WO2017047937A1 - 배터리 스웰링 감지 시스템 및 방법 - Google Patents

배터리 스웰링 감지 시스템 및 방법 Download PDF

Info

Publication number
WO2017047937A1
WO2017047937A1 PCT/KR2016/009091 KR2016009091W WO2017047937A1 WO 2017047937 A1 WO2017047937 A1 WO 2017047937A1 KR 2016009091 W KR2016009091 W KR 2016009091W WO 2017047937 A1 WO2017047937 A1 WO 2017047937A1
Authority
WO
WIPO (PCT)
Prior art keywords
level
detection value
battery
swelling
detection
Prior art date
Application number
PCT/KR2016/009091
Other languages
English (en)
French (fr)
Inventor
이재찬
이규열
김수령
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2017563071A priority Critical patent/JP6409140B2/ja
Priority to CN201680036163.2A priority patent/CN107810574B/zh
Priority to EP16846758.7A priority patent/EP3300162B1/en
Priority to US15/579,730 priority patent/US10479213B2/en
Priority to PL16846758T priority patent/PL3300162T3/pl
Publication of WO2017047937A1 publication Critical patent/WO2017047937A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4285Testing apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/00719Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to degree of gas development in the battery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a battery swelling detection system and method, and more particularly, to detect a gas branching from a battery cell by spreading a detection unit inside a battery module, and detecting the largest size among detection values exceeding a threshold value.
  • a level according to the size to the value, and controlling the operation of the battery circuit and the driving speed of the vehicle based on the level, it is possible to prevent an accident that may occur due to the swelling phenomenon of the battery cell.
  • the battery is easy to apply according to the product family, and has characteristics such as excellent storage and high energy density.
  • characteristics such as excellent storage and high energy density.
  • it is attracting attention as an energy source for improving the environment and energy efficiency in that by-products are not generated due to the use of energy.
  • batteries are widely applied to electric vehicles (EVs), energy storage systems (ESS), and the like, as well as portable devices, and provide convenience for daily life while being the basis of various industries.
  • such a battery may be abnormally driven according to the use environment. For example, when the battery is overcharged or the battery is exhausted, swelling of the battery may be caused by electrical and chemical action occurring inside the battery. Can be.
  • Such swelling of the battery may lead to an accident such as fire and explosion, as well as shortening the life of the battery and deteriorating its capacity, and thus, stable use of the battery through careful monitoring and proper control is required.
  • the present invention has been made to solve the above-described problems, an object of the present invention is to detect the gas branching from the battery cell in real time to determine the level of the detection value, based on the level to supply power to the battery module,
  • the present invention provides a battery swelling detection system and method capable of solving a functional problem of a battery which may occur due to a swelling phenomenon of a battery cell by controlling the amount of charge current.
  • an object of the present invention is to not only control the operation of the battery circuit, but also to properly control the driving speed of the vehicle according to the level of the detection value, thereby preventing accidents such as explosion and fire of the battery and the vehicle, thereby ensuring safety of the vehicle occupant.
  • Another object of the present invention is to control the operation of peripheral devices such as air cooling fan (fan) and water-cooled cooling valve (cooling valve) when the battery cell is placed in an abnormal environment, the power of unnecessary driving of the peripheral device
  • peripheral devices such as air cooling fan (fan) and water-cooled cooling valve (cooling valve) when the battery cell is placed in an abnormal environment, the power of unnecessary driving of the peripheral device
  • Battery swelling detection system a plurality of one or more battery modules provided in each of the battery pack, the sensing unit for detecting a gas branched from the battery cell of the battery module;
  • a controller which selects a detection value having the largest size among each of the detection values, determines a level of the selected detection value according to the size of the selected detection value, and controls the operation of the peripheral device based on the level ;
  • a switch unit provided on a connection path between the battery pack and an external power source and configured to switch on and off in response to a signal from the controller.
  • the sensing unit may be located in a vertical direction in the battery module.
  • Each of the detectors may include a carbon monoxide sensor, a carbon dioxide sensor, and a methane sensor.
  • the detection value may be configured by setting the carbon monoxide detection value, the carbon dioxide detection value, and the methane detection value as one set.
  • the control unit compares the detection value of each detection unit with a predetermined threshold value, selects a detection value having the largest size among the detection values exceeding the threshold value, and selects the selected value according to the size of the selected detection value.
  • the level of the sensed value can be determined.
  • the selected level of the detection value may be determined as one of a first level, a second level, and a third level according to the swelling risk.
  • the controller may transmit a vehicle speed control signal based on the level to the ECU (Electronic Control Unit) of the vehicle. Can be.
  • ECU Electronic Control Unit
  • the controller may transmit an off operation signal to the switch unit after a predetermined time elapses.
  • the controller may transmit a predetermined notification signal to a display device pre-installed in the vehicle.
  • the controller may control the amount of charging current flowing into the battery pack from the external power when the level of the selected detection value is determined as the second level.
  • the sensing unit provided in a plurality of each of the one or more battery modules of the battery pack, the step of detecting a gas branched from the battery cell of the battery module;
  • the control unit selects a detection value having the largest magnitude among the detection values of each of the detection units, determines the level of the selected detection value according to the size of the selected detection value, and controls the operation of the peripheral device based on the level. Making; And an on and off operation of a switch unit provided on a connection path between the battery pack and an external power source according to a signal of the controller.
  • the sensing unit may be located in a vertical direction in the battery module.
  • Each of the detectors may include a carbon monoxide sensor, a carbon dioxide sensor, and a methane sensor.
  • the detection value may be configured by setting the carbon monoxide detection value, the carbon dioxide detection value, and the methane detection value as one set.
  • the controlling may include comparing the detected values of each of the sensing units with a predetermined threshold, selecting a sensing value having the largest size among the sensing values exceeding the threshold, and selecting the size of the selected sensing value.
  • the level of the selected detection value can be determined according to the method.
  • the selected level of the detection value may be determined as one of a first level, a second level, and a third level according to the swelling risk.
  • the controlling may include, when the level of the selected detection value is determined as one of the first level, the second level, and the third level, sending a vehicle speed control signal based on the level to an electronic control unit (ECU) of the vehicle. Transmitting; may include.
  • ECU electronice control unit
  • the controlling may further include transmitting an off operation signal to the switch unit after a predetermined time elapses when the level of the selected detection value is determined as the third level.
  • the controlling may further include transmitting a predetermined notification signal to a display device pre-installed in the vehicle when the level of the selected detection value is determined as the third level.
  • the controlling may further include controlling an amount of charging current flowing into the battery pack from the external power when the level of the selected detection value is determined as the second level.
  • the sensing unit for detecting the gas for branching is provided in a plurality of scattered inside each battery module, thereby increasing the detection sensitivity of the gas, and only a part of the battery module of the battery module swelling phenomenon occurs partially It can be replaced, which has the advantages of convenience of maintenance and cost reduction.
  • FIG. 1 is a diagram schematically illustrating an electric vehicle to which a battery swelling detection system and method according to an embodiment of the present invention may be applied.
  • FIG. 2 is a schematic diagram illustrating a circuit of a battery swelling detection system according to an exemplary embodiment of the present invention.
  • FIG. 3 is a diagram schematically illustrating a shape of a sensing unit provided in a battery module of a battery swelling sensing system according to an exemplary embodiment of the present invention.
  • FIG. 4 is a diagram schematically illustrating an algorithm performed by a controller of a battery swelling detection system according to an embodiment of the present invention.
  • FIG. 5 is a flowchart illustrating a battery swelling sensing method according to an embodiment of the present invention.
  • ... unit described in the specification means a unit for processing one or more functions or operations, which may be implemented in hardware or software or a combination of hardware and software.
  • FIG. 1 is a view schematically showing an electric vehicle 1 to which a battery swelling detection system and method according to an embodiment of the present invention may be applied.
  • the battery swelling detection system and method according to an embodiment of the present invention may be applied to various technical fields to which a battery is applied in addition to the electric vehicle 1.
  • the electric vehicle 1 includes a battery 10, a battery management system (BMS) 20, an electronic control unit (ECU) 30, an inverter 40, and a motor 50.
  • BMS battery management system
  • ECU electronice control unit
  • inverter 40 inverter
  • motor 50 motor 50
  • the battery 10 is an electric energy source for driving the electric vehicle 1 by providing a driving force to the motor 50.
  • the battery 10 is driven by the inverter 40 according to the driving of the motor 50 and / or an internal combustion engine (not shown). It can be charged or discharged.
  • the BMS 20 may estimate the state of the battery 10, control the charge / discharge current of the battery 10 by using the state information, and further control the opening / closing operation of the contactor.
  • the ECU 30 is an electronic control device for controlling the state of the electric vehicle 1. For example, the ECU 30 determines a degree of torque based on information such as an accelerator, a break, a speed, and the output of the motor. It can be controlled to correspond to the information.
  • the inverter 40 causes the battery 10 to be charged or discharged based on the control signal of the ECU 30, and the motor 50 is based on the electric energy of the battery 10 and the control information transmitted from the ECU 30. To drive the electric vehicle 1.
  • the battery 10 is a key element for providing driving power, and when the state of the battery 10 is abnormal, failure of the electric vehicle 1 and various accidents may be caused. .
  • gas is generated by electrical and chemical action inside the battery 10 to increase the internal pressure of the battery 10. This may lead to a swelling phenomenon of the battery 10 and may cause an accident such as an explosion and fire.
  • FIG. 2 is a simplified circuit diagram of a battery swelling detection system 100 according to an embodiment of the present invention.
  • the battery swelling detection system 100 may include a plurality of detection units 120, a control unit 130, and a switch unit 140.
  • the battery swelling detection system 100 shown in FIG. 2 is according to an embodiment, and its components are not limited to the embodiment shown in FIG. 2, and some components may be added, changed, or Note that it may be deleted.
  • each battery pack 110 also includes one or more battery modules 111, each battery module 111 is likewise Note that the above-described battery cell 112 is configured to be included.
  • the sensing unit 120 may serve to detect a branching gas.
  • the sensing unit 120 may be located in a plurality of positions in up, down, left, and front sides of the inside of the battery module 111, which is the case in which the sensing unit 120 is configured as a single unit. In order to prevent a detection error that may occur, it may be to increase the detection sensitivity of the gas.
  • each of the detectors 120 includes a carbon monoxide sensor, a carbon dioxide sensor, and a methane sensor. can do.
  • the detection value measured by each detection unit 120 may also be configured as one set including the carbon monoxide detection value, the carbon dioxide detection value, and the methane detection value. It may be provided to the controller 130 to be described later through the enemy route.
  • the controller 130 receives a set of detection values from each detection unit 120, specifically, a detection value consisting of a carbon monoxide detection value, a carbon dioxide detection value, and a methane detection value, and selects a specific detection value set to determine a level. It can play a role.
  • the operation of the peripheral device may be controlled based on the selected level of the sensed value.
  • the level of the selected detection value may be determined as one of a plurality of levels set to a differential range based on the swelling risk of the battery cell 112.
  • the plurality of levels may be bounded by the swelling degree of the battery cell 112. The first level, the second level, the critical level, and the third level, the critical level.
  • the control unit 130 may be implemented by the BMS (20 of FIG. 1) itself or included in the BMS, and the control unit 130 may be set with an algorithm for performing an operation of the control unit 130.
  • controller 130 The operation of the controller 130 will be described in more detail with reference to FIG. 4.
  • FIG. 4 is a diagram schematically illustrating an algorithm performed by a controller.
  • control unit may receive a detection value from each detection unit (S410) and compare it with a predetermined threshold value.
  • the threshold is a threshold for the amount of gas diverged during the swelling of the battery cell, and may be configured by setting a carbon monoxide threshold, a carbon dioxide threshold, and a methane threshold, and may be set by a user.
  • the carbon monoxide detection value and the carbon monoxide threshold value are compared, the carbon dioxide detection value and the carbon dioxide threshold value are compared, and the carbon monoxide detection value, the carbon dioxide detection value, and the methane detection value are compared by comparing the methane detection value and the meton threshold value. It may be determined that the detected value (set) exceeds the threshold value (set) only when all of them exceed the corresponding threshold value (S420).
  • a detection value having the largest size is selected (S430), where size may be an average of a carbon monoxide detection value, a carbon dioxide detection value, and a methane detection value. .
  • the level of the sensing value selected based on the first level, the second level, and the third level preset as the differential range may be determined (S440).
  • the level of the selected detection value is determined as the first level, the second level if included in the risk range, and the third level if the critical range is included. Can be determined.
  • the controller may transmit a control signal (S451) to a vehicle speed (eg, 80 km or less) corresponding to the first level to the ECU of the vehicle.
  • a vehicle speed eg, 80 km or less
  • the transmission of the signal may use a controller area network (CAN) communication, but the present invention is not limited thereto, and the present invention is not limited thereto.
  • CAN controller area network
  • Zigbee communication, Wifi, Radio Frequency (RF) communication, and Bluetooth Low Energy (BLE) communication may be used.
  • RF Radio Frequency
  • BLE Bluetooth Low Energy
  • Various types of communication such as communication may be applied.
  • the vehicle speed (eg, 50 km or less) control signal corresponding to the second level may be transmitted to the ECU of the vehicle (S461).
  • variable resistor (not shown) provided on the connection path between the battery pack and the external power source, it is possible to control the amount of charging current flowing into the battery pack from the external power source.
  • This configuration may be for minimizing the amount of gas divergence from the battery cell by preventing overcharging of the battery pack.
  • a vehicle speed (for example, 10 km or less) control signal corresponding to the third level is transmitted to the ECU of the vehicle (S471), and navigation is performed.
  • a notification signal may be transmitted to a display device such as a vehicle monitor (S473).
  • the notification may be audio-visually configured as a predetermined alarm sound, an alarm message, or the like, to allow the vehicle occupant to recognize the occurrence of a swelling phenomenon of the battery cell.
  • an off operation signal may be transmitted to the switch unit 140 of FIG. 1 provided on the connection path between the battery pack and the external power source.
  • the switch unit may be composed of one or more of a field effect transistor and a relay, but the type of contactor constituting the switch unit may be various.
  • the predetermined time may be a time required for driving, for example, about 10 km in a concept of securing a minimum vehicle driving.
  • an accident may be caused by sudden disconnection of the battery pack and external power in the case of an electric vehicle. This may be considered, so it may be considered.
  • peripheral devices such as an air-cooled fan and a water-cooled cooling valve to be stopped while transmitting an off operation signal to the switch unit, thereby reducing power consumption due to unnecessary driving of the peripheral device. It can prevent.
  • the controller 130 may determine the level of the detection value having the largest magnitude among the detection values exceeding the threshold value through a preset algorithm, and control the operation of the battery circuit and the operation of the peripheral device based on the level. have.
  • FIG. 5 is a flowchart illustrating a battery swelling sensing method according to an embodiment of the present invention.
  • each of the plurality of sensing units scattered in each battery module detects a gas branching from the battery cell, and provides it to the controller (S510). .
  • the controller compares each detected value with a threshold value and determines whether a detected value exceeding the threshold value exists (S520). If there are a plurality of detection values exceeding the threshold value, the detection value having the largest magnitude is selected, and the level of the selected detection value is determined according to the size of the selected detection value (S530).
  • the operation of the battery circuit and the operation of the peripheral device are controlled, such as controlling the driving speed of the vehicle, controlling the amount of charging current flowing into the battery pack, controlling the off operation of the switch unit, etc. based on the selected sensed level (S540).

Abstract

본 발명은 배터리 팩의 하나 이상의 배터리 모듈 각각에 복수 개로 구비되어, 해당 배터리 모듈의 배터리 셀로부터 분기되는 가스를 감지하는 감지부; 상기 감지부 각각의 감지값 중 크기가 가장 큰 감지값을 선정하여, 선정된 감지값의 크기에 따라 상기 선정된 감지값의 레벨을 결정하고, 해당 레벨에 기초하여 주변 장치의 동작을 제어하는 제어부; 및 상기 배터리 팩과 외부전원의 연결 경로 상에 제공되며, 상기 제어부의 신호에 따라 온 및 오프 동작하는 스위치부;를 포함하는 것을 특징으로 한다.

Description

배터리 스웰링 감지 시스템 및 방법
본 출원은 2015년 09월 14일자 한국 특허 출원 제10-2015-0129551호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 배터리 스웰링 감지 시스템 및 방법에 관한 것으로, 보다 구체적으로는 배터리 모듈의 내부에 감지부를 산개시켜 배터리 셀로부터 분기되는 가스를 감지하고, 임계값을 초과하는 감지값 중 크기가 가장 큰 감지값에 그 크기에 따른 레벨을 부여하며, 해당 레벨에 기초하여 배터리 회로의 동작 및 차량의 운행 속도 등을 제어함으로써, 배터리 셀의 스웰링(swelling) 현상으로 인하여 발생될 수 있는 사고를 예방할 수 있는 배터리 스웰링 감지 시스템 및 방법에 관한 것이다.
배터리는 제품군에 따른 적용이 용이하고, 우수한 보존성 및 높은 에너지 밀도 등의 특성을 가지고 있다. 또한, 화석 연료의 사용을 감소시킬 수 있다는 일차적 장점뿐만 아니라, 에너지 사용에 따른 부산물이 발생되지 않는다는 점에서 친환경 및 에너지 효율성 제고를 위한 에너지 공급원으로 주목 받고 있다.
때문에, 배터리는 휴대용 기기를 비롯하여 전기차량(Electric Vehicle; EV) 및 에너지 저장 시스템(Energy Storage System; ESS) 등에 보편적으로 응용되며, 다양한 산업의 기반이 됨과 동시에 일상 생활에 편의성을 제공해 주고 있다.
하지만, 이러한 배터리는 사용 환경에 따라 비정상적으로 구동될 수 있으며, 예컨대 배터리가 과충전 되거나 수명이 소진될 경우, 배터리 내부에서 발생하는 전기적, 화학적 작용으로 인하여 배터리의 스웰링(swelling) 현상 등이 유발될 수 있다.
이러한 배터리의 스웰링 현상은 배터리의 수명 단축, 용량 저하뿐만 아니라, 발화 및 폭발과 같은 사고로 이어질 수 있기 때문에, 주의 깊은 감시와 적절한 제어를 통한 배터리의 안정적 사용이 요구되고 있다.
이에 따라, 배터리의 스웰링 현상 감지 및 배터리 보호와 관련된 다양한 연구 개발이 진행되어 왔으며, 일례로 압력 측정 수단을 이용하여 스웰링에 따른 배터리 셀의 부피 변화를 감지하고, 이를 통해 전류를 차단하는 기술이 공지된 바 있다.
그러나, 이와 같은 배터리 셀의 물리적 부피 팽창은 스웰링이 충분히 진행되어야 발생되므로, 배터리 셀의 스웰링 현상을 초기에 감지하여 대응하기에는 어려움이 따르며, 전류가 차단되었다 하더라도 충분한 스웰링의 진행으로 인하여 발화가 일어날 수 있는 위험성이 크다.
또 다른 예로, 스웰링 현상으로 인한 배터리 셀의 팽창력이 버스바, 탭 등의 부재를 파단시킴으로써, 전류를 차단하는 기술도 제시되어 왔다.
하지만 이러한 기술 역시, 배터리 셀의 스웰링 현상에 대한 초기 대응이 용이하지 못하고, 일부 부재의 파단 시 발생될 수 있는 스파크가 점화원으로 작용하여 발화의 또 다른 원인이 될 가능성이 있다.
본 발명은 상술한 문제점을 해결하기 위해 안출된 것으로, 본 발명의 목적은 배터리 셀로부터 분기되는 가스를 실시간으로 감지하여 감지값의 레벨을 결정하고, 해당 레벨에 기초하여 배터리 모듈로의 전원공급, 충전 전류량 등을 제어함으로써, 배터리 셀의 스웰링(swelling) 현상으로 인하여 발생될 수 있는 배터리의 기능 문제를 해결할 수 있는 배터리 스웰링 감지 시스템 및 방법을 제공하는 것이다.
또한, 본 발명의 목적은 배터리 회로의 동작 제어뿐만 아니라, 감지값의 레벨에 따라 차량의 운행 속도를 적절히 제어함으로써, 배터리 및 차량의 폭발, 발화 등의 사고를 예방하여 차량 탑승자의 안전을 확보할 수 있는 배터리 스웰링 감지 시스템 및 방법을 제공하는 것이다.
본 발명의 또 다른 목적은, 배터리 셀이 비정상적인 환경에 놓일 경우, 공랭식 팬(fan) 및 수랭식 쿨링 밸브(cooling valve) 등과 같은 주변 장치의 운용이 중단되도록 제어함으로써, 주변 장치의 불필요한 구동에 따른 전력소비를 방지할 수 있는 배터리 스웰링 감지 시스템 및 방법을 제공하는 것이다.
본 발명의 일 실시예에 따른 배터리 스웰링 감지 시스템은, 배터리 팩의 하나 이상의 배터리 모듈 각각에 복수 개로 구비되어, 해당 배터리 모듈의 배터리 셀로부터 분기되는 가스를 감지하는 감지부; 상기 감지부 각각의 감지값 중 크기가 가장 큰 감지값을 선정하여, 선정된 감지값의 크기에 따라 상기 선정된 감지값의 레벨을 결정하고, 해당 레벨에 기초하여 주변 장치의 동작을 제어하는 제어부; 및 상기 배터리 팩과 외부전원의 연결 경로 상에 제공되며, 상기 제어부의 신호에 따라 온 및 오프 동작하는 스위치부;를 포함하여 구성된다.
상기 감지부는, 상기 배터리 모듈 내부의 상하, 좌우, 전후에 산개되어 위치할 수 있다.
상기 감지부 각각은, 일산화탄소 감지센서, 이산화탄소 감지센서 및 메탄 감지센서를 포함할 수 있다.
상기 감지값은, 일산화탄소 감지값, 이산화탄소 감지값 및 메탄 감지값을 하나의 세트(set)로 하여 구성될 수 있다.
상기 제어부는, 상기 감지부 각각의 감지값을 소정의 임계값과 비교하고, 상기 임계값을 초과하는 감지값 중 크기가 가장 큰 감지값을 선정하여, 선정된 감지값의 크기에 따라 상기 선정된 감지값의 레벨을 결정할 수 있다.
상기 선정된 감지값의 레벨은, 스웰링 위험도에 따라 제1 레벨, 제2 레벨 및 제3 레벨 중 하나로 결정될 수 있다.
상기 제어부는, 상기 선정된 감지값의 레벨이 상기 제1 레벨, 제2 레벨 및 제3 레벨 중 하나로 결정된 경우, 해당 레벨에 기초하는 차량 속도 제어 신호를 차량의 ECU(Electronic Control Unit)로 송신할 수 있다.
상기 제어부는, 상기 선정된 감지값의 레벨이 상기 제3 레벨로 결정된 경우, 소정의 시간 경과 이후 상기 스위치부로 오프 동작 신호를 송신할 수 있다.
상기 제어부는, 상기 선정된 감지값의 레벨이 상기 제3 레벨로 결정된 경우, 차량에 기설치된 디스플레이 장치로 소정의 알림 신호를 송신할 수 있다.
상기 제어부는, 상기 선정된 감지값의 레벨이 상기 제2 레벨로 결정된 경우, 상기 외부전원으로부터 상기 배터리 팩으로 유입하는 충전 전류량을 제어할 수 있다.
본 발명의 일 실시예에 따른 배터리 스웰링 감지 방법은, 배터리 팩의 하나 이상의 배터리 모듈 각각에 복수 개로 구비되는 감지부에서, 해당 배터리 모듈의 배터리 셀로부터 분기되는 가스를 감지하는 단계; 제어부에서 상기 감지부 각각의 감지값 중 크기가 가장 큰 감지값을 선정하여, 선정된 감지값의 크기에 따라 상기 선정된 감지값의 레벨을 결정하고, 해당 레벨에 기초하여 주변 장치의 동작을 제어하는 단계; 및 상기 배터리 팩과 외부전원의 연결 경로 상에 제공되는 스위치부가 상기 제어부의 신호에 따라 온 및 오프 동작하는 단계;를 포함하여 구성된다.
상기 감지부는, 상기 배터리 모듈 내부의 상하, 좌우, 전후에 산개되어 위치할 수 있다.
상기 감지부 각각은, 일산화탄소 감지센서, 이산화탄소 감지센서 및 메탄 감지센서를 포함할 수 있다.
상기 감지값은, 일산화탄소 감지값, 이산화탄소 감지값 및 메탄 감지값을 하나의 세트(set)로 하여 구성될 수 있다.
상기 제어하는 단계는, 상기 제어부에서 상기 감지부 각각의 감지값을 소정의 임계값과 비교하고, 상기 임계값을 초과하는 감지값 중 크기가 가장 큰 감지값을 선정하여, 선정된 감지값의 크기에 따라 상기 선정된 감지값의 레벨을 결정할 수 있다.
상기 선정된 감지값의 레벨은, 스웰링 위험도에 따라 제1 레벨, 제2 레벨 및 제3 레벨 중 하나로 결정될 수 있다.
상기 제어하는 단계는, 상기 선정된 감지값의 레벨이 상기 제1 레벨, 제2 레벨 및 제3 레벨 중 하나로 결정된 경우, 해당 레벨에 기초하는 차량 속도 제어 신호를 차량의 ECU(Electronic Control Unit)로 송신하는 단계;를 포함할 수 있다.
상기 제어하는 단계는, 상기 선정된 감지값의 레벨이 상기 제3 레벨로 결정된 경우, 소정의 시간 경과 이후 상기 스위치부로 오프 동작 신호를 송신하는 단계;를 더 포함할 수 있다.
상기 제어하는 단계는, 상기 선정된 감지값의 레벨이 상기 제3 레벨로 결정된 경우, 차량에 기설치된 디스플레이 장치로 소정의 알림 신호를 송신하는 단계;를 더 포함할 수 있다.
상기 제어하는 단계는, 상기 선정된 감지값의 레벨이 상기 제2 레벨로 결정된 경우, 상기 외부전원으로부터 상기 배터리 팩으로 유입하는 충전 전류량을 제어하는 단계;를 더 포함할 수 있다.
본 발명의 일 측면에 따르면, 배터리 셀로부터 분기되는 가스를 실시간으로 감지하여 감지된 감지값의 크기에 따라 레벨을 결정하고, 해당 레벨에 기초하여 배터리 회로의 동작을 제어함으로써, 스웰링(swelling) 현상으로 인하여 발생될 수 있는 사고의 위험성은 저감시키되, 단순한 배터리의 운용 중단은 배제하며 배터리 운용의 효율성을 높일 수 있는 효과가 발생한다.
이때, 분기되는 가스를 감지하는 감지부는 각각의 배터리 모듈 내부에 복수로 산개되어 구비되며, 이로써 가스의 감지 감도를 높일 수 있고, 다수의 배터리 모듈 중 스웰링 현상이 발생하는 해당 배터리 모듈만을 부분적으로 교체할 수 있어, 유지보수의 편의와 비용절감의 장점을 가진다.
또한, 감지값의 레벨에 따라 배터리를 구동에너지로 하여 운행되는 차량의 속도를 제어함으로써, 배터리 셀의 스웰링 발생 시 과속 운행으로 인하여 유발될 수 있는 사고를 예방하고, 차량 탑승자의 안정을 확보할 수 있는 효과가 발생한다.
더욱이, 스웰링 현상이 발생될 경우, 배터리 팩으로의 전원공급 차단뿐만 아니라, 공랭식 팬(fan) 및 수랭식 쿨링 밸브(cooling valve) 등과 같은 주변 장치의 운용을 중단시켜, 주변 장치의 불필요한 구동에 따른 전력소비를 방지할 수 있는 이점이 있다.
도 1은 본 발명의 일 실시예에 따른 배터리 스웰링 감지 시스템 및 방법이 적용될 수 있는 전기 차량을 개략적으로 도시한 도면이다.
도 2는 본 발명의 일 실시예에 따른 배터리 스웰링 감지 시스템의 회로도를 개략적으로 도시한 도면이다.
도 3은 본 발명의 일 실시예에 따른 배터리 스웰링 감지 시스템의 감지부가 배터리 모듈의 내부에 구비되는 형상을 개략적으로 도시한 도면이다.
도 4는 본 발명의 일 실시예에 따른 배터리 스웰링 감지 시스템의 제어부에서 수행되는 알고리즘을 설명하기 위해 개략적으로 도시한 도면이다.
도 5는 본 발명의 일 실시예에 따른 배터리 스웰링 감지 방법을 설명하기 위한 순서도이다.
본 발명을 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다. 여기서, 반복되는 설명, 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능, 및 구성에 대한 상세한 설명은 생략한다. 본 발명의 실시형태는 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다. 따라서, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있다.
명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
또한, 명세서에 기재된 "...부"의 용어는 하나 이상의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.
도 1은 본 발명의 일 실시예에 따른 배터리 스웰링 감지 시스템 및 방법이 적용될 수 있는 전기 차량(1)을 개략적으로 도시한 도면이다.
다만, 본 발명의 일 실시예에 따른 배터리 스웰링 감지 시스템 및 방법은 전기 차량(electric vehicle)(1) 이외에도 배터리가 적용되는 다양한 기술 분야에 응용될 수 있다.
도 1을 참조하면, 전기 차량(1)은 배터리(10), BMS(Battery Management System)(20), ECU(Electronic Control Unit)(30), 인버터(40) 및 모터(50)를 포함하여 구성될 수 있다.
배터리(10)는 모터(50)에 구동력을 제공하여 전기 차량(1)을 구동시키는 전기 에너지원으로, 모터(50) 및/또는 내연 기관(미도시)의 구동에 따라 인버터(40)에 의하여 충전되거나 방전될 수 있다.
BMS(20)는 배터리(10)의 상태를 추정하고, 이러한 상태 정보를 이용하여 배터리(10)의 충방전 전류를 제어하며, 나아가 접촉기의 개폐 동작을 제어할 수 있다.
ECU(30)는 전기 차량(1)의 상태를 제어하는 전자적 제어 장치로, 예컨대 액셀러레이터(accelerator), 브레이크(break), 속도 등의 정보에 기초하여 토크의 정도를 결정하고, 모터의 출력이 토크 정보에 상응하도록 제어할 수 있다.
인버터(40)는 ECU(30)의 제어 신호에 기초하여 배터리(10)가 충전 또는 방전되도록 하며, 모터(50)는 배터리(10)의 전기에너지와 ECU(30)로부터 전달되는 제어 정보에 기초하여 전기 차량(1)을 구동시킬 수 있다.
상술한 바와 같이, 전기 차량(1)에 있어서 배터리(10)는 구동력을 제공하는 핵심 요소로, 배터리(10)의 상태가 비정상적일 경우 전기 차량(1)의 고장 및 각종 사고가 야기될 수 있다.
예컨대, 배터리(10)가 과충전, 단락 등의 환경에 놓이거나, 수명이 모두 소진될 경우, 배터리(10) 내부에서 전기적, 화학적 작용으로 가스가 발생되어 배터리(10)의 내압이 상승하게 되며, 이는 배터리(10)의 스웰링(swelling) 현상으로 이어져 폭발 및 발화와 같은 사고를 유발할 수 있다.
따라서, 배터리(10)의 상태를 감시하고, 상황에 따라 적절하게 보호하는 것은 배터리(10)의 안정적 운용에 있어 중요한 사항이자, 배터리(10)의 비정상적 구동에 의한 각종 사고를 미연에 방지하여 탑승자의 안전을 확보할 수 있는 대비책으로, 이하에서는 도 2 내지 도 5도를 참조하여 본 발명에 따른 배터리 스웰링 감지 시스템 및 방법을 설명하도록 한다.
도 2는 본 발명의 일 실시예에 따른 배터리 스웰링 감지 시스템(100)의 회로도를 간략하게 도시한 도면이다.
도 2를 참조하면, 본 발명의 일 실시예에 따른 배터리 스웰링 감지 시스템(100)은 복수의 감지부(120), 제어부(130) 및 스위치부(140)를 포함하여 구성될 수 있다.
다만, 도 2에 도시된 배터리 스웰링 감지 시스템(100)은 일 실시예에 따른 것으로 그 구성요소들이 도 2에 도시된 실시예에 한정되는 것은 아니며, 필요에 따라 일부 구성요소가 부가, 변경 또는 삭제될 수 있음을 유의한다.
또한, 이하에서 서술하는 배터리는 하나 이상의 배터리 팩(110)을 포함하는 개념으로, 각각의 배터리 팩(110) 역시 하나 이상의 배터리 모듈(111)을 포함하며, 마찬가지로 각각의 배터리 모듈(111)은 하나 이상의 배터리 셀(112)을 포함하여 구성됨을 유념한다.
먼저, 감지부(120)는 하나 이상의 배터리 셀(112) 중 임의의 배터리 셀(112)에서 스웰링 현상이 발생될 경우, 분기되는 가스를 감지하는 역할을 수행할 수 있다.
이때, 감지부(120)는 도 3에 도시한 바와 같이 배터리 모듈(111) 내부의 상하, 좌우, 전후 측에 복수로 산개되어 위치할 수 있으며, 이는 감지부(120)가 단일로 구성될 경우 발생할 수 있는 감지 오류를 방지하기 위함과 동시에, 가스의 감지 감도를 높이기 위함일 수 있다.
통상적으로, 배터리 셀에서 스웰링 현상이 발생할 경우, 분기되는 가스의 주성분은 일산화탄소, 이산화탄소, 메탄 등으로, 이에 근거하여 감지부(120) 각각은 일산화탄소 감지센서, 이산화탄소 감지센서, 메탄 감지센서를 포함할 수 있다.
따라서, 각각의 감지부(120)에서 측정되는 감지값 또한 일산화탄소 감지값, 이산화탄소 감지값, 메탄 감지값을 포함하여 하나의 세트(set)로 구성될 수 있으며, 각각의 감지값 세트는 전기적 또는 통신적 루트를 통하여 후술되는 제어부(130)로 제공될 수 있다.
제어부(130)는 각각의 감지부(120)로부터 감지값, 구체적으로는 일산화탄소 감지값, 이산화탄소 감지값 및 메탄 감지값으로 구성되는 감지값 세트들을 수신하고, 특정 감지값 세트를 선정하여 레벨을 결정하는 역할을 수행할 수 있다. 또한, 선정된 감지값의 레벨에 기초하여 주변 장치의 동작을 제어할 수도 있다.
이때, 선정된 감지값의 레벨은 배터리 셀(112)의 스웰링 위험도에 기초하여 차등 범위로 설정된 복수의 레벨 중 하나로 결정될 수 있으며, 예컨대 복수의 레벨은 배터리 셀(112)의 스웰링 정도가 경계 수준인 제1 레벨, 위험 수준인 제2 레벨 및 심각 수준인 제3 레벨으로 구성될 수 있다.
이러한 제어부(130)는 BMS(도 1의 20) 자체로 구현되거나, BMS에 포함되어 구현될 수 있으며, 제어부(130)에는 제어부(130)의 동작 수행을 위한 알고리즘이 설정되어 있을 수 있다.
제어부(130)의 동작 수행에 대해서는 후술되는 도 4를 통하여 보다 구체적으로 살펴보기로 한다.
도 4는 제어부에서 수행되는 알고리즘을 설명하기 위해 개략적으로 도시한 도면이다.
알고리즘의 각 단계를 살펴보면, 먼저 제어부는 각각의 감지부로부터 감지값을 수신하여(S410) 소정의 임계값과 비교할 수 있다.
여기서, 임계값이라 함은 배터리 셀의 스웰링 현상 시 분기되는 가스량에 대한 임계치로, 일산화탄소 임계값, 이산화탄소 임계값 및 메탄 임계값을 세트로 하여 구성될 수 있으며, 사용자에 의해 설정 가능할 수 있다.
즉, 비교 단계에서는 일산화탄소 감지값과 일산화탄소 임계값을 비교하고, 이산화탄소 감지값과 이산화탄소 임계값을 비교하며, 마찬가지로 메탄 감지값과 메턴 임계값을 비교하여, 일산화탄소 감지값, 이산화탄소 감지값 및 메탄 감지값 모두가 대응되는 임계값을 초과해야만 감지값(세트)이 임계값(세트)을 초과하는 것으로 판단될 수 있다(S420).
만일 임계값을 초과하는 감지값이 복수로 존재할 경우, 그 중 크기가 가장 큰 감지값을 선정하며(S430), 여기서 크기라 함은 일산화탄소 감지값, 이산화탄소 감지값 및 메탄 감지값의 평균일 수 있다.
이어서, 차등 범위로 기설정된 제1 레벨, 제2 레벨 및 제3 레벨에 기초하여 선정된 감지값의 레벨이 결정될 수 있다(S440). 다시 말해, 선정된 감지값의 크기가 경계 범위에 포함될 경우 선정된 감지값의 레벨은 제1 레벨로 결정되고, 위험 범위에 포함될 경우 제2 레벨로, 심각 범위에 해당될 경우에는 제3 레벨로 결정될 수 있다.
선정된 감지값의 레벨이 제1 레벨로 결정될 경우(S450), 제어부는 차량의 ECU로 제1 레벨에 대응되는 차량 속도(예컨대 80km 이하) 제어 신호를 송신(S451)할 수 있다.
이때, 신호의 송신은 CAN(Controller Area Network) 통신을 이용할 수 있으나 본 발명이 이에 한정되는 것은 아니며, 지그비(zigbee) 통신, 와이파이(wifi), RF(Radio Frequency)통신, BLE(Bluetooth Low Energy) 통신 등 다양한 방식의 통신이 적용될 수 있다.
선정된 감지값의 레벨이 제2 레벨로 결정될 경우에도(S460), 차량의 ECU로 제2 레벨에 대응되는 차량 속도(예컨대 50km 이하) 제어 신호를 송신(S461)할 수 있다.
또한, 배터리 팩과 외부전원의 연결 경로 상에 구비되는 가변저항기(미도시)를 제어하여, 외부전원으로부터 배터리 팩으로 유입하는 충전전류량을 제어할 수도 있다. 이러한 구성은 배터리 팩의 과충전 진행을 방지하여 배터리 셀로부터의 가스 분기량을 최소화시키기 위함일 수 있다.
마지막으로, 선정된 감지값의 레벨이 제3 레벨로 결정되면(S470), 마찬가지로 차량의 ECU로 제3 레벨에 대응되는 차량 속도(예컨대 10km 이하) 제어 신호를 송신(S471)하며, 내비게이션(navigation), 차량용 모니터 등과 같은 디스플레이 장치로 알림 신호를 송신(S473)할 수 있다.
이때, 알림은 소정의 경보음, 경보메시지 등과 같이 시청각적으로 구성되며, 차량 탑승자에게 배터리 셀의 스웰링 현상 발생을 인지시킬 수 있다.
특히 제3 레벨로 결정된 경우 소정의 시간이 경과한 이후, 배터리 팩과 외부전원의 연결 경로 상에 구비되는 스위치부(도 1의 140)로 오프(off) 동작 신호를 송신할 수 있다.
여기서, 스위치부는 전계 효과 트랜지스터(field effect transistor) 및 릴레이(relay) 중 하나 이상으로 구성될 수 있으나, 스위치부를 구성하는 접촉기의 종류는 한정되지 않고 다양할 수 있다.
또한 소정의 시간이라 함은, 최소한의 차량 운행을 확보하는 개념으로 예컨대 약 10km의 주행에 소요되는 시간일 수 있으며, 이러한 구성은 전기 차량의 경우 급작스런 배터리 팩과 외부전원의 연결 차단이 오히려 사고를 유발할 수 있으므로, 이를 고려한 것일 수 있다.
나아가, 스위치부로 오프 동작 신호를 송신함과 동시에 공랭식 팬(fan) 및 수랭식 쿨링 밸브(cooling valve) 등과 같은 주변 장치의 운용이 중단되도록 제어할 수도 있으며, 이로써 주변 장치의 불필요한 구동에 따른 전력소비를 방지할 수 있다.
이처럼, 제어부(130)에서는 기설정된 알고리즘을 통하여 임계값을 초과하는 감지값 중 크기가 가장 큰 감지값의 레벨을 결정하고, 해당 레벨에 기초하여 배터리 회로의 동작 및 주변 장치의 동작을 제어할 수 있다.
도 5는 본 발명의 일 실시예에 따른 배터리 스웰링 감지 방법을 설명하기 위한 순서도이다.
본 발명의 일 실시예에 따른 배터리 스웰링 감지 방법이 시작되면, 각각의 배터리 모듈 내부에 산개되어 위치한 복수의 감지부 각각에서 배터리 셀로부터 분기되는 가스를 감지하고, 이를 제어부로 제공한다(S510).
제어부에서는 각각의 감지값을 임계값과 비교하여 임계값을 초과하는 감지값의 존재 여부를 판단한다(S520). 만일, 임계값을 초과하는 감지값이 복수로 존재할 경우, 크기가 가장 큰 감지값을 선정하고, 선정된 감지값의 크기에 따라 선정된 감지값의 레벨을 결정한다(S530).
이후, 선정된 감지값의 레벨에 기초하여 차량의 운행 속도 제어, 배터리 팩으로 유입하는 충전전류량 제어, 스위치부의 오프 동작 제어 등과 같이 배터리 회로의 동작 및 주변 장치의 동작을 제어한다(S540).
이상 본 발명의 특정 실시예를 도시하고 설명하였으나, 본 발명의 기술사상은 첨부된 도면과 상기한 설명내용에 한정하지 않으며 본 발명의 사상을 벗어나지 않는 범위 내에서 다양한 형태의 변형이 가능함은 이 분야의 통상의 지식을 가진 자에게는 자명한 사실이며, 이러한 형태의 변형은, 본 발명의 정신에 위배되지 않는 범위 내에서 본 발명의 특허청구범위에 속한다고 볼 것이다.

Claims (18)

  1. 배터리 팩의 하나 이상의 배터리 모듈 각각에 복수 개로 구비되어, 해당 배터리 모듈의 배터리 셀로부터 분기되는 가스를 감지하는 감지부;
    상기 감지부 각각의 감지값 중 크기가 가장 큰 감지값을 선정하여, 선정된 감지값의 크기에 따라 상기 선정된 감지값의 레벨을 결정하고, 해당 레벨에 기초하여 주변 장치의 동작을 제어하는 제어부; 및
    상기 배터리 팩과 외부전원의 연결 경로 상에 제공되며, 상기 제어부의 신호에 따라 온 및 오프 동작하는 스위치부;를 포함하는 것을 특징으로 하는,
    배터리 스웰링(swelling) 감지 시스템.
  2. 제1항에 있어서,
    상기 감지부는,
    상기 배터리 모듈 내부의 상하, 좌우, 전후에 산개되어 위치하는 것을 특징으로 하는,
    배터리 스웰링 감지 시스템.
  3. 제1항에 있어서,
    상기 감지부 각각은,
    일산화탄소 감지센서, 이산화탄소 감지센서 및 메탄 감지센서를 포함하며,
    상기 감지값은,
    일산화탄소 감지값, 이산화탄소 감지값 및 메탄 감지값을 하나의 세트(set)로 하여 구성되는 것을 특징으로 하는,
    배터리 스웰링 감지 시스템.
  4. 제1항에 있어서,
    상기 제어부는,
    상기 감지부 각각의 감지값을 소정의 임계값과 비교하고, 상기 임계값을 초과하는 감지값 중 크기가 가장 큰 감지값을 선정하여, 선정된 감지값의 크기에 따라 상기 선정된 감지값의 레벨을 결정하는 것을 특징으로 하는,
    배터리 스웰링 감지 시스템.
  5. 제4항에 있어서,
    상기 선정된 감지값의 레벨은,
    스웰링 위험도에 따라 제1 레벨, 제2 레벨 및 제3 레벨 중 하나로 결정되는 것을 특징으로 하는,
    배터리 스웰링 감지 시스템.
  6. 제5항에 있어서,
    상기 제어부는,
    상기 선정된 감지값의 레벨이 상기 제1 레벨, 제2 레벨 및 제3 레벨 중 하나로 결정된 경우, 해당 레벨에 기초하는 차량 속도 제어 신호를 차량의 ECU(Electronic Control Unit)로 송신하는 것을 특징으로 하는,
    배터리 스웰링 감지 시스템.
  7. 제5항에 있어서,
    상기 제어부는,
    상기 선정된 감지값의 레벨이 상기 제3 레벨로 결정된 경우, 소정의 시간 경과 이후 상기 스위치부로 오프 동작 신호를 송신하는 것을 특징으로 하는,
    배터리 스웰링 감지 시스템.
  8. 제5항에 있어서,
    상기 제어부는,
    상기 선정된 감지값의 레벨이 상기 제3 레벨로 결정된 경우, 차량에 기설치된 디스플레이 장치로 소정의 알림 신호를 송신하는 것을 특징으로 하는,
    배터리 스웰링 감지 시스템.
  9. 제5항에 있어서,
    상기 제어부는,
    상기 선정된 감지값의 레벨이 상기 제2 레벨로 결정된 경우, 상기 외부전원으로부터 상기 배터리 팩으로 유입하는 충전 전류량을 제어하는 것을 특징으로 하는,
    배터리 스웰링 감지 시스템.
  10. 배터리 팩의 하나 이상의 배터리 모듈 각각에 복수 개로 구비되는 감지부에서, 해당 배터리 모듈의 배터리 셀로부터 분기되는 가스를 감지하는 단계;
    제어부에서 상기 감지부 각각의 감지값 중 크기가 가장 큰 감지값을 선정하여, 선정된 감지값의 크기에 따라 상기 선정된 감지값의 레벨을 결정하고, 해당 레벨에 기초하여 주변 장치의 동작을 제어하는 단계; 및
    상기 배터리 팩과 외부전원의 연결 경로 상에 제공되는 스위치부가 상기 제어부의 신호에 따라 온 및 오프 동작하는 단계;를 포함하는 것을 특징으로 하는,
    배터리 스웰링(swelling) 감지 방법.
  11. 제10항에 있어서,
    상기 감지부는,
    상기 배터리 모듈 내부의 상하, 좌우, 전후에 산개되어 위치하는 것을 특징으로 하는,
    배터리 스웰링 감지 방법.
  12. 제10항에 있어서,
    상기 감지부 각각은,
    일산화탄소 감지센서, 이산화탄소 감지센서 및 메탄 감지센서를 포함하며,
    상기 감지값은,
    일산화탄소 감지값, 이산화탄소 감지값 및 메탄 감지값을 하나의 세트(set)로 하여 구성되는 것을 특징으로 하는,
    배터리 스웰링 감지 방법.
  13. 제10항에 있어서,
    상기 제어하는 단계는,
    상기 제어부에서 상기 감지부 각각의 감지값을 소정의 임계값과 비교하고, 상기 임계값을 초과하는 감지값 중 크기가 가장 큰 감지값을 선정하여, 선정된 감지값의 크기에 따라 상기 선정된 감지값의 레벨을 결정하는 것을 특징으로 하는,
    배터리 스웰링 감지 방법.
  14. 제13항에 있어서,
    상기 선정된 감지값의 레벨은,
    스웰링 위험도에 따라 제1 레벨, 제2 레벨 및 제3 레벨 중 하나로 결정되는 것을 특징으로 하는,
    배터리 스웰링 감지 방법.
  15. 제14항에 있어서,
    상기 제어하는 단계는,
    상기 선정된 감지값의 레벨이 상기 제1 레벨, 제2 레벨 및 제3 레벨 중 하나로 결정된 경우, 해당 레벨에 기초하는 차량 속도 제어 신호를 차량의 ECU(Electronic Control Unit)로 송신하는 단계;를 포함하는 것을 특징으로 하는,
    배터리 스웰링 감지 방법.
  16. 제14항에 있어서,
    상기 제어하는 단계는,
    상기 선정된 감지값의 레벨이 상기 제3 레벨로 결정된 경우, 소정의 시간 경과 이후 상기 스위치부로 오프 동작 신호를 송신하는 단계;를 더 포함하는 것을 특징으로 하는,
    배터리 스웰링 감지 방법.
  17. 제14항에 있어서,
    상기 제어하는 단계는,
    상기 선정된 감지값의 레벨이 상기 제3 레벨로 결정된 경우, 차량에 기설치된 디스플레이 장치로 소정의 알림 신호를 송신하는 단계;를 더 포함하는 것을 특징으로 하는,
    배터리 스웰링 감지 방법.
  18. 제14항에 있어서,
    상기 제어하는 단계는,
    상기 선정된 감지값의 레벨이 상기 제2 레벨로 결정된 경우, 상기 외부전원으로부터 상기 배터리 팩으로 유입하는 충전 전류량을 제어하는 단계;를 더 포함하는 것을 특징으로 하는,
    배터리 스웰링 감지 방법.
PCT/KR2016/009091 2015-09-14 2016-08-18 배터리 스웰링 감지 시스템 및 방법 WO2017047937A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017563071A JP6409140B2 (ja) 2015-09-14 2016-08-18 電池膨れ検知システム及び方法
CN201680036163.2A CN107810574B (zh) 2015-09-14 2016-08-18 电池膨胀感测系统和方法
EP16846758.7A EP3300162B1 (en) 2015-09-14 2016-08-18 Battery swelling sensing system and method
US15/579,730 US10479213B2 (en) 2015-09-14 2016-08-18 Battery swelling sensing system and method
PL16846758T PL3300162T3 (pl) 2015-09-14 2016-08-18 Układ i sposób do wykrywania pęcznienia baterii

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0129551 2015-09-14
KR1020150129551A KR101942908B1 (ko) 2015-09-14 2015-09-14 배터리 스웰링 감지 시스템 및 방법

Publications (1)

Publication Number Publication Date
WO2017047937A1 true WO2017047937A1 (ko) 2017-03-23

Family

ID=58289074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/009091 WO2017047937A1 (ko) 2015-09-14 2016-08-18 배터리 스웰링 감지 시스템 및 방법

Country Status (7)

Country Link
US (1) US10479213B2 (ko)
EP (1) EP3300162B1 (ko)
JP (1) JP6409140B2 (ko)
KR (1) KR101942908B1 (ko)
CN (1) CN107810574B (ko)
PL (1) PL3300162T3 (ko)
WO (1) WO2017047937A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3605717A4 (en) * 2017-11-17 2020-07-01 LG Chem, Ltd. TENSIONING DEVICE FOR PRESSING A GAS ANALYSIS CELL AND GAS ANALYSIS DEVICE THEREFOR

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10319207B1 (en) 2017-02-02 2019-06-11 Briggs & Stratton Corporation Portable generator including carbon monoxide detector
US11028786B2 (en) 2017-03-28 2021-06-08 Briggs & Stratton, Llc Portable generator including carbon monoxide detector
US11067556B1 (en) 2017-05-30 2021-07-20 Briggs & Stratton, Llc Carbon monoxide sensor for portable generator
KR20200066247A (ko) * 2018-11-30 2020-06-09 주식회사 엘지화학 스위치 제어 장치 및 방법
IT201900001735A1 (it) 2019-02-06 2020-08-06 Leonardo Spa Sistema ausiliario di sicurezza per una batteria modulare in un veicolo subacqueo e relativa batteria
KR102051810B1 (ko) * 2019-09-06 2019-12-04 인셀(주) 통합 환경 감시 장치를 이용한 배터리 보호 방법 및 장치
KR102051809B1 (ko) 2019-09-06 2019-12-04 인셀(주) 가스 센서를 이용한 배터리 보호 장치 및 방법
KR102299116B1 (ko) 2019-09-06 2021-09-07 인셀(주) 통합 환경 감시 장치를 이용한 배터리 보호 장치
CN111030185B (zh) * 2019-12-30 2023-04-14 浙江涌原新能科技股份有限公司 基于互联网的用电多级布控治理系统
US11239506B2 (en) 2020-01-10 2022-02-01 Ford Global Technologies, Llc Thermal event detection for battery packs
US11177516B2 (en) 2020-01-10 2021-11-16 Ford Global Technologies, Llc Thermal event mitigation for battery packs
KR102116720B1 (ko) * 2020-01-20 2020-05-29 (주)테스 전기에너지 저장시스템 및 전기에너지 저장시스템의 화재예방 방법
KR20210136632A (ko) 2020-05-08 2021-11-17 에스케이이노베이션 주식회사 배터리 셀 이상감지 시스템
KR20210150072A (ko) * 2020-06-03 2021-12-10 주식회사 엘지에너지솔루션 전지셀 압력 측정 장치 및 방법
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
EP4083580A1 (de) 2021-04-30 2022-11-02 Heraeus Nexensos GmbH Sensoreinheit zur detektion von gasströmen in einem batterieblock oder in einer batterieeinheit, batterieblock, batterieeinheit und verfahren zur detektion von gasströmen in einem batterieblock oder in einer batterieeinheit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060058737A (ko) * 2003-10-24 2006-05-30 도요다 지도샤 가부시끼가이샤 연료전지시스템의 이상검출장치
KR100670442B1 (ko) * 2005-11-29 2007-01-16 삼성에스디아이 주식회사 전지 팩
KR20100071722A (ko) * 2008-12-19 2010-06-29 주식회사 엘지화학 리튬이차전지 제조방법 및 그로부터 제조되는 리튬이차전지
KR20150046661A (ko) * 2013-10-22 2015-04-30 현대자동차주식회사 배터리 과충전 방지장치 및 배터리
KR20150097077A (ko) * 2014-02-18 2015-08-26 현대자동차주식회사 친환경 차량의 전해액 가스 실내 유입 방지 시스템 및 방법

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10199577A (ja) * 1997-01-13 1998-07-31 Japan Storage Battery Co Ltd 蓄電池装置
JP2000123887A (ja) * 1998-10-19 2000-04-28 Nikkiso Co Ltd リチウムイオン二次電池における異常警告装置
JP4083652B2 (ja) * 2003-09-19 2008-04-30 本田技研工業株式会社 ガスセンサの制御装置
JP2009266563A (ja) * 2008-04-24 2009-11-12 Toyota Motor Corp 蓄電装置
KR20090131573A (ko) 2008-06-18 2009-12-29 현대자동차주식회사 배터리 과충전시 전원차단장치
JP5365079B2 (ja) * 2008-07-07 2013-12-11 トヨタ自動車株式会社 検出装置および蓄電装置
DE102008043789A1 (de) 2008-11-17 2010-05-20 Robert Bosch Gmbh Batteriemodul
WO2011030254A1 (en) 2009-09-09 2011-03-17 Panacis Inc. Sensor system and method to prevent battery flaming in overcharge
US8877370B2 (en) * 2010-11-12 2014-11-04 Samsung Sdi Co., Ltd. Battery pack having a sensor a gas sensor in the cap assembly
DE102011016527A1 (de) * 2011-04-08 2012-10-11 Daimler Ag Vorrichtung und Verfahren zur Dichtheitsüberprüfung eines elektrochemischen Energiespeichers
EP2645527A1 (en) 2012-03-26 2013-10-02 Samsung SDI Co., Ltd. Battery pack
TW201349627A (zh) * 2012-05-31 2013-12-01 Emerald Battery Technologies Co Ltd 電池監控及保護裝置及其系統與方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060058737A (ko) * 2003-10-24 2006-05-30 도요다 지도샤 가부시끼가이샤 연료전지시스템의 이상검출장치
KR100670442B1 (ko) * 2005-11-29 2007-01-16 삼성에스디아이 주식회사 전지 팩
KR20100071722A (ko) * 2008-12-19 2010-06-29 주식회사 엘지화학 리튬이차전지 제조방법 및 그로부터 제조되는 리튬이차전지
KR20150046661A (ko) * 2013-10-22 2015-04-30 현대자동차주식회사 배터리 과충전 방지장치 및 배터리
KR20150097077A (ko) * 2014-02-18 2015-08-26 현대자동차주식회사 친환경 차량의 전해액 가스 실내 유입 방지 시스템 및 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3300162A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3605717A4 (en) * 2017-11-17 2020-07-01 LG Chem, Ltd. TENSIONING DEVICE FOR PRESSING A GAS ANALYSIS CELL AND GAS ANALYSIS DEVICE THEREFOR
US11567048B2 (en) 2017-11-17 2023-01-31 Lg Energy Solution, Ltd. Jig for pressing gas analysis monocell, and gas analysis device including same

Also Published As

Publication number Publication date
EP3300162A4 (en) 2018-06-06
JP2018523264A (ja) 2018-08-16
PL3300162T3 (pl) 2020-10-19
US20180208074A1 (en) 2018-07-26
EP3300162B1 (en) 2020-01-29
CN107810574B (zh) 2020-05-19
KR101942908B1 (ko) 2019-04-17
EP3300162A1 (en) 2018-03-28
US10479213B2 (en) 2019-11-19
JP6409140B2 (ja) 2018-10-17
CN107810574A (zh) 2018-03-16
KR20170031940A (ko) 2017-03-22

Similar Documents

Publication Publication Date Title
WO2017047937A1 (ko) 배터리 스웰링 감지 시스템 및 방법
WO2016200212A1 (ko) 배터리 셀 스웰링 감지 시스템 및 방법
WO2014077522A1 (ko) 배터리 시스템의 릴레이 융착 검출 장치 및 방법
WO2019103364A1 (ko) 무선 배터리 관리 시스템 및 그것을 이용하여 배터리팩을 보호하는 방법
WO2015126035A1 (ko) 전압 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법
JP5794104B2 (ja) 電池パック、蓄電システム、電子機器、電動車両および電力システム
WO2020076127A1 (ko) 배터리 관리 장치 및 방법
WO2018021664A1 (ko) 배터리 밸런싱 장치 및 방법
US20130113290A1 (en) Control device for power supply circuit
EP2715861A2 (en) Secondary battery management system and method for exchanging battery cell information
KR101622193B1 (ko) 절연저항 측정장치 및 이를 포함하는 차량용 고전압 전원 분배 장치
WO2014141809A1 (ja) 電池パック、移動体および制御方法
WO2016056740A1 (ko) 스위치 열화 검출 장치 및 방법
WO2019117512A1 (ko) 워치독 타이머를 진단하기 위한 장치 및 방법
WO2018066792A1 (ko) 배터리 보호 시스템 및 방법
WO2013115437A1 (ko) 배터리 팩의 고장 진단 방법 및 장치, 이를 이용한 전력 릴레이 어셈블리
WO2021215570A1 (ko) 배터리 보호 장치 및 그 방법
TWI482714B (zh) 電動車電池並聯控制系統
WO2021210715A1 (ko) 배터리 보호 장치 및 그 방법
WO2016200009A1 (ko) 배터리 팩 보호 시스템 및 방법
WO2023063625A1 (ko) 배터리 진단 장치, 배터리 팩, 전기 차량, 및 배터리 진단 방법
JP2017099125A (ja) 電池システム、二次電池の電池監視装置および二次電池の監視方法
WO2015152482A1 (ko) 차량용 전원 제어 장치 및 그 방법
WO2019132245A1 (ko) 배터리 관리 시스템 및 이를 포함하는 배터리 팩
WO2022085962A1 (ko) 배터리 감시 장치, 배터리 감시 방법, 배터리 팩 및 전기 차량

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846758

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017563071

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15579730

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2016846758

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE