WO2019059540A1 - 배터리 보호 회로 - Google Patents

배터리 보호 회로 Download PDF

Info

Publication number
WO2019059540A1
WO2019059540A1 PCT/KR2018/009706 KR2018009706W WO2019059540A1 WO 2019059540 A1 WO2019059540 A1 WO 2019059540A1 KR 2018009706 W KR2018009706 W KR 2018009706W WO 2019059540 A1 WO2019059540 A1 WO 2019059540A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
temperature sensor
temperature
battery
circuit board
Prior art date
Application number
PCT/KR2018/009706
Other languages
English (en)
French (fr)
Inventor
김영준
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Publication of WO2019059540A1 publication Critical patent/WO2019059540A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • G01K7/24Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor in a specially-adapted circuit, e.g. bridge circuit
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/374Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with means for correcting the measurement for temperature or ageing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • An embodiment relates to a battery protection circuit.
  • a secondary cell is a cell that can alternately repeat charging and discharging.
  • the secondary battery can be discharged by converting chemical energy into electrical energy, and if the electrical energy is charged in the discharged state, it can be stored again in the form of chemical energy.
  • the secondary battery is applied to various portable electronic devices.
  • the secondary battery is composed of a battery pack in combination with the charge / discharge circuit. Charging by an external power source and discharging to an external load are performed through a pack terminal provided in the battery pack.
  • the battery pack includes a battery protection circuit to protect the secondary battery from problems such as short circuit, short circuit, overcurrent, and overvoltage that may occur during charging and discharging.
  • the battery protection circuit includes a temperature sensor for measuring the temperature of the secondary battery necessary for the battery protection operation.
  • a chip type temperature sensor or a wire type temperature sensor is used as a temperature sensor mounted on the battery pack.
  • the wire type temperature sensor can be arranged adjacent to the secondary battery because it is connected through the wire.
  • the wire type temperature sensor requires a relatively large installation space compared to the chip type temperature sensor, which makes it difficult to slim down the battery pack .
  • the chip type temperature sensor is mounted on the printed circuit board on which the battery protection circuit is mounted, there is no need to provide a separate installation space, which is advantageous for slimming down the battery pack.
  • the chip type temperature sensor may be affected by the heat generated by the printed circuit board, and the measurement accuracy may be lowered.
  • the first temperature sensor may be a chip type thermistor mounted on the printed circuit board.
  • the second temperature sensor may be embedded in the integrated circuit.
  • the second temperature sensor may be a chip type thermistor mounted on the printed circuit board.
  • the integrated circuit may correct the temperature of the cell by subtracting a weighted value of the temperature measured through the second temperature sensor from the temperature of the cell measured through the first temperature sensor.
  • the integrated circuit may estimate the capacity of the cell based on the corrected temperature of the cell.
  • the battery protection circuit further comprises a charge control switch connected in series with the high current path between the cell and the plurality of pack terminals, the integrated circuit being capable of controlling the charge control switch based on the temperature of the cell being calibrated .
  • the battery protection circuit according to the embodiment can improve the accuracy of the cell temperature measurement.
  • FIG. 1 schematically shows a battery pack according to an embodiment.
  • FIG. 2 shows a comparison of the temperature measurement results during discharging between the chip type temperature sensor and the wire type temperature sensor.
  • FIG. 3 shows an example of a printed circuit board on which the battery protection circuit of FIG. 1 is mounted.
  • FIG. 4 is a diagram for explaining a method of correcting a cell temperature in the battery protection circuit of FIG.
  • FIG. 5 schematically shows a battery pack according to another embodiment.
  • Electrical connection of two components includes not only direct connection of two components but also connection between two components via different components.
  • Other components may include switches, resistors, capacitors, and the like.
  • the expression " connection " means that the connection is electrically connected when there is no expression of direct connection.
  • 'cell' refers to each secondary cell
  • 'battery module' refers to a state where one or more cells are connected in series or parallel
  • 'battery pack' Indicates a state in which the battery module and the battery protection circuit are packaged in the case.
  • FIG. 1 is a schematic view of a battery pack according to an embodiment
  • FIG. 2 is a graph illustrating a temperature measurement result of discharging a chip type temperature sensor and a wire type temperature sensor.
  • FIG. 3 illustrates an example of a printed circuit board on which the battery protection circuit of FIG. 1 is mounted
  • FIG. 4 illustrates a method of correcting a cell temperature in the battery protection circuit of FIG.
  • a battery pack 100 may include a battery module 10, an interface 30, and a battery protection circuit.
  • the battery module 10 may include a plurality of cells 11 connected in series or parallel to each other.
  • the battery module 10 includes three cells 11 connected in series to each other.
  • the present invention is not limited thereto. The number of cells 11 constituting the battery module 10 or the coupling method thereof can be changed.
  • the interface 30 may include a plurality of terminals for performing an interface with an external device.
  • the interface 30 includes pack terminals P + and P- for supplying electric energy to an external load or receiving electric energy from an external charging device and communication terminals T1 and T2 for communicating with an external device ).
  • the battery protection circuit is a circuit that performs the protection function of the battery module 10.
  • the battery protection circuit includes a charge control switch C-SW, a discharge control switch D-SW, a fuse element F1, first and second temperature sensors TS1 and TS2, a shunt resistor SR, (21).
  • the battery protection circuit includes a printed circuit board (PCB) 200 (see reference numeral 200 in Fig. 3), which is coupled to the cells 11 of the battery module 10 and on which components constituting the battery protection circuit are mounted ).
  • PCB printed circuit board
  • the charge control switch C-SW is connected in series to the charge path of the battery module 10 and can cut off or supply the charge current of the battery module 10.
  • the charging path is a current flow path between the battery module 10 and a charging device (not shown) connected through the pack terminals P + and P- of the battery pack 100, To the battery module (10).
  • the discharge control switch D-SW is connected in series to the discharge path of the battery module 10 and can cut off or supply the discharge current of the battery module 10.
  • the discharge path is a current flow path between the battery module 10 and the load (not shown) connected through the pack terminals P + and P- of the battery pack 100, It is a path for transferring current to the load.
  • the charging path and the discharging path are relatively large in the magnitude of the current flowing through the path in comparison with other current flow paths in the battery pack 100. [ In this document, discharge path and charge path are also called 'high current path'.
  • the charging control switch C-SW and the discharging control switch D-SW are connected in series to the large current path and are controlled by a current supplied through a large current path in accordance with a control signal applied from the battery controller 21 to the control terminal Current or charge current).
  • the charge control switch C-SW can block or allow the flow of the charge current supplied from the external charging device to the battery module 10 through the large current path.
  • the charge control switch (C-SW) is closed by the control signal, the charging current can flow from the charging device to the battery module (10) through the large current path.
  • the charge control switch C-SW is opened by the control signal, the flow of the charge current flowing in the large current path between the charging device and the battery module 10 can be cut off.
  • the discharge control switch D-SW can block or allow the flow of the discharge current supplied from the battery module 10 to the external load through the large current path.
  • the discharge control switch (D-SW) When the discharge control switch (D-SW) is closed, a discharge current can flow from the battery module (10) to the load through the large current path.
  • the discharge control switch D-SW is opened, the discharge current flowing through the large current path between the battery module 10 and the load can be shut off.
  • the present invention is not limited thereto. According to another embodiment, the charge control switch C-SW or the discharge control switch D-SW may be connected between the cathode of the battery module 10 and the cathode pack terminal P- of the battery pack 100 .
  • the charge control switch C-SW and the discharge control switch D-SW may each include a field effect transistor (FET) (not shown).
  • FET field effect transistor
  • the charge control switch C-SW and the discharge control switch D-SW may each include a parasitic diode (not shown).
  • the parasitic diodes operate so that current flows in a direction opposite to the direction in which the current is limited by the corresponding FET.
  • the parasitic diode included in the charge control switch (C-SW) causes current to flow to the discharge path
  • the parasitic diode included in the discharge control switch (D-SW) causes current to flow through the charge path.
  • the fuse element F1 is connected in series to the large current path and can block the large current path of the battery module 10.
  • the fuse element F1 may be implemented as a self control protection (SCP) device.
  • the fuse element F1 may include a pair of fuses (not shown) connected in series to the large current path and heat generating resistors (not shown) connected in parallel to each fuse.
  • the pair of fuses constituting the fuse element F1 are connected in series between the anode of the battery module 10 and the anode pack terminal P +.
  • the pair of fuses constituting the fuse element F1 is fused by the heat generated by the corresponding heating resistor and each of the fuse elements is connected to the control signal (voltage) applied from the battery controller 21 or the protection circuit 22 Can generate heat.
  • the shunt resistor SR is a current sensing resistor and can be used to detect a current (charge current or discharge current) that is connected in series to a large current path and flows through a large current path.
  • the shunt resistor SR is connected between the negative electrode of the battery module 10 and the negative electrode pack terminal P-.
  • the present invention is not limited thereto, and according to another embodiment, the shunt resistor SR may be connected to the large current path between the anode of the battery module 10 and the anode pack terminal P +.
  • the battery controller 21 may include a voltage detection circuit (not shown) connected to each cell 11 constituting the battery module 10 via voltage measurement terminals.
  • the voltage detection circuit may detect the cell voltage of each cell 11 constituting the battery module 10 and the voltage across the battery module 10.
  • the battery controller 21 may include a current detection circuit (not shown) electrically connected to both ends of the shunt resistor SR through current measurement terminals.
  • the shunt resistor SR is located on the large current path between the battery module 10 and one of the pack terminals P-. Therefore, the current detection circuit can detect the current flowing through the shunt resistor SR and obtain the current (charge current or discharge current) flowing through the large current path therefrom. That is, the current detection circuit calculates the current flowing through the shunt resistor SR from the both-end voltage of the shunt resistor SR and the resistance value of the shunt resistor SR, and outputs the current (charge current or discharge current ).
  • the battery controller 21 can detect the cell temperature of each cell 11 through the first and second temperature sensors TS1 and TS2.
  • the first temperature sensor TS1 detects the temperature of the cell 11 constituting the battery module 10 (hereinafter referred to as "cell temperature”) and transmits it to the battery controller 21.
  • the first temperature sensor TS1 may include a thermistor.
  • the first temperature sensor TS1 is a chip type and can be mounted on a printed circuit board. In this case, the first temperature sensor TS1 is disposed in the vicinity of the cell 11 in the printed circuit board in order to minimize the thermal resistance between the cell 11 and the first temperature sensor TS1 to improve the measurement accuracy of the cell temperature. Area. ≪ / RTI >
  • the first temperature sensor TS1 which is a chip type, is mounted on a printed circuit board, measurement accuracy may be degraded due to the influence of a printed circuit board and a heat generating component mounted on the printed circuit board.
  • FIG. 2 shows an example of measuring the cell temperature during discharging through a chip type temperature sensor and a wire type temperature sensor.
  • the cell temperature measured through the chip type temperature sensor is higher than the wire type temperature sensor arranged to contact the cell 11 without a printed circuit board.
  • a cell temperature measured with a wire-type temperature sensor is approximately 48.2 ° C at most, while a cell temperature measured with a chip-type temperature sensor is at approximately 62.6 ° C. This is because the chip type temperature sensor is influenced by the heat of the printed circuit board on which the chip type temperature sensor is mounted and the heat generation of the heat generating parts located around the chip type temperature sensor.
  • the first temperature sensor TS1 may be disposed apart from the heat source such as a current pattern, a heat generating component, and the like. 3, the first temperature sensor TS1 may be disposed in a region 202 that does not overlap with a charge / discharge current pattern with a large heat generation in the printed circuit board 200.
  • the temperature of the printed circuit board measured through the separate second temperature sensor TS2 can be used to compensate the cell temperature measured through the first temperature sensor TS1.
  • the second temperature sensor TS2 detects the temperature of the printed circuit board on which the first temperature sensor TS1 is mounted, that is, the printed circuit board on which the battery protection circuit is mounted, and transmits the detected temperature to the battery controller 21.
  • the second temperature sensor TS2 may include a thermistor.
  • the second temperature sensor TS2 may be a temperature sensor incorporated in any one of the integrated circuits constituting the battery protection circuit.
  • a temperature sensor has been built in an integrated circuit in which the performance may vary depending on the ambient temperature. Therefore, if there is an integrated circuit having a built-in temperature sensor among the integrated circuits constituting the battery protection circuit, the temperature of the printed circuit board is measured using the integrated circuit, thereby minimizing an increase in the unit price due to the addition of the component.
  • the second temperature sensor TS2 may be an integrated circuit temperature sensor operating as the battery controller 21.
  • the integrated circuit in which the second temperature sensor TS2 is embedded may be disposed apart from the other heat sources .
  • the battery controller 21 having the second temperature sensor TS2 incorporated therein can be disposed in the region 201 where the charge / discharge current pattern does not overlap with the heat generated in the printed circuit board 200 as much as possible .
  • the battery controller 21 acquires the cell temperature of each cell 11 through the first temperature sensor TS1 and corrects it by using the temperature of the printed circuit board measured through the second temperature sensor TS2.
  • the battery controller 21 multiplies the temperature of the printed circuit board measured through the second temperature sensor TS2 by a weight, and the battery controller 21 compares the cell temperature measured through the first temperature sensor TS1 So that the cell temperature can be corrected.
  • the cell temperature thus corrected can be used to predict the capacity (or state of charge (SOC)) of each cell 11 in the battery controller 21 or to perform charge / discharge control.
  • SOC state of charge
  • the battery controller 21 controls the charging and discharging currents of the battery module 10 and the capacity (or state of charge (SOC)) of each cell 11 constituting the battery module 10, the cell voltage, And control the charging and discharging of the battery module 10 by controlling the charging control switch C-SW or the discharging control switch D-SW based on this.
  • SOC state of charge
  • the battery controller 21 controls the charge control switch C-SW, the discharge control switch D-SW or the fuse element F1 to perform a protection operation for protecting the battery module 10 from overvoltage, overcurrent, Can be performed.
  • the battery controller 21 when the battery module 10 is determined to be in an overvoltage state, the battery controller 21 turns off the charge control switch C-SW or turns on the charge control switch C-SW and the discharge control switch D-SW) can be turned off. Also, if the battery module 10 is determined to be in the overvoltage state, the battery controller 21 may control the fuse element F1 to shut off the high current path.
  • the battery controller 21 detects the overcurrent (overcharge current, overdischarge current) state of the battery module 10 based on the current flowing in the large current path, and when the battery module 10 is in the overcurrent state, The switch C-SW can be turned off or the charge control switch C-SW and the discharge control switch D-SW can be turned off. Also, when the battery module 10 is determined to be in an overcurrent state, the battery controller 21 may control the fuse element F1 to shut off the high current path.
  • the battery controller 21 detects a short failure in the battery pack 100 based on the current flowing in the large current path or the ambient temperature of the battery module 10, and when a short- It is possible to shut off the large current path by controlling the control signal F1.
  • the battery controller 21 may control the operation of a cell balancing circuit (not shown) that performs cell balancing of the battery module 10 based on the cell voltage of each cell 11.
  • the battery controller 21 may be connected to an external device through the communication terminals T1 and T2 of the battery pack 100 to perform communication with the external device.
  • Each function of the battery controller 21 may be performed by a processor implemented in one or more central processing units (CPUs) or other chipsets, a microcontroller unit (MCU), a microprocessor, .
  • CPUs central processing units
  • MCU microcontroller unit
  • microprocessor a microprocessor
  • the battery controller 21 may be implemented as one or more integrated circuits and mounted on a printed circuit board on which the battery protection circuit is mounted.
  • the battery protection circuit according to the embodiment may further include a protection circuit 22.
  • the protection circuit 22 includes a voltage detection circuit (not shown) connected to each cell 11 constituting the battery module 10 and detects a cell voltage of each cell 11 through a voltage detection circuit .
  • the protection circuit 22 detects the overvoltage state of each cell 11 based on the cell voltage of each cell 11 and controls the fuse element F1 when a certain cell becomes an overvoltage state to shut off the large current path .
  • the battery protection circuit includes only one first temperature sensor TS1 for measuring the cell temperature.
  • the present invention is not limited thereto.
  • the number of the first temperature sensors TS1 included in the battery protection circuit may be determined according to the number of cells constituting the battery module 10 . For example, when three cells 11 of FIG. 1 are connected in series to constitute the battery module 10, the battery module 10 measures the cell temperature individually for each cell 11 It may include three first temperature sensors TS1.
  • the second temperature sensor TS2 is a temperature sensor incorporated in an integrated circuit operating as the battery controller 21, but the present invention is not limited thereto.
  • FIG. 5 schematically shows a battery pack according to another embodiment.
  • the second temperature sensor TS2' may be implemented as a chip type device separate from the battery controller 21 and mounted on a printed circuit board .
  • the second temperature sensor TS2 ' may be arranged so as not to overlap with other heat sources such as a current pattern, in order to minimize the influence of other heat sources such as a current pattern, heat generating parts and the like.
  • the battery protection circuit can improve the measurement accuracy of the cell temperature by measuring the temperature of the printed circuit board and using it to correct the measured cell temperature through the chip type temperature sensor. As the measurement accuracy of the cell temperature is improved, the accuracy of the cell capacity prediction of the battery protection circuit is also improved, securing battery safety. In addition, the cell temperature measured through the battery protection circuit during the high-rate discharge of the battery module is higher than the actual cell temperature, thereby preventing the unnecessary protection operation from being performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Nonlinear Science (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

배터리 보호 회로는, 셀과 결합하는 인쇄회로기판, 상기 인쇄회로기판에 배치되며, 상기 셀의 온도를 측정하는 제1 온도 센서, 상기 인쇄회로기판에 배치되며, 상기 인쇄회로기판의 온도를 측정하는 제2 온도 센서, 및 상기 제2 온도 센서를 통해 측정된 상기 인쇄회로기판의 온도를 이용하여, 상기 제1 온도 센서를 통해 측정된 상기 셀의 온도를 보정하는 집적 회로를 포함할 수 있다.

Description

배터리 보호 회로
실시 예는 배터리 보호 회로에 관한 것이다.
2차 전지(secondary cell)는 충전과 방전을 교대로 반복할 수 있는 전지를 말한다. 2차 전지는 화학적(chemical) 에너지를 전기적(electrical) 에너지로 변환시켜 방전할 수 있으며, 역으로 방전된 상태에서 전기 에너지를 충전하면 이를 화학 에너지의 형태로 다시 저장할 수 있다.
2차 전지는 다양한 휴대 전자 기기에 적용되고 있다. 2차 전지는 그 충방전 회로와 결합하여 배터리 팩으로 구성되며, 배터리 팩에 구비된 팩 단자를 통해 외부 전원에 의한 충전과 외부 부하로의 방전이 이루어진다.
배터리 팩은 충방전 시 발생할 수 있는 단락, 단선, 과전류, 과전압 등의 문제로부터 2차 전지를 보호하기 위해 배터리 보호 회로를 포함한다. 배터리 보호 회로는 배터리 보호 동작을 위해 필요한 2차 전지의 온도를 측정하기 위해 온도 센서를 포함한다.
통상적으로 배터리 팩에 탑재되는 온도 센서로는, 칩 타입(chip type) 온도 센서 또는 와이어 타입(wire type) 온도 센서가 사용된다.
와이어 타입 온도 센서는, 와이어를 통해 연결되므로 2차 전지에 인접하게 배치될 수 있다, 그러나, 와이어 타입 온도 센서는 칩 타입 온도 센서에 비해 상대적으로 많은 설치 공간을 필요로 하여 배터리 팩의 슬림화에 어려움이 있다.
칩 타입 온도 센서는 배터리 보호 회로가 탑재되는 인쇄회로기판 상에 실장되므로, 별도의 설치 공간을 마련할 필요가 없어 배터리 팩의 슬림화에 유리하다. 그러나, 칩 타입 온도 센서는 인쇄회로기판의 발열에 영향을 받을 수 있어, 측정 정확도가 떨어질 수 있다.
실시 예를 통해 해결하고자 하는 기술적 과제는 셀 온도 측정의 정확도를 향상시킨 배터리 보호 회로를 제공하는 것이다.
상기 과제를 해결하기 위한 실시 예에 따른 배터리 보호 회로는, 셀과 결합하는 인쇄회로기판, 상기 인쇄회로기판에 배치되며, 상기 셀의 온도를 측정하는 제1 온도 센서, 상기 인쇄회로기판에 배치되며, 상기 인쇄회로기판의 온도를 측정하는 제2 온도 센서, 및 상기 제2 온도 센서를 통해 측정된 상기 인쇄회로기판의 온도를 이용하여, 상기 제1 온도 센서를 통해 측정된 상기 셀의 온도를 보정하는 집적 회로를 포함할 수 있다.
상기 제1 온도 센서는 상기 인쇄회로기판에 실장되는 칩 타입 서미스터일 수 있다.
상기 제2 온도 센서는 상기 집적 회로에 내장될 수 있다.
상기 제2 온도 센서는 상기 인쇄회로기판에 실장되는 칩 타입 서미스터일 수 있다.
상기 집적 회로는 상기 제2 온도 센서를 통해 측정된 온도에 가중치를 적용한 값을, 상기 제1 온도 센서를 통해 측정된 상기 셀의 온도에서 차감함으로써 상기 셀의 온도를 보정할 수 있다.
상기 집적 회로는 보정된 상기 셀의 온도에 기초하여 상기 셀의 용량을 추정할 수 있다.
상기 배터리 보호 회로는 상기 셀과 복수의 팩 단자 사이의 대전류 경로에 직렬 연결되는 충전 제어 스위치를 더 포함하며, 상기 집적 회로는 보정된 상기 셀의 온도에 기초하여 상기 충전 제어 스위치를 제어할 수 있다.
실시 예에 따른 배터리 보호 회로는 셀 온도 측정의 정확도를 향상시킬 수 있다.
도 1은 일 실시 예에 따른 배터리 팩을 개략적으로 도시한 것이다.
도 2는 칩 타입 온도 센서와 와이어 타입 온도 센서의 방전 시 온도 측정 결과를 비교하여 도시한 것이다.
도 3은 도 1의 배터리 보호 회로가 탑재되는 인쇄회로기판의 일 예를 도시한 것이다.
도 4는 도 1의 배터리 보호 회로에서 셀 온도를 보정하는 방법을 설명하기 위한 도면이다.
도 5는 다른 실시 예에 따른 배터리 팩을 개략적으로 도시한 것이다.
이하, 첨부한 도면을 참고로 하여 여러 실시 예들에 대하여 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 실시 예들은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시 예들에 한정되지 않는다.
실시 예들을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 번호를 붙이도록 한다. 따라서 이전 도면에 사용된 구성요소의 참조 번호를 다음 도면에서 사용할 수 있다.
또한, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 실시 예들은 반드시 도시된 바에 한정되지 않는다. 도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께 및 영역을 과장하여 나타낼 수 있다.
2개의 구성요소를 전기적으로 연결한다는 것은 2개의 구성요소를 직접(directly) 연결할 경우뿐만 아니라, 2개의 구성요소 사이에 다른 구성요소를 거쳐서 연결하는 경우도 포함한다. 다른 구성요소는 스위치, 저항, 커패시터 등을 포함할 수 있다. 실시 예들을 설명함에 있어서 연결한다는 표현은, 직접 연결한다는 표현이 없는 경우에는, 전기적으로 연결한다는 것을 의미한다.
이하, 필요한 도면들을 참조하여 실시 예에 따른 배터리 보호 회로에 대해 상세히 설명하기로 한다.
본 문서에서는 '셀(cell)'은 각각의 2차 전지(secondary cell)를 나타내며, '배터리 모듈(battery module)'은 하나 이상의 셀이 직렬 또는 병렬 결합된 상태를 나타내며, '배터리 팩(battery pack)'은 배터리 모듈과 배터리 보호 회로가 케이스 내에 패키징된 상태를 나타낸다.
도 1은 일 실시 예에 따른 배터리 팩을 개략적으로 도시한 것이고, 도 2는 칩 타입 온도 센서와 와이어 타입 온도 센서의 방전 시 온도 측정 결과를 비교하여 도시한 것이다. 또한, 도 3은 도 1의 배터리 보호 회로가 탑재되는 인쇄회로기판의 일 예를 도시한 것이고, 도 4는 도 1의 배터리 보호 회로에서 셀 온도를 보정하는 방법을 설명하기 위한 도면이다.
도 1을 참조하면, 실시 예에 따른 배터리 팩(100)은 배터리 모듈(10), 인터페이스(30) 및 배터리 보호 회로를 포함할 수 있다.
배터리 모듈(10)은 서로 직렬 또는 병렬 연결되는 복수의 셀(11)을 포함할 수 있다. 한편, 도 1에서는 배터리 모듈(10)이 서로 직렬 연결되는 3개의 셀(11)을 포함하는 경우를 예로 들어 도시하였으나, 이는 설명의 편의를 위한 것으로서 본 발명이 이로 한정되는 것은 아니다. 배터리 모듈(10)을 구성하는 셀(11)의 개수 또는 결합 방법은 변경될 수 있다.
인터페이스(30)는 외부 기기와의 인터페이스를 수행하기 위한 복수의 단자들을 포함할 수 있다. 인터페이스(30)는 외부의 부하로 전기 에너지를 공급하거나, 외부의 충전 장치로부터 전기 에너지를 인가 받기 위한 팩 단자들(P+, P-)과, 외부 기기와 통신하기 위한 통신 단자들(T1, T2)을 포함할 수 있다.
배터리 보호 회로는, 배터리 모듈(10)의 보호 기능을 수행하는 회로이다. 배터리 보호 회로는, 충전 제어 스위치(C-SW), 방전 제어 스위치(D-SW), 퓨즈 소자(F1), 제1 및 제2 온도 센서(TS1, TS2), 션트 저항(SR) 및 배터리 제어기(21)를 포함할 수 있다. 또한, 배터리 보호 회로는, 배터리 모듈(10)의 셀(11)들과 결합하며, 배터리 보호 회로를 구성하는 소자들이 실장되는 인쇄회로기판(Printed Circuit Board, PCB)(도 3의 도면부호 200 참조)을 더 포함할 수 있다.
충전 제어 스위치(C-SW)는 배터리 모듈(10)의 충전 경로에 직렬로 연결되며, 배터리 모듈(10)의 충전 전류를 차단하거나 공급할 수 있다. 충전 경로는, 배터리 팩(100)의 팩 단자들(P+, P-)을 통해 연결되는 충전 장치(미도시)와 배터리 모듈(10) 사이의 전류 흐름 경로로서, 충전 장치로부터 공급되는 충전 전류를 배터리 모듈(10)로 전달하기 위한 경로이다.
방전 제어 스위치(D-SW)는 배터리 모듈(10)의 방전 경로에 직렬로 연결되며, 배터리 모듈(10)의 방전 전류를 차단하거나 공급할 수 있다. 방전 경로는, 배터리 팩(100)의 팩 단자들(P+, P-)을 통해 연결되는 부하(미도시)와 배터리 모듈(10) 사이의 전류 흐름 경로로서, 배터리 모듈(10)로부터 공급되는 방전 전류를 부하로 전달하기 위한 경로이다.
충전 경로 및 방전 경로는, 배터리 팩(100) 내 다른 전류 흐름 경로에 비해 경로를 통해 흐르는 전류의 크기가 비교적 크다. 본 문서에서는 방전 경로 및 충전 경로를 '대전류 경로'라 명명하여 사용하기도 한다.
충전 제어 스위치(C-SW) 및 방전 제어 스위치(D-SW)는 대전류 경로에 직렬로 연결되며, 배터리 제어기(21)로부터 제어 단자로 인가되는 제어 신호에 따라 대전류 경로를 통해 공급되는 전류(방전 전류 또는 충전 전류)를 차단하거나 허용할 수 있다.
충전 제어 스위치(C-SW)는 외부의 충전 장치로부터 대전류 경로를 통해 배터리 모듈(10)로 공급되는 충전 전류의 흐름을 차단하거나 허용할 수 있다. 제어 신호에 의해 충전 제어 스위치(C-SW)가 닫히면, 대전류 경로를 통해 충전 장치로부터 배터리 모듈(10)로 충전 전류가 흐를 수 있다. 반면에, 제어 신호에 의해 충전 제어 스위치(C-SW)가 오픈 되면, 충전 장치와 배터리 모듈(10) 사이의 대전류 경로를 흐르는 충전 전류의 흐름이 차단될 수 있다.
방전 제어 스위치(D-SW)는 대전류 경로를 통해 배터리 모듈(10)로부터 외부의 부하로 공급되는 방전 전류의 흐름을 차단하거나 허용할 수 있다. 방전 제어 스위치(D-SW)가 닫히면, 대전류 경로를 통해 배터리 모듈(10)로부터 부하로 방전 전류가 흐를 수 있다. 반면에, 방전 제어 스위치(D-SW)가 오픈되면, 배터리 모듈(10)과 부하 사이의 대전류 경로를 흐르는 방전 전류 흐름이 차단될 수 있다.
한편, 도 1에서는 충전 제어 스위치(C-SW) 및 방전 제어 스위치(D-SW)가 배터리 모듈(10)의 양극과 배터리 팩(100)의 양극 팩 단자(P+) 사이에 연결되는 경우를 예로 들어 도시하였으나, 본 발명이 이로 한정되는 것은 아니다. 다른 실시 예에 따르면, 충전 제어 스위치(C-SW) 또는 방전 제어 스위치(D-SW)가 배터리 모듈(10)의 음극과 배터리 팩(100)의 음극 팩 단자(P-) 사이에 연결될 수도 있다.
충전 제어 스위치(C-SW) 및 방전 제어 스위치(D-SW)는 각각 전계 효과 트랜지스터(Field Effect Transistor, FET)(미도시)를 포함할 수 있다. 이 경우, 충전 제어 스위치(C-SW) 및 방전 제어 스위치(D-SW)는 각각 기생 다이오드 (parasitic diode, 미도시)를 포함할 수 있다. 기생 다이오드들은 대응하는 FET에 의해 전류가 제한되는 방향에 반대 방향으로 전류가 흐르도록 동작한다. 예를 들어, 충전 제어 스위치(C-SW)에 포함된 기생 다이오드는 방전 경로로 전류가 흐르도록 하며, 방전 제어 스위치(D-SW)에 포함된 기생 다이오드는 충전 경로로 전류가 흐르도록 한다.
퓨즈 소자(F1)는 대전류 경로에 직렬 연결되며, 배터리 모듈(10)의 대전류 경로를 차단할 수 있다.
퓨즈 소자(F1)는 자가 제어 보호(Self Control Protection, SCP) 소자로 구현될 수 있다. 이 경우, 퓨즈 소자(F1)는 대전류 경로에 직렬 연결되는 한 쌍의 퓨즈(미도시)와 각 퓨즈에 병렬 연결되는 발열용 저항들(미도시)을 포함할 수 있다. 퓨즈 소자(F1)를 구성하는 한 쌍의 퓨즈들은 배터리 모듈(10)의 양극과 양극 팩 단자(P+) 사이에 직렬로 연결된다. 퓨즈 소자(F1)를 구성하는 한 쌍의 퓨즈들은 대응하는 발열용 저항의 발열에 의해 용단되며, 각 발열용 저항은 배터리 제어기(21) 또는 보호 회로(22)로부터 인가되는 제어신호(전압)에 의해 발열할 수 있다.
션트 저항(SR)은 전류 센싱 저항으로, 대전류 경로에 직렬 연결되어 대전류 경로를 통해 흐르는 전류(충전 전류 또는 방전 전류)를 검출하기 위해 사용될 수 있다.
도 1에서는 션트 저항(SR)이 배터리 모듈(10)의 음극 과 음극 팩 단자(P-) 사이에 연결되는 경우를 예로 들어 도시하였다. 그러나, 본 발명은 이로 한정되는 것은 아니어서, 다른 실시 예에 따르면, 션트 저항(SR)은 배터리 모듈(10)의 양극과 양극 팩 단자(P+) 사이의 대전류 경로에 연결될 수도 있다.
배터리 제어기(21)는 전압 측정용 단자들을 통해 배터리 모듈(10)을 구성하는 각 셀(11)에 연결되는 전압 검출 회로(미도시)를 포함할 수 있다. 전압 검출 회로는 배터리 모듈(10)을 구성하는 각 셀(11)의 셀 전압과, 배터리 모듈(10)의 양단 전압을 검출할 수도 있다.
또한, 배터리 제어기(21)는 전류 측정용 단자들을 통해 션트 저항(SR)의 양 단에 전기적으로 연결되는 전류 검출 회로(미도시)를 포함할 수 있다. 션트 저항(SR)은 배터리 모듈(10)과 어느 하나의 팩 단자(P-) 사이의 대전류 경로 상에 위치한다. 따라서, 전류 검출 회로는 션트 저항(SR)을 흐르는 전류를 검출하여, 이로부터 대전류 경로를 통해 흐르는 전류(충전 전류 또는 방전 전류)를 획득할 수 있다. 즉, 전류 검출 회로는 션트 저항(SR)의 양단 전압과, 션트 저항(SR)의 저항 값으로부터 션트 저항(SR)을 흐르는 전류를 산출하고, 이를 대전류 경로를 통해 흐르는 전류(충전 전류 또는 방전 전류)로 추정할 수 있다.
또한, 배터리 제어기(21)는 제1 및 제2 온도 센서(TS1, TS2)를 통해 각 셀(11)의 셀 온도를 검출할 수 있다.
제1 온도 센서(TS1)는 배터리 모듈(10)을 구성하는 셀(11)의 온도(이하, '셀 온도'라 명명하여 사용함)를 검출하여 배터리 제어기(21)로 전달한다.
제1 온도 센서(TS1)는 서미스터(Thermistor)를 포함할 수 있다.
제1 온도 센서(TS1)는 칩 타입(chip type)으로, 인쇄회로기판 상에 실장될 수 있다. 이 경우, 제1 온도 센서(TS1)는 셀(11)과 제1 온도 센서(TS1) 간의 열 저항을 최소화하여 셀 온도의 측정 정확도를 향상시키기 위해, 인쇄회로기판에서 셀(11)과 가장 인접한 영역 내에 실장될 수 있다.
칩 타입인 제1 온도 센서(TS1)는 인쇄회로기판 상에 실장되므로, 인쇄회로기판과 인쇄회로기판에 실장되는 발열 부품의 영향을 받아 측정 정확도가 떨어질 수 있다.
도 2는 칩 타입 온도 센서와 와이어 타입 온도 센서를 통해 방전 시 셀 온도를 측정한 일 예를 도시한 것이다. 도 2를 참조하면, 인쇄회로기판 없이 셀(11)에 접하도록 배치되는 와이어 타입 온도 센서에 비해, 칩 타입 온도 센서를 통해 측정된 셀 온도가 높게 나타남을 알 수 있다. 예를 들어, 와이어 타입 온도 센서를 통해 측정된 셀 온도는 대략 최고 48.2°C인 반면, 칩 타입 온도 센서로 측정된 셀 온도는 대략 최고 62.6°C 로 나타낸다. 이는 칩 타입 온도 센서가 탑재되는 인쇄회로기판의 발열과 칩 타입 온도 센서 주변에 위치하는 발열 부품들의 발열에 의해 칩 타입 온도 센서의 영향을 받기 때문이다.
따라서, 제1 온도 센서(TS1)는 전류 패턴, 발열 부품 등 발열원과 이격되어 배치될 수 있다. 도 3을 예로 들면, 제1 온도 센서(TS1)는 인쇄회로기판(200)에서 발열이 심한 충방전 전류 패턴과 중첩되지 않는 영역(202)에 배치될 수 있다.
또한, 실시 예에서는, 별도의 제2 온도 센서(TS2)를 통해 측정된 인쇄회로기판의 온도를 이용하여 제1 온도 센서(TS1)를 통해 측정된 셀 온도를 보상할 수 있다.
제2 온도 센서(TS2)는 제1 온도 센서(TS1)가 탑재되는 인쇄회로기판 즉, 배터리 보호 회로가 탑재되는 인쇄회로기판의 온도를 검출하여 배터리 제어기(21)로 전달할 수 있다.
제2 온도 센서(TS2)는 서미스터(Thermistor)를 포함할 수 있다.
제2 온도 센서(TS2)는 배터리 보호 회로를 구성하는 어느 하나의 집적 회로(Integrated Circuit) 내에 내장된 온도 센서일 수 있다. 최근, 주변 온도에 따라 성능이 변화할 수 있는 집적 회로 내에 온도 센서가 내장되어 출시되기도 한다. 따라서, 배터리 보호 회로를 구성하는 집적 회로들 중 온도 센서를 내장한 집적 회로가 존재하면, 이를 이용하여 인쇄회로기판의 온도를 측정함으로써 부품 추가에 따른 단가 상승을 최소화할 수 있다.
도 1을 예로 들면, 제2 온도 센서(TS2)는 배터리 제어기(21)로 동작하는 집적 회로 내 온도 센서일 수 있다. 이 경우, 전류 패턴, 발열 부품 등 다른 발열원의 제2 온도 센서(TS2)에 대한 영향을 최소화하기 위해, 제2 온도 센서(TS2)가 내장된 집적 회로는 다른 발열원들과 이격되어 배치될 수 있다. 도 3을 예로 들면, 제2 온도 센서(TS2)가 내장된 배터리 제어기(21)는 인쇄회로기판(200)에서 발열이 심한 충방전 전류 패턴과 최대한 중첩되지 않는 영역(201)에 배치될 수 있다.
배터리 제어기(21)는 제1 온도 센서(TS1)를 통해 각 셀(11)의 셀 온도를 획득하면, 제2 온도 센서(TS2)를 통해 측정된 인쇄회로기판의 온도를 이용하여 이를 보정한다.
도 4를 참조하면, 제1 온도 센서(TS1)를 통해 측정된 셀 온도는 실제 셀 온도에 높게 나타남을 알 수 있다. 따라서, 배터리 제어기(21)는 제2 온도 센서(TS2)를 통해 측정된 인쇄회로기판의 온도에 가중치를 곱한 후, 이를 배터리 제어기(21)는 제1 온도 센서(TS1)를 통해 측정된 셀 온도에서 감산하여 셀 온도를 보정할 수 있다.
이렇게 보정된 셀 온도는, 배터리 제어기(21)에서 각 셀(11)의 용량(또는 충전 상태(State Of Charge, SOC))을 예측하거나, 충방전 제어를 수행하는데 사용될 수 있다.
배터리 제어기(21)는 배터리 모듈(10)의 충방전 전류, 배터리 모듈(10)을 구성하는 각 셀(11)의 용량(또는 충전 상태(State Of Charge, SOC)), 셀 전압, 셀 온도 등을 획득하고, 이를 토대로 충전 제어 스위치(C-SW) 또는 방전 제어 스위치(D-SW)를 제어하여 배터리 모듈(10)의 충방전을 제어할 수 있다.
배터리 제어기(21)는 충전 제어 스위치(C-SW), 방전 제어 스위치(D-SW) 또는 퓨즈 소자(F1)를 제어하여, 과전압, 과전류, 단락 등으로부터 배터리모듈(10)을 보호하는 보호 동작을 수행할 수 있다.
예를 들어, 배터리 제어기(21)는 현재 배터리 모듈(10)이 과전압 상태로 판단되면, 충전 제어 스위치(C-SW)를 턴 오프 시키거나, 충전 제어 스위치(C-SW) 및 방전 제어 스위치(D-SW)를 턴 오프 시킬 수 있다. 또한, 배터리 제어기(21)는 배터리 모듈(10)이 과전압 상태로 판단되면, 퓨즈 소자(F1)를 제어하여 대전류 경로를 차단할 수도 있다.
또한, 예를 들어, 배터리 제어기(21)는 대전류 경로를 흐르는 전류를 토대로 배터리 모듈(10)의 과전류(과충전 전류, 과방전 전류) 상태를 검출하고, 배터리 모듈(10)이 과전류 상태이면 충전 제어 스위치(C-SW)를 턴 오프 시키거나, 충전 제어 스위치(C-SW) 및 방전 제어 스위치(D-SW)를 턴 오프 시킬 수 있다. 또한, 배터리 제어기(21)는 배터리 모듈(10)이 과전류 상태로 판단되면, 퓨즈 소자(F1)를 제어하여 대전류 경로를 차단할 수도 있다.
또한, 예를 들어, 배터리 제어기(21)는 대전류 경로를 흐르는 전류 또는 배터리 모듈(10)의 주변 온도를 토대로 배터리 팩(100) 내 단락(short) 고장을 검출하고, 단락 고장이 검출되면 퓨즈 소자(F1)를 제어하여 대전류 경로를 차단할 수 있다.
배터리 제어기(21)는 각 셀(11)의 셀 전압을 토대로 배터리 모듈(10)의 셀 밸런싱을 수행하는 셀 밸런싱 회로(미도시)의 동작을 제어할 수도 있다.
배터리 제어기(21)는 배터리 팩(100)의 통신 단자들(T1, T2)을 통해 외부 기기와 연결되어, 외부 기기와 통신을 수행할 수도 있다.
배터리 제어기(21)의 각 기능은, 하나 이상의 중앙 처리 유닛(central processing unit, CPU)이나 기타 칩셋, 마이크로컨트롤러(Micro Controller Unit, MCU), 마이크로프로세서(microprocessor) 등으로 구현되는 프로세서에 의해 수행될 수 있다.
배터리 제어기(21)는 하나 이상의 집적 회로(Integreated Circuit)로 구현되어, 배터리 보호 회로가 탑재되는 인쇄회로기판 상에 실장될 수 있다.
실시 예에 따른 배터리 보호 회로는, 보호 회로(22)를 추가로 더 포함할 수 있다.
보호 회로(22)는, 배터리 모듈(10)을 구성하는 각 셀(11)에 연결되는 전압 검출 회로(미도시)를 포함하며, 전압 검출 회로를 통해 각 셀(11)의 셀 전압을 검출할 수 있다. 보호 회로(22)는 각 셀(11)의 셀 전압에 기초하여 각 셀(11)의 과전압 상태를 검출하고, 특정 셀이 과전압 상태가 되면 퓨즈 소자(F1)를 제어하여 대전류 경로를 차단할 수 있다.
한편, 도 1에서는 배터리 보호 회로가 셀 온도 측정을 위한 제1 온도 센서(TS1)를 하나만 포함하는 경우를 예로 들어 도시하였다. 그러나, 본 발명은 이로 한정되는 것은 아니어서, 다른 실시 예에 따르면, 배터리 모듈(10)을 구성하는 셀의 개수에 따라 배터리 보호 회로에 포함되는 제1 온도 센서(TS1)의 개수가 결정될 수 있다. 예를 들어, 도 1에 도시된 바와 가티 3개의 셀(11)이 직렬 연결되어 배터리 모듈(10)을 구성하는 경우, 배터리 모듈(10)은 각 셀(11)에 대해 개별적으로 셀 온도를 측정하기 위해 3개의 제1 온도 센서(TS1)를 포함할 수도 있다.
또한, 전술한 일 실시 예에서는 제2 온도 센서(TS2)가 배터리 제어기(21)로 동작하는 집적 회로 내에 내장된 온도 센서인 경우를 예로 들어 설명하였으나, 본 발명은 이로 한정되는 것은 아니다.
도 5는 다른 실시 예에 따른 배터리 팩을 개략적으로 도시한 것이다.
도 5를 참조하면, 다른 실시 예에 따른 배터리 팩(100')에서 제2 온도 센서(TS2')는 배터리 제어기(21)와는 별도의 칩 타입 소자로 구현되어 인쇄회로기판 상에 실장될 수도 있다. 이 경우, 제2 온도 센서(TS2')는 전류 패턴, 발열 부품 등 다른 발열원의 영향을 최소화하기 위해, 전류 패턴 등 다른 발열원들과 최대한 중첩되지 않도록 배치될 수 있다.
전술한 실시 예들에 따르면, 배터리 보호 회로는 인쇄회로기판의 온도를 측정하고, 이를 이용하여 칩 타입 온도 센서를 통해 측정된 셀 온도를 보정함으로써, 셀 온도의 측정 정확도가 향상될 수 있다. 셀 온도의 측정 정확도가 향상됨에 따라, 배터리 보호 회로의 셀 용량 예측의 정확도 또한 향상되어 배터리 안전성이 확보될 수 있다. 또한, 배터리 모듈의 고율 방전 시 배터리 보호 회로를 통해 측정된 셀 온도가 실제 셀 온도보다 높아 불필요한 보호 동작이 수행되는 것을 방지할 수 있다.
지금까지 참조한 도면과 기재된 발명의 상세한 설명은 단지 본 발명의 예시적인 것으로서, 이는 단지 본 발명을 설명하기 위한 목적에서 사용된 것이지 의미 한정이나 특허청구범위에 기재된 본 발명의 범위를 제한하기 위하여 사용된 것은 아니다. 그러므로 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시 예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.
(부호의 설명)
10: 배터리 모듈
11: 셀
30: 인터페이스
100, 100': 배터리 팩
21: 배터리 제어기
22: 보호 회로
200: 인쇄회로기판
TS1, TS2, TS2': 온도 센서
C-SW: 충전 제어 스위치
D-SW: 방전 제어 스위치
F1: 퓨즈 소자

Claims (7)

  1. 셀과 결합하는 인쇄회로기판,
    상기 인쇄회로기판에 배치되며, 상기 셀의 온도를 측정하는 제1 온도 센서,
    상기 인쇄회로기판에 배치되며, 상기 인쇄회로기판의 온도를 측정하는 제2 온도 센서, 및
    상기 제2 온도 센서를 통해 측정된 상기 인쇄회로기판의 온도를 이용하여, 상기 제1 온도 센서를 통해 측정된 상기 셀의 온도를 보정하는 집적 회로를 포함하는 배터리 보호 회로.
  2. 제1항에 있어서,
    상기 제1 온도 센서는 상기 인쇄회로기판에 실장되는 칩 타입 서미스터인 배터리 보호 회로.
  3. 제1항에 있어서,
    상기 제2 온도 센서는 상기 집적 회로에 내장되는 배터리 보호 회로.
  4. 제1항에 있어서,
    상기 제2 온도 센서는 상기 인쇄회로기판에 실장되는 칩 타입 서미스터인 배터리 보호 회로.
  5. 제1항에 있어서,
    상기 집적 회로는 상기 제2 온도 센서를 통해 측정된 온도에 가중치를 적용한 값을, 상기 제1 온도 센서를 통해 측정된 상기 셀의 온도에서 차감함으로써 상기 셀의 온도를 보정하는 배터리 보호 회로.
  6. 제1항에 있어서,
    상기 집적 회로는 보정된 상기 셀의 온도에 기초하여 상기 셀의 용량을 추정하는 배터리 보호 회로.
  7. 제1항에 있어서,
    상기 셀과 복수의 팩 단자 사이의 대전류 경로에 직렬 연결되는 충전 제어 스위치를 더 포함하며,
    상기 집적 회로는 보정된 상기 셀의 온도에 기초하여 상기 충전 제어 스위치를 제어하는 배터리 보호 회로.
PCT/KR2018/009706 2017-09-20 2018-08-23 배터리 보호 회로 WO2019059540A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0121271 2017-09-20
KR1020170121271A KR102503796B1 (ko) 2017-09-20 2017-09-20 배터리 보호 회로

Publications (1)

Publication Number Publication Date
WO2019059540A1 true WO2019059540A1 (ko) 2019-03-28

Family

ID=65811366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/009706 WO2019059540A1 (ko) 2017-09-20 2018-08-23 배터리 보호 회로

Country Status (2)

Country Link
KR (1) KR102503796B1 (ko)
WO (1) WO2019059540A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3937337A1 (en) * 2020-07-09 2022-01-12 Japan Tobacco Inc. Power supply unit for aerosol inhaler comprising a temperature sensor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102652768B1 (ko) * 2021-03-29 2024-04-01 엘에스일렉트릭(주) 배터리 보호 장치 및 그 배터리 보호 장치의 제어 방법
CN113314772B (zh) * 2021-04-09 2022-10-11 厦门凯跃利自动化有限公司 一种蓄电池组件及加工工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050269991A1 (en) * 2002-07-12 2005-12-08 Masahiko Mitsui Battery state-of-charge estimator
JP4305995B2 (ja) * 1999-03-05 2009-07-29 ソニー株式会社 バッテリーパック及びそのバッテリー残容量算出方法
KR101265933B1 (ko) * 2010-04-28 2013-05-20 도요타지도샤가부시키가이샤 전지 온도 측정 장치 및 전지 온도 측정 방법, 전지의 제조 방법
KR20170087336A (ko) * 2016-01-20 2017-07-28 한국전자통신연구원 배터리 보호 회로 및 그것을 포함하는 웨어러블 디바이스
KR20170099589A (ko) * 2016-02-24 2017-09-01 삼성에스디아이 주식회사 배터리 모듈

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005287092A (ja) * 2004-03-26 2005-10-13 Matsushita Electric Works Ltd 充電装置及びこの充電装置を備えてなる充電式電動器具セット

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4305995B2 (ja) * 1999-03-05 2009-07-29 ソニー株式会社 バッテリーパック及びそのバッテリー残容量算出方法
US20050269991A1 (en) * 2002-07-12 2005-12-08 Masahiko Mitsui Battery state-of-charge estimator
KR101265933B1 (ko) * 2010-04-28 2013-05-20 도요타지도샤가부시키가이샤 전지 온도 측정 장치 및 전지 온도 측정 방법, 전지의 제조 방법
KR20170087336A (ko) * 2016-01-20 2017-07-28 한국전자통신연구원 배터리 보호 회로 및 그것을 포함하는 웨어러블 디바이스
KR20170099589A (ko) * 2016-02-24 2017-09-01 삼성에스디아이 주식회사 배터리 모듈

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3937337A1 (en) * 2020-07-09 2022-01-12 Japan Tobacco Inc. Power supply unit for aerosol inhaler comprising a temperature sensor
US11445762B2 (en) 2020-07-09 2022-09-20 Japan Tobacco Inc. Power supply unit for aerosol inhaler
EP3937337B1 (en) 2020-07-09 2022-11-09 Japan Tobacco Inc. Power supply unit for aerosol inhaler comprising a temperature sensor

Also Published As

Publication number Publication date
KR102503796B1 (ko) 2023-02-23
KR20190032882A (ko) 2019-03-28

Similar Documents

Publication Publication Date Title
WO2013055026A1 (ko) 배터리 보호회로의 패키지 모듈
EP3579300B1 (en) Battery protection circuit and battery pack including same
WO2018194249A1 (ko) 과충전 방지 장치 및 방법
WO2017030321A1 (ko) 배터리 보호회로 모듈, 및 이를 포함하는 배터리 팩
TWI680621B (zh) 電池保護電路及包含其之電池組
CN102110976B (zh) 用于电池组的保护电路
WO2015167046A1 (ko) 이차 전지용 회로 기판 및 이를 포함하는 배터리 팩
WO2019059540A1 (ko) 배터리 보호 회로
WO2018074807A1 (ko) 듀티 제어를 통한 효과적인 배터리 셀 밸런싱 방법 및 시스템
WO2014084628A1 (ko) 배터리 전류 측정 장치 및 그 방법
KR20100089788A (ko) 이차전지의 충방전 시스템 및 이차전지의 충방전 제어 방법
WO2017030320A1 (ko) 배터리 보호회로 모듈, 및 이를 포함하는 배터리 팩
WO2020032514A1 (ko) 전류 검출 회로, 배터리 관리 시스템 및 배터리팩
WO2018066839A1 (ko) 전압 분배를 이용한 퓨즈 진단 장치 및 방법
WO2011078447A1 (ko) 배터리 보호회로의 통합칩 배치구조
WO2019151631A1 (ko) 배터리 보호 회로 및 이를 포함하는 배터리 팩
JP2010080141A (ja) 多直列多並列電池パック
WO2020190009A1 (ko) 배터리 안전성 시험 장치 및 방법
WO2018124374A1 (ko) 전기자동차 충전기의 누전차단장치
WO2016167467A1 (ko) 배터리 보호회로 패키지 및 이를 포함하는 배터리 팩
WO2019088404A1 (ko) 배터리 충전량 표시 방법 및 이를 수행하는 배터리 팩 및 전자 기기
WO2015178573A1 (ko) 와이어를 이용한 션트저항을 갖는 배터리 보호 ic 장치
WO2018143541A1 (ko) 배터리 팩, 배터리 관리 시스템 및 그 방법
WO2015005600A1 (ko) 싱글 mosfet을 이용한 배터리 보호회로 및 이를 위한 프로텍션 ic 시스템
WO2018143561A1 (ko) 배터리 팩 및 배터리 팩의 데이터 송신 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18858275

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18858275

Country of ref document: EP

Kind code of ref document: A1