WO2016056740A1 - 스위치 열화 검출 장치 및 방법 - Google Patents

스위치 열화 검출 장치 및 방법 Download PDF

Info

Publication number
WO2016056740A1
WO2016056740A1 PCT/KR2015/007910 KR2015007910W WO2016056740A1 WO 2016056740 A1 WO2016056740 A1 WO 2016056740A1 KR 2015007910 W KR2015007910 W KR 2015007910W WO 2016056740 A1 WO2016056740 A1 WO 2016056740A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
output voltage
comparator
resistor
differential amplifier
Prior art date
Application number
PCT/KR2015/007910
Other languages
English (en)
French (fr)
Inventor
박재동
이상훈
김영환
성창현
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201580026445.XA priority Critical patent/CN106415295B/zh
Priority to PL15848783.5T priority patent/PL3206042T3/pl
Priority to JP2016564992A priority patent/JP6523333B2/ja
Priority to US15/308,470 priority patent/US9910092B2/en
Priority to EP15848783.5A priority patent/EP3206042B1/en
Publication of WO2016056740A1 publication Critical patent/WO2016056740A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3277Testing of circuit interrupters, switches or circuit-breakers of low voltage devices, e.g. domestic or industrial devices, such as motor protections, relays, rotation switches
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/14Measuring resistance by measuring current or voltage obtained from a reference source
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/20Measuring earth resistance; Measuring contact resistance, e.g. of earth connections, e.g. plates
    • G01R27/205Measuring contact resistance of connections, e.g. of earth connections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/006Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks

Definitions

  • the present invention relates to an apparatus and a method for detecting a switch degradation, and more particularly, an output voltage and a resistance having a resistor connected in series to a battery whose charge / discharge is controlled by a switch and amplifying the voltage difference across the switch through a comparator.
  • the present invention relates to a switch degradation detection apparatus and method for detecting degradation of a switch by comparing an output voltage obtained by amplifying a voltage difference between both ends.
  • the present invention also provides at least one of a resistance value of a resistor, an amplification ratio of a differential amplifier for amplifying the voltage difference across the switch, and an amplification ratio of a differential amplifier for amplifying the voltage difference across the resistor so that the output voltage of the differential amplifier is the same.
  • the present invention relates to a switch degradation detection apparatus and method for controlling and calculating a turn-on resistance value of a switch using a resistance value of a resistance at a point in time at which an output voltage is the same and an amplification ratio of a differential amplifier.
  • the secondary battery battery is attracting attention as a new energy source for improving eco-friendliness and energy efficiency in that not only the primary advantage of dramatically reducing the use of fossil energy but also no by-products caused by the use of energy is generated.
  • secondary battery batteries used in electric vehicles, hybrid vehicles, energy storage systems, and uninterruptible power supplies are used as a power source to connect a battery pack with multiple battery modules to charge or discharge high power and large capacity power. I'm using it.
  • a battery pack in which high power and a large amount of power are frequently charged or discharged has an on / off switch for controlling charging and discharging of the battery pack and a battery pack from overcharge, overdischarge, and surge currents.
  • Various switch elements such as relay switch are installed to protect the battery pack.
  • the switch element installed in the battery pack increases the turn-on resistance value of the switch element due to deterioration of physical performance as the battery pack is operated, which in turn accelerates the deterioration of the switch element to control the battery pack of the switch element. And loss of protection.
  • the conventional technology for detecting the deterioration of the switch element installed in the battery pack is to monitor the temperature of the switch element through a temperature sensor at all times to compare the temperature measured by the comparison device with the reference temperature, the temperature of the measured switch element is the reference temperature If exceeded, the switch was deteriorated.
  • the temperature of the switch element is a temperature that is affected by the temperature inside the housing in which a plurality of switches, protection circuits, and control modules are accommodated. The temperature of the switch element is changed according to the environment around the switch, not the temperature of the switch itself. .
  • the technique of detecting the deterioration of the switch element by measuring the temperature of the switch element has a problem that the reliability and precision of the detection result is degraded because the temperature is affected by the environment around the switch.
  • the present inventors have a resistor connected in series with a battery in which charge / discharge is controlled by a switch, and an output voltage obtained by amplifying the voltage difference across the switch through a comparator and a voltage difference across the resistor are measured. Compare the amplified output voltage to detect the deterioration of the switch, and amplify the resistance value of the resistor, the amplification ratio of the differential amplifier that amplifies the voltage difference across the switch, and the voltage difference across the resistor so that the output voltage of the differential amplifier is the same.
  • Inventing a switch degradation detection apparatus and method for controlling at least one of the amplification ratio of the differential amplifier to calculate the turn-on resistance value of the switch by using the resistance value of the resistance at the same time the output voltage, the amplification ratio of the differential amplifier It came to the following.
  • the present invention has been made to solve the above-described problems, an object of the present invention, the output voltage amplified the voltage difference across the switch for controlling the charge and discharge of the battery through a comparator and the voltage difference across the resistor connected in series with the battery By comparing the output voltage amplified and detecting the degradation of the switch based on the comparison result of the comparator, a switch degradation detection apparatus and method that can provide accurate detection results with improved reliability and accuracy of the degradation detection results of the switch To provide.
  • an object of the present invention is to provide an output voltage of a differential amplifier such that the resistance value of the resistor, the amplification ratio of the differential amplifier for amplifying the voltage difference across the switch, and the amplification ratio of the differential amplifier for amplifying the voltage difference across the resistance. It is to provide a switch degradation detection apparatus and method for controlling one or more and calculating the turn-on resistance value of the switch using the resistance value of the resistance at the same time the output voltage, the amplification ratio of the differential amplifier.
  • a switch degradation detection apparatus includes a resistor connected in series with a battery whose charge / discharge is controlled through a switch; A first differential amplifier for amplifying the voltage difference across the switch and outputting the first differential voltage; A second differential amplifier for amplifying the voltage difference across the resistor and outputting the second differential voltage; A comparator for comparing the magnitude between the second and second output voltages; And a controller configured to determine whether the switch is deteriorated based on the comparison result of the comparator.
  • the comparator may output a switch degradation signal when the first output voltage exceeds the second output voltage as a result of a large comparison between the first and second output voltages.
  • the controller may determine that the switch is degraded when the switch degradation signal is received.
  • the comparator may output the same output voltage signal when the first output voltage and the second output voltage are the same as a result of the magnitude comparison between the first and second output voltages.
  • the controller may control one or more of resistance values of the resistor and amplification ratios of the first and second differential amplifiers so that the same output voltage signal is output from the comparator.
  • the switch degradation detection apparatus calculates a turn-on resistance value of the switch by using the resistance values of the resistors and the amplification ratios of the first and second amplifiers when the comparator unit receives the same output voltage signal. It may further include a calculator.
  • the calculator may calculate a turn-on resistance value of the switch by using the following equation.
  • Rr resistance value of the resistor
  • G 1 amplification factor of the first differential amplifier when the comparator outputs the same output voltage signal
  • G 2 amplification factor of the second differential amplifier when the comparator outputs the same output voltage signal
  • a switch degradation detection method includes: providing a resistor connected in series to a battery whose charge / discharge is controlled through a switch; A first differential amplifier amplifying a voltage difference across the switch and outputting the first differential voltage; A second differential amplifier amplifying a voltage difference across the resistor and outputting the amplified voltage as a second output voltage; A comparator comparing the magnitude between the first and second output voltages; And determining, by the control unit, the deterioration of the switch based on a comparison result of the comparator.
  • the switch degradation detection method may further include: outputting a switch degradation signal when the comparator compares the first and second output voltages to a magnitude as a result, when the first output voltage exceeds the second output voltage. can do.
  • the switch degradation detection method may further include determining that the switch is degraded when the controller receives the switch degradation signal.
  • the switch degradation detection method may further include outputting, by the comparator, the same output voltage signal when the first output voltage and the second output voltage are the same as a result of the magnitude comparison between the first and second output voltages. can do.
  • the switch degradation detection method may further include controlling, by the controller, one or more of resistance values of the resistors and amplification ratios of the first and second differential amplifiers so that the same output voltage signal is output from the comparator. Can be.
  • Comprising a may further include.
  • the calculator may calculate a turn-on resistance value of the switch by using the following equation.
  • R r resistance value of the resistor
  • G 1 amplification factor of the first differential amplifier when the comparator outputs the same output voltage signal
  • G 2 amplification factor of the second differential amplifier when the comparator outputs the same output voltage signal
  • the apparatus and method for detecting switch degradation does not detect the deterioration of the switch by using the temperature of the switch affected by the temperature of the switch, and the voltage across the switch and the voltage across the resistor connected in series with the battery. By amplifying and comparing the differences respectively to detect the degradation of the switch, it has the effect of providing an accurate detection result with improved reliability and precision of the degradation detection result of the switch.
  • the present invention does not calculate the turn-on resistance value of the switch using the voltage and current of the switch measured by synchronizing the measurement time point, the resistance value of the resistor and the amplification ratio of the differential amplifier so that the output voltage of the differential amplifier is the same It controls the at least one of the, and has the effect of accurately calculating the turn-on resistance value of the switch using only the resistance value of the resistor connected in series with the battery at the same time, the amplification rate of the differential layer aeration.
  • the present invention has an effect of preventing damage to the battery system and fire due to overheating of the switch by providing accurate switch degradation detection result and turn-on resistance value of the switch.
  • FIG. 1 is a diagram schematically illustrating an electric vehicle to which a switch degradation detection apparatus according to an embodiment of the present invention may be applied.
  • FIG. 2 is a block diagram illustrating a configuration of a switch degradation detection apparatus according to an embodiment of the present invention.
  • FIG. 3 is a view showing an example of a specific configuration of a switch degradation detection apparatus according to an embodiment of the present invention.
  • FIG. 4 is a flowchart illustrating a procedure of determining a switch degradation by an apparatus for detecting switch degradation according to an embodiment of the present invention.
  • FIG. 5 is a flowchart illustrating a procedure of calculating a turn-on resistance value of a switch by a switch degradation detection apparatus according to an exemplary embodiment of the present invention.
  • ... unit described in the specification means a unit for processing one or more functions or operations, which may be implemented in hardware or software or a combination of hardware and software.
  • FIG. 1 is a diagram schematically illustrating an electric vehicle to which a switch degradation detection apparatus according to an embodiment of the present invention may be applied.
  • FIG. 1 illustrates an example in which a switch degradation detection apparatus according to an embodiment of the present invention is applied to an electric vehicle
  • the switch degradation detection apparatus according to an embodiment of the present invention may be a mobile device, an energy storage system, or an uninterruptible power supply in addition to an electric vehicle. Any technical field may be applied as long as the secondary battery battery, such as a power supply, may be applied.
  • the electric vehicle 1 may include a battery 10, a battery management system (BMS) 20, an electronic control unit (ECU) 30, an inverter 40, and a motor 50.
  • BMS battery management system
  • ECU electronice control unit
  • inverter 40 inverter 40
  • motor 50 a motor 50.
  • the battery 10 is an electric energy source for driving the electric vehicle 1 by providing a driving force to the motor 50.
  • the battery 10 may be charged or discharged by the inverter 40 according to the driving of the motor 50 or the internal combustion engine (not shown).
  • the type of the battery 10 is not particularly limited, and the battery 10 may be, for example, a lithium ion battery, a lithium polymer battery, a nickel cadmium battery, a nickel hydrogen battery, a nickel zinc battery, or the like.
  • the BMS 20 estimates the state of the battery 10 and manages the battery 10 using the estimated state information.
  • the battery 10 state information such as state of charging (SOC), state of health (SOH), maximum input / output power allowance, and output voltage of the battery 10 is estimated and managed.
  • the charging or discharging of the battery 10 is controlled using the state information, and the replacement time of the battery 10 may be estimated.
  • the BMS 20 may include a switch degradation detection device (100 of FIG. 2) described later. Deterioration of the switch (not shown) connected to the battery 10 may be detected by the switch degradation detection device 100 to prevent the battery 10 from being burned out.
  • the ECU 30 is an electronic control device for controlling the state of the electric vehicle 1.
  • the torque degree is determined based on information such as an accelerator, a brake, a speed, and the like, and the output of the motor 50 is controlled to match the torque information.
  • the ECU 30 transmits a control signal to the inverter 40 so that the battery 10 can be charged or discharged based on state information such as SOC and SOH of the battery 10 received by the BMS 20. .
  • the inverter 40 causes the battery 10 to be charged or discharged based on the control signal of the ECU 30.
  • the motor 50 drives the electric vehicle 1 based on the control information (for example, torque information) transmitted from the ECU 30 using the electric energy of the battery 10.
  • control information for example, torque information
  • FIG. 2 is a block diagram showing the configuration of a switch degradation detection apparatus according to an embodiment of the present invention
  • Figure 3 is a view showing an example of a specific configuration of the switch degradation detection apparatus according to an embodiment of the present invention .
  • the switch degradation detection apparatus 100 includes a resistor 110, a first differential amplifier 120, a second differential amplifier 130, a comparator 140, a controller 150, and a calculator. And 160.
  • the switch degradation detection apparatus 100 illustrated in FIGS. 2 and 3 is according to an exemplary embodiment, and its components are not limited to the exemplary embodiment illustrated in FIGS. 2 and 3, and may be added, changed, or changed as necessary. Can be deleted.
  • the resistor 110 may be a resistor connected in series with the battery 200 and having a predetermined resistance value.
  • the preset resistance value is a switch 300 controlled by the controller 150 to be described later to detect the deterioration of the switch 300 to be described later and to calculate the turn-on resistance value (R s ) of the switch 300.
  • the predetermined resistance value may be 1 m ⁇ , which is a threshold value of the turn-on resistance value R s of the switch 300.
  • the resistor 110 may be included in a current sensor for monitoring the current flowing in the battery 200 when the battery 200 is charged or discharged, for example, the resistor 110 may be a resistor.
  • the value may be a variable resistor or a shunt resistor.
  • the resistor 110 is illustrated as being connected to the negative electrode of the battery 200 in one embodiment, the location of the resistor 110 is not limited as long as the resistor 110 is connected to the battery 200.
  • the above-described battery 200 is not particularly limited in kind, but may be a secondary battery battery used in an electric vehicle, a hybrid vehicle, an energy storage system, an uninterruptible power supply, and the like, for example, a lithium ion battery, a lithium polymer battery, a nickel cadmium battery, and the like. , Nickel hydrogen batteries, nickel zinc batteries, and the like.
  • the switch 200 is connected to the battery 200 so that current flowing into the battery 200 is energized or cut off, and the type of the switch 300 is not particularly limited, but for controlling charge and discharge of the battery 200. It may be an on / off switch or a field effect transistor (FET) switch, or a relay switch for protecting the battery 200 from overcharge, overdischarge, and surge current.
  • FET field effect transistor
  • the switch 300 is illustrated as being connected to the positive electrode of the battery 200 in one embodiment, the position of the switch 300 is not limited as long as it is connected to the battery 200.
  • the first differential amplifier 120 may include a first inverting terminal ( ⁇ ), a first non-inverting terminal (+), a first output terminal Vo, and a variable resistor (not shown).
  • the first differential amplifier 120 sets the voltages V 1 and V 2 across the switch 300 to the first inverting terminal ( ⁇ ), respectively.
  • a first non-inverting terminal (+) and amplifies the voltage difference (V 1 -V 2 ) across the switch 300 to output the first output voltage (V 3 ) to the first output terminal (V o ). It can play a role.
  • the first non-inverting terminal (+) is connected to the high voltage terminal V 1 of both ends of the switch 300, and the first inverting terminal (-) is the low voltage terminal V 2 of both ends of the switch 300. It is connected to and can receive the voltage (V 1 , V 2 ) applied to both ends of the switch (300).
  • the first differential amplifier 120 has a voltage difference V 1 -V between the voltages V 1 and V 2 across the switch 300 input to the first inverting terminal ( ⁇ ) and the first non-inverting terminal (+). 2 ) may be amplified by a predetermined amplification factor G 1 to output the first output voltage V 3 to the first output terminal V o .
  • the preset amplification factor G 1 is a value that changes according to the resistance value of the variable resistor included in the first differential amplifier 120 and is a value controlled by the controller 150 to be described later.
  • Equation 1 The first output voltage V 3 amplified by the above-described first differential amplifier 120 and output to the first output terminal V o is represented by Equation 1 below.
  • the second differential amplifier 130 may include a second inverting terminal ( ⁇ ), a second non-inverting terminal (+), a second output terminal (V o ), and a variable resistor (not shown).
  • the second differential amplifier 130 receives the voltages V4 and V5 across the resistor 110 through the second inverting terminal (-) and the second non-inverting terminal (+), respectively, and the two ends of the resistor 110.
  • the voltage difference V 4 -V 5 may be amplified to output the second output voltage V 6 to the second output terminal V o .
  • the second non-inverting terminal (+) is connected to the high voltage terminal V 4 of both ends of the resistor 110, and the second inverting terminal (-) is the low voltage terminal V 5 of both ends of the resistor 110. It is connected to and can receive the voltage (V 4 , V 5 ) applied to both ends of the resistor (110).
  • the second differential amplifier 130 is the second inverting input terminal (-) and a second voltage difference between the non-inverting terminal (+) a resistor (110) across the voltage (V 4, V 5) to the input (V 4 -V 5 ) may be amplified by a predetermined amplification factor G 2 to output a second output voltage V 6 to the second output terminal V o .
  • the preset amplification factor G 2 is a value that changes according to the resistance value of the variable resistor included in the second differential amplifier 130 and is a value set by the controller 150 to be described later.
  • Equation 2 The second output voltage V 6 amplified by the second differential amplifier 130 described above and output to the second output terminal V o is represented by Equation 2 below.
  • the comparator 140 receives the first and second output voltages V 3 and V 6 from the first and second differential amplifiers 120 and 130, respectively, and the first and second output voltages V 3 and V 6 . Compare the size between the two, and transmits the comparison result to the controller 150 and the calculation unit 160 to be described later.
  • the comparator 140 compares the magnitude between the voltages input to the first and second input terminals (+,-) based on the voltage input from the second input terminal ( ⁇ ), and compares the signal according to the comparison result.
  • the third output terminal V o may be output.
  • the first input terminal (+) of the comparator 140 is connected to the first output terminal Vo of the first differential amplifier 120 to receive the first output voltage V 3 .
  • the second input terminal (-) of the comparator 140 may be connected to the second output terminal Vo of the second differential amplifier 130 to receive the second output voltage V6.
  • the comparator 140 compares the magnitude between the first and second output voltages based on the second output voltage V 6 input from the second input terminal ( ⁇ ), and the first output voltage is equal to the second output voltage.
  • the switch degradation signal may be output to the third output terminal (V o ), and when the first output voltage and the second output voltage are the same, the same output voltage signal may be output to the third output terminal (V o ).
  • the switch degradation signal may be an electrical signal indicating that the degradation of the switch 300 is out of the normal range because the turn-on resistance value R s of the switch 300 exceeds a threshold value.
  • the output voltage equal signal may be an electrical signal indicating that the turn-on resistance value R s of the switch 300 is equal to the threshold value.
  • the switch degradation signal output from the comparator 140 may be a positive voltage signal, the same output voltage signal may be a voltage signal of 0V, the comparison result of the comparator 140 is the first output voltage When the voltage is less than the second output voltage, a negative voltage signal may be output.
  • the correlation between the resistance value R r of the resistor 110, the turn-on resistance value R s of the switch 300, and the comparison result of the comparator 140 may be described in detail through the controller 150 described later. To explain.
  • the controller 150 may determine whether the switch 300 is deteriorated based on the comparison result of the comparator 140.
  • the amplification ratios G 1 and G 2 of the first and second differential amplifiers 120 and 130 are equally controlled through the controller 150, and the resistance value R r of the resistor 110 is controlled by the switch (
  • the controller 150 controls the turn-on of the switch 300. It may be determined that the switch 300 is deteriorated because the on resistance value R s exceeds the threshold.
  • the controller 150 does not control the amplification ratios G 1 and G 2 of the first and second differential amplifiers 120 and 130, and the first output voltage V 3 is a preset voltage. By comparing with the value exceeding may determine the degradation of the switch 300.
  • the controller 150 sets the preset voltage value as a threshold for determining whether the switch 300 is deteriorated, compares the first output voltage V 3 with the preset voltage value, and compares the first voltage with the first voltage. When the output voltage V 3 exceeds a preset voltage value, it may be determined that the switch 300 is deteriorated.
  • the controller 150 calculates the resistance of the resistor 110 such that the same output voltage signal is output from the comparator 140 in order to calculate the turn-on resistance value R s of the switch 300 in the calculator 160.
  • value (r r) it is possible to perform the role of controlling any one or more of the first differential amplifier amplification factor (G 1) and a second amplification factor (G 2) of the differential amplifier 130 of 120.
  • the calculator 160 uses the resistance value R r of the resistor 110 and the amplification ratios G 1 and G 2 of the first and second amplifiers. Thereby calculating the turn-on resistance value R s of the switch 300.
  • the controller 150 outputs a signal R r of the resistor 110, an amplification factor G 1 of the first differential amplifier 120, and a second so that the same output voltage signal is output from the comparator 140.
  • the controller 150 When controlling any one or more of the amplification factor G 2 of the differential amplifier 130, the first and second output voltages V 3 and V 6 output from the first and second differential amplifiers 120 and 130. Equality can be established as in Equation 3 below.
  • Equation 4 when the current I flows in a circuit in which the battery 200, the switch 300, and the resistor 110 are connected in series, the voltage difference V 1 -V 2 across the switch 300 is expressed by Equation 4 below.
  • the turn-on resistance value R s of the switch 300 is multiplied by the current I, and the voltage difference V 4 -V 5 across the resistor 110 is equal to the resistance value R r of the resistor 110.
  • the current I may be multiplied, and both sides of the current I may be canceled.
  • the resistance value R r of the resistor 110 and the amplification ratios of the first and second differential amplifiers 120 and 130 are received from the controller 150.
  • the turn-on resistance value R s of the switch 300 may be calculated through Equation 5 below.
  • FIG. 4 is a flowchart illustrating a procedure of determining a switch degradation by an apparatus for detecting switch degradation according to an embodiment of the present invention.
  • a switch is turned on so that current flows in a circuit in which a switch, a battery, and a resistor are connected in series, and a voltage is applied to each of the switch and the resistor in proportion to the turn-on resistance value of the switch and the resistance value of the resistance. Will be.
  • the voltage applied across the switch is input to the first differential amplifier, and the voltage applied across the resistor is input to the second differential amplifier (S401).
  • the first differential amplifier amplifies the voltage difference across the switch at the amplification ratio of the first differential amplifier and outputs the first output voltage.
  • the second differential amplifier amplifies the voltage difference across the resistor at the amplification ratio of the second differential amplifier.
  • the second output voltage is output (S402).
  • the comparator receives the first and second output voltages output from the first and second differential amplifiers, compares the magnitudes (S403), and returns to step S401 when the first output voltage does not exceed the second output voltage. (S404).
  • the comparator transmits the switch degradation signal to the controller (S405), and when the controller receives the switch degradation signal from the comparator, it determines that the switch is degraded ( S406).
  • the controller may turn off the switch to cut off the power in order to prevent a fire due to the deterioration of the switch and a fire of the battery system.
  • FIG. 5 is a flowchart illustrating a procedure of detecting and detecting a turn-on resistance value of a switch by an apparatus for detecting a switch degradation according to an exemplary embodiment of the present invention.
  • a current flows in a circuit in which resistors are connected in series, and voltage is applied to each of the switch and the resistor in proportion to the turn-on resistance of the switch and the resistance of the resistor.
  • the voltage applied across the switch is input to the first differential amplifier, and the voltage applied across the resistor is input to the second differential amplifier (S501).
  • the first differential amplifier amplifies the voltage difference across the switch at the amplification ratio of the first differential amplifier and outputs the first output voltage.
  • the second differential amplifier amplifies the voltage difference across the resistor at the amplification ratio of the second differential amplifier.
  • the second output voltage is output (S502).
  • the comparator receives the first and second output voltages output from the first and second differential amplifiers and compares the magnitudes (S503). When the first output voltage is not the same as the second output voltage, the comparator signals to the controller. Without transmitting the control unit, the control unit controls one or more of the resistance values of the resistors and the amplification ratios of the first and second differential amplifiers until the same output voltage signal is received from the comparator (S505). Thereafter, the process returns to step S501 (S504).
  • the comparator transmits the same output voltage signal to the control unit and the calculation unit (S506), and when the calculation unit receives the same output voltage signal from the comparator, the resistance value of the resistance from the control unit.
  • the amplification rates of the first and second differential amplifiers are received, and the turn-on resistance of the switch is calculated using Equation 5 described above.
  • the turn-on resistance value of the switch can be calculated without being affected by the temperature change around the switch and without measuring the current value of the current flowing through the switch. have.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

본 발명은 스위치 열화 검출 장치 및 방법에 관한 것으로서, 보다 상세하게는, 스위치를 통해 충방전이 제어되는 배터리와 직렬 연결되는 저항; 상기 스위치 양단의 전압차를 증폭하여 제1 출력 전압으로 출력하는 제1 차동증폭기; 상기 저항 양단의 전압차를 증폭하여 제2 출력 전압으로 출력하는 제2 차동증폭기; 상기 제2 및 제2 출력 전압 간에 대소를 비교하는 비교기; 및 상기 비교기의 비교 결과에 근거하여 상기 스위치의 열화 여부를 판단하는 제어부;를 포함하여 구성된다.

Description

스위치 열화 검출 장치 및 방법
본 출원은 2014년 10월 06일자 한국 특허 출원 제10-2014-0134373호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 스위치 열화 검출 장치 및 방법에 관한 것으로서, 보다 상세하게는, 스위치로 충방전이 제어되는 배터리에 직렬 연결되는 저항을 구비하고, 비교기를 통해 스위치 양단의 전압차를 증폭시킨 출력 전압과 저항 양단의 전압차를 증폭시킨 출력 전압을 비교하여 스위치의 열화를 검출하는 스위치 열화 검출 장치 및 방법에 관한 것이다. 또한, 본 발명은 차동증폭기의 출력 전압이 동일하도록, 저항의 저항값, 스위치 양단의 전압차를 증폭시키는 차동증폭기의 증폭율 및 저항 양단의 전압차를 증폭시키는 차동증폭기의 증폭율 중 하나 이상을 제어하고, 출력 전압이 동일한 시점의 저항의 저항값, 차동증폭기의 증폭율을 이용하여 스위치의 턴-온 저항값을 산출하는 스위치 열화 검출 장치 및 방법에 관한 것이다.
최근 화석 에너지의 고갈과 화석 에너지의 사용으로 인한 환경오염으로 이차 전지 배터리를 이용하여 구동할 수 있는 전기 제품에 대한 관심이 높아지고 있다. 이에 따라, 모바일 기기, 전기 차량(Electric Vehicle; EV), 하이브리드 차량(Hybrid Vehicle; HV), 에너지 저장 시스템(Energy Storage System; ESS) 및 무정전 전원 공급 장치(Uninterruptible Power Supply; UPS) 등에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차 전지 배터리의 수요가 급격히 증가하고 있다.
이러한 이차 전지 배터리는 화석 에너지의 사용을 획기적으로 감소시킬 수 있다는 일차적인 장점뿐만 아니라 에너지의 사용에 따른 부산물이 전혀 발생되지 않는다는 점에서 친환경 및 에너지 효율성 제고를 위한 새로운 에너지원으로 주목받고 있다.
특히, 전기 차량, 하이브리드 차량, 에너지 저장 시스템 및 무정전 전원 공급 장치에 사용되는 이차 전지 배터리는 고출력 및 대용량의 전력을 충전 또는 방전하기 위하여 배터리 모듈(Battery Module)을 여러 개 연결한 배터리 팩을 전력원으로 사용하고 있다.
이와 같이, 고출력 및 대용량의 전력이 수시로 충전 또는 방전되는 배터리 팩에는 배터리 팩의 충방전을 제어하기 위한 온/오프(On/Off) 스위치 및 과충전, 과방전 및 써지(Surge)성 전류로부터 배터리 팩을 보호하기 위한 릴레이(Relay) 스위치 등 다양한 스위치 소자가 설치되어 배터리 팩을 제어 및 보호하는 기능을 수행한다.
배터리 팩에 설치된 스위치 소자는 배터리 팩을 운용함에 따라 물리적 성능이 저하되는 열화 현상으로 인해 스위치 소자의 턴-온 저항값이 증가하고, 이는 다시 스위치 소자의 열화를 가속시켜 스위치 소자의 배터리 팩 제어 기능 및 보호 기능을 상실하게 된다.
이에 따라, 배터리 팩을 운용하는데 있어서, 배터리 팩에 설치된 스위치 소자의 열화를 검출하는 것이 중요하며, 스위치 소자의 열화를 보다 정확하게 검출하기 위하여 스위치 소자의 턴-온 저항을 정확하게 산출하는 것이 매우 중요하다.
종래의 배터리 팩에 설치된 스위치 소자의 열화를 검출하는 기술은 온도센서를 통해 스위치 소자의 온도를 상시 모니터링하여 비교 장치를 통해 측정된 온도와 기준 온도를 비교하고, 측정된 스위치 소자의 온도가 기준 온도를 초과하면 스위치가 열화된 것으로 판단하였다. 하지만, 이러한 스위치 소자의 온도는 다수의 스위치, 보호회로 및 제어모듈 등이 수용된 하우징 내부 온도에 영향을 받는 온도로써, 스위치 표면 즉, 스위치 자체의 온도가 아닌 스위치 주변의 환경에 따라 변경되는 온도이다.
따라서, 스위치 소자의 온도를 측정하여 스위치 소자의 열화를 검출하는 기술은 스위치 주변 환경에 영향을 받는 온도를 이용하므로 그 검출 결과의 신뢰도 및 정밀도가 떨어지지는 문제점을 가진다.
이에, 본 발명자는 상기의 문제점을 해결하기 위해, 스위치로 충방전이 제어되는 배터리에 직렬 연결되는 저항을 구비하고, 비교기를 통해 스위치 양단의 전압차를 증폭시킨 출력 전압과 저항 양단의 전압차를 증폭시킨 출력 전압을 비교하여 스위치의 열화를 검출할 뿐만 아니라, 차동증폭기의 출력 전압이 동일하도록 저항의 저항값, 스위치 양단의 전압차를 증폭시키는 차동증폭기의 증폭율 및 저항 양단의 전압차를 증폭시키는 차동증폭기의 증폭율 중 하나 이상을 제어하고, 출력 전압이 동일한 시점의 저항의 저항값, 차동증폭기의 증폭율을 이용하여 스위치의 턴-온 저항값을 산출하는 스위치 열화 검출 장치 및 방법을 발명하기에 이르렀다.
본 발명은 상술된 문제점을 해결하기 위해 안출된 것으로, 본 발명의 목적은, 비교기를 통해 배터리의 충방전을 제어하는 스위치 양단의 전압차를 증폭시킨 출력 전압과 배터리와 직렬 연결된 저항 양단의 전압차를 증폭시킨 출력 전압을 비교하고, 비교기의 비교 결과에 근거하여 스위치의 열화를 검출함으로써, 스위치의 열화 검출 결과에 대한 신뢰도 및 정밀도가 향상된 정확한 검출 결과를 제공할 수 있는 스위치 열화 검출 장치 및 방법을 제공하는 것이다.
또한, 본 발명의 목적은, 차동증폭기의 출력 전압이 동일하도록, 저항의 저항값, 스위치 양단의 전압차를 증폭시키는 차동증폭기의 증폭율 및 저항 양단의 전압차를 증폭시키는 차동증폭기의 증폭율 중 하나 이상을 제어하고, 출력 전압이 동일한 시점의 저항의 저항값, 차동증폭기의 증폭율을 이용하여 스위치의 턴-온 저항값을 산출할 수 있는 스위치 열화 검출 장치 및 방법을 제공하는 것이다.
본 발명의 일 실시예에 따른, 스위치 열화 검출 장치는 스위치를 통해 충방전이 제어되는 배터리와 직렬 연결되는 저항; 상기 스위치 양단의 전압차를 증폭하여 제1 출력 전압으로 출력하는 제1 차동증폭기; 상기 저항 양단의 전압차를 증폭하여 제2 출력 전압으로 출력하는 제2 차동증폭기; 상기 제2 및 제2 출력 전압 간에 대소를 비교하는 비교기; 및 상기 비교기의 비교 결과에 근거하여 상기 스위치의 열화 여부를 판단하는 제어부;를 포함하여 구성된다.
상기 비교기는, 상기 제1 및 제2 출력 전압 간에 대소 비교 결과, 상기 제1 출력 전압이 상기 제2 출력 전압을 초과하는 경우, 스위치 열화 신호를 출력할 수 있다.
상기 제어부는, 상기 스위치 열화 신호를 수신하는 경우, 상기 스위치가 열화된 것으로 판단할 수 있다.
상기 비교기는, 상기 제1 및 제2 출력 전압 간에 대소 비교 결과, 상기 제1 출력 전압과 상기 제2 출력 전압이 동일한 경우, 출력 전압 동일 신호를 출력할 수 있다.
상기 제어부는, 상기 비교기로부터 상기 출력 전압 동일 신호가 출력되도록 상기 저항의 저항값, 상기 제1 및 제2 차동증폭기의 증폭율 중 하나 이상을 제어할 수 있다.
상기 스위치 열화 검출 장치는 상기 비교기부로터 상기 출력 전압 동일 신호를 수신하는 경우, 상기 저항의 저항값, 상기 제1 및 제2 증폭기의 증폭율을 이용하여 상기 스위치의 턴-온 저항값을 산출하는 산출부;를 더 포함할 수 있다.
상기 산출부는, 하기 수학식을 이용하여 상기 스위치의 턴-온 저항값을 산출할 수 있다.
<수학식>
Figure PCTKR2015007910-appb-I000001
여기서, Rs = 스위치의 턴-온 저항값,
Rr = 저항의 저항값
G1 = 비교기가 출력 전압 동일 신호를 출력할 때, 제1 차동증폭기의 증폭율,
G2 = 비교기가 출력 전압 동일 신호를 출력할 때, 제2 차동증폭기의 증폭율
본 발명의 일 실시예에 따른, 스위치 열화 검출 방법은, 스위치를 통해 충방전이 제어되는 배터리에 직렬 연결되는 저항을 구비하는 단계; 제1 차동증폭기가 상기 스위치 양단의 전압차를 증폭하여 제1 출력 전압으로 출력하는 단계; 제2 차동증폭기가 상기 저항 양단의 전압차를 증폭하여 제2 출력 전압으로 출력하는 단계; 비교기가 상기 제1 및 제2 출력 전압 간에 대소를 비교하는 단게; 및 제어부가 상기 비교기의 비교 결과에 근거하여 상기 스위치의 열화를 판단하는 단계;를 포함하여 구성된다.
상기 스위치 열화 검출 방법은, 상기 비교기가 상기 제1 및 제2 출력 전압 간에 대소 비교 결과, 상기 제1 출력 전압이 상기 제2 출력 전압을 초과하는 경우, 스위치 열화 신호를 출력하는 단계;를 더 포함할 수 있다.
상기 스위치 열화 검출 방법은, 상기 제어부가 상기 스위치 열화 신호를 수신하는 경우, 상기 스위치가 열화된 것으로 판단하는 단계;를 더 포함할 수 있다.
상기 스위치 열화 검출 방법은, 상기 비교기가 상기 제1 및 제2 출력 전압 간에 대소 비교 결과, 상기 제1 출력 전압과 상기 제2 출력 전압이 동일한 경우, 출력 전압 동일 신호를 출력하는 단계;를 더 포함할 수 있다.
상기 스위치 열화 검출 방법은, 상기 제어부가 상기 비교기로부터 상기 출력 전압 동일 신호가 출력되도록 상기 저항의 저항값, 상기 제1 및 제2 차동증폭기의 증폭율 중 하나 이상을 제어하는 단계;를 더 포함할 수 있다.
상기 스위치 열화 검출 방법은, 산출부가 상기 비교기부로터 상기 출력 전압 동일 신호를 수신하는 경우, 상기 저항의 저항값, 상기 제1 및 제2 증폭기의 증폭율을 이용하여 상기 스위치의 턴-온 저항값을 산출하는 단계;를 더 포함할 수 있다.
상기 산출부는, 하기 수학식을 이용하여 상기 스위치의 턴-온 저항값을 산출할 수 있다.
<수학식>
Figure PCTKR2015007910-appb-I000002
여기서, Rs = 스위치의 턴-온 저항값,
Rr = 저항의 저항값
G1 = 비교기가 출력 전압 동일 신호를 출력할 때, 제1 차동증폭기의 증폭율,
G2 = 비교기가 출력 전압 동일 신호를 출력할 때, 제2 차동증폭기의 증폭율
본 발명의 일 실시예에 따른 스위치 열화 검출 장치 및 방법은 스위치 주변 온도에 영향을 받는 스위치의 온도를 이용하여 스위치의 열화를 검출하지 않고, 스위치 양단의 전압차 및 배터리와 직렬 연결된 저항 양단의 전압차를 각각 증폭 및 비교하여 스위치의 열화를 검출함으로써, 스위치의 열화 검출 결과에 대한 신뢰도 및 정밀도가 향상된 정확한 검출 결과를 제공하는 효과를 가진다.
또한, 본 발명은 측정 시점을 동기화하여 측정된 스위치의 전압 및 전류를 이용하여 스위치의 턴-온 저항값을 산출하지 않고, 차동증폭기들의 출력 전압이 동일하도록 저항의 저항값 및 차동증폭기들의 증폭율 중 하나 이상을 제어하고, 출력 전압이 동일한 시점의 배터리와 직렬 연결된 저항의 저항값, 차동층폭기들의 증폭율만을 이용하여 스위치의 턴-온 저항값을 정확하게 산출하는 효과를 가진다.
또한, 본 발명은 정확한 스위치 열화 검출 결과 및 스위치의 턴-온 저항값을 제공함으로써, 스위치의 과열로 인한 배터리 시스템의 손상 및 화재를 예방하는 효과를 가진다.
도 1은 본 발명의 일 실시예에 따른 스위치 열화 검출 장치가 적용될 수 있는 전기 차량을 개략적으로 도시한 도면이다.
도 2는 본 발명의 일 실시예에 따른 스위치 열화 검출 장치의 구성을 도시한 블록도이다.
도 3은 본 발명의 일 실시예에 따른 스위치 열화 검출 장치의 구체적인 구성의 일 예를 도시한 도면이다.
도 4는 본 발명의 일 실시예에 따른 스위치 열화 검출 장치가 스위치의 열화를 판단하는 순서를 도시한 순서도이다.
도 5는 본 발명의 일 실시예에 따른 스위치 열화 검출 장치가 스위치의 턴-온 저항값을 산출하는 순서를 도시한 순서도이다.
본 발명을 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다. 여기서, 반복되는 설명, 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능, 및 구성에 대한 상세한 설명은 생략한다. 본 발명의 실시형태는 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다. 따라서, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위하여 과장될 수 있다.
명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
또한, 명세서에 기재된 "...부"의 용어는 하나 이상의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.
도 1은 본 발명의 일 실시예에 따른 스위치 열화 검출 장치가 적용될 수 있는 전기 차량을 개략적으로 도시한 도면이다.
도 1에서 본 발명의 일 실시예에 따른 스위치 열화 검출 장치가 전기 차량에 적용된 예를 도시하고 있으나, 본 발명의 일 실시예에 따른 스위치 열화 검출 장치는 전기 차량 이외에도 모바일 기기, 에너지 저장 시스템 또는 무정전 전원 공급 장치 등 이차 전지 배터리가 적용될 수 있는 분야라면 어떠한 기술 분야라도 적용될 수 있다.
전기 차량(1)은 배터리(10), BMS(Battery Management System, 20), ECU(Electronic Control Unit, 30), 인버터(40) 및 모터(50)를 포함하여 구성될 수 있다.
배터리(10)는 모터(50)에 구동력을 제공하여 전기 차량(1)를 구동시키는 전기 에너지원이다. 배터리(10)는 모터(50) 또는 내연 기관(미도시)의 구동에 따라 인버터(40)에 의해 충전되거나 방전될 수 있다.
여기서, 배터리(10)의 종류는 특별히 한정되지 않으며, 예컨대 리튬 이온 전지, 리튬 폴리머 전지, 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지 등으로 구성할 수 있다.
BMS(20)는 배터리(10)의 상태를 추정하고, 추정한 상태 정보를 이용하여 배터리(10)를 관리한다. 예컨대, 배터리(10)의 잔존 용량(State Of Charging; SOC), 잔존 수명(State Of Health; SOH), 최대 입출력 전력 허용량, 출력 전압 등 배터리(10) 상태 정보를 추정하고 관리한다. 그리고, 이러한 상태 정보를 이용하여 배터리(10)의 충전 또는 방전을 제어하며, 나아가 배터리(10)의 교체 시기 추정도 가능하다.
또한, BMS(20)는 후술되는 스위치 열화 검출 장치(도 2의 100)를 포함할 수 있다. 이러한 스위치 열화 검출 장치(100)에 의해 배터리(10)에 연결된 스위치(미도시)의 열화를 검출하여 배터리(10)가 소손되는 것을 방지할 수 있다.
ECU(30)는 전기 차량(1)의 상태를 제어하는 전자적 제어 장치이다. 예컨대, 액셀러레이터(Accelerator), 브레이크(Break), 속도 등의 정보에 기초하여 토크 정도를 결정하고, 모터(50)의 출력이 토크 정보에 맞도록 제어한다.
또한, ECU(30)는 BMS(20)에 의해 전달받은 배터리(10)의 SOC, SOH 등의 상태 정보에 기초하여 배터리(10)가 충전 또는 방전될 수 있도록 인버터(40)에 제어 신호를 보낸다.
인버터(40)는 ECU(30)의 제어 신호에 기초하여 배터리(10)가 충전 또는 방전되도록 한다.
모터(50)는 배터리(10)의 전기 에너지를 이용하여 ECU(30)로부터 전달되는 제어 정보(예컨대, 토크 정보)에 기초하여 전기 차량(1)를 구동한다.
도 2는 본 발명의 일 실시예에 따른 스위치 열화 검출 장치의 구성을 도시한 블록도이고, 도 3은 본 발명의 일 실시예에 따른 스위치 열화 검출 장치의 구체적인 구성의 일 예를 도시한 도면이다.
도 2 및 도 3을 참조하면, 스위치 열화 검출 장치(100)는 저항(110), 제1 차동증폭기(120), 제2 차동증폭기(130), 비교기(140), 제어부(150) 및 산출부(160)를 포함하여 구성될 수 있다. 도 2 및 도 3에 도시된 스위치 열화 검출 장치(100)는 일 실시예에 따른 것이고, 그 구성요소들이 도 2 및 도 3에 도시된 실시예에 한정되는 것은 아니며, 필요에 따라 부가, 변경 또는 삭제될 수 있다.
저항(110)은 배터리(200)에 직렬 연결되고, 기 설정된 저항값을 갖는 저항 소자일 수 있다. 여기서, 기 설정된 저항값은 후술되는 스위치(300)의 열화를 검출하고 스위치(300)의 턴-온 저항값(Rs)을 산출하기 위하여, 후술되는 제어부(150)를 통해 제어되는 스위치(300)의 턴-온 저항값(Rs)의 임계값일 수 있다. 예를 들어, 기 설정된 저항값은 스위치(300)의 턴-온 저항값(Rs)의 임계값인 1mΩ일 수 있다.
일 실시예에서, 저항(110)은 배터리(200)에 전력이 충전 또는 방전 시, 배터리(200)에 흐르는 전류를 모니터링하기 위한 전류 센서에 포함될 수 있으며, 예를 들어, 저항(110)은 저항값이 가변되는 가변 저항이거나 션트(Shunt) 저항일 수 있다.
한편, 일 실시예에서 저항(110)은 배터리(200)의 음극에 연결되는 것으로 도시되어 있지만, 배터리(200)와 연결되는한 저항(110)의 위치는 한정되지 않음을 유의한다.
상술된 배터리(200)는 그 종류는 특별히 한정되지 않으나 전기 차량, 하이브리드 차량, 에너지 저장 시스템 및 무정전 전원 공급 장치 등에 사용되는 이차 전지 배터리일 수 있으며, 예컨대 리튬 이온 전지, 리튬 폴리머 전지, 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지 등으로 구성될 수 있다.
배터리(200)에는 스위치(300)가 연결되어 배터리(200)로 유입되는 전류가 통전 또는 차단되며, 이러한 스위치(300) 또한 그 종류가 특별히 한정되지 않으나 배터리(200)의 충방전을 제어하기 위한 온/오프 스위치 또는 FET(Field Effect Transistor) 스위치, 배터리(200)를 과충전, 과방전 및 써지성 전류로부터 보호하기 위한 릴레이 스위치일 수 있다.
한편, 일 실시예에서 스위치(300)는 배터리(200)의 양극에 연결되는 것으로 도시되어 있지만, 배터리(200)와 연결되는한 스위치(300)의 위치는 한정되지 않음을 유의한다.
제1 차동증폭기(120)는 제1 반전 단자(-), 제1 비반전 단자(+), 제1 출력 단자(Vo) 및 가변 저항(미도시)을 포함할 수 있다. 이러한, 제1 차동증폭기(120)는 스위치(300)가 턴-온 되어 동작 상태가 온 상태인 경우, 스위치(300) 양단의 전압(V1, V2)을 각각 제1 반전 단자(-) 및 제1 비반전 단자(+)로 입력받고, 스위치(300) 양단의 전압차(V1-V2)를 증폭시켜 제1 출력 단자(Vo)로 제1 출력 전압(V3)을 출력하는 역할을 수행할 수 있다.
보다 구체적으로, 제1 비반전 단자(+)는 스위치(300)의 양단 중 고전압 단자(V1)와 연결되고 제1 반전 단자(-)는 스위치(300)의 양단 중 저전압 단자(V2)와 연결되어 스위치(300)의 양단에 인가된 전압(V1, V2)을 입력받을 수 있다.
이어서, 제1 차동증폭기(120)는 제1 반전 단자(-) 및 제1 비반전 단자(+)로 입력된 스위치(300) 양단 전압(V1, V2)의 전압차(V1-V2)를 기 설정된 증폭율(G1)만큼 증폭시켜 제1 출력 단자(Vo)로 제1 출력 전압(V3)을 출력시킬 수 있다.
여기서, 기 설정된 증폭율(G1)은 제1 차동증폭기(120)에 포함된 가변 저항의 저항값에 따라 변화하는 값으로써, 후술되는 제어부(150)에 의해 제어되는 값이다.
상술된 제1 차동증폭기(120)를 통해 증폭되어 제1 출력 단자(Vo)로 출력되는 제1 출력 전압(V3)은 하기의 수학식 1과 같다.
<수학식 1>
Figure PCTKR2015007910-appb-I000003
제2 차동증폭기(130)는 제2 반전 단자(-), 제2 비반전 단자(+), 제2 출력 단자(Vo) 및 가변 저항(미도시)을 포함할 수 있다. 이러한, 제2 차동증폭기(130)는 저항(110) 양단의 전압(V4, V5)을 각각 제2 반전 단자(-) 및 제2 비반전 단자(+)로 입력받고, 저항(110) 양단의 전압차(V4-V5)를 증폭시켜 제2 출력 단자(Vo)로 제2 출력 전압(V6)을 출력하는 역할을 수행할 수 있다.
보다 구체적으로, 제2 비반전 단자(+)는 저항(110)의 양단 중 고전압 단자(V4)와 연결되고 제2 반전 단자(-)는 저항(110)의 양단 중 저전압 단자(V5)와 연결되어 저항(110)의 양단에 인가된 전압(V4, V5)을 입력받을 수 있다.
이어서, 제2 차동증폭기(130)는 제2 반전 단자(-) 및 제2 비반전 단자(+)로 입력된 저항(110) 양단 전압(V4, V5)의 전압차(V4-V5)를 기 설정된 증폭율(G2)만큼 증폭시켜 제2 출력 단자(Vo)로 제2 출력 전압(V6)을 출력시킬 수 있다.
여기서, 기 설정된 증폭율(G2)은 제2 차동증폭기(130)에 포함된 가변 저항의 저항값에 따라 변화하는 값으로써, 후술되는 제어부(150)에 의해 설정되는 값이다.
상술된 제2 차동증폭기(130)를 통해 증폭되어 제2 출력 단자(Vo)로 출력되는 제2 출력 전압(V6)은 하기의 수학식 2와 같다.
<수학식 2>
Figure PCTKR2015007910-appb-I000004
비교기(140)는 제1 및 제2 차동증폭기(120, 130)로부터 각각 제1 및 제2 출력 전압(V3, V6)를 입력받아 제1 및 제2 출력 전압(V3, V6) 간에 대소를 비교하고, 비교 결과를 후술되는 제어부(150) 및 산출부(160)으로 송신하는 역할을 수행할 수 있다.
보다 구체적으로, 비교기(140)는 제2 입력 단자(-)로부터 입력된 전압을 기준으로 제1 및 제2 입력 단자(+, -)에 입력된 전압 간에 대소를 비교하고 비교 결과에 따른 신호를 제3 출력 단자(Vo)로 출력할 수 있다.
도 3에 도시된 바와 같이, 비교기(140)의 제1 입력 단자(+)는 제1 차동증폭기(120)의 제1 출력 단자(Vo)와 연결되어 제1 출력 전압(V3)을 입력받고, 비교기(140)의 제2 입력 단자(-)는 제2 차동증폭기(130)의 제2 출력 단자(Vo)와 연결되어 제2 출력 전압(V6)을 입력받을 수 있다.
이어서, 비교기(140)는 제2 입력 단자(-)로부터 입력된 제2 출력 전압(V6)을 기준으로 제1 및 제2 출력 전압 간에 대소를 비교하고, 제1 출력 전압이 제2 출력 전압을 초과하는 경우, 스위치 열화 신호를 제3 출력 단자(Vo)로 출력할 수 있으며, 제1 출력 전압과 제2 출력 전압이 동일한 경우, 출력 전압 동일 신호를 제3 출력 단자(Vo)로 출력할 수 있다.
여기서, 스위치 열화 신호는 스위치(300)의 턴-온 저항값(Rs)이 임계값을 초과하여 스위치(300)의 열화 현상이 정상범위를 벗어났음을 알리는 전기적 신호일 수 있다. 또한, 출력 전압 동일 신호는 스위치(300)의 턴-온 저항값(Rs)이 임계값과 동일함을 알리는 전기적 신호일 수 있다.
일 실시예에서, 비교기(140)로부터 출력되는 스위치 열화 신호는 양(+)의 전압 신호일 수 있으며, 출력 전압 동일 신호는 0V의 전압 신호일 수 있고, 비교기(140)의 비교 결과가 제1 출력 전압이 제2 출력 전압 미만인 경우 음(-)의 전압 신호를 출력할 수 있다.
상술된 저항(110)의 저항값(Rr), 스위치(300)의 턴-온 저항값(Rs) 및 비교기(140)의 비교 결과에 대한 상호 관계는 후술되는 제어부(150)을 통해 구체적으로 설명하도록 한다.
제어부(150)는 비교기(140)의 비교 결과에 근거하여 스위치(300)의 열화 여부를 판단하는 역할을 수행할 수 있다.
도 3에 도시된 바와 같이, 배터리(200), 스위치(300) 및 저항(110)이 직렬 연결되어 있으므로 스위치(300) 양단에 인가되는 전압(V1-V2)과 저항(110) 양단에 인가되는 전압(V4-V5)은 각각 스위치(300)의 턴-온 저항값(Rs)과 저항(110)의 저항값(Rr)에 비례한다. 또한, 제1 및 제2 차동증폭기(120, 130)의 증폭율(G1, G2)이 동일한 경우 제1 및 제2 출력 전압(V3, V6) 또한 스위치(300)의 턴-온 저항값(Rs)과 저항(110)의 저항값(Rr)에 각각 동일하게 비례한다.
따라서, 제어부(150)를 통해 제1 및 제2 차동증폭기(120, 130)의 증폭율(G1, G2)이 동일하게 제어되고, 저항(110)의 저항값(Rr)은 스위치(300)의 턴-온 저항값(Rs)의 임계값으로 제어된 스위치 검출 장치(100)의 비교기(140)로부터 스위치 열화 신호가 출력되는 경우, 제어부(150)는 스위치(300)의 턴-온 저항값(Rs)이 임계값을 초과하여 스위치(300)가 열화된 것으로 판단할 수 있다.
또한, 다른 실시예에서 제어부(150)는 제1 및 제2 차동증폭기(120, 130)의 증폭율(G1, G2)을 제어하지 않고, 제1 출력 전압(V3)이 기 설정된 전압값을 초과하는지 비교하여 스위치(300)의 열화 여부를 판단하는 역할을 수행할 수 있다.
보다 구체적으로, 제어부(150)는 기 설정된 전압값을 스위치(300)의 열화 여부를 판단하는 임계값으로 설정하여 제1 출력 전압(V3)과 기 설정된 전압값을 비교하고, 비교 결과 제1 출력 전압(V3)이 기 설정된 전압값을 초과하는 경우, 스위치(300)가 열화된 것으로 판단할 수 있다.
한편, 제어부(150)는 산출부(160)에서 스위치(300)의 턴-온 저항값(Rs)을 산출하기 위하여, 비교기(140)로부터 출력 전압 동일 신호가 출력되도록 저항(110)의 저항값(Rr), 제1 차동증폭기(120)의 증폭율(G1) 및 제2 차동증폭기(130)의 증폭율(G2) 중 어느 하나 이상을 제어하는 역할을 수행할 수 있다.
산출부(160)는 비교기(140)로부터 출력 전압 동일 신호를 수신하는 경우, 저항(110)의 저항값(Rr), 제1 및 제2 증폭기의 증폭율(G1, G2)을 이용하여 스위치(300)의 턴-온 저항값(Rs)을 산출하는 역할을 수행할 수 있다.
보다 구체적으로, 제어부(150)가 비교기(140)로부터 출력 전압 동일 신호가 출력되도록 저항(110)의 저항값(Rr), 제1 차동증폭기(120)의 증폭율(G1) 및 제2 차동증폭기(130)의 증폭율(G2) 중 어느 하나 이상을 제어하는 경우, 제1 및 제2 차동증폭기(120, 130)로부터 출력되는 제1 및 제2 출력 전압(V3, V6)은 하기의 수학식 3과 같이 대등관계가 성립할 수 있다.
<수학식 3>
Figure PCTKR2015007910-appb-I000005
또한, 배터리(200), 스위치(300) 및 저항(110)이 직렬 연결된 회로에 전류 I가 흐르는 경우, 하기의 수학식 4와 같이 스위치(300) 양단의 전압차(V1-V2)는 스위치(300)의 턴-온 저항값(Rs)에 전류 I를 곱한 값이며, 저항(110) 양단의 전압차(V4-V5)는 저항(110)의 저항값(Rr)에 전류 I를 곱한 값일 수 있고, 양변의 전류 I는 소거될 수 있다.
<수학식 4>
Figure PCTKR2015007910-appb-I000006
따라서, 산출부(160)는 출력 전압 동일 신호를 수신하는 경우, 제어부(150)로부터 저항(110)의 저항값(Rr) 및 제1 및 제2 차동증폭기(120, 130)의 증폭율(G1, G2)를 수신하여, 하기의 수학식 5를 통해 스위치(300)의 턴-온 저항값(Rs)을 산출할 수 있다.
<수학식 5>
Figure PCTKR2015007910-appb-I000007
도 4는 본 발명의 일 실시예에 따른 스위치 열화 검출 장치가 스위치의 열화를 판단하는 순서를 도시한 순서도이다.
도 4를 참조하면, 먼저 스위치가 턴-온되어 스위치, 배터리 및 저항이 직렬 연결된 회로에 전류가 흐르고, 스위치의 턴-온 저항값과 저항의 저항값에 비례하여 스위치 및 저항 각각에 전압이 인가되게 된다.
스위치 양단에 인가된 전압은 제1 차동증폭기로 입력되고, 저항 양단에 인가된 전압은 제2 차동증폭기로 입력되게 된다(S401).
제1 차동증폭기는 스위치 양단의 전압차를 제1 차동증폭기의 증폭율로 증폭시켜 제1 출력 전압으로 출력시키고, 제2 차동증폭기는 저항 양단의 전압차를 제2 차동증폭기의 증폭율로 증폭시켜 제2 출력 전압으로 출력시키게 된다(S402).
비교기는 제1 및 제2 차동증폭기로부터 출력된 제1 및 제2 출력 전압을 입력받아 대소를 비교하고(S403), 제1 출력 전압이 제2 출력 전압을 초과하지 않는 경우, S401 단계로 돌아가게 된다(S404).
제1 출력 전압이 제2 출력 전압을 초과하는 경우, 비교기는 제어부로 스위치 열화 신호를 송신하게 되고(S405), 제어부는 비교기로부터 스위치 열화 신호를 수신하는 경우, 스위치가 열화된 것으로 판단하게 된다(S406).
이후, 제어부는 스위치의 열화 현상으로 인한 화재 및 배터리 시스템의 화재를 예방하기 위해, 스위치를 턴-오프시켜 전력을 차단할 수 있다.
도 5는 본 발명의 일 실시예에 따른 스위치 열화 검출 장치가 스위치의 턴-온 저항값을 산출 검출하는 순서를 도시한 순서도이다.도 4를 참조하면, 먼저 스위치가 턴-온되어 스위치, 배터리 및 저항이 직렬 연결된 회로에 전류가 흐르고, 스위치의 턴-온 저항값과 저항의 저항값에 비례하여 스위치 및 저항 각각에 전압이 인가되게 된다.
스위치 양단에 인가된 전압은 제1 차동증폭기로 입력되고, 저항 양단에 인가된 전압은 제2 차동증폭기로 입력되게 된다(S501).
제1 차동증폭기는 스위치 양단의 전압차를 제1 차동증폭기의 증폭율로 증폭시켜 제1 출력 전압으로 출력시키고, 제2 차동증폭기는 저항 양단의 전압차를 제2 차동증폭기의 증폭율로 증폭시켜 제2 출력 전압으로 출력시키게 된다(S502).
비교기는 제1 및 제2 차동증폭기로부터 출력된 제1 및 제2 출력 전압을 입력받아 대소를 비교하고(S503), 제1 출력 전압이 제2 출력 전압과 동일하지 않는 경우, 비교기는 제어부로 신호를 송신하지 않고 제어부는 비교기로부터 출력 전압 동일 신호를 수신할 때까지 저항의 저항값, 제1 및 제2 차동 증폭기의 증폭율 중 하나 이상을 제어하게 된다(S505). 이후, S501 단계로 돌아간다(S504).
제1 출력 전압과 제2 출력 전압이 동일한 경우, 비교기는 제어부 및 산출부로 출력 전압 동일 신호를 송신하게 되고(S506), 산출부는 비교기로부터 출력 전압 동일 신호를 수신하는 경우, 제어부로부터 저항의 저항값, 제1 및 제2 차동 증폭기의 증폭율을 수신하고, 상술된 수학식 5를 이용하여 스위치의 턴-온 저항값을 산출하게 된다(S507).
이와 같은, 본 발명의 일 실시예에 따른 스위치 열화 검출 장치를 통해 스위치 주변의 온도 변화에 영향을 받지않고, 스위치에 흐르는 전류의 전류값을 측정하지 않고도 스위치의 턴-온 저항값을 산출할 수 있다.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (14)

  1. 스위치를 통해 충방전이 제어되는 배터리와 직렬 연결되는 저항;
    상기 스위치 양단의 전압차를 증폭하여 제1 출력 전압으로 출력하는 제1 차동증폭기;
    상기 저항 양단의 전압차를 증폭하여 제2 출력 전압으로 출력하는 제2 차동증폭기;
    상기 제2 및 제2 출력 전압 간에 대소를 비교하는 비교기; 및
    상기 비교기의 비교 결과에 근거하여 상기 스위치의 열화 여부를 판단하는 제어부;를 포함하는 것을 특징으로 하는,
    스위치 열화 검출 장치.
  2. 제1항에 있어서,
    상기 비교기는,
    상기 제1 및 제2 출력 전압 간에 대소 비교 결과, 상기 제1 출력 전압이 상기 제2 출력 전압을 초과하는 경우, 스위치 열화 신호를 출력하는 것을 특징으로 하는,
    스위치 열화 검출 장치.
  3. 제2항에 있어서,
    상기 제어부는,
    상기 스위치 열화 신호를 수신하는 경우, 상기 스위치가 열화된 것으로 판단하는 것을 특징으로 하는,
    스위치 열화 검출 장치.
  4. 제2항에 있어서,
    상기 비교기는,
    상기 제1 및 제2 출력 전압 간에 대소 비교 결과, 상기 제1 출력 전압과 상기 제2 출력 전압이 동일한 경우, 출력 전압 동일 신호를 출력하는 것을 특징으로 하는,
    스위치 열화 검출 장치.
  5. 제4항에 있어서,
    상기 제어부는,
    상기 비교기로부터 상기 출력 전압 동일 신호가 출력되도록 상기 저항의 저항값, 상기 제1 및 제2 차동증폭기의 증폭율 중 하나 이상을 제어하는 것을 특징으로 하는,
    스위치 열화 검출 장치.
  6. 제5항에 있어서,
    상기 비교기부로터 상기 출력 전압 동일 신호를 수신하는 경우, 상기 저항의 저항값, 상기 제1 및 제2 증폭기의 증폭율을 이용하여 상기 스위치의 턴-온 저항값을 산출하는 산출부;를 더 포함하는 것을 특징으로 하는,
    스위치 열화 검출 장치.
  7. 제6항에 있어서,
    상기 산출부는,
    하기 수학식을 이용하여 상기 스위치의 턴-온 저항값을 산출하는 것을 특징으로 하는,
    스위치 열화 검출 장치.
    <수학식>
    Figure PCTKR2015007910-appb-I000008
    여기서, Rs = 스위치의 턴-온 저항값,
    Rr = 저항의 저항값
    G1 = 비교기가 출력 전압 동일 신호를 출력할 때, 제1 차동증폭기의 증폭율,
    G2 = 비교기가 출력 전압 동일 신호를 출력할 때, 제2 차동증폭기의 증폭율
  8. 스위치를 통해 충방전이 제어되는 배터리에 직렬 연결되는 저항을 구비하는 단계;
    제1 차동증폭기가 상기 스위치 양단의 전압차를 증폭하여 제1 출력 전압으로 출력하는 단계;
    제2 차동증폭기가 상기 저항 양단의 전압차를 증폭하여 제2 출력 전압으로 출력하는 단계;
    비교기가 상기 제1 및 제2 출력 전압 간에 대소를 비교하는 단게; 및
    제어부가 상기 비교기의 비교 결과에 근거하여 상기 스위치의 열화를 판단하는 단계;를 포함하는 것을 특징으로 하는,
    스위치 열화 검출 방법.
  9. 제8항에 있어서,
    상기 비교기가 상기 제1 및 제2 출력 전압 간에 대소 비교 결과, 상기 제1 출력 전압이 상기 제2 출력 전압을 초과하는 경우, 스위치 열화 신호를 출력하는 단계;를 더 포함하는 것을 특징으로 하는,
    스위치 열화 검출 방법.
  10. 제9항에 있어서,
    상기 제어부가 상기 스위치 열화 신호를 수신하는 경우, 상기 스위치가 열화된 것으로 판단하는 단계;를 더 포함하는 것을 특징으로 하는,
    스위치 열화 검출 방법.
  11. 제8항에 있어서,
    상기 비교기가 상기 제1 및 제2 출력 전압 간에 대소 비교 결과, 상기 제1 출력 전압과 상기 제2 출력 전압이 동일한 경우, 출력 전압 동일 신호를 출력하는 단계;를 더 포함하는 것을 특징으로 하는,
    스위치 열화 검출 방법.
  12. 제11항에 있어서,
    상기 제어부가 상기 비교기로부터 상기 출력 전압 동일 신호가 출력되도록 상기 저항의 저항값, 상기 제1 및 제2 차동증폭기의 증폭율 중 하나 이상을 제어하는 단계;를 더 포함하는 것을 특징으로 하는,
    스위치 열화 검출 방법.
  13. 제12항에 있어서,
    산출부가 상기 비교기부로터 상기 출력 전압 동일 신호를 수신하는 경우, 상기 저항의 저항값, 상기 제1 및 제2 증폭기의 증폭율을 이용하여 상기 스위치의 턴-온 저항값을 산출하는 단계;를 더 포함하는 것을 특징으로 하는,
    스위치 열화 검출 방법.
  14. 제13항에 있어서,
    상기 산출부는,
    하기 수학식을 이용하여 상기 스위치의 턴-온 저항값을 산출하는 것을 특징으로 하는,
    스위치 열화 검출 방법.
    <수학식>
    Figure PCTKR2015007910-appb-I000009
    여기서, Rs = 스위치의 턴-온 저항값,
    Rr = 저항의 저항값
    G1 = 비교기가 출력 전압 동일 신호를 출력할 때, 제1 차동증폭기의 증폭율,
    G2 = 비교기가 출력 전압 동일 신호를 출력할 때, 제2 차동증폭기의 증폭율
PCT/KR2015/007910 2014-10-06 2015-07-29 스위치 열화 검출 장치 및 방법 WO2016056740A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580026445.XA CN106415295B (zh) 2014-10-06 2015-07-29 开关劣化检测设备和方法
PL15848783.5T PL3206042T3 (pl) 2014-10-06 2015-07-29 Urządzenie i sposób wykrywania pogorszenia stanu przełącznika
JP2016564992A JP6523333B2 (ja) 2014-10-06 2015-07-29 スイッチ劣化検出装置および方法
US15/308,470 US9910092B2 (en) 2014-10-06 2015-07-29 Switch deterioration detection device and method
EP15848783.5A EP3206042B1 (en) 2014-10-06 2015-07-29 Switch deterioration detection device and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0134373 2014-10-06
KR1020140134373A KR101678277B1 (ko) 2014-10-06 2014-10-06 스위치 열화 검출 장치 및 방법

Publications (1)

Publication Number Publication Date
WO2016056740A1 true WO2016056740A1 (ko) 2016-04-14

Family

ID=55653318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/007910 WO2016056740A1 (ko) 2014-10-06 2015-07-29 스위치 열화 검출 장치 및 방법

Country Status (7)

Country Link
US (1) US9910092B2 (ko)
EP (1) EP3206042B1 (ko)
JP (1) JP6523333B2 (ko)
KR (1) KR101678277B1 (ko)
CN (1) CN106415295B (ko)
PL (1) PL3206042T3 (ko)
WO (1) WO2016056740A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109416387A (zh) * 2016-05-06 2019-03-01 迪讯技术有限责任公司 用于确定用户输入设备的按钮劣化的系统,方法和装置
JP2020515857A (ja) * 2017-09-29 2020-05-28 エルジー・ケム・リミテッド コンタクタの故障率予測システムおよび方法
US11091047B2 (en) 2016-06-17 2021-08-17 Abb Schweiz Ag Device for charging an electric vehicle and a method for verifying the contact between a device for charging an electric vehicle and the electric vehicle

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109980303A (zh) * 2017-12-27 2019-07-05 南京德朔实业有限公司 一种适用于电动工具的电池包以及电动工具组合
KR102446796B1 (ko) * 2018-04-12 2022-09-22 주식회사 엘지에너지솔루션 배터리팩을 위한 전류 제어 장치 및 방법
JP7034374B2 (ja) * 2019-03-13 2022-03-11 三菱電機株式会社 接点部異常監視装置および接点部異常監視装置を用いる回路遮断器
CN112054564B (zh) * 2019-06-05 2022-07-19 Oppo广东移动通信有限公司 电路检测方法及装置、设备、存储介质
FR3097057B1 (fr) * 2019-06-06 2022-05-20 Psa Automobiles Sa Procédé de diagnostic de connexion électrique défaillante dans un système électrique

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6353522B1 (en) * 1998-09-07 2002-03-05 Seiko Epson Corporation Switching state detecting device for switch, and electronic apparatus
JP2002252901A (ja) * 2001-02-23 2002-09-06 Yazaki Corp 車載用バッテリの電圧−電流特性検出方法及びその装置、車載用バッテリの内部抵抗算出方法及びその装置、車載用バッテリの劣化度検出方法及びその装置
JP2005102471A (ja) * 2003-08-18 2005-04-14 Denso Corp 車両用突入電流制限型電源スイッチ回路
JP2009191842A (ja) * 2008-01-15 2009-08-27 Denso Corp ヒータ劣化検出装置およびグロープラグ通電制御装置
JP2013142561A (ja) * 2012-01-06 2013-07-22 Stanley Electric Co Ltd 車両用蓄電池の劣化推定装置及び劣化推定方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5370365U (ko) * 1976-11-17 1978-06-13
JPH045576A (ja) * 1990-04-20 1992-01-09 Fujitsu Ltd 接触抵抗の試験装置
JPH04208872A (ja) * 1990-11-30 1992-07-30 Toshiba Corp 電磁継電器の自動試験装置
US5621359A (en) * 1995-07-27 1997-04-15 Lucent Technologies Inc. Gain selection technique
JP2006304406A (ja) * 2005-04-15 2006-11-02 Rohm Co Ltd 半導体集積回路装置、電源装置、電気機器
JP2008263763A (ja) * 2007-04-16 2008-10-30 Toyota Motor Corp 車両用半導体リレー診断装置及び診断方法
DE102009000232B4 (de) 2008-01-15 2019-10-31 Denso Corporation Vorrichtung zur Erfassung einer Verschlechterung eines Heizelements und Vorrichtung zur Steuerung einer Energiezufuhr einer Glühkerze
CN201392367Y (zh) * 2009-02-13 2010-01-27 苏州热工研究院有限公司 一种微电流接触电阻变化趋势跟踪仪
JP5278601B2 (ja) * 2010-04-15 2013-09-04 トヨタ自動車株式会社 燃料性状検出装置の異常検出装置
JP2012090474A (ja) * 2010-10-21 2012-05-10 Hitachi Vehicle Energy Ltd 電池システム
KR20120059247A (ko) 2010-11-30 2012-06-08 현대자동차주식회사 배터리 팩의 셀 밸런싱 제어장치 및 방법
US9114715B2 (en) * 2011-10-21 2015-08-25 Keihin Corporation Electronic control unit
WO2013061647A1 (ja) * 2011-10-28 2013-05-02 本田技研工業株式会社 車両診断方法及び外部診断装置
JP5910172B2 (ja) * 2012-03-01 2016-04-27 株式会社Gsユアサ スイッチ故障診断装置、電池パックおよびスイッチ故障診断プログラム、スイッチ故障診断方法
CN102818946A (zh) * 2012-06-05 2012-12-12 苏州热工研究院有限公司 电气触点老化状态诊断方法
DE102012215063A1 (de) * 2012-08-24 2014-02-27 Robert Bosch Gmbh Überwachungsschaltung für ein Schütz
CN104034752A (zh) * 2014-06-16 2014-09-10 上海大学 一种测量薄膜纵向热导率的装置及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6353522B1 (en) * 1998-09-07 2002-03-05 Seiko Epson Corporation Switching state detecting device for switch, and electronic apparatus
JP2002252901A (ja) * 2001-02-23 2002-09-06 Yazaki Corp 車載用バッテリの電圧−電流特性検出方法及びその装置、車載用バッテリの内部抵抗算出方法及びその装置、車載用バッテリの劣化度検出方法及びその装置
JP2005102471A (ja) * 2003-08-18 2005-04-14 Denso Corp 車両用突入電流制限型電源スイッチ回路
JP2009191842A (ja) * 2008-01-15 2009-08-27 Denso Corp ヒータ劣化検出装置およびグロープラグ通電制御装置
JP2013142561A (ja) * 2012-01-06 2013-07-22 Stanley Electric Co Ltd 車両用蓄電池の劣化推定装置及び劣化推定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3206042A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109416387A (zh) * 2016-05-06 2019-03-01 迪讯技术有限责任公司 用于确定用户输入设备的按钮劣化的系统,方法和装置
US11091047B2 (en) 2016-06-17 2021-08-17 Abb Schweiz Ag Device for charging an electric vehicle and a method for verifying the contact between a device for charging an electric vehicle and the electric vehicle
EP3471991B1 (en) * 2016-06-17 2024-01-24 ABB E-mobility B.V. Device for charging an electric vehicle and a method for verifying the contact between a device for charging an electric vehicle and the electric vehicle
JP2020515857A (ja) * 2017-09-29 2020-05-28 エルジー・ケム・リミテッド コンタクタの故障率予測システムおよび方法

Also Published As

Publication number Publication date
CN106415295A (zh) 2017-02-15
KR101678277B1 (ko) 2016-11-21
CN106415295B (zh) 2019-12-10
EP3206042B1 (en) 2022-08-31
PL3206042T3 (pl) 2023-01-02
JP6523333B2 (ja) 2019-05-29
EP3206042A4 (en) 2018-06-20
US9910092B2 (en) 2018-03-06
EP3206042A1 (en) 2017-08-16
US20170059657A1 (en) 2017-03-02
JP2017534137A (ja) 2017-11-16
KR20160040886A (ko) 2016-04-15

Similar Documents

Publication Publication Date Title
WO2016056740A1 (ko) 스위치 열화 검출 장치 및 방법
WO2017086687A1 (ko) 절연 저항 측정 시스템 및 장치
WO2013147494A1 (ko) 배터리의 절연 저항 측정 장치 및 방법
WO2018190508A1 (ko) 노이즈를 반영한 배터리 잔존 용량 산출 장치 및 방법
WO2015126036A1 (ko) 전류 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법
WO2018021661A1 (ko) 션트저항을 이용한 전류 측정 장치
WO2015126035A1 (ko) 전압 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법
WO2018021664A1 (ko) 배터리 밸런싱 장치 및 방법
WO2019004544A1 (ko) 절연 저항 산출 시스템 및 방법
WO2014084628A1 (ko) 배터리 전류 측정 장치 및 그 방법
WO2020005020A1 (ko) 배터리 관리 시스템, 그것을 포함하는 배터리팩 및 전류 측정 회로의 고장 판정 방법
WO2020055117A1 (ko) 배터리 관리 장치
WO2019221368A1 (ko) 메인 배터리와 서브 배터리를 제어하기 위한 장치, 배터리 시스템 및 방법
WO2022177291A1 (ko) 배터리 관리 시스템, 배터리 팩, 에너지 저장 시스템 및 배터리 관리 방법
WO2022030971A1 (ko) 배터리 진단 디바이스, 배터리 팩, 배터리 시스템 및 배터리 진단 방법
WO2018074744A1 (ko) 전압 분배를 이용한 스위치 진단 장치 및 방법
WO2021049753A1 (ko) 배터리 진단 장치 및 방법
WO2020162675A1 (ko) 배터리 관리 장치, 배터리 관리 방법 및 배터리 팩
WO2023063625A1 (ko) 배터리 진단 장치, 배터리 팩, 전기 차량, 및 배터리 진단 방법
WO2018117386A1 (ko) 배터리 팩
WO2022265358A1 (ko) 배터리 관리 시스템, 배터리 팩, 전기 차량 및 배터리 관리 방법
WO2015034144A1 (ko) 배터리 팩의 프리차지 저항 산출 장치 및 방법
WO2020166840A1 (ko) 배터리 셀 이상 판단 장치 및 방법
WO2023287180A1 (ko) 배터리 진단 장치, 배터리 팩, 전기 차량 및 배터리 진단 방법
WO2023282713A1 (ko) 배터리 관리 시스템, 배터리 팩, 전기 차량 및 배터리 관리 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15848783

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016564992

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15308470

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015848783

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015848783

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE