WO2011102576A1 - 셀 밸런싱 회로의 이상 진단 장치 및 방법 - Google Patents

셀 밸런싱 회로의 이상 진단 장치 및 방법 Download PDF

Info

Publication number
WO2011102576A1
WO2011102576A1 PCT/KR2010/005308 KR2010005308W WO2011102576A1 WO 2011102576 A1 WO2011102576 A1 WO 2011102576A1 KR 2010005308 W KR2010005308 W KR 2010005308W WO 2011102576 A1 WO2011102576 A1 WO 2011102576A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
floating capacitor
balancing circuit
cell balancing
cell
Prior art date
Application number
PCT/KR2010/005308
Other languages
English (en)
French (fr)
Inventor
이상훈
이달훈
김지호
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201080064535.5A priority Critical patent/CN102906581B/zh
Priority to JP2012500731A priority patent/JP5231677B2/ja
Priority to EP10846214.4A priority patent/EP2541265B1/en
Priority to US13/195,633 priority patent/US8643500B2/en
Publication of WO2011102576A1 publication Critical patent/WO2011102576A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an apparatus and method for diagnosing an abnormality of a cell balancing circuit, and more particularly, to an apparatus for diagnosing an abnormality of a cell balancing circuit, which can determine whether a cell balancing circuit has failed by using a floating capacitor used for cell voltage measurement. It is about a method.
  • a battery used in an electric vehicle or a hybrid vehicle uses electricity output from a battery pack in which a plurality of battery cells are connected in series.
  • a method of uniformly balancing the charging voltage of each battery cell included in the battery pack a method of increasing the voltage by supplying a charging current to a battery cell having a relatively low voltage, and discharging the battery cell by discharging a relatively high voltage
  • a method of lowering, determining a balancing target voltage from the voltage of each battery cell, discharging a battery cell higher than the target voltage and charging a battery cell lower than the target voltage is used.
  • the cell balancing method as described above is implemented by a cell balancing circuit connected to each battery cell.
  • the cell balancing circuit includes a switching element for controlling the start and end of the cell balancing operation and a discharge resistor for discharging the voltage of the battery cell.
  • an abnormal situation such as an excessive current flows into the cell balancing circuit, an overvoltage above the operating voltage is applied to the switching element, or excessive heat is generated through the discharge resistor. If this occurs, the components included in the cell balancing circuit are shorted or opened, which causes a problem that the circuit does not operate normally.
  • a separate diagnostic circuit for diagnosing an abnormality of the cell balancing circuit needs to be combined with the cell balancing circuit.
  • Japanese Laid-Open Patent Publication No. 2007-085847 provides a battery balancing circuit comprising a field effect transistor (FET) and a discharge resistor, and a resistor interposed between the cathode and drain of the field effect transistor for each battery cell.
  • FET field effect transistor
  • the voltage difference between the source and the drain is measured through the resistor using two comparators to which reference voltage sources of different levels are applied, and according to the measured voltage level (high, low) of the cell balancing circuit.
  • An apparatus for detecting an abnormality of a cell balancing circuit for determining an abnormality is disclosed.
  • the above prior art requires a separate circuit configuration called a diagnostic circuit to detect an abnormality of the cell balancing circuit, and since two comparators are additionally used for each diagnostic circuit, a manufacturing cost of the abnormality detection device of the cell balancing circuit is required. There was an increasing problem.
  • the present invention has been made to solve the above problems of the prior art, a cell that can easily diagnose the abnormality of the cell balancing circuit using a floating capacitor used for measuring the cell voltage without adding a separate circuit It is an object of the present invention to provide an apparatus and method for diagnosing an abnormality of a balancing circuit.
  • an apparatus for diagnosing abnormality of a cell balancing circuit including: a floating capacitor charging a voltage of a battery cell; A cell balancing circuit for discharging the charging voltage of the floating capacitor; A voltage measuring unit measuring a battery cell voltage charged in the floating capacitor and a residual voltage of the discharged floating capacitor; And a controller configured to determine whether the cell balancing circuit is abnormal from the residual voltage of the discharged floating capacitor.
  • An apparatus for diagnosing abnormality of a cell balancing circuit includes: a first switch connecting or releasing the floating capacitor and the battery cell; And a second switch connecting or disconnecting the floating capacitor and the voltage measuring unit.
  • the controller is configured to turn on the first switch while the second switch is turned off to charge the voltage of the battery cell in the floating capacitor, and the second switch when the first switch is turned off. Turn on to apply the battery cell voltage charged in the floating capacitor or the residual voltage of the discharged floating capacitor to the voltage measuring unit.
  • the cell balancing circuit includes: a discharge resistor connected to both terminals of the floating capacitor and discharging a charging voltage of the floating capacitor; And a third switch connecting or releasing the floating capacitor and the discharge resistor, wherein the controller controls the operation of the third switch to discharge the charging voltage of the floating capacitor.
  • the battery cells are plural, and the floating capacitor, the first and second switches, and the cell balancing circuit are provided for each battery cell.
  • control unit simultaneously or temporarily turns on the first switch corresponding to each battery cell when charging the voltage of each battery cell to the corresponding floating capacitor.
  • control unit simultaneously or temporarily turns on a second switch corresponding to each battery cell when applying the battery cell voltage charged in each floating capacitor or the residual voltage of the discharged floating capacitor to the voltage measuring unit.
  • control unit simultaneously or temporarily turns on a third switch included in a cell balancing circuit corresponding to each battery cell when discharging the battery cell voltage charged in each floating capacitor.
  • control unit the switch control module for controlling the operation of the first to third switches;
  • An A / D conversion module for converting an analog voltage signal output from the voltage measuring unit into a digital voltage signal;
  • central operation module configured to receive a digital voltage signal from the A / D conversion module and determine an abnormality of the cell balancing circuit from the residual voltage of the discharged floating capacitor.
  • the controller determines that there is an error in the cell balancing circuit when the residual voltage of the discharged floating capacitor exceeds the reference voltage.
  • the controller determines that there is an abnormality in the cell balancing circuit when the difference between the battery cell voltage charged in the floating capacitor and the residual voltage of the discharged floating capacitor is less than a reference voltage.
  • the apparatus for diagnosing an abnormality of the cell balancing circuit may further include an abnormality alarm for visually or audibly outputting the fact that the abnormality of the cell balancing circuit occurs.
  • the controller visually or audibly alerts that the abnormality of the cell balancing circuit is generated through the abnormality alarm.
  • an apparatus for diagnosing an abnormality of a cell balancing circuit the floating capacitor charging a voltage of a battery cell;
  • a cell balancing circuit connected to the battery cell to balance the voltage of the battery cell and discharging the charging voltage of the floating capacitor;
  • a voltage measuring unit measuring a residual voltage of the discharged floating capacitor;
  • a controller configured to determine whether the cell balancing circuit is abnormal from the residual voltage of the discharged floating capacitor.
  • the controller determines that there is an error in the cell balancing circuit when the residual voltage of the discharged floating capacitor exceeds the reference voltage.
  • the voltage measuring unit further measures the battery cell voltage charged in the floating capacitor
  • the control unit is a cell when the difference between the battery cell voltage and the residual voltage of the discharged floating capacitor is less than the reference voltage It is determined that there is an error in the balancing circuit.
  • the technical problem of the present invention can be achieved by a battery management system, a battery driving device or a battery pack including the above-described abnormality diagnosis device of the cell balancing circuit.
  • a method for diagnosing an abnormality of a cell balancing circuit including charging a voltage of a battery cell to a floating capacitor; Measuring a battery cell voltage charged in the floating capacitor through a voltage measuring unit; Discharging the charging voltage of the floating capacitor using a cell balancing circuit; Measuring a residual voltage of the floating capacitor discharged through the voltage measuring unit; And determining whether the cell balancing circuit is abnormal from the residual voltage measured after discharge of the floating capacitor.
  • the present invention it is possible to easily diagnose the abnormality of the cell balancing circuit without adding a separate circuit, thereby solving the problem caused by the abnormality of the cell balancing circuit.
  • cost savings can be achieved because no additional circuit configuration is required.
  • FIG. 1 is a circuit diagram illustrating an apparatus for diagnosing an abnormality of a cell balancing circuit according to a preferred embodiment of the present invention.
  • FIG. 2 is a block diagram showing the configuration of a control unit according to a preferred embodiment of the present invention.
  • FIG. 3 is a flowchart illustrating a fault diagnosis method of a cell balancing circuit according to a preferred embodiment of the present invention.
  • FIG. 1 is a circuit diagram illustrating an apparatus for diagnosing an abnormality of a cell balancing circuit according to a preferred embodiment of the present invention. Although illustrated in FIG. 1 as two battery cells, the present invention is not limited by the number of battery cells.
  • an apparatus for diagnosing an abnormality of a cell balancing circuit includes a floating capacitor C1 and C2 that charges voltages of a plurality of battery cells V1 and V2 included in a battery pack 10.
  • the voltage measuring unit 20 which measures the battery cell voltage charged in the floating capacitors C1 and C2 and the residual voltage of the discharged floating capacitors C1 and C2, and discharges the charging voltages of the floating capacitors C1 and C2.
  • a controller 40 that determines whether the cell balancing circuits 30A and 30B are abnormal from the remaining voltages of the cell balancing circuits 30A and 30B and the discharged floating capacitors C1 and C2.
  • Voltage measuring lines are connected to both terminals of the battery cells V1 and V2, and the floating capacitors C1 and C2 are connected in parallel between adjacent voltage measuring lines to charge the voltages of the battery cells V1 and V2.
  • the voltage measuring unit 20 measures the charging voltage of the floating capacitors C1 and C2 corresponding to the battery cells V1 and V2 through the voltage measuring line.
  • SW1 is installed, and the second capacitor connecting or releasing the floating capacitors C1 and C2 and the voltage measuring unit 20 to the voltage measuring line on the side of the voltage measuring unit 20 based on the floating capacitors C1 and C2.
  • the switch SW2 is installed.
  • the first and second switches SW1 and SW2 may be switched to a charging mode or a measurement mode. In addition, the first and second switches SW1 and SW2 may be switched to a discharge mode.
  • the charging mode refers to a mode in which the voltages of the respective battery cells V1 and V2 are charged to the corresponding floating capacitors C1 and C2.
  • the measurement mode refers to a mode in which the charging voltage charged in each of the floating capacitors C1 and C2 is measured.
  • the discharge mode refers to a mode of electrically separating the battery cells V1 and V2 and the voltage measuring unit 20 from the floating capacitors C1 and C2 in order to discharge the charging voltages of the floating capacitors C1 and C2. .
  • the first switch SW1 connects the floating capacitors C1 and C2 and the voltage measuring line of the battery cells V1 and V2 in the charging mode. In addition, the first switch SW1 disconnects the floating capacitors C1 and C2 from the voltage measuring line of the battery cells V1 and V2 in the measurement mode and the discharge mode.
  • the second switch SW2 connects the floating capacitors C1 and C2 and the voltage measuring line of the voltage measuring unit 20 in the measurement mode. In addition, the second switch SW2 disconnects the floating capacitors C1 and C2 from the voltage measuring line of the voltage measuring unit 20 in the charging mode and the discharging mode.
  • the cell balancing circuits 30A and 30B are protection circuits of the battery pack 10 for balancing the cell voltages of the battery cells V1 and V2 to a constant level under the control of the controller 40.
  • the cell balancing circuits 30A and 30B have a function of balancing the cell voltages of the battery cells V1 and V2 to a predetermined level, and the floating capacitors C1 and C2 during an abnormal diagnosis process of the cell balancing circuits 30A and 30B. To discharge the charging voltage of the.
  • the cell balancing circuits 30A and 30B are connected to both terminals of each of the floating capacitors C1 and C2 and discharge resistors Rd-1 and Rd-2 for discharging the charging voltages of the floating capacitors C1 and C2. And third switches SW3-1 and SW3-2 connecting the floating capacitors C1 and C2 and the discharge resistors Rd-1 and Rd-2.
  • the controller 40 first switches the first and second switches SW1 and SW2 into the charging mode in order to determine whether the cell balancing circuits 30A and 30B are abnormal. That is, the controller 40 turns on the first switch SW1 and turns off the second switch SW2. Then, both terminals of the battery cells V1 and V2 and the floating capacitors C1 and C2 are connected, and the voltages of the battery cells V1 and V2 are charged in the corresponding floating capacitors C1 and C2. At this time, the controller 40 switches the first switch SW1 and the second switch SW2 to the charging mode simultaneously or temporarily. That is, the controller 40 turns on the first switch SW1 simultaneously or temporarily and turns off the second switch SW2 simultaneously or temporarily.
  • the term "Isotemporary" means controlling the turn-on or turn-off of the first and second switches SW1 and SW2 at a time interval, and the same concept is applied below.
  • the controller 40 switches the first and second switches SW1 and SW2 into the measurement mode. That is, the controller 40 turns off the first switch SW1 and turns on the second switch SW2. Then, the cell voltages of the battery cells V1 and V2 charged in the floating capacitors C1 and C2 are applied to the voltage measuring unit 20, and the voltage measuring unit 20 is applied to each of the battery cells V1 and V2. The cell voltage is measured and the measurement result is output to the controller 40. At this time, the controller 40 turns off the first switch SW1 and the second switch SW2 simultaneously or temporarily and turns on the second switch SW2 simultaneously or temporarily.
  • the controller 40 switches the first and second switches SW1 and SW2 into the discharge mode. That is, the controller 40 turns off the first switch SW1 and the second switch SW2 simultaneously or temporarily. Then, the controller 40 discharges the floating capacitors C1 and C2 for a predetermined time by operating the cell balancing circuits 30A and 30B simultaneously or temporarily. That is, the controller 40 simultaneously or temporarily turns on the third switches SW3-1 and SW3-2 of the cell balancing circuits 30A and 30B to simultaneously turn on both terminals of the floating capacitors C1 and C2 and the discharge resistance.
  • Rd-1 and Rd-2 are connected to discharge the charging voltage charged in the floating capacitors C1 and C2 through the discharge resistors Rd-1 and Rd-2 for a predetermined time.
  • the controller 40 switches the first and second switches SW1 and SW2 into the measurement mode again. That is, the controller 40 turns on the second switch SW2 at the same time or temporarily turns on the first switch SW1 while the floating capacitor discharged through the voltage measuring unit 20 ( The residual voltage of C1, C2) is measured. Then, the controller 40 determines whether the cell balancing circuits 30A and 30B are abnormal based on the measured residual voltage value.
  • control unit 40 is a block diagram showing in more detail the configuration of the control unit 40 according to the preferred embodiment of the present invention.
  • the controller 40 includes an A / D conversion module 41, a central operation module 42, and a switch control module 43.
  • the A / D conversion module 41 converts an analog voltage signal output from the voltage measuring unit 20 into a digital voltage signal and outputs the digital voltage signal to the central operation module 42.
  • the analog voltage signal includes a signal corresponding to the cell voltage of each of the battery cells V1 and V2 and a residual voltage signal of the floating capacitors C1 and C2 discharged by the cell balancing circuits 30A and 30B.
  • the central operation module 42 receives the digital voltage signal from the A / D conversion module 41 and determines whether the cell balancing circuits 30A and 30B are abnormal. That is, the central computing module 42 determines whether the cell balancing circuits 30A and 30B are abnormal from the residual voltages of the discharged floating capacitors C1 and C2.
  • the switch control module 43 turns on or turns the first switch SW1 and the second switch SW2 and the third switches SW3-1 and SW3-2 included in the cell balancing circuits 30A and 30B. Control off.
  • each module included in the controller 40 will be described in more detail with reference to a failure diagnosis process of the cell balancing circuit 30A corresponding to the battery cell V1.
  • the central operation module 42 controls the switch control module 43 to turn on the first switch SW1 while the second switch SW2 is turned off. Then, both terminals of the battery cell V1 and the floating capacitor C1 are connected to charge the cell voltage of the battery cell V1 to the floating capacitor C1. Subsequently, the central operation module 42 controls the switch control module 43 to turn off the first switch SW1 to disconnect the floating capacitor C1 from the battery cell V1 and to switch off the second switch SW2. ) Is turned on to connect both terminals of the floating capacitor (C1) with the voltage measuring unit (20). Then, the voltage measuring unit 20 measures the charging voltage of the floating capacitor C1 and applies an analog voltage signal corresponding to the cell voltage to the A / D conversion module 41. Then, the A / D conversion module 41 converts the analog voltage signal output from the voltage measuring unit 20 into a digital voltage signal and inputs it to the central operation module 42. In addition, the central operation module 42 stores the input digital voltage signal in a memory (not shown).
  • the central operation module 42 controls the switch control module 43 to turn off the first switch SW1 and the second switch SW2 to turn off the first value included in the cell balancing circuit 30A. 3 Turn on the switch (SW3-1) for a certain time. Then, both terminals of the floating capacitor C1 and the discharge resistor Rd-1 included in the cell balancing circuit 30A are connected to discharge the charging voltage of the floating capacitor C1 for a predetermined time.
  • the central operation module 42 controls the switch control module 43 to turn off the third switch SW3-1 and the second switch SW2 while the first switch SW1 is turned off. Turn on to connect the voltage measurement unit 20 and the floating capacitor (C1). Then, the voltage measuring unit 20 measures the residual voltage of the discharged floating capacitor C1 and outputs the analog voltage signal to the A / D conversion module 41. Accordingly, the A / D conversion module 41 converts the analog voltage signal output from the voltage measuring unit 20 into a digital voltage signal and inputs it to the central operation module 42. Then, the central operation module 42 stores the input digital voltage signal in a memory (not shown).
  • the central calculation module 42 compares the residual voltage of the discharged floating capacitor C1 with a predetermined reference voltage and determines that there is an abnormality in the cell balancing circuit 30A when the residual voltage exceeds the reference voltage.
  • the reference voltage value is preferably set to a value close to zero in consideration of the fact that the charging voltage of the floating capacitor C1 is not discharged when the cell balancing circuit 30A is abnormal.
  • the occurrence of abnormality of the cell balancing circuit 30A is mainly caused by the open of the third switch SW3-1 or the discharge resistor Rd-1. It is not limited by a cause.
  • the central operation module 42 compares the cell voltage of the battery cell V1 and the residual voltage of the discharged floating capacitor C1 with each other, and the cell balancing circuit when the difference between the two voltage values is less than a predetermined reference voltage. It can be determined that there is a failure in 30A.
  • the reference voltage is preferably set to a value close to the cell voltage level of the battery cell V1 in consideration of the fact that the charging voltage of the floating capacitor C1 is not discharged when an abnormality occurs in the cell balancing circuit 30A. Do.
  • the operation description of the controller 40 described above is substantially the same when diagnosing an abnormality of the cell balancing circuit 30B.
  • the abnormality diagnosis of the cell balancing circuits 30A and 30B may be performed temporarily for each cell balancing circuit or simultaneously for all the cell balancing circuits.
  • the abnormality diagnosing apparatus of the cell balancing circuit may further include an abnormality alarm 50.
  • the controller 40 may inform the outside of the abnormality alarm 50 when the abnormality occurs in the cell balancing circuits 30A and 30B. That is, when it is determined that there is an abnormality in the cell balancing circuits 30A and 30B, the central operation module 42 of the controller 40 transmits the abnormality occurrence signal to the abnormality alarm 50 and through the abnormality alarm 50. You can visually and externally alert you of anomalies.
  • the abnormal alarm 50 includes an LED, an LCD, an alarm alarm or a combination thereof.
  • the abnormality alarm 50 flashes an LED, outputs a warning message on the LCD, or generates an alarm buzzer to alert the user that an abnormality in the cell balancing circuits 30A and 30B occurs. can do.
  • the LED, the LCD and the alarm alarm are only examples of the abnormal alarm 50, and various modified forms of the visual or audio alarm device may be employed as the abnormal alarm 50. It is obvious to those of ordinary skill in the field.
  • the above-described fault diagnosis of the cell balancing circuit may be repeatedly executed at regular intervals or by a diagnosis command automatically generated by a user's diagnosis command or a control algorithm of the central operation module 42. .
  • control unit 40 for performing the above-described operation may be configured as a microprocessor capable of executing a code for programming a method of diagnosing an abnormality of the cell balancing circuit, and the logic flow of the control flow of the abnormality diagnosis method of the cell balancing circuit. It can also be configured as a custom-made semiconductor chip (ASIC), but the present invention is not limited thereto.
  • ASIC custom-made semiconductor chip
  • the abnormality diagnosing apparatus of the cell balancing circuit according to the present invention described above may be used in combination with a battery pack driving apparatus supplied with power from a battery pack.
  • the present invention may be included and used in various electronic products that receive a driving voltage from a battery such as a laptop, a mobile phone, and a personal portable multimedia player.
  • the present invention may be used in combination with various power units equipped with batteries such as fossil fuel vehicles, electric vehicles, hybrid vehicles, and electric bicycles.
  • the apparatus for diagnosing abnormality of the cell balancing circuit according to the present invention may be included and used in a battery management system (BMS) that controls charge / discharge of the battery pack and protects the battery pack from overcharge or overdischarge.
  • BMS battery management system
  • the abnormality diagnosis apparatus of the cell balancing circuit according to the present invention may be included in the battery pack and used.
  • FIG. 3 is a flowchart illustrating a fault diagnosis method of a cell balancing circuit according to a preferred embodiment of the present invention.
  • step S10 the controller 40 turns on the first switch SW1 while the second switch SW2 is turned off, thereby floating capacitors corresponding to the set voltages of the battery cells V1 and V2. Charge to (C1, C2).
  • step S20 the controller 40 turns off the first switch SW1 and turns on the second switch SW2 to connect the floating capacitors C1 and C2 to the voltage measuring unit 20.
  • the charging voltages of the floating capacitors C1 and C2 are measured.
  • the measured voltage value corresponds to the cell voltage of each battery cell (V1, V2).
  • the controller 40 turns on the third switches SW3-1 and SW3-2 while the first switch SW1 and the second switch SW2 are turned off, and the floating capacitor C1,.
  • the controller 40 By connecting both ends of C2) with the corresponding cell balancing circuits 30A and 30B, the charging voltages of the floating capacitors C1 and C2 are discharged for a predetermined time.
  • the controller 40 turns on the second switch SW2 while the first switch SW1 and the third switches SW3-1 and SW3-2 are turned off to discharge the floating capacitor ( Both ends of the C1 and C2 are connected to the voltage measuring unit 20 to measure the residual voltage of the floating capacitors C1 and C2 discharged through the voltage measuring unit 20 again.
  • step S50 when the residual voltage of the discharged floating capacitors C1 and C2 exceeds a predetermined reference voltage, the controller 40 determines that there is an abnormality in the corresponding cell balancing circuits 30A and 30B.
  • the controller 40 compares the residual voltages of the discharged floating capacitors C1 and C2 and the cell voltages of the battery cells V1 and V2 to each other if the difference between the two voltage values is less than a predetermined reference voltage. It is determined that there is an abnormality in the cell balancing circuits 30A and 30B.
  • step S60 the control unit 40 binarizes the process according to the result of determining whether the cell balancing circuits 30A and 30B are abnormal. If it is determined that no abnormality has occurred in the cell balancing circuits 30A and 30B, the process for diagnosing abnormality of the cell balancing circuits 30A and 30B is terminated. On the other hand, if it is determined that an abnormality has occurred in the cell balancing circuits 30A and 30B, the process proceeds to step S70, and an abnormality alarm indicates that the abnormality has occurred in the cell balancing circuits 30A and 30B in step S70. Alert through 50 visually or audibly to external users.
  • Steps S10 to S70 may be repeatedly executed at regular intervals for diagnosing abnormalities of the cell balancing circuits 30A and 30B corresponding to the respective battery cells V1 and V2. It will be apparent to those skilled in the art that the control algorithm of 40 can be executed by a diagnostic command automatically generated.

Abstract

본 발명은 셀 밸런싱 회로의 이상 진단 장치 및 방법을 개시한다. 본 발명에 따른 셀 밸런싱 회로의 이상 진단 장치는, 배터리 셀의 전압을 충전하는 부동 캐패시터; 상기 부동 캐패시터의 충전 전압을 방전시키는 셀 밸런싱 회로; 상기 부동 캐패시터에 충전된 배터리 셀 전압과 방전된 부동 캐패시터의 잔류 전압을 측정하는 전압 측정부; 및 상기 방전된 부동 캐패시터의 잔류 전압으로부터 상기 셀 밸런싱 회로의 이상 여부를 판별하는 제어부를 포함한다.

Description

셀 밸런싱 회로의 이상 진단 장치 및 방법
본 발명은 셀 밸런싱 회로의 이상 진단 장치 및 방법에 관한 것으로서, 보다 상세하게는 셀 전압 측정에 사용되는 부동 캐패시터를 이용하여 셀 밸런싱 회로의 고장 여부를 판별할 수 있는 셀 밸런싱 회로의 이상 진단 장치 및 방법에 관한 것이다.
본 출원은 2010년 2월 22일에 출원된 한국특허출원 제10-2010-0015519호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.
최근 화석 에너지의 고갈과 환경오염으로 인해 화석 에너지를 사용하지 않고 전기 에너지를 이용하는 전기 자동차나 하이브리드 자동차에 대한 관심이 높아지고 있다.
이러한 전기 자동차나 하이브리드 자동차가 주행하기 위해서는 고출력을 요구하는 구동 모터를 구동시켜야 한다. 이를 위해 전기 자동차나 하이브리드 자동차에 사용되는 배터리는 다수의 배터리 셀이 직렬로 연결된 배터리 팩으로부터 출력되는 전기를 전원으로 이용하고 있다.
이러한 배터리 팩에 포함되어 있는 다수개의 배터리 셀은 안정성과 수명향상, 그리고 고출력을 얻기 위해 각 배터리 셀의 전압을 균일하게 유지할 필요가 있다.
배터리 팩에 포함된 각 배터리 셀의 충전 전압을 균일하게 밸런싱하는 방법에는, 전압이 상대적으로 낮은 배터리 셀에 충전 전류를 공급하여 전압을 상승시키는 방법, 전압이 상대적으로 높은 배터리 셀을 방전시켜 전압을 하강시키는 방법, 각 배터리 셀의 전압으로부터 밸런싱 목표 전압을 정하고 목표 전압보다 전압이 높은 배터리 셀은 방전시키고 목표 전압보다 낮은 배터리 셀은 충전시키는 방법 등이 사용되었다.
위와 같은 셀 밸런싱 방법은 각 배터리 셀과 연결된 셀 밸런싱 회로에 의해 구현된다. 셀 밸런싱 회로는 셀 밸런싱 동작의 시작과 종료를 제어하는 스위칭 소자와 배터리 셀의 전압을 방전시키는 방전저항을 포함한다.
그런데, 셀 밸런싱 회로를 이용하여 배터리 셀의 밸런싱을 이루는 과정에서 순간적으로 과도한 전류가 셀 밸런싱 회로에 유입되거나 스위칭 소자에 동작 전압 이상의 과전압이 인가되거나 방전저항을 통해 과도한 열이 발생하는 등의 이상 상황이 발생되면 셀 밸런싱 회로에 포함된 부품이 단락(short) 또는 개방(open)되어 회로가 정상적으로 동작하지 않는 문제가 발생한다.
이러한 문제로 인해 셀 밸런싱 회로가 비정상적으로 동작하면 해당 회로에 연결된 배터리 셀의 전압이 다른 배터리 셀에 비해 과도하게 높아지거나 낮아지게 됨으로써 배터리 팩이 폭발하거나 배터리 팩과 연결된 부하의 동작이 갑자기 정지하는 등의 심각한 문제가 초래될 수 있다.
위와 같은 문제를 해결하기 위해서는 셀 밸런싱 회로의 이상 유무를 진단할 수 있는 별도의 진단 회로가 셀 밸런싱 회로와 결합될 필요가 있다.
일 예로, 일본공개특허 2007-085847호(선행기술)는 전계효과트랜지스터(FET)와 방전저항으로 이루어진 셀 밸런싱 회로와 상기 전계효과트랜지스터의 소오드 및 드레인 사이에 개재되는 저항을 각 배터리 셀마다 설치하고, 서로 다른 레벨의 기준 전압원이 인가된 2개의 비교기(comparator)를 이용하여 소오드와 드레인 간의 전압 차를 상기 저항을 통해 측정하고 측정된 전압의 레벨(high, low)에 따라 셀 밸런싱 회로의 이상 유무를 판별하는 셀 밸런싱 회로의 이상 유무 검출 장치를 개시하고 있다.
그런데, 상기한 선행기술은 셀 밸런싱 회로의 이상 유무 검출을 위해 진단 회로라는 별도의 회로 구성이 필요하였고, 각 진단 회로에는 2개의 비교기가 추가적으로 사용되어야 하므로 셀 밸런싱 회로의 이상 유무 검출 장치의 제조 비용이 증가되는 문제점이 있었다.
본 발명은 상기와 같은 종래기술의 문제점을 해결하기 위해 창안된 것으로서, 별도의 회로 추가 없이 셀 전압의 측정을 위해 사용되는 부동 캐패시터를 이용하여 셀 밸런싱 회로의 이상 여부를 간단하게 진단할 수 있는 셀 밸런싱 회로의 이상 진단 장치 및 방법을 제공하는데 그 목적이 있다.
상기 기술적 과제를 달성하기 위한 본 발명의 일 측면에 따른 셀 밸런싱 회로의 이상 진단 장치는, 배터리 셀의 전압을 충전하는 부동 캐패시터; 상기 부동 캐패시터의 충전 전압을 방전시키는 셀 밸런싱 회로; 상기 부동 캐패시터에 충전된 배터리 셀 전압과 방전된 부동 캐패시터의 잔류 전압을 측정하는 전압 측정부; 및 상기 방전된 부동 캐패시터의 잔류 전압으로부터 상기 셀 밸런싱 회로의 이상 여부를 판별하는 제어부를 포함한다.
본 발명에 따른 셀 밸런싱 회로의 이상 진단 장치는, 상기 부동 캐패시터와 상기 배터리 셀을 연결 또는 해제하는 제1스위치; 및 상기 부동 캐패시터와 상기 전압 측정부를 연결 또는 해제하는 제2스위치를 더 포함한다.
바람직하게, 상기 제어부는, 상기 제2스위치가 턴오프된 상태에서 상기 제1스위치를 턴온시켜 상기 배터리 셀의 전압을 부동 캐패시터에 충전시키고, 상기 제1스위치가 턴오프된 상태에서 상기 제2스위치를 턴온시켜 상기 부동 캐패시터에 충전된 배터리 셀 전압 또는 방전된 부동 캐패시터의 잔류 전압을 상기 전압 측정부로 인가한다.
본 발명에 따르면, 상기 셀 밸런싱 회로는, 상기 부동 캐패시터의 양 단자와 연결되고 상기 부동 캐패시터의 충전 전압을 방전시키는 방전 저항부; 및 상기 부동 캐패시터와 상기 방전 저항부를 연결 또는 해제하는 제3스위치를 더 포함하고, 상기 제어부는 상기 제3스위치의 동작을 제어하여 부동 캐패시터의 충전 전압을 방전시킨다.
바람직하게, 상기 배터리 셀은 복수이고, 상기 부동 캐패시터, 상기 제1 및 제2스위치 및 상기 셀 밸런싱 회로는 각 배터리 셀마다 구비된다.
바람직하게, 상기 제어부는, 각 배터리 셀의 전압을 대응하는 부동 캐패시터에 충전할 때 각 배터리 셀에 대응하는 제1스위치를 동시에 또는 이시적으로 턴온시킨다.
바람직하게, 상기 제어부는, 각 부동 캐패시터에 충전된 배터리 셀 전압 또는 방전된 부동 캐패시터의 잔류 전압을 상기 전압 측정부로 인가할 때 각 배터리 셀에 대응하는 제2스위치를 동시에 또는 이시적으로 턴온시킨다.
바람직하게, 상기 제어부는, 각 부동 캐패시터에 충전된 배터리 셀 전압을 방전할 때 각 배터리 셀에 대응하는 셀 밸런싱 회로에 포함된 제3스위치를 동시에 또는 이시적으로 턴온시킨다.
바람직하게, 상기 제어부는, 상기 제1 내지 제3스위치의 동작을 제어하는 스위치 제어 모듈; 상기 전압 측정부로부터 출력되는 아날로그 전압 신호를 디지털 전압 신호로 변환하는 A/D 변환 모듈; 및 상기 A/D 변환 모듈로부터 디지털 전압 신호를 입력 받아 상기 방전된 부동 캐패시터의 잔류 전압으로부터 셀 밸런싱 회로의 이상 여부를 판별하는 중앙 연산 모듈;을 더 포함한다.
본 발명의 일 측면에 따르면, 상기 제어부는, 상기 방전된 부동 캐패시터의 잔류 전압이 기준 전압을 초과할 경우 셀 밸런싱 회로에 이상이 있는 것으로 판별한다.
본 발명의 다른 측면에 따르면, 상기 제어부는, 상기 부동 캐패시터에 충전된 배터리 셀 전압과 상기 방전된 부동 캐패시터의 잔류 전압의 차이가 기준 전압 미만일 경우 셀 밸런싱 회로에 이상이 있는 것으로 판별한다.
선택적으로, 본 발명에 따른 셀 밸런싱 회로의 이상 진단 장치는, 상기 셀 밸런싱 회로의 이상 발생 사실을 시청각 또는 청각적으로 출력하는 이상 경보기를 더 포함할 수 있다. 이런 경우, 상기 제어부는 셀 밸런싱 회로의 이상이 발생된 경우 상기 이상 경보기를 통해 셀 밸런싱 회로의 이상 발생 사실을 시각적 또는 청각적으로 경보한다.
상기 기술적 과제를 달성하기 위한 본 발명의 다른 측면에 따른 셀 밸런싱 회로의 이상 진단 장치는, 배터리 셀의 전압을 충전하는 부동 캐패시터; 상기 배터리 셀과 연결되어 배터리 셀의 전압을 밸런싱하고, 상기 부동 캐패시터의 충전 전압을 방전시키는 셀 밸런싱 회로; 상기 방전된 부동 캐패시터의 잔류 전압을 측정하는 전압 측정부; 및 상기 방전된 부동 캐패시터의 잔류 전압으로부터 상기 셀 밸런싱 회로의 이상 여부를 판별하는 제어부를 포함한다.
본 발명의 일 측면에 따르면, 상기 제어부는, 상기 방전된 부동 캐패시터의 잔류 전압이 기준 전압을 초과할 경우 셀 밸런싱 회로에 이상이 있는 것으로 판별한다.
본 발명의 다른 측면에 따르면, 상기 전압 측정부는 상기 부동 캐패시터에 충전된 배터리 셀 전압을 더 측정하고, 상기 제어부는 상기 배터리 셀 전압과 상기 방전된 부동 캐패시터의 잔류 전압의 차이가 기준 전압 미만일 경우 셀 밸런싱 회로에 이상이 있는 것으로 판별한다.
본 발명의 기술적 과제는 상술한 셀 밸런싱 회로의 이상 진단 장치를 포함하는 배터리 관리 시스템, 배터리 구동 장치 또는 배터리 팩에 의해 달성될 수 있다.
상기 기술적 과제를 달성하기 위한 본 발명에 따른 셀 밸런싱 회로의 이상 진단 방법은, 배터리 셀의 전압을 부동 캐패시터에 충전시키는 단계; 전압 측정부를 통해 상기 부동 캐패시터에 충전된 배터리 셀 전압을 측정하는 단계; 셀 밸런싱 회로를 이용하여 상기 부동 캐패시터의 충전 전압을 방전시키는 단계; 상기 전압 측정부를 통해 방전된 부동 캐패시터의 잔류 전압을 측정하는 단계; 및 상기 부동 캐패시터의 방전 후 측정된 상기 잔류 전압으로부터 상기 셀 밸런싱 회로의 이상 여부를 판별하는 단계를 포함한다.
본 발명에 따르면, 별도의 회로 추가 없이 셀 밸런싱 회로의 이상 여부를 간단하게 진단할 수 있어 셀 밸런싱 회로의 이상 발생으로 인한 문제를 해결할 수 있다. 또한, 추가적인 회로 구성이 요구되지 않기 때문에 비용 절감의 효과를 거둘 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시한 것이며, 발명의 후술되는 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되지 않아야 한다.
도 1은 본 발명의 바람직한 실시예에 따른 셀 밸런싱 회로의 이상 진단 장치에 대한 회로 구성도이다.
도 2는 본 발명의 바람직한 실시예에 따른 제어부의 구성을 도시한 블록도이다.
도 3은 본 발명의 바람직한 실시예에 따른 셀 밸런싱 회로의 이상 진단 방법을 설명하기 위해 도시한 절차 흐름도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도 1은 본 발명의 바람직한 실시예에 따른 셀 밸런싱 회로의 이상 진단 장치에 대한 회로 구성도이다. 도 1에는 배터리 셀이 2개인 것으로 예시되었지만, 본 발명이 배터리 셀의 개수에 의해 한정되는 것은 아니다.
도 1을 참조하면, 본 발명에 따른 셀 밸런싱 회로의 이상 진단 장치는, 배터리 팩(10)에 포함된 다수의 배터리 셀(V1, V2)의 전압을 충전하는 부동 캐패시터(C1, C2), 상기 부동 캐패시터(C1, C2)에 충전된 배터리 셀 전압과 방전된 부동 캐패시터(C1, C2)의 잔류 전압을 측정하는 전압 측정부(20), 상기 부동 캐패시터(C1, C2)의 충전 전압을 방전시키는 셀 밸런싱 회로(30A, 30B) 및 상기 방전된 부동 캐패시터(C1, C2)의 잔류 전압으로부터 상기 셀 밸런싱 회로(30A, 30B)의 이상 여부를 판별하는 제어부(40)를 포함한다.
상기 배터리 셀(V1, V2)의 양 단자에는 전압 측정 라인이 연결되고, 상기 부동 캐패시터(C1, C2)는 인접하는 전압 측정 라인 사이에 병렬로 연결되어 배터리 셀(V1, V2)의 전압을 충전하고, 상기 전압 측정부(20)는 상기 전압 측정 라인을 통해 각 배터리 셀(V1, V2)에 대응하는 부동 캐패시터(C1, C2)의 충전 전압을 측정한다.
그리고, 상기 부동 캐패시터(C1, C2)를 기준으로 배터리 셀(V1, V2) 측의 전압 측정 라인에는 부동 캐패시터(C1, C2)와 배터리 셀(V1, V2)을 연결 또는 해제하는 제1스위치(SW1)가 설치되고, 상기 부동 캐패시터(C1, C2)를 기준으로 전압 측정부(20) 측의 전압 측정 라인에는 부동 캐패시터(C1, C2)와 전압 측정부(20)를 연결 또는 해제하는 제2스위치(SW2)가 설치된다.
상기 제1 및 제2스위치(SW1, SW2)는 충전 모드 또는 측정 모드로 전환이 가능하다. 또한, 상기 제1 및 제2스위치(SW1, SW2)는 방전 모드로 전환이 가능하다.
여기서, 충전 모드는 각 배터리 셀(V1, V2)의 전압을 대응하는 부동 캐패시터(C1, C2)에 충전하는 모드를 의미한다. 또한, 측정 모드는 각 부동 캐패시터(C1, C2)에 충전된 충전 전압을 측정하는 모드를 의미한다. 그리고, 방전 모드는 부동 캐패시터(C1, C2)의 충전 전압을 방전시키기 위해 배터리 셀(V1, V2)과 전압 측정부(20)를 부동 캐패시터(C1, C2)로부터 전기적으로 분리시키는 모드를 의미한다.
상기 제1스위치(SW1)는 충전 모드에서 상기 부동 캐패시터(C1, C2)와 배터리 셀(V1, V2) 측의 전압 측정 라인을 연결한다. 그리고, 상기 제1스위치(SW1)는 측정 모드와 방전 모드에서는 상기 부동 캐패시터(C1, C2)와 배터리 셀(V1, V2) 측의 전압 측정 라인의 연결을 해제한다.
상기 제2스위치(SW2)는 측정 모드에서 상기 부동 캐패시터(C1, C2)와 상기 전압 측정부(20) 측의 전압 측정 라인을 연결한다. 그리고, 상기 제2스위치(SW2)는 충전 모드와 방전 모드에서는 상기 부동 캐패시터(C1, C2)와 상기 전압 측정부(20) 측의 전압 측정 라인의 연결을 해제한다.
상기 셀 밸런싱 회로(30A, 30B)는 제어부(40)의 제어에 따라 각 배터리 셀(V1, V2)의 셀 전압을 일정한 레벨로 밸런싱하는 배터리 팩(10)의 보호 회로이다.
상기 셀 밸런싱 회로(30A, 30B)는 각 배터리 셀(V1, V2)의 셀 전압을 일정한 레벨로 밸런싱하는 기능과 함께 셀 밸런싱 회로(30A, 30B)의 이상 진단 과정에서 부동 캐패시터(C1, C2)의 충전 전압을 방전시키기는 기능을 수행한다.
상기 셀 밸런싱 회로(30A, 30B)는, 각 부동 캐패시터(C1, C2)의 양 단자와 연결되고 상기 부동 캐패시터(C1, C2)의 충전 전압을 방전시키는 방전저항(Rd-1, Rd-2)과, 상기 부동 캐패시터(C1, C2)와 방전저항(Rd-1, Rd-2)을 연결하는 제3스위치(SW3-1, SW3-2)를 포함한다.
상기 제어부(40)는 셀 밸런싱 회로(30A, 30B)의 이상 여부를 판별하기 위해, 먼저 상기 제1 및 제2스위치(SW1, SW2)를 충전 모드로 전환한다. 즉, 상기 제어부(40)는 상기 제1스위치(SW1)를 턴온시키고 상기 제2스위치(SW2)를 턴오프시킨다. 그러면, 각 배터리 셀(V1, V2)의 양 단자와 부동 캐패시터(C1, C2)가 연결되어 각 배터리 셀(V1, V2)의 전압이 대응하는 부동 캐패시터(C1, C2)에 충전된다. 이 때, 상기 제어부(40)는 제1스위치(SW1)와 제2스위치(SW2)를 동시에 또는 이시적으로 충전 모드로 전환한다. 즉, 상기 제어부(40)는 제1스위치(SW1)를 동시에 또는 이시적으로 턴온시키고, 제2스위치(SW2)를 동시에 또는 이시적으로 턴오프시킨다. 여기서, '이시적'이라는 표현은 시간 간격을 두고 제1 및 제2스위치(SW1, SW2)의 턴온 또는 턴오프를 제어하는 것을 의미하며 이하에서도 동일한 개념이 적용된다.
이어서, 상기 제어부(40)는 상기 제1 및 제2스위치(SW1, SW2)를 측정 모드로 전환한다. 즉, 상기 제어부(40)는 상기 제1스위치(SW1)를 턴오프시키고 상기 제2스위치(SW2)를 턴온시킨다. 그러면, 상기 부동 캐패시터(C1, C2)에 충전된 각 배터리 셀(V1, V2)의 셀 전압이 전압 측정부(20)로 인가되고, 전압 측정부(20)는 각 배터리 셀(V1, V2)의 셀 전압을 측정하여 측정 결과를 제어부(40)로 출력한다. 이 때, 상기 제어부(40)는 제1스위치(SW1)와 제2스위치(SW2)를 동시에 또는 이시적으로 턴오프시키고, 제2스위치(SW2)를 동시에 또는 이시적으로 턴온시킨다.
다음으로, 상기 제어부(40)는 상기 제1 및 제2스위치(SW1, SW2)를 방전 모드로 전환한다. 즉, 상기 제어부(40)는 상기 제1스위치(SW1) 및 제2스위치(SW2)를 동시에 또는 이시적으로 턴오프시킨다. 그런 다음, 상기 제어부(40)는 상기 셀 밸런싱 회로(30A, 30B)를 동시에 또는 이시적으로 동작시켜 부동 캐패시터(C1, C2)를 일정한 시간 동안 방전시킨다. 즉, 상기 제어부(40)는 셀 밸런싱 회로(30A, 30B)의 제3스위치(SW3-1, SW3-2)를 동시에 또는 이시적으로 턴온시켜 부동 캐패시터(C1, C2)의 양 단자와 방전저항(Rd-1, Rd-2)을 연결하여 방전저항(Rd-1, Rd-2)을 통해 부동 캐패시터(C1, C2)에 충전된 충전 전압을 일정한 시간 동안 방전시킨다.
이어서, 상기 제어부(40)는 다시 제1 및 제2스위치(SW1, SW2)를 측정 모드로 전환한다. 즉, 상기 제어부(40)는 상기 제1스위치(SW1)를 턴오프시킨 상태에서 상기 제2스위치(SW2)를 동시에 또는 이시적으로 턴온시켜 상기 전압 측정부(20)를 통해 방전된 부동 캐패시터(C1, C2)의 잔류 전압을 측정한다. 그런 다음, 상기 제어부(40)는 측정된 잔류 전압 값을 토대로 셀 밸런싱 회로(30A, 30B)의 이상 여부를 판별한다.
도 2는 본 발명의 바람직한 실시예에 따른 제어부(40)의 구성을 보다 구체적으로 도시한 블록도이다.
도 2에 도시된 바와 같이, 상기 제어부(40)는 A/D 변환 모듈(41), 중앙 연산 모듈(42) 및 스위치 제어 모듈(43)을 포함한다.
상기 A/D 변환 모듈(41)은 전압 측정부(20)로부터 출력되는 아날로그 전압 신호를 디지털 전압 신호로 변환하여 중앙 연산 모듈(42)로 출력한다. 상기 아날로그 전압 신호는 각 배터리 셀(V1, V2)의 셀 전압에 대응하는 신호와, 셀 밸런싱 회로(30A, 30B)에 의해 방전된 부동 캐패시터(C1, C2)의 잔류 전압 신호를 포함한다.
상기 중앙 연산 모듈(42)은 상기 A/D 변환 모듈(41)로부터 디지털 전압 신호를 입력 받아 셀 밸런싱 회로(30A, 30B)의 이상 여부를 판별한다. 즉, 상기 중앙 연산 모듈(42)은 방전된 부동 캐패시터(C1, C2)의 잔류 전압으로부터 셀 밸런싱 회로(30A, 30B)의 이상 여부를 판별한다.
상기 스위치 제어 모듈(43)은 제1스위치(SW1) 및 제2스위치(SW2)와 상기 셀 밸런싱 회로(30A, 30B)에 포함된 제3스위치(SW3-1, SW3-2)의 턴온 또는 턴오프를 제어한다.
상기 제어부(40)에 포함된 각 모듈의 기능을 배터리 셀 V1에 해당하는 셀 밸런싱 회로(30A)의 고장 진단 과정을 중심으로 보다 구체적으로 설명하면 다음과 같다.
상기 중앙 연산 모듈(42)은 스위치 제어 모듈(43)을 제어하여 제2스위치(SW2)를 오프 시킨 상태에서 제1스위치(SW1)를 턴온시킨다. 그러면, 배터리 셀(V1)의 양 단자와 부동 캐패시터(C1)가 연결되어 배터리 셀(V1)의 셀 전압이 부동 캐패시터(C1)에 충전된다. 이어서, 상기 중앙 연산 모듈(42)은 스위치 제어 모듈(43)을 제어하여 제1스위치(SW1)를 턴오프시켜 부동 캐패시터(C1)와 배터리 셀(V1)의 연결을 해제하고 제2스위치(SW2)를 턴온시켜 부동 캐패시터(C1)의 양 단자를 전압 측정부(20)와 연결한다. 그러면, 전압 측정부(20)는 부동 캐패시터(C1)의 충전 전압을 측정하여 셀 전압에 대응하는 아날로그 전압 신호를 A/D 변환 모듈(41)로 인가한다. 그러면, 상기 A/D 변환 모듈(41)은 전압 측정부(20)에서 출력된 아날로그 전압 신호를 디지털 전압 신호로 변환하여 중앙 연산 모듈(42)로 입력한다. 그리고, 중앙 연산 모듈(42)은 입력된 디지털 전압 신호를 메모리(미도시)에 저장한다.
다음으로, 상기 중앙 연산 모듈(42)은 스위치 제어 모듈(43)을 제어하여 제1스위치(SW1)와 제2스위치(SW2)를 모두 턴오프시킨 상태에서 셀 밸런싱 회로(30A)에 포함된 제3스위치(SW3-1)를 일정한 시간 동안 턴온시킨다. 그러면, 부동 캐패시터(C1)의 양 단자와 셀 밸런싱 회로(30A)에 포함된 방전저항(Rd-1)이 연결되어 부동 캐패시터(C1)의 충전 전압이 일정한 시간 동안 방전된다.
이어서, 상기 중앙 연산 모듈(42)은 스위치 제어 모듈(43)을 제어하여 제3스위치(SW3-1)를 턴오프시키고, 제1스위치(SW1)가 턴오프된 상태에서 제2스위치(SW2)를 턴온시켜 전압 측정부(20)와 부동 캐패시터(C1)을 연결한다. 그러면, 전압 측정부(20)는 방전된 부동 캐패시터(C1)의 잔류 전압을 측정하여 아날로그 전압 신호를 A/D 변환 모듈(41)로 출력한다. 이에 따라, A/D 변환 모듈(41)은 전압 측정부(20)에서 출력된 아날로그 전압 신호를 디지털 전압 신호로 변환하여 중앙 연산 모듈(42)로 입력한다. 그러면, 중앙 연산 모듈(42)은 입력된 디지털 전압 신호를 메모리(미도시)에 저장한다.
그런 다음, 중앙 연산 모듈(42)은 방전된 부동 캐패시터(C1)의 잔류 전압을 미리 정한 기준 전압과 비교하여 잔류 전압이 기준 전압을 초과할 경우 셀 밸런싱 회로(30A)에 이상이 있는 것으로 판별한다. 여기서, 기준 전압 값은 셀 밸런싱 회로(30A)가 이상이 발생된 경우 부동 캐패시터(C1)의 충전 전압이 모두 방전되지 않는다는 점을 감안하여 0에 가까운 값으로 설정하는 것이 바람직하다. 본 발명에서, 셀 밸런싱 회로(30A)의 이상 발생은 제3스위치(SW3-1)나 방전저항(Rd-1)의 단선(open)에 의해 주로 기인되는데 본 발명은 스위치나 방전저항의 구체적 고장 원인에 의해 한정되지 않는다.
대안적으로, 상기 중앙 연산 모듈(42)은 배터리 셀(V1)의 셀 전압과 방전된 부동 캐패시터(C1)의 잔류 전압을 상호 대비하여 두 전압 값의 차이가 미리 정한 기준 전압 미만일 경우 셀 밸런싱 회로(30A)에 고장이 있는 것으로 판별할 수 있다. 여기서, 기준 전압은 셀 밸런싱 회로(30A)가 이상이 발생된 경우 부동 캐패시터(C1)의 충전 전압이 방전되지 않는다는 점을 감안하여 배터리 셀(V1)의 셀 전압 레벨과 가까운 값으로 설정하는 것이 바람직하다.
상술한 제어부(40)의 동작 설명은 셀 밸런싱 회로(30B)의 이상 여부를 진단할 때에도 실질적으로 동일하게 적용된다. 또한 셀 밸런싱 회로(30A, 30B)의 이상 진단은 각 셀 밸런싱 회로별로 이시적으로 진행하거나 또는 모든 셀 밸런싱 회로에 대해 동시에 진행할 수 있음은 당업자에게 자명하다.
선택적으로, 본 발명에 따른 셀 밸런싱 회로의 이상 진단 장치는 이상 경보기(50)를 더 포함할 수 있다. 이런 경우, 상기 제어부(40)는 셀 밸런싱 회로(30A, 30B)에 이상이 발생되었을 경우 이상 발생 사실을 이상 경보기(50)를 통해 외부에 알릴 수 있다. 즉, 상기 제어부(40)의 중앙 연산 모듈(42)은 셀 밸런싱 회로(30A, 30B)에 이상이 있는 것으로 판별될 경우 이상 발생 신호를 이상 경보기(50)로 전달하여 이상 경보기(50)를 통해 시각적 또는 청각적으로 이상 발생 사실을 외부로 경보할 수 있다.
상기 이상 경보기(50)는 LED, LCD, 알람 경보기 또는 이들의 조합을 포함한다. 이런 경우, 상기 이상 발생 신호가 입력되면, 상기 이상 경보기(50)는 LED를 점멸하거나 LCD에 경고 메시지를 출력하거나 알람 부저음을 발생시켜 사용자에게 셀 밸런싱 회로(30A, 30B)의 이상 발생 사실을 경보할 수 있다. 상기 LED, LCD 및 알람 경보기는 이상 경보기(50)의 일 예시에 불과하며, 여러 가지 변형된 형태의 시각적 또는 청각적 알람 장치가 이상 경보기(50)로 채용될 수 있을 것임은 본 발명이 속한 기술분야에서 통상의 지식을 가진 자에게 자명하다.
상술한 셀 밸런싱 회로의 이상 진단은 일정한 주기를 가지고 반복적으로 실행될 수도 있고, 사용자의 진단 명령 또는 중앙 연산 모듈(42)의 제어 알고리즘에서 자동으로 발생되는 진단 명령에 의해 실행될 수도 있음은 당업자에게 자명하다.
또한, 상술한 동작을 수행하는 제어부(40)는 셀 밸런싱 회로의 이상 진단 방법을 프로그램화한 코드를 실행할 수 있는 마이크로프로세서로 구성할 수도 있고, 셀 밸런싱 회로의 이상 진단 방법의 제어 흐름을 논리 회로로 구현한 주문형 반도체 칩(ASIC)으로도 구성할 수 있는데, 본 발명이 이에 한하는 것은 아니다.
상술한 본 발명에 따른 셀 밸런싱 회로의 이상 진단 장치는 배터리 팩으로부터 전원을 공급받는 배터리 팩 구동 장치에 결합되어 사용될 수 있다.
일 예로, 본 발명은 노트북, 휴대폰, 개인 휴대용 멀티미디어 재생기와 같이 배터리로부터 구동 전압을 공급받는 각종 전자 제품에 포함되어 사용될 수 있다.
다른 예로, 본 발명은 화석연료 자동차, 전기 자동차, 하이브리드 자동차, 전기 자전거와 같이 배터리가 탑재된 각종 동력 장치에 결합되어 사용될 수 있다.
또한, 본 발명에 따른 셀 밸런싱 회로의 이상 진단 장치는 배터리 팩의 충방전을 제어하고 과충전 또는 과방전 등으로부터 배터리 팩을 보호하는 배터리 관리 시스템(Battery Management System; BMS)에 포함되어 사용될 수 있다.
나아가, 본 발명에 따른 셀 밸런싱 회로의 이상 진단 장치는 배터리 팩 내에 포함되어 사용될 수 있다.
도 3은 본 발명의 바람직한 실시예에 따른 셀 밸런싱 회로의 이상 진단 방법을 설명하기 위해 도시한 절차 흐름도이다.
먼저, 단계(S10)에서, 제어부(40)는 제2스위치(SW2)를 턴오프시킨 상태에서 제1스위치(SW1)를 턴온시켜 각 배터리 셀(V1, V2)의 설 전압을 대응하는 부동 캐패시터(C1, C2)에 충전시킨다.
단계(S20)에서, 제어부(40)는 제1스위치(SW1)를 턴오프시키고 제2스위치(SW2)를 턴온시켜 부동 캐패시터(C1, C2)와 전압 측정부(20)를 연결함으로써 전압 측정부(20)를 통해 부동 캐패시터(C1, C2)의 충전 전압을 측정한다. 여기서, 측정된 전압 값은 각 배터리 셀(V1, V2)의 셀 전압에 해당한다.
단계(S30)에서, 제어부(40)는 제1스위치(SW1)와 제2스위치(SW2)를 턴오프시킨 상태에서 제3스위치(SW3-1, SW3-2)를 턴온시켜 부동 캐패시터(C1, C2)의 양단을 대응하는 셀 밸런싱 회로(30A, 30B)와 연결함으로써 부동 캐패시터(C1, C2)의 충전 전압을 일정한 시간 동안 방전시킨다.
단계(S40)에서, 제어부(40)는 제1스위치(SW1)와 제3스위치(SW3-1, SW3-2)를 턴오프시킨 상태에서 제2스위치(SW2)를 턴온시켜 방전된 부동 캐패시터(C1, C2)의 양단을 전압 측정부(20)에 연결하여 전압 측정부(20)를 통해 방전된 부동 캐패시터(C1, C2)의 잔류 전압을 다시 측정한다.
단계(S50)에서, 제어부(40)는 방전된 부동 캐패시터(C1, C2)의 잔류 전압이 미리 정한 기준 전압을 초과하면 해당하는 셀 밸런싱 회로(30A, 30B)에 이상이 있는 것으로 판별한다.
대안적으로, 제어부(40)는 방전된 부동 캐패시터(C1, C2)의 잔류 전압과 배터리 셀(V1, V2)의 셀 전압을 상호 대비하여 두 전압 값의 차이가 미리 정한 기준 전압 미만이면 해당하는 셀 밸런싱 회로(30A, 30B)에 이상이 있는 것으로 판별한다.
단계(S60)에서, 제어부(40)는 셀 밸런싱 회로(30A, 30B)의 이상 여부 판별 결과에 따라 프로세스를 2원화시킨다. 만약, 셀 밸런싱 회로(30A, 30B)에 이상이 발생되지 않은 것으로 판별되면, 셀 밸런싱 회로(30A, 30B)의 이상 진단을 위한 프로세스를 종료한다. 반면, 셀 밸런싱 회로(30A, 30B)에 이상이 발생된 것으로 판별되면, 프로세스를 단계(S70)으로 이행하고, 단계(S70)에서 셀 밸런싱 회로(30A, 30B)에 이상이 발생한 사실을 이상 경보기(50)를 통해 외부의 사용자에게 시각적 또는 청각적으로 경보한다.
상술한 단계(S10) 내지 단계(S70)은 각 배터리 셀(V1, V2)에 대응하는 셀 밸런싱 회로(30A, 30B)의 이상 진단을 위해 일정한 주기로 반복적으로 실행될 수 있으며, 사용자의 진단 명령 또는 제어부(40)의 제어 알고리즘에서 자동으로 발생되는 진단 명령에 의해 실행될 수 있음은 당업자에게 자명하다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.

Claims (24)

  1. 배터리 셀의 전압을 충전하는 부동 캐패시터;
    상기 부동 캐패시터의 충전 전압을 방전시키는 셀 밸런싱 회로;
    상기 부동 캐패시터에 충전된 배터리 셀 전압과 방전된 부동 캐패시터의 잔류 전압을 측정하는 전압 측정부; 및
    상기 방전된 부동 캐패시터의 잔류 전압으로부터 상기 셀 밸런싱 회로의 이상 여부를 판별하는 제어부를 포함하는 것을 특징으로 하는 셀 밸런싱 회로의 이상 진단 장치.
  2. 제1항에 있어서,
    상기 부동 캐패시터와 상기 배터리 셀을 연결 또는 해제하는 제1스위치; 및
    상기 부동 캐패시터와 상기 전압 측정부를 연결 또는 해제하는 제2스위치를 더 포함하는 것을 특징으로 하는 셀 밸런싱 회로의 이상 진단 장치.
  3. 제2항에 있어서, 상기 제어부는,
    상기 제2스위치가 턴오프된 상태에서 상기 제1스위치를 턴온시켜 상기 배터리 셀의 전압을 부동 캐패시터에 충전시키고,
    상기 제1스위치가 턴오프된 상태에서 상기 제2스위치를 턴온시켜 상기 부동 캐패시터에 충전된 배터리 셀 전압 또는 방전된 부동 캐패시터의 잔류 전압을 상기 전압 측정부로 인가하는 것을 특징으로 하는 셀 밸런싱 회로의 이상 진단 장치.
  4. 제1항에 있어서, 상기 셀 밸런싱 회로는,
    상기 부동 캐패시터의 양 단자와 연결되고 상기 부동 캐패시터의 충전 전압을 방전시키는 방전 저항부; 및
    상기 부동 캐패시터와 상기 방전 저항부를 연결 또는 해제하는 제3스위치를 더 포함하고,
    상기 제어부는 상기 제3스위치의 동작을 제어하여 부동 캐패시터의 충전 전압을 방전시키는 것을 특징으로 하는 셀 밸런싱 회로의 이상 진단 장치.
  5. 제2항 또는 제4항에 있어서,
    상기 배터리 셀은 복수이고,
    상기 부동 캐패시터, 상기 제1 및 제2스위치 및 상기 셀 밸런싱 회로는 각 배터리 셀마다 구비되는 것을 특징으로 하는 셀 밸런싱 회로의 이상 진단 장치.
  6. 제5항에 있어서, 상기 제어부는,
    각 배터리 셀의 전압을 대응하는 부동 캐패시터에 충전할 때 각 배터리 셀에 대응하는 제1스위치를 동시에 또는 이시적으로 턴온시키는 것을 특징으로 하는 셀 밸런싱 회로의 이상 진단 장치.
  7. 제5항에 있어서, 상기 제어부는,
    각 부동 캐패시터에 충전된 배터리 셀 전압 또는 방전된 부동 캐패시터의 잔류 전압을 상기 전압 측정부로 인가할 때 각 배터리 셀에 대응하는 제2스위치를 동시에 또는 이시적으로 턴온시키는 것을 특징으로 하는 셀 밸런싱 회로의 이상 진단 장치.
  8. 제5항에 있어서, 상기 제어부는,
    각 부동 캐패시터에 충전된 배터리 셀 전압을 방전할 때 각 배터리 셀에 대응하는 셀 밸런싱 회로에 포함된 제3스위치를 동시에 또는 이시적으로 턴온시키는 것을 특징으로 하는 셀 밸런싱 회로의 이상 진단 장치.
  9. 제2항 또는 제4항에 있어서,
    상기 제어부는,
    상기 제1 내지 제3스위치의 동작을 제어하는 스위치 제어 모듈;
    상기 전압 측정부로부터 출력되는 아날로그 전압 신호를 디지털 전압 신호로 변환하는 A/D 변환 모듈; 및
    상기 A/D 변환 모듈로부터 디지털 전압 신호를 입력 받아 상기 방전된 부동 캐패시터의 잔류 전압으로부터 셀 밸런싱 회로의 이상 여부를 판별하는 중앙 연산 모듈;을 더 포함하는 것을 특징으로 하는 셀 밸런싱 회로의 이상 진단 장치.
  10. 제1항 또는 제9항에 있어서, 상기 제어부는,
    상기 방전된 부동 캐패시터의 잔류 전압이 기준 전압을 초과할 경우 셀 밸런싱 회로에 이상이 있는 것으로 판별하는 것을 특징으로 하는 셀 밸런싱 회로의 이상 진단 장치.
  11. 제1항 또는 제9항에 있어서, 상기 제어부는,
    상기 부동 캐패시터에 충전된 배터리 셀 전압과 상기 방전된 부동 캐패시터의 잔류 전압의 차이가 기준 전압 미만일 경우 셀 밸런싱 회로에 이상이 있는 것으로 판별하는 것을 특징으로 하는 셀 밸런싱 회로의 이상 진단 장치.
  12. 제1항에 있어서, 상기 제어부는,
    상기 셀 밸런싱 회로의 이상 발생 사실을 시청각 또는 청각적으로 출력하는 이상 경보기를 더 포함하고,
    상기 제어부는 셀 밸런싱 회로의 이상이 발생된 경우 상기 이상 경보기를 통해 셀 밸런싱 회로의 이상 발생 사실을 시각적 또는 청각적으로 경보하는 것을 특징으로 하는 셀 밸런싱 회로의 이상 진단 장치.
  13. 배터리 셀의 전압을 충전하는 부동 캐패시터;
    상기 배터리 셀과 연결되어 배터리 셀의 전압을 밸런싱하고, 상기 부동 캐패시터의 충전 전압을 방전시키는 셀 밸런싱 회로;
    상기 방전된 부동 캐패시터의 잔류 전압을 측정하는 전압 측정부; 및
    상기 방전된 부동 캐패시터의 잔류 전압으로부터 상기 셀 밸런싱 회로의 이상 여부를 판별하는 제어부를 포함하는 것을 특징으로 하는 셀 밸런싱 회로의 이상 진단 장치.
  14. 제13항에 있어서, 상기 제어부는,
    상기 방전된 부동 캐패시터의 잔류 전압이 기준 전압을 초과할 경우 셀 밸런싱 회로에 이상이 있는 것으로 판별하는 것을 특징으로 하는 셀 밸런싱 회로의 이상 진단 장치.
  15. 제13항에 있어서,
    상기 전압 측정부는 상기 부동 캐패시터에 충전된 배터리 셀 전압을 더 측정하고,
    상기 제어부는 상기 배터리 셀 전압과 상기 방전된 부동 캐패시터의 잔류 전압의 차이가 기준 전압 미만일 경우 셀 밸런싱 회로에 이상이 있는 것으로 판별하는 것을 특징으로 하는 셀 밸런싱 회로의 이상 진단 장치.
  16. 제1항 내지 제15항 중 어느 한 항에 따른 셀 밸런싱 회로의 이상 진단 장치를 포함하는 배터리 관리 시스템.
  17. 제1항 내지 제15항 중 어느 한 항에 따른 셀 밸런싱 회로의 이상 진단 장치를 포함하는 배터리 구동 장치.
  18. 제1항 내지 제15항 중 어느 한 항에 따른 셀 밸런싱 회로의 이상 진단 장치를 포함하는 배터리 팩.
  19. 배터리 셀의 전압을 부동 캐패시터에 충전시키는 단계;
    전압 측정부를 통해 상기 부동 캐패시터에 충전된 배터리 셀 전압을 측정하는 단계;
    셀 밸런싱 회로를 이용하여 상기 부동 캐패시터의 충전 전압을 방전시키는 단계;
    상기 전압 측정부를 통해 방전된 부동 캐패시터의 잔류 전압을 측정하는 단계; 및
    상기 부동 캐패시터의 방전 후 측정된 상기 잔류 전압으로부터 상기 셀 밸런싱 회로의 이상 여부를 판별하는 단계를 포함하는 것을 특징으로 하는 셀 밸런싱 회로의 이상 진단 방법.
  20. 제19항에 있어서,
    상기 배터리 셀은 복수이고,
    상기 단계들은 복수의 배터리 셀에 대해 동시에 또는 이시적으로 진행하는 것을 특징으로 하는 셀 밸런싱 회로의 이상 진단 방법.
  21. 제19항에 있어서,
    상기 부동 캐패시터와 상기 배터리 셀을 연결 또는 해제하는 제1스위치;
    상기 부동 캐패시터와 상기 전압 측정부를 연결 또는 해제하는 제2스위치; 및
    상기 셀 밸런싱 회로의 방전 동작을 시작 또는 종료시키는 제3스위치;를 더 포함하고,
    상기 제1 내지 제3스위치의 동작을 제어하는 단계;
    상기 전압 측정부로부터 출력되는 아날로그 전압 신호를 디지털 전압 신호로 변환하는 단계; 및
    상기 디지털 전압 신호를 입력 받아 상기 방전된 부동 캐패시터의 잔류 전압으로부터 셀 밸런싱 회로의 이상 여부를 판별하는 단계;를 더 포함하는 것을 특징으로 하는 셀 밸런싱 회로의 이상 진단 방법.
  22. 제19항 또는 제21항에 있어서, 상기 셀 밸런싱 회로의 이상 여부를 판별하는 단계는,
    상기 부동 캐패시터의 방전 후 측정된 상기 잔류 전압이 기준 전압을 초과할 경우 셀 밸런싱 회로에 이상이 있는 것으로 판별하는 단계임을 특징으로 하는 셀 밸런싱 회로의 이상 진단 방법.
  23. 제19항 또는 제21항에 있어서, 상기 셀 밸런싱 회로의 이상 여부를 판별하는 단계는,
    상기 부동 캐패시터에 충전된 배터리 셀 전압과 상기 부동 캐패시터의 방전 후 측정된 상기 잔류 전압의 차이가 기준 전압 미만일 경우 셀 밸런싱 회로에 이상이 있는 것으로 판별하는 단계임을 특징으로 하는 셀 밸런싱 회로의 이상 진단 방법.
  24. 제19항에 있어서,
    상기 셀 밸런싱 회로의 이상이 발생된 것으로 판별되면, 셀 밸런싱 회로의 이상 발생 사실을 시각적 또는 청각적으로 경보하는 단계를 더 포함하는 것을 특징으로 하는 셀 밸런싱 회로의 이상 진단 방법.
PCT/KR2010/005308 2010-02-22 2010-08-12 셀 밸런싱 회로의 이상 진단 장치 및 방법 WO2011102576A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080064535.5A CN102906581B (zh) 2010-02-22 2010-08-12 电池单元平衡电路的异常诊断设备和方法
JP2012500731A JP5231677B2 (ja) 2010-02-22 2010-08-12 セルバランス回路の異常診断装置及び方法
EP10846214.4A EP2541265B1 (en) 2010-02-22 2010-08-12 Abnormality diagnosis device and method of cell balancing circuit
US13/195,633 US8643500B2 (en) 2010-02-22 2011-08-01 Apparatus and method for diagnosing abnormality in cell balancing circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100015519A KR101234059B1 (ko) 2010-02-22 2010-02-22 셀 밸런싱부의 고장 진단 장치 및 방법
KR10-2010-0015519 2010-02-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/195,633 Continuation US8643500B2 (en) 2010-02-22 2011-08-01 Apparatus and method for diagnosing abnormality in cell balancing circuit

Publications (1)

Publication Number Publication Date
WO2011102576A1 true WO2011102576A1 (ko) 2011-08-25

Family

ID=44483146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/005308 WO2011102576A1 (ko) 2010-02-22 2010-08-12 셀 밸런싱 회로의 이상 진단 장치 및 방법

Country Status (6)

Country Link
US (1) US8643500B2 (ko)
EP (1) EP2541265B1 (ko)
JP (1) JP5231677B2 (ko)
KR (1) KR101234059B1 (ko)
CN (1) CN102906581B (ko)
WO (1) WO2011102576A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013053939A (ja) * 2011-09-05 2013-03-21 Denso Corp 電圧監視装置
CN104718681A (zh) * 2012-10-10 2015-06-17 住友建机株式会社 挖土机及挖土机的控制方法

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101348251B1 (ko) * 2011-11-21 2014-01-08 (주)컨트롤웍스 배터리 관리 시스템 테스트 장치
JP5947584B2 (ja) * 2012-03-27 2016-07-06 矢崎総業株式会社 絶縁状態検出装置
WO2014062702A1 (en) 2012-10-16 2014-04-24 Ambri, Inc. Electrochemical energy storage devices and housings
US11387497B2 (en) 2012-10-18 2022-07-12 Ambri Inc. Electrochemical energy storage devices
US9520618B2 (en) 2013-02-12 2016-12-13 Ambri Inc. Electrochemical energy storage devices
US11211641B2 (en) 2012-10-18 2021-12-28 Ambri Inc. Electrochemical energy storage devices
US9312522B2 (en) 2012-10-18 2016-04-12 Ambri Inc. Electrochemical energy storage devices
US10541451B2 (en) 2012-10-18 2020-01-21 Ambri Inc. Electrochemical energy storage devices
US9735450B2 (en) 2012-10-18 2017-08-15 Ambri Inc. Electrochemical energy storage devices
US11721841B2 (en) 2012-10-18 2023-08-08 Ambri Inc. Electrochemical energy storage devices
KR101595938B1 (ko) * 2012-10-23 2016-02-19 주식회사 엘지화학 배터리 팩 보호 장치와 이를 포함하는 배터리 팩 및 자동차
CN102998537B (zh) * 2012-10-30 2015-09-09 广东易事特电源股份有限公司 一种低能耗的直流母线绝缘电阻检测电路及检测方法
CN103895523A (zh) * 2012-12-25 2014-07-02 联合汽车电子有限公司 电动汽车的电气系统
KR101589198B1 (ko) * 2013-02-19 2016-01-28 주식회사 엘지화학 셀 밸런싱 회로의 고장 진단 장치 및 방법
US10270139B1 (en) 2013-03-14 2019-04-23 Ambri Inc. Systems and methods for recycling electrochemical energy storage devices
KR102044808B1 (ko) * 2013-04-17 2019-11-15 엘지이노텍 주식회사 배터리 제어 시스템 및 그의 구동 방법
US9347998B2 (en) * 2013-04-17 2016-05-24 Allegro Microsystems, Llc System and method for measuring battery voltage
JP6110199B2 (ja) * 2013-04-26 2017-04-05 ローム株式会社 蓄電素子監視回路、充電システム、及び集積回路
US9502737B2 (en) 2013-05-23 2016-11-22 Ambri Inc. Voltage-enhanced energy storage devices
JP2015065796A (ja) * 2013-09-26 2015-04-09 ソニー株式会社 蓄電装置、蓄電制御装置および蓄電制御方法
CN109935747B (zh) 2013-10-16 2022-06-07 安保瑞公司 用于高温反应性材料装置的密封件
KR101551035B1 (ko) 2013-12-30 2015-09-08 현대자동차주식회사 프리 차지 중 고장 진단 방법
KR101628859B1 (ko) * 2014-12-12 2016-06-21 현대오트론 주식회사 배터리 관리 시스템의 배터리 셀 진단 회로 및 진단 장치
US10181800B1 (en) 2015-03-02 2019-01-15 Ambri Inc. Power conversion systems for energy storage devices
WO2016141354A2 (en) 2015-03-05 2016-09-09 Ambri Inc. Ceramic materials and seals for high temperature reactive material devices
US9893385B1 (en) 2015-04-23 2018-02-13 Ambri Inc. Battery management systems for energy storage devices
WO2017006829A1 (ja) * 2015-07-07 2017-01-12 住友電気工業株式会社 電圧測定装置および電圧測定方法、並びに電圧制御装置および電圧制御方法
JP6627635B2 (ja) * 2015-07-07 2020-01-08 住友電気工業株式会社 電圧測定装置および電圧測定方法、並びに電圧制御装置および電圧制御方法
TWI811718B (zh) 2016-03-16 2023-08-11 澳門商創科(澳門離岸商業服務)有限公司 具有無線通訊的電動工具蓄電池組
CN106042969A (zh) * 2016-07-22 2016-10-26 肇庆市小凡人科技有限公司 一种自动断电的充电桩系统
US11929466B2 (en) 2016-09-07 2024-03-12 Ambri Inc. Electrochemical energy storage devices
KR102167922B1 (ko) * 2016-09-28 2020-10-20 주식회사 엘지화학 소모전류 균등화 시스템 및 방법
US10516189B2 (en) * 2016-11-15 2019-12-24 Ford Global Technologies, Llc High voltage bus contactor fault detection
JP7201613B2 (ja) 2017-04-07 2023-01-10 アンブリ・インコーポレイテッド 固体金属カソードを備える溶融塩電池
KR102150147B1 (ko) * 2017-05-24 2020-09-01 주식회사 엘지화학 배터리 모듈 균등화 장치 및 방법
KR102202613B1 (ko) * 2017-09-27 2021-01-12 주식회사 엘지화학 배터리 모듈 균등화 장치, 이를 포함하는 배터리 팩 및 자동차
KR102236384B1 (ko) * 2017-10-27 2021-04-05 주식회사 엘지화학 배터리 밸런싱을 위한 장치 및 그것을 포함하는 배터리팩
CN107797011A (zh) * 2017-12-06 2018-03-13 深圳市科陆电子科技股份有限公司 储能bms的均衡策略模拟测试方法及装置
KR102443667B1 (ko) * 2018-10-26 2022-09-14 주식회사 엘지에너지솔루션 밸런싱 장치, 및 그것을 포함하는 배터리 관리 시스템과 배터리팩
JP7115362B2 (ja) * 2019-02-28 2022-08-09 株式会社デンソー 電源装置の異常診断装置
US11418041B2 (en) * 2019-03-15 2022-08-16 Lg Energy Solution, Ltd. Battery system
KR20210040724A (ko) * 2019-10-04 2021-04-14 주식회사 엘지화학 배터리 관리 장치
EP3822645B1 (en) 2019-11-18 2022-10-26 Volvo Car Corporation System and method for detecting failures in a battery management system for a vehicle battery
US11545841B2 (en) * 2019-11-18 2023-01-03 Semiconductor Components Industries, Llc Methods and apparatus for autonomous balancing and communication in a battery system
KR102539729B1 (ko) * 2021-11-30 2023-06-07 주식회사 에스엠전자 배터리 시스템용 통합 모니터링 시스템
KR102585723B1 (ko) * 2022-03-21 2023-10-10 (주)케이엔씨 충전 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0638360A (ja) * 1992-07-20 1994-02-10 Toyota Autom Loom Works Ltd コンデンサの劣化故障診断装置
JP2007507699A (ja) * 2003-10-10 2007-03-29 シーメンス アクチエンゲゼルシヤフト エネルギ蓄積器のセルスタックのセルの個別セル電圧の測定のための装置及び方法
JP2007085847A (ja) 2005-09-21 2007-04-05 Hitachi Vehicle Energy Ltd セルバランス回路異常検出方式
KR20090031449A (ko) * 2006-07-19 2009-03-25 에이일이삼 시스템즈 인코포레이티드 배터리 팩에서의 셀들을 모니터링하고 밸런싱하는 방법 및 시스템
KR20100019256A (ko) * 2008-08-08 2010-02-18 주식회사 엘지화학 배터리 셀의 전압 변화 거동을 이용한 셀 밸런싱 장치 및 방법
KR20100023364A (ko) * 2008-08-21 2010-03-04 주식회사 엘지화학 부동 캐패시터를 이용한 셀 밸런싱 회로의 고장 진단 장치 및 방법

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001224138A (ja) * 2000-02-07 2001-08-17 Hitachi Ltd 蓄電装置及び蓄電器の電圧検出方法
JP3791767B2 (ja) * 2001-03-27 2006-06-28 株式会社デンソー フライングキャパシタ式電圧検出回路
JP2002340959A (ja) 2001-05-11 2002-11-27 Jeol Ltd キャパシタ蓄電装置
JP4035777B2 (ja) * 2003-02-10 2008-01-23 株式会社デンソー 組電池の放電装置
GB0410531D0 (en) * 2004-05-12 2004-06-16 Arbarr Electronics Ltd Voltage monitoring system
CN1930483A (zh) * 2004-12-14 2007-03-14 松下电器产业株式会社 电源装置
US7573238B2 (en) * 2005-08-09 2009-08-11 Panasonic Ev Energy Co., Ltd. Voltage detection device and electric vehicle including voltage detection device
JP2007207699A (ja) 2006-02-06 2007-08-16 Matsushita Electric Ind Co Ltd 非水電解液二次電池
US7679369B2 (en) * 2006-10-06 2010-03-16 Enerdel, Inc. System and method to measure series-connected cell voltages using a flying capacitor
KR100908716B1 (ko) 2007-03-02 2009-07-22 삼성에스디아이 주식회사 배터리 관리 시스템 및 그의 구동 방법
EP2137801B1 (fr) * 2007-04-18 2018-11-07 Valeo Equipements Electriques Moteur Dispositif de stockage d'energie, notamment pour vehicule automobile
KR100993110B1 (ko) * 2007-07-26 2010-11-08 주식회사 엘지화학 배터리 셀의 충전량 밸런싱 장치 및 방법
JP5459946B2 (ja) * 2007-09-28 2014-04-02 株式会社日立製作所 車両用直流電源装置
JP5224095B2 (ja) * 2007-12-27 2013-07-03 株式会社Gsユアサ 組電池の電池管理装置
JP5127512B2 (ja) 2008-03-05 2013-01-23 日産自動車株式会社 電池電圧検出装置の故障診断方法
JP5549121B2 (ja) * 2008-06-17 2014-07-16 三洋電機株式会社 組電池の電圧検出装置及びこれを具えたバッテリシステム
CN102105808B (zh) * 2008-06-27 2015-02-11 江森自控帅福得先进能源动力系统有限责任公司 电池单元诊断系统和方法
WO2012127270A1 (en) * 2011-03-23 2012-09-27 Indian Institute Of Technology Bombay Photo-voltaic array fed switched capacitor dc-dc converter based battery charging for li-ion batteries
US9425631B2 (en) * 2012-02-27 2016-08-23 Infineon Technologies Austria Ag System and method for battery management

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0638360A (ja) * 1992-07-20 1994-02-10 Toyota Autom Loom Works Ltd コンデンサの劣化故障診断装置
JP2007507699A (ja) * 2003-10-10 2007-03-29 シーメンス アクチエンゲゼルシヤフト エネルギ蓄積器のセルスタックのセルの個別セル電圧の測定のための装置及び方法
JP2007085847A (ja) 2005-09-21 2007-04-05 Hitachi Vehicle Energy Ltd セルバランス回路異常検出方式
KR20090031449A (ko) * 2006-07-19 2009-03-25 에이일이삼 시스템즈 인코포레이티드 배터리 팩에서의 셀들을 모니터링하고 밸런싱하는 방법 및 시스템
KR20100019256A (ko) * 2008-08-08 2010-02-18 주식회사 엘지화학 배터리 셀의 전압 변화 거동을 이용한 셀 밸런싱 장치 및 방법
KR20100023364A (ko) * 2008-08-21 2010-03-04 주식회사 엘지화학 부동 캐패시터를 이용한 셀 밸런싱 회로의 고장 진단 장치 및 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2541265A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013053939A (ja) * 2011-09-05 2013-03-21 Denso Corp 電圧監視装置
US9128161B2 (en) 2011-09-05 2015-09-08 Denso Corporation Voltage monitoring device
CN104718681A (zh) * 2012-10-10 2015-06-17 住友建机株式会社 挖土机及挖土机的控制方法

Also Published As

Publication number Publication date
EP2541265A4 (en) 2013-08-21
KR20110096202A (ko) 2011-08-30
KR101234059B1 (ko) 2013-02-15
JP2012514449A (ja) 2012-06-21
CN102906581A (zh) 2013-01-30
CN102906581B (zh) 2015-04-29
EP2541265A1 (en) 2013-01-02
US8643500B2 (en) 2014-02-04
EP2541265B1 (en) 2015-06-17
JP5231677B2 (ja) 2013-07-10
US20110285539A1 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
WO2011102576A1 (ko) 셀 밸런싱 회로의 이상 진단 장치 및 방법
WO2011108788A1 (ko) 셀 밸런싱 회로의 이상 진단 장치 및 방법
WO2013147494A1 (ko) 배터리의 절연 저항 측정 장치 및 방법
WO2020076127A1 (ko) 배터리 관리 장치 및 방법
WO2011083993A2 (ko) 배터리 제어 장치 및 방법
WO2012165879A2 (en) Secondary battery management system and method for exchanging battery cell information
WO2014077522A1 (ko) 배터리 시스템의 릴레이 융착 검출 장치 및 방법
WO2015126035A1 (ko) 전압 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법
WO2010062141A2 (ko) 배터리 셀 전압 측정 장치 및 방법
WO2014084628A1 (ko) 배터리 전류 측정 장치 및 그 방법
WO2018066839A1 (ko) 전압 분배를 이용한 퓨즈 진단 장치 및 방법
WO2019221368A1 (ko) 메인 배터리와 서브 배터리를 제어하기 위한 장치, 배터리 시스템 및 방법
WO2020055117A1 (ko) 배터리 관리 장치
WO2018074744A1 (ko) 전압 분배를 이용한 스위치 진단 장치 및 방법
JP2018128433A (ja) 異常検出装置
WO2019093667A1 (ko) 릴레이 진단 회로
KR20100023364A (ko) 부동 캐패시터를 이용한 셀 밸런싱 회로의 고장 진단 장치 및 방법
WO2022080709A1 (ko) 릴레이 진단 장치, 릴레이 진단 방법, 배터리 시스템, 및 전기 차량
WO2017090980A1 (ko) 고전압 이차전지의 퓨즈 진단 장치
JP5287682B2 (ja) 電池監視装置
WO2021033956A1 (ko) 배터리 시스템 및 배터리 시스템의 운용 방법
WO2018088685A1 (ko) 배터리 팩
WO2023063625A1 (ko) 배터리 진단 장치, 배터리 팩, 전기 차량, 및 배터리 진단 방법
WO2022019600A1 (ko) 이상 셀 진단 방법 및 이를 적용한 배터리 시스템
WO2022085962A1 (ko) 배터리 감시 장치, 배터리 감시 방법, 배터리 팩 및 전기 차량

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080064535.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2012500731

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10846214

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010846214

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 8155/DELNP/2012

Country of ref document: IN