WO2018186286A1 - イオン分析装置 - Google Patents

イオン分析装置 Download PDF

Info

Publication number
WO2018186286A1
WO2018186286A1 PCT/JP2018/013441 JP2018013441W WO2018186286A1 WO 2018186286 A1 WO2018186286 A1 WO 2018186286A1 JP 2018013441 W JP2018013441 W JP 2018013441W WO 2018186286 A1 WO2018186286 A1 WO 2018186286A1
Authority
WO
WIPO (PCT)
Prior art keywords
radical
ion
ions
radicals
generated
Prior art date
Application number
PCT/JP2018/013441
Other languages
English (en)
French (fr)
Inventor
高橋 秀典
元 和田
Original Assignee
株式会社島津製作所
学校法人同志社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所, 学校法人同志社 filed Critical 株式会社島津製作所
Priority to JP2019511198A priority Critical patent/JP6713646B2/ja
Priority to US16/500,124 priority patent/US10998177B2/en
Publication of WO2018186286A1 publication Critical patent/WO2018186286A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0422Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components for gaseous samples
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/004Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn
    • H01J49/0045Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn characterised by the fragmentation or other specific reaction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/622Ion mobility spectrometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0495Vacuum locks; Valves

Definitions

  • the present invention relates to an ion analyzer that generates and analyzes product ions from precursor ions derived from sample components by reactions such as dissociation, chain breakage, and atom / molecule addition.
  • ion ions derived from sample components are dissociated one or more times to generate fragment ions (also called product ions), which are separated according to the mass-to-charge ratio.
  • Mass spectrometry is widely used.
  • an ion trap time-of-flight mass spectrometer is used as an apparatus for executing such mass spectrometry.
  • CID collision Induced Dissociation
  • the CID method is an energy storage type ion dissociation method, and the energy imparted to the precursor ion is dispersed throughout the molecule, so the selectivity of the position where the precursor ion dissociates is low. Therefore, it is an unsuitable ion dissociation method when it is necessary to dissociate the precursor ion at a specific site (amino acid binding position) as in analysis of proteins and peptides.
  • ETD electron transfer dissociation
  • the ETD method is effective only for positive ions because it is ionized by irradiating negative ions as reactive ions, and it is difficult to dissociate the negative ions.
  • the operation of performing multiple dissociations to generate immonium ions containing amino acid side chains is more than the number of amino acid residues. Applicable only to positive ions with valence.
  • MALDI matrix-assisted laser desorption / ionization
  • Non-Patent Document 3 describes that hydrogen gas is introduced into a capillary heated to 2000 ° C. to generate a hydrogen radical (hydrogen atom) by a thermal dissociation reaction, and the precursor ion is irradiated. Since the HAD method is a radical-induced ion dissociation method in which hydrogen radicals are bonded to precursor ions as in the ETD method, the precursor ions can be dissociated at specific sites.
  • HAD hydrogen attachment-dissociation
  • the HAD method also has the advantage that it can be used regardless of the polarity or valence of the precursor ion.
  • a method of introducing hydrogen gas into a microwave ion source to generate hydrogen radicals and irradiating the precursor ions (hereinafter referred to as “microwave radical generation method”) (Non-Patent Document 4)
  • a method of generating radicals by corona discharge of water vapor and irradiating the precursor ions hereinafter referred to as “corona discharge radical generation method” (non-patent document 5) has also been proposed.
  • Non-Patent Document 3 radicals cannot be generated from raw material gases other than hydrogen gas by the method of generating radicals by thermal decomposition.
  • the microwave radical generation method described in Non-Patent Document 4 does not propose using a source gas other than hydrogen gas.
  • the hydrogen gas described in these documents is difficult to handle and is dangerous.
  • the microwave radical generation method has only been reported to be used for the dissociation of low molecular weight compounds (hydrocarbons) having a mass number of 100 or less at present, and the precursor ions derived from biological macromolecules such as proteins and peptides have been reported. It is unknown whether it is effective for dissociation.
  • the raw material gas used in the corona discharge radical generation method proposed in Non-Patent Document 5 is water vapor, which is easy to handle and has no danger.
  • a space of atmospheric pressure or pressure close to atmospheric pressure
  • the mass separation unit that sorts out precursor ions by the mass spectrometer and the mass separation unit that mass-separates fragment ions generated by the dissociation of precursor ions are placed in a high vacuum space, so try to place an atmospheric pressure space between them. Then, a large vacuum pump must be arranged before and after that, and the apparatus becomes large and expensive.
  • radicals generated under atmospheric pressure tend to disappear due to recombination and the like by colliding with surrounding gas and radicals, and radical utilization efficiency is poor.
  • the fragment ion generated by dissociating the precursor ion is measured with a mass spectrometer.
  • the product ion in which an atom or molecule is added to the precursor ion the fragment ion or product
  • the ion analyzer that generates and analyzes product ions from precursor ions by reactions such as dissociation and addition of atoms and molecules has the same problem as described above.
  • the problem to be solved by the present invention is an ion analyzer that generates radicals from a raw material gas that can be easily handled under high vacuum and reacts with precursor ions derived from a polymer compound to generate product ions. Is to provide.
  • the present invention made to solve the above problems is an ion analyzer for generating and analyzing product ions from precursor ions derived from sample components, a) a reaction chamber into which the precursor ions are introduced; b) a radical generation chamber; c) a source gas supply source for introducing source gas into the radical generation chamber; d) a vacuum exhaust part for exhausting the radical generation chamber; e) a vacuum discharge section for generating a vacuum discharge in the radical generation chamber; f) a radical irradiation unit that irradiates the inside of the reaction chamber with radicals generated from the source gas in the radical generation chamber; g) A separation detection unit that separates and detects product ions generated from the precursor ions by reaction with the radicals according to at least one of a mass-to-charge ratio and an ion mobility.
  • the product ions include not only fragment ions generated by dissociation of precursor ions, but also ions generated by adding atoms or molecules to the precursor ions.
  • an ion trap that selects and traps precursor ions having a specific mass-to-charge ratio by the action of an electric field can be used.
  • a collision cell through which precursor ions selected by the mass separation unit located in the previous stage pass can also be used.
  • a high-frequency plasma source or a hollow cathode plasma source can be used for the vacuum discharge unit.
  • a capacitive coupling type rather than an inductive coupling type produces a higher temperature of the radicals and increases its reactivity, which may increase the production efficiency of product ions. is expected.
  • precursor ions derived from sample components are introduced into a reaction chamber, and radicals generated from a source gas by a vacuum discharge in a radical generation chamber evacuated to a predetermined degree of vacuum using a vacuum evacuation unit.
  • the precursor ions in the reaction chamber are irradiated.
  • a precursor ion reacts with a radical and a product ion is generated.
  • the generated product ions are separated and detected in the separation detection unit according to at least one of the mass-to-charge ratio and the ion mobility.
  • a vacuum discharge unit such as a high-frequency plasma source or a hollow cathode plasma source is used, it is not necessary to provide an atmospheric pressure space in the ion analyzer. Further, since radicals are generated using plasma generated by vacuum discharge, radicals can be generated from various types of source gases such as water vapor and air that are easy to handle.
  • the radical preferably includes at least one of a hydroxyl radical, an oxygen radical, a nitrogen radical, and a hydrogen radical, and in particular, at least one of a hydroxyl radical and an oxygen radical. More preferably, one is included.
  • raw materials that can generate such radicals include water (water vapor), hydrogen peroxide, and air. Water or air is preferable as a raw material gas from the viewpoint of safe handling.
  • usable source gases and radical species are not limited to these.
  • hydrochloric acid, sodium chloride, sulfuric acid, sodium sulfide, hydrofluoric acid, sodium fluoride, sodium hydrogen carbonate, sodium hydroxide, hydrogen peroxide, carbon dioxide, carbohydrates, and hydrocarbons each represented by chlorides, sulfur compounds, hydrofluoric acid Radicals can be generated from fluorides, hydroxides, oxides and carbides and used for dissociation reactions.
  • the ion analyzer according to the present invention further includes: h) It is preferable to include a heat application unit that applies heat to the precursor ions introduced into the reaction chamber. By applying heat to the precursor ions, the internal energy can be increased to increase the reactivity with radicals, and product ions can be generated with high efficiency.
  • the heat application unit includes a heating unit for heating the reaction chamber.
  • the heat applying unit includes a heating unit that heats the reaction chamber, the reactive gas can be removed from the reaction chamber to prevent contamination inside the ion trap. This is particularly effective when the source gas is a reactive gas.
  • the ion analyzer By using the ion analyzer according to the present invention, it is possible to generate radicals from a raw material gas that is easy to handle under high vacuum and react with precursor ions derived from a polymer compound to generate product ions.
  • the schematic block diagram of the ion trap time-of-flight mass spectrometer which is one Example of the ion analyzer which concerns on this invention.
  • steam by high frequency discharge in vacuum In the mass spectrometer of a present Example, the partial enlarged view of the mass spectrum acquired by irradiating and measuring the peptide ion with the radical produced
  • the ion analyzer of this example is an ion trap-time-of-flight (IT-TOF type) mass spectrometer.
  • FIG. 1 shows a schematic configuration of an ion trap-time-of-flight mass spectrometer (hereinafter also simply referred to as “mass spectrometer”) according to the present embodiment.
  • the mass spectrometer of the present embodiment captures an ion source 1 that ionizes components in a sample and an ion generated by the ion source 1 by the action of a high-frequency electric field inside a vacuum chamber (not shown) maintained in a vacuum atmosphere.
  • An ion trap 2 a time-of-flight mass separation unit 3 that separates ions ejected from the ion trap 2 according to a mass-to-charge ratio, and an ion detector 4 that detects the separated ions.
  • the ion trap mass spectrometer of the present embodiment further includes a radical irradiation unit 5 for irradiating the precursor ions captured in the ion trap 2 with radicals to dissociate ions captured in the ion trap 2;
  • the ion trap 2 includes an inert gas supply unit 6 that supplies a predetermined inert gas, a trap voltage generation unit 7, a control unit 8, and a data processing unit 9.
  • the ion source 1 of the mass spectrometer of this example is a MALDI ion source.
  • a material that easily absorbs laser light and is easily ionized (matrix material) is applied to the surface of the sample, the matrix material incorporating the sample molecules is microcrystallized, and this is irradiated with laser light. Thereby ionizing the sample molecules.
  • the ion trap 2 includes a three-dimensional ion including an annular ring electrode 21 and a pair of end cap electrodes (an inlet side end cap electrode 22 and an outlet side end cap electrode 24) arranged to face each other across the ring electrode 21. It is a trap.
  • the ring electrode 21 has a radical particle inlet 26 and a radical particle outlet 27, the inlet end cap electrode 22 has an ion introduction hole 23, and the outlet end cap electrode 24 has an ion injection hole 25. Yes.
  • the trap voltage generator 7 applies either one of the high-frequency voltage and the direct-current voltage to the electrodes 21, 22, and 24 or a voltage obtained by synthesizing them at a predetermined timing in response to an instruction from the controller 8 .
  • the radical irradiation unit 5 exhausts the nozzle 54 having a radical generation chamber 51 formed therein, a source gas supply unit (source gas supply source) 52 for introducing a source gas into the radical generation chamber 51, and the radical generation chamber 51.
  • a vacuum pump (evacuation unit) 57 an inductively coupled high-frequency plasma source 53 that supplies a microwave for generating a vacuum discharge in the radical generation chamber 51, and an opening on the central axis of the jet flow from the nozzle 54
  • a skimmer 55 that separates diffusing source gas molecules and the like to extract a small-diameter radical flow, and a valve 56 provided in a flow path from the source gas supply source 52 to the radical generation chamber 51.
  • the source gas for example, water vapor (water) or air can be used.
  • water vapor water
  • oxygen radicals and nitrogen radicals are generated, and when air is used, oxygen radicals and nitrogen radicals are mainly generated.
  • the radical irradiation unit 5 for example, the one described in Non-Patent Document 6 can be used.
  • the schematic configuration is shown in FIG.
  • the radical irradiation unit 5 is roughly composed of a source gas supply source 52, a high frequency plasma source 53, and a nozzle 54.
  • the high-frequency plasma source 53 includes a microwave supply source 531 and a three-stub tuner 532.
  • the nozzle 54 includes a ground electrode 541 constituting an outer peripheral portion, and a Pyrex (registered trademark) glass torch 542 located inside thereof, and the inside of the torch 542 serves as a radical generation chamber 51.
  • a needle electrode 543 connected to the high-frequency plasma source 53 via the connector 544 passes through the radical generation chamber 51 in the longitudinal direction.
  • a flow path for supplying a raw material gas from the raw material gas supply source 52 to the radical generation chamber 51 is provided, and a valve 56 for adjusting the flow rate of the raw material gas is provided on the flow path.
  • the inert gas supply unit 6 includes a gas supply source 61 that stores helium, argon, or the like used as a buffer gas or a cooling gas, a valve 62 that can adjust the flow rate, and a gas introduction pipe 63.
  • the analysis operation in the mass spectrometer of the present embodiment will be described.
  • the inside of the vacuum chamber and the radical generation chamber 51 is evacuated to a predetermined degree of vacuum by a vacuum pump.
  • the source gas is supplied from the source gas supply source 52 to the radical generation chamber 51 of the radical irradiation unit 5 and the microwave is supplied from the high frequency plasma source 53, thereby generating radicals inside the radical generation chamber 51.
  • ions (mainly monovalent ions) generated from a sample such as a peptide mixture in the ion source 1 are ejected from the ion source 1 in the form of packets and pass through an ion introduction hole 23 formed in the inlet end cap electrode 22. It is introduced inside the ion trap 2. Ions derived from peptides introduced into the ion trap 2 are captured by a high-frequency electric field formed in the ion trap 2 by a voltage applied from the trap voltage generator 7 to the ring electrode 21. After that, a predetermined voltage is applied from the trap voltage generator 7 to the ring electrode 21 and the like, thereby exciting ions included in a mass-to-charge ratio range other than ions having a specific mass-to-charge ratio. 2 is excluded. Thereby, precursor ions having a specific mass-to-charge ratio are selectively captured in the ion trap 2.
  • the valve 62 of the inert gas supply unit 6 is opened, and an inert gas such as helium gas is introduced into the ion trap 2 to cool the precursor ions.
  • an inert gas such as helium gas
  • the valve 56 of the radical irradiation unit 5 is opened, and a gas containing radicals generated in the radical generation chamber 51 is ejected from the nozzle 54.
  • the gas molecules are removed by the skimmer 55 positioned in front of the jet flow, and radicals that have passed through the openings of the skimmer 55 are formed into a narrow beam shape, and the radical particle inlet 26 formed in the ring electrode 21. Pass through. This radical is introduced into the ion trap 2 and irradiated to the precursor ions trapped in the ion trap 2.
  • the opening degree of the valve 56 and the like are adjusted so that the flow rate of radicals irradiated to the ions becomes equal to or higher than a predetermined flow rate.
  • the irradiation time of the radical to the precursor ion is also set appropriately.
  • the opening degree of the bulb 56 and the radical irradiation time can be determined in advance based on the results of preliminary experiments.
  • the product ions generated here include both fragment ions and adduct ions.
  • ions having a constant acceleration energy are introduced into the flight space of the time-of-flight mass separation unit 3 and separated according to the mass-to-charge ratio while flying in the flight space.
  • the ion detector 4 sequentially detects the separated ions, and the data processing unit 9 receiving the detection signal creates a time-of-flight spectrum with the time point of emission of ions from the ion trap 2 being time zero, for example. Then, the product ion spectrum is created by converting the flight time into the mass-to-charge ratio using the mass calibration information obtained in advance.
  • the data processing unit 9 identifies components (peptides) in the sample by performing predetermined data processing based on information (mass information) obtained from the mass spectrum.
  • the partial structure of the peptide can be determined from the mass-to-charge ratio of the fragment ions.
  • the presence of a site having a certain characteristic contained in the peptide can be seen from the specificity of the adduct ion adduct. For example, it is known that oxygen easily adheres to methionine and aromatic amino acids, and information such as the number of methionine and aromatic amino acids contained in the peptide can be obtained from adduct ions to which oxygen is added.
  • the precursor ions derived from the sample components are introduced into the ion trap 2, and the high-frequency discharge is performed in the radical generation chamber 51 evacuated to a predetermined degree of vacuum by the vacuum pump 57. Radicals are generated from the source gas and irradiated to the precursor ions in the ion trap 2. Thereby, a precursor ion reacts with a radical and a product ion is generated. The generated product ions are separated and detected by the time-of-flight mass separation unit 3 according to the mass to charge ratio.
  • the radical irradiation unit 5 including the high-frequency plasma source 53 since the radical irradiation unit 5 including the high-frequency plasma source 53 is used, an atmospheric pressure space is provided inside the mass spectrometer as in the conventional configuration in which radicals are generated using corona discharge. There is no need. Further, since radicals are generated using plasma generated using the high-frequency plasma source 53, radicals can be generated from various types of source gases such as water vapor and air that are easy to handle. Therefore, it is not necessary to use hydrogen gas which is difficult to handle unlike the conventional HAD method, and radicals of various atomic species can be used.
  • FIG. 3 shows experimental results for confirming that hydrogen radicals are generated from water vapor in the mass spectrometer of this example.
  • fullerene (C 60 ) ions are trapped in the ion trap 2 and are mass spectra obtained by measuring ions reacted by irradiation with radicals generated from water vapor.
  • the reaction time radical irradiation time
  • the mass-to-charge ratio of fullerene ions shifts by the mass of hydrogen radicals (1 Da) as the reaction time increases. From this result, it can be seen that hydrogen radicals are generated by the discharge of water vapor and added to the fullerene ions.
  • Fig. 4 shows the product ion spectrum obtained by trapping peptide ions (arrangement: RPKPQQFFGLM) in the ion trap 2 and irradiating with 500 ms of radicals generated by high-frequency discharge of water vapor (frequency 2.5 GHz, applied power 50 W) under vacuum. It is.
  • the degree of vacuum of the ion trap 2 was 1 ⁇ 10 ⁇ 2 Pa, and the degree of vacuum of the radical generation chamber 51 was 1 Pa.
  • the flow rate of water vapor was 1 sccm.
  • mass peaks of c / a series fragment ions appear, and it can be seen that the precursor ions are dissociated at a specific site by radical irradiation.
  • FIG. 5 is an enlarged view of the vicinity of the precursor ion peak in the product ion spectrum obtained by using the same peptide ion as in FIG. 4 before and after radical irradiation.
  • the upper row shows the mass spectrum before radical irradiation, and the lower row shows the mass spectrum after radical irradiation. Comparing these, the mass spectrum after radical irradiation shows a mass peak of ions from which one or more hydrogens have been extracted from the precursor ion, indicating that hydroxyl radicals that have the effect of extracting hydrogen have been generated and reacted with peptide ions. I understand.
  • 3 to 5 show that hydrogen radicals, oxygen radicals, and hydroxyl radicals are generated by high-frequency discharge of water vapor under vacuum. 4 and 5 clearly show mass peaks of ions generated by the action of oxygen radicals and hydroxyl radicals, and among these three types of radicals, oxygen radicals and hydroxyl radicals are particularly responsible for the dissociation of peptide ions. You can see that it contributes.
  • FIG. 6 shows a radical generated by trapping peptide ions (array: RPKPQQFFGLM) in the ion trap 2 and high-frequency discharge of air (frequency 2.5 GHz, applied power 50 W) in the ion trap 2 in the mass spectrometer of the above embodiment. It is a mass spectrum obtained by irradiation for 500 ms. In addition, the mass peak of the fragment ion is expanded 10 times.
  • the degree of vacuum of the ion trap 2 was 1 ⁇ 10 ⁇ 2 Pa, and the degree of vacuum of the radical generation chamber 51 was 1 Pa.
  • the air flow rate was 1 sccm. That is, only the type of source gas is different from the experiment of FIG.
  • the ions trapped in the ion trap 2 are irradiated with radicals generated from the source gas by vacuum discharge to dissociate the ions to generate product ions.
  • radicals generated from the source gas by vacuum discharge to dissociate the ions to generate product ions.
  • peptide-derived product ions can be generated from the sample and analyzed.
  • radical reactivity may be low, and product ion generation efficiency may not always be high. Therefore, the mass spectrometer of the modification has a configuration for increasing the ion dissociation efficiency and increasing the ion dissociation sequence coverage, that is, reducing the binding site specificity.
  • an insulator for maintaining the relative position of the electrodes 21, 22, 24 while ensuring electrical insulation between the ring electrode 21 of the ion trap 2 and the end cap electrodes 22, 24 (alumina ceramic) member is replaced with a ceramic heater 28.
  • the ceramic heater 28 is connected to the heater power supply unit 10.
  • the heater power supply unit 10 supplies heating power to the ceramic heater 28 under the control of the control unit 8
  • the ceramic heater 28 generates heat.
  • the electrodes 21, 22, 24 are also heated by heat conduction from the ceramic heater 28.
  • a thermocouple (not shown) is embedded in the ceramic heater 28, the heating power supplied based on the monitor temperature of the ceramic heater 28 by the thermocouple is adjusted, and the amount of heat generated by the ceramic heater 28 is feedback controlled. Thereby, the ceramic heater 28 is accurately adjusted to the target temperature.
  • each electrode 21, 22, 24 of the ion trap 2 is heated by the ceramic heater 28, product ions are discharged from the ion trap 2 from the point of time when radicals are introduced into the ion trap 2 as described above, and mass spectrometry is performed.
  • helium gas or other inert gas
  • the heat of each electrode 21, 22, 24 of the ion trap 2 propagates to the precursor ion through the buffer gas, and this heat activates the ion, that is, the energy by the heat is applied to improve the dissociation efficiency of the precursor ion.
  • a bond that is difficult to be cleaved without applying heat that is, a bond site having a high bond energy
  • more types of product ions are generated, thereby improving sequence coverage.
  • a gas introduction pipe heater 64 is also provided around the gas introduction pipe 63 for supplying gas from the gas supply source 61 of the inert gas supply unit 6 into the ion trap 2. Heating power is supplied to the gas introduction pipe heater 64 from the heater power source 10 to heat the gas introduction pipe 63 in advance, and inactive at the same timing as introducing the buffer gas into the ion trap 2 in the above embodiment.
  • Helium gas (or other inert gas) as a buffer gas is introduced into the ion trap 2 from the gas supply unit 6. At this time, the helium gas is heated by the gas introduction pipe 63 near the gas introduction pipe heater 64 and is introduced into the ion trap 2 in a high temperature state.
  • the ion trap time-of-flight mass spectrometer equipped with a three-dimensional ion trap is used in the above-described embodiments and modifications, a linear ion trap or a collision cell is used instead of the three-dimensional ion trap, and precursor ions are added to them. It can also be configured to irradiate radicals at the timing of introduction.
  • the time-of-flight mass separation part was made into the linear type, you may use a time-of-flight mass separation part, such as a reflectron type and a multiturn type.
  • the time-of-flight mass separation unit In addition to the time-of-flight mass separation unit, other types of mass separation units such as those that perform mass separation using the ion separation function of the ion trap 2 itself and orbitraps can be used. Furthermore, the radical irradiation part demonstrated in the said Example can be used suitably also in an ion mobility analyzer other than a mass spectrometer. Furthermore, although the high-frequency plasma source is used as the vacuum discharge unit in the above-described embodiments and modifications, a hollow cathode plasma source can be used instead.
  • oxygen radicals, hydroxyl radicals, hydrogen radicals, and nitrogen radicals were generated and dissociated by using water vapor, air, and nitrogen gas as source gases.
  • usable source gases and radical species are limited to these.
  • hydrochloric acid, sodium chloride, sulfuric acid, sodium sulfide, hydrofluoric acid, sodium fluoride, sodium hydrogen carbonate, sodium hydroxide, hydrogen peroxide, carbon dioxide, carbohydrates, and hydrocarbons each represented by chlorides, sulfur compounds, hydrofluoric acid Radicals can be generated from fluorides, hydroxides, oxides and carbides and used for dissociation reactions.
  • a reactive substance may adhere to the ion trap that causes a dissociation reaction to contaminate the ion trap.
  • the reactive substances can adhere to the precursor ions and cause unwanted mass peaks.
  • a heating unit reaction chamber heating unit
  • the reactive gas that causes contamination can be removed by heating the ion trap to a temperature of 60 ° C. or higher.
  • heating to 80 ° C. or higher is preferable, and heating to 100 ° C. or higher is more preferable.
  • the heating temperature it is considered that the reactive gas is almost completely removed by heating the ion trap to about 300 ° C., and it is not necessary to heat to a temperature higher than that.
  • the ion trap may be heated for at least 5 seconds, and it is sufficient to heat it for 60 minutes at the longest.
  • the raw material gas supply source 52 and / or the flow path extending from the raw material gas supply source 52 to the nozzle 54 has a configuration including a heating unit. It is preferable to increase the pressure.
  • the results of measuring product ions generated by dissociation of precursor ions were explained, but in the ion analyzer according to the present invention, ions generated by adding atoms or molecules to precursor ions are analyzed. It can also be suitably used for this.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

試料成分由来のプリカーサイオンからプロダクトイオンを生成して分析するイオン分析装置において、前記プリカーサイオンが導入される反応室(2)と、ラジカル生成室(51)と、前記ラジカル生成室(51)に原料ガスを導入する原料ガス供給源(52)と、前記ラジカル生成室(51)を排気する真空排気部(57)と、前記ラジカル生成室(51)で真空放電を生じさせる真空放電部(53)と、前記ラジカル生成室(51)で原料ガスから生成されたラジカルを反応室(2)の内部に照射するラジカル照射部(54)と、ラジカルとの反応によりプリカーサイオンから生成されたプロダクトイオンを質量電荷比及びイオン移動度の少なくとも一方に応じて分離し検出する分離検出部(3)とを備える。

Description

イオン分析装置
 本発明は、解離や鎖切断,原子・分子付加といった反応により試料成分由来のプリカーサイオンからプロダクトイオンを生成して分析するイオン分析装置に関する。
 高分子化合物を同定したりその構造を解析したりするために、試料成分由来のイオンを1又は複数回解離させてフラグメントイオン(プロダクトイオンとも呼ばれる。)を生成し、質量電荷比に応じて分離し検出する質量分析法が広く利用されている。このような質量分析法を実行する装置として、例えばイオントラップ飛行時間型質量分析装置が用いられる。イオントラップ飛行時間型質量分析装置においてイオントラップに捕捉されている分子量の大きなプリカーサイオンを解離する手法としては、励振させたプリカーサイオンをアルゴンなどのガスに衝突させて解離を誘起する衝突誘起解離(CID: Collision Induced Dissociation)法が最も一般的である(例えば非特許文献1)。しかし、CID法はエネルギー蓄積型のイオン解離法であり、プリカーサイオンに付与されたエネルギーが分子内全体に分散することからプリカーサイオンが解離する位置の選択性が低い。そのため、タンパク質やペプチドを分析する際のように、特定の部位(アミノ酸の結合位置)でプリカーサイオンを解離させる必要がある場合には不向きなイオン解離法である。
 タンパク質やペプチドを特定の部位で解離させることが可能なイオン解離法として、電子移動解離(ETD: Electron Transfer Dissociation)法が知られている(非特許文献2)。ETD法では、負の分子イオンを反応イオンとしてイオントラップ内に照射し、イオントラップ内に捕捉したプリカーサイオンと衝突させる。このとき、反応イオンの電子がプリカーサイオンのプロトンイオンの水素に移動し水素ラジカルが生成される。こうして生成された水素ラジカルがタンパク質やペプチド由来のプリカーサイオンに結合することにより、プリカーサイオンはペプチド主鎖のN-Cα結合位置で選択的に解離する。
 このように、ETD法ではペプチド主鎖のN-Cα結合が特異的に開裂するため、CID法では生成されにくいc/z系列のフラグメントイオンが生成されやすくなる。また、糖鎖などの修飾部位が保持されたまま解離するため、修飾物の同定や修飾部位の特定がし易く、タンパク質やペプチドの翻訳後修飾(PTM: Post-Translational Modification)の解析に有用である。
 しかしながら、ETD法では負イオンを反応イオンとして照射しイオン化するため正イオンに対してのみ有効な方法であり、負イオンを解離させることは難しい。また、1回の解離毎にイオンの価数が1価ずつ減少するため、アミノ酸の側鎖を含むインモニウムイオンを生成するために複数回の解離を行うという操作は、アミノ酸残基数以上の価数を持つ正イオンにしか適用できない。さらに、タンパク質やペプチドのイオン化に最も広く用いられているマトリクス支援レーザ脱離イオン化(MALDI: Matrix-Assisted Laser Desorption/Ionization)法で生成されるイオンは殆どが1価のイオンであるため、MALDIイオン源との組み合わせでは解離効率が悪いという問題もある。
 こうした状況を受け、近年、新たな解離手法が種々、試みられている。そうした解離手法の1つに、本発明者が提案した水素付着解離(HAD: Hydrogen-Attachment Dissociation)法がある(非特許文献3)。非特許文献3には、2000℃に加熱したキャピラリに水素ガスを導入して熱解離反応をにより水素ラジカル(水素原子)を生成し、プリカーサイオンに照射することが記載されている。HAD法も、ETD法と同様に水素ラジカルをプリカーサイオンに結合させるラジカル誘導型のイオン解離法であるため、プリカーサイオンを特定の部位で解離させることができる。また、HAD法にはプリカーサイオンの極性や価数を問わず用いることができるという利点もある。その他、マイクロ波イオン源に水素ガスを導入して水素ラジカルを生成し、これをプリカーサイオンに照射するという方法(以下、「マイクロ波ラジカル生成法」と呼ぶ。)(非特許文献4)や、水蒸気をコロナ放電することによりラジカルを生成し、プリカーサイオンに照射するという方法(以下、「コロナ放電ラジカル生成法」と呼ぶ。)(非特許文献5)といった方法も提案されている。
米国特許第7723676号明細書
McLuckey, Scott A. "Principles of collisional activation in analytical mass spectrometry." Journal of the American Society for Mass Spectrometry 3.6 (1992): 599-614. Syka, John EP, et al. "Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry." Proceedings of the National Academy of Sciences of the United States of America 101.26 (2004): 9528-9533 Takahashi, Hidenori, et al. "Hydrogen Attachment/Abstraction Dissociation (HAD) of Gas-Phase Peptide Ions for Tandem Mass Spectrometry." Analytical chemistry 88.7 (2016): 3810-3816. Sablier, M., Mestdagh, H., Poisson, L., Leymarie, N., & Rolando, C. (1997). Fragmentations induced by ion-atom reactions. Journal of the American Society for Mass Spectrometry, 8(6), 587-593. ヴィルコフ(Andrey N. Vilkov)、ほか2名、「ペプタイド・フラグメンテイション・インデュースド・バイ・ラディカルズ・アット・アトモスフェリック・プレッシャー(Peptide Fragmentation Induced by Radicals at Atmospheric Pressure)」、ジャーナル・オブ・マス・スペクトロメトリ(Journal of Mass Spectrometry)、2009年、Vol. 44、pp. 477-484 島袋、粕谷、和田、「マイクロ波容量結合プラズマを用いた小型原子源の開発」、第77回応用物理学会学術講演会講演予稿集、2016年9月、社団法人応用物理学会
 非特許文献3に記載のように熱分解してラジカルを生成する方法では水素ガス以外の原料ガスからラジカルを生成することはできない。また、非特許文献4に記載のマイクロ波ラジカル生成法でも水素ガス以外の原料ガスを用いることは提案されていない。これらの文献に記載の水素ガスは、その取り扱いが難しく危険が伴う。また、水素ガスからは水素ラジカルしか生成されないため、プリカーサイオンに照射可能なラジカル種が水素ラジカルのみに限定される。さらに、マイクロ波ラジカル生成法は、現在のところ質量数100以下の低分子化合物(炭化水素)の解離に用いられた例しか報告されておらず、タンパク質やペプチドといった生体高分子由来のプリカーサイオンの解離に有効であるか不明である。
 一方、非特許文献5で提案されているコロナ放電ラジカル生成法で使用する原料ガスは水蒸気であり、取り扱いが容易で危険性もない。しかし、高真空下ではコロナ放電が生じないため大気圧(あるいは大気圧に近い圧力)の空間を設けなければならない。質量分析装置でプリカーサイオンを選別する質量分離部やプリカーサイオンの解離により生じたフラグメントイオンを質量分離する質量分離部は高真空空間に配置されるため、それらの間に大気圧空間を配置しようとすると、その前後に大型の真空ポンプを配置しなければならず装置が大型化し、また高価になってしまう。さらに、大気圧下で生成されるラジカルは周辺のガスやラジカルと衝突して再結合等により消失しやすく、ラジカルの利用効率が悪いという問題もある。
 ここでは、プリカーサイオンが解離して生成されたフラグメントイオンを質量分析装置で測定する場合を例に挙げたが、プリカーサイオンに原子や分子が付加したプロダクトイオンを測定する場合や、フラグメントイオンやプロダクトイオンをイオン移動度に応じて分離する場合にも上記同様の問題があった。即ち、解離や原子・分子付加といった反応によりプリカーサイオンからプロダクトイオンを生成して分析するイオン分析装置において上記同様の問題があった。
 本発明が解決しようとする課題は、高真空下で取り扱いが容易な原料ガスからラジカルを生成し、これを高分子化合物由来のプリカーサイオンと反応させてプロダクトイオンを生成することができるイオン分析装置を提供することである。
 上記課題を解決するために成された本発明は、試料成分由来のプリカーサイオンからプロダクトイオンを生成して分析するイオン分析装置であって、
 a) 前記プリカーサイオンが導入される反応室と、
 b) ラジカル生成室と、
 c) 前記ラジカル生成室に原料ガスを導入する原料ガス供給源と、
 d) 前記ラジカル生成室を排気する真空排気部と、
 e) 前記ラジカル生成室で真空放電を生じさせる真空放電部と、
 f) 前記ラジカル生成室で前記原料ガスから生成されたラジカルを前記反応室の内部に照射するラジカル照射部と、
 g) 前記ラジカルとの反応により前記プリカーサイオンから生成されたプロダクトイオンを質量電荷比及びイオン移動度の少なくとも一方に応じて分離し検出する分離検出部と
 を備えることを特徴とする。
 前記プロダクトイオンには、プリカーサイオンの解離により生成されたフラグメントイオンのほか、プリカーサイオンに原子又は分子が付加して生成されたイオンも含まれる。
 前記反応室としては、例えば特定の質量電荷比を有するプリカーサイオンを電場の作用で選別して捕捉するイオントラップを用いることができる。あるいは、前段に位置する質量分離部で選別されたプリカーサイオンが通過する衝突セルを用いることもできる。
 前記真空放電部には、例えば高周波プラズマ源やホローカソードプラズマ源を用いることができる。高周波プラズマ源を用いる場合、誘導結合型のものよりも容量結合型のものを用いる方が生成されるラジカルの温度が高く、その反応性が高くなることからプロダクトイオンの生成効率が高くなることが予測される。
 本発明に係るイオン分析装置では、試料成分由来のプリカーサイオンを反応室に導入するとともに、真空排気部を用いて所定の真空度に排気したラジカル生成室内で真空放電により原料ガスから生成したラジカルを、反応室内のプリカーサイオンに照射する。これにより、プリカーサイオンがラジカルと反応してプロダクトイオンが生成される。生成されたプロダクトイオンは分離検出部において質量電荷比及びイオン移動度の少なくとも一方に応じて分離され検出される。
 本発明に係るイオン分析装置では、高周波プラズマ源やホローカソードプラズマ源のような真空放電部を用いるため、イオン分析装置内に大気圧空間を設ける必要がない。また、真空放電により生じるプラズマを用いてラジカルを生成するため、取り扱いの容易な水蒸気や空気など、様々な種類の原料ガスからラジカルを生成することができる。
 詳細は後述するが、本発明者がイオントラップ内に捕捉したペプチド由来のプリカーサイオンにラジカルを照射し、生成されたプロダクトイオンを質量分離し検出するという実験を行ったところ、ヒドロキシルラジカル、酸素ラジカル、窒素ラジカル、及び水素ラジカルを照射したときに、ペプチド内のアミノ酸結合部位で特異的に解離したフラグメントイオンが検出された。特に、ヒドロキシルラジカルと酸素ラジカルを照射した実験ではペプチド内のアミノ酸結合部位で特異的に解離したフラグメントイオンが高強度で検出された。
 従って、本発明に係るイオン分析装置において、前記ラジカルは、ヒドロキシルラジカル、酸素ラジカル、窒素ラジカル、及び水素ラジカルのうちの少なくとも1つを含むであることが好ましく、特に、ヒドロキシルラジカル及び酸素ラジカルの少なくとも一方を含むことがより好ましい。こうしたラジカルを生成可能な原料としては、例えば、水(水蒸気)や過酸化水素や空気が挙げられる。水や空気は取り扱いが安全であるという点からも原料ガスとして好ましい。ただし、使用可能な原料ガス及びラジカル種はこれらに限定されない。例えば、塩酸、塩化ナトリウム、硫酸、硫化ナトリウム、フッ酸、フッ化ナトリウム、炭酸水素ナトリウム、水酸化ナトリウム、過酸化水素、二酸化炭素、炭水化物、炭化水素に各々代表される塩化物、硫黄化合物、フッ化物、水酸化物、酸化物、炭化物からラジカルを生成し解離反応に用いることもできる。
 また、本発明に係るイオン分析装置は、さらに、
 h) 前記反応室に導入されたプリカーサイオンに熱を与える熱付与部
 を備えることが好ましい。プリカーサイオンに熱を付与することにより、その内部エネルギーを大きくしてラジカルとの反応性を高め、プロダクトイオンを高効率で生成することができる。
 さらに、前記熱付与部は、前記反応室を加熱する加熱部を備えることが好ましい。熱付与部が反応室を加熱する加熱部を備えることにより、前記反応性ガスを反応室から除去してイオントラップ内部の汚染を防止することができる。これは、前記原料ガスが反応性ガスである場合に特に有効である。
 本発明に係るイオン分析装置を用いることにより、高真空下で取り扱いが容易な原料ガスからラジカルを生成し、これを高分子化合物由来のプリカーサイオンと反応させてプロダクトイオンを生成することができる。
本発明に係るイオン分析装置の一実施例であるイオントラップ飛行時間型質量分析装置の概略構成図。 本実施例のイオントラップ飛行時間型質量分析装置において用いられるラジカル照射部の概略構成図。 本実施例の質量分析装置において、真空下で高周波放電により水蒸気から生成したラジカルをフラーレンイオンに照射し測定することにより取得したマススペクトル。 本実施例の質量分析装置において、真空下で高周波放電により水蒸気から生成したラジカルをペプチドイオンに照射し測定することにより取得したマススペクトル。 本実施例の質量分析装置において、真空下で高周波放電により水蒸気から生成したラジカルをペプチドイオンに照射し測定することにより取得したマススペクトルの部分拡大図。 本実施例の質量分析装置において、真空下で高周波放電により空気から生成したラジカルをペプチドイオンに照射し測定することにより取得したマススペクトル。 本実施例の質量分析装置において、真空下で高周波放電により窒素ガスから生成したラジカルをペプチドイオンに照射し測定することにより取得したマススペクトル。 変形例の質量分析装置の概略構成図。
 本発明に係るイオン分析装置の一実施例について、以下、図面を参照して説明する。本実施例のイオン分析装置は、イオントラップ-飛行時間型(IT-TOF型)質量分析装置である。
 図1に本実施例のイオントラップ-飛行時間型質量分析装置(以下、単に「質量分析装置」とも呼ぶ。)の概略構成を示す。本実施例の質量分析装置は、真空雰囲気に維持される図示しない真空チャンバの内部に、試料中の成分をイオン化するイオン源1と、イオン源1で生成されたイオンを高周波電場の作用により捕捉するイオントラップ2と、イオントラップ2から射出されたイオンを質量電荷比に応じて分離する飛行時間型質量分離部3と、分離されたイオンを検出するイオン検出器4とを備える。本実施例のイオントラップ質量分析装置はさらに、イオントラップ2内に捕捉されているイオンを解離させるべく該イオントラップ2内に捕捉されたプリカーサイオンにラジカルを照射するためのラジカル照射部5と、イオントラップ2内に所定の不活性ガスを供給する不活性ガス供給部6と、トラップ電圧発生部7と、制御部8と、データ処理部9とを備える。
 本実施例の質量分析装置のイオン源1はMALDIイオン源である。MALDIイオン源では、レーザ光を吸収しやすく、またイオン化しやすい物質(マトリックス物質)を試料の表面に塗布して、試料分子を取り込んだマトリックス物質を微結晶化させ、これにレーザ光を照射することによって試料分子をイオン化する。イオントラップ2は、円環状のリング電極21と、該リング電極21を挟んで対向配置された一対のエンドキャップ電極(入口側エンドキャップ電極22、出口側エンドキャップ電極24)とを含む三次元イオントラップである。リング電極21にはラジカル粒子導入口26とラジカル粒子排出口27が、入口側エンドキャップ電極22にはイオン導入孔23が、出口側エンドキャップ電極24にはイオン射出孔25が、それぞれ形成されている。トラップ電圧発生部7は、制御部8からの指示に応じて上記電極21、22、24のそれぞれに対して所定のタイミングで高周波電圧と直流電圧のいずれか一方又はそれらを合成した電圧を印加する。
 ラジカル照射部5は、内部にラジカル生成室51が形成されたノズル54と、ラジカル生成室51に原料ガスを導入する原料ガス供給部(原料ガス供給源)52と、ラジカル生成室51を排気する真空ポンプ(真空排気部)57と、ラジカル生成室51内で真空放電を生じさせるためのマイクロ波を供給する誘導結合型の高周波プラズマ源53と、ノズル54からの噴出流の中心軸上に開口を有し、拡散する原料ガス分子等を分離して細径のラジカル流を取り出すスキマー55と、原料ガス供給源52からラジカル生成室51に至る流路に設けられたバルブ56とを含む。原料ガスとしては、例えば水蒸気(水)や空気などを用いることができる。原料ガスとして水蒸気を用いた場合には、ヒドロキシルラジカル、酸素ラジカル、及び水素ラジカルが生成され、空気を用いた場合には、主として酸素ラジカルと窒素ラジカルが生成される。
 ラジカル照射部5には、例えば非特許文献6に記載のものを用いることができる。その概略構成を図2に示す。このラジカル照射部5は、大別して、原料ガス供給源52、高周波プラズマ源53、及びノズル54で構成される。高周波プラズマ源53は、マイクロ波供給源531とスリースタブチューナー532を備えている。ノズル54は外周部を構成する接地電極541、その内側に位置するパイレックス(登録商標)ガラス製のトーチ542を備えており、該トーチ542の内部がラジカル生成室51となる。ラジカル生成室51の内部では、コネクタ544を介して高周波プラズマ源53と接続されたニードル電極543がラジカル生成室51の長手方向に貫通している。また、原料ガス供給源52からラジカル生成室51に原料ガスを供給する流路が設けられており、この流路上には原料ガスの流量を調整するためのバルブ56が設けられている。
 不活性ガス供給部6は、バッファガスやクーリングガスなどとして使用されるヘリウム、アルゴンなどを貯留したガス供給源61と、流量を調整可能であるバルブ62と、ガス導入管63とを含む。
 次に、本実施例の質量分析装置における分析動作を説明する。分析の開始前に、真空チャンバ及びラジカル生成室51の内部はそれぞれ真空ポンプにより所定の真空度まで排気される。続いて、ラジカル照射部5のラジカル生成室51に原料ガス供給源52から原料ガスが供給され、高周波プラズマ源53からマイクロ波が供給されることにより、ラジカル生成室51の内部でラジカルが生成される。
 イオン源1においてペプチド混合物などの試料から生成された各種イオン(主として1価のイオン)はパケット状にイオン源1から射出され、入口側エンドキャップ電極22に形成されているイオン導入孔23を経てイオントラップ2の内部に導入される。イオントラップ2内に導入されたペプチド由来のイオンは、トラップ電圧発生部7からリング電極21に印加される電圧によってイオントラップ2内に形成される高周波電場によって捕捉される。そのあと、トラップ電圧発生部7からリング電極21等に所定の電圧が印加され、それによって目的とする特定の質量電荷比を有するイオン以外の質量電荷比範囲に含まれるイオンは励振され、イオントラップ2から排除される。これにより、イオントラップ2内に、特定の質量電荷比を有するプリカーサイオンが選択的に捕捉される。
 それに続き、不活性ガス供給部6のバルブ62が開放され、イオントラップ2内にヘリウムガスなどの不活性ガスが導入されることで、プリカーサイオンがクーリングされる。これにより、プリカーサイオンはイオントラップ2の中心付近に収束される。その後、ラジカル照射部5のバルブ56が開放され、ラジカル生成室51内で生成されたラジカルを含むガスがノズル54から噴出する。その噴出流の前方に位置するスキマー55により、ガス分子は除去され、スキマー55の開口を通過したラジカルが細径のビーム状となって、リング電極21に穿設されているラジカル粒子導入口26を通過する。そして、このラジカルはイオントラップ2内に導入され、イオントラップ2内に捕捉されているプリカーサイオンに照射される。
 このときにイオンに照射されるラジカルの流量が所定流量以上になるように、バルブ56の開度等が調整されている。また、プリカーサイオンへのラジカルの照射時間も適宜に設定されている。バルブ56の開度やラジカルの照射時間は、予備実験の結果等に基づき事前に決めておくことができる。ラジカルが照射されると、プリカーサイオンに不対電子誘導型の解離が生じてペプチド由来のプロダクトイオンが生成される。生成された各種プロダクトイオンはイオントラップ2内に捕捉され、不活性ガス供給部6からのヘリウムガス等によってクーリングされる。そのあと、所定のタイミングでトラップ電圧発生部7から入口側エンドキャップ電極22と出口側エンドキャップ電極24に直流高電圧が印加され、これにより、イオントラップ2内に捕捉されていたイオンは加速エネルギーを受け、イオン射出孔25を通して一斉に射出される。前述の通り、ここで生成されるプロダクトイオンには、フラグメントイオンとアダクトイオンの両方が含まれる。
 こうして一定の加速エネルギーを持ったイオンが飛行時間型質量分離部3の飛行空間に導入され、飛行空間を飛行する間に質量電荷比に応じて分離される。イオン検出器4は分離されたイオンを順次検出し、この検出信号を受けたデータ処理部9は、例えばイオントラップ2からのイオンの射出時点を時刻ゼロとする飛行時間スペクトルを作成する。そして、予め求めておいた質量校正情報を用いて飛行時間を質量電荷比に換算することにより、プロダクトイオンスペクトルを作成する。データ処理部9ではこのマススペクトルから得られる情報(質量情報)等に基づく所定のデータ処理を行うことで、試料中の成分(ペプチド)を同定する。プロダクトイオンのうち、フラグメントイオンの質量電荷比からペプチドの部分構造が分かる。また、アダクトイオンの付加物質の特異性からペプチドに含まれる、ある特性を持った部位の存在等が分かる。例えば、メチオニンや芳香族アミノ酸には酸素が付着しやすいことが知られており、酸素が付加されたアダクトイオンからペプチドに含まれるメチオニンや芳香族アミノ酸の数等の情報が得られる。
 このように、本実施例の質量分析装置では、試料成分由来のプリカーサイオンをイオントラップ2に導入するとともに、真空ポンプ57によって所定の真空度に排気されたラジカル生成室51内で、高周波放電により原料ガスからラジカルを生成してイオントラップ2内のプリカーサイオンに照射する。これにより、プリカーサイオンがラジカルと反応してプロダクトイオンが生成される。生成されたプロダクトイオンは飛行時間型質量分離部3で質量電荷比に応じて分離され検出される。
 本実施例の質量分析装置では、高周波プラズマ源53を備えたラジカル照射部5を用いるため、コロナ放電を用いてラジカルを生成する従来の構成のように質量分析装置の内部に大気圧空間を設ける必要がない。また、高周波プラズマ源53を用いて生成したプラズマを用いてラジカルを生成するため、取り扱いの容易な水蒸気や空気など、様々な種類の原料ガスからラジカルを生成することができる。従って、従来のHAD法のように取り扱いの難しい水素ガスを使用する必要がなく、また多様な原子種のラジカルを用いることができる。
 次に、本発明者がイオントラップ2に捕捉したペプチド由来のプリカーサイオンにラジカルを照射し、生成されたプロダクトイオンを質量分離し検出するという実験を行った結果を説明する。
 図3は、本実施例の質量分析装置において、水蒸気から水素ラジカルが生成されていることを確認した実験結果である。この実験ではフラーレン(C60)イオンをイオントラップ2に捕捉し、水蒸気から生成したラジカルを照射して反応させたイオンを測定することにより得たマススペクトルである。反応時間(ラジカル照射時間)を0s、250ms、500ms、及び1,000msと変化させて取得したマススペクトルでは、反応時間が長くなるにつれてフラーレンイオンの質量電荷比が水素ラジカルの質量分(1Da)シフトしており、この結果から水蒸気の放電により水素ラジカルが生成しフラーレンイオンに付加していることが分かる。
 図4は、イオントラップ2にペプチドイオン(配列:RPKPQQFFGLM)をトラップし、真空下での水蒸気の高周波放電(周波数2.5GHz、印加電力50W)により生成したラジカルを500ms照射して得たプロダクトイオンスペクトルである。イオントラップ2の真空度は1×10-2Pa、ラジカル生成室51の真空度は1Paとした。また、水蒸気の流量は1sccmとした。このマススペクトルでは、マススペクトル上に示すようにc/a系列のフラグメントイオンのマスピークが現れており、ラジカル照射によって特定の部位でプリカーサイオンが解離していることが分かる。なお、フラグメントイオンのマスピーク強度は50倍に拡大している。これにより、真空下の高周波放電によってHAD反応が生じることが実験的に証明された。また、図4のマススペクトルでは、ペプチドイオン(プリカーサイオン)に酸素ラジカルが付加したプロダクト(アダクト)イオン([M+H+O]+)のマスピークが現れており、水蒸気の真空放電により酸素ラジカルが生成されペプチドイオンと反応したことが分かる。
 図5は、図4と同じペプチドイオンを、ラジカル照射前とラジカル照射後のそれぞれで取得したプロダクトイオンスペクトルのうち、プリカーサイオンのピーク近傍の拡大図である。上段がラジカル照射前のマススペクトル、下段がラジカル照射後のマススペクトルである。これらを比較すると、ラジカル照射後のマススペクトルにはプリカーサイオンから水素が1乃至複数引き抜かれたイオンのマスピークが現れており、水素を引き抜く作用を持つヒドロキシルラジカルが生成されペプチドイオンと反応したことが分かる。
 図3~図5に示す結果から、真空下での水蒸気の高周波放電により、水素ラジカル、酸素ラジカル、及びヒドロキシルラジカルが生成されていることが分かる。また、図4及び図5では酸素ラジカル及びヒドロキシルラジカルの作用により生じたイオンのマスピークが明瞭に現れていることから、これら3種のラジカルのうち、特に酸素ラジカルとヒドロキシルラジカルがペプチドイオンの解離に寄与していることが分かる。
 図6は、上記実施例の質量分析装置において、イオントラップ2にペプチドイオン(配列:RPKPQQFFGLM)をトラップし、真空下での空気の高周波放電(周波数2.5GHz、印加電力50W)により生成したラジカルを500ms照射して得たマススペクトルである。なお、フラグメントイオンのマスピークは10倍に拡大している。イオントラップ2の真空度は1×10-2Pa、ラジカル生成室51の真空度は1Paとした。また、空気の流量は1sccmとした。即ち、図4の実験とは原料ガスの種類のみが異なる。
 図6のマススペクトルでは、aイオン及びyイオンに酸素が付着したプロダクト(アダクト)イオンのマスピークが特徴的に現れており、真空下での空気の高周波放電によって酸素ラジカルが生成されペプチドイオンと反応したことが分かる。
 図6のマススペクトルでは窒素が付着したイオンのマスピークを確認できなかったため、別途、真空下で窒素ガスを高周波放電して生成したラジカルを上記同様の条件でプリカーサイオンに照射してフラグメントイオンを測定する実験を行った。この実験により得たプロダクトイオンスペクトルを図7に示す。図7ではフラグメントイオンのマスピーク強度を100倍に拡大している。図7のマススペクトルでもaイオン、bイオン、xイオン、及びyイオンに対応するマスピークが現れていることから、真空下での窒素ガスの高周波放電により窒素ラジカルが生成されペプチドイオンと反応していることがわかる。ただ、図6のマススペクトルで窒素ラジカルに起因するイオンのマスピークが確認できなかったことから、酸素ラジカルに比べると窒素ラジカルの反応性は低いと考えられる。
 上記の結果から、真空下で水蒸気、空気、及び窒素ガスを高周波放電することにより、酸素ラジカル、ヒドロキシルラジカル、水素ラジカル、及び窒素ラジカルが生成され、これらのいずれによってもHAD法と同様にラジカル誘導型の反応が起こることが確認された。また、これらのラジカル種の中では特に、酸素ラジカルとヒドロキシルラジカルの反応性が高いことが分かった。
 次に、上記実施例の質量分析装置におけるプリカーサイオンの反応効率をより高くするための構成を備えた変形例について、図8に示す概略構成図を参照して説明する。なお、図1と共通の構成要素には同じ符号を付し、説明を省略する。
 上記実施例の質量分析装置では、イオントラップ2内に捕捉したイオンに対し、真空放電により原料ガスから生成したラジカルを照射することによりイオンを解離させてプロダクトイオンを生成する。これによって試料からペプチド由来のプロダクトイオンを生成し分析することができる。しかし、原料ガスの種類によってはラジカルの反応性が低く、プロダクトイオンの生成効率が必ずしも高くない場合がある。そこで、変形例の質量分析装置は、イオンの解離効率を高めるとともにイオン解離のシーケンスカバレージを大きくする、つまりは結合部位特異性を小さくするための構成を備えている。
 この質量分析装置では、イオントラップ2のリング電極21とエンドキャップ電極22、24との間の電気的絶縁性を確保しつつそれら電極21、22、24の相対的位置を保つための絶縁体(アルミナセラミック)部材をセラミックヒータ28に置き換えている。セラミックヒータ28はヒータ電源部10に接続されており、制御部8の制御の下でヒータ電源部10がセラミックヒータ28に加熱電力を供給すると、セラミックヒータ28は発熱する。そして、セラミックヒータ28からの熱伝導により各電極21、22、24も加熱される。セラミックヒータ28には図示しない熱電対が埋め込まれており、熱電対によるセラミックヒータ28のモニタ温度に基づいて供給される加熱電力は調整され、セラミックヒータ28での発熱量はフィードバック制御される。これにより、セラミックヒータ28は目標温度に精度良く調整される。
 セラミックヒータ28によりイオントラップ2の各電極21、22、24を加熱している状態で、上述したようにイオントラップ2内にラジカルを導入した時点からプロダクトイオンをイオントラップ2から排出して質量分析する時点までの間に、不活性ガス供給部6からイオントラップ2内にバッファガスであるヘリウムガス(あるいは他の不活性ガス)を断続的に導入する。バッファガスを介してイオントラップ2の各電極21、22、24の熱がプリカーサイオンに伝搬し、この熱によりイオンが活性化されて、つまり熱によるエネルギーが付与されてプリカーサイオンの解離効率が向上する。また、熱を加えない状態では切断されにくい結合(つまりは結合エネルギーが高い結合部位)も開裂し易くなり、より多くの種類のプロダクトイオンが生成されシーケンスカバレージが向上する。
 また、不活性ガス供給部6のガス供給源61からイオントラップ2内にガスを供給するガス導入管63の周囲にもガス導入管ヒータ64が設けられている。このガス導入管ヒータ64にヒータ電源部10から加熱電力を供給してガス導入管63を予め加熱しておき、上記実施例においてバッファガスをイオントラップ2内に導入するのと同じタイミングで不活性ガス供給部6からイオントラップ2内にバッファガスであるヘリウムガス(あるいは他の不活性ガス)を導入する。このときヘリウムガスはガス導入管ヒータ64付近のガス導入管63で加熱され高温の状態でイオントラップ2に導入される。この高温のヘリウムガスがプリカーサイオンに衝突すると、該ヘリウムガスの熱がイオンに伝搬しラジカルの照射によるイオン解離が促進される。なお、セラミックヒータ28による各電極21、22、24の加熱と、ガス導入管ヒータ64によるバッファガスの加熱は必ずしも両方行う必要はなく、一方のみを行うように構成することもできる。
 上記実施例及び変形例はいずれも一例であって、本発明の趣旨に沿って適宜に変更することができる。例えば、上記実施例及び変形例では三次元イオントラップを備えたイオントラップ飛行時間型質量分析装置としたが、三次元イオントラップに代えてリニアイオントラップや衝突セルを使用し、それらにプリカーサイオンが導入されるタイミングでラジカルを照射するように構成することもできる。また、上記実施例及び変形例では飛行時間型質量分離部をリニア型としたが、リフレクトロン型やマルチターン型等の飛行時間型質量分離部を用いてもよい。また、飛行時間型質量分離部以外に、例えばイオントラップ2自体のイオン分離機能を利用して質量分離を行うものやオービトラップなど、他の形態の質量分離部を用いることもできる。さらに、上記実施例で説明したラジカル照射部は、質量分析装置のほか、イオン移動度分析装置においても好適に用いることができる。さらに、上記実施例及び変形例では真空放電部として高周波プラズマ源を用いたが、これに代えてホローカソードプラズマ源を用いることもできる。
 上記実験では、原料ガスとして水蒸気、空気、及び窒素ガスを用いて酸素ラジカル、ヒドロキシルラジカル、水素ラジカル、及び窒素ラジカルを生成し解離反応させたが、使用可能な原料ガス及びラジカル種はこれらに限定されない。例えば、塩酸、塩化ナトリウム、硫酸、硫化ナトリウム、フッ酸、フッ化ナトリウム、炭酸水素ナトリウム、水酸化ナトリウム、過酸化水素、二酸化炭素、炭水化物、炭化水素に各々代表される塩化物、硫黄化合物、フッ化物、水酸化物、酸化物、炭化物からラジカルを生成し解離反応に用いることもできる。なお、これらの反応性を有するガスを用いると、解離反応を生じさせるイオントラップ内に反応性物質が付着してイオントラップが汚染される場合がある。イオントラップがこうした反応性物質で汚染されると、反応性物質がプリカーサイオンに付着して不所望のマスピークを生じさせる可能性がある。従って、反応性ガスを原料ガスとして使用する場合には、図8の変形例の質量分析装置のようにイオントラップをヒータで加熱してガスを除去(デガス)する加熱部(反応室加熱部)を備えた構成を採ることが好ましい。本発明者が行った検証によれば、イオントラップを60℃以上の温度に加熱することにより汚染の原因となる反応性ガスを除去することができる。より確実に反応性ガスを除去するには、80℃以上に加熱することが好ましく、100℃以上に加熱することがさらに好ましい。加熱温度の上限は特にないものの、300℃程度までイオントラップを加熱することによりほぼ完全に反応性ガスは除去され、それ以上の温度まで加熱する必要はないと考えられる。また、反応性ガスを除去するには、イオントラップを少なくとも5秒間加熱すればよく、長くても60分間加熱すれば十分である。
 また、蒸気圧が低い化合物由来の原料ガスを用いる場合には、原料ガス供給源52及び/又は該原料ガス供給源52からノズル54に至る流路に加熱部を備えた構成を採ることにより蒸気圧を高くすることが好ましい。
 さらに、上記実験ではプリカーサイオンが解離して生成されたプロダクトイオンを測定した結果を説明したが、本発明に係るイオン分析装置では、プリカーサイオンに原子又は分子が付加して生成されたイオンを分析する際にも好適に用いることができる。
1…イオン源
10…ヒータ電源部
2…イオントラップ
 21…リング電極
 22…入口側エンドキャップ電極
 23…イオン導入孔
 24…出口側エンドキャップ電極
 25…イオン射出孔
 26…ラジカル粒子導入口
 27…ラジカル粒子排出口
 28…セラミックヒータ
3…飛行時間型質量分離部
4…イオン検出器
5…ラジカル照射部
 51…ラジカル生成室
 52…原料ガス供給源
 53…高周波プラズマ源
  531…マイクロ波供給源
  532…スリースタブチューナー
 54…ノズル
  541…接地電極
  542…トーチ
  543…ニードル電極
 55…スキマー
 56…バルブ
 57…真空ポンプ
6…不活性ガス供給部
 61…ガス供給源
 62…バルブ
 63…ガス導入管
 64…ガス導入管ヒータ
7…トラップ電圧発生部
8…制御部
9…データ処理部

Claims (9)

  1.  試料成分由来のプリカーサイオンからプロダクトイオンを生成して分析するイオン分析装置であって、
     a) 前記プリカーサイオンが導入される反応室と、
     b) ラジカル生成室と、
     c) 前記ラジカル生成室に原料ガスを導入する原料ガス供給源と、
     d) 前記ラジカル生成室を排気する真空排気部と、
     e) 前記ラジカル生成室で真空放電を生じさせる真空放電部と、
     f) 前記ラジカル生成室で前記原料ガスから生成されたラジカルを前記反応室の内部に照射するラジカル照射部と、
     g) 前記ラジカルとの反応により前記プリカーサイオンから生成されたプロダクトイオンを質量電荷比及びイオン移動度の少なくとも一方に応じて分離し検出する分離検出部と
     を備えることを特徴とするイオン分析装置。
  2.  前記ラジカルがヒドロキシルラジカル、酸素ラジカル、窒素ラジカル、及び水素ラジカルのうちの少なくとも1つを含むことを特徴とする請求項1に記載のイオン分析装置。
  3.  前記ラジカルがヒドロキシルラジカル及び酸素ラジカルのうちの少なくとも1つを含むことを特徴とする請求項2に記載のイオン分析装置。
  4.  前記原料ガスが水蒸気又は空気であることを特徴とする請求項1に記載のイオン分析装置。
  5.  前記真空放電部が高周波プラズマ源又はホローカソードプラズマ源であることを特徴とする請求項1に記載のイオン分析装置。
  6.  前記真空放電部が容量結合型の高周波プラズマ源であることを特徴とする請求項1に記載のイオン分析装置。
  7.  さらに、
     h) 前記反応室に導入されたプリカーサイオンに熱を与える熱付与部
     を備えることを特徴とする請求項1に記載のイオン分析装置。
  8.  前記熱付与部が、前記反応室を加熱する反応室加熱部を備えることを特徴とする請求項7に記載のイオン分析装置。
  9.  さらに、
     i) 前記原料ガス供給源、前記ラジカル生成室、及びそれらを結ぶ流路のうちの少なくとも1つに設けられた、前記原料ガスの化合物を加熱する加熱部
     を備えることを特徴とする請求項1に記載のイオン分析装置。
PCT/JP2018/013441 2017-04-04 2018-03-29 イオン分析装置 WO2018186286A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019511198A JP6713646B2 (ja) 2017-04-04 2018-03-29 イオン分析装置
US16/500,124 US10998177B2 (en) 2017-04-04 2018-03-29 Ion analyzer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017074183 2017-04-04
JP2017-074183 2017-04-04

Publications (1)

Publication Number Publication Date
WO2018186286A1 true WO2018186286A1 (ja) 2018-10-11

Family

ID=63712135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013441 WO2018186286A1 (ja) 2017-04-04 2018-03-29 イオン分析装置

Country Status (3)

Country Link
US (1) US10998177B2 (ja)
JP (1) JP6713646B2 (ja)
WO (1) WO2018186286A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019009058A (ja) * 2017-06-28 2019-01-17 株式会社島津製作所 質量分析を用いた脂質解析方法及び質量分析装置
WO2020152806A1 (ja) * 2019-01-23 2020-07-30 株式会社島津製作所 イオン分析装置
JPWO2020202455A1 (ja) * 2019-04-02 2020-10-08
JPWO2021010401A1 (ja) * 2019-07-17 2021-01-21
JPWO2021014487A1 (ja) * 2019-07-19 2021-01-28
WO2021053865A1 (ja) * 2019-09-18 2021-03-25 株式会社島津製作所 イオン分析装置
JPWO2022049825A1 (ja) * 2020-09-04 2022-03-10
WO2022070584A1 (ja) 2020-09-30 2022-04-07 株式会社島津製作所 質量分析方法及び質量分析装置
CN114868014A (zh) * 2020-03-12 2022-08-05 株式会社岛津制作所 离子分析装置
WO2022201705A1 (ja) 2021-03-23 2022-09-29 株式会社島津製作所 質量分析装置及び質量分析方法
WO2022209076A1 (ja) 2021-03-29 2022-10-06 株式会社島津製作所 質量分析装置及び質量分析方法
WO2023002712A1 (ja) 2021-07-21 2023-01-26 株式会社島津製作所 質量分析装置及び質量分析方法
US11804369B2 (en) 2018-02-06 2023-10-31 Shimadzu Corporation Mass spectrometry method and mass spectrometer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7409260B2 (ja) * 2020-08-19 2024-01-09 株式会社島津製作所 質量分析方法及び質量分析装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060192100A1 (en) * 2005-02-07 2006-08-31 Bruker Daltonik Gmbh Ion fragmentation by reaction with neutral particles
US20130164174A1 (en) * 2008-12-05 2013-06-27 Bruker Daltonik, Gmbh Radical ions for electron transfer dissociation
US20150122985A1 (en) * 2013-11-06 2015-05-07 Agilent Technologies, Inc. Plasma-based electron capture dissociation (ecd) apparatus and related systems and methods
WO2015133259A1 (ja) * 2014-03-04 2015-09-11 株式会社島津製作所 イオン分析装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7723676B2 (en) 2007-12-18 2010-05-25 Science & Engineering Services, Inc. Method and apparatus for ion fragmentation in mass spectrometry
JP5406621B2 (ja) * 2009-08-06 2014-02-05 勝 堀 レーザー脱離イオン化質量分析用試料基板、これを用いたレーザー脱離イオン化質量分析方法及び装置
JP2012009290A (ja) * 2010-06-25 2012-01-12 Hitachi High-Technologies Corp 質量分析装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060192100A1 (en) * 2005-02-07 2006-08-31 Bruker Daltonik Gmbh Ion fragmentation by reaction with neutral particles
US20130164174A1 (en) * 2008-12-05 2013-06-27 Bruker Daltonik, Gmbh Radical ions for electron transfer dissociation
US20150122985A1 (en) * 2013-11-06 2015-05-07 Agilent Technologies, Inc. Plasma-based electron capture dissociation (ecd) apparatus and related systems and methods
WO2015133259A1 (ja) * 2014-03-04 2015-09-11 株式会社島津製作所 イオン分析装置

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019009058A (ja) * 2017-06-28 2019-01-17 株式会社島津製作所 質量分析を用いた脂質解析方法及び質量分析装置
US11804369B2 (en) 2018-02-06 2023-10-31 Shimadzu Corporation Mass spectrometry method and mass spectrometer
WO2020152806A1 (ja) * 2019-01-23 2020-07-30 株式会社島津製作所 イオン分析装置
JP7074210B2 (ja) 2019-01-23 2022-05-24 株式会社島津製作所 イオン分析装置
JPWO2020152806A1 (ja) * 2019-01-23 2021-10-21 株式会社島津製作所 イオン分析装置
US11735408B2 (en) 2019-01-23 2023-08-22 Shimadzu Corporation Ion analyzer
WO2020202455A1 (ja) * 2019-04-02 2020-10-08 株式会社島津製作所 イオン分析装置
JP7202581B2 (ja) 2019-04-02 2023-01-12 株式会社島津製作所 イオン分析装置
US11908671B2 (en) 2019-04-02 2024-02-20 Shimadzu Corporation Ion analyzer
JPWO2020202455A1 (ja) * 2019-04-02 2020-10-08
WO2021010401A1 (ja) * 2019-07-17 2021-01-21 株式会社島津製作所 イソアスパラギン酸の分析方法、及び質量分析装置
JP7403774B2 (ja) 2019-07-17 2023-12-25 株式会社島津製作所 イソアスパラギン酸の分析方法、及び質量分析装置
JPWO2021010401A1 (ja) * 2019-07-17 2021-01-21
CN114144668A (zh) * 2019-07-17 2022-03-04 株式会社岛津制作所 异天冬氨酸的分析方法和质谱分析装置
EP4001911A4 (en) * 2019-07-17 2022-08-31 Shimadzu Corporation ISOASPARTIC ACID ANALYSIS PROCESS AND MASS SPECTROMETER
JPWO2021014487A1 (ja) * 2019-07-19 2021-01-28
JP7142867B2 (ja) 2019-07-19 2022-09-28 株式会社島津製作所 イオン分析装置
WO2021014487A1 (ja) * 2019-07-19 2021-01-28 株式会社島津製作所 イオン分析装置
CN114342040A (zh) * 2019-09-18 2022-04-12 株式会社岛津制作所 离子分析装置
JPWO2021053865A1 (ja) * 2019-09-18 2021-03-25
WO2021053865A1 (ja) * 2019-09-18 2021-03-25 株式会社島津製作所 イオン分析装置
JP7226570B2 (ja) 2019-09-18 2023-02-21 株式会社島津製作所 イオン分析装置
CN114868014A (zh) * 2020-03-12 2022-08-05 株式会社岛津制作所 离子分析装置
WO2022049825A1 (ja) * 2020-09-04 2022-03-10 株式会社島津製作所 イオン分析装置
JPWO2022049825A1 (ja) * 2020-09-04 2022-03-10
JP7428262B2 (ja) 2020-09-04 2024-02-06 株式会社島津製作所 イオン分析装置
WO2022070584A1 (ja) 2020-09-30 2022-04-07 株式会社島津製作所 質量分析方法及び質量分析装置
WO2022201705A1 (ja) 2021-03-23 2022-09-29 株式会社島津製作所 質量分析装置及び質量分析方法
WO2022209076A1 (ja) 2021-03-29 2022-10-06 株式会社島津製作所 質量分析装置及び質量分析方法
WO2023002712A1 (ja) 2021-07-21 2023-01-26 株式会社島津製作所 質量分析装置及び質量分析方法

Also Published As

Publication number Publication date
US20200111654A1 (en) 2020-04-09
US10998177B2 (en) 2021-05-04
JP6713646B2 (ja) 2020-06-24
JPWO2018186286A1 (ja) 2020-02-06

Similar Documents

Publication Publication Date Title
WO2018186286A1 (ja) イオン分析装置
US9947520B2 (en) Ion analyzer including detector for detecting fragment ions generated by ion-dissociation
CN110494955B (zh) 离子分析装置及离子裂解方法
WO2019155725A1 (ja) 質量分析方法及び質量分析装置
JP2015519706A (ja) イオン分子、イオンラジカルまたはイオン・イオン相互作用実験を実施するためのrf限定イオンガイドまたはイオントラップ内での試薬分子の励起
JP7136346B2 (ja) 質量分析方法及び質量分析装置
JP7109026B2 (ja) イオン分析装置
WO2021053865A1 (ja) イオン分析装置
JP7074210B2 (ja) イオン分析装置
JP6593243B2 (ja) イオントラップ質量分析装置
WO2020202455A1 (ja) イオン分析装置
CN113678229B (zh) 离子分析装置
JP7403774B2 (ja) イソアスパラギン酸の分析方法、及び質量分析装置
JP7306566B2 (ja) イオン分析装置
WO2021014487A1 (ja) イオン分析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18781113

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019511198

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18781113

Country of ref document: EP

Kind code of ref document: A1