지 셀이 직렬 및/또는 병렬로 연결되어 있는 전지 팩으로 형성된다. 그리고, 배터리(10)는 하나 이상의 전지 팩을 포함할 수 있다.
BMS(20)는 배터리(10)의 상태를 추정하고, 추정한 상태 정보를 이용하여 배터리(10)를 관리한다. 예컨대, BMS(20)는 배터리(10)의 잔존 용량(State Of Charging; SOC), 잔존 수명(State Of Health; SOH), 최대 입출력 전력 허용량, 출력 전압 등 배터리(10) 상태 정보를 추정하고 관리한다. 그리고, BMS(20)는 이러한 상태 정보를 이용하여 배터리(10)의 충전 또는 방전을 제어하며, 나아가 배터리(10)의 교체 시기 추정도 가능하다.
BMS(20)는 후술하는 본 발명의 일 실시예에 따른 션트저항을 이용한 전류 측정 장치(도 3의 100(a) 및 도 4의 100(b))를 포함하거나 션트저항을 이용한 전류 측정 장치에 연결되어 동작할 수 있다. BMS(20)는 션트저항을 이용한 전류 측정 장치(100(a) 및 100(b))에 포함된 션트저항을 이용하여 배터리의 충방전 전류 값을 측정할 수 있으며, 이를 바탕으로 배터리(10)의 저전압 및 과전압 상태와 같은 동작 이상 상태를 판단할 수 있다.
ECU(30)는 전기 자동차(1)의 상태를 제어하는 전자적 제어 장치이다. 예컨대, ECU(30)는 액셀러레이터(accelerator), 브레이크(break), 속도 등의 정보에 기초하여 토크 정도를 결정하고, 모터(50)의 출력이 토크 정보에 맞도록 제어한다.
또한, ECU(30)는 BMS(20)에 의해 배터리(10)가 충전 또는 방전될 수 있도록 인버터(40)에 제어 신호를 보낸다.
인버터(40)는 ECU(30)의 제어 신호에 기초하여 배터리(10)가 충전 또는 방전되도록 한다.
모터(50)는 배터리(10)의 전기 에너지를 이용하여 ECU(30)로부터 전달되는 제어 정보(예컨대, 토크 정보)에 기초하여 전기 자동차(1)를 구동한다.
이하 도2 내지 도 4를 참조하여, 본 발명의 일 실시예에 따른 션트저항을 이용한 전류 측정 장치에 대해서 설명하도록 한다.
도 2는 하나의 션트저항을 포함하는 버스바를 이용한 전류 측정 장치를 개략적으로 도시한 도면이다.
도 2를 참조하면, 전류 측정 소자는 배터리 모듈의 전류를 측정하기 위해 션트저항(120)에 전류가 흐를 때 션트저항(120) 양단에 인가되는 전압값에 기반하여 측정부(130)에서 배터리(10) 모듈의 전류값을 산출한다.
이와 같이, 하나의 션트저항(120) 및 하나의 측정부(130)를 통해 배터리 모듈의 전류값을 산출할 경우, 신뢰도가 높지 않기 때문에 고신뢰성 션트저항(120) 및 측정부(130)을 이용하거나 복수 개의 션트저항(120) 및 복수 개의 측정부(130)를 통해 배터리(10) 모듈의 전류를 산출해야 한다. 그러나 전류 측정 장치는 고신뢰성 션트저항(120) 및 측정부(130)는 가격적인 문제점이 있으며, 복수 개의 션트저항(120) 및 측정부(130)를 사용하는 경우, 배터리(10) 모듈의 부피가 증가하기 때문에 배터리(10) 모듈의 고 효율화 및 고 에너지밀도화에 악영향을 끼친다.
도 3은 본 발명의 일 실시예(1)에 따른 션트저항을 이용한 전류 측정 장치를 개략적으로 도시한 도면이다.
도 3을 참조하면, 션트저항을 이용한 전류 측정 장치(100(a))는 버스바(110), 션트저항(120) 및 측정부(130)를 포함하여 구성될 수 있다.
도 3에 도시된 션트저항을 이용한 전류 측정 장치(100(a))는 일 실시예에 따른 것이고, 그 구성요소들이 도 4에 도시된 실시예에 한정되는 것은 아니며, 필요에 따라 부가, 변경 또는 삭제 될 수 있다.
버스바(110)는 배터리(10) 팩 내에 포함된 두 개의 배터리(10) 모듈의 모듈 단자를 서로 연결할 수 있다. 그러나 본 발명은 이에 제한하지 않고, 버스바(110)는 적용하고자 하는 션트저항을 이용한 전류 측정 장치(100(a))의 개수에 따라 두 개 이상의 배터리(10) 모듈의 모듈 단자를 서로 연결할 수 있다. 버스바(110)의 형태 또한 연결하고자 하는 배터리(10) 모듈의 형태 및 배치에 따라 다양하게 형성될 수 있다. 일 예로, 사용자가 세 개 이상의 배터리(10) 모듈의 모듈 단자를 연결하기 위해 션트저항을 이용한 전류 측정 장치(100(a))가 적용된 버스바를 이용하고자 하는 경우, 세 개 이상의 배터리(10) 모듈을 연결하기 위한 세 개 이상의 버스바를 일체화한 하나의 버스바(110)를 이용하여 세 개 이상의 배터리(10) 모듈의 모듈 단자를 연결할 수 있다.
또한 버스바(110)는 후술되는 션트저항(120)을 두 개 이상 포함할 수 있다.
션트저항(120)은 배터리(10) 모듈의 전압을 측정하기 위해 사용될 수 있으며, 버스바(110) 상에 둘 이상의 션트저항(120)이 위치하여 버스바(110)를 적어도 두 개 이상의 영역으로 분리시킬 수 있다.
추가적으로 션트저항을 이용한 전류 측정 장치(100(a))는 단자 션트저항(미도시)를 더 포함할 수 있다.
단자 션트저항(미도시)는 적어도 일부 영역에 관통홀을 포함할 수 있으며, 배터리(10) 모듈의 모듈 단자에 추가적으로 설치함으로써, 전류 측정의 신뢰성을 높일 수 있다. 여기서 관통홀은 배터리(10) 모듈의 모듈 단자를 삽입시킬 수 있도록 배터리(10) 모듈 단자의 직경 크기 이상으로 형성될 수 있다.
또한, 단자 션트저항은 제1 접속단자(미도시) 및 제2 접속단자(미도시)를 포함할 수 있다.
제1 접속단자 및 제2 접속단자는 단자 션트저항의 양단에 인가되는 전압값을 측정하기 위해 설치될 수 있다.
이를 위해 제1 접속단자 및 제2 접속단자의 일부 영역에 관통홀이 포함될 수 있으며, 제1 접속단자 및 제2 접속단자 사이에 단자 션트저항을 두고 배터리(10) 모듈의 모듈 단자에 삽입해 설치할 수 있다. 일 예로, 단자 션트저항, 제1 접속단자 및 제2 접속단자는 와셔 형태로 형성될 수 있으며, 배터리(10) 모듈의 모듈 단자는 볼트 형태로 형성될 수 있다. 와셔 형태로 형성된 단자 션트저항, 제1 접속단자 및 제2접속단자는 내부에 형성된 관통홀을 볼트 형태의 모듈 단자에 나사 결합하여 전기적으로 연결될 수 있다.
또한, 제1 접속단자, 단자 션트저항 및 제2 접속단자는 결합된 형태로 제작될 수 있다. 일 예로, 제1 접속단자, 제2 제 접속단자 및 단자 션트저항이 하나의 와셔 형태로 제작될 수 있다.
측정부(130)는 둘 이상의 션트저항(120)에 인가되는 전압값을 각각 측정하고, 측정된 전압값에 기반하여 전류값을 각각 산출할 수 있다.
이를 위해 하나 이상의 측정부(130)를 포함할 수 있다. 또한 측정부(130)는 전압 증폭부(131) 및 전류 산출부(132)를 포함할 수 있다.
전압 증폭부(131)는 션트저항(120)에 인가되는 배터리(10) 모듈의 전압값을 증폭시키는 역할을 수행할 수 있다. 일반적으로 션트저항의 저항값은 부하에 미치는 영향을 최소화하기 위해 매우 작은 값의 저항을 사용한다. 일 예로 션트저항(120)의 저항값은 100u옴 일 수 있다. 따라서 션트저항(120)에 인가되는 배터리(10) 모듈의 전압값은 매우 작기 때문에, 이를 증폭시켜줄 필요성이 있다.
따라서 전압 증폭부(131)은 션트저항에 인가되는 작은 전압값을 증폭할 수 있다. 일 예로, 전압 증폭부(131)는 하나 이상의 연산 증폭기(Operating Amplifier)가 직렬 및 병렬로 연결된 회로일 수 있으며, 연산 증폭기에 기설정된 게인(Gain)값에 기반하여 션트저항(120) 양단에 인가되는 전압값을 증폭시킬 수 있다.
전류 산출부(132)는 전압 증폭부(131)를 통해 증폭된 션트저항(120) 양단에 인가되는 전압값에 기반하여 배터리(10) 모듈의 전류를 산출할 수 있다. 예를 들면, 100u?의 션트 저항(170)에 의 전류가 흐르면 옴의 법칙(V = I*R)에 의해 1mV의 전위차가 발생하며, 발생한 전위차는 증폭부(131)에 기 설정된 게인(gain)값을 곱한 만큼 증폭되어 출력된다. 반대로 출력 전압이 4.5V인 경우 기 설정된 게인(gain)값으로 나눠주면 0.045V라는 전위차가 발생하였음을 알 수 있고, 옴의 법칙(V = I*R)에 의해 450A가 흐른다는 것을 알 수 있다.
복수 개의 션트저항(120)을 각각 측정하기 위해 전류 측정 장치는 하나 이상의 측정부(130)를 구비할 수 있으며, 하나 이상의 측정부(130)는 하나의 측정 모듈(150)를 구성할 수 있다.
측정 모듈(150)은 하나 이상의 측정부(130)로 구성되며, 하나 이상의 측정부(130)의 동작을 제어할 수 있는 제어부(미도시)를 포함할 수 있다.
제어부는 하나 이상의 측정부의 동작을 온 또는 오프 제어할 수 있다. 제어부는 이상이 있는 측정부의 동작을 오프시킬 수 있다. 또한, 고 신뢰성이 요구되지 않을 경우 제어부는 복수 개의 측정부 중 일부 측정부만 선택적으로 동작시켜 사용할 수 있다. 일 예로 하나 이상의 측정부(130)는 각각 스위치(미도시)와 연결될 수 있으며, 제어부는 측정부(130)와 연결된 스위치의 온 또는 오프를 제어함으로써 측정부(130)의 동작을 제어할 수 있다.
도 4는 본 발명의 일 실시예(2)에 따른 션트저항을 이용한 전류 측정 장치를 개략적으로 도시한 도면이다.
도 4를 참조하면, 션트저항을 이용한 전류 측정 장치(100(b))는 션트저항을 이용한 전류 측정 장치(100(a))와 마찬가지로 버스바(110'), 션트저항(120') 및 측정부(130')를 포함하여 구성될 수 있다.
버스바(110')는 실시예(1)에서의 버스바(110)와 동일하게 배터리(10) 팩 내에 포함된 두 개의 배터리(10) 모듈의 모듈 단자를 서로 연결할 수 있다. 버스바(110')는 적용하고자 하는 션트저항을 이용한 전류 측정 장치(100(b))의 개수에 따라 두 개 이상의 배터리(10) 모듈의 모듈 단자를 서로 연결할 수 있다. 버스바(110)의 형태 또한 연결하고자 하는 배터리(10) 모듈의 형태 및 배치에 따라 다양하게 형성될 수 있다.
션트저항(120')은 배터리(10) 모듈의 전압을 측정하기 위해 사용될 수 있다. 또한, 션트저항(120')은 버스바(110')상에 위치하여 버스바(110')를 두 개의 영역으로 분리시킬 수 있다. 그러나 본 발명은 이에 제한하지 않고, 사용자의 요구 및 사용 환경에 따라 하나 이상의 션트저항(120')은 버스바(110')상에 위치될 수 있으며, 버스바(120')를 적어도 두 개 이상의 영역으로 분리시킬 수 있다.
션트저항(120)은 배터리(10) 모듈의 전압을 측정하기 위해 사용될 수 있으며, 버스바(110) 상에 둘 이상의 션트저항(120)이 위치하여 버스바(110)를 적어도 두 개 이상의 영역으로 분리시킬 수 있다.
추가적으로 션트저항을 이용한 전류 측정 장치(100(b))는 단자 션트저항(미도시)를 더 포함할 수 있다.
단자 션트저항(미도시)는 적어도 일부 영역에 모듈단자 직경 크기의 관통홀을 포함할 수 있으며, 배터리(10) 모듈의 모듈 단자에 추가적으로 설치함으로써, 전류 측정의 신뢰성을 높일 수 있다. 이를 위해 단자 션트저항은 제1 접속단자(미도시) 및 제2 접속단자(미도시)를 포함할 수 있다.
제1 접속단자 및 제2 접속단자는 단자 션트저항의 양단에 인가되는 전압값을 측정하기 위해 설치될 수 있다.
이를 위해 제1 접속단자 및 제2 접속단자의 일부 영역에 관통홀이 포함될 수 있으며, 제1 접속단자 및 제2 접속단자 사이에 단자 션트저항을 두고 배터리(10) 모듈의 모듈 단자에 삽입해 설치할 수 있다. 일 예로, 실시예(1)와 같이 단자 션트저항, 제1 접속단자 및 제2 접속단자는 와셔 형태로 형성될 수 있다. 또한, 제1 접속단자, 단자 션트저항 및 제2 접속단자는 결합된 형태로 제작될 수 있다.
또한 션트저항(120')은 후술되는 노드부(140)를 포함할 수 있다.
노드부(140)은 션트저항(120')의 전압값을 측정하기 위한 접점으로, 션트저항 내에 적어도 세 개 이상의 노드(141,142,143)를 포함할 수 있다.
노드(141,142,143)의 위치 및 개수는 션트저항(120')의 종류, 크기, 측정부(130')의 개수 및 사용자의 요구에 따라 형성될 수 있다.
측정부(130')는 하나 이상으로 구성되며, 션트저항(120')에 포함된 세 개 이상의 노드(141,142,143) 중 적어도 두 개의 노드를 선택할 수 있다. 측정부(130')는 선택한 노드 사이에 인가되는 전압값을 기반으로, 배터리 모듈의 전류값을 측정할 수 있다.
또한 측정부(130')는 실시예(1)에서의 측정부(130)과 마찬가지로 전압 증폭부(131') 및 전류 산출부(132')를 포함할 수 있다.
여기서 전압 증폭부(131') 및 전류 산출부(132')의 역할 및 원리는 실시예(1)에서의 전압 증폭부(131) 및 전류 산출부(132)와 동일하게 적용될 수 있다.
측정부(130')는 션트저항(120')에 포함된 노드(141,142,143) 사이의 전압값을 각각 측정하기 위해 하나 이상으로 구성될 수 있다. 하나 이상의 측정부(130')는 하나의 측정 모듈(150')을 구성할 수 있다.
측정 모듈(150')은 하나 이상의 측정부(130')를 포함하며, 하나 이상의 측정부(130')의 동작을 제어할 수 있는 제어부(미도시)를 포함할 수 있다.
제어부는 하나 이상의 측정부의 동작을 온 또는 오프 제어할 수 있으며, 이를 통해 이상이 있는 측정부의 동작을 오프시킬 수 있다. 또한, 제어부는 고 신뢰성이 요구되지 않을 경우 복수 개의 측정부 중 일부 측정부만 선택적으로 동작시킬 수 있다. 추가적으로 제어부는 션트저항(120')내에 포함된 세 개 이상의 노드(141,142,143)중 적어도 두 개 이상의 노드를 선택할 수 있다. 일 예로, 각 노드(141,142,143)는 노드(141)와 노드(142), 노드(141)와 노드(143) 및 노드(142)와 노드(143)등 다양한 조합을 가질 수 있으며, 각각의 조합마다 스위치(미도시)가 연결될 수 있다. 제어부는 조합된 노드(141,142,143) 사이에 연결된 스위치를 제어함으로써, 적어도 두 개 이상으로 구성된 조합을 선택할 수 있다.
이상 본 발명의 특정 실시예를 도시하고 설명하였으나, 본 발명의 기술사상은 첨부된 도면과 상기한 설명내용에 한정하지 않으며 본 발명의 사상을 벗어나지 않는 범위 내에서 다양한 형태의 변형이 가능함은 이 분야의 통상의 지식을 가진 자에게는 자명한 사실이며, 이러한 형태의 변형은, 본 발명의 정신에 위배되지 않는 범위 내에서 본 발명의 특허청구범위에 속한다고 볼 것이다.

Claims (10)

  1. 배터리 팩 내에 포함된 두 개의 배터리 모듈의 모듈 단자를 서로 연결하는 하나 이상의 버스바(Busbar);
    상기 버스바 상에 위치하며, 상기 버스바를 적어도 두 개 이상의 영역으로 분리시키는 적어도 둘 이상의 션트저항; 및
    상기 둘 이상의 션트저항에 인가되는 전압값을 각각 측정하고, 상기 측정된 전압값에 기반하여 전류값을 각각 산출하는 하나 이상의 측정부;를 포함하는 것을 특징으로 하는,
    션트저항을 이용한 전류 측정 장치.
  2. 제1항에 있어서,
    상기 측정부는,
    상기 션트저항에 인가되는 전압값을 증폭하는 전압 증폭부; 및
    상기 증폭된 전압값에 기반하여 상기 배터리 모듈의 전류값을 산출하는 전류 산출부;를 포함하는 것을 특징으로 하는,
    션트저항을 이용한 전류 측정 장치.
  3. 제1항에 있어서,
    상기 하나 이상의 측정부는,
    하나의 측정 모듈로 구성되며,
    상기 측정 모듈은,
    상기 하나 이상의 측정부의 동작을 제어할 수 있는 제어부;를 포함하는 것을 특징으로 하는,
    션트저항을 이용한 전류 측정 장치.
  4. 제1항에 있어서,
    적어도 일부 영역에 관통홀을 가지는 단자 션트저항; 및
    상기 단자 션트저항 양단에 인가되는 전압값을 측정하기 위한 제1 접속 단자 및 제2 접속 단자;를 더 포함하며,
    상기 단자 션트저항을 상기 제 1 및 제2 접속 단자로 사이에 두어 상기 모듈 단자를 상기 관통홀에 삽입해 설치한 것을 특징으로 하는,
    션트저항을 이용한 전류 측정 장치.
  5. 제4항에 있어서,
    상기 단자 션트저항은 와셔 형태, 상기 모듈 단자는 볼트 형태이며,
    상기 와셔 형태 션트저항 내부에 형성된 관통홀을 볼트 형태 모듈 단자에 나사 결합하여 상기 단자 션트저항과 상기 모듈 단자를 전기적으로 연결하는 것을 특징으로 하는,
    션트저항을 이용한 전류 측정 장치.
  6. 배터리 팩 내에 포함된 두 개의 배터리 모듈의 모듈 단자를 서로 연결하는 하나 이상의 버스바(Busbar);
    상기 버스바 상에 위치하며, 상기 버스바를 두 개의 영역으로 분리시키는 션트저항; 및
    상기 션트저항에 포함된 세 개 이상의 노드 중 적어도 두 개의 노드를 선택하여 상기 선택된 두 개의 노드 사이에 인가되는 전압값을 기반으로, 상기 배터리 모듈의 전류값을 측정하는 하나 이상의 측정부;를 포함하는 것을 특징으로 하는,
    션트저항을 이용한 전류 측정 장치.
  7. 제6항에 있어서,
    상기 측정부는,
    상기 션트저항에 인가되는 전압값을 증폭하는 전압 증폭부; 및
    상기 증폭된 전압값에 기반하여 상기 배터리 모듈의 전류값을 산출하는 전류 산출부;를 포함하는 것을 특징으로 하는,
    션트저항을 이용한 전류 측정 장치.
  8. 제6항에 있어서,
    상기 하나 이상의 측정부는,
    하나의 측정 모듈로 구성되며,
    상기 측정 모듈은,
    상기 하나 이상의 측정부의 동작을 제어하고, 상기 션트저항의 전압값을 측정하기 위한 노드를 선택하는 제어부;를 포함하는 것을 특징으로 하는,
    션트저항을 이용한 전류 측정 장치.
  9. 제6항에 있어서,
    적어도 일부 영역에 관통홀을 가지는 단자 션트저항; 및
    상기 단자 션트저항 양단에 인가되는 전압값을 측정하기 위한 제1 접속 단자 및 제2 접속 단자;를 더 포함하며,
    상기 단자 션트저항을 상기 제 1 및 제2 접속 단자로 사이에 두어 상기 모듈 단자를 상기 관통홀에 삽입해 설치한 것을 특징으로 하는,
    션트저항을 이용한 전류 측정 장치.
  10. 제9항에 있어서,
    상기 단자 션트저항은 와셔 형태, 상기 모듈 단자는 볼트 형태이며,
    상기 와셔 형태 션트저항 내부에 형성된 관통홀을 볼트 형태 모듈 단자에 나사 결합하여 상기 단자 션트저항과 상기 모듈 단자를 전기적으로 연결하는 것을 특징으로 하는,
    션트저항을 이용한 전류 측정 장치.
PCT/KR2017/004690 2016-07-29 2017-05-02 션트저항을 이용한 전류 측정 장치 WO2018021661A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018528707A JP6872549B2 (ja) 2016-07-29 2017-05-02 シャント抵抗を用いた電流測定装置
EP17834606.0A EP3379279B1 (en) 2016-07-29 2017-05-02 Current measurement apparatus using shunt resistor
US16/060,287 US10802049B2 (en) 2016-07-29 2017-05-02 Current measurement apparatus using shunt resistor
CN201780004998.4A CN108431619B (zh) 2016-07-29 2017-05-02 使用分流电阻器的电流测量装置
PL17834606T PL3379279T3 (pl) 2016-07-29 2017-05-02 Urządzenie do pomiaru natężenia prądu wykorzystujące opornik bocznikujący

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0097245 2016-07-29
KR1020160097245A KR101998091B1 (ko) 2016-07-29 2016-07-29 션트저항을 이용한 전류 측정 장치

Publications (1)

Publication Number Publication Date
WO2018021661A1 true WO2018021661A1 (ko) 2018-02-01

Family

ID=61017132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/004690 WO2018021661A1 (ko) 2016-07-29 2017-05-02 션트저항을 이용한 전류 측정 장치

Country Status (7)

Country Link
US (1) US10802049B2 (ko)
EP (1) EP3379279B1 (ko)
JP (1) JP6872549B2 (ko)
KR (1) KR101998091B1 (ko)
CN (1) CN108431619B (ko)
PL (1) PL3379279T3 (ko)
WO (1) WO2018021661A1 (ko)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102312445B1 (ko) 2018-03-28 2021-10-12 주식회사 엘지에너지솔루션 션트 저항 및 이를 포함하는 전류 검출 장치
KR102247090B1 (ko) 2018-08-10 2021-04-29 주식회사 엘지화학 전류 검출 회로, 배터리 관리 시스템 및 배터리팩
JP7207074B2 (ja) * 2019-03-27 2023-01-18 株式会社Gsユアサ 電池管理装置、蓄電装置、電池管理方法、及びコンピュータプログラム
DE102020101070A1 (de) 2020-01-17 2021-07-22 Munich Electrification Gmbh Widerstandsanordnung, Messschaltung mit einer Widerstandsordnung sowie Verfahren zur Herstellung eines bandförmigen Werkstoffverbundes für die Widerstandsanordnung
US11784503B2 (en) 2021-02-22 2023-10-10 Inductev Inc. Passive arc detection and mitigation in wireless power transfer system
US11585836B2 (en) 2020-03-20 2023-02-21 InductEV, Inc. Current sensing in a wireless power transfer system
US11579202B2 (en) * 2020-06-09 2023-02-14 Samsung Sdi Co., Ltd. Electric current measuring arrangement and battery system
DE102021102217A1 (de) 2021-02-01 2022-08-04 HELLA GmbH & Co. KGaA Verfahren und Vorrichtung zur Bestimmung eines elektrischen Stroms sowie Batterie
DE102021205279A1 (de) 2021-05-25 2022-12-01 Robert Bosch Gesellschaft mit beschränkter Haftung Strommesswiderstand zur Messung eines elektrischen Stromes
KR102555653B1 (ko) 2022-11-10 2023-07-17 스마트전자 주식회사 배터리모니터링방법 및 장치
KR102532430B1 (ko) 2022-11-21 2023-05-15 스마트전자 주식회사 버스바조립체 및 전류측정장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047571A (ja) * 2006-08-10 2008-02-28 Matsushita Electric Ind Co Ltd シャント抵抗及びシャント抵抗を用いた電流測定装置
JP2009204531A (ja) * 2008-02-28 2009-09-10 Sanyo Electric Co Ltd シャント抵抗とこのシャント抵抗を備える車両用の電源装置
JP2011053095A (ja) * 2009-09-02 2011-03-17 Furukawa Electric Co Ltd:The 電流監視装置
KR20130137389A (ko) * 2012-06-07 2013-12-17 주식회사 엘지화학 배터리 팩의 전류센서 이상 진단 장치 및 방법
JP2016003916A (ja) * 2014-06-16 2016-01-12 株式会社オートネットワーク技術研究所 電流検出回路

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6304062B1 (en) * 1999-10-28 2001-10-16 Powersmart, Inc. Shunt resistance device for monitoring battery state of charge
US7319304B2 (en) * 2003-07-25 2008-01-15 Midtronics, Inc. Shunt connection to a PCB of an energy management system employed in an automotive vehicle
JP4897964B2 (ja) * 2007-09-10 2012-03-14 古河電気工業株式会社 電流検出装置
US8970246B2 (en) * 2010-12-23 2015-03-03 Caterpillar Inc. Assembly and circuit structure for measuring current through an integrated circuit module device
WO2013038176A2 (en) * 2011-09-12 2013-03-21 Metroic Limited Current measurement
GB2508836A (en) 2012-12-12 2014-06-18 Sony Corp Shunt resistor current sense circuit for use in a battery state of charge meter
US9523720B2 (en) * 2013-03-15 2016-12-20 Infineon Technologies Ag Multiple current sensor device, a multiple current shunt device and a method for providing a sensor signal
CN106662603B (zh) * 2014-09-25 2019-12-13 三洋电机株式会社 具备分流电阻器的电流检测装置和电源装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047571A (ja) * 2006-08-10 2008-02-28 Matsushita Electric Ind Co Ltd シャント抵抗及びシャント抵抗を用いた電流測定装置
JP2009204531A (ja) * 2008-02-28 2009-09-10 Sanyo Electric Co Ltd シャント抵抗とこのシャント抵抗を備える車両用の電源装置
JP2011053095A (ja) * 2009-09-02 2011-03-17 Furukawa Electric Co Ltd:The 電流監視装置
KR20130137389A (ko) * 2012-06-07 2013-12-17 주식회사 엘지화학 배터리 팩의 전류센서 이상 진단 장치 및 방법
JP2016003916A (ja) * 2014-06-16 2016-01-12 株式会社オートネットワーク技術研究所 電流検出回路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3379279A4 *

Also Published As

Publication number Publication date
CN108431619A (zh) 2018-08-21
KR20180013466A (ko) 2018-02-07
JP2018536166A (ja) 2018-12-06
US10802049B2 (en) 2020-10-13
EP3379279B1 (en) 2020-03-11
KR101998091B1 (ko) 2019-07-09
EP3379279A4 (en) 2018-09-26
PL3379279T3 (pl) 2020-09-21
CN108431619B (zh) 2021-01-26
EP3379279A1 (en) 2018-09-26
JP6872549B2 (ja) 2021-05-19
US20190004094A1 (en) 2019-01-03

Similar Documents

Publication Publication Date Title
WO2018021661A1 (ko) 션트저항을 이용한 전류 측정 장치
WO2018038348A1 (ko) 배터리 관리 시스템
WO2015126035A1 (ko) 전압 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법
WO2012165879A2 (en) Secondary battery management system and method for exchanging battery cell information
WO2018074744A1 (ko) 전압 분배를 이용한 스위치 진단 장치 및 방법
WO2021049753A1 (ko) 배터리 진단 장치 및 방법
WO2018066839A1 (ko) 전압 분배를 이용한 퓨즈 진단 장치 및 방법
WO2018021664A1 (ko) 배터리 밸런싱 장치 및 방법
WO2019221368A1 (ko) 메인 배터리와 서브 배터리를 제어하기 위한 장치, 배터리 시스템 및 방법
WO2022177291A1 (ko) 배터리 관리 시스템, 배터리 팩, 에너지 저장 시스템 및 배터리 관리 방법
WO2014084628A1 (ko) 배터리 전류 측정 장치 및 그 방법
WO2016056740A1 (ko) 스위치 열화 검출 장치 및 방법
WO2020055117A1 (ko) 배터리 관리 장치
WO2021002658A1 (ko) 배터리 관리 시스템 및 관리 방법
WO2018139741A1 (ko) 배터리 팩 및 배터리 팩이 연결된 차량
WO2015034144A1 (ko) 배터리 팩의 프리차지 저항 산출 장치 및 방법
WO2022265358A1 (ko) 배터리 관리 시스템, 배터리 팩, 전기 차량 및 배터리 관리 방법
WO2023063625A1 (ko) 배터리 진단 장치, 배터리 팩, 전기 차량, 및 배터리 진단 방법
WO2019151631A1 (ko) 배터리 보호 회로 및 이를 포함하는 배터리 팩
WO2023282713A1 (ko) 배터리 관리 시스템, 배터리 팩, 전기 차량 및 배터리 관리 방법
WO2020076126A1 (ko) 배터리 관리 장치 및 방법
WO2018186602A1 (ko) 저전압 배터리의 상태 진단 시스템 및 방법
WO2016064224A1 (ko) 전류 제어 장치 및 방법
WO2020055162A1 (ko) 스위치 진단 장치 및 방법
WO2022080709A1 (ko) 릴레이 진단 장치, 릴레이 진단 방법, 배터리 시스템, 및 전기 차량

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018528707

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2017834606

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017834606

Country of ref document: EP

Effective date: 20180621

NENP Non-entry into the national phase

Ref country code: DE