WO2016200212A1 - 배터리 셀 스웰링 감지 시스템 및 방법 - Google Patents

배터리 셀 스웰링 감지 시스템 및 방법 Download PDF

Info

Publication number
WO2016200212A1
WO2016200212A1 PCT/KR2016/006196 KR2016006196W WO2016200212A1 WO 2016200212 A1 WO2016200212 A1 WO 2016200212A1 KR 2016006196 W KR2016006196 W KR 2016006196W WO 2016200212 A1 WO2016200212 A1 WO 2016200212A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery cell
battery
cell swelling
switch
closing operation
Prior art date
Application number
PCT/KR2016/006196
Other languages
English (en)
French (fr)
Inventor
이재찬
김수령
김철택
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to PL16807852T priority Critical patent/PL3232502T3/pl
Priority to CN202110294404.6A priority patent/CN113178634B/zh
Priority to US15/540,308 priority patent/US10587016B2/en
Priority to CN201680005880.9A priority patent/CN107124907A/zh
Priority to EP16807852.5A priority patent/EP3232502B1/en
Publication of WO2016200212A1 publication Critical patent/WO2016200212A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/488Cells or batteries combined with indicating means for external visualization of the condition, e.g. by change of colour or of light density
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/578Devices or arrangements for the interruption of current in response to pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/20Pressure-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery cell swelling detection system, and more specifically, to a pressure measuring sensor in each of spaced intervals of a predetermined interval formed between one or more battery cells, and according to the volume change of each of the one or more battery cells.
  • the battery is easy to apply according to the product family, and has characteristics such as excellent storage and high energy density.
  • characteristics such as excellent storage and high energy density.
  • it is attracting attention as an energy source for improving the environment and energy efficiency in that by-products are not generated due to the use of energy.
  • batteries are widely applied to electric vehicles (EVs), energy storage systems (ESS), and the like, as well as portable devices, and provide convenience for daily life while being the basis of various industries.
  • Such a battery may be abnormally driven according to the use environment, and abnormal driving of the battery may cause various accidents, and thus stable protection of the battery through careful monitoring and proper control is required.
  • Such a swelling phenomenon of the battery may lead to an accident such as ignition and explosion as well as shortening of the life of the battery and a decrease in capacity, and thus there is a concern about stability.
  • a power cut-off device when a battery is overcharged by Korean Patent Application Publication No. 10-2009-0131573 discloses an electrode when a swelling phenomenon occurs in a battery. As the connection between the assembly and the electrode lead is broken, the power connection between the cells is broken to prevent the overcharge.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a pressure measuring sensor in each of the spaces of a predetermined interval formed between one or more battery cells, and to change the volume of each of the one or more battery cells.
  • the object of the present invention is not only to shut off the power supply when the battery cell is abnormally swelled, but also to control peripheral devices such as a fan, a cooling valve, etc. to be turned off.
  • peripheral devices such as a fan, a cooling valve, etc.
  • Battery cell swelling detection system one or more battery cells embedded in the battery pack;
  • a sensing unit including a pressure measuring sensor and measuring a pressure applied to the pressure measuring sensor according to a volume change of each of the one or more battery cells;
  • a switch unit provided on a connection path between the battery pack and an external power source; And a controller configured to control the opening and closing operation of the switch unit based on the measurement result of the sensing unit.
  • the battery cell swelling detection system may further include an output unit configured to output a state of the one or more battery cells and an opening / closing operation of the switch unit.
  • the one or more battery cells may be embedded in the battery pack to form a spaced space at a predetermined interval.
  • the pressure measuring sensor may be provided between the inner wall of the battery pack and the battery cells adjacent from the inner wall of the battery pack and in each of the separation spaces.
  • the sensing unit may convert the pressure applied to each of the pressure measuring sensors into a voltage value or a current value and provide the same to the controller.
  • the control unit may compare the voltage value or current value provided from the sensing unit with a preset threshold value and provide an open operation signal to the switch unit when the voltage value or current value exceeds the threshold value. have.
  • the control unit may provide an off operation signal to a separate peripheral device when the voltage value or the current value exceeds the threshold value, and the separate peripheral device may be an air-cooled fan and a water-cooled cooling valve. valve).
  • the controller may provide a closing operation signal to the switch unit when the voltage value or the current value does not exceed the threshold value.
  • the output unit may output a warning signal in the form of video and audio when the voltage value or current value exceeds the threshold value.
  • the switch unit may include one or more of a field effect transistor and a relay.
  • Battery cell swelling detection method measuring the pressure applied to the pressure measuring sensor according to the volume change of each of the one or more battery cells built in the battery pack; And controlling an opening / closing operation of a switch provided on a connection path between the battery pack and an external power source based on a measurement result of measuring the pressure applied to the pressure measuring sensor.
  • the battery cell swelling sensing method may further include outputting a state of the one or more battery cells and an opening / closing operation of the switch.
  • the one or more battery cells may be embedded in the battery pack to form a spaced space at a predetermined interval.
  • the pressure measuring sensor may be provided between the inner wall of the battery pack and the battery cells adjacent from the inner wall of the battery pack and in each of the separation spaces.
  • the measuring of the pressure applied to the pressure measuring sensor may be provided to a step of controlling the opening and closing operation of the switch by converting the pressure applied to each of the pressure measuring sensors into a voltage value or a current value.
  • the controlling of the opening and closing operation of the switch may include comparing the voltage value or the current value provided from the pressure applied to the pressure measuring sensor with a preset threshold value, wherein the voltage value or the current value is the threshold value. If the value is exceeded, the switch may be controlled to be opened.
  • the controlling of the opening and closing operation of the switch may include controlling a separate peripheral device to be turned off when the voltage value or the current value exceeds the threshold value, and the separate peripheral device may be an air-cooled fan. And a water-cooled cooling valve.
  • the switch when the voltage value or the current value does not exceed the threshold value, the switch may be controlled to operate in a closed manner.
  • the outputting of the state of the at least one battery cell and the opening / closing operation of the switch may output a warning signal in the form of video and audio when the voltage value or current value exceeds the threshold value.
  • the switch may be composed of one or more of a field effect transistor and a relay.
  • a connection path between the battery pack and an external power source is quickly detected to cut off power supply to the battery pack.
  • a battery cell swelling detection system and method for controlling switch operation on a phase can be provided.
  • FIG. 1 is a view schematically illustrating an electric vehicle to which a battery cell swelling detection system and method according to an embodiment of the present invention may be applied.
  • FIG. 2 is a diagram schematically illustrating a configuration of a battery cell swelling detection system according to an exemplary embodiment of the present invention.
  • FIG. 3 is a simplified circuit diagram of a battery cell swelling detection system according to an embodiment of the present invention.
  • FIG. 4 is a flowchart illustrating a battery cell swelling sensing method according to an embodiment of the present invention.
  • ... unit described in the specification means a unit for processing one or more functions or operations, which may be implemented in hardware or software or a combination of hardware and software.
  • FIG. 1 is a view schematically illustrating an electric vehicle to which a battery cell swelling detection system and method according to an embodiment of the present invention may be applied.
  • the battery cell swelling detection system and method according to an embodiment of the present invention may be applied to various technical fields to which a battery is applied in addition to the electric vehicle 1.
  • the electric vehicle 1 includes a battery 10, a battery management system (BMS) 20, an electronic control unit (ECU) 30, an inverter 40, and a motor 50.
  • BMS battery management system
  • ECU electronice control unit
  • inverter 40 inverter
  • motor 50 motor 50
  • the battery 10 is an electric energy source for driving the electric vehicle 1 by providing a driving force to the motor 50.
  • the battery 10 is driven by the inverter 40 according to the driving of the motor 50 and / or an internal combustion engine (not shown). It can be charged or discharged.
  • the BMS 20 may estimate the state of the battery 10, control the charge / discharge current of the battery 10 by using the state information, and further control the opening / closing operation of the contactor.
  • the ECU 30 is an electronic control device for controlling the state of the electric vehicle 1.
  • the torque degree is determined based on information such as an accelerator, a break, a speed, and the like, and the output of the motor 50 is controlled to match the torque information.
  • the inverter 40 causes the battery 10 to be charged or discharged based on the control signal of the ECU 30.
  • the motor 50 drives the electric vehicle 1 based on the electric energy of the battery 10 and the control information transmitted from the ECU 30.
  • the battery 10 is a key element that provides driving force, and when the state of the battery 10 is abnormal, failure of the electric vehicle 1 and various accidents may be caused. .
  • the internal pressure of the battery 10 may increase due to the generation of gas due to the electrical and chemical action inside the battery 10. As a result, the battery 10 may expand and lead to explosion or fire.
  • FIG. 2 is a view schematically showing the configuration of a battery cell swelling detection system according to an embodiment of the present invention
  • Figure 3 is a schematic diagram showing a circuit diagram of a battery cell swelling detection system.
  • the battery cell swelling detection system 100 may include one or more battery cells 110, a detector 120, a controller 130, and a switch 140. ) And an output unit 150.
  • the battery cell swelling detection system 100 illustrated in FIGS. 2 and 3 is according to an exemplary embodiment, and its components are not limited to the exemplary embodiment illustrated in FIGS. Note that components may be added, changed or deleted.
  • One or more battery cells 110 form a space between the cells and may be embedded in the battery pack. Specifically, one or more battery cells 110 are connected in series, and at least one battery cell 110 may be spaced apart from each other at a predetermined interval to form a space having a predetermined size.
  • the size of the separation space may be determined to correspond to the thickness of the pressure measuring sensor 121 so that the pressure measuring sensor 121, which will be described later, may be inserted in contact with the left and right battery cells 110.
  • the type of battery including the battery cell 110 and the battery pack is not particularly limited, and for example, a lithium ion battery, a lithium polymer battery, a nickel cadmium battery, a nickel hydrogen battery, a nickel zinc battery, and the like may be used.
  • the detector 120 may be provided at one side of the battery pack or at an outside of the battery pack to detect a volume change of each of the one or more battery cells 110.
  • the sensing unit 120 may include one or more pressure measuring sensors 121, and each pressure measuring sensor 121 may be inserted in a one-to-one correspondence to a space formed by the one or more battery cells 110. .
  • the pressure measuring sensor 121 may be inserted into a space formed between the outermost battery cell of the one or more battery cells 110 and the inner wall of the battery pack.
  • one or more battery cells 110 and the pressure measuring sensor 121 may be in close contact with each other, and may completely fill the internal space of the battery pack, thereby closely contacting each other when a volume change occurs in each of the one or more battery cells 110. Pressure may be applied to the pressure measuring sensor 121.
  • the pressure measuring sensor 121 is inserted into the space formed by the one or more battery cells 110, and the battery cell 110 and the pressure measuring sensor 121 are in close contact with each other, thereby providing a volume of the battery cell 110. Pressure according to the change can be detected sensitively, and can increase the space utilization inside the battery pack.
  • Each of the one or more pressure measuring sensors 121 may measure the pressure applied according to the volume change of each of the one or more battery cells 110, wherein the pressure measuring sensor 121 is applied from the left and right battery cells 110 in close contact with each other. Losing the pressure can be measured all, or the pressure applied to the relatively high pressure applied from the left and right sides can be provided to the detection unit 120.
  • the sensing unit 120 may convert the measured pressure into an electrical value such as a voltage value or a current value, and provide the same to the controller 130 described later.
  • the controller 130 may control the opening / closing operation of the switch unit 140 to be described later based on the voltage value or the current value provided from the sensing unit 120, and may be implemented as a BMS or included in the BMS. have.
  • the controller 130 may have a threshold value for determining whether the battery cell 110 is swelled in comparison with a voltage value or a current value.
  • the controller 130 may compare the voltage value or the current value with a preset threshold value, and provide an open operation signal to the switch unit 140 when the voltage value or the current value exceeds the threshold value.
  • An off operation signal may be provided to peripheral devices (not shown) and circuit parts related to driving of the battery, thereby preventing power consumption due to unnecessary driving of the peripheral devices and circuit parts.
  • the peripheral device may include an air-cooled fan and a water-cooled cooling valve.
  • the controller 130 may provide the closing operation signal to the switch unit 140.
  • the switch unit 140 may be provided on at least one connection path between the battery pack and the external power source, and may open or close the connection path between the battery pack and the external power source according to an operation signal provided from the controller 130.
  • the switch unit 140 when the open operation signal is provided from the control unit 130, the switch unit 140 operates to open the current path to block the current supplied to the battery pack from the external power source, and on the contrary, the close operation signal may be provided from the control unit 130. In this case, the switch unit 140 may maintain a closed operation.
  • the switch 140 may be composed of one or more of a field effect transistor and a relay, but the type of contactor constituting the switch 140 may be variously selected. Note that.
  • the output unit 150 may serve to output information such as a state of the battery cell 110 such as a volume change and a charge / discharge state according to the opening / closing operation of the switch unit 140.
  • the output unit 150 may be implemented as a terminal device such as a computer, a mobile phone, a personal digital assistant (PDA), a portable multimedia player (PMP), or the like, and may be implemented as various types of devices capable of performing input / output of data. Can be.
  • a terminal device such as a computer, a mobile phone, a personal digital assistant (PDA), a portable multimedia player (PMP), or the like, and may be implemented as various types of devices capable of performing input / output of data. Can be.
  • Information output from the output unit 150 may be displayed as an image or provided as an audio.
  • the output unit 150 may output a warning signal in the form of video and audio.
  • FIG. 4 is a flowchart illustrating a battery cell swelling sensing method according to an embodiment of the present invention.
  • the pressure applied to the pressure measuring sensor according to the volume change of the battery cell is measured (S410), and the pressure measured by the sensing unit is measured by a voltage value or It converts into an electrical value such as a current value and provides it to the controller (S420).
  • the controller compares the voltage value or the current value with a preset threshold value (S430), and provides an off operation signal to a peripheral device related to driving of the battery when the voltage value or current value exceeds the threshold value (S430).
  • S440-1) the switch unit provides an open operation signal (S440-2). Accordingly, the peripheral device is turned off and the switch unit is opened to block the connection path between the battery pack and the external power (S450-1).
  • control unit If the voltage value or the current value does not exceed the threshold, the control unit provides a closing operation signal to the switch unit (S440-3), whereby the switch unit maintains the closing operation (S450-2).
  • the output unit outputs information such as the state of the battery cell, such as a volume change, and the charging / discharging state of the battery pack according to the opening / closing operation of the switch unit as an image and audio (S460).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 배터리 팩에 내장되는 배터리 셀에 비정상적 스웰링(swelling)이 발생될 경우, 이를 신속하게 감지하여 배터리 팩으로의 전원 공급이 차단되도록 제어함으로써, 배터리 셀 및 배터리 팩의 구조적 변형과 배터리의 수명 단축을 저지하고, 폭발, 발화 등의 사고를 방지할 수 있는 배터리 셀 스웰링 감지 시스템 및 방법에 관한 것이다.

Description

배터리 셀 스웰링 감지 시스템 및 방법
본 출원은 2015년 06월 10일자 한국 특허 출원 제10-2015-0082100호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 배터리 셀 스웰링 감지 시스템에 관한 것으로, 보다 구체적으로는 하나 이상의 배터리 셀 상호 간에 형성되는 기설정 간격의 이격 공간 각각에 압력 측정 센서를 구비하고, 하나 이상의 배터리 셀 각각의 부피 변화에 따라 압력 측정 센서에 가해지는 압력을 측정하며, 측정 결과에 근거하여 외부전원의 공급을 제어함으로써, 배터리 셀의 스웰링(swelling) 현상으로 인하여 발생될 수 있는 발화, 폭발 등의 사고와 배터리 셀 및 배터리 팩의 구조적 변형을 방지할 수 있는 배터리 셀 스웰링 감지 시스템 및 방법에 관한 것이다.
배터리는 제품군에 따른 적용이 용이하고, 우수한 보존성 및 높은 에너지 밀도 등의 특성을 가지고 있다. 또한, 화석 연료의 사용을 감소시킬 수 있다는 일차적 장점뿐만 아니라, 에너지 사용에 따른 부산물이 발생되지 않는다는 점에서 친환경 및 에너지 효율성 제고를 위한 에너지 공급원으로 주목 받고 있다.
때문에, 배터리는 휴대용 기기를 비롯하여 전기차량(Electric Vehicle; EV) 및 에너지 저장 시스템(Energy Storage System; ESS) 등에 보편적으로 응용되며, 다양한 산업의 기반이 됨과 동시에 일상 생활에 편의성을 제공해 주고 있다.
하지만 이러한 배터리는 사용 환경에 따라 비정상적으로 구동될 수 있으며, 배터리의 비정상적 구동은 각종 사고를 야기하므로 주의 깊은 감시와 적절한 제어를 통한 배터리의 안정적 보호가 요구된다.
예컨대, 배터리가 과충전, 단락, 역접속 등의 비정상적 환경에 놓이거나 수명이 소진될 경우, 배터리의 내부에서는 전기화학적 작용으로 인하여 가스가 발생되며, 과도한 가스 발생은 배터리의 스웰링(swelling) 현상을 유발한다.
이러한 배터리의 스웰링 현상은 배터리의 수명 단축, 용량 저하뿐만 아니라, 발화 및 폭발 등의 사고로 이어질 수 있기 때문에, 안정상에 우려가 잇따르고 있다.
이에 따라, 종래에는 배터리의 스웰링 현상 감지를 위한 다양한 기술들이 제시되어 왔으며, 일례로 대한민국 공개특허공보 제10-2009-0131573호의 배터리 과충전시 전원차단장치는 배터리에서 스웰링 현상이 발생될 경우 전극조립체와 전극리드의 연결이 파단 됨으로써, 셀 간의 전원연결부가 끊어져 과충전을 방지하는 구성을 기재하고 있다.
그러나, 상술된 종래 기술은 배터리의 스웰링 현상으로 인하여 일부 구성이 파단 되어야만 과충전이 방지되므로 재생을 통한 재사용이 용이하지 못하며, 파단시 발생될 수 있는 스파크가 점화원으로 작용하여 또 다른 발화의 원인이 될 가능성이 있다.
본 발명은 상술한 문제점을 해결하기 위해 안출된 것으로, 본 발명의 목적은 하나 이상의 배터리 셀 상호 간에 형성되는 기설정 간격의 이격 공간 각각에 압력 측정 센서를 구비하고, 하나 이상의 배터리 셀 각각의 부피 변화에 따라 압력 측정 센서에 가해지는 압력을 측정하며, 측정 결과에 근거하여 외부전원의 공급을 제어함으로써, 배터리 셀의 스웰링(swelling) 현상으로 인하여 발생될 수 있는 발화, 폭발 등의 사고와 배터리 셀 및 배터리 팩의 구조적 변형을 방지할 수 있는 배터리 셀 스웰링 감지 시스템 및 방법을 제공하는 것이다.
또한, 본 발명의 목적은 배터리 셀이 비정상적으로 스웰링될 경우 전원 공급의 차단뿐만 아니라, 동시에 팬(fan), 쿨링 밸브(cooling valve) 등의 주변 장치가 오프(off) 동작되도록 제어함으로써, 주변 장치의 불필요한 구동에 따른 전력소비를 방지할 수 있는 배터리 셀 스웰링 감지 시스템 및 방법을 제공하는 것이다.
본 발명의 일 실시예에 따른 배터리 셀 스웰링 감지 시스템은, 배터리 팩에 내장되는 하나 이상의 배터리 셀; 압력 측정 센서를 포함하며, 상기 하나 이상의 배터리 셀 각각의 부피 변화에 따라 상기 압력 측정 센서에 가해지는 압력을 측정하는 감지부; 상기 배터리 팩과 외부전원의 연결 경로 상에 제공되는 스위치부; 및 상기 감지부의 측정 결과에 근거하여 상기 스위치부의 개폐 동작을 제어하는 제어부;를 포함하여 구성된다.
상기 배터리 셀 스웰링 감지 시스템은 상기 하나 이상의 배터리 셀의 상태 및 상기 스위치부의 개폐 동작이 출력되는 출력부;를 더 포함할 수 있다.
상기 하나 이상의 배터리 셀 상호 간은, 기설정된 간격의 이격 공간을 형성하며 상기 배터리 팩에 내장될 수 있다.
상기 압력 측정 센서는, 상기 배터리 팩의 내벽과 상기 배터리 팩의 내벽으로부터 이웃한 배터리 셀 사이 및 상기 이격 공간 각각에 제공될 수 있다.
상기 감지부는, 상기 압력 측정 센서 각각에 가해지는 압력을 전압값 또는 전류값으로 변환하여 상기 제어부에 제공할 수 있다.
상기 제어부는, 상기 감지부로부터 제공받는 상기 전압값 또는 전류값을 기설정된 임계값과 비교하고, 상기 전압값 또는 전류값이 상기 임계값을 초과하는 경우 상기 스위치부에 개로 동작 신호를 제공할 수 있다.
상기 제어부는, 상기 전압값 또는 전류값이 상기 임계값을 초과하는 경우 별도의 주변 장치에 오프(off) 동작 신호를 제공하고, 상기 별도의 주변 장치는 공랭식 팬(fan) 및 수랭식 쿨링 밸브(cooling valve) 중 하나일 수 있다.
상기 제어부는, 상기 전압값 또는 전류값이 상기 임계값을 초과하지 아니하는 경우 상기 스위치부에 폐로 동작 신호를 제공할 수 있다.
상기 출력부는, 상기 전압값 또는 전류값이 상기 임계값을 초과하는 경우 영상 및 음성 형태의 경고 신호를 출력할 수 있다.
상기 스위치부는, 전계 효과 트랜지스터(field effect transistor) 및 릴레이(relay) 중 하나 이상으로 구성될 수 있다.
본 발명의 일 실시예에 따른 배터리 셀 스웰링 감지 방법은, 배터리 팩에 내장되는 하나 이상의 배터리 셀 각각의 부피 변화에 따라 압력 측정 센서에 가해지는 압력을 측정하는 단계; 및 상기 압력 측정 센서에 가해지는 압력을 측정하는 단계의 측정 결과에 근거하여 상기 배터리 팩과 외부전원의 연결 경로 상에 제공되는 스위치의 개폐 동작을 제어하는 단계;를 포함하여 구성된다.
상기 배터리 셀 스웰링 감지 방법은 상기 하나 이상의 배터리 셀의 상태 및 상기 스위치의 개폐 동작이 출력되는 단계;를 더 포함할 수 있다.
상기 하나 이상의 배터리 셀 상호 간은, 기설정된 간격의 이격 공간을 형성하며 상기 배터리 팩에 내장될 수 있다.
상기 압력 측정 센서는, 상기 배터리 팩의 내벽과 상기 배터리 팩의 내벽으로부터 이웃한 배터리 셀 사이 및 상기 이격 공간 각각에 제공될 수 있다.
상기 압력 측정 센서에 가해지는 압력을 측정하는 단계는, 상기 압력 측정 센서 각각에 가해지는 압력을 전압값 또는 전류값으로 변환하여 상기 스위치의 개폐 동작을 제어하는 단계에 제공할 수 있다.
상기 스위치의 개폐 동작을 제어하는 단계는, 상기 압력 측정 센서에 가해지는 압력을 측정하는 단계로부터 제공받는 상기 전압값 또는 전류값을 기설정된 임계값과 비교하고, 상기 전압값 또는 전류값이 상기 임계값을 초과하는 경우 상기 스위치가 개로 동작하도록 제어할 수 있다.
상기 스위치의 개폐 동작을 제어하는 단계는, 상기 전압값 또는 전류값이 상기 임계값을 초과하는 경우 별도의 주변 장치가 오프(off) 동작하도록 제어하고, 상기 별도의 주변 장치는 공랭식 팬(fan) 및 수랭식 쿨링 밸브(cooling valve) 중 하나일 수 있다.
상기 스위치의 개폐 동작을 제어하는 단계는, 상기 전압값 또는 전류값이 상기 임계값을 초과하지 아니하는 경우 상기 스위치가 폐로 동작하도록 제어할 수 있다.
상기 하나 이상의 배터리 셀의 상태 및 상기 스위치의 개폐 동작이 출력되는 단계는, 상기 전압값 또는 전류값이 상기 임계값을 초과하는 경우 영상 및 음성 형태의 경고 신호를 출력할 수 있다.
상기 스위치는, 전계 효과 트랜지스터(field effect transistor) 및 릴레이(relay) 중 하나 이상으로 구성될 수 있다.
본 발명의 일 측면에 따르면, 배터리 팩에 내장되는 배터리 셀에 비정상적 스웰링(swelling) 현상이 발생될 경우, 이를 신속하게 감지하여 배터리 팩으로의 전원 공급이 차단되도록 배터리 팩과 외부전원의 연결 경로 상의 스위치 동작을 제어하는 배터리 셀 스웰링 감지 시스템 및 방법을 제공할 수 있다.
이로써, 배터리 셀의 비정상적 스웰링 현상에 의한 배터리의 수명 단축 및 구조적 변형을 저지하고, 발화, 폭발 등의 사고를 방지할 수 있는 장점을 가진다.
또한, 배터리 팩으로의 전원 공급 차단과 동시에 주변 장치들의 오프(off) 동작을 제어함으로써, 불필요한 구동에 따른 전력소비를 방지할 수 있는 효과가 발생한다.
도 1은 본 발명의 일 실시예에 따른 배터리 셀 스웰링 감지 시스템 및 방법이 적용될 수 있는 전기 차량을 개략적으로 도시한 도면이다.
도 2는 본 발명의 일 실시예에 따른 배터리 셀 스웰링 감지 시스템의 구성을 개략적으로 도시한 도면이다.
도 3은 본 발명의 일 실시예에 따른 배터리 셀 스웰링 감지 시스템의 회로도를 간략하게 도시한 도면이다.
도 4는 본 발명의 일 실시예에 따른 배터리 셀 스웰링 감지 방법을 설명하기 위한 순서도이다.
본 발명을 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다. 여기서, 반복되는 설명, 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능, 및 구성에 대한 상세한 설명은 생략한다. 본 발명의 실시형태는 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다. 따라서, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있다.
명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
또한, 명세서에 기재된 "...부"의 용어는 하나 이상의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.
도 1은 본 발명의 일 실시예에 따른 배터리 셀 스웰링 감지 시스템 및 방법이 적용될 수 있는 전기 차량을 개략적으로 도시한 도면이다.
다만, 본 발명의 일 실시예에 따른 배터리 셀 스웰링 감지 시스템 및 방법은 전기 차량(electric vehicle)(1) 이외에도 배터리가 적용되는 다양한 기술 분야에 응용될 수 있다.
도 1을 참조하면, 전기 차량(1)은 배터리(10), BMS(Battery Management System)(20), ECU(Electronic Control Unit)(30), 인버터(40) 및 모터(50)를 포함하여 구성될 수 있다.
배터리(10)는 모터(50)에 구동력을 제공하여 전기 차량(1)을 구동시키는 전기에너지원으로, 모터(50) 및/또는 내연 기관(미도시)의 구동에 따라 인버터(40)에 의해 충전되거나 방전될 수 있다.
BMS(20)는 배터리(10)의 상태를 추정하고, 이러한 상태 정보를 이용하여 배터리(10)의 충방전 전류를 제어하며, 나아가 접촉기의 개폐 동작을 제어할 수 있다.
ECU(30)는 전기 차량(1)의 상태를 제어하는 전자적 제어 장치이다. 예컨대, 액셀러레이터(accelerator), 브레이크(break), 속도 등의 정보에 기초하여 토크 정도를 결정하고, 모터(50)의 출력이 토크 정보에 맞도록 제어한다.
인버터(40)는 ECU(30)의 제어 신호에 기초하여 배터리(10)가 충전 또는 방전되도록 한다.
모터(50)는 배터리(10)의 전기에너지와 ECU(30)로부터 전달되는 제어 정보에 기초하여 전기 차량(1)을 구동한다.
상술한 바와 같이, 전기 차량(1)에 있어서 배터리(10)는 추진력을 제공하는 핵심 요소로, 배터리(10)의 상태가 비정상적일 경우 전기 차량(1)의 고장 및 각종 사고가 야기될 수 있다.
예컨대, 배터리(10)가 과충전, 단락, 역접속 등의 환경에 놓이거나 수명이 모두 소진될 경우, 배터리(10) 내부의 전기적, 화학적 작용으로 인한 가스의 발생으로 배터리(10) 내압이 상승하게 되며, 이로써 배터리(10)가 팽창하여 폭발이나 발화로 이어질 수 있다.
따라서, 배터리의 적절한 보호는 배터리가 적용되는 기계 기구 및 장치의 안정적 운용과 연계된다 할 수 있으며, 이하에서는 도2 내지 도4를 참조하여 본 발명에 따른 배터리 셀 스웰링 감지 시스템 및 방법을 설명하도록 한다.
도 2는 본 발명의 일 실시예에 따른 배터리 셀 스웰링 감지 시스템의 구성을 개략적으로 도시한 도면이고, 도 3은 배터리 셀 스웰링 감지 시스템의 회로도를 간략하게 도시한 도면이다.
도 2 및 도 3을 참조하면, 본 발명의 일 실시예에 따른 배터리 셀 스웰링 감지 시스템(100)은 하나 이상의 배터리 셀(110), 감지부(120), 제어부(130), 스위치부(140) 및 출력부(150)를 포함하여 구성될 수 있다.
다만, 도 2 및 도 3에 도시된 배터리 셀 스웰링 감지 시스템(100)은 일 실시예에 따른 것으로 그 구성요소들이 도 2 및 도 3에 도시된 실시예에 한정되는 것은 아니며, 필요에 따라 일부 구성요소가 부가, 변경 또는 삭제될 수 있음을 유의한다.
하나 이상의 배터리 셀(110)은 셀 상호 간에 이격 공간을 형성하며 배터리 팩에 내장될 수 있다. 구체적으로, 하나 이상의 배터리 셀(110)은 직렬 연결되며, 이때 하나 이상의 배터리 셀(110) 상호 간은 기설정된 간격으로 이격되어 일정 크기의 이격 공간을 형성할 수 있다.
이격 공간의 크기는 후술되는 압력 측정 센서(121)가 좌우측 배터리 셀(110)에 맞닿아 삽입될 수 있도록 압력 측정 센서(121)의 두께에 대응하여 결정될 수 있다.
여기서, 배터리 셀(110) 및 배터리 팩을 포함하는 배터리의 종류는 특별히 한정되지 않으며, 예컨대 리튬 이온 배터리, 리튬 폴리머 배터리, 니켈 카드뮴 배터리, 니켈 수소 배터리, 니켈 아연 배터리 등이 해당될 수 있다.
감지부(120)는 배터리 팩의 내부 또는 외부 일측에 제공되어, 하나 이상의 배터리 셀(110) 각각의 부피 변화를 감지하는 역할을 수행할 수 있다.
구체적으로, 감지부(120)는 하나 이상의 압력 측정 센서(121)를 포함하며, 각각의 압력 측정 센서(121)는 하나 이상의 배터리 셀(110)들이 형성하는 이격 공간에 일대일 대응하여 삽입될 수 있다. 또한, 하나 이상의 배터리 셀(110) 중 최외측 배터리 셀과 배터리 팩의 내벽 사이에 형성되는 공간에도 압력 측정 센서(121)가 삽입될 수 있다.
즉, 하나 이상의 배터리 셀(110) 및 압력 측정 센서(121) 상호는 일면이 밀착되며 배터리 팩의 내부 공간을 빈틈없이 메울 수 있고, 이로써 하나 이상의 배터리 셀(110) 각각에 부피 변화가 발생할 경우 밀착된 압력 측정 센서(121)에 압력이 가해질 수 있다.
이와 같이, 하나 이상의 배터리 셀(110)이 형성하는 이격 공간에 압력 측정 센서(121)가 삽입되고, 배터리 셀(110) 및 압력 측정 센서(121) 상호가 밀착됨으로써, 배터리 셀(110)의 부피 변화에 따른 압력이 민감하게 감지될 수 있으며, 배터리 팩 내부의 공간활용도를 높일 수 있다.
하나 이상의 압력 측정 센서(121) 각각은 하나 이상의 배터리 셀(110) 각각의 부피 변화에 따라 가해지는 압력을 측정할 수 있으며, 이때 압력 측정 센서(121)는 밀착되는 좌우측 배터리 셀(110)로부터 가해지는 압력을 모두 측정하거나, 또는 좌우측에서 가해지는 압력 중 상대적으로 높게 가해지는 압력을 측정하여 감지부(120)로 제공할 수 있다.
감지부(120)에서는 측정된 압력을 전압값 또는 전류값과 같은 전기적 값으로 변환하여 후술되는 제어부(130)에 제공할 수 있다.
제어부(130)는 감지부(120)로부터 제공받은 전압값 또는 전류값에 근거하여 후술되는 스위치부(140)의 개폐 동작을 제어하는 역할을 수행할 수 있으며, BMS 자체로 구현되거나 BMS에 포함될 수 있다.
이러한 제어부(130)에는 전압값 또는 전류값과 비교하여 배터리 셀(110)의 스웰링(swelling) 여부를 판단하기 위한 임계값이 설정되어 있을 수 있다.
구체적으로, 제어부(130)는 전압값 또는 전류값을 기설정된 임계값과 비교하여, 전압값 또는 전류값이 임계값을 초과하는 경우 스위치부(140)에 개로 동작 신호를 제공할 수 있으며, 동시에 배터리의 구동과 관계하는 주변 장치(미도시) 및 회로부품 등에 오프(off) 동작 신호를 제공하여 주변 장치 및 회로부품의 불필요한 구동에 따른 전력소비를 방지할 수 있다.
여기서 주변 장치에는 공랭식 팬(fan) 및 수랭식 쿨링 밸브(cooling valve) 등이 포함될 수 있다.
또한, 전압값 또는 전류값이 임계값을 초과하지 않는 경우 제어부(130)는 스위치부(140)에 폐로 동작 신호를 제공할 수 있다.
스위치부(140)는 배터리 팩과 외부전원의 연결 경로 상에 하나 이상으로 제공되며, 제어부(130)로부터 제공받는 동작 신호에 따라 배터리 팩과 외부전원의 연결 경로를 개로 또는 폐로시킬 수 있다.
즉, 제어부(130)에서 개로 동작 신호가 제공될 경우 스위치부(140)는 개로 동작하여 외부전원으로부터 배터리 팩에 공급되는 전류의 경로를 차단시키고, 반대로 제어부(130)에서 폐로 동작 신호가 제공될 경우 스위치부(140)는 폐로 동작을 유지할 수 있다.
이러한 스위치부(140)는 전계 효과 트랜지스터(field effect transistor) 및 릴레이(relay) 중 하나 이상으로 구성될 수 있으나, 스위치부(140)를 구성하는 접촉기의 종류는 한정되지 않고 다양하게 선택될 수 있음을 유의한다.
출력부(150)는 부피 변화와 같은 배터리 셀(110)의 상태와 스위치부(140)의 개폐 동작에 따른 충방전 상태 등의 정보를 출력하는 역할을 수행할 수 있다.
예컨대, 출력부(150)는 컴퓨터, 휴대 전화, PDA(personal digital assistant) 및 PMP(portable multimedia player) 등과 같은 단말 장치로 구현될 수 있으며, 데이터의 입출력을 수행할 수 있는 다양한 유형의 장치로 구현될 수 있다.
출력부(150)에서 출력되는 정보는 영상으로써 디스플레이 되거나, 또는 음성으로써 제공될 수 있다. 특히 제어부(130)에서 전압값 또는 전류값을 임계값과 비교한 결과, 전압값 또는 전류값이 임계값을 초과하는 경우, 출력부(150)는 영상 및 음성 형태의 경고 신호를 출력할 수 있다.
도 4는 본 발명의 일 실시예에 따른 배터리 셀 스웰링 감지 방법을 설명하기 위한 순서도이다.
본 발명의 일 실시예에 따른 배터리 셀 스웰링 감지 방법이 시작되면, 먼저 배터리 셀의 부피 변화에 따라 압력 측정 센서에 가해지는 압력을 측정하고(S410), 감지부에서 측정된 압력을 전압값 또는 전류값과 같은 전기적 값으로 변환하여 제어부로 제공한다(S420). 제어부에서는 전압값 또는 전류값을 기설정된 임계값과 비교하여(S430), 전압값 또는 전류값이 임계값을 초과할 경우 배터리의 구동과 관계하는 주변 장치에 오프(off) 동작 신호를 제공하고(S440-1), 스위치부에는 개로 동작 신호를 제공한다(S440-2). 이에 따라 주변 장치가 오프 동작하게 되고, 스위치부는 개로 동작하여 배터리 팩과 외부전원의 연결 경로를 차단한다(S450-1).
만일 전압값 또는 전류값이 임계값을 초과하지 아니하는 경우 제어부는 스위치부에 폐로 동작 신호를 제공하며(S440-3), 이로써 스위치부는 폐로 동작을 유지하게 된다(S450-2).
이후, 출력부에서는 부피 변화와 같은 배터리 셀의 상태 및 스위치부의 개폐 동작에 따른 배터리 팩의 충방전 상태 등의 정보를 영상 및 음성으로써 출력한다(S460).
이상 본 발명의 특정 실시예를 도시하고 설명하였으나, 본 발명의 기술사상은 첨부된 도면과 상기한 설명내용에 한정하지 않으며 본 발명의 사상을 벗어나지 않는 범위 내에서 다양한 형태의 변형이 가능함은 이 분야의 통상의 지식을 가진 자에게는 자명한 사실이며, 이러한 형태의 변형은, 본 발명의 정신에 위배되지 않는 범위 내에서 본 발명의 특허청구범위에 속한다고 볼 것이다.

Claims (20)

  1. 배터리 팩에 내장되는 하나 이상의 배터리 셀;
    압력 측정 센서를 포함하며, 상기 하나 이상의 배터리 셀 각각의 부피 변화에 따라 상기 압력 측정 센서에 가해지는 압력을 측정하는 감지부;
    상기 배터리 팩과 외부전원의 연결 경로 상에 제공되는 스위치부; 및
    상기 감지부의 측정 결과에 근거하여 상기 스위치부의 개폐 동작을 제어하는 제어부;를 포함하는 것을 특징으로 하는,
    배터리 셀 스웰링 감지 시스템.
  2. 제1항에 있어서,
    상기 하나 이상의 배터리 셀의 상태 및 상기 스위치부의 개폐 동작이 출력되는 출력부;를 더 포함하는 것을 특징으로 하는,
    배터리 셀 스웰링 감지 시스템.
  3. 제1항에 있어서,
    상기 하나 이상의 배터리 셀 상호 간은,
    기설정된 간격의 이격 공간을 형성하며 상기 배터리 팩에 내장되는 것을 특징으로 하는,
    배터리 셀 스웰링 감지 시스템.
  4. 제3항에 있어서,
    상기 압력 측정 센서는,
    상기 배터리 팩의 내벽과 상기 배터리 팩의 내벽으로부터 이웃한 배터리 셀 사이 및 상기 이격 공간 각각에 제공되는 것을 특징으로 하는,
    배터리 셀 스웰링 감지 시스템.
  5. 제4항에 있어서,
    상기 감지부는,
    상기 압력 측정 센서 각각에 가해지는 압력을 전압값 또는 전류값으로 변환하여 상기 제어부에 제공하는 것을 특징으로 하는,
    배터리 셀 스웰링 감지 시스템.
  6. 제5항에 있어서,
    상기 제어부는,
    상기 감지부로부터 제공받는 상기 전압값 또는 전류값을 기설정된 임계값과 비교하고, 상기 전압값 또는 전류값이 상기 임계값을 초과하는 경우 상기 스위치부에 개로 동작 신호를 제공하는 것을 특징으로 하는,
    배터리 셀 스웰링 감지 시스템.
  7. 제6항에 있어서,
    상기 제어부는,
    상기 전압값 또는 전류값이 상기 임계값을 초과하는 경우 별도의 주변 장치에 오프(off) 동작 신호를 제공하고,
    상기 별도의 주변 장치는 공랭식 팬(fan) 및 수랭식 쿨링 밸브(cooling valve) 중 하나인 것을 특징으로 하는,
    배터리 셀 스웰링 감지 시스템.
  8. 제6항에 있어서,
    상기 제어부는,
    상기 전압값 또는 전류값이 상기 임계값을 초과하지 아니하는 경우 상기 스위치부에 폐로 동작 신호를 제공하는 것을 특징으로 하는,
    배터리 셀 스웰링 감지 시스템.
  9. 제8항에 있어서,
    상기 하나 이상의 배터리 셀의 상태 및 상기 스위치부의 개폐 동작이 출력되는 출력부;를 더 포함하되,
    상기 출력부는,
    상기 전압값 또는 전류값이 상기 임계값을 초과하는 경우 영상 및 음성 형태의 경고 신호를 출력하는 것을 특징으로 하는,
    배터리 셀 스웰링 감지 시스템.
  10. 제1항에 있어서,
    상기 스위치부는,
    전계 효과 트랜지스터(field effect transistor) 및 릴레이(relay) 중 하나 이상으로 구성되는 것을 특징으로 하는,
    배터리 셀 스웰링 감지 시스템.
  11. 배터리 팩에 내장되는 하나 이상의 배터리 셀 각각의 부피 변화에 따라 압력 측정 센서에 가해지는 압력을 측정하는 단계; 및
    상기 압력 측정 센서에 가해지는 압력을 측정하는 단계의 측정 결과에 근거하여 상기 배터리 팩과 외부전원의 연결 경로 상에 제공되는 스위치의 개폐 동작을 제어하는 단계;를 포함하는 것을 특징으로 하는,
    배터리 셀 스웰링 감지 방법.
  12. 제11항에 있어서,
    상기 하나 이상의 배터리 셀의 상태 및 상기 스위치의 개폐 동작이 출력되는 단계;를 더 포함하는 것을 특징으로 하는,
    배터리 셀 스웰링 감지 방법.
  13. 제11항에 있어서,
    상기 하나 이상의 배터리 셀 상호 간은,
    기설정된 간격의 이격 공간을 형성하며 상기 배터리 팩에 내장되는 것을 특징으로 하는,
    배터리 셀 스웰링 감지 방법.
  14. 제13항에 있어서,
    상기 압력 측정 센서는,
    상기 배터리 팩의 내벽과 상기 배터리 팩의 내벽으로부터 이웃한 배터리 셀 사이 및 상기 이격 공간 각각에 제공되는 것을 특징으로 하는,
    배터리 셀 스웰링 감지 방법.
  15. 제14항에 있어서,
    상기 압력 측정 센서에 가해지는 압력을 측정하는 단계는,
    상기 압력 측정 센서 각각에 가해지는 압력을 전압값 또는 전류값으로 변환하여 상기 스위치의 개폐 동작을 제어하는 단계에 제공하는 것을 특징으로 하는,
    배터리 셀 스웰링 감지 방법.
  16. 제15항에 있어서,
    상기 스위치의 개폐 동작을 제어하는 단계는,
    상기 압력 측정 센서에 가해지는 압력을 측정하는 단계로부터 제공받는 상기 전압값 또는 전류값을 기설정된 임계값과 비교하고, 상기 전압값 또는 전류값이 상기 임계값을 초과하는 경우 상기 스위치가 개로 동작하도록 제어하는 것을 특징으로 하는,
    배터리 셀 스웰링 감지 방법.
  17. 제16항에 있어서,
    상기 스위치의 개폐 동작을 제어하는 단계는,
    상기 전압값 또는 전류값이 상기 임계값을 초과하는 경우 별도의 주변 장치가 오프(off) 동작하도록 제어하고,
    상기 별도의 주변 장치는 공랭식 팬(fan) 및 수랭식 쿨링 밸브(cooling valve) 중 하나인 것을 특징으로 하는,
    배터리 셀 스웰링 감지 방법.
  18. 제16항에 있어서,
    상기 스위치의 개폐 동작을 제어하는 단계는,
    상기 전압값 또는 전류값이 상기 임계값을 초과하지 아니하는 경우 상기 스위치가 폐로 동작하도록 제어하는 것을 특징으로 하는,
    배터리 셀 스웰링 감지 방법.
  19. 제18항에 있어서,
    상기 하나 이상의 배터리 셀의 상태 및 상기 스위치의 개폐 동작이 출력되는 단계;를 더 포함하되,
    상기 하나 이상의 배터리 셀의 상태 및 상기 스위치의 개폐 동작이 출력되는 단계는,
    상기 전압값 또는 전류값이 상기 임계값을 초과하는 경우 영상 및 음성 형태의 경고 신호를 출력하는 것을 특징으로 하는,
    배터리 셀 스웰링 감지 방법.
  20. 제11항에 있어서,
    상기 스위치는,
    전계 효과 트랜지스터(field effect transistor) 및 릴레이(relay) 중 하나 이상으로 구성되는 것을 특징으로 하는,
    배터리 셀 스웰링 감지 방법.
PCT/KR2016/006196 2015-06-10 2016-06-10 배터리 셀 스웰링 감지 시스템 및 방법 WO2016200212A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PL16807852T PL3232502T3 (pl) 2015-06-10 2016-06-10 Układ i sposób wykrywania pęcznienia ogniwa akumulatora
CN202110294404.6A CN113178634B (zh) 2015-06-10 2016-06-10 用于感知电池单元膨胀的系统和方法
US15/540,308 US10587016B2 (en) 2015-06-10 2016-06-10 System and method for sensing battery cell swelling
CN201680005880.9A CN107124907A (zh) 2015-06-10 2016-06-10 用于感知电池单元膨胀的系统和方法
EP16807852.5A EP3232502B1 (en) 2015-06-10 2016-06-10 System and method for sensing battery cell swelling

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0082100 2015-06-10
KR1020150082100A KR101913460B1 (ko) 2015-06-10 2015-06-10 배터리 셀 스웰링 감지 시스템 및 방법

Publications (1)

Publication Number Publication Date
WO2016200212A1 true WO2016200212A1 (ko) 2016-12-15

Family

ID=57503555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/006196 WO2016200212A1 (ko) 2015-06-10 2016-06-10 배터리 셀 스웰링 감지 시스템 및 방법

Country Status (6)

Country Link
US (1) US10587016B2 (ko)
EP (1) EP3232502B1 (ko)
KR (1) KR101913460B1 (ko)
CN (2) CN113178634B (ko)
PL (1) PL3232502T3 (ko)
WO (1) WO2016200212A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021246599A1 (ko) * 2020-06-03 2021-12-09 주식회사 엘지에너지솔루션 전지셀 압력 측정 장치 및 방법

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102321418B1 (ko) 2017-03-10 2021-11-03 삼성전자 주식회사 압력 센서를 이용하여 배터리 부풂을 감지하는 방법 및 이를 사용하는 전자 장치
DE102017105286A1 (de) * 2017-03-13 2018-09-13 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Notentgasungsanordnung für ein Gehäuse im Kfz-Bereich
JP6864536B2 (ja) * 2017-04-25 2021-04-28 株式会社東芝 二次電池システム、充電方法、プログラム、及び車両
KR102415271B1 (ko) 2017-09-22 2022-07-01 삼성전자 주식회사 배터리 스웰링을 감지하기 위한 방법 및 전자 장치
KR102221778B1 (ko) * 2018-01-24 2021-03-02 주식회사 엘지화학 배터리 셀 스웰링 탐지 시스템 및 방법
JP6965828B2 (ja) * 2018-05-15 2021-11-10 トヨタ自動車株式会社 電池システム
CN108899594B (zh) * 2018-06-12 2020-05-19 天津力神电池股份有限公司 一种锂金属负极膨胀幅度的分析方法
KR101953110B1 (ko) * 2018-06-29 2019-03-04 대한민국 배터리의 폭발 비산거리 측정 장치 및 측정 방법
KR20200026416A (ko) * 2018-08-31 2020-03-11 현대자동차주식회사 배터리 충전 시스템 및 방법
CN109540082A (zh) * 2018-11-26 2019-03-29 哲弗智能系统(上海)有限公司 锂电池热失控变形探测装置
CN109659634B (zh) * 2018-12-18 2021-03-09 安徽江淮汽车集团股份有限公司 一种紧凑型电池切断单元
CN112928348B (zh) 2019-04-30 2022-04-26 宁德时代新能源科技股份有限公司 电池热失控的检测方法、装置、系统和电池管理单元
CN110783656A (zh) * 2019-10-31 2020-02-11 Oppo广东移动通信有限公司 电子设备及电池预警方法
KR20220049191A (ko) * 2020-10-14 2022-04-21 주식회사 엘지에너지솔루션 배터리 시스템의 열 이벤트 감지 방법 및 이를 적용한 배터리 시스템
US11799083B2 (en) 2021-08-26 2023-10-24 GM Global Technology Operations LLC Lithiation additive for a positive electrode
KR20230055030A (ko) * 2021-10-18 2023-04-25 주식회사 엘지에너지솔루션 스웰링 감지 수단을 구비한 배터리 모듈
US20230155190A1 (en) * 2021-11-17 2023-05-18 Cirque Corporation Switch Activated Battery Swell Detection

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002117911A (ja) * 2000-10-06 2002-04-19 Nec Mobile Energy Kk 電池搭載機器
KR20070075927A (ko) * 2006-01-17 2007-07-24 주식회사 엘지화학 안전성이 향상된 소형 전지팩
JP2009076265A (ja) * 2007-09-19 2009-04-09 Panasonic Corp 電池パック
KR100964175B1 (ko) * 2008-05-19 2010-06-17 주식회사 에스피엠탈로스 배터리 폭발 방지센서 및 이를 이용한 배터리의충·방전회로 제어방법
KR20150012793A (ko) * 2013-07-26 2015-02-04 주식회사 엘지화학 배터리 스웰링 감지 장치 및 방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1406340B1 (en) 2001-06-05 2008-07-23 GS Yuasa Corporation Storage battery device and power source apparatus comprising it
KR100614393B1 (ko) * 2004-09-24 2006-08-21 삼성에스디아이 주식회사 발열시 알람이 작동하는 배터리 팩
KR100889244B1 (ko) * 2005-04-20 2009-03-17 주식회사 엘지화학 압전 센서가 내장된 이차전지 모듈
KR20090131573A (ko) 2008-06-18 2009-12-29 현대자동차주식회사 배터리 과충전시 전원차단장치
KR101093928B1 (ko) * 2009-11-26 2011-12-13 삼성에스디아이 주식회사 배터리 셀의 고온 스웰링을 방지할 수 있는 배터리 팩 및 그 방법
CN201742214U (zh) 2010-03-24 2011-02-09 浙江吉利汽车研究院有限公司 一种电动车辆驱动电机
CN103493255B (zh) * 2011-05-17 2015-09-30 株式会社Lg化学 改善的安全性的电池组
EP2645527A1 (en) 2012-03-26 2013-10-02 Samsung SDI Co., Ltd. Battery pack
CN202585672U (zh) 2012-06-07 2012-12-05 深圳市海盈科技有限公司 锂离子电池组

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002117911A (ja) * 2000-10-06 2002-04-19 Nec Mobile Energy Kk 電池搭載機器
KR20070075927A (ko) * 2006-01-17 2007-07-24 주식회사 엘지화학 안전성이 향상된 소형 전지팩
JP2009076265A (ja) * 2007-09-19 2009-04-09 Panasonic Corp 電池パック
KR100964175B1 (ko) * 2008-05-19 2010-06-17 주식회사 에스피엠탈로스 배터리 폭발 방지센서 및 이를 이용한 배터리의충·방전회로 제어방법
KR20150012793A (ko) * 2013-07-26 2015-02-04 주식회사 엘지화학 배터리 스웰링 감지 장치 및 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3232502A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021246599A1 (ko) * 2020-06-03 2021-12-09 주식회사 엘지에너지솔루션 전지셀 압력 측정 장치 및 방법

Also Published As

Publication number Publication date
PL3232502T3 (pl) 2019-06-28
CN107124907A (zh) 2017-09-01
CN113178634A (zh) 2021-07-27
KR101913460B1 (ko) 2018-10-30
EP3232502B1 (en) 2018-12-05
EP3232502A1 (en) 2017-10-18
KR20160145428A (ko) 2016-12-20
EP3232502A4 (en) 2018-01-10
US20180006342A1 (en) 2018-01-04
CN113178634B (zh) 2024-04-16
US10587016B2 (en) 2020-03-10

Similar Documents

Publication Publication Date Title
WO2016200212A1 (ko) 배터리 셀 스웰링 감지 시스템 및 방법
WO2017047937A1 (ko) 배터리 스웰링 감지 시스템 및 방법
WO2019103364A1 (ko) 무선 배터리 관리 시스템 및 그것을 이용하여 배터리팩을 보호하는 방법
WO2020076127A1 (ko) 배터리 관리 장치 및 방법
WO2015126035A1 (ko) 전압 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법
WO2017078253A1 (ko) 가스 배출부의 변위를 감지하여 배터리 셀 스웰링을 방지하는 이차 전지, 이차 전지 충전 시스템 및 이차 전지 제조 방법
WO2012093788A2 (ko) 배터리 팩 관리 장치 및 방법
WO2021049753A1 (ko) 배터리 진단 장치 및 방법
WO2012030089A2 (ko) 배터리팩의 냉각 제어 장치 및 방법
WO2010018959A2 (ko) 배터리 누설전류 감지 장치 및 방법, 및 상기 장치를 포함하는 배터리 구동 장치 및 배터리 팩
WO2015012460A1 (ko) 배터리 스웰링 감지 장치 및 방법
WO2018021661A1 (ko) 션트저항을 이용한 전류 측정 장치
WO2022015025A1 (ko) 배터리 밸브 및 이를 포함하는 배터리
WO2021006566A1 (ko) 배터리 셀 진단 장치 및 방법
WO2021187715A1 (ko) 배터리 이상 감지 장치 및 방법, 그 방법을 제공하는 배터리 관리 시스템
WO2023063625A1 (ko) 배터리 진단 장치, 배터리 팩, 전기 차량, 및 배터리 진단 방법
WO2021015436A1 (ko) 차량 배터리 화재 감지 장치 및 감지 방법
WO2021210715A1 (ko) 배터리 보호 장치 및 그 방법
WO2021157821A1 (ko) 리튬 플레이팅 검출 방법, 이를 이용한 배터리 관리 방법 및 장치
WO2014084677A1 (ko) 배터리 사용 환경과 사용 이력을 관리하는 장치 및 방법
WO2015034144A1 (ko) 배터리 팩의 프리차지 저항 산출 장치 및 방법
WO2019117512A1 (ko) 워치독 타이머를 진단하기 위한 장치 및 방법
WO2019066358A1 (ko) 배터리 셀의 스웰링을 방지하는 방법 및 이를 이용한 배터리 팩
WO2023282713A1 (ko) 배터리 관리 시스템, 배터리 팩, 전기 차량 및 배터리 관리 방법
WO2022025725A1 (ko) 배터리 관리 장치, 배터리 팩, 배터리 시스템 및 배터리 관리 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16807852

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15540308

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016807852

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE