WO2015126036A1 - 전류 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법 - Google Patents

전류 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법 Download PDF

Info

Publication number
WO2015126036A1
WO2015126036A1 PCT/KR2014/010872 KR2014010872W WO2015126036A1 WO 2015126036 A1 WO2015126036 A1 WO 2015126036A1 KR 2014010872 W KR2014010872 W KR 2014010872W WO 2015126036 A1 WO2015126036 A1 WO 2015126036A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
battery rack
relay
battery
voltage
Prior art date
Application number
PCT/KR2014/010872
Other languages
English (en)
French (fr)
Inventor
이종범
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US14/649,323 priority Critical patent/US9373973B2/en
Priority to EP14868729.6A priority patent/EP2945243B1/en
Publication of WO2015126036A1 publication Critical patent/WO2015126036A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16566Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • H02J7/00718Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current in response to charge current gradient
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H11/00Emergency protective circuit arrangements for preventing the switching-on in case an undesired electric working condition might result
    • H02H11/005Emergency protective circuit arrangements for preventing the switching-on in case an undesired electric working condition might result in case of too low isolation resistance, too high load, short-circuit; earth fault
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an apparatus, system, and method for preventing damage to a battery rack by measuring current, and more particularly, a relay for energizing or interrupting a current flowing in a battery rack including a plurality of battery modules.
  • a relay for energizing or interrupting a current flowing in a battery rack including a plurality of battery modules.
  • the relay operates before the battery rack and the relay form a short circuit.
  • the short circuit occurring in the battery rack in which the relay is abnormally installed is prevented, and when the voltage difference between the plurality of battery racks exceeds the preset voltage difference, the operating state of the relay is controlled to prevent the capacity unbalance between the battery racks.
  • Prevents damage to battery racks, battery protection units (BPUs), and electrical equipment Relates to a battery rack breakage prevention device, a system and method over the current measurement.
  • the secondary battery battery is attracting attention as a new energy source for improving eco-friendliness and energy efficiency in that the primary advantage of dramatically reducing the use of fossil energy is not only a by-product but also no byproducts are generated.
  • secondary battery batteries used in electric vehicles, hybrid vehicles, energy storage systems and uninterruptible power supplies are configured by connecting a plurality of battery racks including a plurality of battery modules for charging or discharging high power and large capacity.
  • a battery rack in which high power and a large amount of power are frequently charged or discharged is provided with a relay control technology for controlling a current flowing in the battery rack by installing a relay to protect the battery rack from overcharge, overdischarge, and surge current. have.
  • the relay installed by the installer is abnormally installed to protect the battery rack and is composed of a closed circuit connected only to the relay and the battery rack without an external load, a short phenomenon occurs in the battery rack. If the above short circuit occurs in some battery racks among a plurality of battery racks connected to secure a high capacity, the capacity imbalance between the battery racks causes the charging speed of each battery rack to vary, thereby overcharging the previously charged battery rack. The battery rack is damaged due to overheating or swelling, and thus, a problem occurs that causes damage to the BPU and the electric field connected to the battery rack.
  • the present inventors in installing a relay that energizes or blocks a current flowing in a battery rack including a plurality of battery modules, the battery module and the relay are abnormally connected in some battery racks to exceed a preset current limit value in the battery rack. If a current flows, the operating state of the relay is controlled before the battery rack and the relay form a short circuit to prevent a short circuit occurring in a battery rack in which the relay is abnormally installed, and a voltage difference between a plurality of battery racks may be set.
  • the inventors have invented battery rack breakage prevention devices, systems, and methods by measuring current to prevent breakage of battery racks, BPUs, and electrical equipment by controlling the operation of relays to prevent capacity imbalance between battery racks.
  • the present invention relates to an apparatus, a system and a method for preventing damage to a battery rack through current measurement, and more particularly, to install a relay for energizing or interrupting a current flowing in a battery rack including a plurality of battery modules. If the battery module and the relay are abnormally connected and current flows in the battery rack exceeding the preset current limit value, the battery rack and the relay are installed abnormally by controlling the operating state of the relay before the battery rack and the relay form a short circuit. Current to prevent breakage of battery racks, BPUs, and electrical equipment by preventing short circuits occurring in the battery rack and preventing unbalanced capacity between battery racks by controlling the operating state of the relay when the voltage difference between the plurality of battery racks exceeds a preset voltage difference. Battery rack breakage protection through measurement To provide a system and method.
  • an object of the present invention is to measure the current flowing in the battery rack through the current measuring unit can be generated in the battery rack when the closed circuit is connected only to the relay and the battery rack without an external load due to the installation of the abnormal relay of the installer
  • the short circuit is detected and the measured current value exceeds the preset current limit value, it is determined that the short circuit has occurred in the battery rack, and the short circuit occurs by blocking the current flowing through the battery rack by controlling the precharge relay and the main relay through the relay controller.
  • An object of the present invention is to provide a battery rack breakage prevention device, system, and method through current measurement that can prevent damage to a battery rack, a BPU, and an electric field.
  • an object of the present invention is to calculate the voltage difference between the plurality of battery racks through the voltage comparison unit and the capacity between the battery rack by controlling the precharge relay and the main relay through the relay control unit when the calculated voltage difference exceeds a preset allowable voltage value
  • An object of the present invention is to provide an apparatus, a system, and a method for preventing battery rack breakage through current measurement, which can prevent damage of a battery rack, a BPU, and an electric field due to an imbalance.
  • an object of the present invention is to provide a battery rack breakage prevention device by measuring the current in each of the at least one battery rack in the energy storage device or battery system connected to one or more battery racks to charge and discharge power, The current value of the corresponding battery rack is measured and compared with a preset current limit value, and the current measurement is performed to individually perform the process of controlling the operating states of the precharge relay and the main relay of the corresponding battery rack.
  • An apparatus for preventing damage to a battery rack by measuring current includes a current measuring unit measuring a current value of a battery rack including a plurality of battery modules; A current comparison unit comparing the magnitude of the current value measured by the current measurement unit with a preset current limit value; After the operation state of the precharge relay is changed to the on state, before the operation state of the main relay is changed from the off state to the on state, the operation state of the precharge relay and the main relay is based on the comparison result value derived through the current comparator.
  • the precharge relay may be connected in series with a precharge resistor whose resistance value is determined according to the capacity of the battery rack to reduce the current value of the overcurrent flowing to the battery rack.
  • the current measuring unit measures the current value of the current flowing in the battery rack and transmits the measured current value to the current comparator, the current sensor corresponding to one or more of the current transformer method, Hall element method and fuse method ( Current sensor) may be included.
  • the current comparator may transmit a current exceeding signal to the relay controller when the current value received from the current measuring unit exceeds a preset current limit value.
  • the relay controller may change the operating state of the precharge relay from on to off state and maintain the operating state of the main relay in the off state when the current excess signal is received from the current comparator. have.
  • the battery rack breakage device by measuring the current is connected to the voltage measuring unit for measuring the voltage of each of the plurality of battery racks voltage comparison unit for calculating the difference between the plurality of voltage values measured by the voltage measuring unit It may further include;
  • the voltage comparator may transmit a voltage unbalance signal to the relay controller when a result value exceeding a preset allowable voltage difference is calculated from a result value of calculating a difference between the plurality of voltage values.
  • the relay control unit when the relay control unit receives the voltage imbalance signal from the voltage comparator, the relay control unit may change the operation states of the precharge relay and the main relay from on to off states.
  • the battery rack breakage prevention device by measuring the current may be included in the battery management system for controlling the one or more battery racks.
  • Battery rack damage prevention system through the current measurement includes a current measuring unit for measuring the current value of the battery rack including a plurality of battery modules; A current comparison unit comparing the magnitude of the current value measured by the current measurement unit with a preset current limit value; After the operation state of the precharge relay is changed to the on state, before the operation state of the main relay is changed from the off state to the on state, the operation state of the precharge relay and the main relay is based on the comparison result value derived through the current comparator.
  • the process of controlling the operation state of the precharge relay and the main relay of the corresponding battery rack and measuring the voltage value of the corresponding battery rack may be performed separately by comparing with a preset current limit value.
  • the precharge relay of the battery rack breakage prevention device through current measurement provided in the battery rack breakage prevention system through the current measurement is in series with the precharge resistor whose resistance value is determined according to the capacity of the battery rack. It is connected to reduce the current value of the overcurrent flowing to the battery rack.
  • the current measuring unit of the battery rack damage prevention device through the current measurement provided in the battery rack damage prevention system through the current measurement to measure the current value of the current flowing in the battery rack and the measured current value is the current Transmitting to the comparator and may include a current sensor corresponding to one or more of the current transformer method, Hall element method and fuse method.
  • the excess signal may be transmitted to the relay controller.
  • the relay control unit of the battery rack damage prevention device through the current measurement provided in the battery rack damage prevention system through the current measurement operation of the precharge relay when the current excess signal is received from the current comparison unit
  • the state may be changed from on to off and the operating state of the main relay may be kept off.
  • the battery rack breakage prevention system through the current measurement is connected to the voltage measuring unit for measuring the voltage of each of the plurality of battery racks voltage comparison to calculate the difference between the plurality of voltage values measured by the voltage measuring unit It may further include a.
  • the voltage comparing unit of the battery rack breakage prevention system by measuring the current is a voltage imbalance signal when a result value exceeding a predetermined allowable voltage difference is calculated from the result of calculating the difference between the plurality of voltage values
  • the relay may be transmitted to the controller.
  • the relay control unit of the battery rack damage prevention device through the current measurement provided in the battery rack damage prevention system through the current measurement when receiving the voltage imbalance signal from the voltage comparison unit the precharge relay and the The operating state of the main relay can be changed from on to off.
  • the battery rack breakage prevention system through current measurement may be included in the battery management system controlling the one or more battery racks.
  • Battery rack damage prevention method through the current measurement (a) at least one battery rack damage prevention device through the current measurement comprising a current measuring unit, a current comparator, a relay controller, and a voltage measuring unit. Providing each battery rack; And (b) a device for preventing damage to the battery rack through the current measurement is provided in each of the one or more battery racks, and measures a current value of the battery rack with respect to the corresponding battery rack and compares it with a preset current limit value.
  • the step (b) may include: (b1) measuring a current value of a battery rack including the plurality of battery modules by the current measuring unit; (b2) comparing the magnitude of the current value measured by the current comparison unit with a preset current limit value; (b3) after the relay control unit changes the operation state of the precharge relay to an on state, and before the operation state of the main relay is changed from off to on, based on a comparison result value derived through the current comparison unit. Controlling operating states of the precharge relay and the main relay; And (b4) the voltage measuring unit measuring a voltage value of the battery rack.
  • the step (b1) may include the current measuring unit measuring a current value of a current in the battery rack. And transmitting the measured current value to the current comparator.
  • the step (b2) may include transmitting a current excess signal to the relay controller when the current comparison unit exceeds a preset current limit value from the current measuring unit. .
  • the step (b3) is, when the relay control unit receives the current excess signal from the current comparison unit, the relay control unit changes the operation state of the precharge relay from on to off state and the main Maintaining an operating state of the relay in an off state.
  • the step (d) may include calculating a difference between the plurality of voltage values measured by the voltage comparator, and calculating a result value exceeding a preset allowable voltage difference. And transmitting a voltage imbalance signal to the relay controller.
  • the step (d) may further include changing an operating state of the precharge relay and the main relay from on to off when the relay controller receives the voltage imbalance signal from the voltage comparator. It may include.
  • An apparatus, system, and method for preventing damage to a battery rack through current measurement may include a precharge relay before a short phenomenon occurs in a battery rack when a measured current value of the battery rack exceeds a preset current limit value.
  • a precharge relay By controlling the operating state of the main relay and the current flowing in the battery rack. Therefore, by preventing a short phenomenon that may occur in the battery rack has an effect of preventing the battery rack damage and fire due to overcharge and overheating.
  • the battery rack breakage prevention device, system and method through the current measurement according to an embodiment of the present invention by controlling the operating state of the precharge relay and the main relay when the voltage difference between the battery rack exceeds a preset allowable voltage difference It has the effect of preventing capacity imbalance between battery racks.
  • the present invention is an energy storage device or battery system that is connected to one or more battery rack to charge and discharge power, each of the one or more battery rack is provided with a battery rack damage prevention device by measuring the current, corresponding to the corresponding battery rack By measuring the current value of the battery rack and comparing it with a preset current limit value, and individually performing the process of controlling the operation state of the precharge relay and the main relay of the battery rack according to the comparison result, a short phenomenon of some battery rack Due to this has the effect of preventing charge capacity imbalance between the battery racks.
  • FIG. 1 is a view schematically illustrating an electric vehicle to which a battery rack breakage prevention apparatus may be applied by measuring current according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing the configuration of the battery rack damage prevention device through the current measurement according to an embodiment of the present invention.
  • FIG. 3 is a view showing an example of a specific configuration of a battery rack damage prevention device by measuring the current in accordance with an embodiment of the present invention.
  • FIG. 4 is a diagram illustrating an example of a specific configuration of a battery rack damage prevention system through current measurement.
  • FIG. 5 is a diagram illustrating an example in which the battery rack breakage prevention apparatus through current measurement operates in the battery rack breakage prevention system through current measurement.
  • FIG. 6 is a diagram illustrating another example in which the battery rack breakage prevention apparatus through current measurement operates in the battery rack breakage prevention system through current measurement.
  • FIG. 7 is a flowchart illustrating an example of a method for preventing battery rack breakage through current measurement according to an embodiment of the present invention.
  • FIG. 8 is a flowchart illustrating another example of a method of preventing battery rack breakage through current measurement according to an embodiment of the present invention.
  • ... unit described in the specification means a unit for processing one or more functions or operations, which may be implemented in hardware or software or a combination of hardware and software.
  • FIG. 1 is a view schematically illustrating an electric vehicle to which a battery rack breakage prevention apparatus may be applied by measuring current according to an embodiment of the present invention.
  • FIG. 1 illustrates an example in which a battery rack breakage prevention device through current measurement according to an embodiment of the present invention is applied to an electric vehicle, but the battery rack breakage prevention device through current measurement according to an embodiment of the present invention is electrically
  • any technical field may be applied as long as a secondary battery battery such as a mobile device, an energy storage system (ESS), or an uninterruptible power supply (UPS) may be applied.
  • ESS energy storage system
  • UPS uninterruptible power supply
  • the electric vehicle 1 may include a battery 10, a battery management system (BMS) 20, an electronic control unit (ECU) 30, an inverter 40, and a motor 50.
  • BMS battery management system
  • ECU electronice control unit
  • inverter 40 inverter 40
  • motor 50 a motor 50.
  • the battery 10 is an electric energy source for driving the electric vehicle 1 by providing a driving force to the motor 50.
  • the battery 10 may be charged or discharged by the inverter 40 according to the driving of the motor 50 or the internal combustion engine (not shown).
  • the type of the battery 10 is not particularly limited, and the battery 10 may be, for example, a lithium ion battery, a lithium polymer battery, a nickel cadmium battery, a nickel hydrogen battery, a nickel zinc battery, or the like.
  • the BMS 20 estimates the state of the battery 10 and manages the battery 10 using the estimated state information.
  • the battery 10 state information such as state of charging (SOC), state of health (SOH), maximum input / output power allowance, and output voltage of the battery 10 is estimated and managed.
  • the charging or discharging of the battery 10 is controlled using the state information, and the replacement time of the battery 10 may be estimated.
  • the BMS 20 may include a battery rack breakage prevention device and system through the current measurement to be described later.
  • the battery rack breakage prevention device and system through the current measurement can prevent the battery 10 from being damaged due to overheating or short phenomenon due to overcharging.
  • the ECU 30 is an electronic control device for controlling the state of the electric vehicle 1.
  • the torque degree is determined based on information such as an accelerator, a brake, a speed, and the like, and the output of the motor 50 is controlled to match the torque information.
  • the ECU 30 transmits a control signal to the inverter 40 so that the battery 10 can be charged or discharged based on state information such as SOC and SOH of the battery 10 received by the BMS 20. .
  • the inverter 40 causes the battery 10 to be charged or discharged based on the control signal of the ECU 30.
  • the motor 50 drives the electric vehicle 1 based on the control information (for example, torque information) transmitted from the ECU 30 using the electric energy of the battery 10.
  • control information for example, torque information
  • FIG. 2 is a block diagram illustrating a configuration of a battery rack breakage prevention device through current measurement according to an embodiment of the present invention
  • Figure 3 is a battery rack damage prevention device through a current measurement according to an embodiment of the present invention It is a figure which shows an example of a specific structure.
  • the battery rack breakage prevention device 100 through the current measurement is the battery rack 110, the first battery rack 111, the second battery rack 112, the current measuring unit 120 Including the current comparator 130, the precharge relay 141, the precharge resistor 142, the main relay 143, the relay controller 150, the voltage measuring unit 160, the voltage comparator 170 Can be configured.
  • the apparatus for preventing damage to the battery rack 100 by measuring current in FIGS. 2 and 3 is according to one embodiment, and its components are not limited to the embodiment shown in FIGS. 2 and 3, and may be added as necessary. , Can be changed or deleted.
  • the battery rack 110 may be discharged by being supplied with electric power or being charged by supplying electrical energy charged in the battery rack 110 to the load.
  • the type of the battery rack 110 is not particularly limited, and may include a plurality of battery modules.
  • the battery rack 110 may be included in the battery 10 shown in FIG. 1, and the detailed description thereof will be omitted since the battery rack 110 uses a known technology.
  • the first battery rack 111 and the second battery rack 112 illustrated in FIG. 3 may be included in the battery rack 110, and the precharges connected to prevent breakage of the battery rack 110 are provided.
  • the battery modules 111a, 111b,..., 111n connected to the lower side of the relay 141, the precharge resistor 142, and the main relay 143 may be components of the first battery rack 111.
  • the battery modules 112a, 112b,..., 112n connected to the upper side may be components of the second battery rack 112.
  • the current measuring unit 120 to be described below may be connected in series between the first battery rack 111 and the second battery rack 112 to measure a current value.
  • the current measuring unit 120 is connected in series between the first battery rack 111 and the second battery rack 112 and the current value of the current flowing between the first battery rack 111 and the second battery rack 112. It can play a role of measuring.
  • the current measuring unit 120 performing this role corresponds to at least one of a current transformer, a Hall element, and a fuse to measure the current flowing through the battery rack 110.
  • a current sensor may be used and may include one or more switch elements, capacitors, conductors, and the like.
  • the current measuring unit 120 further includes a ballast (eg, a resistor having a high resistance value) (not shown) for protecting the internally when the current measured from the relay 110 corresponds to a high current. can do.
  • a ballast eg, a resistor having a high resistance value
  • the current value measured through the current measuring unit 120 may be transmitted to the current comparing unit 130 to be described later, and as long as the current measuring unit 120 performs the above-described role, the current measuring unit 120 Note that the type of current sensor is not limited.
  • the current comparator 130 may receive a measured current value from the current measuring unit 120 and compare the measured current value with a preset current limit value.
  • the preset current limit value is such that the short circuit is not formed because the battery rack 110, the precharge relay 141, the precharge resistor 142, and the main relay 143 are normally connected.
  • the current value of the current flowing through the battery rack 110 is initially set or a value that can be set by a user.
  • the preset current limit value may be 50A.
  • the current comparator 130 may transmit a current excess signal to the relay controller 150 to be described later, and the measured current value does not exceed the preset current limit value. If not, the current over signal will not be transmitted.
  • the current comparator 130 may further include a separate ballast (for example, a resistor having a high resistance value, etc.) (not shown), similar to the current measuring unit 120, and accordingly high voltage It can be configured to protect itself from itself.
  • a separate ballast for example, a resistor having a high resistance value, etc.
  • the precharge relay 141 and the precharge resistor 142 may be connected in series, and the main relay 143 may be connected in parallel with the precharge relay 141 and the precharge resistor 142 connected in series to the battery rack. It may serve to energize or cut off the current flowing in the (110).
  • An operating state of the precharge relay 141 and the main relay 143 may correspond to either an on state in which a pair of wires are in contact with each other, or an off state in which the wires are spaced from each other.
  • an operation state of any one or more of the relay 141 and the main relay 143 corresponds to an on state, current flowing through the battery rack 110 is energized, and both the precharge relay 141 and the main relay 143 are turned off. In this case, the current flowing in the battery rack 110 may be blocked.
  • the precharge relay 141 may be changed to an on state and may be free.
  • a surge current may flow to the precharge resistor 142 connected in series with the precharge relay 141 to protect the battery rack 110.
  • the preset state (for example, a time corresponding to 1 s) may be changed to the on state of the main relay 143, and the current comparison may be performed.
  • the preset current limit value is the battery rack 110, the precharge relay 141, the precharge resistor 142 and the main relay 143 is normally connected to the battery rack 110 is not formed a short circuit
  • the current value of the flowing current is initially set or may be set by the user.
  • the preset current limit value may be 50A.
  • the operating state of the precharge relay 141 and the main relay 143 is changed to the on state, and then the operating state of the precharge relay 141 is changed to the off state after a preset time (for example, a time corresponding to 1 s).
  • the power supplied to the battery rack 110 may be supplied without passing through the precharge resistor 142.
  • the relay controller 150 may be connected to the current comparator 130, the precharge relay 141, the precharge resistor 142, and the main relay 143, and the relay controller 150 may be connected to the current comparator 130.
  • the operation state of the precharge relay 141 may be changed from on to off state and may serve to maintain the operation state of the main relay 143 in the off state. have.
  • the operating states of the precharge relay 141 and the main relay 143 are in an off state, a current flowing through the battery rack 110 may be blocked.
  • the relay controller 150 may not control the operation states of the precharge relay 141 and the main relay 143.
  • the relay control unit 150 changes the operation state of the precharge relay 141 and the main relay 143 from the on state to the off state when the voltage imbalance signal is transmitted through the voltage comparison unit 170 to be described later. Can play a role. As such, the detailed description of the role of the relay controller 150, the voltage measuring unit 160, and the voltage comparing unit 170 will be described in detail with reference to FIG. 4.
  • 4 is a diagram illustrating an example of a specific configuration of a battery rack damage prevention system through current measurement according to an embodiment of the present invention.
  • 4 is a diagram illustrating an example of a case in which the battery rack breakage prevention system 100 is operated by measuring current, and when compared with FIG. 3, the battery rack breakage prevention device 100a is measured by measuring a plurality of currents.
  • one voltage comparator 170 is a voltage measuring unit of each of the battery rack damage prevention device (100a, ..., 100n) by measuring a plurality of currents ( 160, 160b, ..., 160n) and the relay controller (150, 150b, ..., 150n) is the same configuration except that it is connected and performs the same function as a detailed description of the same components Will be omitted.
  • the battery rack breakage prevention system 100 through the current measurement in accordance with an embodiment of the present invention through the current measurement to each of the one or more battery rack (111, 112, 110b, ..., 110n) Battery rack breakage prevention devices (100a, ..., 100n) may be provided.
  • the battery rack breakage prevention system 100 by measuring current may be applied to the first and second battery racks 111 and 112 equipped with the battery rack breakage prevention device 100a through current measurement. Measures the current value of the current flowing between the) and compares it with a preset current limit value, the operating state of the precharge relay 141 and the main relay 143 of the first and second battery rack (111, 112) according to the comparison result The process of controlling can be performed separately.
  • the battery rack breakage prevention device 100b For the first and second battery racks 111 and 112 equipped with the battery rack breakage prevention device 100a through current measurement, the battery rack breakage prevention device 100b through current measurement as if the above processes were performed separately.
  • the battery racks 110b, ..., 110n respectively provided with ..., 100n the above processes may be performed separately.
  • the voltage measuring units 160, 160b, ..., 160n are provided at both ends of the battery racks (plus (+) and minus ()) of the battery rack breakage prevention devices 100a, 100b, ..., 100n by measuring current. And the potential difference between the voltages applied to the battery racks 111, 112, 110b,..., And 110n may be measured. Meanwhile, the voltage measuring units 160, 160b, ..., 160n may include one or more switch elements, capacitors, conductors, etc. to measure voltages of the battery racks 111, 112, 110b, ..., 110n. Can be. The voltage values measured through the voltage measuring units 160, 160b,..., 160n may be transmitted to the voltage comparator 170 to be described later.
  • the voltage comparator 170 receives a plurality of voltage values measured through the voltage measuring units 160, 160b,..., And 160n, calculates a difference between the voltage values, calculates the difference between the calculated result values, and the preset allowable voltage. It can play a role of comparing with the difference.
  • the preset allowable voltage difference is a voltage difference between battery racks in which the battery rack is not damaged even when a voltage difference occurs between the battery racks and is a value that can be set by the user.
  • the preset allowable voltage difference may be 50V.
  • the voltage comparator 170 controls the relay controllers 150, 150b, ..., 150n.
  • the voltage comparator 170 may relay the controllers 150, 150b, ..., 150n. ) Will not transmit a voltage imbalance signal.
  • the relay controllers 150, 150b, ..., 150n respectively include the voltage comparator 170, the precharge relays 141, 141b, ..., 141n, and the precharge resistors 142, 142b, ..., 142n) and the main relays 143, 143b, ..., 143n, and the relay controllers 150, 150b, ..., 150n receive the voltage unbalance signal through the voltage comparator 170.
  • the operation state of the precharge relay and the main relay of the battery rack having a result value exceeding a preset allowable voltage difference may be changed from on to off states.
  • the relay controllers 150, 150b,..., And 150n receive the precharge resistors 142, 142b,..., 142n and the main relay when the voltage imbalance signal is received through the voltage comparator 170.
  • the operating states of 143, 143b, ..., 143n may not be controlled.
  • FIG. 5 is a diagram illustrating an example in which the battery rack breakage prevention apparatus through current measurement operates in the battery rack breakage prevention system through current measurement.
  • all of the battery racks 111, 112, 110b,..., And 110n illustrated in FIG. 4 have precharge relays 141, 141b,..., 141n, and precharge resistors.
  • 142, 142b, ..., 142n and the main relays 143, 143b, ..., 143n are normally connected without forming a closed circuit, respectively, the first battery rack 111 'shown in FIG.
  • the precharge relay 141 ', the precharge resistor 142', and the main relay 143 ' are abnormally provided to form a closed circuit.
  • the battery rack damage prevention device 100 'by measuring the current provided in the battery rack damage prevention system 100' through the current measurement is the first battery rack 111 'and free
  • the charge relay 141 ′, the precharge resistor 142 ′, and the main relay 143 ′ are abnormally connected to each other to form a closed circuit without an external load.
  • the precharge relay 141 'and the precharge resistor 142' are connected in series to prevent a short phenomenon when the operation state of the precharge relay 141 'is changed from off to on. 1 to 4, the description of the same components as the battery rack breakage prevention system 100 ′ through the current measurement shown in FIG. 5 will be omitted.
  • the current measuring unit 120 ′ may serve to measure a current value of a current flowing in the first battery rack 111 ′ except for the second battery rack 112 ′. Since the current value measured by the current measuring unit 120 'is measured when only the precharge resistor 142' is connected to the second battery rack 112 ', the other current measuring unit 120'b,. .., 120'n) may be greater than the measured current value.
  • the current comparator 130 ′ compares the current value measured by the current measuring unit 120 ′ with a preset current limit value, and exceeds the current when the measured current value exceeds a preset current limit value.
  • a signal may be transmitted to the relay controller 150 ′.
  • the relay controller 150 ′ receiving the current excess signal maintains the operating state of the precharge relay 141 ′ before the operating state of the main relay 143 ′ is changed from off to on. As a result, a short phenomenon occurring in the first battery rack 111 ′ may be prevented.
  • the preset current limit value may include the first battery rack 111 ′ and the second battery rack 112 ′, the precharge relay 141 ′, the precharge resistor 142 ′, and the main relay 143 ′.
  • the preset current limit value may be 50A.
  • FIG. 6 is a diagram illustrating another example in which the battery rack breakage prevention apparatus through current measurement operates in the battery rack breakage prevention system through current measurement.
  • all of the battery racks 111, 112, 110b,..., And 110n illustrated in FIG. 4 have precharge relays 141, 141b,..., 141n, and precharge resistors.
  • 142, 142b, ..., 142n and the main relays 143, 143b, ..., 143n are normally connected without forming a closed circuit, respectively, but the second battery rack 111 "shown in FIG.
  • the precharge relay 141 ", the precharge resistor 142 " and the main relay 143 " are abnormally provided in the circuit to form a closed circuit.
  • the battery rack breakage prevention device 100 "a through the current measurement provided in the battery rack breakage prevention system 100" through current measurement may be connected to the second battery rack 112 ".
  • the precharge relay 141 ′′, the precharge resistor 142 ′′, and the main relay 143 ′′ may be abnormally connected to each other to form a closed circuit without an external load.
  • the precharge relay 141 " and the precharge resistor 142 " are connected in series to prevent a short phenomenon when the operating state of the precharge relay 141 " is changed from the off state to the on state. 1 to 4, the description of the same components as those of the battery rack breakage prevention system 100 ′′ through the current measurement shown in FIG. 6 will be omitted.
  • the battery rack breakage prevention device 100 ′′ through the current measurement When the battery rack breakage prevention device 100 ′′ through the current measurement is supplied with power from the power converter 200, power may be charged in the first battery rack 111 ′′ except the second battery rack 112 ′′.
  • the current measuring unit 120 ′′ may serve to measure a current value of current flowing through the second battery rack 112 ′′ except the first battery rack 111 ′′. Since the current value measured by the current measuring unit 120 "is measured when only the precharge resistor 142" is connected to the first battery rack 111 ", the other current measuring unit 120" b,. .., may be greater than the current measured at 120 "n).
  • the current comparator 130 ′′ may operate the current measuring unit 120 ′′.
  • the current excess signal may be transmitted to the relay controller 150 ′′.
  • the relay control unit 150 ′′ receiving the current excess signal switches the operating state of the precharge relay 141 ′′ from on to off state before the operating state of the main relay 143 ′′ is changed from off to on state.
  • the preset current limit value may include the first battery rack 111 ′′ and the second battery rack 112 ′′, the precharge relay 141 ′′, the precharge resistor 142 ′′, and the main relay 143 ′′.
  • the current value measured between the first battery rack 111 " and the second battery rack 112 " where the short circuit is not normally formed and the short circuit is formed is initially set or a value that can be set by the user.
  • the preset current limit value may be 50A.
  • FIG. 7 is a flowchart illustrating an example of a method for preventing battery rack breakage through current measurement according to an embodiment of the present invention.
  • the current measuring unit 120 measures the current value of the current flowing in the battery rack 110, and transmits the measured current value to the current comparator 130 (S701).
  • the current comparison unit 130 compares and determines whether the measured current value received through the current measurement unit 120 exceeds a preset current limit value (S702).
  • the preset current limit is a battery rack in which the short circuit is not formed because the battery rack 110 and the precharge relay 141, the precharge resistor 142, and the main relay 143 which are described later are normally connected.
  • the current value measured at 110 is initially set or may be set by a user.
  • the preset current limit value may be 50A.
  • the current comparator 130 If the comparison result determined by the current comparator 130 exceeds a preset current limit value (S703), the current comparator 130 transmits a current excess signal to the relay controller 150 (S704). .
  • the relay controller 150 receives the current excess signal to change the operation state of the precharge relay 141 from on to off, and the operation state of the main relay 143 from off to on. It is kept in the off state before the change (S705).
  • FIG. 8 is a flowchart illustrating another example of a method of preventing battery rack breakage through current measurement according to an embodiment of the present invention.
  • the voltage measuring units 160, 160b,..., 160n measure voltages applied to a plurality of battery racks, and transmit the measured voltage values to the voltage comparator 170. (S801).
  • the voltage comparator 170 calculates a difference between measured voltage values received from the voltage measuring units 160, 160b,..., And 160n and exceeds a preset allowable voltage difference among the calculated result values. It is compared and determined whether the calculation result value exists (S802).
  • the preset allowable voltage difference is a voltage difference between battery racks in which the battery rack is not damaged even when a voltage difference occurs between the battery racks and is a value that can be set by the user.
  • the preset allowable voltage difference may be 50V.
  • the voltage comparator 170 determines that there is a calculation result value exceeding a preset allowable voltage difference among the calculation result values (S803), the voltage comparator 170 transmits a voltage imbalance signal to the relay controller 150. (S804).
  • the voltage comparison unit 170 determines that there is no calculation result value exceeding the preset allowable voltage difference among the calculation result values, the voltage comparison unit 170 returns to the start.
  • the relay control unit 150 receives the voltage imbalance signal to change the operation states of the precharge relay and the main relay of the battery rack in which the capacity imbalance occurs, from On to Off (S805).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Automation & Control Theory (AREA)
  • Combustion & Propulsion (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

본 발명은 전류 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법에 관한 것으로서, 보다 상세하게는, 복수의 배터리 모듈을 포함하는 배터리 랙에 흐르는 전류를 통전 또는 차단하는 릴레이를 설치하는데 있어서 일부 배터리 랙에서 배터리 모듈과 릴레이가 비정상적으로 연결되어 배터리 랙에 기 설정된 전류 제한값을 초과하는 전류가 흐르는 경우, 배터리 랙과 릴레이가 쇼트 서킷을 형성하기 전에 릴레이의 동작 상태를 제어하여 릴레이가 비정상적으로 설치된 배터리 랙에 발생되는 쇼트 현상을 방지하고 복수의 배터리 랙 간에 전압차가 기 설정된 전압차를 초과하는 경우 릴레이의 동작 상태를 제어하여 배터리 랙 간에 용량 불균형을 방지함으로써 배터리 랙, BPU 및 전장의 파손을 방지하는 전류 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법에 관한 것이다.

Description

전류 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법
본 출원은 2014년 02월 20일에 한국특허청에 제출된 한국 특허 출원 제10-2014-0019880호 및 2014년 11월 12일에 한국특허청에 제출된 한국 특허 출원 제10-2014-0156966호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 발명은 전류 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법에 관한 것으로서, 보다 상세하게는, 복수의 배터리 모듈(Battery Module)을 포함하는 배터리 랙에 흐르는 전류를 통전 또는 차단하는 릴레이(Relay)를 설치하는데 있어서 일부 배터리 랙에서 배터리 모듈과 릴레이가 비정상적으로 연결되어 배터리 랙에 기 설정된 전류 제한값을 초과하는 전류가 흐르는 경우, 배터리 랙과 릴레이가 쇼트 서킷(Short Circuit)을 형성하기 전에 릴레이의 동작 상태를 제어하여 릴레이가 비정상적으로 설치된 배터리 랙에 발생되는 쇼트(Short) 현상을 방지하고 복수의 배터리 랙 간에 전압차가 기 설정된 전압차를 초과하는 경우 릴레이의 동작 상태를 제어하여 배터리 랙 간에 용량 불균형을 방지함으로써 배터리 랙, BPU(Battery Protection Unit) 및 전장의 파손을 방지하는 전류 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법에 관한 것이다.
최근 화석 에너지의 고갈과 화석 에너지의 사용으로 인한 환경오염으로 이차 전지 배터리를 이용하여 구동할 수 있는 전기 제품에 대한 관심이 높아지고 있다. 이에 따라, 모바일 기기, 전기 차량(Electric Vehicle; EV), 하이브리드 차량(Hybrid Vehicle; HV), 에너지 저장 시스템(Energy Storage System; ESS) 및 무정전 전원 공급 장치(Uninterruptible Power Supply; UPS) 등에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차 전지 배터리의 수요가 급격히 증가하고 있다.
이러한 이차 전지 배터리는 화석 에너지의 사용을 획기적으로 감소시킬 수 있다는 일차적인 장점뿐만 아니라 에너지의 사용에 따른 부산물이 전혀 발생되지 않는다는 점에서 친환경 및 에너지 효율성 제고를 위한 새로운 에너지원으로 주목 받고 있다.
특히 전기 차량, 하이브리드 차량, 에너지 저장 시스템 및 무정전 전원 공급 장치에 사용되는 이차 전지 배터리는 고출력 및 대용량의 전력을 충전 또는 방전하기 위하여 복수의 배터리 모듈을 포함하는 배터리 랙을 여러 개 연결하여 구성된다. 이와 같이, 고출력 및 대용량의 전력이 수시로 충전 또는 방전되는 배터리 랙에는 과충전, 과방전 및 써지성 전류로부터 배터리 랙을 보호하기 위해 릴레이를 설치하여 배터리 랙에 흐르는 전류를 제어하는 릴레이 제어 기술이 구비되어 있다.
하지만, 배터리 랙을 보호하기 위해 설치자에 의해 설치된 릴레이가 비정상적으로 설치되어 외부 부하없이 릴레이와 배터리 랙으로만 연결된 폐회로로 구성되는 경우 배터리 랙에는 쇼트현상이 발생된다. 고용량을 확보하기 위해 복수로 연결된 배터리 랙 중 일부 배터리 랙에서 상기의 쇼트 현상이 발생되는 경우 배터리 랙 간에 용량 불균형으로 인해 각 배터리 랙의 충전 속도가 달라지고, 이로 인해 먼저 충전된 배터리 랙이 과충전됨으로써 배터리 랙이 과열 또는 스웰링(Swelling)으로 파손되고, 결국 배터리 랙과 연결되는 BPU와 전장까지 파손되는 문제점이 발생된다.
이에, 본 발명자는 복수의 배터리 모듈을 포함하는 배터리 랙에 흐르는 전류를 통전 또는 차단하는 릴레이를 설치하는데 있어서 일부 배터리 랙에서 배터리 모듈과 릴레이가 비정상적으로 연결되어 배터리 랙에 기 설정된 전류 제한값을 초과하는 전류가 흐르는 경우, 배터리 랙과 릴레이가 쇼트 서킷을 형성하기 전에 릴레이의 동작 상태를 제어하여 릴레이가 비정상적으로 설치된 배터리 랙에 발생되는 쇼트 현상을 방지하고 복수의 배터리 랙 간에 전압차가 기 설정된 전압차를 초과하는 경우 릴레이의 동작 상태를 제어하여 배터리 랙 간에 용량 불균형을 방지함으로써 배터리 랙, BPU 및 전장의 파손을 방지하는 전류 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법을 발명하기에 이르렀다.
본 발명은 전류 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법에 관한 것으로서, 보다 상세하게는, 복수의 배터리 모듈을 포함하는 배터리 랙에 흐르는 전류를 통전 또는 차단하는 릴레이를 설치하는데 있어서 일부 배터리 랙에서 배터리 모듈과 릴레이가 비정상적으로 연결되어 배터리 랙에 기 설정된 전류 제한값을 초과하는 전류가 흐르는 경우, 배터리 랙과 릴레이가 쇼트 서킷을 형성하기 전에 릴레이의 동작 상태를 제어하여 릴레이가 비정상적으로 설치된 배터리 랙에 발생되는 쇼트 현상을 방지하고 복수의 배터리 랙 간에 전압차가 기 설정된 전압차를 초과하는 경우 릴레이의 동작 상태를 제어하여 배터리 랙 간에 용량 불균형을 방지함으로써 배터리 랙, BPU 및 전장의 파손을 방지하는 전류 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법을 제공하고자 한다.
보다 구체적으로, 본 발명의 목적은 설치자의 비정상적인 릴레이 설치로 인해 외부 부하없이 릴레이와 배터리 랙으로만 연결된 폐회로가 구성되는 경우 전류 측정부를 통해 배터리 랙에 흐르는 전류를 측정하여 배터리 랙에서 발생될 수 있는 쇼트 현상 감지하고 측정된 전류값이 기 설정된 전류 제한값을 초과하는 경우 배터리 랙에 쇼트 현상이 일어난 것으로 판단하여 릴레이 제어부를 통해 프리차지 릴레이와 메인 릴레이를 제어함으로써 배터리 랙에 흐르는 전류를 차단하여 쇼트 현상으로 인한 배터리 랙, BPU 및 전장의 파손을 방지할 수 있는 전류 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법을 제공하고자 한다.
또한 본 발명의 목적은, 전압 비교부를 통해 복수의 배터리 랙 간에 전압차를 계산하고 계산된 전압차가 기 설정된 허용 전압치를 초과하는 경우 릴레이 제어부를 통해 프리차지 릴레이와 메인 릴레이를 제어함으로써 배터리 랙 간에 용량 불균형으로 인한 배터리 랙, BPU 및 전장의 파손을 방지할 수 있는 전류 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법을 제공하고자 한다.
또한, 본 발명의 목적은 하나 이상의 배터리 랙이 연결되어 전력을 충방전하는 에너지 저장 장치 또는 배터리 시스템에서, 하나 이상의 배터리 랙 각각에 전류 측정을 통한 배터리 랙 파손 방지 장치를 구비하고, 해당 배터리 랙에 대하여 해당 배터리 랙의 전류값을 측정하여 기 설정된 전류 제한값과 비교하고, 상기 비교 결과에 따라 해당 배터리 랙의 프리차지 릴레이 및 메인 릴레이의 동작 상태를 제어하는 과정을 개별적으로 수행할 수 있는 전류 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법을 제공하고자 한다.
본 발명의 일 실시예에 따른 전류 측정을 통한 배터리 랙 파손 방지 장치는 복수의 배터리 모듈을 포함하는 배터리 랙의 전류값을 측정하는 전류 측정부; 상기 전류 측정부를 통해 측정된 전류값과 기 설정된 전류 제한값의 대소를 비교하는 전류 비교부; 프리차지 릴레이의 동작 상태가 온 상태로 변경된 후, 메인 릴레이의 동작 상태가 오프에서 온 상태로 변경되기 전에 상기 전류 비교부를 통해 도출된 비교 결과값을 근거하여 프리차지 릴레이 및 메인 릴레이의 동작 상태를 제어하는 릴레이 제어부; 및 상기 배터리 랙의 전압값을 측정하는 전압 측정부;를 포함하되, 하나 이상의 배터리 랙 각각에 구비되어, 해당 배터리 랙에 대하여 해당 배터리 랙의 전류값을 측정하여 기 설정된 전류 제한값과 비교하고, 상기 비교 결과에 따라 해당 배터리 랙의 프리차지 릴레이 및 메인 릴레이의 동작 상태를 제어하는 과정 및 해당 배터리 랙의 전압값을 측정하는 과정을 개별적으로 수행할 수 있다.
일 실시예에서, 상기 프리차지 릴레이는 상기 배터리 랙의 용량에 따라 저항값이 결정되는 프리차지 저항과 직렬로 연결되어 상기 배터리 랙으로 흐르는 과전류의 전류값을 감소시킬 수 있다.
일 실시예에서, 상기 전류 측정부는 상기 배터리 랙에 흐르는 전류의 전류값을 측정하고 측정된 전류값을 상기 전류 비교부로 전송하며 변류기 방식, 홀 소자 방식 및 퓨즈 방식 중 하나 이상에 해당하는 전류 센서(Current sensor)를 포함할 수 있다.
일 실시예에서, 상기 전류 비교부는 상기 전류 측정부로부터 전송받은 전류값이 기 설정된 전류 제한값을 초과하는 경우 전류 초과 신호를 상기 릴레이 제어부에 전송할 수 있다.
일 실시예에서, 상기 릴레이 제어부는 상기 전류 비교부로부터 상기 전류 초과 신호를 전송받는 경우 상기 프리차지 릴레이의 동작 상태를 온에서 오프 상태로 변경시키고 상기 메인 릴레이의 동작 상태를 오프 상태로 유지시킬 수 있다.
일 실시예에서, 전류 측정을 통한 배터리 랙 파손 장치는 복수의 배터리 랙 각각의 전압을 측정하는 상기 전압 측정부와 연결되어 상기 전압 측정부를 통해 측정된 복수의 전압값 간에 차를 계산하는 전압 비교부;를 더 포함할 수 있다.
일 실시예에서, 상기 전압 비교부는 상기 복수의 전압값 간에 차를 계산한 결과값 중에서 기 설정된 허용 전압차를 초과하는 결과값이 산출되는 경우 전압 불균형 신호를 상기 릴레이 제어부에 전송할 수 있다.
일 실시예에서, 상기 릴레이 제어부는 상기 전압 비교부로부터 상기 전압 불균형 신호를 전송받는 경우 상기 프리차지 릴레이 및 상기 메인 릴레이의 동작 상태를 온에서 오프 상태로 변경시킬 수 있다.
일 실시예에서, 상기 전류 측정을 통한 배터리 랙 파손 방지 장치는 상기 하나 이상의 배터리 랙을 제어하는 배터리 관리 시스템에 포함될 수 있다.
본 발명의 일 실시예에 따른 전류 측정을 통한 배터리 랙 파손 방지 시스템은 복수의 배터리 모듈을 포함하는 배터리 랙의 전류값을 측정하는 전류 측정부; 상기 전류 측정부를 통해 측정된 전류값과 기 설정된 전류 제한값의 대소를 비교하는 전류 비교부; 프리차지 릴레이의 동작 상태가 온 상태로 변경된 후, 메인 릴레이의 동작 상태가 오프에서 온 상태로 변경되기 전에 상기 전류 비교부를 통해 도출된 비교 결과값을 근거하여 프리차지 릴레이 및 메인 릴레이의 동작 상태를 제어하는 릴레이 제어부; 및 상기 배터리 랙의 전압값을 측정하는 전압 측정부;를 포함하는 전류 측정을 통한 배터리 랙 파손 방지 장치를 하나 이상의 배터리 랙 각각에 구비하고, 해당 배터리 랙에 대하여 해당 배터리 랙의 전류값을 측정하여 기 설정된 전류 제한값과 비교하고, 상기 비교 결과에 따라 해당 배터리 랙의 프리차지 릴레이 및 메인 릴레이의 동작 상태를 제어하는 과정 및 해당 배터리 랙의 전압값을 측정하는 과정을 개별적으로 수행할 수 있다.
일 실시예에서, 전류 측정을 통한 배터리 랙 파손 방지 시스템에 구비된 전류 측정을 통한 배터리 랙 파손 방지 장치의 상기 프리차지 릴레이는 상기 배터리 랙의 용량에 따라 저항값이 결정되는 프리차지 저항과 직렬로 연결되어 상기 배터리 랙으로 흐르는 과전류의 전류값을 감소시킬 수 있다.
일 실시예에서, 전류 측정을 통한 배터리 랙 파손 방지 시스템에 구비된 전류 측정을 통한 배터리 랙 파손 방지 장치의 상기 전류 측정부는 상기 배터리 랙에 흐르는 전류의 전류값을 측정하고 측정된 전류값을 상기 전류 비교부로 전송하며 변류기 방식, 홀 소자 방식 및 퓨즈 방식 중 하나 이상에 해당하는 전류 센서를 포함할 수 있다.
일 실시예에서, 전류 측정을 통한 배터리 랙 파손 방지 시스템에 구비된 전류 측정을 통한 배터리 랙 파손 방지 장치의 상기 전류 비교부는 상기 전류 측정부로부터 전송받은 전류값이 기 설정된 전류 제한값을 초과하는 경우 전류 초과 신호를 상기 릴레이 제어부에 전송할 수 있다.
일 실시예에서, 전류 측정을 통한 배터리 랙 파손 방지 시스템에 구비된 전류 측정을 통한 배터리 랙 파손 방지 장치의 상기 릴레이 제어부는 상기 전류 비교부로부터 상기 전류 초과 신호를 전송받는 경우 상기 프리차지 릴레이의 동작 상태를 온에서 오프 상태로 변경시키고 상기 메인 릴레이의 동작 상태를 오프 상태로 유지시킬 수 있다.
일 실시예에서, 전류 측정을 통한 배터리 랙 파손 방지 시스템은 복수의 배터리 랙 각각의 전압을 측정하는 상기 전압 측정부와 연결되어 상기 전압 측정부를 통해 측정된 복수의 전압값 간에 차를 계산하는 전압 비교부;를 더 포함할 수 있다.
일 실시예에서, 전류 측정을 통한 배터리 랙 파손 방지 시스템의 상기 전압 비교부는 상기 복수의 전압값 간에 차를 계산한 결과값 중에서 기 설정된 허용 전압차를 초과하는 결과값이 산출되는 경우 전압 불균형 신호를 상기 릴레이 제어부에 전송할 수 있다.
일 실시예에서, 전류 측정을 통한 배터리 랙 파손 방지 시스템에 구비된 전류 측정을 통한 배터리 랙 파손 방지 장치의 상기 릴레이 제어부는 상기 전압 비교부로부터 상기 전압 불균형 신호를 전송받는 경우 상기 프리차지 릴레이 및 상기 메인 릴레이의 동작 상태를 온에서 오프 상태로 변경시킬 수 있다.
일 실시예에서, 전류 측정을 통한 배터리 랙 파손 방지 시스템은 상기 전류 측정을 통한 배터리 랙 파손 방지 장치는 상기 하나 이상의 배터리 랙을 제어하는 배터리 관리 시스템에 포함될 수 있다.
본 발명의 일 실시예에 따른 전류 측정을 통한 배터리 랙 파손 방지 방법은 (a) 전류 측정부, 전류 비교부, 릴레이 제어부, 및 전압 측정부를 포함하는 전류 측정을 통한 배터리 랙 파손 방지 장치를 하나 이상의 배터리 랙 각각에 구비하는 단계; 및 (b) 상기 전류 측정을 통한 배터리 랙 파손 방지 장치가 상기 하나 이상의 배터리 랙 각각에 구비되어, 해당 배터리 랙에 대하여 해당 배터리 랙의 전류값을 측정하여 기 설정된 전류 제한값과 비교하고, 상기 비교 결과에 따라 해당 배터리 랙의 프리차지 릴레이 및 메인 릴레이의 동작 상태를 제어하는 과정 및 해당 배터리 랙의 전압값을 측정하는 과정을 개별적으로 수행하는 단계; (c) 복수의 배터리 랙 각각의 전압을 측정하는 상기 전압 측정부와 연결되는 전압 비교부를 구비하는 단계; 및 (d) 상기 복수의 배터리 랙의 전압값을 수신하여 복수의 전압값 간에 차를 계산하고, 상기 계산 결과에 따라 해당 배터리 랙의 프리차지 릴레이 및 메인 릴레이의 동작 상태를 제어하는 단계;를 포함하되, 상기 (b) 단계는, (b1) 상기 전류 측정부가 복수의 배터리 모듈을 포함하는 배터리 랙의 전류값을 측정하는 단계; (b2) 상기 전류 비교부가 상기 전류 측정부를 통해 측정된 전류값과 기 설정된 전류 제한값의 대소를 비교하는 단계; (b3) 상기 릴레이 제어부가 상기 프리차지 릴레이의 동작 상태가 온 상태로 변경된 후, 상기 메인 릴레이의 동작 상태가 오프에서 온 상태로 변경되기 전에 상기 상기 전류 비교부를 통해 도출된 비교 결과값을 근거하여 상기 프리차지 릴레이 및 상기 메인 릴레이의 동작 상태를 제어하는 단계; 및 (b4) 상기 전압 측정부가 상기 배터리 랙의 전압값을 측정하는 단계;를 포함할 수 있다.일 실시예에서, 상기 (b1) 단계는 상기 전류 측정부가 상기 배터리 랙에 전류의 전류값을 측정하고 측정된 전류값을 상기 전류 비교부로 전송하는 단계;를 포함할 수 있다.
일 실시예에서, 상기 (b2) 단계는 상기 전류 비교부가 상기 전류 측정부로부터 전송받은 전류값이 기 설정된 전류 제한값을 초과하는 경우 전류 초과 신호를 상기 릴레이 제어부에 전송하는 단계;를 포함할 수 있다.
일 실시예에서, 상기 (b3) 단계는 상기 릴레이 제어부가 상기 전류 비교부로부터 상기 전류 초과 신호를 전송받는 경우, 상기 릴레이 제어부가 상기 프리차지 릴레이의 동작 상태를 온에서 오프 상태로 변경시키고 상기 메인 릴레이의 동작 상태를 오프 상태로 유지시키는 단계;를 포함할 수 있다.
일 실시예에서, 상기 (d) 단계는 상기 전압 비교부가 상기 전압 측정부를 통해 측정된 복수의 전압값 간에 차를 계산하고, 계산한 결과값 중에서 기 설정된 허용 전압차를 초과하는 결과값이 산출되는 경우 전압 불균형 신호를 상기 릴레이 제어부에 전송하는 단계;를 포함할 수 있다.
일 실시예에서, 상기 (d) 단계는 상기 릴레이 제어부가 상기 전압 비교부로부터 상기 전압 불균형 신호를 전송받는 경우 상기 프리차지 릴레이 및 메인 릴레이의 동작 상태를 온에서 오프 상태로 변경시키는 단계;를 더 포함할 수 있다.
본 발명의 일 실시예에 따른 전류 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법은 배터리 랙의 측정 전류값이 기 설정된 전류 제한값을 초과하는 경우 배터리 랙에 쇼트 현상이 발생되기 전에, 프리차지 릴레이와 메인 릴레이의 동작상태를 제어함으로써, 배터리 랙에 흐르는 전류를 차단시킨다. 따라서, 배터리 랙에 발생될 수 있는 쇼트 현상을 방지하여 과충전 및 과열로 인한 배터리 랙 손상 및 화재를 예방하는 효과를 가진다.
또한, 본 발명의 일 실시예에 따른 전류 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법은 배터리 랙 간에 전압차가 기 설정된 허용 전압차를 초과하는 경우 프리차지 릴레이와 메인 릴레이의 동작상태를 제어함으로써, 배터리 랙 간에 용량 불균형을 방지하는 효과를 가진다.
또한, 본 발명은 하나 이상의 배터리 랙이 연결되어 전력을 충방전하는 에너지 저장 장치 또는 배터리 시스템에서, 하나 이상의 배터리 랙 각각에 전류 측정을 통한 배터리 랙 파손 방지 장치를 구비하고, 해당 배터리 랙에 대하여 해당 배터리 랙의 전류값을 측정하여 기 설정된 전류 제한값과 비교하고, 상기 비교 결과에 따라 해당 배터리 랙의 프리차지 릴레이 및 메인 릴레이의 동작 상태를 제어하는 과정을 개별적으로 수행함으로써, 일부 배터리 랙의 쇼트 현상으로 인한 배터리 랙 간에 충전 용량 불균형을 방지하는 효과를 가진다.
도 1은 본 발명의 일 실시예에 따른 전류 측정을 통한 배터리 랙 파손 방지 장치가 적용될 수 있는 전기 자동차를 개략적으로 도시한 도면이다.
도 2는 본 발명의 일 실시예에 따른 전류 측정을 통한 배터리 랙 파손 방지 장치의 구성을 도시한 블록도이다.
도 3은 본 발명의 일 실시예에 따른 전류 측정을 통한 배터리 랙 파손 방지 장치의 구체적인 구성의 일 예를 도시한 도면이다.
도 4는 전류 측정을 통한 배터리 랙 파손 방지 시스템의 구체적인 구성의 일 예를 도시한 도면이다.
도 5는 전류 측정을 통한 배터리 랙 파손 방지 장치가 전류 측정을 통한 배터리 랙 파손 방지 시스템에서 동작하는 경우의 일 예를 도시한 도면이다.
도 6은 전류 측정을 통한 배터리 랙 파손 방지 장치가 전류 측정을 통한 배터리 랙 파손 방지 시스템에서 동작하는 경우의 다른 예를 도시한 도면이다.
도 7은 본 발명의 일 실시예에 따른 전류 측정을 통한 배터리 랙 파손 방지 방법의 일 예를 순서에 따라 도시한 순서도이다.
도 8은 본 발명의 일 실시예에 따른 전류 측정을 통한 배터리 랙 파손 방지 방법의 다른 예를 순서에 따라 도시한 순서도이다.
본 발명을 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다. 여기서, 반복되는 설명, 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능, 및 구성에 대한 상세한 설명은 생략한다. 본 발명의 실시형태는 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다. 따라서, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있다.
명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
또한, 명세서에 기재된 "...부"의 용어는 하나 이상의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.
도 1은 본 발명의 일 실시예에 따른 전류 측정을 통한 배터리 랙 파손 방지 장치가 적용될 수 있는 전기 자동차를 개략적으로 도시한 도면이다.
도 1에서 본 발명의 일 실시예에 따른 전류 측정을 통한 배터리 랙 파손 방지 장치가 전기 자동차에 적용된 예를 도시하고 있으나, 본 발명의 일 실시예에 따른 전류 측정을 통한 배터리 랙 파손 방지 장치는 전기 자동차 이외에도 모바일 기기, 에너지 저장 시스템(Energy Storage System; ESS) 또는 무정전 전원 공급 장치(Uninterruptible Power Supply; UPS) 등 이차 전지 배터리가 적용될 수 있는 분야라면 어떠한 기술 분야라도 적용될 수 있다.
전기 자동차(1)는 배터리(10), BMS(Battery Management System, 20), ECU(Electronic Control Unit, 30), 인버터(40) 및 모터(50)를 포함하여 구성될 수 있다.
배터리(10)는 모터(50)에 구동력을 제공하여 전기 자동차(1)를 구동시키는 전기 에너지원이다. 배터리(10)는 모터(50) 또는 내연 기관(미도시)의 구동에 따라 인버터(40)에 의해 충전되거나 방전될 수 있다.
여기서, 배터리(10)의 종류는 특별히 한정되지 않으며, 예컨대 리튬 이온 전지, 리튬 폴리머 전지, 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지 등으로 구성할 수 있다.
BMS(20)는 배터리(10)의 상태를 추정하고, 추정한 상태 정보를 이용하여 배터리(10)를 관리한다. 예컨대, 배터리(10)의 잔존 용량(State Of Charging; SOC), 잔존 수명(State Of Health; SOH), 최대 입출력 전력 허용량, 출력 전압 등 배터리(10) 상태 정보를 추정하고 관리한다. 그리고, 이러한 상태 정보를 이용하여 배터리(10)의 충전 또는 방전을 제어하며, 나아가 배터리(10)의 교체 시기 추정도 가능하다.
또한, 상기 BMS(20)는 후술하는 전류 측정을 통한 배터리 랙 파손 방지 장치 및 시스템을 포함할 수 있다. 이러한 전류 측정을 통한 배터리 랙 파손 방지 장치 및 시스템에 의해 배터리(10)가 과충전으로 인해 과열되거나 쇼트(Short) 현상이 발생되어 배터리(10)가 파손되는 것을 방지할 수 있다.
ECU(30)는 전기 자동차(1)의 상태를 제어하는 전자적 제어 장치이다. 예컨대, 액셀러레이터(Accelerator), 브레이크(Break), 속도 등의 정보에 기초하여 토크 정도를 결정하고, 모터(50)의 출력이 토크 정보에 맞도록 제어한다.
또한, ECU(30)는 BMS(20)에 의해 전달받은 배터리(10)의 SOC, SOH 등의 상태 정보에 기초하여 배터리(10)가 충전 또는 방전될 수 있도록 인버터(40)에 제어 신호를 보낸다.
인버터(40)는 ECU(30)의 제어 신호에 기초하여 배터리(10)가 충전 또는 방전되도록 한다.
모터(50)는 배터리(10)의 전기 에너지를 이용하여 ECU(30)로부터 전달되는 제어 정보(예컨대, 토크 정보)에 기초하여 전기 자동차(1)를 구동한다.
도 2는 본 발명의 일 실시예에 따른 전류 측정을 통한 배터리 랙 파손 방지 장치의 구성을 도시한 블록도이며, 도 3은 본 발명의 일 실시예에 따른 전류 측정을 통한 배터리 랙 파손 방지 장치의 구체적인 구성의 일 예를 도시한 도면이다.
도 2 및 도 3을 참조하면, 전류 측정을 통한 배터리 랙 파손 방지 장치(100)는 배터리 랙(110), 제1 배터리 랙(111), 제2 배터리 랙(112), 전류 측정부(120), 전류 비교부(130), 프리차지 릴레이(141), 프리차지 저항(142), 메인 릴레이(143), 릴레이 제어부(150), 전압 측정부(160), 전압 비교부(170)를 포함하여 구성될 수 있다. 도 2 및 도 3에 전류 측정을 통한 배터리 랙 파손 방지 장치(100)는 일 실시예에 따른 것이고, 그 구성요소들이 도 2 및 도 3에 도시된 실시예에 한정되는 것은 아니며, 필요에 따라 부가, 변경 또는 삭제될 수 있다.
배터리 랙(110)은 전력을 공급받아 충전되거나 배터리 랙(110)에 충전된 전기에너지를 부하에 공급함으로써 방전될 수 있다. 여기서 배터리 랙(110)의 종류는 특별히 한정되지 않으며, 복수의 배터리 모듈(Battery Module)을 포함하여 구성 될 수 있다.
일 실시예에서, 배터리 랙(110)은 도 1에 도시된 배터리(10)에 포함될 수 있으며, 배터리 랙(110)은 기존의 공지된 기술을 사용하기 때문에 상세한 설명은 생략하기로 한다.
한편, 도 3에 도시된 제1 배터리 랙(111) 및 제2 배터리 랙(112)은 상기 배터리 랙(110)에 포함될 수 있으며, 상기 배터리 랙(110)의 파손을 방지하기 위해 연결된 상기 프리차지 릴레이(141), 상기 프리차지 저항(142) 및 상기 메인 릴레이(143)를 기준으로 아래쪽에 연결된 배터리 모듈(111a, 111b, ..., 111n)은 제1 배터리 랙(111)의 구성요소일 수 있고, 위쪽에 연결된 배터리 모듈(112a, 112b, ..., 112n)은 제2 배터리 랙(112)의 구성요소일 수 있다. 상기의 경우 후술되는 전류 측정부(120)는 제1 배터리 랙(111)과 제2 배터리 랙(112)사이에 직렬로 연결되어 전류값을 측정할 수 있다.
전류 측정부(120)는 제1 배터리 랙(111)과 제2 배터리 랙(112) 사이에 직렬로 연결되어 제1 배터리 랙(111)과 제2 배터리 랙(112) 사이에 흐르는 전류의 전류값을 측정하는 역할을 수행할 수 있다.
이러한 역할을 수행하는 전류 측정부(120)는 배터리 랙(110)에 흐르는 전류를 측정 하기 위해 변류기(Current transformer) 방식, 홀 소자(Hall element) 방식 및 퓨즈(Fuse) 방식 중 하나 이상에 해당하는 전류 센서(Current sensor)를 이용할 수 있고, 하나 이상의 스위치 소자, 캐패시터, 도선 등을 포함할 수 있다.
그리고 전류 측정부(120)는 릴레이(110)로부터 측정되는 전류가 고전류에 해당하는 경우 자체적으로 내부를 보호하기 위한 안정기(예를 들어, 높은 저항값을 가지는 저항체 등)(미도시)를 더 포함할 수 있다.
이러한, 전류 측정부(120)를 통해 측정된 전류값은 후술되는 전류 비교부(130)로 전송될 수 있으며, 전류 측정부(120)가 상술한 역할을 수행하는 한, 전류 측정부(120)의 전류 센서 종류는 제한되지 않음을 유의한다.
전류 비교부(130)는 전류 측정부(120)로부터 측정 전류값을 수신하고, 이를 기 설정된 전류 제한값과 비교 판단하는 역할을 수행할 수 있다.
여기서, 상기 기 설정된 전류 제한값은 상기 배터리 랙(110)과 후술되는 프리차지 릴레이(141), 프리차지 저항(142) 및 메인 릴레이(143)가 정상적으로 연결되어 쇼트 서킷(Short Circuit)이 형성되지 않는 배터리 랙(110)에 흐르는 전류의 전류값으로 초기 설정되어 있거나, 사용자에 의해 설정될 수 있는 값이다. 예를 들어, 상기 기 설정된 전류 제한값은 50A일 수 있다.
이어서, 상기 측정 전류값이 기 설정된 전류 제한값을 초과하는 경우, 전류 비교부(130)는 전류 초과 신호를 후술되는 릴레이 제어부(150)에 전송할 수 있고, 측정 전류값이 기 설정된 전류 제한값을 초과하지 않는 경우에는 전류 초과 신호를 전송하지 않게 된다.
일 실시예에서, 전류 비교부(130)에는 전류 측정부(120)와 마찬가지로 별도의 안정기(예를 들어, 높은 저항값을 가지는 저항체 등)(미도시)를 더 포함할 수 있으며, 그에 따라 고전압으로부터 자체적으로 내부를 보호하도록 구성될 수 있다.
프리차지 릴레이(141)와 프리차지 저항(142)은 직렬로 연결될 수 있고 메인 릴레이(143)는 상기 직렬로 연결된 프리차지 릴레이(141) 및 프리차지 저항(142)과 병렬로 연결되어 상기 배터리 랙(110)에 흐르는 전류를 통전 또는 차단하는 역할을 수행할 수 있다. 프리차지 릴레이(141) 및 메인 릴레이(143)의 동작 상태는 한 쌍의 도선이 서로 접한 온(On) 상태 또는 도선이 서로 이격된 오프(Off) 상태 중 어느 하나에 해당할 수 있으며, 프리차지 릴레이(141) 및 메인 릴레이(143) 중 어느 하나 이상의 동작 상태가 온 상태에 해당되는 경우 상기 배터리 랙(110)에 흐르는 전류가 통전되고, 프리차지 릴레이(141) 및 메인 릴레이(143) 모두 오프 상태에 해당되는 경우 상기 배터리 랙(110)에 흐르는 전류가 차단될 수 있다.
한편, 상기 배터리 랙(110)에 전력이 공급되는 초기에 써지(Surge)성 전류로부터 배터리 랙(110)을 보호 하기 위해 프리차지 릴레이(141)는 동작 상태가 온 상태로 변경될 수 있고, 프리차지 릴레이(141)가 온 상태로 변경되는 경우 프리차지 릴레이(141)와 직렬로 연결된 프리차지 저항(142)으로 써지성 전류가 흐름으로써 상기 배터리 랙(110)을 보호할 수 있다. 프리차지 릴레이(141)의 동작 상태가 온 상태로 변경된 뒤 기 설정된 시간(예를 들어, 1s에 해당하는 시간) 이후 메인 릴레이(143)의 동작 상태가 온 상태로 변경될 수 있고, 상기 전류 비교부(130)는 프리차지 릴레이(141)의 동작 상태가 온상태로 변경된 뒤부터 메인 릴레이(143)의 동작 상태가 온 상태로 변경되기 전까지 상기 전류 측정부(120)를 통해 측정된 전류값과 기 설정된 전류 제한값을 비교 판단하는 역할을 수행할 수 있다.
여기서, 상기 기 설정된 전류 제한값은 상기 배터리 랙(110)과 프리차지 릴레이(141), 프리차지 저항(142) 및 메인 릴레이(143)가 정상적으로 연결되어 쇼트 서킷이 형성되지 않는 배터리 랙(110)에 흐르는 전류의 전류값으로 초기 설정되어 있거나, 사용자에 의해 설정될 수 있는 값이다. 예를 들어, 상기 기 설정된 전류 제한값은 50A일 수 있다.
프리차지 릴레이(141) 및 메인 릴레이(143)의 동작 상태가 온 상태로 변경된 뒤 기 설정된 시간(예를 들어, 1s에 해당하는 시간) 이후 프리차지 릴레이(141)의 동작 상태가 오프 상태로 변경되어 상기 배터리 랙(110)으로 공급되는 전력이 프리차지 저항(142)을 통하지 않고 공급될 수 있다.
릴레이 제어부(150)는 상기 전류 비교부(130), 프리차지 릴레이(141), 프리차지 저항(142) 및 메인 릴레이(143)와 연결될 수 있으며, 릴레이 제어부(150)는 상기 전류 비교부(130)를 통해 전류 초과 신호를 전송받는 경우 상기 프리차지 릴레이(141)의 동작 상태를 온에서 오프 상태로 변경시킬 수 있고 상기 메인 릴레이(143)의 동작 상태를 오프 상태로 유지시키는 역할을 수행할 수 있다. 상기 프리차지 릴레이(141) 및 상기 메인 릴레이(143)의 동작 상태가 오프 상태일 경우 상기 배터리 랙(110)에 흐르는 전류가 차단될 수 있다.
반대로, 상기 전류 비교부(130)를 통해 전류 초과 신호를 전송받지 않는 경우 릴레이 제어부(150)는 상기 프리차지 릴레이(141) 및 상기 메인 릴레이(143)의 동작 상태를 제어하지 않을 수 있다.
한편, 릴레이 제어부(150)는 후술되는 전압 비교부(170)를 통해 전압 불균형 신호를 전송받는 경우 상기 프리차지 릴레이(141) 및 상기 메인 릴레이(143)의 동작 상태를 온에서 오프 상태로 변경시키는 역할을 수행할 수 있다. 이와 같은, 릴레이 제어부(150)의 역할, 전압 측정부(160) 및 전압 비교부(170)의 자세한 설명은 후술되는 도 4를 통해 자세하게 설명하도록 한다.
도 4는 본 발명의 일 실시예에 따른 전류 측정을 통한 배터리 랙 파손 방지 시스템의 구체적인 구성의 일 예를 도시한 도면이다. 도 4는 전류 측정을 통한 배터리 랙 파손 방지 시스템(100)이 동작하는 경우의 일 예를 도시한 도면에 관한 것으로서, 도 3과 비교했을 때, 복수의 전류 측정을 통한 배터리 랙 파손 방지 장치(100a, ..., 100n)가 서로 병렬로 연결되어 있고, 하나의 전압 비교부(170)가 복수의 전류 측정을 통한 배터리 랙 파손 방지 장치(100a, ..., 100n) 각각의 전압 측정부(160, 160b, ..., 160n) 및 릴레이 제어부(150, 150b, ..., 150n)와 연결된다는 점을 제외하고는 동일하게 구성되고 그 기능 또한 동일하게 수행함으로 동일한 구성 요소에 대한 구체적인 설명은 생략하기로 한다.
도 4를 참조하면, 본 발명의 일 실시예에 따른 전류 측정을 통한 배터리 랙 파손 방지 시스템(100)은 하나 이상의 배터리 랙(111, 112, 110b, ..., 110n) 각각에 전류 측정을 통한 배터리 랙 파손 방지 장치(100a, ..., 100n)를 구비할 수 있다.
전류 측정을 통한 배터리 랙 파손 방지 시스템(100)은 전류 측정을 통한 배터리 랙 파손 방지 장치(100a)가 구비된 제1 및 제2 배터리 랙(111,112)에 대하여, 제1 및 제2 배터리 랙(111,112) 사이에 흐르는 전류의 전류값을 측정하여 기 설정된 전류 제한값과 비교하고, 상기 비교 결과에 따라 제1 및 제2 배터리 랙(111,112)의 프리차지 릴레이(141) 및 메인 릴레이(143)의 동작 상태를 제어하는 과정을 개별적으로 수행할 수 있다.
전류 측정을 통한 배터리 랙 파손 방지 장치(100a)가 구비된 제1 및 제2 배터리 랙(111,112)에 대하여, 상기의 과정을 개별적으로 수행한 것과 같이, 전류 측정을 통한 배터리 랙 파손 방지 장치(100b, ..., 100n)가 각각 구비된 배터리 랙(110b, ..., 110n)에 대해서도 상기의 과정을 각각 개별적으로 수행할 수 있다.
이러한 전류 측정을 통한 배터리 랙 파손 방지 장치(100a, ..., 100n)의 개별적 수행 과정을 통해 하나 이상의 배터리 랙이 연결되어 전력을 충방전하는 에너지 저장 장치 또는 배터리 시스템에서 프리차지 릴레이, 프리차지 저항 및 메인 릴레이가 비정상적으로 설치된 배터리 랙만을 손쉽게 파악할 수 있으며, 상호 연결된 하나 이상의 배터리 랙 전체의 전류를 차단하지 않고 해당 배터리 랙의 프리차지 릴레이 및 메인 릴레이만을 개별적으로 차단하여 에너지 저장 장치 또는 배터리 시스템의 충방전을 지속적으로 수행할 수 있다.
전압 측정부(160, 160b, ..., 160n)는 전류 측정을 통한 배터리 랙 파손 방지 장치(100a, 100b, ..., 100n) 각각의 배터리 랙 양단(플러스(+)극 및 마이너스( )극)에 위치하여 배터리 랙(111, 112, 110b, ..., 110n)에 인가된 전압의 전위차를 측정하는 역할을 수행할 수 있다. 한편, 전압 측정부(160, 160b, ..., 160n)는 배터리 랙(111, 112, 110b, ..., 110n)의 전압을 측정 하기 위해 하나 이상의 스위치 소자, 캐패시터, 도선 등을 포함할 수 있다. 이러한, 전압 측정부(160, 160b, ..., 160n)를 통해 측정된 전압값은 후술되는 전압 비교부(170)로 전송될 수 있다.
전압 비교부(170)는 전압 측정부(160, 160b, ..., 160n)를 통해 측정된 복수의 전압값을 전송받아 전압값 간에 차를 계산하고, 계산된 결과값들과 기 설정된 허용 전압차와 비교 판단하는 역할을 수행할 수 있다.
여기서, 상기 기 설정된 허용 전압차는 배터리 랙 간에 전압차가 발생하는 경우이더라도 배터리 랙이 파손되지 않는 배터리 랙 간에 전압차로, 사용자에 의해 설정될 수 있는 값이다. 예를 들어, 기 설정된 허용 전압차는 50V일 수 있다.
이어서, 측정된 전압값 간에 차를 계산한 결과값들 중에서 기 설정된 허용 전압차를 초과하는 결과값이 산출되는 경우, 전압 비교부(170)는 릴레이 제어부(150, 150b, ..., 150n)로 전압 불균형 신호를 전송할 수 있고, 상기 계산된 결과값 중에서 기 설정된 허용 전압차를 초과하는 결과값이 산출되지 않는 경우, 전압 비교부(170)는 릴레이 제어부(150, 150b, ..., 150n)로 전압 불균형 신호를 전송하지 않게 된다.
릴레이 제어부(150, 150b, ..., 150n)는 각각 상기 전압 비교부(170), 프리차지 릴레이(141, 141b, ..., 141n), 프리차지 저항(142, 142b, ..., 142n) 및 메인 릴레이(143, 143b, ..., 143n)와 연결될 수 있으며, 릴레이 제어부(150, 150b, ..., 150n)는 상기 전압 비교부(170)를 통해 전압 불균형 신호를 전송받는 경우 기 설정된 허용 전압차를 초과하는 결과값이 산출된 배터리 랙의 프리차지 릴레이 및 메인 릴레이의 동작 상태를 온에서 오프 상태로 변경시킬 수 있다.
이러한 상기 프리차지 릴레이 및 메인 릴레이의 제어를 통해 용량 불균형이 일어난 배터리 랙으로부터 이외의 정상 배터리 랙을 차단함으로써 배터리 랙 간에 용량 뷸균형을 방지할 수 있다.
반대로, 릴레이 제어부(150, 150b, ..., 150n)는 상기 전압 비교부(170)를 통해 전압 불균형 신호를 전송받는 경우 프리차지 저항(142, 142b, ..., 142n) 및 메인 릴레이(143, 143b, ..., 143n)의 동작 상태를 제어하지 않을 수 있다.
도 5는 전류 측정을 통한 배터리 랙 파손 방지 장치가 전류 측정을 통한 배터리 랙 파손 방지 시스템에서 동작하는 경우의 일 예를 도시한 도면이다.
도 5와 도 4를 비교했을 때, 도 4에 도시된 모든 배터리 랙(111, 112, 110b, ..., 110n)에는 프리차지 릴레이(141, 141b, ..., 141n), 프리차지 저항(142, 142b, ..., 142n) 및 메인 릴레이(143, 143b, ..., 143n)가 각각 폐회로를 구성하지 않고 정상적으로 연결되어 있지만, 도 5에 도시된 제1 배터리 랙(111')에는 프리차지 릴레이(141'), 프리차지 저항(142') 및 메인 릴레이(143')가 비정상적으로 설치되어 페회로를 구성하고 있다.
도 5를 참조하여 보다 구체적으로 살펴보면, 전류 측정을 통한 배터리 랙 파손 방지 시스템(100')에 구비된 전류 측정을 통한 배터리 랙 파손 방지 장치(100')는 제1 배터리 랙(111')과 프리차지 릴레이(141'), 프리차지 저항(142') 및 메인 릴레이(143')가 비정상적으로 연결되어 외부 부하가 없는 폐회로로 형성된 예일 수 있다. 상기 폐회로에서 프리차지 릴레이(141')와 프리차지 저항(142')은 직렬로 연결되어 프리차지 릴레이(141')의 동작 상태가 오프에서 온 상태로 변경되는 경우 쇼트 현상을 방지하는 역할을 수행할 수 있으며, 도 1 내지 도 4를 참조하여 설명한 구성 요소 중 도 5에 도시된 전류 측정을 통한 배터리 랙 파손 방지 시스템(100')과 동일한 구성 요소에 대한 설명은 생략하기로 한다.
상기 전류 측정을 통한 배터리 랙 파손 방지 장치(100'a)가 전력 변환 장치(200)으로부터 전력을 공급받는 경우 제1 배터리 랙(111')을 제외한 제2 배터리 랙(112')에 전력이 충전될 수 있으며 전류 측정부(120')에서는 제2 배터리 랙(112')을 제외한 제1 배터리 랙(111')에 흐르는 전류의 전류값을 측정하는 역할을 수행할 수 있다. 상기 전류 측정부(120')를 통해 측정된 전류값은 제2 배터리 랙(112')에 프리차지 저항(142')만이 연결되었을 경우 측정된 측정값이므로 다른 전류 측정부(120'b, ..., 120'n)에서 측정된 전류값 보다 클 수 있다.
메인 릴레이(143')의 동작 상태가 오프에서 온 상태로 변경되는 경우 상기 폐회로에는 쇼트 현상이 발생될 수 있다. 이를 방지하기 위해 전류 비교부(130')는 상기 전류 측정부(120')를 통해 측정된 전류값과 기 설정된 전류 제한값을 비교 판단하여 측정된 전류값이 기 설정된 전류 제한값을 초과하는 경우 전류 초과 신호를 릴레이 제어부(150')로 전송하는 역할을 수행할 수 있다. 상기 전류 초과 신호를 전송받은 릴레이 제어부(150')는 상기 메인 릴레이(143')의 동작 상태가 오프에서 온 상태로 변경되기 전에, 상기 프리차지 릴레이(141')의 동작 상태를 오프 상태로 유지함으로써 상기 제1 배터리 랙(111')에서 발생하는 쇼트 현상을 방지하는 역할을 수행할 수 있다.
또한, 상기 제1 배터리 랙(111')에 쇼트 현상이 발생되는 경우 배터리 랙(100'a, ..., 100'n) 간에 용량 편차로 각각의 충전 속도가 달라짐으로써 발생되는 과충전, 과열 또는 스웰링(Swelling)으로 인한 파손을 방지하는 역할을 수행할 수 있다. 여기서, 상기 기 설정된 전류 제한값은 상기 제1 배터리 랙(111') 및 제2 배터리 랙(112')과 프리차지 릴레이(141'), 프리차지 저항(142') 및 메인 릴레이(143')가 정상적으로 연결되어 쇼트 서킷이 형성되지 않은 제1 배터리 랙(111')과 제2 배터리 랙(112') 사이에 흐르는 전류를 측정한 전류값으로 초기 설정되어 있거나, 사용자에 의해 설정될 수 있는 값이다. 예를 들어, 상기 기 설정된 전류 제한값은 50A일 수 있다.
도 6은 전류 측정을 통한 배터리 랙 파손 방지 장치가 전류 측정을 통한 배터리 랙 파손 방지 시스템에서 동작하는 경우의 다른 예를 도시한 도면이다.
도 6과 도 4를 비교했을 때, 도 4에 도시된 모든 배터리 랙(111, 112, 110b, ..., 110n)에는 프리차지 릴레이(141, 141b, ..., 141n), 프리차지 저항(142, 142b, ..., 142n) 및 메인 릴레이(143, 143b, ..., 143n)가 각각 폐회로를 구성하지 않고 정상적으로 연결되어 있지만, 도 6에 도시된 제2 배터리 랙(111")에는 프리차지 릴레이(141"), 프리차지 저항(142") 및 메인 릴레이(143")가 비정상적으로 설치되어 페회로를 구성하고 있다.
도 6을 참조하여 보다 구체적으로 살펴보면, 전류 측정을 통한 배터리 랙 파손 방지 시스템(100")에 구비된 전류 측정을 통한 배터리 랙 파손 방지 장치(100"a)는 제2 배터리 랙(112")과 프리차지 릴레이(141"), 프리차지 저항(142") 및 메인 릴레이(143")가 비정상적으로 연결되어 외부 부하가 없는 폐회로로 형성된 예일 수 있다. 상기 폐회로에서 프리차지 릴레이(141")와 프리차지 저항(142")은 직렬로 연결되어 프리차지 릴레이(141")의 동작 상태가 오프에서 온 상태로 변경되는 경우 쇼트(Shrot) 현상을 방지하는 역할을 수행할 수 있으며, 도 1 내지 도 4를 참조하여 설명한 구성 요소 중 도 6에 도시된 전류 측정을 통한 배터리 랙 파손 방지 시스템(100")과 동일한 구성 요소에 대한 설명은 생략하기로 한다.
상기 전류 측정을 통한 배터리 랙 파손 방지 장치(100")가 전력 변환 장치(200)으로부터 전력을 공급받는 경우 제2 배터리 랙(112")을 제외한 제1 배터리 랙(111")에 전력이 충전될 수 있으며 전류 측정부(120")에서는 제1 배터리 랙(111")을 제외한 제2 배터리 랙(112")에 흐르는 전류의 전류값을 측정하는 역할을 수행할 수 있다. 상기 전류 측정부(120")를 통해 측정된 전류값은 제1 배터리 랙(111")에 프리차지 저항(142")만이 연결되었을 경우 측정된 측정값이므로 다른 전류 측정부(120"b, ..., 120"n)에서 측정된 전류값 보다 클 수 있다.
메인 릴레이(143")의 동작 상태가 오프에서 온 상태로 변경되는 경우 상기 폐회로에는 쇼트 현상이 발생될 수 있다. 이를 방지하기 위해 전류 비교부(130")는 상기 전류 측정부(120")를 통해 측정된 전류값과 기 설정된 전류 제한값을 비교 판단하여 측정된 전류값이 기설정된 전류 제한값을 초과하는 경우 전류 초과 신호를 릴레이 제어부(150")로 전송하는 역할을 수행할 수 있다. 상기 전류 초과 신호를 전송받은 릴레이 제어부(150")는 상기 메인 릴레이(143")의 동작 상태가 오프에서 온 상태로 변경되기 전에, 상기 프리차지 릴레이(141")의 동작 상태를 온에서 오프 상태로 변경하고 상기 메인 릴레이(143")의 동작 상태를 오프 상태로 유지함으로써 상기 제2 배터리 랙(112")에서 발생하는 쇼트 현상을 방지하는 역할을 수행할 수 있다.
또한, 상기 제2 배터리 랙(112")에 쇼트 현상이 발생되는 경우 배터리 랙(100"a, ..., 100"n) 간에 용량 편차로 각각의 충전 속도가 달라짐으로써 발생되는 과충전, 과열 또는 스웰링으로 인한 파손을 방지하는 역할을 수행할 수 있다.
여기서, 상기 기 설정된 전류 제한값은 상기 제1 배터리 랙(111") 및 제2 배터리 랙(112")과 프리차지 릴레이(141"), 프리차지 저항(142") 및 메인 릴레이(143")가 정상적으로 연결되어 쇼트 서킷이 형성되지 않은 제1 배터리 랙(111")과 제2 배터리 랙(112") 사이에 흐르는 전류를 측정한 전류값으로 초기 설정되어 있거나, 사용자에 의해 설정될 수 있는 값이다. 예를 들어, 상기 기 설정된 전류 제한값은 50A일 수 있다.
도 7은 본 발명의 일 실시예에 따른 전류 측정을 통한 배터리 랙 파손 방지 방법의 일 예를 순서에 따라 도시한 순서도이다.
도 7을 참조하면, 먼저 전류 측정부(120)는 배터리 랙(110)에 흐르는 전류의 전류값을 측정하고, 측정된 전류값을 전류 비교부(130)로 전송하게 된다(S701).
다음으로, 전류 비교부(130)는 전류 측정부(120)를 통해 전송 받은 측정 전류값이 기 설정된 전류 제한값을 초과하는지 비교 및 판단하게 된다(S702).
여기서, 기 설정된 전류 제한값은 배터리 랙(110)과 후술되는 프리차지 릴레이(141), 프리차지 저항(142) 및 메인 릴레이(143)가 정상적으로 연결되어 쇼트 서킷(Short Circuit)이 형성되지 않는 배터리 랙(110)에서 측정되는 전류값으로 초기 설정되어 있거나, 사용자에 의해 설정될 수 있는 값이다. 예를 들어, 기 설정된 전류 제한값은 50A일 수 있다.
만약, 전류 비교부(130)에서 판단된 비교 결과값이 기 설정된 전류 제한값을 초과하는 경우(S703), 전류 비교부(130)는 전류 초과 신호를 릴레이 제어부(150)에 전송하게 된다(S704).
반대로, 전류 비교부(130)에서 판단된 비교 결과값이 기 설정된 전류 제한값을 초과하지 않는 경우 시작으로 돌아가게 된다.
릴레이 제어부(150)는 전류 초과 신호를 전송받아 프리차지 릴레이(141)의 동작 상태를 온(On)에서 오프(Off) 상태로 변경시키고, 메인 릴레이(143)의 동작 상태가 오프에서 온 상태로 변경되기 전에 오프 상태로 유지시키게 된다(S705).
결과적으로, 프리차지 릴레이(141) 및 메인 릴레이(143)의 동작 상태가 오프 상태가 됨으로써 배터리 랙(110)에 흐르는 전류를 차단하게 된다(S706).
도 8은 본 발명의 일 실시예에 따른 전류 측정을 통한 배터리 랙 파손 방지 방법의 다른 예를 순서에 따라 도시한 순서도이다.
도 8을 참조하면, 먼저 전압 측정부(160, 160b, ..., 160n)는 각각 복수의 배터리 랙에 인가된 전압을 측정하고, 측정된 전압값을 전압 비교부(170)로 전송하게 된다(S801).
다음으로, 전압 비교부(170)는 전압 측정부(160, 160b, ..., 160n)로부터 전송 받은 측정 전압값 간에 차를 계산하고, 계산된 결과값들 중에서 기 설정된 허용 전압차를 초과하는 계산 결과값이 존재하는지 비교 및 판단하게 된다(S802).
여기서, 상기 기 설정된 허용 전압차는 배터리 랙 간에 전압차가 발생하는 경우이더라도 배터리 랙이 파손되지 않는 배터리 랙 간에 전압차로, 사용자에 의해 설정될 수 있는 값이다. 예를 들어, 기 설정된 허용 전압차는 50V일 수 있다.
만약, 전압 비교부(170)에서 계산 결과값들 중에서 기 설정된 허용 전압차를 초과하는 계산 결과값이 존재한다고 판단하는 경우(S803), 전압 비교부(170)는 전압 불균형 신호를 릴레이 제어부(150)에 전송하게 된다(S804).
반대로, 전압 비교부(170)에서 계산 결과값들 중에서 기 설정된 허용 전압차를 초과하는 계산 결과값이 존재하지 않는다고 판단하는 경우 시작으로 돌아가게 된다.
릴레이 제어부(150)는 전압 불균형 신호를 전송받아 용량 불균형이 발생하는 배터리 랙의 프리차지 릴레이 및 메인 릴레이의 동작 상태를 온(On)에서 오프(Off) 상태로 변경시키게 된다(S805).
결과적으로, 용량 불균형이 발생하는 배터리 랙의 프리차지 릴레이 및 메인 릴레이의 동작 상태가 오프 상태가 됨으로써 용량 불균형이 발생하는 배터리 랙과 정상 배터리 랙과의 연결을 차단하게 된다(S806).
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (24)

  1. 복수의 배터리 모듈(Battery Module)을 포함하는 배터리 랙의 전류값을 측정하는 전류 측정부;
    상기 전류 측정부를 통해 측정된 전류값과 기 설정된 전류 제한값의 대소를 비교하는 전류 비교부;
    프리차지 릴레이(Precharge Relay)의 동작 상태가 온(On) 상태로 변경된 후, 메인 릴레이(Main Relay)의 동작 상태가 오프(Off)에서 온(On) 상태로 변경되기 전에 상기 전류 비교부를 통해 도출된 비교 결과값을 근거하여 프리차지 릴레이 및 메인 릴레이의 동작 상태를 제어하는 릴레이 제어부; 및
    상기 배터리 랙의 전압값을 측정하는 전압 측정부;를 포함하되,
    하나 이상의 배터리 랙 각각에 구비되어, 해당 배터리 랙에 대하여 해당 배터리 랙의 전류값을 측정하여 기 설정된 전류 제한값과 비교하고, 상기 비교 결과에 따라 해당 배터리 랙의 프리차지 릴레이 및 메인 릴레이의 동작 상태를 제어하는 과정 및 해당 배터리 랙의 전압값을 측정하는 과정을 개별적으로 수행하는 것을 특징으로 하는,
    전류 측정을 통한 배터리 랙 파손 방지 장치.
  2. 제1항에 있어서,
    상기 프리차지 릴레이는,
    상기 배터리 랙의 용량에 따라 저항값이 결정되는 프리차지 저항과 직렬로 연결되어 상기 배터리 랙으로 흐르는 과전류의 전류값을 감소시키는 것을 특징으로 하는,
    전류 측정을 통한 배터리 랙 파손 방지 장치.
  3. 제1항에 있어서,
    상기 전류 측정부는,
    상기 배터리 랙에 흐르는 전류의 전류값을 측정하고 측정된 전류값을 상기 전류 비교부로 전송하며 변류기 방식, 홀 소자 방식 및 퓨즈 방식 중 하나 이상에 해당하는 전류 센서(Current sensor)를 포함하는 것을 특징으로 하는,
    전류 측정을 통한 배터리 랙 파손 방지 장치.
  4. 제1항에 있어서,
    상기 전류 비교부는,
    상기 전류 측정부로부터 전송받은 전류값이 기 설정된 전류 제한값을 초과하는 경우 전류 초과 신호를 상기 릴레이 제어부에 전송하는 것을 특징으로 하는,
    전류 측정을 통한 배터리 랙 파손 방지 장치.
  5. 제4항에 있어서,
    상기 릴레이 제어부는,
    상기 전류 비교부로부터 상기 전류 초과 신호를 전송받는 경우 상기 프리차지 릴레이의 동작 상태를 온에서 오프 상태로 변경시키고 상기 메인 릴레이의 동작 상태를 오프 상태로 유지시키는 것을 특징으로 하는,
    전류 측정을 통한 배터리 랙 파손 방지 장치.
  6. 제1항에 있어서,
    복수의 배터리 랙 각각의 전압을 측정하는 상기 전압 측정부와 연결되어 상기 전압 측정부를 통해 측정된 복수의 전압값 간에 차를 계산하는 전압 비교부;를 더 포함하는 것을 특징으로 하는,
    전류 측정을 통한 배터리 랙 파손 방지 장치.
  7. 제6항에 있어서,
    상기 전압 비교부는,
    상기 복수의 전압값 간에 차를 계산한 결과값 중에서 기 설정된 허용 전압차를 초과하는 결과값이 산출되는 경우 전압 불균형 신호를 해당 배터리 랙의 릴레이 제어부에 전송하는 것을 특징으로 하는,
    전류 측정을 통한 배터리 랙 파손 방지 장치.
  8. 제7항에 있어서,
    상기 릴레이 제어부는,
    상기 전압 비교부로부터 상기 전압 불균형 신호를 전송받는 경우 상기 프리차지 릴레이 및 상기 메인 릴레이의 동작 상태를 온에서 오프 상태로 변경시키는 것을 특징으로 하는,
    전류 측정을 통한 배터리 랙 파손 방지 장치.
  9. 제1항에 있어서,
    상기 하나 이상의 배터리 랙을 제어하는 배터리 관리 시스템(Battery Management System; BMS)에 포함되는 것을 특징으로 하는,
    전류 측정을 통한 배터리 랙 파손 방지 장치.
  10. 복수의 배터리 모듈을 포함하는 배터리 랙의 전류값을 측정하는 전류 측정부;
    상기 전류 측정부를 통해 측정된 전류값과 기 설정된 전류 제한값의 대소를 비교하는 전류 비교부;
    프리차지 릴레이의 동작 상태가 온 상태로 변경된 후, 메인 릴레이의 동작 상태가 오프에서 온 상태로 변경되기 전에 상기 전류 비교부를 통해 도출된 비교 결과값을 근거하여 프리차지 릴레이 및 메인 릴레이의 동작 상태를 제어하는 릴레이 제어부; 및
    상기 배터리 랙의 전압값을 측정하는 전압 측정부;를 포함하는 전류 측정을 통한 배터리 랙 파손 방지 장치를 하나 이상의 배터리 랙 각각에 구비하고, 해당 배터리 랙에 대하여 해당 배터리 랙의 전류값을 측정하여 기 설정된 전류 제한값과 비교하고, 상기 비교 결과에 따라 해당 배터리 랙의 프리차지 릴레이 및 메인 릴레이의 동작 상태를 제어하는 과정 및 해당 배터리 랙의 전압값을 측정하는 과정을 개별적으로 수행하는 것을 특징으로 하는,
    전류 측정을 통한 배터리 랙 파손 방지 시스템.
  11. 제10항에 있어서,
    상기 프리차지 릴레이는,
    상기 배터리 랙의 용량에 따라 저항값이 결정되는 프리차지 저항과 직렬로 연결되어 상기 배터리 랙으로 흐르는 과전류의 전류값을 감소시키는 것을 특징으로 하는,
    전류 측정을 통한 배터리 랙 파손 방지 시스템.
  12. 제10항에 있어서,
    상기 전류 측정부는,
    상기 배터리 랙에 흐르는 전류의 전류값을 측정하고 측정된 전류값을 상기 전류 비교부로 전송하며 변류기 방식, 홀 소자 방식 및 퓨즈 방식 중 하나 이상에 해당하는 전류 센서를 포함하는 것을 특징으로 하는,
    전류 측정을 통한 배터리 랙 파손 방지 시스템.
  13. 제10항에 있어서,
    상기 전류 비교부는,
    상기 전류 측정부로부터 전송받은 전류값이 기 설정된 전류 제한값을 초과하는 경우 전류 초과 신호를 상기 릴레이 제어부에 전송하는 것을 특징으로 하는,
    전류 측정을 통한 배터리 랙 파손 방지 시스템.
  14. 제13항에 있어서,
    상기 릴레이 제어부는,
    상기 전류 비교부로부터 상기 전류 초과 신호를 전송받는 경우 상기 프리차지 릴레이의 동작 상태를 온에서 오프 상태로 변경시키고 상기 메인 릴레이의 동작 상태를 오프 상태로 유지시키는 것을 특징으로 하는,
    전류 측정을 통한 배터리 랙 파손 방지 시스템.
  15. 제10항에 있어서,
    복수의 배터리 랙 각각의 전압을 측정하는 상기 전압 측정부와 연결되어 상기 전압 측정부를 통해 측정된 복수의 전압값 간에 차를 계산하는 전압 비교부;를 더 포함하는 것을 특징으로 하는,
    전류 측정을 통한 배터리 랙 파손 방지 시스템.
  16. 제15항에 있어서,
    상기 전압 비교부는,
    상기 복수의 전압값 간에 차를 계산한 결과값 중에서 기 설정된 허용 전압차를 초과하는 결과값이 산출되는 경우 전압 불균형 신호를 해당 배터리 랙의 릴레이 제어부에 전송하는 것을 특징으로 하는,
    전류 측정을 통한 배터리 랙 파손 방지 시스템.
  17. 제16항에 있어서,
    상기 릴레이 제어부는,
    상기 전압 비교부로부터 상기 전압 불균형 신호를 전송받는 경우 상기 프리차지 릴레이 및 상기 메인 릴레이의 동작 상태를 온에서 오프 상태로 변경시키는 것을 특징으로 하는,
    전류 측정을 통한 배터리 랙 파손 방지 시스템.
  18. 제1항에 있어서,
    상기 하나 이상의 배터리 랙을 제어하는 배터리 관리 시스템에 포함되는 것을 특징으로 하는,
    전류 측정을 통한 배터리 랙 파손 방지 시스템.
  19. (a) 전류 측정부, 전류 비교부, 릴레이 제어부, 및 전압 측정부를 포함하는 전류 측정을 통한 배터리 랙 파손 방지 장치를 하나 이상의 배터리 랙 각각에 구비하는 단계; 및
    (b) 상기 전류 측정을 통한 배터리 랙 파손 방지 장치가 상기 하나 이상의 배터리 랙 각각에 구비되어, 해당 배터리 랙에 대하여 해당 배터리 랙의 전류값을 측정하여 기 설정된 전류 제한값과 비교하고, 상기 비교 결과에 따라 해당 배터리 랙의 프리차지 릴레이 및 메인 릴레이의 동작 상태를 제어하는 과정 및 해당 배터리 랙의 전압값을 측정하는 과정을 개별적으로 수행하는 단계;
    (c) 복수의 배터리 랙 각각의 전압을 측정하는 상기 전압 측정부와 연결되는 전압 비교부를 구비하는 단계; 및
    (d) 상기 복수의 배터리 랙의 전압값을 수신하여 복수의 전압값 간에 차를 계산하고, 상기 계산 결과에 따라 해당 배터리 랙의 프리차지 릴레이 및 메인 릴레이의 동작 상태를 제어하는 단계;를 포함하되,
    상기 (b) 단계는,
    (b1) 상기 전류 측정부가 복수의 배터리 모듈을 포함하는 배터리 랙의 전류값을 측정하는 단계;
    (b2) 상기 전류 비교부가 상기 전류 측정부를 통해 측정된 전류값과 기 설정된 전류 제한값의 대소를 비교하는 단계;
    (b3) 상기 릴레이 제어부가 상기 프리차지 릴레이의 동작 상태가 온 상태로 변경된 후, 상기 메인 릴레이의 동작 상태가 오프에서 온 상태로 변경되기 전에 상기 상기 전류 비교부를 통해 도출된 비교 결과값을 근거하여 상기 프리차지 릴레이 및 상기 메인 릴레이의 동작 상태를 제어하는 단계; 및
    (b4) 상기 전압 측정부가 상기 배터리 랙의 전압값을 측정하는 단계;를 포함하는 것을 특징으로 하는,
    전류 측정을 통한 배터리 랙 파손 방지 방법.
  20. 제19항에 있어서,
    상기 (b1) 단계는,
    상기 전류 측정부가 상기 배터리 랙에 흐르는 전류의 전류값을 측정하고 측정된 전류값을 상기 전류 비교부로 전송하는 단계;를 포함하는 것을 특징으로 하는,
    전류 측정을 통한 배터리 랙 파손 방지 방법.
  21. 제19항에 있어서,
    상기 (b2) 단계는,
    상기 전류 비교부가 상기 전류 측정부로부터 전송받은 전류값이 기 설정된 전류 제한값을 초과하는 경우 전류 초과 신호를 상기 릴레이 제어부에 전송하는 단계;를 포함하는 것을 특징으로 하는,
    전류 측정을 통한 배터리 랙 파손 방지 방법.
  22. 제19항에 있어서,
    상기 (b3) 단계는,
    상기 릴레이 제어부가 상기 전류 비교부로부터 상기 전류 초과 신호를 전송받는 경우, 상기 릴레이 제어부가 상기 프리차지 릴레이의 동작 상태를 온에서 오프 상태로 변경시키고 상기 메인 릴레이의 동작 상태를 오프 상태로 유지시키는 단계;를 포함하는 것을 특징으로 하는,
    전류 측정을 통한 배터리 랙 파손 방지 방법.
  23. 제19항에 있어서,
    상기 (d) 단계는,
    상기 전압 비교부가 상기 전압 측정부를 통해 측정된 복수의 전압값 간에 차를 계산하고, 계산한 결과값 중에서 기 설정된 허용 전압차를 초과하는 결과값이 산출되는 경우 전압 불균형 신호를 상기 릴레이 제어부에 전송하는 단계;를 포함하는 것을 특징으로 하는,
    전류 측정을 통한 배터리 랙 파손 방지 방법.
  24. 제23항에 있어서,
    상기 (d) 단계는,상기 릴레이 제어부가 상기 전압 비교부로부터 상기 전압 불균형 신호를 전송받는 경우 상기 프리차지 릴레이 및 메인 릴레이의 동작 상태를 온에서 오프 상태로 변경시키는 단계;를 더 포함하는 것을 특징으로 하는,
    전류 측정을 통한 배터리 랙 파손 방지 방법.
PCT/KR2014/010872 2014-02-20 2014-11-12 전류 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법 WO2015126036A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/649,323 US9373973B2 (en) 2014-02-20 2014-11-12 Apparatus, system, and method of preventing battery rack damage by measuring current
EP14868729.6A EP2945243B1 (en) 2014-02-20 2014-11-12 Apparatus, system and method for preventing damage to battery rack by means of voltage measurement

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0019880 2014-02-20
KR20140019880 2014-02-20
KR10-2014-0156966 2014-11-12
KR1020140156966A KR101726921B1 (ko) 2014-02-20 2014-11-12 전류 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법

Publications (1)

Publication Number Publication Date
WO2015126036A1 true WO2015126036A1 (ko) 2015-08-27

Family

ID=54059951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/010872 WO2015126036A1 (ko) 2014-02-20 2014-11-12 전류 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법

Country Status (4)

Country Link
US (1) US9373973B2 (ko)
EP (1) EP2945243B1 (ko)
KR (1) KR101726921B1 (ko)
WO (1) WO2015126036A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108008315A (zh) * 2017-11-29 2018-05-08 北斗航天汽车(北京)有限公司 电池数据诊断方法和系统
CN113826259A (zh) * 2019-03-21 2021-12-21 株式会社Lg新能源 电池库控制装置和方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2930811B1 (en) * 2014-02-20 2018-11-07 LG Chem, Ltd. Apparatus, system and method for preventing damage to battery rack by means of voltage measurement
KR102205316B1 (ko) * 2015-11-02 2021-01-20 주식회사 엘지화학 Bms의 fet 제어 장치 및 방법
US10361570B2 (en) * 2015-12-01 2019-07-23 Ablic Inc. Charging/discharging control circuit and battery apparatus including voltage or current detection for secondary batteries
US10283982B2 (en) 2016-01-27 2019-05-07 Gm Global Technology Operations Llc. Voltage disconnect architecture
EP3424123B1 (en) * 2016-03-01 2022-08-03 Volvo Truck Corporation A method and system for controlling a current being fed to a battery pack
JP2018004470A (ja) * 2016-07-04 2018-01-11 株式会社デンソーテン 異常検出装置、および組電池システム
KR101907373B1 (ko) * 2016-11-16 2018-10-12 현대오트론 주식회사 과충전 방지 장치 및 방법
KR102055850B1 (ko) * 2017-12-21 2019-12-13 주식회사 엘지화학 전류 센서 진단 장치 및 방법
GB201800759D0 (en) 2018-01-17 2018-02-28 Siemens Ag Method of assembling an energy storage system
KR20200059966A (ko) 2018-11-22 2020-05-29 주식회사 엘지화학 Ess의 저전압 배터리 랙 관리 장치 및 방법
CN114586210A (zh) 2019-08-28 2022-06-03 斯巴克充电公司 电池模块
US11967842B2 (en) * 2020-10-09 2024-04-23 The Boeing Company Smart battery disconnect and protection architecture for airborne high-power modular multi-string battery pack
KR102346847B1 (ko) * 2020-12-31 2022-01-04 (주)에이피이씨 에너지 저장장치 및 에너지 저장장치의 제어 방법
JP7350026B2 (ja) * 2021-03-25 2023-09-25 本田技研工業株式会社 制御装置及び車両
CN116788112B (zh) * 2023-08-17 2023-12-05 广州巨湾技研有限公司 一种动力电池系统、电动汽车及动力电池系统控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080037941A (ko) * 2006-10-27 2008-05-02 현대자동차주식회사 프리차져를 이용한 하이브리드 연료전지 차량에 있어서에너지 저장장치의 누설전류 측정장치 및 방법
JP2011004585A (ja) * 2009-05-20 2011-01-06 Nissan Motor Co Ltd 組電池監視装置
US20110080139A1 (en) * 2009-04-16 2011-04-07 Russell Troxel Batteries, Battery Systems, Battery Submodules, Battery Operational Methods, Battery System Operational Methods, Battery Charging Methods, and Battery System Charging Methods
US20130009648A1 (en) * 2011-07-04 2013-01-10 Sb Limotive Co., Ltd. Battery management system and method of controlling the same
JP2013017323A (ja) * 2011-07-05 2013-01-24 Toyota Industries Corp セル均等化制御システム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6239579B1 (en) * 1996-07-05 2001-05-29 Estco Battery Management Inc. Device for managing battery packs by selectively monitoring and assessing the operative capacity of the battery modules in the pack
KR101091268B1 (ko) * 2005-04-25 2011-12-07 주식회사 엘지화학 Hev와 ev를 위한 전지팩 관리방법
JP4471298B2 (ja) 2005-07-29 2010-06-02 本田技研工業株式会社 オーガ式除雪機
KR101681033B1 (ko) * 2009-12-22 2016-11-30 에이비비 리써치 리미티드 단락 보호를 구비한 배터리 에너지 스토리지 시스템 및 방법
KR101057542B1 (ko) * 2010-01-26 2011-08-17 에스비리모티브 주식회사 배터리 관리 시스템 및 그 구동 방법
CN102208820B (zh) * 2010-03-29 2013-08-21 比亚迪股份有限公司 一种储能电池组并联装置及其控制方法
US8698458B2 (en) 2010-07-08 2014-04-15 Samsung Sdi Co., Ltd. Battery pack having boosting charge function and method thereof
US8593015B2 (en) * 2010-10-28 2013-11-26 A123 Systems Llc Battery balancing system
US8582269B2 (en) 2011-08-04 2013-11-12 Lg Chem, Ltd. Overcurrent protection apparatus for secondary battery, protection method and battery pack
KR101262524B1 (ko) * 2011-08-04 2013-05-08 주식회사 엘지화학 이차 전지의 과전류 보호 장치, 보호 방법 및 전지 팩
KR20130016652A (ko) 2011-08-08 2013-02-18 주식회사 두원공조 모드 2-도어 방식의 차량용 공기조화장치
JP5831760B2 (ja) * 2012-04-05 2015-12-09 株式会社デンソー 電源制御システムの異常診断装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080037941A (ko) * 2006-10-27 2008-05-02 현대자동차주식회사 프리차져를 이용한 하이브리드 연료전지 차량에 있어서에너지 저장장치의 누설전류 측정장치 및 방법
US20110080139A1 (en) * 2009-04-16 2011-04-07 Russell Troxel Batteries, Battery Systems, Battery Submodules, Battery Operational Methods, Battery System Operational Methods, Battery Charging Methods, and Battery System Charging Methods
JP2011004585A (ja) * 2009-05-20 2011-01-06 Nissan Motor Co Ltd 組電池監視装置
US20130009648A1 (en) * 2011-07-04 2013-01-10 Sb Limotive Co., Ltd. Battery management system and method of controlling the same
JP2013017323A (ja) * 2011-07-05 2013-01-24 Toyota Industries Corp セル均等化制御システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2945243A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108008315A (zh) * 2017-11-29 2018-05-08 北斗航天汽车(北京)有限公司 电池数据诊断方法和系统
CN108008315B (zh) * 2017-11-29 2019-02-19 北斗航天汽车(北京)有限公司 电池数据诊断方法和系统
CN113826259A (zh) * 2019-03-21 2021-12-21 株式会社Lg新能源 电池库控制装置和方法

Also Published As

Publication number Publication date
KR101726921B1 (ko) 2017-04-13
EP2945243B1 (en) 2020-08-12
US9373973B2 (en) 2016-06-21
KR20150098555A (ko) 2015-08-28
EP2945243A1 (en) 2015-11-18
EP2945243A4 (en) 2016-11-16
US20160020629A1 (en) 2016-01-21

Similar Documents

Publication Publication Date Title
WO2015126036A1 (ko) 전류 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법
WO2015126035A1 (ko) 전압 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법
WO2018021664A1 (ko) 배터리 밸런싱 장치 및 방법
WO2017142385A1 (ko) 스위치 부품의 고장 진단 장치 및 방법
WO2013147494A1 (ko) 배터리의 절연 저항 측정 장치 및 방법
WO2017047937A1 (ko) 배터리 스웰링 감지 시스템 및 방법
WO2015016600A1 (ko) 배터리 제어 장치 및 방법
WO2019027190A1 (ko) 배터리 관리 장치 및 이를 포함하는 배터리 팩
WO2019117607A1 (ko) 배터리 팩의 음극 컨택터 진단 장치 및 방법
WO2018186573A1 (ko) 차량 구동용 전력 공급 시스템
WO2018225921A1 (ko) 배터리 팩 및 배터리 팩의 제어 방법
WO2015012587A1 (ko) 배터리 과충전 방지 장치
WO2014129757A1 (ko) 셀 밸런싱 회로의 고장 진단 장치 및 방법
WO2011102576A1 (ko) 셀 밸런싱 회로의 이상 진단 장치 및 방법
WO2019059567A1 (ko) 배터리 관리 장치와 이를 포함하는 배터리 팩 및 자동차
WO2018235995A1 (ko) 전기자동차용 배터리의 열화 발생을 저감하면서 고속충전과 최대방전을 수행하기 위한 방법 및 그 장치
WO2019221368A1 (ko) 메인 배터리와 서브 배터리를 제어하기 위한 장치, 배터리 시스템 및 방법
WO2016056740A1 (ko) 스위치 열화 검출 장치 및 방법
WO2018034486A1 (ko) 전기 자동차의 충전 장치
WO2020055117A1 (ko) 배터리 관리 장치
WO2018021661A1 (ko) 션트저항을 이용한 전류 측정 장치
WO2015012460A1 (ko) 배터리 스웰링 감지 장치 및 방법
WO2021085836A1 (ko) 배터리 진단 장치 및 방법
WO2018066839A1 (ko) 전압 분배를 이용한 퓨즈 진단 장치 및 방법
WO2014030914A1 (ko) 전기 자동차용 파워 릴레이 어셈블리 및 파워 릴레이 어셈블리가 구비된 전기자동차용 에너지 시스템의 작동 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14649323

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014868729

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE