WO2020152806A1 - イオン分析装置 - Google Patents

イオン分析装置 Download PDF

Info

Publication number
WO2020152806A1
WO2020152806A1 PCT/JP2019/002069 JP2019002069W WO2020152806A1 WO 2020152806 A1 WO2020152806 A1 WO 2020152806A1 JP 2019002069 W JP2019002069 W JP 2019002069W WO 2020152806 A1 WO2020152806 A1 WO 2020152806A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion
radicals
radical
ions
gas
Prior art date
Application number
PCT/JP2019/002069
Other languages
English (en)
French (fr)
Inventor
高橋 秀典
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2020567300A priority Critical patent/JP7074210B2/ja
Priority to PCT/JP2019/002069 priority patent/WO2020152806A1/ja
Priority to US17/424,210 priority patent/US11735408B2/en
Publication of WO2020152806A1 publication Critical patent/WO2020152806A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/14Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/004Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn
    • H01J49/0045Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn characterised by the fragmentation or other specific reaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0422Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components for gaseous samples

Definitions

  • the present invention relates to an ion analyzer for generating and analyzing product ions by irradiating precursor ions derived from sample components with radicals.
  • an ion derived from the polymer compound is dissociated one or more times to generate a product ion (also called a fragment ion), which is then generated.
  • Mass spectrometry which separates and detects according to the mass-to-charge ratio, is widely used.
  • a collision-induced dissociation (CID) method in which ions are made to collide with an inert gas molecule such as nitrogen gas.
  • the CID method various ions can be dissociated because the ions are dissociated by collision energy with an inert molecule, but the selectivity of the position at which the ions dissociate is low. Therefore, the CID method is not suitable when it is necessary to dissociate the ions at a specific site for structural analysis. For example, when analyzing a peptide or the like, it is desired to dissociate specifically at the amino acid binding position, but this is difficult with the CID method.
  • ETD electron transfer dissociation
  • ECD Electron Capture Dissociation
  • the valence of the ion decreases at the time of dissociation. That is, a neutral molecule is generated by dissociating a monovalent positive ion. Therefore, only positive ions with a valence of 2 or more can be analyzed. Therefore, the ETD method and the ECD method are not suitable for combination with the MALDI method that produces a large number of monovalent positive ions.
  • the present inventor proposes a hydrogen attachment dissociation (HAD) method that causes unpaired electron-induced dissociation by irradiating a peptide-derived precursor ion with a hydrogen radical in Patent Document 1.
  • HAD hydrogen attachment dissociation
  • Patent Document 1 hydrogen radicals generated in the radical generation chamber are jetted from a nozzle, and the precursor ions captured in the ion trap are irradiated with the hydrogen radicals.
  • the HAD method is suitable for combination with the MALDI method because it dissociates the precursor ions without changing their valences.
  • the HAD method can also generate c/z series product ions.
  • the present inventor also proposes to specifically dissociate a precursor ion derived from a peptide at a binding position of an amino acid by using a hydroxy radical, an oxygen radical, or a nitrogen radical.
  • a precursor ion is irradiated with these radicals using the same configuration as in Patent Document 1. Irradiation of these radicals to peptide-derived precursor ions produces a/x series product ions and c/z series product ions.
  • the radicals for example, hydrogen radicals
  • the radical temperature will be about room temperature. And then adheres to the wall surface. Then, the radical attached to the wall surface is combined with another radical to become a non-radical (for example, a hydrogen molecule) and disappears. Since the amount of product ions generated by dissociation of the precursor ions depends on the amount of radicals irradiated to the precursor ions, if the radicals generated in the radical generation part disappear before the irradiation of the precursor ions, The amount of product ions generated from the precursor ions will decrease. Therefore, it is required to suppress the disappearance of the radicals generated in the radical generation part and irradiate more precursor ions with the precursor ions.
  • the problem to be solved by the present invention is, in an ion analyzer for generating and analyzing product ions by irradiating a precursor ion derived from a sample component with a radical, suppressing the disappearance of the radical to allow more radicals to be the precursor ion. To irradiate.
  • the present invention made to solve the above problems is an ion analyzer for generating and analyzing product ions by irradiating a precursor ion derived from a sample component with a radical, A reaction chamber into which the precursor ions are introduced, A radical generation unit that generates radicals from the first source gas; A metastable particle generation unit for generating metastable particles from the second raw material gas; A radical introduction unit that mixes the radicals and the metastable particles and introduces them into the reaction chamber, An ion detector that detects product ions generated from the precursor ions by introducing the radicals.
  • the metastable particles are mixed with the radicals generated by the radical generation unit and introduced into the reaction chamber.
  • the metastable particles are atoms (metastable atoms) or molecules (metastable molecules) in a long-lived excited state, for example, rare gas molecules or inert gas molecules in an excited state.
  • FIG. 1 is a schematic configuration diagram of an ion trap-time-of-flight mass spectrometer which is a first embodiment of an ion spectrometer according to the present invention.
  • FIG. 3 is a schematic configuration diagram of a radical generation/irradiation unit used in the ion trap-time-of-flight mass spectrometer of the first embodiment.
  • the ion analyzer of the first embodiment is an ion trap-time-of-flight (IT-TOF type) mass spectrometer.
  • FIG. 1 shows a schematic configuration of the ion trap-time-of-flight mass spectrometer (hereinafter, also simply referred to as “mass spectrometer”) of the first embodiment.
  • the mass spectrometer of the first embodiment uses an ion source 1 for ionizing components in a sample and an ion generated by the ion source 1 in a vacuum chamber (not shown) maintained in a vacuum atmosphere by the action of a high frequency electric field.
  • An ion trap 2 for trapping, a time-of-flight mass separation unit 3 for separating ions ejected from the ion trap 2 according to a mass-to-charge ratio, and an ion detector 4 for detecting the separated ions are provided.
  • the ion trap mass spectrometer of the first embodiment further includes a radical generation/irradiation unit for irradiating the precursor ions trapped in the ion trap 2 with radicals in order to dissociate the ions trapped in the ion trap 2. 5, an inert gas supply unit 7, a trap voltage generation unit 74, a device control unit 75, and a control/processing unit 9.
  • the radical generation unit, the metastable particle generation unit, and the radical introduction unit according to the present invention are configured as the radical generation/irradiation unit 5.
  • the ion trap 2 of the first embodiment includes an annular ring electrode 21 and a pair of end cap electrodes (an inlet side end cap electrode 22 and an outlet side end cap electrode 24) which are opposed to each other with the ring electrode 21 interposed therebetween. It is a three-dimensional ion trap including.
  • a radical particle introducing port 26 and a radical particle discharging port 27 are formed in the ring electrode 21, an ion introducing hole 23 is formed in the inlet side end cap electrode 22, and an ion emitting hole 25 is formed in the outlet side end cap electrode 24.
  • the trap voltage generation unit 74 sends a high frequency voltage and a DC voltage to the ring electrode 21, the inlet end cap electrode 22, and the outlet end cap electrode 24 at a predetermined timing in response to an instruction from the device control unit 75. Either one or a voltage obtained by combining them is applied.
  • the radical generation/irradiation unit 5 causes a nozzle 54 having a radical generation chamber 51 formed therein, a vacuum pump (vacuum exhaust unit) 57 that exhausts the radical generation chamber 51, and a vacuum discharge in the radical generation chamber 51. And an inductively coupled high-frequency plasma source 53 for supplying a microwave.
  • a transport pipe 58 for transporting the radicals generated in the radical generation chamber 51 to the reaction chamber is connected to the outlet end of the nozzle 54.
  • the transportation pipe 58 in the first embodiment is a quartz pipe (insulation pipe), and a plurality of types of quartz pipes having different inner diameters (for example, four types of inner diameters of 5 mm, 1 mm, 500 ⁇ m, and 100 ⁇ m) are prepared.
  • the inner diameter is larger than 5 mm, the amount of gas flowing into the ion trap 2 through the transport pipe 58 increases, and it is difficult to maintain the ultrahigh vacuum inside the ion trap 2.
  • the inner diameter is less than 100 ⁇ m, the amount of radicals irradiated to the precursor ions will be insufficient.
  • the radical generating/irradiating unit 5 includes a first source gas supply source 52 that supplies a gas (first source gas) that is a source of radicals, and an inert gas (second source that is a source of metastable atoms/molecules). Second source gas supply source 62 for supplying gas).
  • the flow path for supplying the raw material gas from the first raw material gas supply source 52 to the radical generation chamber 51 and the flow path for supplying the inert gas from the second raw material gas supply source 62 to the radical generation chamber 51 are respectively filled with Valves 56 and 66 for adjusting the flow rate are provided.
  • the first raw material gas for example, steam (water) or air can be used.
  • water vapor is used as the first source gas
  • hydroxyl radicals, oxygen radicals, and hydrogen radicals are generated
  • oxygen radicals and nitrogen radicals are mainly generated.
  • the second gas for example, nitrogen gas or various rare gases are used.
  • the second gas it is preferable to use a type of gas that can be excited to an excited state with a lifetime that is equal to or longer than the time required to transport the radicals generated in the radical generation chamber 51 to the ion trap 2.
  • the high frequency plasma source 53 includes a microwave supply source 531 and a three-stub tuner 532.
  • the nozzle 54 is provided with a ground electrode 541 forming an outer peripheral portion and a Pyrex (registered trademark) glass torch 542 located inside thereof, and the inside of the torch 542 serves as a radical generation chamber 51.
  • a needle electrode 543 connected to the high-frequency plasma source 53 via a connector 544 penetrates in the longitudinal direction of the radical generation chamber 51.
  • the analysis operation of the mass spectrometer of the first embodiment will be described.
  • the inside of the vacuum chamber and the radical generation chamber 51 is evacuated to a predetermined vacuum degree by a vacuum pump.
  • the first source gas is supplied from the first source gas supply source 52 and the second source gas is supplied from the second source gas supply source 62 to the radical generation chamber 51 of the radical generation/irradiation unit 5.
  • the microwaves from the high-frequency plasma source 53 radicals and metastable particles (meta-stable atoms or meta-stable molecules) are simultaneously generated inside the radical generation chamber 51.
  • ions mainly monovalent ions
  • a sample such as a peptide mixture in the ion source 1
  • Various ions generated from a sample such as a peptide mixture in the ion source 1 are ejected from the ion source 1 in the form of a packet and pass through an ion introduction hole 23 formed in the inlet endcap electrode 22. It is introduced into the ion trap 2.
  • the peptide-derived ions introduced into the ion trap 2 are captured by the high-frequency electric field formed in the ion trap 2 by the voltage applied to the ring electrode 21 from the trap voltage generator 74.
  • a predetermined voltage is applied from the trap voltage generating unit 74 to the ring electrode 21 and the like, whereby ions included in the mass-to-charge ratio range other than the ions having the specific mass-to-charge ratio of interest are excited, and the ion trap is generated. Excluded from 2. As a result, precursor ions having a specific mass-to-charge ratio are selectively trapped in the ion trap 2.
  • the valve 72 of the inert gas supply unit 7 is opened, and an inert gas such as helium gas is introduced from the inert gas supply source 71 into the ion trap 2.
  • an inert gas such as helium gas is introduced from the inert gas supply source 71 into the ion trap 2.
  • the valves 56 and 66 of the radical generation/irradiation unit 5 are opened, and the mixture of radicals and metastable particles generated in the radical generation chamber 51 is ejected from the tip of the transport pipe 58 and trapped in the ion trap 2.
  • the precursor ions are being irradiated.
  • the openings of the valves 56 and 66 are kept constant, and the ions are irradiated with a predetermined flow rate of radicals. Further, the irradiation time of the radical to the precursor ion is also set appropriately.
  • the opening of the valves 56, 66 for opening/closing the valves 56, 66 or starting/stopping the supply of microwaves and the irradiation time of the radicals should be determined in advance based on the results of preliminary experiments, etc., depending on the irradiation time. You can When the radical is irradiated, unpaired electron-induced dissociation occurs in the precursor ion to generate a peptide-derived product ion.
  • the generated various product ions are trapped in the ion trap 2 and cooled by helium gas or the like from the inert gas supply unit 7. After that, a high DC voltage is applied from the trap voltage generator 74 to the inlet end cap electrode 22 and the outlet end cap electrode 24 at a predetermined timing, whereby the ions trapped in the ion trap 2 are accelerated in energy. Then, the ions are simultaneously injected through the ion injection hole 25.
  • the product ions generated here may include both fragment ions and adduct ions.
  • product ions with a certain acceleration energy are introduced into the flight space of the time-of-flight mass separation unit 3 and separated according to the mass-to-charge ratio while flying in the flight space.
  • the ion detector 4 sequentially detects the separated ions, and the control/processing unit 9 having received the detection signal creates a time-of-flight spectrum in which the time point at which the ions are ejected from the ion trap 2 is zero. Then, the product ion spectrum is created by converting the time of flight into a mass-to-charge ratio using the mass calibration information obtained in advance.
  • the control/processing unit 9 performs predetermined data processing based on the information (mass information) obtained from the mass spectrum to identify the component (peptide) in the sample.
  • the partial structure of the peptide can be known from the mass-to-charge ratio of the fragment ions.
  • the sample component is a peptide
  • the presence of a site having a certain property contained in the peptide can be known from the specificity of the adduct ion addition substance.
  • oxygen easily attaches to methionine and aromatic amino acids, and information such as the number of methionine and aromatic amino acids contained in a peptide can be obtained from the adduct ion to which oxygen is added.
  • the pressure in the radical generation chamber 51 of the radical generation/irradiation unit 5 is about 0.01 to 1 Pa.
  • the inside of the ion trap 2 is usually maintained in an ultrahigh vacuum of about 10 ⁇ 3 Pa.
  • a skimmer 55 is provided between them.
  • radicals generated in the radical generation chamber 51 are jetted from the tip of the nozzle 54 to irradiate the precursor ions in the ion trap 2, so that among the radicals jetted from the tip of the nozzle 54, the skimmer Only radicals that proceed straight toward the top of 55 were introduced into the ion trap 2, and the irradiation efficiency of the radicals to the precursor ions was poor.
  • the radicals generated in the radical generation chamber 51 are introduced into the ion trap 2 through the transport pipe 58 attached to the tip of the nozzle 54.
  • metastable particles are mixed and transported to the ion trap 2.
  • a metastable particle is an atom (metastable atom) or molecule (metastable molecule) in a long-lived excited state, which has a larger internal energy than the atom or molecule in the ground state.
  • the tip of the transport tube 58 is inserted into the top opening of the skimmer 55 and arranged near the radical particle inlet 26 formed in the ring electrode 21, but the tip of the transport tube 58 is radical. You may make it insert in the particle inlet 26.
  • the upper part of FIG. 3 shows the result of irradiating the precursor ions only with the radicals
  • the middle part shows the result of irradiating the precursor ions by mixing the helium atoms in the metastable state with the radicals in the middle part, using helium as the second source gas.
  • the lower graph shows the result of using nitrogen gas as the second source gas, mixing nitrogen molecules in the metastable state with radicals, and irradiating the precursor ions.
  • the radical addition reaction of fullerene is an exothermic reaction.
  • the energy threshold of the radical addition reaction is 0, and all the radicals irradiated on the precursor ion derived from fullerene adhere, so that the amount of radicals irradiated on the precursor ion can be estimated by this experiment.
  • a transport pipe 58 (a quartz pipe having an inner diameter of 3 mm and a length of 50 mm) was used at the tip of the nozzle 54.
  • More peaks of radical-attached ions can be confirmed in the middle and lower spectra compared to the upper spectra in FIG. That is, by adopting the configuration of the first embodiment in which radicals are transported to the ion trap 2 together with the metastable particles generated from helium gas or nitrogen gas, more precursor ions can be irradiated with the radicals.
  • the first source gas since water vapor was used as the first source gas, it is considered that hydrogen radicals, oxygen radicals, and hydroxy radicals were generated and attached to the precursor ions.
  • FIG. 4 shows a substance proposed by the present inventor in the previous application (PCT/JP2018/043074), in which a substance having an unsaturated bond is irradiated with a radical having an oxidizing ability, and a precursor ion is specifically present at the position of the unsaturated bond.
  • a substance having an unsaturated bond is irradiated with a radical having an oxidizing ability
  • a precursor ion is specifically present at the position of the unsaturated bond.
  • This is a result of irradiating precursor ions derived from phospholipids (PC(18:0/18:1)) with oxygen radicals by using a method of dissociating.
  • the upper part of FIG. 4 shows a product ion spectrum obtained by injecting only oxygen radicals from the nozzle 54 for 1 second and introducing it into the ion trap 2 through the opening of the skimmer 55.
  • the structure of the first embodiment that is, the product ion spectrum obtained by mixing oxygen radicals and nitrogen molecules in the metastable state and introducing them into the ion trap 2 for 0.25 seconds through the transport tube 58.
  • the ion analyzer of the first embodiment the amount of product ions that is about the same as that of the conventional one can be obtained in one-fourth of the conventional radical irradiation time. That is, by using the ion analyzer of the first embodiment, it is possible to irradiate the precursor ions with radicals at a high efficiency of about four times that of the prior art.
  • the first embodiment is an ion analyzer equipped with a three-dimensional ion trap
  • the radical generation/irradiation unit 5 using a transport tube can be used in the same manner as above for an ion analyzer equipped with a linear ion trap. ..
  • An example of the triple quadrupole mass spectrometer will be described with reference to FIGS. 5 and 6.
  • FIG. 5 is a schematic configuration diagram of the mass spectrometer of the second embodiment (the device control unit 75 and the control/processing unit 9 are not shown).
  • the degree of vacuum is increased stepwise between the ionization chamber 80 at approximately atmospheric pressure and the high-vacuum analysis chamber 83 that is evacuated by a vacuum pump (not shown).
  • the multistage differential evacuation system is provided with a first intermediate vacuum chamber 81 and a second intermediate vacuum chamber 82.
  • an ESI probe 801 is installed in the ionization chamber 80.
  • An ion guide 811 is installed in the first intermediate vacuum chamber 81, and an ion guide 821 is installed in the second intermediate vacuum chamber 82 in order to transport the ions to the subsequent stage while converging the ions.
  • a quadrupole mass filter 834 and an ion detector 835 are installed.
  • the radical generation/irradiation unit 5 has the same configuration as that of the first embodiment (in FIG. 5, only the radical generation chamber 51, the nozzle 54, and the transport pipe 58 of the radical generation/irradiation unit 5 are shown). ..
  • the transport pipe 58 is arranged so that its tip portion extends along the wall surface of the collision cell 832.
  • each head portion 581 is provided with an inclined cone-shaped ejection port, and radicals are ejected in a direction intersecting with the flight direction of ions (ion optical axis C). This increases the chances of contact between the ions flying along the ion optical axis C and the radicals, and more radicals can be attached to the precursor ions.
  • the ejection ports are provided so as to eject the radicals from the respective head portions 581 in the same direction, but the radicals are ejected from the respective head portions 581 in different directions, and the radicals are evenly ejected to the entire internal space of the collision cell 832. It may be configured to.
  • radicals and metastable particles are mixed and introduced into the linear ion trap 832, it is possible to irradiate the precursor ions derived from the sample component with radicals with high efficiency. it can.
  • the radical generation/irradiation unit 5 provided with the high-frequency plasma source 53 was used, and both radicals and metastable particles were generated in the radical generation/irradiation unit 5.
  • the table particle generation unit may be separately provided. In that case, for example, a hollow cathode plasma source is used for the radical generation unit, and a configuration for exciting gas molecules by irradiating the second raw material gas with light of a predetermined wavelength is used for the metastable particle generation unit. The combination of can be taken.
  • the second source gas (source gas for metastable particles) and the inert gas (gas for cooling precursor ions) are the same type of gas (for example, nitrogen gas), the flow from one gas supply source is used.
  • a cooling gas is supplied to the ion trap 2 and a second source gas is supplied to the radical generation chamber (meta-stable particle generation chamber) 41 by branching the passage into two and providing a flow passage switching portion at the branch portion. can do.
  • the first source gas and the second source gas are the same type of gas (for example, nitrogen gas)
  • radical generation provided with the high-frequency plasma source 53, as in the ion analyzers of Examples 1 and 2 above.
  • the time-of-flight mass separation unit is a linear type, but a time-of-flight mass separation unit such as a reflectron type or a multi-turn type may be used.
  • a time-of-flight mass separation unit such as a reflectron type or a multi-turn type
  • other forms of mass separation unit such as an orbitrap that performs mass separation using the ion separation function of the ion trap 2 itself can be used.
  • the radical generation/irradiation unit 5 described in Examples 1 and 2 can be suitably used not only in the mass spectrometer but also in the ion mobility spectrometer.
  • An ion analyzer is an ion analyzer for generating and analyzing product ions by irradiating a precursor ion derived from a sample component with a radical, A reaction chamber into which the precursor ions are introduced, A radical generation unit that generates radicals from the first source gas; A metastable particle generation unit that generates metastable particles from the second raw material gas; A radical introduction part that mixes the radicals and the metastable particles and introduces them into the reaction chamber, An ion detector that detects product ions generated from the precursor ions by introducing the radicals.
  • the metastable particles are mixed with the radicals generated by the radical generation unit and introduced into the reaction chamber.
  • the metastable particles in an excited state and having a large internal energy collide with the radicals that have adhered by colliding with the wall surface of the pipe or chamber during the transportation from the radical generation unit to the reaction chamber. , The radicals are released from the wall surface. Therefore, it is possible to prevent the radical generated in the radical generation chamber from combining with another radical and disappear, and introduce more radicals into the reaction chamber to irradiate the precursor ion.
  • the second raw material gas is a rare gas or a nitrogen gas.
  • metastable particles are generated using a rare gas or nitrogen gas. Since metastable particles generated from a rare gas or nitrogen gas generally have a long life, it is possible to suppress the disappearance of radicals and transport them to the reaction chamber with high efficiency.
  • An ion analyzer is the ion analyzer according to the first or second aspect, wherein the radical introducing unit transports a mixture of the metastable particles and the radicals to the reaction chamber. Equipped with.
  • the ion analyzer according to the fourth aspect of the present invention is the ion analyzer according to the third aspect, wherein the inner diameter of the transport pipe is 5 mm or less.
  • the radicals are transported to the reaction chamber by the transport pipe having an inner diameter of 5 mm or less, it is possible to prevent excessive gas from flowing into the reaction chamber and maintain the reaction chamber in a high vacuum. ..
  • the ion analyzer according to the fifth aspect of the present invention is the ion analyzer according to the third or fourth aspect, wherein the transport pipe is an insulating pipe.
  • a transport pipe made of an insulating pipe such as alumina is used.
  • the insulating tube may be made of alumina, for example.
  • since a transport tube made of an insulating tube is used it is known that the introduction efficiency of microwave power into plasma can be improved as compared with a quartz tube due to the difference in the dielectric constant. The power can be reduced.
  • An ion analyzer is the ion analyzer according to any one of the third to fifth aspects,
  • the reaction chamber is a linear ion trap,
  • the transport pipe includes an injection unit having a plurality of injection ports for injecting the radicals in a direction orthogonal to a flight direction of ions in the linear ion trap.
  • the radicals are irradiated from the injection unit provided in the transport pipe in a direction orthogonal to the flight direction of the ions, more radicals are irradiated to the ions flying in the linear ion trap. can do.
  • An ion analyzer is the ion analyzer according to any one of the first to sixth aspects,
  • the radical generator has a high frequency plasma source.
  • radicals are generated using a high frequency plasma source.
  • the high-frequency plasma source generates plasma by vacuum discharge, and it is not necessary to provide an atmospheric pressure space in the ion analyzer.
  • radicals can be generated from various types of first source gas including steam and air that are easy to handle.
  • the ion analyzer of the eighth aspect of the present invention is the ion analyzer of the seventh aspect, wherein the high frequency plasma source is an inductively coupled high frequency plasma source.
  • the ion analyzer of the eighth aspect uses an inductively coupled high frequency plasma source. Since the inductively coupled radio frequency plasma source can realize a higher radical density than that of the capacitively coupled type, a large amount of radicals can be introduced into the ion trap and the reaction time can be shortened.
  • An ion analyzer is the ion analyzer according to any one of the first to eighth aspects,
  • the radical generation unit and the metastable particle generation unit are common.
  • the device configuration can be simplified.
  • the ion analyzer according to the tenth aspect of the present invention is the ion analyzer according to any one of the first to ninth aspects, in which the first source gas and the second source gas are the same type of gas.
  • the ion analyzer of the tenth aspect by using the same kind of gas for the first raw material gas and the second raw material gas, only one gas supply source needs to be used, and therefore the configuration of the apparatus can be simplified. ..
  • Inert gas supply part 71 Inert Gas supply source 72
  • Valve 74 Trap voltage generating unit 75
  • Inert Gas supply source 72 Valve 74
  • Device control unit 80 ...Ionization chamber 81...First intermediate vacuum chamber 811...Ion guide 82...Second intermediate vacuum chamber 821...Ion guide 83...Analysis chamber 831...Previous stage Quadrupole mass filter 832... Collision cell 833... Multipole ion guide 834... Post quadrupole mass filter 835... Ion detector

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

試料成分由来のプリカーサイオンにラジカルを照射することにより生成されるプロダクトイオンを分析するイオン分析装置であって、プリカーサイオンが導入される反応室(2;833)と、第1原料ガスからラジカルを生成するラジカル生成部(5)と、第2原料ガスからメタステーブル粒子を生成するメタステーブル粒子生成部(5)と、ラジカルとメタステーブル粒子を混合して反応室(2;833)に導入するラジカル導入部(5)と、ラジカルの導入によってプリカーサイオンから生成されるプロダクトイオンを検出するイオン検出部(4;835)とを備える。

Description

イオン分析装置
 本発明は、試料成分由来のプリカーサイオンにラジカルを照射することによりプロダクトイオンを生成して分析するイオン分析装置に関する。
 高分子化合物を同定したりその構造を解析したりするために、高分子化合物由来のイオン(プリカーサイオン)を1又は複数回解離させてプロダクトイオン(フラグメントイオンとも呼ばれる。)を生成し、それを質量電荷比に応じて分離し検出する質量分析法が広く利用されている。質量分析においてイオンを解離させる代表的な方法として、イオンに窒素ガス等の不活性ガス分子を衝突させる、衝突誘起解離(CID: Collision-Induced Dissociation)法が知られている。CID法では不活性分子との衝突エネルギーによってイオンを解離させるため、様々なイオンを解離させることができるが、イオンが解離する位置の選択性が低い。そのため、CID法は、構造解析のために特定の部位でイオンを解離させる必要がある場合には不向きである。例えば、ペプチドなどを分析する場合は、アミノ酸の結合位置で特異的に解離させることが望まれるが、CID法ではそれが難しい。
 ペプチドをアミノ酸の結合位置で特異的に解離させるイオン解離法として、従来より、プリカーサイオンに負イオンを衝突させる電子移動解離(ETD: Electron Transfer Dissociation)法や、プリカーサイオンに電子を照射する電子捕獲解離(ECD: Electron Capture Dissociation)法が用いられている。これらは、不対電子誘導型の解離法と呼ばれるものであり、ペプチド主鎖のN-Cα結合を解離させてc/z系列のプロダクトイオンを生成する。
 ETD法やECD法では、プリカーサイオンが正イオンである場合、解離時にイオンの価数が減少する。即ち、1価の正イオンを解離させると中性分子が生成される。このため、2価以上の正イオンしか分析することができない。従って、ETD法やECD法は、1価の正イオンを多く生成するMALDI法と組み合わせるには不向きである。
 本発明者は、特許文献1において、ペプチド由来のプリカーサイオンに対して水素ラジカルを照射することによって不対電子誘導型の解離を生じさせる水素付着解離(HAD: Hydrogen-Attached Dissociation)法を提案している。特許文献1では、ラジカル生成室で生成した水素ラジカルをノズルから噴射し、イオントラップ内に捕捉したプリカーサイオンに照射する。HAD法ではプリカーサイオンの価数を変化させずに解離させることから、MALDI法との組み合わせに適している。HAD法によってもc/z系列のプロダクトイオンを生成することができる。
 また、本発明者は、ヒドロキシラジカル、酸素ラジカル、あるいは窒素ラジカルを用いることによって、ペプチド由来のプリカーサイオンをアミノ酸の結合位置で特異的に解離させることも提案している。特許文献2でも、特許文献1と同様の構成を用いてこれらのラジカルをプリカーサイオンに照射する。ペプチド由来のプリカーサイオンに対してこれらのラジカルを照射すると、a/x系列のプロダクトイオンやc/z系列のプロダクトイオンが生成される。
国際公開第2015/133259号 国際公開第2018/186286号
 ラジカル生成室で生成されたラジカル(例えば水素ラジカル)が、イオントラップ内のプリカーサイオンに照射されるまでの間に該ラジカルを輸送する配管やチャンバなどの壁面に衝突すると、ラジカル温度が室温程度にまで低下して該壁面に付着する。そして、壁面に付着したラジカルは、別のラジカルと結合して非ラジカル(例えば水素分子)になり消失する。プリカーサイオンの解離によって生成されるプロダクトイオンの量は、プリカーサイオンに照射されるラジカルの量に依存するため、ラジカル生成部で生成したラジカルがプリカーサイオンに照射されるまでの間に消失すると、該プリカーサイオンから生成されるプロダクトイオンの量が減少してしまう。そのため、ラジカル生成部で生成されたラジカルの消失を抑制し、より多くのラジカルをプリカーサイオンに照射することが求められる。
 ここではラジカルを照射してプリカーサイオンを解離させることにより生成したプロダクトイオンを質量分析する場合を例に説明したが、プロダクトイオンを他の物理量(例えばイオン移動度)に応じて分離し測定する場合にも上記同様の問題があった。
 本発明が解決しようとする課題は、試料成分由来のプリカーサイオンにラジカルを照射することによりプロダクトイオンを生成して分析するイオン分析装置において、ラジカルの消失を抑制してより多くのラジカルをプリカーサイオンに照射することである。
 上記課題を解決するために成された本発明は、試料成分由来のプリカーサイオンにラジカルを照射することによりプロダクトイオンを生成して分析するイオン分析装置であって、
 前記プリカーサイオンが導入される反応室と、
 第1原料ガスからラジカルを生成するラジカル生成部と、
 第2原料ガスからメタステーブル粒子を生成するメタステーブル粒子生成部と、
 前記ラジカルと前記メタステーブル粒子を混合して前記反応室に導入するラジカル導入部と、
 前記ラジカルの導入によって前記プリカーサイオンから生成されるプロダクトイオンを検出するイオン検出部と
 を備える。
 本発明に係るイオン分析装置では、ラジカル生成部で生成されたラジカルにメタステーブル粒子を混合し、反応室の内部に導入する。メタステーブル粒子とは、長寿命の励起状態にある原子(メタステーブル原子)や分子(メタステーブル分子)であり、例えば励起状態にある希ガス分子や不活性ガス分子である。本発明に係るイオン分析装置では、ラジカル生成部から反応室への輸送中に配管やチャンバなどの壁面に衝突して付着したラジカルに、励起状態にあり大きな内部エネルギーを持つメタステーブル粒子が衝突し、該ラジカルが壁面から離脱する。そのため、ラジカル生成室で生成されたラジカルが別のラジカルと結合して消失するのを抑制し、より多くのラジカルを反応室に導入し、プリカーサイオンに照射することができる。
本発明に係るイオン分析装置の第1実施例であるイオントラップ-飛行時間型質量分析装置の概略構成図。 第1実施例のイオントラップ-飛行時間型質量分析装置において用いられるラジカル生成・照射部の概略構成図。 第1実施例の質量分析装置において、メタステーブル原子・分子とともに水素ラジカルをフラーレンに照射した結果を説明する図。 第1実施例の質量分析装置において、メタステーブル原子・分子とともに酸素ラジカルをリン脂質に照射した結果を説明する図。 本発明に係るイオン分析装置の第2実施例である三連四重極型質量分析装置の概略構成図。 第2実施例である三連四重極型質量分析装置において用いられるラジカル生成・照射部の概略構成図。
 本発明に係るイオン分析装置の実施例について、以下、図面を参照して説明する。第1実施例のイオン分析装置は、イオントラップ-飛行時間型(IT-TOF型)質量分析装置である。
 図1に第1実施例のイオントラップ-飛行時間型質量分析装置(以下、単に「質量分析装置」とも呼ぶ。)の概略構成を示す。第1実施例の質量分析装置は、真空雰囲気に維持される図示しない真空チャンバの内部に、試料中の成分をイオン化するイオン源1と、イオン源1で生成されたイオンを高周波電場の作用により捕捉するイオントラップ2と、イオントラップ2から射出されたイオンを質量電荷比に応じて分離する飛行時間型質量分離部3と、分離されたイオンを検出するイオン検出器4とを備える。第1実施例のイオントラップ質量分析装置はさらに、イオントラップ2内に捕捉されているイオンを解離させるべく該イオントラップ2内に捕捉されたプリカーサイオンにラジカルを照射するためのラジカル生成・照射部5と、不活性ガス供給部7と、トラップ電圧発生部74と、機器制御部75と、制御・処理部9とを備える。第1実施例では、本発明に係るラジカル生成部、メタステーブル粒子生成部、及びラジカル導入部が、ラジカル生成・照射部5として構成されている。
 第1実施例の質量分析装置のイオン源1には、ESI源やMALDIイオン源など、試料成分のイオン化に適した種類のイオン源が用いられる。第1実施例のイオントラップ2は、円環状のリング電極21と、該リング電極21を挟んで対向配置された一対のエンドキャップ電極(入口側エンドキャップ電極22、出口側エンドキャップ電極24)とを含む三次元イオントラップである。リング電極21にはラジカル粒子導入口26とラジカル粒子排出口27が、入口側エンドキャップ電極22にはイオン導入孔23が、出口側エンドキャップ電極24にはイオン射出孔25が、それぞれ形成されている。トラップ電圧発生部74は、機器制御部75からの指示に応じてリング電極21、入口側エンドキャップ電極22、及び出口側エンドキャップ電極24のそれぞれに対して所定のタイミングで高周波電圧と直流電圧のいずれか一方又はそれらを合成した電圧を印加する。
 ラジカル生成・照射部5は、内部にラジカル生成室51が形成されたノズル54と、ラジカル生成室51を排気する真空ポンプ(真空排気部)57と、ラジカル生成室51内で真空放電を生じさせるためのマイクロ波を供給する誘導結合型の高周波プラズマ源53とを備えている。ノズル54の出口端には、ラジカル生成室51内で生成されたラジカルを反応室に輸送するための輸送管58が接続されている。第1実施例における輸送管58は石英製の管(絶縁管)であり、内径が異なる複数種類の石英管(例えば内径5mm、1mm、500μm、100μmの4種類)が用意されている。これらは、照射するラジカルの量や、イオントラップ2内の真空度に応じて使い分けられる。内径が5mmよりも大きいと、輸送管58を通じてイオントラップ2に流入するガスの量が多くなり、イオントラップ2内を超高真空に維持することが難しい。一方、内径が100μm未満であると、プリカーサイオンに照射されるラジカルの量が不足する。
 また、ラジカル生成・照射部5は、ラジカルの原料となるガス(第1原料ガス)を供給する第1原料ガス供給源52と、メタステーブル原子・分子の原料となる不活性ガス(第2原料ガス)を供給する第2原料ガス供給源62とを備えている。第1原料ガス供給源52からラジカル生成室51に原料ガスを供給する流路、第2原料ガス供給源62からラジカル生成室51に不活性ガスを供給する流路には、それぞれの原料ガスの流量を調整するためのバルブ56、66が設けられている。
 第1原料ガスとしては、例えば水蒸気(水)や空気を用いることができる。第1原料ガスとして水蒸気を用いた場合には、ヒドロキシルラジカル、酸素ラジカル、及び水素ラジカルが生成され、空気を用いた場合には、主として酸素ラジカルと窒素ラジカルが生成される。第2ガスとしては、例えば窒素ガス、各種の希ガスが用いられる。第2ガスには、ラジカル生成室51で生成されたラジカルをイオントラップ2まで輸送するのに要する時間と同程度、あるいはそれ以上の寿命の励起状態に励起可能な種類のガスを用いるとよい。例えば、ヘリウムガスを用いた場合、103~104秒という極めて長寿命の23S状態(1s軌道と2s軌道に電子が入った三重項状態)のメタステーブル状態のヘリウム原子を生成することができる。
 図2に示すように、高周波プラズマ源53は、マイクロ波供給源531とスリースタブチューナー532を備えている。ノズル54は外周部を構成する接地電極541、その内側に位置するパイレックス(登録商標)ガラス製のトーチ542を備えており、該トーチ542の内部がラジカル生成室51となる。ラジカル生成室51の内部では、コネクタ544を介して高周波プラズマ源53と接続されたニードル電極543がラジカル生成室51の長手方向に貫通している。
 次に、第1実施例の質量分析装置における分析動作を説明する。分析の開始前に、真空チャンバ及びラジカル生成室51の内部はそれぞれ真空ポンプにより所定の真空度まで排気される。続いて、第1原料ガス供給源52から第1原料ガスが、また第2原料ガス供給源62から第2原料ガスが、ラジカル生成・照射部5のラジカル生成室51に供給される。そして、高周波プラズマ源53からマイクロ波が供給されることにより、ラジカル生成室51の内部でラジカルとメタステーブル粒子(メタステーブル原子又はメタステーブル分子)が同時に生成される。
 イオン源1においてペプチド混合物などの試料から生成された各種イオン(主として1価のイオン)はパケット状にイオン源1から射出され、入口側エンドキャップ電極22に形成されているイオン導入孔23を経てイオントラップ2の内部に導入される。イオントラップ2内に導入されたペプチド由来のイオンは、トラップ電圧発生部74からリング電極21に印加される電圧によってイオントラップ2内に形成される高周波電場で捕捉される。そのあと、トラップ電圧発生部74からリング電極21等に所定の電圧が印加され、それによって目的とする特定の質量電荷比を有するイオン以外の質量電荷比範囲に含まれるイオンは励振され、イオントラップ2から排除される。これにより、イオントラップ2内に、特定の質量電荷比を有するプリカーサイオンが選択的に捕捉される。
 続いて、不活性ガス供給部7のバルブ72が開放され、不活性ガス供給源71からイオントラップ2内にヘリウムガスなどの不活性ガスが導入される。これによりプリカーサイオンがクーリングされ、イオントラップ2の中心付近に収束される。その後、ラジカル生成・照射部5のバルブ56、66が開放され、ラジカル生成室51内で生成されたラジカルとメタステーブル粒子の混合物が輸送管58の先端から噴出し、イオントラップ2内に捕捉されているプリカーサイオンに照射される。
 バルブ56、66の開度等は一定の状態に維持されており、イオンには所定流量のラジカルが照射される。また、プリカーサイオンへのラジカルの照射時間も適宜に設定されている。この照射時間に応じてバルブ56、66を開閉、あるいはマイクロ波の供給を開始・停止するバルブ56、66の開度やラジカルの照射時間は、予備実験の結果等に基づき事前に決めておくことができる。ラジカルが照射されると、プリカーサイオンに不対電子誘導型の解離が生じてペプチド由来のプロダクトイオンが生成される。生成された各種プロダクトイオンはイオントラップ2内に捕捉され、不活性ガス供給部7からのヘリウムガス等によってクーリングされる。そのあと、所定のタイミングでトラップ電圧発生部74から入口側エンドキャップ電極22と出口側エンドキャップ電極24に直流高電圧が印加され、これにより、イオントラップ2内に捕捉されていたイオンは加速エネルギーを受け、イオン射出孔25を通して一斉に射出される。ここで生成されるプロダクトイオンには、フラグメントイオンとアダクトイオンの両方が含まれ得る。
 こうして一定の加速エネルギーを持ったプロダクトイオンが飛行時間型質量分離部3の飛行空間に導入され、飛行空間を飛行する間に質量電荷比に応じて分離される。イオン検出器4は分離されたイオンを順次検出し、この検出信号を受けた制御・処理部9は、例えばイオントラップ2からのイオンの射出時点を時刻ゼロとする飛行時間スペクトルを作成する。そして、予め求めておいた質量校正情報を用いて飛行時間を質量電荷比に換算することにより、プロダクトイオンスペクトルを作成する。制御・処理部9ではこのマススペクトルから得られる情報(質量情報)等に基づく所定のデータ処理を行うことで、試料中の成分(ペプチド)を同定する。プロダクトイオンのうち、フラグメントイオンの質量電荷比からペプチドの部分構造が分かる。例えば、試料成分がペプチドである場合、アダクトイオンの付加物質の特異性から、該ペプチドに含まれる、ある特性を持った部位の存在等が分かる。例えば、メチオニンや芳香族アミノ酸には酸素が付着しやすいことが知られており、酸素が付加されたアダクトイオンからペプチドに含まれるメチオニンや芳香族アミノ酸の数等の情報が得られる。
 ラジカル生成・照射部5のラジカル生成室51内の圧力は0.01~1Pa程度である。一方、イオントラップ2の内部は、通常、10-3Pa程度の超高真空に維持される。両者の圧力差を維持するために、これらの間にはスキマー55が設けられている。従来のイオン分析装置では、ラジカル生成室51で生成されたラジカルをノズル54の先端から噴射しイオントラップ2内のプリカーサイオンに照射していたため、ノズル54の先端から噴射されるラジカルのうち、スキマー55の頂部に向かって直進するラジカルしかイオントラップ2に導入されず、プリカーサイオンへのラジカルの照射効率が悪かった。
 従来のイオン分析装置においても、ノズルの先端に細径の輸送管を取り付けてラジカルを輸送することが可能である。しかし、輸送管を通過する間にラジカルの一部が内壁面に付着し、別のラジカルと反応して非ラジカル化して消失する。そのため、従来のイオン分析装置で輸送管を使用してもプリカーサイオンへのラジカルの照射効率は向上しない。
 これに対し、第1実施例のイオン分析装置では、ラジカル生成室51で生成したラジカルを、ノズル54の先端に取り付けた輸送管58を通じてイオントラップ2に導入する。また、ラジカルだけでなく、メタステーブル粒子を混合してイオントラップ2まで輸送する。メタステーブル粒子とは、長寿命の励起状態にある原子(メタステーブル原子)や分子(メタステーブル分子)であり、これらは基底状態の原子や分子よりも大きな内部エネルギーを持っている。第1実施例のようにラジカル生成室51で生成したラジカルをメタステーブル粒子ともに輸送管58に導入することで、ラジカルの一部が輸送管58の内壁面に付着してもメタステーブル粒子によって該壁面からラジカルを離脱させることができる。加えて、輸送管58内でメタステーブル粒子が新たなラジカル種を生成するメカニズムも存在する。そのため、従来に比べてラジカルの消失が抑制され、プリカーサイオンへのラジカルの照射効率が向上する。なお、第1実施例では、輸送管58の先端をスキマー55の頂部の開口に挿通し、リング電極21に形成されたラジカル粒子導入口26の近傍に配置したが、輸送管58の先端をラジカル粒子導入口26に差し込むようにしてもよい。
 次に、本発明者がイオントラップ2に捕捉したフラーレン由来のプリカーサイオン(分子イオン)にラジカルを照射し、生成されたプロダクトイオンを質量分離し検出するという実験を行った結果を説明する。この実験では、第1原料ガス(ラジカルの原料ガス)として水蒸気を使用し、第2原料ガス(メタステーブル粒子の原料ガス)としてヘリウムと窒素を使用した。
 図3上段は、従来同様に、ラジカルのみをプリカーサイオンに照射した結果、中段は、第2原料ガスとしてヘリウムを使用し、メタステーブル状態のヘリウム原子をラジカルに混合してプリカーサイオンに照射した結果、下段は、第2原料ガスとして窒素ガスを使用し、メタステーブル状態の窒素分子をラジカルに混合してプリカーサイオンに照射した結果である。フラーレンのラジカル付加反応は発熱反応である。つまり、ラジカル付加反応のエネルギー閾値は0であり、フラーレン由来のプリカーサイオンに照射されたラジカルは全て付着するため、この実験によりプリカーサイオンに照射されたラジカルの量を見積もることができる。なお、いずれの測定時においてもノズル54の先端に輸送管58(内径3mm、長さ50mmの石英管)を用いた。
 図3上段のスペクトルに比べ、中段及び下段のスペクトルの方が、ラジカル付着イオンのピークをより多く確認できる。つまり、ヘリウムガスや窒素ガスから生成したメタステーブル粒子とともにラジカルをイオントラップ2に輸送する第1実施例の構成を採ることにより、ラジカルをより多くプリカーサイオンに照射できる。なお、この実験では第1原料ガスとして水蒸気を用いていることから、水素ラジカル、酸素ラジカル、及びヒドロキシラジカルが生成されプリカーサイオンに付着したと考えられる。
 図4は、本発明者が先の出願(PCT/JP2018/043074)で提案した、不飽和結合を有する物質に酸化能を有するラジカルを照射し、該不飽和結合の位置で特異的にプリカーサイオンを解離させるという手法を用いて、リン脂質(PC(18:0/18:1))由来のプリカーサイオンに酸素ラジカルを照射した結果である。図4の上段は従来のイオン分析装置と同様に、ノズル54から酸素ラジカルのみを1秒間噴射し、スキマー55の開口を通じてイオントラップ2内に導入して得たプロダクトイオンスペクトルである。図4の下段は第1実施例の構成、即ち酸素ラジカルとメタステーブル状態の窒素分子を混合し、輸送管58を通じて0.25秒間、イオントラップ2に導入して得たプロダクトイオンスペクトルである。第1実施例のイオン分析装置を用いることにより、従来の4分の1のラジカル照射時間で、従来のものと同程度の量のプロダクトイオンが得られている。つまり、第1実施例のイオン分析装置を用いることにより、従来の約4倍という高効率でプリカーサイオンにラジカルを照射することができる。
 第1実施例は、三次元イオントラップを備えたイオン分析装置であるが、リニアイオントラップを備えたイオン分析装置についても上記同様に輸送管を用いたラジカル生成・照射部5を用いることができる。その一例である三連四重極型の質量分析装置について、図5及び図6を参照して説明する。
 図5は第2実施例の質量分析装置の概略構成図である(機器制御部75、制御・処理部9は図示略)。第2実施例の質量分析装置は、略大気圧であるイオン化室80と真空ポンプ(図示なし)により真空排気された高真空の分析室83との間に、段階的に真空度が高められた第1中間真空室81及び第2中間真空室82を備えた多段差動排気系の構成を有している。イオン化室80には、例えばESIプローブ801が設置される。イオンを収束させつつ後段へ輸送するために、第1中間真空室81にはイオンガイド811が、第2中間真空室82にはイオンガイド821が、それぞれ設置されている。分析室83には、イオンを質量電荷比に応じて分離する前段四重極マスフィルタ831、多重極イオンガイド833が内部に設置されたコリジョンセル832、イオンを質量電荷比に応じて分離する後段四重極マスフィルタ834、及びイオン検出器835が設置されている。
 ラジカル生成・照射部5は、第1実施例と同様の構成を有している(図5では、ラジカル生成・照射部5のうち、ラジカル生成室51、ノズル54、及び輸送管58のみ図示)。輸送管58は、その先端部分がコリジョンセル832の壁面に沿うように配設されている。
 図6に示すように、輸送管58のうち、コリジョンセル832の壁面に沿って配設された部分には、5つのヘッド部581が設けられている。各ヘッド部581には傾斜したコーン状の噴射口が設けられており、イオンの飛行方向(イオン光軸C)と交差する方向にラジカルが噴射される。これにより、イオン光軸Cに沿って飛行するイオンとラジカルの接触機会を増やし、より多くのラジカルをプリカーサイオンに付着させることができる。この例では、各ヘッド部581から同じ方向にラジカルを噴射するように噴射口を設けたが、各ヘッド部581から異なる方向にラジカルを噴射し、コリジョンセル832内部空間の全体にラジカルを満遍なく噴射するように構成してもよい。
 第2実施例においても、第1実施例と同様に、ラジカルとメタステーブル粒子を混合してリニアイオントラップ832内に導入するため、高効率で試料成分由来のプリカーサイオンにラジカルを照射することができる。
 上記実施例はいずれも一例であって、本発明の趣旨に沿って適宜に変更することができる。
 上記の実施例1及び2では、高周波プラズマ源53を備えたラジカル生成・照射部5を用い、該ラジカル生成・照射部5においてラジカルとメタステーブル粒子の両方を生成したが、ラジカル生成部とメタステーブル粒子生成部を個別に設けても良い。その場合、ラジカル生成部には、例えばホローカソードプラズマ源を用い、メタステーブル粒子生成部には、例えば第2原料ガスに所定波長の光を照射してガス分子を励起する構成を用いるなど、種々の組み合わせを採ることができる。また、第2原料ガス(メタステーブル粒子の原料ガス)と、不活性ガス(プリカーサイオンをクーリングするガス)が同種のガス(例えば窒素ガス)である場合には、1つのガス供給源からの流路を2つに分岐して該分岐部に流路切替部を設けるなどして、イオントラップ2にクーリングガスを供給し、ラジカル生成室(メタステーブル粒子生成室)41に第2原料ガスを供給することができる。さらに、第1原料ガスと第2原料ガスが同種のガス(例えば窒素ガス)である場合には、上記実施例1及び2のイオン分析装置のように、高周波プラズマ源53を備えたラジカル生成・照射部5を用いることにより、当該ガスからラジカルとメタステーブル粒子の両方を生成することもできる。
 また、第1実施例では、飛行時間型質量分離部をリニア型としたが、リフレクトロン型やマルチターン型等の飛行時間型質量分離部を用いてもよい。また、飛行時間型質量分離部以外に、例えばイオントラップ2自体のイオン分離機能を利用して質量分離を行うものやオービトラップなど、他の形態の質量分離部を用いることもできる。さらに、実施例1及び2で説明したラジカル生成・照射部5は、質量分析装置のほか、イオン移動度分析装置においても好適に用いることができる。
 以上、図面を参照して本発明における種々の実施形態を詳細に説明したが、最後に、本発明の種々の態様について説明する。
 本発明の第1態様のイオン分析装置は、試料成分由来のプリカーサイオンにラジカルを照射することによりプロダクトイオンを生成して分析するイオン分析装置であって、
 前記プリカーサイオンが導入される反応室と、
 第1原料ガスからラジカルを生成するラジカル生成部と、
 第2原料ガスからメタステーブル粒子を生成するメタステーブル粒子生成部と、
 前記ラジカルと前記メタステーブル粒子を混合して前記反応室に導入するラジカル導入部と、
 前記ラジカルの導入によって前記プリカーサイオンから生成されるプロダクトイオンを検出するイオン検出部と
 を備える。
 第1態様のイオン分析装置では、ラジカル生成部で生成されたラジカルにメタステーブル粒子を混合し、反応室の内部に導入する。第1態様のイオン分析装置では、ラジカル生成部から反応室への輸送中に配管やチャンバなどの壁面に衝突して付着したラジカルに、励起状態にあり大きな内部エネルギーを持つメタステーブル粒子が衝突し、該ラジカルが壁面から離脱する。そのため、ラジカル生成室で生成されたラジカルが別のラジカルと結合して消失するのを抑制し、より多くのラジカルを反応室に導入し、プリカーサイオンに照射することができる。
 本発明の第2態様のイオン分析装置では、上記第1態様のイオン分析装置において、前記第2原料ガスが、希ガス又は窒素ガスである。
 第2態様のイオン分析装置では、希ガス又は窒素ガスを用いてメタステーブル粒子を生成する。希ガスや窒素ガスから生成されるメタステーブル粒子は一般的に長寿命であるため、ラジカルの消失を抑制して高効率で反応室に輸送することができる。
 本発明の第3態様のイオン分析装置は、上記第1態様又は第2態様のイオン分析装置において、前記ラジカル導入部が、前記メタステーブル粒子と前記ラジカルの混合物を前記反応室へ輸送する輸送管を備える。
 第3態様のイオン分析装置では、ラジカルとメタステーブル粒子の混合物を、輸送管を通じて反応室に輸送するため、ラジカルの拡散による損失を低減し、より高効率で反応室に輸送することができる。
 本発明の第4態様のイオン分析装置は、上記第3態様のイオン分析装置において、前記輸送管の内径が5mm以下である。
 第4態様のイオン分析装置では、内径が5mm以下の輸送管によりラジカルを反応室に輸送するため、反応室に過剰なガスが流入するのを防ぎ、反応室内を高真空に維持することができる。
 本発明の第5態様のイオン分析装置は、上記第3態様又は第4態様のイオン分析装置において、前記輸送管が絶縁管である。
 第5態様のイオン分析装置では、アルミナなどの絶縁管からなる輸送管を用いる。絶縁管には、例えばアルミナからなるものを用いることができる。第5態様のイオン分析装置では、絶縁管からなる輸送管を用いるため、その誘電率の違いから、石英管と比べてマイクロ波電力のプラズマへの導入効率を改善できることが知られており、消費電力を低減することができる。
 本発明の第6態様のイオン分析装置は、上記第3態様から第5態様のいずれかのイオン分析装置において、
 前記反応室がリニアイオントラップであって、
 前記輸送管が、前記リニアイオントラップにおけるイオンの飛行方向と非直行な方向に前記ラジカルを噴射する、複数の噴射口を有する噴射部を備える。
 第6態様のイオン分析装置では、輸送管に設けられた噴射部から、イオンの飛行方向と非直行な方向にラジカルを照射するため、リニアイオントラップを飛行するイオンに対してより多くラジカルを照射することができる。
 本発明の第7態様のイオン分析装置は、上記第1態様から第6態様のいずれかのイオン分析装置において、
 前記ラジカル生成部が高周波プラズマ源を有する。
 第7態様のイオン分析装置では、高周波プラズマ源を用いてラジカルを生成する。高周波プラズマ源は真空放電によりプラズマを生成するものであり、イオン分析装置内に大気圧空間を設ける必要がない。また、取り扱いが容易な水蒸気や空気などを含め、様々な種類の第1原料ガスからラジカルを生成することができる。
 本発明の第8態様のイオン分析装置は、上記第7態様のイオン分析装置において、前記高周波プラズマ源が誘導結合型の高周波プラズマ源である。
 第8態様のイオン分析装置では、誘導結合型の高周波プラズマ源を用いる。誘導結合型の高周波プラズマ源では、容量結合型のものよりも高いラジカル密度を実現できるため、多量のラジカルをイオントラップに導入可能であり反応時間を短縮できる。
 本発明の第9態様のイオン分析装置は、上記第1態様から第8態様のいずれかのイオン分析装置において、
 前記ラジカル生成部と前記メタステーブル粒子生成部が共通である。
 第9態様のイオン分析装置では、ラジカル生成部とメタステーブル粒子生成部を共通のものとすることで、装置の構成を簡略化することができる。
 本発明の第10態様のイオン分析装置は、上記第1態様から第9態様のいずれかのイオン分析装置において、前記第1原料ガスと前記第2原料ガスが同種のガスである。
 上記第10態様のイオン分析装置では、第1原料ガスと第2原料ガスに同種のガスを用いることで、1つのガス供給源を用いるのみでよいため、装置の構成を簡略化することができる。
1…イオン源
2…イオントラップ
 21…リング電極
 22…入口側エンドキャップ電極
 23…イオン導入孔
 24…出口側エンドキャップ電極
 25…イオン射出孔
 26…ラジカル粒子導入口
 27…ラジカル粒子排出口
3…飛行時間型質量分離部
4…イオン検出器
5…ラジカル生成・照射部
 51…ラジカル生成室
 52…第1原料ガス供給源
 53…高周波プラズマ源
  531…マイクロ波供給源
  532…スリースタブチューナー
 54…ノズル
  541…接地電極
  542…トーチ
  543…ニードル電極
  544…コネクタ
 55…スキマー
 56…バルブ
 58…輸送管
  581…ヘッド部
 62…第2原料ガス供給源
 66…バルブ
7…不活性ガス供給部
 71…不活性ガス供給源
 72…バルブ
74…トラップ電圧発生部
75…機器制御部
80…イオン化室
81…第1中間真空室
 811…イオンガイド
82…第2中間真空室
 821…イオンガイド
83…分析室
 831…前段四重極マスフィルタ
 832…コリジョンセル
 833…多重極イオンガイド
 834…後段四重極マスフィルタ
 835…イオン検出器
9…制御・処理部
C…イオン光軸

Claims (10)

  1.  試料成分由来のプリカーサイオンにラジカルを照射することによりプロダクトイオンを生成して分析するイオン分析装置であって、
     前記プリカーサイオンが導入される反応室と、
     第1原料ガスからラジカルを生成するラジカル生成部と、
     第2原料ガスからメタステーブル粒子を生成するメタステーブル粒子生成部と、
     前記ラジカルと前記メタステーブル粒子を混合して前記反応室に導入するラジカル導入部と、
     前記ラジカルの導入によって前記プリカーサイオンから生成されるプロダクトイオンを検出するイオン検出部と
     を備えるイオン分析装置。
  2.  前記第2原料ガスが、希ガス又は窒素ガスである、請求項1に記載のイオン分析装置。
  3.  前記ラジカル導入部が、前記メタステーブル粒子と前記ラジカルの混合物を前記反応室へ輸送する輸送管を備える、請求項1に記載のイオン分析装置。
  4.  前記輸送管の内径が5mm以下である、請求項3に記載のイオン分析装置。
  5.  前記輸送管が絶縁管である、請求項3に記載のイオン分析装置。
  6.  前記反応室がリニアイオントラップであって、
     前記輸送管が、前記リニアイオントラップにおけるイオンの飛行方向と非直行な方向に前記ラジカルを噴射する、複数の噴射口を有する噴射部を備える、請求項3に記載のイオン分析装置。
  7.  前記ラジカル生成部が高周波プラズマ源を有する、請求項1に記載のイオン分析装置。
  8.  前記高周波プラズマ源が誘導結合型の高周波プラズマ源である、請求項7に記載のイオン分析装置。
  9.  前記ラジカル生成部と前記メタステーブル粒子生成部が共通である、請求項1に記載のイオン分析装置。
  10.  前記第1原料ガスと前記第2原料ガスが共通である、請求項1に記載のイオン分析装置。
PCT/JP2019/002069 2019-01-23 2019-01-23 イオン分析装置 WO2020152806A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020567300A JP7074210B2 (ja) 2019-01-23 2019-01-23 イオン分析装置
PCT/JP2019/002069 WO2020152806A1 (ja) 2019-01-23 2019-01-23 イオン分析装置
US17/424,210 US11735408B2 (en) 2019-01-23 2019-01-23 Ion analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/002069 WO2020152806A1 (ja) 2019-01-23 2019-01-23 イオン分析装置

Publications (1)

Publication Number Publication Date
WO2020152806A1 true WO2020152806A1 (ja) 2020-07-30

Family

ID=71735688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002069 WO2020152806A1 (ja) 2019-01-23 2019-01-23 イオン分析装置

Country Status (3)

Country Link
US (1) US11735408B2 (ja)
JP (1) JP7074210B2 (ja)
WO (1) WO2020152806A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022091674A1 (ja) * 2020-11-02 2022-05-05 株式会社島津製作所 イオン分析装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7479810B2 (ja) * 2019-09-24 2024-05-09 株式会社日立ハイテクサイエンス 液体金属イオン源及び集束イオンビーム装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011504642A (ja) * 2007-11-23 2011-02-10 マイクロマス ユーケー リミテッド イオン−イオン反応デバイス
WO2015133259A1 (ja) * 2014-03-04 2015-09-11 株式会社島津製作所 イオン分析装置
WO2018186286A1 (ja) * 2017-04-04 2018-10-11 株式会社島津製作所 イオン分析装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011504642A (ja) * 2007-11-23 2011-02-10 マイクロマス ユーケー リミテッド イオン−イオン反応デバイス
WO2015133259A1 (ja) * 2014-03-04 2015-09-11 株式会社島津製作所 イオン分析装置
WO2018186286A1 (ja) * 2017-04-04 2018-10-11 株式会社島津製作所 イオン分析装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022091674A1 (ja) * 2020-11-02 2022-05-05 株式会社島津製作所 イオン分析装置
JP7424508B2 (ja) 2020-11-02 2024-01-30 株式会社島津製作所 イオン分析装置

Also Published As

Publication number Publication date
US20220115225A1 (en) 2022-04-14
US11735408B2 (en) 2023-08-22
JPWO2020152806A1 (ja) 2021-10-21
JP7074210B2 (ja) 2022-05-24

Similar Documents

Publication Publication Date Title
US7005635B2 (en) Nebulizer with plasma source
JP6229790B2 (ja) イオン分析装置
US11133162B2 (en) IRMS sample introduction system and method
US10998177B2 (en) Ion analyzer
US7170051B2 (en) Method and apparatus for ion fragmentation in mass spectrometry
JP4331398B2 (ja) パルスイオン源及びイオン運動を制動するための輸送デバイスを備えた分析計並びにその使用方法
JP7136346B2 (ja) 質量分析方法及び質量分析装置
US7397029B2 (en) Method and apparatus for ion fragmentation in mass spectrometry
US20090294649A1 (en) Method and Apparatus for Generation of Reagent Ions in a Mass Spectrometer
WO2018190013A1 (ja) イオン分析装置及びイオン解離方法
EP1476893A1 (en) Internal introduction of lock masses in mass spectrometer systems
US7365315B2 (en) Method and apparatus for ionization via interaction with metastable species
JP7109026B2 (ja) イオン分析装置
WO2020152806A1 (ja) イオン分析装置
US20220344140A1 (en) Ion analyzer
WO2020202455A1 (ja) イオン分析装置
WO2007008191A1 (en) Nebulizer with plasma source
JP7435812B2 (ja) 質量分析方法及び質量分析装置
WO2021181628A1 (ja) イオン分析装置
JP7403774B2 (ja) イソアスパラギン酸の分析方法、及び質量分析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19911310

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020567300

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19911310

Country of ref document: EP

Kind code of ref document: A1