WO2021181628A1 - イオン分析装置 - Google Patents

イオン分析装置 Download PDF

Info

Publication number
WO2021181628A1
WO2021181628A1 PCT/JP2020/010915 JP2020010915W WO2021181628A1 WO 2021181628 A1 WO2021181628 A1 WO 2021181628A1 JP 2020010915 W JP2020010915 W JP 2020010915W WO 2021181628 A1 WO2021181628 A1 WO 2021181628A1
Authority
WO
WIPO (PCT)
Prior art keywords
radical
ion
oxygen
ion analyzer
analyzer according
Prior art date
Application number
PCT/JP2020/010915
Other languages
English (en)
French (fr)
Inventor
高橋 秀典
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2022505664A priority Critical patent/JP7306566B2/ja
Priority to PCT/JP2020/010915 priority patent/WO2021181628A1/ja
Priority to US17/792,170 priority patent/US20230048972A1/en
Priority to CN202080090550.0A priority patent/CN114868014A/zh
Publication of WO2021181628A1 publication Critical patent/WO2021181628A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/622Ion mobility spectrometry
    • G01N27/623Ion mobility spectrometry combined with mass spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/626Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using heat to ionise a gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/004Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn
    • H01J49/0045Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn characterised by the fragmentation or other specific reaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/14Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers

Definitions

  • the present invention relates to an ion analyzer that dissociates ions derived from sample molecules by irradiating them with radicals to generate and analyze product ions.
  • Patent Document 1 describes an ion analyzer that generates and analyzes product ions by irradiating precursor ions derived from sample molecules, which are proteins or peptides, with radicals.
  • the raw material gas while supplying the raw material gas to the vacuum-exhausted radical generation chamber, the raw material gas is turned into plasma by high-frequency discharge to generate radicals. Then, a radical generated in the radical generation chamber is introduced into an ion trap that captures the precursor ion derived from the sample component, and the precursor ion is dissociated by the reaction with the radical to generate a product ion.
  • Patent Document 1 shows that a-ion and y-ion can be generated from peptide-derived ions by using oxygen radicals generated by using water vapor or air as a raw material gas. It has also been shown that a, b, x, and y ions can be generated from peptide-derived ions using nitrogen radicals generated by using nitrogen gas as a raw material gas.
  • the ion analyzer of Patent Document 1 generates plasma by supplying high-frequency power with a high output of 50 W, and generates radicals from the raw material gas.
  • the mass spectrometer is provided with a high-frequency power source for supplying high-frequency power to the electrodes constituting the ion guide and the mass separator, and the output of the high-frequency power supplied to these is about several watts. Therefore, the ion analyzer described in Patent Document 1 must additionally be provided with a high-power high-frequency power source in order to generate radicals. Since a high-frequency power supply with a high output of several tens of watts or more is expensive, there is a problem that the ion analyzer becomes expensive if such a high-frequency power supply is additionally provided.
  • the problem to be solved by the present invention is to provide an ion analyzer capable of generating oxygen radicals and nitrogen radicals for precursor ion dissociation at a lower cost than before.
  • the ion analyzer according to the present invention which has been made to solve the above problems, is an ion analyzer that generates and analyzes product ions from precursor ions derived from sample components.
  • a heating unit that heats the radical emitter to a predetermined temperature
  • a separation detection unit that separates and detects product ions generated from the precursor ions by reaction with radicals emitted from radical emitters heated to the predetermined temperature according to at least one of mass-to-charge ratio and ion mobility. It is characterized by having.
  • an oxygen radical or a nitrogen radical is generated by heating a radical emitter made of a predetermined metal whose surface is oxidized or nitrided at least to a predetermined temperature.
  • the radical emitter can be, for example, a platinum filament whose surface is coated with platinum oxide, and in that case, it can be heated to about 200 ° C. to generate an oxidation radical by supplying a DC power of several watts. .. That is, the predetermined temperature is a temperature at which oxygen radicals can be released from the radical emitter, and the temperature is determined based on conventional knowledge, preliminary experiments, and the like.
  • the radical emitter is arranged in the reaction chamber or a space communicating with the reaction chamber, radicals are supplied to the reaction chamber, and product ions are generated from precursor ions by the reaction with the radicals.
  • the generated product ions are separated and detected by the separation detection unit according to at least one of the mass-to-charge ratio and the ion mobility. Since the ion analyzer according to the present invention does not require a power source that supplies high-power high-frequency power as in the conventional ion analyzer, it is possible to irradiate a sample molecule with oxygen radicals or nitrogen radicals at low cost.
  • FIG. 6 is a block diagram of a main part of a mass spectrometer which is an embodiment of the ion analyzer according to the present invention.
  • FIG. 6 is a configuration diagram of a main body of the main body of the mass spectrometer according to the first modification of the ion analyzer according to the present invention.
  • FIG. 6 is a configuration diagram of a main part of an oxygen radical generation / irradiation unit used in the mass spectrometer of Modification 1.
  • FIG. 6 is a configuration diagram of a main body of the main body of the mass spectrometer according to the second modification of the ion analyzer according to the present invention.
  • Product ion spectrum obtained by measuring phospholipids using the mass spectrometer of Example 1.
  • the ion analyzer of this embodiment is a mass spectrometer 1 that separates and detects product ions generated by dissociating precursor ions derived from sample molecules according to a mass-to-charge ratio.
  • FIG. 1 is a schematic configuration diagram of the mass spectrometer 1 of this embodiment.
  • the mass spectrometer 1 is roughly divided into a mass spectrometer main body 2 and a control / processing unit 5.
  • the mass spectrometer main body 2 is a so-called triple quadrupole mass spectrometer.
  • the degree of vacuum is gradually increased between the ionization chamber 10 having a substantially atmospheric pressure and the high vacuum analysis chamber 13 evacuated by a vacuum pump (not shown).
  • It has a configuration of a multi-stage differential exhaust system including an intermediate vacuum chamber 11 and a second intermediate vacuum chamber 12.
  • the ionization chamber 10 and the first intermediate vacuum chamber 11 communicate with each other via the desolvation tube 102. Further, the first intermediate vacuum chamber 11 and the second intermediate vacuum chamber 12 communicate with each other through a small hole formed in the top of the skimmer 112.
  • the ESI probe 101 is installed in the ionization chamber 10.
  • An ion lens 111 is arranged in the first intermediate vacuum chamber 11 and an ion guide 121 is arranged in the second intermediate vacuum chamber 12 in order to transport the ions to the subsequent stage while converging the ions.
  • a front-stage quadrupole mass filter 131, a collision cell 132, a rear-stage quadrupole mass filter 135, and an ion detector 136 are installed.
  • a quadrupole ion guide 133 is arranged inside the collision cell 132, and a filament 134 is arranged at a position closer to the wall surface than the quadrupole ion guide 133.
  • the surface of the quadrupole ion guide 133 of this embodiment is coated with gold.
  • the filament 134 of this example is composed of platinum whose surface is coated with an oxide (platinum oxide).
  • the surface of the filament 134 can be coated, for example, by placing the platinum filament in oxygen plasma generated by high-frequency discharge in a vacuum chamber separate from the mass spectrometer 1. Although only one filament is shown in FIG. 1, a plurality of filaments 134 may be arranged. In either case, it is preferable to arrange the filament 134 at a position away from the central axis (ion optical axis C) of the ion flight path (for example, a position outside the internal space of the quadrupole ion guide 133). This makes it possible to prevent the ions from disappearing due to collision with the filament 134.
  • a quadrupole ion guide 133 whose surface is coated with gold is used, but a quadrupole ion guide 133 coated with platinum can also be used.
  • the front quadrupole mass filter 131 and the rear quadrupole mass filter 135 are, in addition to the main rod, which separates ions by mass by applying an appropriate DC voltage and / or high frequency voltage from a power source (not shown), respectively. It has a pre-rod and a post-rod for adjusting the electric field on the front-stage side and the rear-stage side of the rod.
  • the first DC power supply 20 is connected to the filament 134.
  • a second DC power supply 30 is connected to the quadrupole ion guide 133.
  • the second DC power supply 30 is used for a purpose different from that of a power supply (not shown) for applying a DC voltage and / or a high frequency voltage for selecting the mass-to-charge ratio of ions passing through the quadrupole ion guide 133.
  • the first DC power supply 20 and the second DC power supply 30 are provided in addition to the power supply normally possessed by the mass spectrometer, but these can be collectively used as one power supply having a plurality of output systems. good.
  • FIG. 1 only one of the electrodes constituting the quadrupole ion guide 133 is connected to the second DC power supply 30, but it is actually connected to all the electrodes.
  • the oxygen gas supply unit 4 is connected to the collision cell 132.
  • the oxygen gas supply unit 4 has an oxygen gas cylinder 41, an oxygen gas introduction flow path 42 for introducing oxygen gas from the oxygen gas cylinder 41 into the collision cell 132, and a valve 43 for opening and closing the oxygen gas introduction flow path.
  • a triple quadrupole mass spectrometer usually includes means for introducing collision gas into the collision cell 132. Therefore, the oxygen gas supply unit 4 of this embodiment can be configured to supply oxygen gas to the collision cell 132 through such a collision gas introduction flow path.
  • the control / processing unit 5 has a function of controlling the operation of the mass spectrometer main body 2 and storing and analyzing the data obtained by the ion detector 136 of the mass spectrometer main body 2.
  • the substance of the control / processing unit 5 is a general personal computer, and the storage unit 51 stores a method file and a compound database in which measurement conditions are described.
  • the control / processing unit 5 also includes an analysis control unit 52, an analysis processing unit 53, and an oxidation reaction control unit 54 as functional blocks. These functional blocks are embodied by executing a predetermined program installed in a personal computer in advance. Further, an input unit 55 and a display unit 56 are connected to the control / processing unit 5.
  • the analysis control unit 52 controls the operation of each unit, and the following measurement operations are performed.
  • the analysis control unit 52 controls the operation of each unit according to the analysis conditions described in the method file stored in the storage unit 51.
  • the insides of the first intermediate vacuum chamber 11, the second intermediate vacuum chamber 12, and the analysis chamber 13 of the mass spectrometer main body 2 are exhausted to a predetermined degree of vacuum by a vacuum pump.
  • a direct current is supplied from the second direct current power source 30 to the quadrupole ion guide 133 to heat the quadrupole ion guide 133 to a predetermined temperature (for example, 100 ° C.).
  • a direct current is supplied from the first direct current power source 20 to the filament 134 to heat the filament 134 to a predetermined temperature (for example, 200 ° C.).
  • platinum oxide is decomposed on the surface of the filament 134 to generate oxygen radicals.
  • Heating of the quadrupole ion guide 133 is not an essential requirement, but in the collision cell 132, it is often necessary to form a highly accurate electric field in order to control the behavior of the ions. It is preferable to heat the quadrupole ion guide 133 to prevent the formation of oxides on the surface of the electrode. Further, by coating the surface of the quadrupole ion guide 133 with a noble metal such as gold or platinum as in this embodiment, it is possible to prevent the formation of oxides on the surface.
  • a sample is introduced into the ESI probe 101 to generate ions. This may be done by injecting the sample directly into the ESI probe 101, or by injecting a plurality of types of components contained in the sample into a liquid chromatograph and separating the eluates with a column into the ESI probe 101. It may be done by sending to.
  • the ions generated from the sample components in the ionization chamber 10 are drawn into the first intermediate vacuum chamber 11 by the pressure difference between the ionization chamber 10 and the first intermediate vacuum chamber 11, and converge on the ion optical axis C by the ion lens 111. Will be done.
  • ions converged on the ion optical axis C are subsequently drawn into the second intermediate vacuum chamber 12 by the pressure difference between the first intermediate vacuum chamber 11 and the second intermediate vacuum chamber 12, and are further converged by the ion guide 121. .. After that, in the analysis chamber 13, ions having a predetermined mass-to-charge ratio are selected as precursor ions by the pre-stage quadrupole mass filter 131 and enter the collision cell 132.
  • the collision cell 132 oxygen radicals adhere to the precursor ions derived from the sample component, and unpaired electron-induced dissociation occurs in the precursor ions to generate product ions.
  • the quadrupole ion guide 133 is heated by the supply of a direct current, oxidation of the surface due to the adhesion of oxygen radicals is suppressed.
  • the product ions generated by the dissociation of precursor ions are emitted from the collision cell 132, mass-separated by the subsequent quadrupole mass filter 135, and then incident on the ion detector 136 for detection.
  • the detection signals from the ion detector 136 are sequentially transmitted to the control / processing unit 5 and stored in the storage unit 51.
  • the analysis processing unit 53 creates a product ion spectrum based on this detection signal and displays it on the display unit 56.
  • the analysis processing unit 53 estimates the structure of the sample component by performing predetermined data processing based on the information (mass information and intensity) obtained from the product ion spectrum. For example, when the sample component is a phospholipid, the mass of the product ion corresponding to the mass peak appearing in the product ion spectrum (mass peak having a strength significantly distinguishable from noise) and the compound stored in the storage unit 51.
  • the structure of the sample component is estimated based on the information of the mass difference of the head group recorded in the database.
  • the oxide gradually disappears from the surface of the filament 134, and the oxygen radicals are less likely to be released. Therefore, after the measurement is performed for a predetermined time, the surface of the filament 134 is oxidized under the control of the oxidation reaction control unit 54.
  • the oxidation reaction control unit 54 supplies oxygen gas from the oxygen gas cylinder 41 of the oxygen gas supply unit 4 into the collision cell 132 via the oxygen gas introduction flow path 42. Subsequently, a DC voltage of a predetermined magnitude is applied from the second DC power supply 30 to the quadrupole ion guide 133.
  • the wall surface of the collision cell 132 is often grounded, and a direct current discharge occurs between the wall surface and the quadrupole ion guide 133.
  • oxygen radicals are generated from the oxygen gas in the collision cell 132.
  • the generated oxygen radicals adhere to the surface of the filament 134 and form an oxide on the surface. In this way, the oxide is supplemented to the surface of the filament 134 at the time of measurement.
  • oxygen radicals are generated by heating the filament 134 whose surface is made of platinum oxide to a predetermined temperature. Since the filament 134 is arranged in the collision cell 132, a radical is supplied into the collision cell 132, and a product ion is generated from the precursor ion by the reaction with the radical.
  • a power source that supplies high frequency power of high output (for example, several tens of watts) as in the conventional ion analyzer, and high frequency power of low output (for example, several watts) is used. It is enough. Therefore, oxygen radicals can be generated at low cost using a small power source.
  • oxygen radicals are generated in the collision cell 132 into which the precursor ions are introduced, it is not necessary to transport the oxygen radicals, and the generated oxygen radicals can be efficiently used for the dissociation reaction of the precursor ions. Further, in the mass spectrometer 1 of the present embodiment, oxygen radicals can be repeatedly generated from the filament 134 by generating oxygen radicals from the oxygen gas and adhering them to the filament 134 at the time of non-measurement.
  • the oxygen radical is generated from the oxygen gas by generating a DC discharge in the collision cell 132, but the oxygen radical may be generated by a high frequency discharge instead of the DC discharge.
  • the surface of the filament 134 may be gradually oxidized by simply supplying oxygen gas into the collision cell 132 without causing a discharge.
  • oxygen radicals are generated from oxygen gas in the collision cell 132 to oxidize the surface of the filament 134 at the time of non-measurement, but it can also be configured to supply oxygen radicals from the outside of the collision cell 132.
  • FIG. 2 is a configuration diagram of a main part of the mass spectrometer main body 202 of the mass spectrometer 200 of the modification 1 that supplies oxygen radicals to the outside of the collision cell 132.
  • the same components as those in the above embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • the mass spectrometer 200 of the modified example 1 is characterized in that it includes an oxygen radical generation / irradiation unit 6.
  • FIG. 3 shows a schematic configuration of the oxygen radical generation / irradiation unit 6.
  • the oxygen radical generation / irradiation unit 6 includes a nozzle 64 having a radical generation chamber 61 formed therein, a vacuum pump 67 for exhausting the radical generation chamber 61, and a microwave for generating a vacuum discharge in the radical generation chamber 61.
  • a high-frequency power source 63 for supplying oxygen gas, an oxygen gas cylinder 66 for supplying oxygen gas to the radical generation chamber 61, and a valve 661 for opening and closing the flow path thereof are provided.
  • the nozzle 64 includes a ground electrode 641 forming an outer peripheral portion and a torch 642 located inside the ground electrode 641, and the inside of the torch 642 serves as a radical generation chamber 61.
  • a torch 642 located inside the ground electrode 641, and the inside of the torch 642 serves as a radical generation chamber 61.
  • the torch 642 for example, one made of Pyrex (registered trademark) glass can be used.
  • Pyrex registered trademark
  • a needle electrode 643 connected to the high frequency power supply 63 via the connector 644 penetrates in the longitudinal direction of the radical generation chamber 61.
  • a transport pipe 68 for transporting the radicals generated in the radical generation chamber 61 to the collision cell 132 is connected to the outlet end of the nozzle 64.
  • the transport pipe 68 is an insulating pipe, and for example, a pipe made of quartz can be used.
  • a plurality of head portions 681 are provided in the portion of the transport pipe 68 arranged along the wall surface located in the vicinity of the filament 134 in the collision cell 132.
  • Each head portion 681 is provided with an inclined cone-shaped irradiation port, and radicals are irradiated in a direction intersecting the central axis (ion optical axis C) in the flight direction of ions.
  • the entire filament 134 can be evenly irradiated with oxygen radicals.
  • the mass spectrometer 200 of the modified example 1 generates oxygen radicals by high-frequency discharge in the same manner as the mass spectrometer described in Patent Document 1.
  • it is sufficient to generate oxygen radicals for oxidizing the surface of the filament 134, and it takes a short time (for example, 10 ms) as in the case of generating oxygen radicals for dissociating precursor ions. ) Does not need to generate a large amount of oxygen radicals. Therefore, a high-frequency power supply having a lower output than the mass spectrometer of Patent Document 1 may be used, and the cost can be reduced.
  • Mass spectrometers usually include a high frequency power source for applying a high frequency voltage to the electrodes for ion convergence and sorting.
  • a high-frequency power source can also be used for generating oxygen radicals (also used as a high-frequency power source 63).
  • oxygen radicals may be generated by DC discharge instead of high frequency discharge, and in that case, a cheaper DC power source can be used.
  • FIG. 4 shows the main configuration of the mass spectrometer main body 302 of the mass spectrometer 300 of the second modification, which generates oxygen radicals outside the collision cell 132, introduces them into the collision cell 132, and attaches them to precursor ions. It is a figure.
  • the same components as those in the above-described embodiment and the first modification are designated by the same reference numerals, and the description thereof will be omitted.
  • the mass spectrometer 300 of the second modification is characterized in that it includes an oxygen radical generation chamber 21 communicating with the collision cell 132, and the filament 134 is arranged in the oxygen radical generation chamber 21.
  • oxygen is supplied by supplying a current of a predetermined magnitude from the first DC power source 20 to the filament 134 and heating the filament 134 to a predetermined temperature. Generates radicals.
  • the oxygen radicals generated in the oxygen radical generation chamber 21 flow into the collision cell 132 communicating with the oxygen radical generation chamber 21 and adhere to the precursor ions derived from the sample components to generate product ions.
  • a small oxygen radical generation chamber 21 is arranged in the vicinity of the collision cell 132 in the main body 302 of the mass spectrometer 300. It can be configured integrally. By arranging the oxygen radical generation chamber 21 adjacent to the collision cell 132, the moving distance of the oxygen radicals can be shortened, the disappearance can be reduced, and the utilization efficiency of the generated oxygen radicals can be increased.
  • the filament 134 is arranged outside the collision cell 132, even if undesired impurities are released from the filament 134, it is difficult for them to flow into the collision cell 132, and the wall surface of the collision cell 132. And the quadrupole ion guide 133 are less likely to be contaminated by impurities.
  • oxygen radicals are generated outside the collision cell 132, even if a ribbon wire or a porous metal having a volume larger than that of the filament 134 is used (both of which have an oxide-coated surface), ions are formed on them. There is no worry that they will collide and disappear. In FIG.
  • the oxygen radical generation / irradiation unit 6 is used as in the modified example 1 to form an oxide on the surface of the filament 134 at the time of non-measurement, but oxygen gas is supplied as in the above embodiment. Part 4 can also be used. In that case, an electrode for generating an electric discharge and an electrode for applying a predetermined voltage to the electrode may be provided in the oxygen radical generation chamber 21 as necessary.
  • both the above embodiment and the modified example are triple quadrupole mass spectrometers
  • the present invention can be applied to mass spectrometers having other configurations.
  • One such mass spectrometer is an ion trap-time-of-flight mass spectrometer. Since the ion trap usually has a larger internal space than the collision cell 132 of the mass spectrometer 1 of the above embodiment and the mass spectrometer 200 of the modified example, the ribbon has a larger volume and surface area than the filament 134 of the above example and the modified example. Lines can be used.
  • oxygen gas may be supplied into the ion trap to oxidize the surface of the filament or ribbon wire as in the above embodiment, or the above-mentioned example.
  • oxygen radicals generated outside the ion trap may be supplied to the ion trap to oxidize the surface of the filament or ribbon wire.
  • platinum whose surface is coated with an oxide is used as the filament 134, but a metal other than platinum can also be used.
  • a metal other than platinum can also be used.
  • those made of tungsten or copper can also be used.
  • the temperature at which oxygen radicals are released from those oxides may be determined by a preliminary experiment or the like and set as the above-mentioned predetermined temperature, as in the above-mentioned Examples.
  • a noble metal is used, undesired impurities other than oxygen radicals are less likely to be released, and the surface of the quadrupole ion guide 133 in the collision cell 132 is less likely to be contaminated. It is preferable to use a filament made of.
  • the configuration for emitting oxygen radicals from the metal oxide has been described, but the configuration may be such that the nitrogen radicals are emitted from the metal nitride.
  • a filament or ribbon wire made of platinum whose surface is coated with platinum nitride is placed inside a collision cell or ion trap, and by heating it to a predetermined temperature, nitrogen is added to precursor ions in the collision cell or ion trap.
  • Product ions can be generated by adhering radicals.
  • a nitrogen gas cylinder may be used in place of the oxygen gas cylinder 41 used in the above embodiment, or a nitrogen radical generation / irradiation unit may be used in place of the oxygen radical generation / irradiation unit 6 used in the above modification. ..
  • the ESI probe 101 that ionizes the liquid sample was used as the ionization source, but an ionization source according to the form and characteristics of the sample to be measured may be used.
  • an ionization source according to the form and characteristics of the sample to be measured.
  • an electron ionization source can be used
  • a matrix-assisted laser desorption / ionization source MALDI source
  • both the above-described embodiment and the modified example are mass spectrometers that separate and measure ions according to the mass-to-charge ratio, but the ion analyzer of the ion mobility analyzer that separates and measures ions according to the mobility.
  • the present invention can also be applied to.
  • FIG. 5 is a mass spectrum (product ion spectrum) obtained by measuring product ions generated by dissociating precursor ions derived from phospholipid PC18: 1 (9Z).
  • a platinum wire (filament) with a length of ⁇ 0.1 and a length of 50 mm, whose surface has been oxidized in advance, is placed in the collision cell 132, and a current of 0.6 A is passed through the platinum wire to heat the platinum wire to about 1000 ° C.
  • atomic radicals atomic oxygen
  • the surface was oxidized by placing the platinum filament in the oxygen plasma generated by high-frequency discharge in a vacuum chamber separate from the mass spectrometer 1 for 1 hour.
  • the surface oxidation treatment is not limited to this method, and it is also possible to oxidize in a liquid phase, for example, as used in the production of Adams' catalyst.
  • oxygen radicals specifically dissociate hydrocarbon chains at carbon-carbon unsaturated bonds. That is, also in the mass spectrometer 1 of this embodiment, oxygen radicals adhere to precursor ions to generate product ions, and an oxygen adhesion dissociation (OAD: Oxygen Oxygen Attachment Dissociation) spectrum is obtained as in Patent Document 2. I understand.
  • the analyzer is an ion analyzer that generates and analyzes product ions from precursor ions derived from a sample component.
  • the reaction chamber into which the precursor ion is introduced and A radical emitter made of a predetermined type of metal, which is arranged in the reaction chamber or a space communicating with the reaction chamber and whose surface is at least partially oxidized or nitrided.
  • the ion analyzer generates oxygen radicals or nitrogen radicals by heating a radical emitter made of a predetermined metal whose surface is at least partially oxidized or nitrided to a predetermined temperature.
  • the radical emitter can be, for example, a platinum filament whose surface is coated with platinum oxide, and in that case, it can be heated to about 200 ° C. to generate an oxidation radical by supplying a DC power of several watts. .. That is, the predetermined temperature is a temperature at which oxygen radicals can be released from the radical emitter, and the temperature is determined based on conventional knowledge, preliminary experiments, and the like.
  • the radical emitter is arranged in the reaction chamber or a space communicating with the reaction chamber, radicals are supplied to the reaction chamber, and product ions are generated from precursor ions by the reaction with the radicals.
  • the generated product ions are separated and detected by the separation detection unit according to at least one of the mass-to-charge ratio and the ion mobility. Since the ion analyzer according to the present invention does not require a power source that supplies high-power high-frequency power as in the conventional ion analyzer, it is possible to irradiate a sample molecule with oxygen radicals or nitrogen radicals at low cost.
  • the radical emitter is platinum whose surface is at least partially oxidized.
  • the radical emitter is a ribbon wire.
  • the radical emitter is a filament.
  • the radical emitter releases oxygen radicals or nitrogen radicals from oxides or nitrides formed on its surface, the radical generation efficiency can be increased by increasing the surface area.
  • the ion analyzer according to the third or fourth item since the ribbon wire or filament which is a linear body is used as the radical emitter, the surface area of the radical emitter becomes large and the radical can be efficiently emitted.
  • the ion analyzer of the fourth item by using a filament having a small volume, it is possible to reduce the possibility that precursor ions and product ions collide with the radical emitter and disappear.
  • Electrodes arranged in the reaction chamber to control the behavior of ions in the reaction chamber, It is provided with a second heating unit that heats the electrode to a predetermined temperature.
  • the reaction chamber is often a three-dimensional ion trap or a linear ion trap (collision cell), which has electrodes for capturing and sorting ions.
  • the electric field formed by applying a DC voltage and / or a high frequency voltage to these electrodes is disturbed, and the behavior of ions is generated. May not be properly controlled.
  • the ion analyzer according to item 5 by heating these electrodes to a predetermined temperature, the surface of the electrodes is suppressed from being oxidized or nitrided, and the electric field formed by these electrodes may be disturbed. Can be reduced.
  • Electrode 6 In the ion analyzer according to item 5, The surface of the electrode is gold or platinum.
  • the possibility of oxidation or nitriding can be further reduced by using an electrode whose surface is gold or platinum.
  • Oxides disappear at the same time as oxygen radicals are released from the surface of the radical emitter.
  • the surface of the radical emitter can be oxidized with an oxidation reaction product to make it possible to repeatedly release oxygen radicals.
  • the oxidation reaction product supply unit includes an oxygen gas supply unit that supplies oxygen gas to the space in which the radical emitter is arranged.
  • oxygen gas is supplied to a space in which a radical emitter is arranged (a reaction chamber or a space communicating with the reaction chamber), and the surface of the radical emitter is oxidized by the oxygen gas. Can be done.
  • the oxidation reaction product supply unit further includes a discharge unit that generates a DC discharge or a high frequency discharge in the space where the radical emitter is arranged.
  • the ion analyzer according to item 9 efficiently generates oxygen radicals by generating a DC discharge or a high-frequency discharge in a space in which a radical emitter is arranged (a reaction chamber or a space communicating with the reaction chamber).
  • the surface of the radical emitter can be oxidized.
  • the oxidation reaction product supply unit An oxygen radical generator that generates oxygen radicals outside the space where the radical emitters are arranged, It includes an oxygen radical introduction unit that introduces oxygen radicals generated by the oxygen radical generation unit into a space in which the radical emitter is arranged.
  • radical emission is performed by introducing an oxygen radical generated outside the space in which the radical emitter is arranged (the reaction chamber or the space communicating with the reaction chamber) into the space. It can oxidize the surface of the body.
  • the radical generation section that generates oxygen radicals for dissociating precursor ions, it was necessary to generate a large amount of oxygen radicals in a short time, so it was necessary to generate a discharge using high-power high-frequency power. It is not necessary to generate such a large amount of oxygen radicals when oxidizing the surface of the radical emitter. Therefore, it is sufficient to generate a radical by generating a discharge by supplying DC power or low-output high-frequency power.
  • Oxygen gas introduction flow path 43 ... Valve 5 ... Control / processing unit 51 ... Storage unit 52 ... Analysis control unit 53 ... Analysis processing unit 54... Oxidation reaction control unit 55... Input unit 56... Display unit 6... Oxygen radical generation / irradiation unit 61... Radical generation chamber 63... High frequency power supply 64... Nozzle 641... Ground electrode 642... Torch 643... Needle electrode 644 ... Connector 66... Oxygen gas cylinder 661... Valve 67... Vacuum pump 68... Transport pipe 681... Head

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

試料成分由来のプリカーサイオンからプロダクトイオンを生成して分析するイオン分析装置1において、前記プリカーサイオンが導入される反応室132と、前記反応室又は該反応室に連通する空間に配置され、少なくとも表面の一部が酸化又は窒化された、所定の種類の金属からなるラジカル放出体134と、前記ラジカル放出体を所定の温度に加熱する加熱部20と、前記所定の温度に加熱されたラジカル放出体から発せられるラジカルとの反応により前記プリカーサイオンから生成されたプロダクトイオンを質量電荷比及びイオン移動度の少なくとも一方に応じて分離し検出する分離検出部135、136とを備える。

Description

イオン分析装置
 本発明は、試料分子由来のイオンにラジカルを照射することにより該イオンを解離させ、プロダクトイオンを生成して分析するイオン分析装置に関する。
 高分子化合物であるタンパク質やペプチドの構造解析を行う際には、タンパク質やペプチドを特定の部位で解離させ、その解離によって生成されたイオンからタンパク質やペプチドの部分構造を推定することが有効である。
 特許文献1には、タンパク質やペプチドである試料分子由来のプリカーサイオンにラジカルを照射することによりプロダクトイオンを生成して分析するイオン分析装置が記載されている。このイオン分析装置では、真空排気されたラジカル生成室に原料ガスを供給しつつ、高周波放電により該原料ガスをプラズマ化し、ラジカルを生成する。そして、試料成分由来のプリカーサイオンを捕捉したイオントラップ内にラジカル生成室で生成されたラジカルを導入し、該ラジカルとの反応によってプリカーサイオンを解離させてプロダクトイオンを生成する。特許文献1には、水蒸気や空気を原料ガスとして使用することにより生成した酸素ラジカルを用いてペプチド由来のイオンからaイオンやyイオンを生成することができることが示されている。また、窒素ガスを原料ガスとして使用することにより生成した窒素ラジカルを用いてペプチド由来のイオンからaイオン、bイオン、xイオン、及びyイオンを生成することができることが示されている。
国際公開第2018/186286号明細書 国際公開第2019/155725号明細書
原納淑朗, "金属酸化物の熱分解における原子状酸素の放出", 日本科学雑誌, 第82巻, 第2号(1961), p.152-155
 特許文献1のイオン分析装置では50Wという高出力の高周波電力を供給することによりプラズマを生成して原料ガスからラジカルを生成している。質量分析装置は、イオンガイドや質量分離部を構成する電極に高周波電力を供給するための高周波電源を備えているが、これらに供給される高周波電力の出力は数W程度である。そのため、特許文献1に記載のイオン分析装置ではラジカルを生成するために高出力の高周波電源を追加で備えなければならない。数十Wあるいはそれ以上の高出力の高周波電源は高価なものであるため、こうした高周波電源を追加で備えるとイオン分析装置が高価になってしまうという問題があった。
 本発明が解決しようとする課題は、従来よりも低コストでプリカーサイオン解離用の酸素ラジカルや窒素ラジカルを生成することができるイオン分析装置を提供することである。
 上記課題を解決するために成された本発明に係るイオン分析装置は、試料成分由来のプリカーサイオンからプロダクトイオンを生成して分析するイオン分析装置であって、
 前記プリカーサイオンが導入される反応室と、
 前記反応室又は該反応室に連通する空間に配置され、少なくとも表面の一部が酸化又は窒化された、所定の種類の金属からなるラジカル放出体と、
 前記ラジカル放出体を所定の温度に加熱する加熱部と、
 前記所定の温度に加熱されたラジカル放出体から発せられるラジカルとの反応により前記プリカーサイオンから生成されたプロダクトイオンを質量電荷比及びイオン移動度の少なくとも一方に応じて分離し検出する分離検出部と
 を備えることを特徴とする。
 本発明に係るイオン分析装置では、少なくとも表面の一部が酸化又は窒化された、所定の金属からなるラジカル放出体を所定の温度に加熱することにより酸素ラジカル又は窒素ラジカルを生成する。ラジカル放出体は、例えば表面が酸化白金で被覆された白金フィラメントとすることができ、その場合、数Wの直流電力を供給することにより約200℃に加熱して酸化ラジカルを発生させることができる。即ち、前記所定の温度はラジカル放出体から酸素ラジカルを放出可能な温度であり、その温度は従来の知見や予備実験などに基づいて決定しておく。ラジカル放出体は反応室又は該反応室と連通する空間に配置されているため、該反応室内にラジカルが供給され、該ラジカルとの反応によってプリカーサイオンからプロダクトイオンが生成される。生成されたプロダクトイオンは分離検出部により質量電荷比及びイオン移動度の少なくとも一方に応じて分離され検出される。本発明に係るイオン分析装置では、従来のイオン分析装置のように高出力の高周波電力を供給する電源を必要としないため、低コストで酸素ラジカルや窒素ラジカルを試料分子に照射することができる。
本発明に係るイオン分析装置の一実施例である質量分析装置の要部構成図。 本発明に係るイオン分析装置の変形例1の質量分析装置の本体の要部構成図。 変形例1の質量分析装置において用いる酸素ラジカル生成・照射部の要部構成図。 本発明に係るイオン分析装置の変形例2の質量分析装置の本体の要部構成図。 実施例1の質量分析装置を用いてリン脂質を測定することにより取得したプロダクトイオンスペクトル。
 本発明に係るイオン分析装置の一実施例について、以下、図面を参照して説明する。本実施例のイオン分析装置は、試料分子由来のプリカーサイオンを解離させて生成したプロダクトイオンを質量電荷比に応じて分離し検出する質量分析装置1である。
 図1は本実施例の質量分析装置1の概略構成図である。この質量分析装置1は、大別して質量分析装置本体2と制御・処理部5から構成されている。
 質量分析装置本体2は、いわゆる三連四重極型の質量分析装置である。この質量分析装置本体2は、略大気圧であるイオン化室10と真空ポンプ(図示なし)により真空排気された高真空の分析室13との間に、段階的に真空度が高められた第1中間真空室11及び第2中間真空室12を備えた多段差動排気系の構成を有している。イオン化室10と第1中間真空室11は脱溶媒管102を介して連通している。また、第1中間真空室11と第2中間真空室12は、スキマー112の頂部に形成された小孔を介して連通している。
 イオン化室10にはESIプローブ101が設置されている。イオンを収束させつつ後段へ輸送するために、第1中間真空室11にはイオンレンズ111が配置されており、また第2中間真空室12にはイオンガイド121が配置されている。
 分析室13には、前段四重極マスフィルタ131、コリジョンセル132、後段四重極マスフィルタ135、及びイオン検出器136が設置されている。コリジョンセル132の内部には四重極イオンガイド133が配置されており、四重極イオンガイド133よりも壁面に近い位置にフィラメント134が配置されている。本実施例の四重極イオンガイド133の表面は金で被覆されている。また、本実施例のフィラメント134は表面が酸化物(酸化白金)で被覆された白金で構成されている。フィラメント134の表面の被覆は、例えば、質量分析装置1とは別の真空チャンバー内で高周波放電により生成した酸素プラズマ中に白金フィラメントを置いておく等により行うことができる。なお、図1には1本のフィラメントのみを示しているが複数本のフィラメント134を配置してもよい。いずれの場合も、イオンの飛行経路の中心軸(イオン光軸C)から離れた位置(例えば四重極イオンガイド133の内部空間よりも外側の位置)にフィラメント134を配置することが好ましい。これにより、フィラメント134への衝突によりイオンが消失するのを防止することができる。ここでは、四重極イオンガイド133に表面が金で被覆されたものを用いたが、白金で被覆されたものを用いることもできる。
 前段四重極マスフィルタ131と後段四重極マスフィルタ135は、それぞれ、図示しない電源から適宜の直流電圧及び/又は高周波電圧を印加することによりイオンを質量分離するメインロッドに加えて、該メインロッドの前段側及び後段側の電場を調整するためのプリロッド及びポストロッドを有している。
 フィラメント134には第1直流電源20が接続されている。また四重極イオンガイド133には第2直流電源30が接続されている。第2直流電源30は、四重極イオンガイド133を通過させるイオンの質量電荷比を選択するための直流電圧及び/又は高周波電圧を印加する電源(図示略)とは別の目的で用いられる。本実施例では質量分析装置が通常有する電源とは別に、第1直流電源20及び第2直流電源30を備えた構成としているが、これらをまとめて、複数の出力系統を有する1つの電源としてもよい。なお、図1では四重極イオンガイド133を構成する電極のうちの1本のみを第2直流電源30に接続しているが、実際には全ての電極に接続されている。
 コリジョンセル132には酸素ガス供給部4が接続されている。酸素ガス供給部4は、酸素ガスボンベ41、該酸素ガスボンベ41からコリジョンセル132に酸素ガスを導入する酸素ガス導入流路42、及び該酸素ガス導入流路を開閉するバルブ43を有している。図1には示していないが、三連四重極型の質量分析装置は、通常、コリジョンセル132内にコリジョンガスを導入する手段を備えている。従って、本実施例の酸素ガス供給部4は、こうしたコリジョンガス導入流路を通じて酸素ガスをコリジョンセル132に供給するように構成することができる。
 制御・処理部5は、質量分析装置本体2の動作を制御するとともに、質量分析装置本体2のイオン検出器136で得られたデータを保存及び解析する機能を有する。制御・処理部5の実体は一般的なパーソナルコンピュータであり、その記憶部51には、測定条件を記載したメソッドファイルや化合物データベースなどが保存されている。制御・処理部5は、また、機能ブロックとして分析制御部52、解析処理部53、及び酸化反応制御部54を備えている。これらの機能ブロックは、予めパーソナルコンピュータにインストールされた所定のプログラムを実行することにより具現化される。さらに、制御・処理部5には入力部55と表示部56が接続されている。
 次に、本実施例の質量分析装置1の動作を説明する。試料成分の測定する際には分析制御部52により各部の動作が制御され、以下の測定動作が行われる。分析制御部52による各部の動作の制御は、記憶部51に保存されているメソッドファイルに記載された分析条件に従って行われる。
 はじめに、質量分析装置本体2の第1中間真空室11、第2中間真空室12、及び分析室13の内部をそれぞれ真空ポンプにより所定の真空度まで排気する。続いて、第2直流電源30から四重極イオンガイド133に直流電流を供給して所定の温度(例えば100℃)に加熱する。さらに、第1直流電源20からフィラメント134に直流電流を供給して所定の温度(例えば200℃)に加熱する。これにより、フィラメント134の表面で酸化白金が分解して酸素ラジカルが生成される。四重極イオンガイド133の加熱は必須の要件ではないが、コリジョンセル132では、イオンの挙動を制御するために高精度な電場を形成する必要がある場合が多いため、測定時には上記のように四重極イオンガイド133を加熱し、電極の表面に酸化物が形成されるのを防止しておくことが好ましい。また、本実施例のように四重極イオンガイド133の表面を金や白金等の貴金属で被覆しておくことにより表面に酸化物が形成されるのを防ぐことができる。
 次に(あるいはラジカルの生成と並行して)、ESIプローブ101に試料を導入してイオンを生成する。これは、試料を直接ESIプローブ101に注入することにより行ってもよく、あるいは試料に含まれる複数種類の成分を液体クロマトグラフに注入し、カラムで成分分離された後の溶出液をESIプローブ101に送出することにより行ってもよい。イオン化室10内で試料成分から生成されたイオンは、イオン化室10と第1中間真空室11の圧力差により該第1中間真空室11に引き込まれ、イオンレンズ111によりイオン光軸C上に収束される。イオン光軸C上に収束されたイオンは、続いて第1中間真空室11と第2中間真空室12の圧力差により該第2中間真空室12に引き込まれ、イオンガイド121によってさらに収束される。その後、分析室13において前段四重極マスフィルタ131により所定の質量電荷比を有するイオンがプリカーサイオンとして選別され、コリジョンセル132に進入する。
 コリジョンセル132では、試料成分由来のプリカーサイオンに酸素ラジカル付着し、プリカーサイオンに不対電子誘導型の解離が生じてプロダクトイオンが生成される。このとき、四重極イオンガイド133は直流電流の供給によって加熱されているため、酸素ラジカルの付着による表面の酸化が抑制される。プリカーサイオンの解離によって生成されたプロダクトイオンはコリジョンセル132から出射し、後段四重極マスフィルタ135により質量分離されたあとイオン検出器136に入射し検出される。イオン検出器136からの検出信号は、順次、制御・処理部5に送信され、記憶部51に保存される。
 解析処理部53は、この検出信号に基づいてプロダクトイオンスペクトルを作成し、表示部56に表示する。解析処理部53は、このプロダクトイオンスペクトルから得られる情報(質量情報及び強度)に基づく所定のデータ処理を行うことで、試料成分の構造を推定する。例えば、試料成分がリン脂質である場合には、プロダクトイオンスペクトルに現れるマスピーク(ノイズと有意に識別可能な強度を有するマスピーク)に対応するプロダクトイオンの質量と、記憶部51に保存されている化合物データベースに収録されたヘッドグループの質量の差の情報等に基づき、試料成分の構造を推定する。
 フィラメント134から酸素ラジカルを放出させて試料成分由来のプリカーサイオンを解離させる測定を繰り返し行うと、フィラメント134の表面から徐々に酸化物が消失し、酸素ラジカルが放出されにくくなっていく。そこで、所定時間、測定を行った後、酸化反応制御部54による制御の下で、フィラメント134の表面を酸化する処理を行う。
 酸化反応制御部54は、酸素ガス供給部4の酸素ガスボンベ41から酸素ガス導入流路42を介してコリジョンセル132内に酸素ガスを供給する。続いて第2直流電源30から四重極イオンガイド133に所定の大きさの直流電圧を印加する。コリジョンセル132の壁面は多くの場合、接地されており、該壁面と四重極イオンガイド133の間で直流放電が生じる。これにより、コリジョンセル132内で酸素ガスから酸素ラジカルが生成される。生成された酸素ラジカルはフィラメント134の表面に付着し、該表面で酸化物を形成する。こうして、測定時にフィラメント134の表面に酸化物が補われる。
 このように、本実施例の質量分析装置1では、表面が酸化白金からなるフィラメント134を所定の温度に加熱することにより酸素ラジカルを生成する。フィラメント134はコリジョンセル132内に配置されているため、コリジョンセル132内にラジカルが供給され、該ラジカルとの反応によってプリカーサイオンからプロダクトイオンが生成される。本実施例の質量分析装置1では、従来のイオン分析装置のような高出力(例えば数十W)の高周波電力を供給する電源を用いる必要はなく、低出力(例えば数W)の高周波電力で十分である。そのため、低コストで小型の電源を用いて酸素ラジカル生成することができる。また、プリカーサイオンが導入されるコリジョンセル132内で酸素ラジカルを生成するため、酸素ラジカルを輸送する必要がなく、生成された酸素ラジカルを効率よくプリカーサイオンの解離反応に利用することができる。また、本実施例の質量分析装置1では、非測定時に酸素ガスから酸素ラジカルを生成してフィラメント134に付着させることにより、フィラメント134から繰り返し酸素ラジカルを生成させることができる。
 上記実施例ではコリジョンセル132内で直流放電を生じさせることにより酸素ガスから酸素ラジカルを生成したが、直流放電に代えて高周波放電により酸素ラジカルを生成してもよい。あるいは、長時間測定を行わない場合には、コリジョンセル132内に酸素ガスを供給するのみで、放電を生じさせることなく徐々にフィラメント134の表面を酸化するようにしてもよい。
 上記実施例は一例であって、本発明の趣旨に沿って適宜に変更することができる。上記実施例では、非測定時にコリジョンセル132内で酸素ガスから酸素ラジカルを生成してフィラメント134の表面を酸化したが、コリジョンセル132の外部から酸素ラジカルを供給するように構成することもできる。
 図2は、コリジョンセル132の外部に酸素ラジカルを供給する、変形例1の質量分析装置200の質量分析装置本体202の要部構成図である。上記実施例と同様の構成要素には同一の符号を付して説明を省略する。
 変形例1の質量分析装置200は、酸素ラジカル生成・照射部6を備えている点に特徴を有している。図3に酸素ラジカル生成・照射部6の概略構成を示す。酸素ラジカル生成・照射部6は、内部にラジカル生成室61が形成されたノズル64と、ラジカル生成室61を排気する真空ポンプ67と、ラジカル生成室61内で真空放電を生じさせるためのマイクロ波を供給する高周波電源63と、ラジカル生成室61内に酸素ガスを供給する酸素ガスボンベ66及びその流路を開閉するバルブ661を備えている。
 ノズル64は外周部を構成する接地電極641、その内側に位置するトーチ642を備えており、該トーチ642の内部がラジカル生成室61となる。トーチ642には、例えばパイレックス(登録商標)ガラス製のものを用いることができる。ラジカル生成室61の内部では、コネクタ644を介して高周波電源63と接続されたニードル電極643がラジカル生成室61の長手方向に貫通している。
 ノズル64の出口端には、ラジカル生成室61内で生成されたラジカルをコリジョンセル132に輸送するための輸送管68が接続されている。輸送管68は絶縁管であり、例えば石英製の管を用いることができる。
 輸送管68のうち、コリジョンセル132内のフィラメント134の近傍に位置する壁面に沿って配設された部分には、複数のヘッド部681が設けられている。各ヘッド部681には傾斜したコーン状の照射口が設けられており、イオンの飛行方向の中心軸(イオン光軸C)と交差する方向にラジカルが照射される。これにより、フィラメント134の全体にまんべんなく酸素ラジカルを照射することができる。
 変形例1の質量分析装置200では、特許文献1に記載の質量分析装置と同様に高周波放電によって酸素ラジカルを生成する。しかし、変形例1の質量分析装置200では、フィラメント134の表面を酸化するための酸素ラジカルを生成すればよく、プリカーサイオンを解離させるための酸素ラジカルを生成する場合のように短時間(例えば10ms)で大量の酸素ラジカルを生成する必要はない。従って、特許文献1の質量分析装置よりも低出力の高周波電源を用いればよく、コストを低減することができる。質量分析装置は通常、イオンの収束や選別のために電極に高周波電圧を印加するための高周波電源を備えている。変形例1の質量分析装置200では、そのような高周波電源を酸素ラジカルの生成にも使用する(高周波電源63としても使用する)ことができる。また、高周波放電ではなく直流放電により酸素ラジカルを生成するようにしてもよく、その場合はより安価な直流電源を用いることができる。
 上記実施例及び変形例1では、フィラメント134をコリジョンセル132内に配置し、コリジョンセル132内で酸素ラジカルを生成する例を説明したが、コリジョンセル132外でフィラメント134から酸素ラジカルを放出させる構成を採ることもできる。
 図4は、コリジョンセル132の外部で酸素ラジカルを生成し、それをコリジョンセル132内に導入してプリカーサイオンに付着させる、変形例2の質量分析装置300の質量分析装置本体302の要部構成図である。上記実施例及び変形例1と同様の構成要素には同一の符号を付して説明を省略する。
 変形例2の質量分析装置300は、コリジョンセル132と連通する酸素ラジカル生成室21を備え、該酸素ラジカル生成室21内にフィラメント134を配置している点に特徴を有している。変形例2の質量分析装置300においても、上記実施例及び変形例1と同様に、第1直流電源20からフィラメント134に所定の大きさの電流を供給して所定の温度に加熱することにより酸素ラジカルを生成する。酸素ラジカル生成室21内で生成された酸素ラジカルは、該酸素ラジカル生成室21と連通するコリジョンセル132に流入し、試料成分由来のプリカーサイオンに付着してプロダクトイオンを生じさせる。
 変形例2の質量分析装置300において、酸素ラジカル生成室21はフィラメント134を収容できればよいため、小型の酸素ラジカル生成室21をコリジョンセル132の近傍に配置して質量分析装置300の本体302内に一体的に構成することができる。酸素ラジカル生成室21をコリジョンセル132に隣接配置することで、酸素ラジカルの移動距離を短くして消失を低減し、生成した酸素ラジカルの利用効率を高くすることができる。
 変形例2の質量分析装置300では、フィラメント134がコリジョンセル132の外に配置されているため、フィラメント134から不所望の不純物が放出されてもコリジョンセル132に流入しにくく、コリジョンセル132の壁面や四重極イオンガイド133が不純物によって汚染されにくい。また、コリジョンセル132の外で酸素ラジカルを生成する構成のため、フィラメント134よりも体積が大きいリボン線や多孔質金属(いずれも表面を酸化物で被覆したもの)を用いても、それらにイオンが衝突して消失する心配がない。なお、図4では、変形例1と同様に酸素ラジカル生成・照射部6を用いて、非測定時にフィラメント134の表面に酸化物を形成させる構成としているが、上記実施例と同様に酸素ガス供給部4を用いることもできる。その場合には、酸素ラジカル生成室21内に放電を生じさせるための電極と、該電極に所定の電圧を印加する電極を必要に応じて設ければよい。
 上記実施例及び変形例はいずれも三連四重極型の質量分析装置としたが、他の構成の質量分析装置にも本発明を適用することができる。そのような質量分析装置の1つに、イオントラップ-飛行時間型の質量分析装置が挙げられる。イオントラップは通常、上記実施例の質量分析装置1や変形例の質量分析装置200のコリジョンセル132よりも内部空間が広いため、上記実施例や変形例のフィラメント134よりも体積及び表面積が大きいリボン線を用いることができる。イオントラップ-飛行時間型の質量分析装置を用いる場合も、上記実施例のようにイオントラップ内に酸素ガスを供給してフィラメントやリボン線の表面を酸化するように構成してもよく、あるいは上記変形例のようにイオントラップの外部で生成した酸素ラジカルをイオントラップに供給してフィラメントやリボン線の表面を酸化するように構成してもよい。
 また、上記実施例及び変形例では、表面が酸化物で被覆された白金をフィラメント134として用いたが、白金以外の金属からなるものを用いることもできる。非特許文献1に記載されているように、例えばタングステンや銅からなるものを用いることもできる。これらを用いる場合も上記実施例と同様に、それらの酸化物から酸素ラジカルが放出される温度を予備実験等により求めておき、それを上記所定の温度とすればよい。ただし、貴金属を用いる方が酸素ラジカル以外に不所望の不純物が放出されにくく、コリジョンセル132内の四重極イオンガイド133の表面等が汚染されにくいため、上記実施例のように白金等の貴金属からなるフィラメント等を用いることが好ましい。
 さらに、上記実施例及び変形例では、金属酸化物から酸素ラジカルを放出する構成を説明したが、金属窒化物から窒素ラジカルを放出するように構成することもできる。例えば、表面が窒化白金で被覆された白金からなるフィラメントやリボン線をコリジョンセルやイオントラップの内部に配置し、それを所定の温度に加熱することによりコリジョンセルやイオントラップ内でプリカーサイオンに窒素ラジカルを付着させプロダクトイオンを生成することができる。この場合には、上記実施例で使用した酸素ガスボンベ41に代えて窒素ガスボンベを使用し、あるいは上記変形例で使用した酸素ラジカル生成・照射部6に代えて窒素ラジカル生成・照射部を用いればよい。
 その他、上記実施例では液体試料をイオン化するESIプローブ101をイオン化源として用いたが、測定対象試料の形態や特性に応じたイオン化源を用いればよい。例えば試料ガスである場合には電子イオン化源を用いることができ、生体試料の場合にはマトリックス支援レーザ脱離イオン化源(MALDI源)を用いることができる。さらに、上記実施例及び変形例はいずれもイオンを質量電荷比に応じて分離し測定する質量分析装置であるが、イオンを移動度に応じて分離し測定するイオン移動度分析装置のイオン分析装置にも本発明を適用することができる。
 次に、上記実施例の質量分析装置1を用いて行った測定の結果を説明する。
 図5は、リン脂質PC18:1(9Z)由来のプリカーサイオンを解離させて生成したプロダクトイオンを測定することにより取得したマススペクトル(プロダクトイオンスペクトル)である。この測定では、予め表面を酸化処理したφ0.1 長さ50mmの白金線(フィラメント)をコリジョンセル132内に設置し、これに0.6Aの電流を流すことにより白金線を1000℃程度に加熱して原子ラジカル(原子状酸素)を放出させた。この測定では、質量分析装置1とは別の真空チャンバー内で高周波放電により生成した酸素プラズマ中に白金フィラメントを1時間設置することにより表面の酸化処理を行った。もちろん、表面の酸化処理はこの方法に限定されず、例えばアダムス触媒の製造時に利用されるように液相で酸化させることも可能である。
 図5に示すプロダクトイオンスペクトルには質量電荷比690のマスピークが現れている。これは、リン脂質PC18:1(9Z)の分子イオン(プリカーサイオン)が炭素-炭素の不飽和結合の位置で解離することにより生成されたプロダクトイオンのマスピークである。特許文献2に記載されている通り、酸素ラジカルは、炭化水素鎖を炭素-炭素の不飽和結合の位置で特異的に解離させる。つまり、本実施例の質量分析装置1においても特許文献2と同様に酸素ラジカルがプリカーサイオンに付着しプロダクトイオンが生成され、酸素付着解離(OAD: Oxygen Oxygen Attachment Dissociation)スペクトルが得られたことが分かる。
 また、白金フィラメントからの酸素ラジカルの放出を継続しつつ上記測定を繰り返し行ったところ、1本のφ0.1の白金線からOADスペクトルが1時間程度連続して得られた。酸素ラジカルを放出させるラジカル放出体の表面積が大きいほどより速く、より多くの酸素ラジカルを放出させることができる。その点では、例えば上記変形例で説明したリボン線を用いることが好ましい。また、多孔質の金属を用いることにより表面積を大きくすることもできる。例えば、幅6mmのリボン線を8本、コリジョンセル内に設置すれば、500時間程度のMS/MS測定が可能になると考えられる。一例として、1回のLC分析が20分程度と考えると、このようなリボン線を用いることにより1500回のLC-MS/MS分析を継続して実行することが可能である。
[態様]
 上述した複数の例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。
(第1項)
 一態様に係る分析装置は、試料成分由来のプリカーサイオンからプロダクトイオンを生成して分析するイオン分析装置であって、
 前記プリカーサイオンが導入される反応室と、
 前記反応室又は該反応室に連通する空間に配置され、少なくとも表面の一部が酸化又は窒化された、所定の種類の金属からなるラジカル放出体と、
 前記ラジカル放出体を所定の温度に加熱する加熱部と
 前記所定の温度に加熱されたラジカル放出体から発せられるラジカルとの反応により前記プリカーサイオンから生成されたプロダクトイオンを質量電荷比及びイオン移動度の少なくとも一方に応じて分離し検出する分離検出部と
 を備える。
 第1項に記載のイオン分析装置では、少なくとも表面の一部が酸化又は窒化された、所定の金属からなるラジカル放出体を所定の温度に加熱することにより酸素ラジカル又は窒素ラジカルを生成する。ラジカル放出体は、例えば表面が酸化白金で被覆された白金フィラメントとすることができ、その場合、数Wの直流電力を供給することにより約200℃に加熱して酸化ラジカルを発生させることができる。即ち、前記所定の温度はラジカル放出体から酸素ラジカルを放出可能な温度であり、その温度は従来の知見や予備実験などに基づいて決定しておく。ラジカル放出体は反応室又は該反応室と連通する空間に配置されているため、該反応室内にラジカルが供給され、該ラジカルとの反応によってプリカーサイオンからプロダクトイオンが生成される。生成されたプロダクトイオンは分離検出部により質量電荷比及びイオン移動度の少なくとも一方に応じて分離され検出される。本発明に係るイオン分析装置では、従来のイオン分析装置のように高出力の高周波電力を供給する電源を必要としないため、低コストで酸素ラジカルや窒素ラジカルを試料分子に照射することができる。
(第2項)
 第1項に記載のイオン分析装置において、
 前記ラジカル放出体が、少なくとも表面の一部が酸化された白金である。
 酸化しやすい金属を加熱すると予期せぬ不純物が放出され反応室内が汚染される可能性がある。第2項に記載のイオン分析装置では、ラジカル放出体を構成する金属として、貴金属である白金を用いるため、ラジカル放出体から酸素ラジカル以外の不純物が放出されにくく、反応室が汚染される可能性を低減することができる。
(第3項)
 第1項又は第2項に記載のイオン分析装置において、
 前記ラジカル放出体がリボン線である。
(第4項)
 第1項又は第2項に記載のイオン分析装置において、
 前記ラジカル放出体がフィラメントである。
 上記ラジカル放出体は、その表面に形成された酸化物又は窒化物から酸素ラジカル又は窒素ラジカルを放出するものであるため、表面積を大きくすることによりラジカル生成効率を高めることができる。第3項や第4項に記載のイオン分析装置では、線状体であるリボン線やフィラメントをラジカル放出体として用いるため、ラジカル放出体の表面積が大きくなり効率よくラジカルを放出させることができる。特に第4項のイオン分析装置では、体積が小さいフィラメントを用いることにより、プリカーサイオンやプロダクトイオンがラジカル放出体に衝突して消失する可能性も低減することができる。
(第5項)
 第1項から第4項のいずれかに記載のイオン分析装置において、さらに、
 前記反応室内に配置された、該反応室内でのイオンの挙動を制御する電極と、
 前記電極を所定の温度に加熱する第2加熱部と
 を備える。
 前記反応室は多くの場合、三次元イオントラップ又はリニアイオントラップ(コリジョンセル)であり、これらはイオンを捕捉したり選別したりするための電極を有している。ラジカル放出体から放出される酸素ラジカルや窒素ラジカルの一部がこうした電極に付着すると、これらの電極に直流電圧及び/又は高周波電圧を印加することにより形成される電場に乱れが生じ、イオンの挙動を正しく制御することができなくなる可能性がある。第5項に記載のイオン分析装置では、こうした電極を所定の温度に加熱することで、電極表面が酸化あるいは窒化されるのを抑制し、これらの電極により形成される電場に乱れが生じる可能性を低減することができる。
(第6項)
 第5項に記載のイオン分析装置において、
 前記電極の表面が金又は白金である。
 第6項に記載のイオン分析装置では、表面が金又は白金である電極を用いることで、酸化あるいは窒化される可能性をより一層低減することができる。
(第7項)
 第1項から第6項のいずれかに記載のイオン分析装置において、さらに、
 前記ラジカル放出体の表面を酸化させる酸化反応物を前記ラジカル放出体が配置された空間に供給する酸化反応物供給部
 を備える。
 上記ラジカル放出体の表面から酸素ラジカルを放出すると同時に酸化物も消失する。第7項に記載のイオン分析装置では、酸化反応物によりラジカル放出体の表面を酸化させることで、繰り返し酸素ラジカルを放出可能な状態にすることができる。
(第8項)
 第7項に記載のイオン分析装置において、
 前記酸化反応物供給部が、前記ラジカル放出体が配置された空間に酸素ガスを供給する酸素ガス供給部を備える。
 第8項に記載のイオン分析装置では、ラジカル放出体が配置された空間(反応室又は該反応室に連通する空間)に酸素ガスを供給し、酸素ガスによってラジカル放出体の表面を酸化することができる。
(第9項)
 第8項に記載のイオン分析装置において、
 前記酸化反応物供給部が、さらに、前記ラジカル放出体が配置された空間で直流放電又は高周波放電を生じさせる放電部を備える。
 第9項に記載のイオン分析装置では、ラジカル放出体が配置された空間(反応室又は該反応室に連通する空間)で直流放電又は高周波放電を生じさせることにより酸素ラジカルを生成し、効率よくラジカル放出体の表面を酸化することができる。
(第10項)
 第7項に記載のイオン分析装置において、
 前記酸化反応物供給部が、
  前記ラジカル放出体が配置された空間の外部で酸素ラジカルを生成する酸素ラジカル生成部と、
  前記酸素ラジカル生成部で生成された酸素ラジカルを前記ラジカル放出体が配置された空間に導入する酸素ラジカル導入部と
 を備える。
 第10項に記載のイオン分析装置では、ラジカル放出体が配置された空間(反応室又は該反応室に連通する空間)の外部で生成された酸素ラジカルを該空間に導入することにより、ラジカル放出体の表面を酸化することができる。また、プリカーサイオンを解離させるための酸素ラジカルを生成するラジカル生成部では、短時間に大量の酸素ラジカルを生成する必要があったため高出力の高周波電力を用いて放電を生じさせる必要があったが、ラジカル放出体の表面を酸化させる際にはそのように大量の酸素ラジカルを生成する必要はない。従って、直流電力や低出力の高周波電力の供給により放電を生じさせてラジカルを生成すればよい。
1、200、300…質量分析装置
2、202、302…質量分析装置本体
10…イオン化室
 101…ESIプローブ
 102…脱溶媒管
11…第1中間真空室
 111…イオンレンズ
 112…スキマー
12…第2中間真空室
 121…イオンガイド
13…分析室
 131…前段四重極マスフィルタ
 132…コリジョンセル
 133…四重極イオンガイド
 134…フィラメント
 135…後段四重極マスフィルタ
 136…イオン検出器
20…第1直流電源
21…酸素ラジカル生成室
30…第2直流電源
4…酸素ガス供給部
 41…酸素ガスボンベ
 42…酸素ガス導入流路
 43…バルブ
5…制御・処理部
 51…記憶部
 52…分析制御部
 53…解析処理部
 54…酸化反応制御部
 55…入力部
 56…表示部
6…酸素ラジカル生成・照射部
 61…ラジカル生成室
 63…高周波電源
 64…ノズル
  641…接地電極
  642…トーチ
  643…ニードル電極
  644…コネクタ
 66…酸素ガスボンベ
  661…バルブ
 67…真空ポンプ
 68…輸送管
  681…ヘッド部

Claims (10)

  1.  試料成分由来のプリカーサイオンからプロダクトイオンを生成して分析するイオン分析装置であって、
     前記プリカーサイオンが導入される反応室と、
     前記反応室又は該反応室に連通する空間に配置され、少なくとも表面の一部が酸化又は窒化された、所定の種類の金属からなるラジカル放出体と、
     前記ラジカル放出体を所定の温度に加熱する加熱部と、
     前記所定の温度に加熱されたラジカル放出体から発せられるラジカルとの反応により前記プリカーサイオンから生成されたプロダクトイオンを質量電荷比及びイオン移動度の少なくとも一方に応じて分離し検出する分離検出部と
     を備えることを特徴とするイオン分析装置。
  2.  前記ラジカル放出体が、少なくとも表面の一部が酸化された白金である、請求項1に記載のイオン分析装置。
  3.  前記ラジカル放出体がリボン線である、請求項1に記載のイオン分析装置。
  4.  前記ラジカル放出体がフィラメントである、請求項1に記載のイオン分析装置。
  5.  さらに、
     前記反応室内に配置された、該反応室内でのイオンの挙動を制御する電極と、
     前記電極を所定の温度に加熱する第2加熱部と
     を備える、請求項1に記載のイオン分析装置。
  6.  前記電極の表面が金又は白金である、請求項5に記載のイオン分析装置。
  7.  さらに、
     前記ラジカル放出体の表面を酸化させる酸化反応物を前記ラジカル放出体が配置された空間に供給する酸化反応物供給部
     を備える、請求項1に記載のイオン分析装置。
  8.  前記酸化反応物供給部が、前記ラジカル放出体が配置された空間に酸素ガスを供給する酸素ガス供給部を備える、請求項7に記載のイオン分析装置。
  9.  前記酸化反応物供給部が、さらに、前記反応室内で直流放電又は高周波放電を生じさせる放電部を備える、請求項8に記載のイオン分析装置。
  10.  前記酸化反応物供給部が、
      前記ラジカル放出体が配置された空間の外部で酸素ラジカルを生成する酸素ラジカル生成部と、
      前記酸素ラジカル生成部で生成された酸素ラジカルを前記ラジカル放出体が配置された空間に導入する酸素ラジカル導入部と
     を備える、請求項7に記載のイオン分析装置。
PCT/JP2020/010915 2020-03-12 2020-03-12 イオン分析装置 WO2021181628A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022505664A JP7306566B2 (ja) 2020-03-12 2020-03-12 イオン分析装置
PCT/JP2020/010915 WO2021181628A1 (ja) 2020-03-12 2020-03-12 イオン分析装置
US17/792,170 US20230048972A1 (en) 2020-03-12 2020-03-12 Ion analysis device
CN202080090550.0A CN114868014A (zh) 2020-03-12 2020-03-12 离子分析装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/010915 WO2021181628A1 (ja) 2020-03-12 2020-03-12 イオン分析装置

Publications (1)

Publication Number Publication Date
WO2021181628A1 true WO2021181628A1 (ja) 2021-09-16

Family

ID=77670548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010915 WO2021181628A1 (ja) 2020-03-12 2020-03-12 イオン分析装置

Country Status (4)

Country Link
US (1) US20230048972A1 (ja)
JP (1) JP7306566B2 (ja)
CN (1) CN114868014A (ja)
WO (1) WO2021181628A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150187557A1 (en) * 2012-08-16 2015-07-02 State of Oregon acting by and through the State Board of Higher Education on behalf of OSU Electron source for an rf-free electronmagnetostatic electron-induced dissociation cell and use in a tandem mass spectrometer
JP2017519207A (ja) * 2014-06-13 2017-07-13 ディーエイチ テクノロジーズ デベロップメント プライベート リミテッド 質量分析を用いる脂質の分析のための方法
JP2019056598A (ja) * 2017-09-20 2019-04-11 株式会社島津製作所 分析方法および分析装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7723676B2 (en) * 2007-12-18 2010-05-25 Science & Engineering Services, Inc. Method and apparatus for ion fragmentation in mass spectrometry
JP6229790B2 (ja) * 2014-03-04 2017-11-15 株式会社島津製作所 イオン分析装置
JP6713646B2 (ja) * 2017-04-04 2020-06-24 株式会社島津製作所 イオン分析装置
US11075067B2 (en) * 2017-04-10 2021-07-27 Shimadzu Corporation Ion analysis device and ion dissociation method
JP6809397B2 (ja) * 2017-06-28 2021-01-06 株式会社島津製作所 質量分析を用いた脂質解析方法及び質量分析装置
US11804369B2 (en) * 2018-02-06 2023-10-31 Shimadzu Corporation Mass spectrometry method and mass spectrometer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150187557A1 (en) * 2012-08-16 2015-07-02 State of Oregon acting by and through the State Board of Higher Education on behalf of OSU Electron source for an rf-free electronmagnetostatic electron-induced dissociation cell and use in a tandem mass spectrometer
JP2017519207A (ja) * 2014-06-13 2017-07-13 ディーエイチ テクノロジーズ デベロップメント プライベート リミテッド 質量分析を用いる脂質の分析のための方法
JP2019056598A (ja) * 2017-09-20 2019-04-11 株式会社島津製作所 分析方法および分析装置

Also Published As

Publication number Publication date
JP7306566B2 (ja) 2023-07-11
CN114868014A (zh) 2022-08-05
US20230048972A1 (en) 2023-02-16
JPWO2021181628A1 (ja) 2021-09-16

Similar Documents

Publication Publication Date Title
US10998177B2 (en) Ion analyzer
US8119984B2 (en) Method and apparatus for generation of reagent ions in a mass spectrometer
CN110494955B (zh) 离子分析装置及离子裂解方法
WO2020240908A1 (ja) 質量分析方法及び質量分析装置
WO2019155725A1 (ja) 質量分析方法及び質量分析装置
US20220344140A1 (en) Ion analyzer
US11735408B2 (en) Ion analyzer
WO2021181628A1 (ja) イオン分析装置
JP2017191737A (ja) イオントラップ質量分析装置
CN113678229B (zh) 离子分析装置
JP7403774B2 (ja) イソアスパラギン酸の分析方法、及び質量分析装置
EP4376557A1 (en) Mass spectrometry device and mass spectrometry method
US12009197B2 (en) Method and apparatus
JP7435812B2 (ja) 質量分析方法及び質量分析装置
US12020919B2 (en) Method for analyzing isoaspartic acid and mass spectrometer
JPWO2021181628A5 (ja)
JP2022048477A (ja) イオン分析装置
US20220260527A1 (en) Ion analyzer
GB2606024A (en) Apparatus and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20923822

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022505664

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20923822

Country of ref document: EP

Kind code of ref document: A1