WO2018186246A1 - 蓄熱システム及びその潜熱蓄熱材の設置方法 - Google Patents

蓄熱システム及びその潜熱蓄熱材の設置方法 Download PDF

Info

Publication number
WO2018186246A1
WO2018186246A1 PCT/JP2018/012612 JP2018012612W WO2018186246A1 WO 2018186246 A1 WO2018186246 A1 WO 2018186246A1 JP 2018012612 W JP2018012612 W JP 2018012612W WO 2018186246 A1 WO2018186246 A1 WO 2018186246A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat storage
container
space
bag
latent heat
Prior art date
Application number
PCT/JP2018/012612
Other languages
English (en)
French (fr)
Inventor
拓樹 中村
海 郡司
Original Assignee
矢崎エナジーシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 矢崎エナジーシステム株式会社 filed Critical 矢崎エナジーシステム株式会社
Priority to AU2018249092A priority Critical patent/AU2018249092B2/en
Priority to CN201880023546.5A priority patent/CN110476020A/zh
Priority to EP18781227.6A priority patent/EP3608598B1/en
Publication of WO2018186246A1 publication Critical patent/WO2018186246A1/ja
Priority to US16/590,355 priority patent/US20200033069A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/02Flooring or floor layers composed of a number of similar elements
    • E04F15/024Sectional false floors, e.g. computer floors
    • E04F15/02405Floor panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/021Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material and the heat-exchanging means being enclosed in one container
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/02Flooring or floor layers composed of a number of similar elements
    • E04F15/024Sectional false floors, e.g. computer floors
    • E04F15/02447Supporting structures
    • E04F15/02494Supporting structures with a plurality of base plates or like, each base plate having a plurality of pedestals upstanding therefrom to receive the floor panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D5/00Hot-air central heating systems; Exhaust gas central heating systems
    • F24D5/06Hot-air central heating systems; Exhaust gas central heating systems operating without discharge of hot air into the space or area to be heated
    • F24D5/10Hot-air central heating systems; Exhaust gas central heating systems operating without discharge of hot air into the space or area to be heated with hot air led through heat-exchange ducts in the walls, floor or ceiling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/0227Ducting arrangements using parts of the building, e.g. air ducts inside the floor, walls or ceiling of a building
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0017Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using cold storage bodies, e.g. ice
    • F24F5/0021Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using cold storage bodies, e.g. ice using phase change material [PCM] for storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/10Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with air supply, or exhaust, through perforated wall, floor or ceiling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/023Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material being enclosed in granular particles or dispersed in a porous, fibrous or cellular structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/06Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being attachable to the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D2020/0004Particular heat storage apparatus
    • F28D2020/0021Particular heat storage apparatus the heat storage material being enclosed in loose or stacked elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/14Safety or protection arrangements; Arrangements for preventing malfunction for preventing damage by freezing, e.g. for accommodating volume expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/16Safety or protection arrangements; Arrangements for preventing malfunction for preventing leakage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to a heat storage system and a method for installing the latent heat storage material.
  • Patent Documents 8 to 11 Further, in areas where there is a demand for cooling and heating depending on the season, the system described in Patent Documents 1 to 7 is expanded, and a system that uses natural cooling and heating beyond the season has also been proposed (Patent Documents 8 to 11). .
  • Patent Documents 8 to 11 use the stored cold energy and hot energy over the season, the required amount of cold heat is equivalent to the demand for about 100 days. For this reason, the systems described in Patent Documents 8 to 11 require two orders of magnitude higher than the systems disclosed in Patent Documents 1 to 7, and when converted to the weight of the latent heat storage material, for example, are on the order of 100 kg / m 2. End up.
  • a latent heat storage material having a large storage efficiency is used.
  • ice having a melting point and freezing point of 0 degrees Celsius or sodium acetate trihydrate having a melting point and freezing point of 58 degrees Celsius it is possible to use ice having a melting point and freezing point of 0 degrees Celsius or sodium acetate trihydrate having a melting point and freezing point of 58 degrees Celsius.
  • these latent heat storage materials since the melting point and freezing point are low or high, leakage of the stored cold / hot heat becomes large, and in the heat storage system that performs both cooling and heating, cold storage is performed.
  • Both of the latent heat storage material for heating and the latent heat storage material for heat storage may be provided, which may eventually increase the weight.
  • the present invention has been made in order to solve such a problem, and an object of the present invention is to enable both cooling and heating, and to reduce the use weight of the latent heat storage material when storing heat over the season. It is in providing the thermal storage system which can be installed, and the installation method of the latent heat storage material.
  • the heat storage system includes an indoor space, a heat storage space adjacent to the indoor space, and a control unit that controls introduction and blocking of outside air to the heat storage space.
  • a latent heat storage material having a melting point or a freezing point in a range of 5 degrees Celsius or more and 30 degrees Celsius or less is installed. Further, the thermal resistance between the heat storage space and the outside air is made larger than the heat resistance between the heat storage space and the indoor space.
  • a pillow packaging material or a foldable film bag-like container is prepared on a specific floor.
  • the latent heat storage material having a temperature higher than the melting point by 10 degrees Celsius or more is transported to a specific floor by pumping the pump or lifting the tank storing the latent heat storage material.
  • the conveyed latent heat storage material is filled and sealed in a bag-like container formed by heat-sealing a pillow packaging material on a specific floor or a foldable film-like bag-like container.
  • a 4th process installs the bag-shaped container with which the latent heat storage material was enclosed in the thermal storage space in a specific floor.
  • both cooling and heating are possible, and the use weight of the latent heat storage material when storing heat over the season can be reduced.
  • FIG. 1 is a configuration diagram illustrating a heat storage system according to an embodiment of the present invention.
  • FIG. 2 is a partial plan view of the heat storage system according to the present embodiment.
  • FIG. 3 is a plan view showing a modification of the plurality of trays shown in FIG. 4 is a cross-sectional view of the tray shown in FIG. 5 (a) to 5 (c) are perspective views showing an example of the bag-like container shown in FIG. 2, FIG. 5 (a) shows a first example, and FIG. 5 (b) shows a second example. An example is shown, and FIG. 5C shows a third example.
  • FIGS. 6A and 6B are perspective views showing an example of the through hole of the floor plate shown in FIG. 1, FIG. 6A shows a first example, and FIG. The example of 2 is shown.
  • FIG. 1 is a configuration diagram showing a heat storage system according to an embodiment of the present invention.
  • the heat storage system 1 uses the latent heat storage material H to cool and heat an indoor space IDS that is a space where people live or act, and for example, on each floor of a building such as a high-rise building. It is used. That is, the heat storage system 1 is applied to each floor.
  • the thermal storage system 1 is a building, it may be used not only for a high-rise building but for a low-rise apartment or a detached house.
  • Such a heat storage system 1 generally includes a heat insulating space AS, a latent heat storage material H, and a natural ventilation device (control means) NV.
  • the heat insulation space AS is a space that is blocked from outside air, and includes an indoor space IDS and a heat storage space HSS.
  • the indoor space IDS is a space where people live or act as described above
  • the heat storage space HSS is a space where the latent heat storage material H is installed.
  • the indoor space IDS has a structure adjacent to the heat storage space HSS.
  • the indoor space IDS stores heat via a floor material (an example of a partition material, which will be described later, a floor plate FC).
  • the structure is adjacent to the space HSS.
  • the heat insulation space AS is a space that is blocked from the outside air, but this does not apply to ventilation by the natural ventilation device NV, ventilation by opening a window, and ventilation by a ventilation port separately attached to the indoor space IDS.
  • the heat storage space HSS is not limited to the above, and may have a structure adjacent to the indoor space IDS via a ceiling material or a wall material (an example of a partition material), or a double skin of a facade portion or a wall portion. It may be a space defined by Below, the indoor space IDS demonstrates as an example the structure adjacent to the thermal storage space HSS via a flooring.
  • the natural ventilation device NV controls the introduction and shut-off of outside air to the heat storage space HSS.
  • This natural ventilator NV is composed of a first ventilator NV1 on the outside air introduction side and a second ventilator NV2 that exhausts the inside air of the heat storage space HSS.
  • the 1st ventilation apparatus NV1 and the 2nd ventilation apparatus NV2 are each provided in the wall which opposes among the walls which demarcate the thermal storage space HSS from a breathable viewpoint.
  • Such a natural ventilation device NV is incorporated in a window sash or a peri counter or attached to an outer wall, and the air volume is naturally controlled according to the outside air speed without electrical control, and is closed during strong winds. It is possible to cut off the intake of outside air and the discharge of inside air by electric control.
  • the outside air is taken in naturally, and the latent heat storage material H is stored with cold / hot heat.
  • the outside air temperature is inappropriate for heat storage, the outside air is removed by electrical control. By shutting off, appropriate heat storage can be performed with power saving.
  • it may be made to provide the ventilation apparatus comprised from the fan and opening-and-closing port etc. which are electrically controlled instead of the natural ventilation apparatus NV.
  • the latent heat storage material H has a melting point or freezing point in the range of 5 degrees Celsius or more and 30 degrees Celsius or less, and preferably in the range of 15 degrees Celsius or more and 26 degrees Celsius or less. More preferably, it is a room temperature latent heat storage material having a melting point or freezing point in the range of 18 degrees Celsius or more and 23 degrees Celsius or less.
  • the preferred range varies somewhat depending on the country or region where the heat storage system 1 is used.
  • Specific examples of the latent heat storage material H in the normal temperature range include paraffinic, inorganic salt hydrates, and sugars, and are desirably nonflammable because they are used in large quantities in construction. Inorganic salt hydrates (for example, calcium chloride hydrate and sodium sulfate hydrate) are preferable.
  • the thermal resistance between the heat storage space HSS and the outside air is made larger than the heat resistance between the heat storage space HSS and the indoor space IDS.
  • the heat transmissivity between the heat storage space HSS and the outside air is preferably 1 W / m 2 K or less, more preferably 0.5 W / m 2 K or less (for example, 0.46 W / m 2 K) on the outer wall average. is there.
  • the heat storage space HSS and the indoor space IDS only have to have a heat transmissivity of 15 W / m 2 K or less, and specifically have a heat transmissivity of 2 to 10 W / m 2 K.
  • the cold / hot heat of the heat storage space HSS is selectively leaked to the indoor space IDS from the outside. And since the latent-heat storage material H of the normal temperature zone is installed in the thermal storage space HSS, a comfortable temperature will leak, and the air conditioning which utilized the leakage can be performed.
  • the heat storage system 1 includes a plurality of trays T, a bag-like container (container) B, and a heat sink HS in the heat storage space HSS.
  • the plurality of trays T are for placing the bag-like container B in which the latent heat storage material H is stored, and are placed on the floor slab FS under the floor in this embodiment.
  • a tray T receives the latent heat storage material H leaked when the bag-like container B is damaged, and also receives dew condensation water when the surrounding air is cooled below the dew point and condensed.
  • the latent heat storage material H is harmful to concrete or the like which is a material of the floor slab FS, it plays a role of stopping this.
  • the floor slab FS is preferably made of salt-resistant concrete or painted.
  • FIG. 2 is a partial plan view of the heat storage system 1 according to the present embodiment.
  • the heat storage system 1 according to the present embodiment has a structure in which the heat storage space HSS and the indoor space IDS are partitioned by a plurality of floor plates FC shown in FIGS. 1 and 2.
  • the plurality of floor plates FC are supported at the four corners by a plurality of pedestals PD.
  • the plurality of pedestals PD are column members arranged at regular intervals in the vertical direction and the horizontal direction when the floor is viewed in plan, and are arranged on the floor slab FS.
  • Such a floor structure is called, for example, a free access floor (or OA floor, false floor, etc.).
  • the latent heat storage material H becomes a considerable weight, it is preferable to arrange
  • the plurality of trays T are placed on the floor slab FS so as to be stored in the free access floor (that is, in the heat storage space HSS).
  • the plurality of trays T have substantially the same dimensions as the plurality of floor plates FC in a plan view.
  • notches T1 for avoiding the plurality of pedestals PD are formed at four corners.
  • a plurality of trays T can be arranged without gaps, and the area can be efficiently installed to cover the entire surface of the floor slab FS, and the pedestal PD can be placed so as to align with the notch T1 of the tray T. It can be done easily.
  • FIG. 3 is a plan view showing a modification of the plurality of trays T shown in FIG.
  • the tray T ′ according to the modified example has dimensions that are twice as large as the floor plate FC (an example of an integer multiple of 2) in the vertical direction and the horizontal direction.
  • the tray T ′ according to the modified example is formed with notches T1 ′ at predetermined locations such as the four corners and the middle portions of the sides so as to avoid the pedestal PD.
  • the tray T ′ according to the modified example is formed with a hole T2 ′ through which the pedestal PD penetrates at a predetermined location such as the center. In the case of such a configuration, similarly to the tray T shown in FIG.
  • a plurality of trays T ′ are arranged without gaps, are installed with good area efficiency to cover the entire surface of the floor slab FS, and the cutout portion of the tray T ′.
  • the pedestal PD can be placed so as to match the T1 ′ and the hole T2 ′, and the pedestal PD can be easily positioned.
  • FIG. 4 is a cross-sectional view of the tray T shown in FIG.
  • the bottom wall T3 that is the installation surface of the floor slab FS and the intermediate wall T4 that is the placement surface of the bag-like container B that stores the latent heat storage material H are vertically separated.
  • a heat insulating layer AL made of air is formed between them. That is, the tray T has the heat insulation layer AL that insulates the floor slab FS and the latent heat storage material H stored in the bag-like container B.
  • the plurality of trays T are provided with sensors S for detecting breakage of the bag-like container B.
  • the sensor S includes at least one of a weight sensor, a pressure sensor, and a wetting sensor.
  • the sensor S is configured to transmit a detection signal to another device or the like.
  • an alarm sounds from another device or an error message is notified to the administrator. Will be.
  • the latent heat storage material H is calcium chloride hydrate
  • the calcium chloride hydrate is deliquescent, and when the bag-like container B is damaged, the slurry is absorbed while absorbing moisture in the surrounding air.
  • the liquid reservoir is provided in the tray T and a leak sensor is installed there, damage (breakage) of the bag-like container B can be detected.
  • the latent heat storage material H is sodium sulfate hydrate
  • the sodium sulfate hydrate is deflated in a normal humidity environment, and when the bag-like container B is damaged, water is evaporated to the surroundings. Weight is reduced. For this reason, damage (breakage) of the bag-like container B can be detected by detecting a decrease in weight by a pressure sensor or a weight sensor.
  • the sensor S is provided on the intermediate wall T4 (see FIG. 4) of the tray T.
  • the present invention is not limited to this.
  • the lower surface of the tray T (the lower surface of the bottom wall T3) is provided with a protrusion that supports the weight of the latent heat storage material H and the tray T and transmits a load to the floor slab FS, and a pressure sensor and a weight sensor are provided there. It may be.
  • the senor S is not limited to the weight sensor, the pressure sensor, and the wetness sensor, and other sensors such as an optical sensor including a light emitting / receiving element may be used as long as the breakage of the bag-like container B can be detected. Also good.
  • FIG. 5A to 5C are perspective views showing an example of the bag-like container B shown in FIG. 2, FIG. 5A shows a first example, and FIG. 5B shows a second example.
  • FIG. 5C shows a third example.
  • the portions corresponding to the upper and lower sides and the left and right sides of the two overlapped film sheets are pressure-bonded by heat sealing to form an opening AP that can be opened and closed at a predetermined location.
  • the opening AP can be configured by the same structure as the cap portion of a plastic bottle, for example.
  • the bag-like container B is in a communication state between the inside and the outside when the opening AP is opened, and the inside and the outside of the bag-like container B are blocked when the opening is closed.
  • the bag-like container B1 may be one in which the upper and lower sides and the left and right sides are heat-sealed and filled with the latent heat storage material H and not provided with the opening AP.
  • the bag-like containers B2 and B3 shown in FIG. 5 (b) and FIG. 5 (c) are foldable film containers, and have a substantially cubic shape or a rectangular parallelepiped shape when deployed.
  • an opening AP that can be opened and closed is formed at a portion that becomes an upper surface during deployment.
  • the folded form is not limited to those shown in FIGS. 5B and 5C, and various forms are possible.
  • the opening AP is the same as that shown in FIG.
  • the bag-like container B as described above is excellent in carrying because it is made of a film and can be folded. Moreover, since it is a film-like bag-shaped container B, since the outer wall is a thin film, it can be said that it is a structure which is easy to perform heat exchange with the air in the thermal storage space HSS smoothly. In addition, the bag-like container B is used at the time of sealing to facilitate smooth heat exchange with the air in the heat storage space HSS (since a heat sink HS is placed on the upper part of the bag-like container B as will be described later). It is preferable to prevent air from entering.
  • the latent heat storage material H in a volume slightly smaller than the maximum volume of the bag-like container B so as to cope with expansion of the latent heat storage material H during solidification. Furthermore, in order to use the cold / hot heat over the season, it is preferable to enclose a latent heat storage material H having a heat storage capacity of 1 kWh or more or a weight of 20 kg or more per square meter of floor area.
  • the heat sink HS is a metal member made of a metal material such as aluminum, iron, or copper having good heat transfer characteristics, and has a large number of radiating fins arranged in parallel to each other in order to increase the surface area.
  • the heat sink HS is placed on the bag-like container B.
  • the bag-like container B has a thin film structure made of a film, simply placing the heat sink HS on the bag-like container B allows the bag-like container B to flexibly change to a shape that can receive the heat sink HS. Heat can be transferred to the air in the heat storage space HSS by the heat sink HS via the thin-film bag-like container B.
  • the heat sink HS Since the air in the heat storage space HSS flows from the first ventilator NV1 toward the second ventilator NV2, the heat sink HS is packaged so that the radiating fins of the heat sink HS and the air flow direction are parallel to each other. It is preferable to place it on the cylindrical container B. That is, in the example shown in FIG. 1, the heat dissipating fins of the heat sink HS and the air flow direction are orthogonal to each other for the purpose of illustration. If the heat sink HS is placed so as to become, it is possible to further transfer heat.
  • the heat storage system 1 includes the fan F and the through hole TH is formed in the floor plate FC.
  • the fan F sends the air in the indoor space IDS into the heat storage space HSS.
  • the air cooled or heated from the heat storage space HSS via the through holes TH of the floor plate FC can be taken into the indoor space IDS.
  • FIG. 6 (a) and 6 (b) are perspective views showing an example of the through hole TH of the floor plate FC shown in FIG. 1, FIG. 6 (a) shows a first example, and FIG. Shows a second example.
  • a plurality of long through holes TH are formed in the floor plate FC so as to extend in parallel with the diagonal direction of the floor plate FC.
  • a large hole is formed in the floor plate FC, the periphery of this hole is covered with a frame member FM, and a lid having a plurality of through holes TH on the frame member FM.
  • a member LM is provided. Even with such a configuration, the air cooled or heated through the through hole TH can be taken into the indoor space IDS.
  • the structure of the through hole TH is not limited to the above, and can take various configurations.
  • the free access floor is used as the heat storage space HSS.
  • the present invention is not limited to this.
  • the through holes TH are formed in the ceiling material. It becomes.
  • the installation method of the latent heat storage material H of the heat storage system 1 which concerns on this embodiment is demonstrated.
  • the latent heat storage material H is enclosed in the bag-like container B in advance in a factory or the like, and the latent heat storage material H is enclosed on site instead of the method of transporting to the site.
  • the latent heat storage material H is put into an ISO tank container (an example of a tank) with a heating coil that can be heated with steam or a liquid transport container (an example of a tank) with a heat retaining / heating function from a factory or the like. In this state, it is transported to the site.
  • ISO tank container an example of a tank
  • a heating coil that can be heated with steam
  • a liquid transport container an example of a tank
  • the pillow packaging material and the folded bag-like container B are transported to the site and transported to the installation floor (a specific floor of the multiple floors). Thereby, the pillow packaging material and the bag-like container B are prepared on the installation floor (first step).
  • the pillow packaging material may be a long film roll, may be a film heat-sealed in three directions, or may be a long cylindrical film. Since these pillow packaging materials and the bag-like container B are excellent in transportability, they can be transported relatively easily to the installation floor.
  • the latent heat storage material H stored in the ISO tank container or the liquid transport container is transported to the installation floor by the first pump (pump). At this time, the latent heat storage material H is in a state higher than the melting point by 10 degrees Celsius or more and has fluidity that can be pumped (second step).
  • the ISO tank container or liquid transport container containing the latent heat storage material H is picked up by a large crane or the like, and the latent heat storage material H is transported to the installation floor together with the container (second step).
  • the liquid filling machine serving as the second pump is being transported to the installation floor.
  • the latent heat storage material H is filled in the bag-like container B formed by heat-sealing the pillow packaging material by the liquid filling machine, and the heat seal and the opening AP are closed. (3rd process).
  • the latent heat storage material H is filled into the bag-like container B through the opening AP of the bag-like container B by the liquid filling machine. After filling, the opening AP of the bag-like container B is sealed (third step).
  • the latent heat storage material H is transported to the hopper by pumping the first pump in the second step, and the latent heat storage material H is filled into the bag-like container B by gravity drop from the hopper. May be.
  • the bag-like container B is placed on the tray T and installed in the heat storage space HSS (fourth step).
  • the transportation work is reduced compared to the case where the bag-like container B packed with the latent heat storage material H is transported to the site. It becomes.
  • the bag-like container B when a bag-like container B is packed in a factory and transported to the site, the bag-like container B must be stacked from the factory.
  • the latent heat storage material H is put in a tank. It can be transported and work can be further reduced.
  • the latent heat storage material H having a melting point or a freezing point in a range of 5 degrees Celsius or more and 30 degrees Celsius or less is installed in the heat storage space HSS. For this reason, the latent heat storage material H becomes a thing of the comfortable temperature range of those who live in indoor space IDS.
  • the thermal resistance between the heat storage space HSS and the outside air is larger than the heat resistance between the heat storage space HSS and the indoor space IDS, the cold / hot heat from the latent heat storage material H is selectively leaked to the indoor space IDS. Therefore, it is possible to cool and heat the indoor space IDS to a comfortable temperature using leakage. That is, in the present embodiment, air conditioning is performed by using the leakage that has been regarded as a problem in the past.
  • the latent heat storage material H is in a comfortable temperature zone, for example, just before summer when you want to store cold, if there is a day when the temperature is low by chance and below the freezing point of the latent heat storage material H, you can store cold.
  • just before the winter when you want to store warm heat if there is a day when the temperature is high by chance and the melting point of the latent heat storage material H is higher than the melting point of the latent heat storage material H, you can store the heat. The weight of the material H will be reduced.
  • the latent heat storage material H is given the opportunity to store cold sequentially. The weight will be reduced. The same applies to warm storage.
  • the latent heat storage material H having a melting point or freezing point in the range of 5 degrees Celsius or more and 30 degrees Celsius or less is installed in the heat storage space HSS.
  • the material H is a comfortable temperature zone. Furthermore, since the thermal resistance between the heat storage space HSS and the outside air is larger than the heat resistance between the heat storage space HSS and the indoor space IDS, the cold / hot heat from the latent heat storage material H is selectively leaked to the indoor space IDS. Therefore, it is possible to cool and heat the indoor space IDS to a comfortable temperature using leakage.
  • the latent heat storage material H in the comfortable temperature zone is used, for example, just before summer when it is desired to store cold, if there is a day when the temperature is low by chance and falls below the freezing point of the latent heat storage material H, the cold heat can be stored. Even if it is just before winter when you want to store warm heat, if there is a day when the temperature is higher than the melting point of the latent heat storage material H by chance, you can store the heat, and you will be given the opportunity to store cold and warm heat, so the latent heat storage material The weight of H can be reduced. Therefore, both cooling and heating are possible, and the use weight of the latent heat storage material H when storing heat over the season can be reduced.
  • the latent heat storage material H is stored in the bag-like container B and placed on the plurality of trays T, the latent heat storage material H leaked when the bag-like container B is damaged can be received. Condensed water when the surrounding air is cooled below the dew point and condensed can be received.
  • the film-like bag-like container B since the film-like bag-like container B is used, heat can be transferred to the air in the heat storage space HSS via the thin-film bag-like container B, and cooling and heating with a small temperature difference with respect to the freezing point and the melting point are further efficient. It can be well stored and radiated.
  • the bag-like container B has a shape capable of receiving the heat sink just by placing the heat sink HS with a thin film called a film. Heat can be transferred to the air of the HSS, and cold heat with a small temperature difference with respect to the freezing point and melting point can be taken in and stored even more efficiently, and heat can be dissipated.
  • the plurality of trays T are approximately the same size as the floor plate FC and the cutout portions T1 for the pedestal PD are formed at the four corners, the plurality of trays T are arranged without gaps, and are installed with good area efficiency.
  • the entire surface of the floor slab FS and the like can be covered, and the pedestal PD can be placed so as to be aligned with the notch T1 of the tray T, so that the pedestal PD can be easily positioned.
  • the plurality of trays T ′ have dimensions that are an integral multiple of 2 or more of the floor plate in the vertical direction and the horizontal direction, the plurality of trays T ′ are arranged without gaps and are installed with good area efficiency.
  • the entire surface of the floor slab FS and the like can be covered, and the pedestal PD can be placed so as to be aligned with the notch T1 ′ and the hole T2 ′ of the tray T ′, so that the pedestal PD can be easily positioned.
  • the amount of the latent heat storage material H should be set to an amount suitable for the use of cold / hot energy over the season. it can.
  • the plurality of trays T have a heat insulating layer AL for insulating between the latent heat storage material H and the floor slab FS accommodated in the bag-like container B.
  • a heat insulating layer AL for insulating between the latent heat storage material H and the floor slab FS accommodated in the bag-like container B.
  • the bag-like container B breaks and latent heat is generated from within the bag-like container B.
  • sensors S such as a weight sensor, a pressure sensor, or a wetting sensor for detecting breakage of the bag-like container B
  • the bag-like container B breaks and latent heat is generated from within the bag-like container B.
  • the heat storage material H is distracted, it can be detected by a weight sensor or a pressure sensor, and when the latent heat storage material H leaks, it can be detected by a wetting sensor.
  • the heat storage space HSS is adjacent to the indoor space IDS via a floor material (or a ceiling material) of the indoor space IDS, and the through hole TH is formed in the floor material.
  • the cold / hot heat stored in the latent heat storage material H in the heat storage space HSS can be provided to the indoor space IDS.
  • the process of preparing the bag packaging container B made of a pillow packaging material or a foldable film in the specific floor while having the opening AP is prepared. Also, it is made of a bag-like container B formed by pumping the latent heat storage material H by the first pump or transporting the tank storing the latent heat storage material H to a specific floor by lifting and heat-sealing the pillow packaging material, or a foldable film.
  • the latent heat storage material H is filled and sealed in the bag-like container B, the latent heat storage material H is packed locally in the bag-like container B, and the bag-like container B already packed with the latent heat storage material H is transported. Compared to the case, the transportation work will be reduced. In particular, when a container is packed in a factory and transported to the site, it is necessary to stack the bag-like container B from the factory. However, the above method can be transported in a tank or the like with the latent heat storage material H as it is. As a result, the work can be further reduced. And since the bag-shaped container B which enclosed the latent heat storage material H is installed in the thermal storage space HSS in a specific floor, the installation work of the latent heat storage material H can be reduced as a whole.
  • the present invention has been described based on the embodiments, but the present invention is not limited to the above-described embodiments, and may be modified without departing from the spirit of the present invention, and may be appropriately changed within a possible range. These techniques may be combined. Furthermore, known or well-known techniques may be combined within a possible range.
  • the heat storage space HSS is adjacent to the indoor space IDS via the plurality of floor plates FC, but is not limited to this, and the indoor space IDS via a ceiling material or a wall material (an example of a partition material).
  • a space defined by a double skin or the like of a facade part or a wall part may be used.
  • the building is internal heat insulation
  • it may be configured as follows when the building is external heat insulation.
  • the building is covered with a highly heat-insulated skin.
  • the building frame is located in the heat insulating space AS. Therefore, you may make it use a housing
  • the latent heat storage material H is preferably installed so as to be able to transfer heat to the floor slab FS.
  • the tray T may be a single bottom or may be made of a metal having good heat conductivity.
  • heat insulation from the outside air is made by providing a heat insulation layer in the internal space of the housing, and the housing is outside the heat insulation space AS. It is in. That is, in the case of a building with an inner heat insulation specification, it is desirable to insulate the heat storage space HSS from the housing in order to suppress heat radiation to the outside air through the housing.
  • the latent heat storage material H is installed on the floor slab FS, the latent heat storage material H is installed so as to be insulated from the floor slab FS by using the tray T having the heat insulation layer AL described above. Is required. In this case, the effect of heat storage and heat dissipation is limited to the indoor space immediately above.
  • bag-like containers B are placed on the tray T.
  • the present invention is not limited to this, and one to three or five or more may be placed.
  • a plurality of bag-like containers B are used, they are subdivided into a capacity of several hundred g to 20 kg, and problems due to separation of components can be avoided even if the molten state continues for a long time.
  • the tray T preferably has a stackable shape.
  • the tray T preferably has a stackable shape.
  • the side wall TW of the tray T shown in FIG. 4 slightly open on the upper side, that is, by making the tray T into a cross-sectional turtle-bracket shape, the intermediate wall T4 of the lower tray T and the upper tray T
  • a plurality of trays T can be stacked so that the bottom wall T3 comes into contact. As a result, the tray T can be easily carried.
  • IDS Indoor space
  • HSS heat storage space adjacent to the indoor space and having a latent heat storage material (H) having a melting point or a freezing point in a range of 5 degrees Celsius or more and 30 degrees Celsius or less
  • Control means natural ventilation device NV for controlling the introduction and shut-off of outside air to the heat storage space
  • the indoor space and the heat storage space are partitioned by a plurality of floor plates whose four corners are supported by a plurality of pedestals (PD) arranged at regular intervals in the vertical direction and the horizontal direction in plan view.
  • the plurality of trays are substantially the same size as the floor plate and have notches (T1) with pedestals at four corners, or have a size that is an integral multiple of 2 or more of the floor plate in the vertical direction and A plurality of notches (T1 ′) for avoiding the pedestal and holes (T2 ′) through which the pedestal penetrates are formed in the dimensions in the lateral direction.
  • a heat storage system according to any one of the above.
  • the heat storage space is located immediately above the floor slab (FS), and the latent heat storage material having a heat storage capacity of 1 kWh or more or a weight of 20 kg or more per square meter of floor area is installed. [2] To [5].
  • the plurality of trays include a heat insulating layer (AL) for insulating between the latent heat storage material and the floor slab (FS) housed in the container.
  • A heat insulating layer
  • FS floor slab
  • the heat storage space is adjacent to the indoor space via a partition material that is a ceiling material or a floor material of the indoor space,
  • the partition material is formed with a through hole.
  • An indoor space on a specific floor of a plurality of floors, and a heat storage space in which a latent heat storage material adjacent to the indoor space and having a melting point or a freezing point in a range of 5 degrees Celsius or more and 30 degrees Celsius or less is installed.
  • HSS and control means (natural ventilation device NV) for controlling introduction and shut-off of outside air to the heat storage space, and the thermal resistance between the heat storage space and the outside air is the heat storage space and the indoor space.
  • the pillow packaging material is prepared in the first step
  • the latent heat storage material transported in the second step is filled on the specific floor in a bag-like container formed by heat-sealing the pillow packaging material.
  • a third step of sealing A fourth step of installing a bag-like container enclosing a latent heat storage material in the third step in the heat storage space adjacent to the indoor space on the specific floor;
  • a method for installing a latent heat storage material comprising:
  • the present invention it is possible to provide both a heat storage system capable of both cooling and heating, and capable of reducing the use weight of the latent heat storage material when storing heat over the season, and a method for installing the latent heat storage material.
  • a heat storage system capable of both cooling and heating, and capable of reducing the use weight of the latent heat storage material when storing heat over the season
  • a method for installing the latent heat storage material There is an effect.
  • the present invention that exhibits this effect is useful for a heat storage system used in a building and a method for installing the latent heat storage material.

Abstract

蓄熱システム1は、室内空間(IDS)と、室内空間(IDS)に隣接すると共に摂氏5度以上摂氏30度以下の範囲に融点又は凝固点をもつ潜熱蓄熱材(H)が設置された蓄熱空間(HSS)と、蓄熱空間(HSS)への外気の導入及び遮断を制御する自然換気装置(NV)と、を備え、蓄熱空間(HSS)と外気との熱抵抗が、蓄熱空間(HSS)と室内空間(IDS)との熱抵抗よりも大きくされている。

Description

蓄熱システム及びその潜熱蓄熱材の設置方法
 本発明は、蓄熱システム及びその潜熱蓄熱材の設置方法に関する。
 従来、外気温の日較差に着眼し、夜間の冷熱や深夜電力による空調効果を昼前に利用するため、あるいは電力需要のピークを外して電力を使用するために、1日あたりに必要な冷熱や温熱を半日程度の期間床下などに蓄熱しておいて空調に利用するシステムが提案されている(特許文献1~7参照)。
 また、季節により冷暖房の需要がある地域では特許文献1~7の記載のシステムを拡張し、シーズンを超えて自然の冷熱や温熱を利用するシステムについても提案されている(特許文献8~11)。
日本国特開2000-213776号公報 日本国特開2003-185373号公報 日本国特開2012-220131号公報 日本国特開平5-157279号公報 日本国特許第3226093号公報 日本国特許第4992045号公報 日本国特許第5666820号公報 日本国特許第3525246号公報 日本国特許第5807799号公報 日本国特開2009-299920号公報 日本国特開2006-207985号公報
 ここで、特許文献8~11に記載のシステムは、蓄えた冷熱や温熱をシーズンを超えて利用することから、必要となる冷温熱量はおよそ100日分の需要に相当するものとなってしまう。このため、特許文献8~11に記載のシステムは、特許文献1~7のシステムよりも、必要となる冷温熱量が二桁大きく、潜熱蓄熱材の重量に換算すると例えば100kg/mオーダーとなってしまう。
 そこで、潜熱蓄熱材の重量を抑える観点から、貯蔵効率の大きい潜熱蓄熱材が用いられる。例えば、冷熱貯蔵の場合には、摂氏0度の融点及び凝固点を持つ氷を用いたり、摂氏58度の融点及び凝固点を持つ酢酸ナトリウム三水和物を用いたりすることが考えられる。しかし、これらの潜熱蓄熱材を用いた場合には、融点及び凝固点が低い又は高いことから、蓄えた冷温熱の漏洩が大きくなってしまう上に、冷暖房の双方を行う蓄熱システムにおいては、冷熱貯蔵用の潜熱蓄熱材と、温熱貯蔵用の潜熱蓄熱材との双方を備えることとなり、結局のところ重量の増加を招く可能性がある。
 本発明は、このような問題を解決するためになされたものであり、その目的は、冷暖房の双方が可能であって、シーズンを越えて蓄熱する際の潜熱蓄熱材の使用重量の軽減を図ることが可能な蓄熱システム及びその潜熱蓄熱材の設置方法を提供することにある。
 本発明に係る蓄熱システムは、室内空間と、室内空間に隣接する蓄熱空間と、蓄熱空間への外気の導入及び遮断を制御する制御手段とを備えている。蓄熱空間には、摂氏5度以上摂氏30度以下の範囲に融点又は凝固点をもつ潜熱蓄熱材が設置される。また、蓄熱空間と外気との熱抵抗が、蓄熱空間と室内空間との熱抵抗よりも大きくされている。
 また、本発明に係る蓄熱システムの潜熱蓄熱材の設置方法において、第1工程では、ピロー包装資材又は折り畳み可能なフィルム製の袋状容器を特定階において用意する。第2工程では、融点より摂氏10度以上高い温度とした潜熱蓄熱材をポンプによる圧送又は潜熱蓄熱材を収納したタンクを釣り上げにより特定階まで運搬する。第3工程では、運搬された潜熱蓄熱材を特定階においてピロー包装資材をヒートシールしてなる袋状容器や折り畳み可能なフィルム製の袋状容器内に充填のうえ封止する。第4工程は、潜熱蓄熱材が封入された袋状容器を特定階における蓄熱空間に設置する。
 本発明によれば、冷暖房の双方が可能であって、シーズンを超えて蓄熱する際の潜熱蓄熱材の使用重量の軽減を図ることができる。
図1は、本発明の実施形態に係る蓄熱システムを示す構成図である。 図2は、本実施形態に係る蓄熱システムの一部平面図である。 図3は、図2に示した複数のトレイの変形例を示す平面図である。 図4は、図2に示したトレイの断面図である。 図5(a)~(c)は、図2に示した袋状容器の一例を示す斜視図であり、図5(a)は第1の例を示し、図5(b)は第2の例を示し、図5(c)は第3の例を示している。 図6(a)および(b)は、図1に示したフロアプレートの貫通孔の一例を示す斜視図であり、図6(a)は第1の例を示し、図6(b)は第2の例を示している。
 以下、本発明を好適な実施形態に沿って説明する。なお、本発明は以下に示す実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲において適宜変更可能である。また、以下に示す実施形態においては、一部構成の図示や説明を省略している箇所があるが、省略された技術の詳細については、以下に説明する内容と矛盾点が発生しない範囲内において、適宜公知又は周知の技術が適用されていることはいうまでもない。
 図1は、本発明の実施形態に係る蓄熱システムを示す構成図である。図1に示すように、蓄熱システム1は、潜熱蓄熱材Hを利用して人が居住又は活動するスペースである室内空間IDSの冷暖房を行うものであって、例えば高層ビル等の建物の各階において用いられるものである。すなわち、階ごとに蓄熱システム1が適用されている。なお、蓄熱システム1は建物であれば高層ビルに限らず、低層マンションや一戸建てに用いられてもよい。
 このような蓄熱システム1は、概略的に断熱空間ASと、潜熱蓄熱材Hと、自然換気装置(制御手段)NVとを備えている。
 断熱空間ASは、外気と遮断された空間であって、室内空間IDSと蓄熱空間HSSとからなっている。室内空間IDSは上記の如く人が居住又は活動するスペースであって、蓄熱空間HSSは潜熱蓄熱材Hが設置される空間である。本実施形態において室内空間IDSは、蓄熱空間HSSと隣接する構造となっており、例えば図1に示すように、床材(仕切材の一例であって、後述のフロアプレートFC)を介して蓄熱空間HSSと隣接する構造となっている。
 なお、断熱空間ASは外気と遮断された空間であるが、自然換気装置NVによる換気、窓の開放による換気、及び室内空間IDSに別途取り付けられた換気口等による換気については、この限りではない。また、蓄熱空間HSSは、上記に限らず、天井材や壁材(仕切材の一例)を介して室内空間IDSに隣接する構造となっていてもよいし、ファサード部や壁部のダブルスキン等によって画成された空間であってもよい。以下では、室内空間IDSが床材を介して蓄熱空間HSSと隣接する構造を例に説明する。
 自然換気装置NVは、蓄熱空間HSSへの外気の導入及び遮断を制御するものである。この自然換気装置NVは、外気の導入側となる第1換気装置NV1と、蓄熱空間HSSの内気を排出する第2換気装置NV2とからなっている。なお、通気性の観点から第1換気装置NV1と第2換気装置NV2とは、蓄熱空間HSSを画定する壁のうち、対向する壁にそれぞれ設けられることが好ましい。
 このような自然換気装置NVは、窓サッシ部やペリカウンターに組み込まれたり外壁に取り付けられたりするものであって、電気制御によらず外気風速に応じて自然に風量が制御されたり強風時には閉鎖したりするものであり、電気制御により外気等の取り込みや内気の排出を遮断できるものである。このような自然換気装置NVを用いることで、自然に外気を取り込んで、潜熱蓄熱材Hに対して冷温熱の貯蔵を行わせ、外気温度が蓄熱に不適切な場合には電気制御によって外気を遮断するようにして、省電力で適切な蓄熱を行うことができる。なお、省電力性には劣るが、自然換気装置NVに代えて電気制御されるファンと開閉口などから構成される換気装置を備えるようにしてもよい。
 ここで、本実施形態に係る潜熱蓄熱材Hは、摂氏5度以上摂氏30度以下の範囲に融点又は凝固点をもつものであり、好ましくは摂氏15度以上摂氏26度以下の範囲に融点又は凝固点をもち、より好ましくは摂氏18度以上摂氏23度以下の範囲に融点または凝固点をもつ常温潜熱蓄熱材である。なお、好ましい範囲は蓄熱システム1が使用される国や地域などによって多少変動する。具体的に常温の温度帯の潜熱蓄熱材Hとしては、パラフィン系、無機塩水和物系、及び糖類等が挙げられ、建築に大量に使用することから不燃性であることが望ましく、そのためには無機塩水和物(例えば塩化カルシウム水和物や、硫酸ナトリウム水和物)がよい。
 さらに、本実施形態においては、蓄熱空間HSSと外気との熱抵抗が、蓄熱空間HSSと室内空間IDSとの熱抵抗よりも大きくされている。具体的に蓄熱空間HSSと外気との熱貫流率は外壁平均で好ましくは1W/mK以下であり、より好ましくは0.5W/mK以下(例えば0.46W/mK)である。これに対して、蓄熱空間HSSと室内空間IDSとは、15W/mK以下の熱貫流率であればよく、具体的には2~10W/mKの熱貫流率である。このような熱貫流率であると、蓄熱空間HSSの冷温熱は、外部よりも室内空間IDSに対して選択的に漏洩することとなる。しかも、蓄熱空間HSSには常温の温度帯の潜熱蓄熱材Hが設置されていることから、快適温度が漏洩してくることとなり、漏洩を利用した冷暖房を行うことができる。
 また、本実施形態に係る蓄熱システム1は、蓄熱空間HSSに、複数のトレイTと、袋状容器(容器)Bと、ヒートシンクHSとを備えている。
 複数のトレイTは、潜熱蓄熱材Hが収納された袋状容器Bを載置するためのものであって、本実施形態において床下の床スラブFS上に載置されている。このようなトレイTによって、袋状容器Bが損傷したときに漏れ出した潜熱蓄熱材Hを受け止めると共に、周囲の空気が露点以下に冷やされて結露した場合の結露水についても受け止めることとなる。特に潜熱蓄熱材Hが床スラブFSの材料であるコンクリート等には有害である場合には、これを食い止める役割を果たす。なお、念のため床スラブFSは耐塩コンクリートで形成されているか、塗装されていることが好ましい。
 図2は、本実施形態に係る蓄熱システム1の一部平面図である。本実施形態に係る蓄熱システム1は、図1及び図2に示す複数のフロアプレートFCによって蓄熱空間HSSと室内空間IDSとが仕切られた構造となっている。複数のフロアプレートFCは、複数のペデスタルPDによって4隅が支えられるものである。複数のペデスタルPDは、フロアを平面視した場合に縦方向及び横方向に一定間隔で配置された柱部材であって、床スラブFS上に配置されている。このようなフロア構造は、例えばフリーアクセスフロア(又はOAフロアやフォルスフロアなど)と称呼される。なお、本実施形態において潜熱蓄熱材Hは相当の重量となることから、床スラブFS上に配置することが好ましい。すなわち、蓄熱空間HSSは床スラブFSの直上に位置することが好ましい。
 複数のトレイTは、フリーアクセスフロア内(すなわち蓄熱空間HSS内)に収納されるように、床スラブFS上に載置される。ここで、複数のトレイTは、平面視した場合において複数のフロアプレートFCと略同寸法となっている。さらに、複数のトレイTは、床スラブFS上に載置するために、複数のペデスタルPDをよける切欠部T1が4隅に形成されている。これにより、複数のトレイTを隙間なく並べ、面積効率良く設置し床スラブFSの全面等をカバーすると共に、トレイTの切欠部T1にペデスタルPDを合わせるように載置でき、ペデスタルPDの位置決めを容易に行うことができる。
 図3は、図2に示した複数のトレイTの変形例を示す平面図である。図3に示すように、変形例に係るトレイT’は、フロアプレートFCの2倍(2以上の整数倍の一例)の大きさを縦方向及び横方向に有する寸法となっている。また、変形例に係るトレイT’は、4隅及び各辺の中間部など、ペデスタルPDをよけるように所定の箇所に切欠部T1’が形成されている。さらに、変形例に係るトレイT’は、中央部など所定の箇所にペデスタルPDが貫通する孔部T2’が形成されている。このような構成である場合も図2に示すトレイTと同様に、複数のトレイT’を隙間なく並べ、面積効率良く設置し床スラブFSの全面等をカバーすると共に、トレイT’の切欠部T1’及び孔部T2’にペデスタルPDを合わせるように載置でき、ペデスタルPDの位置決めを容易に行うことができる。
 図4は、図2に示したトレイTの断面図である。図4に示すように、トレイTは、床スラブFSの設置面となる底壁T3と、潜熱蓄熱材Hを収納した袋状容器Bの載置面となる中間壁T4とが上下に離間しており、これらの間に空気による断熱層ALが形成されている。すなわち、トレイTは、床スラブFSと袋状容器Bに収納された潜熱蓄熱材Hとを断熱する断熱層ALを有することとなる。これにより、内断熱の建物など、床スラブFSと断熱する必要がある場合に断熱性を確保することができ、貯蔵した冷温熱の床スラブFSを介した漏洩量を抑えることとなる。
 さらに、図2に示すように、複数のトレイTは、袋状容器Bの破損を検出するためのセンサSを備えている。センサSは、例えば重量センサ、圧力センサ及び濡れセンサのいずれか1つ以上によって構成されている。センサSは、検出信号を他の機器等に送信するようになっており、袋状容器Bの破損を検出した場合には、他の機器等から警報が鳴ったりエラーメッセージが管理者に通知されたりすることとなる。
 ここで、潜熱蓄熱材Hが塩化カルシウム水和物である場合、塩化カルシウム水和物には潮解性があり、袋状容器Bが損傷した場合には周囲の空気中の水分を吸収しながらスラリー状にトレイTに溜る。このため、トレイTに液だまりを設けておき、そこに漏れセンサを設置していれば、袋状容器Bの損傷(破損)を検知することができる。
 また、潜熱蓄熱材Hが硫酸ナトリウム水和物である場合、硫酸ナトリウム水和物は通常の湿度環境において風解性があり、袋状容器Bが損傷した場合には周囲に水分を蒸散して重量が減少する。このため、重量の減少を圧力センサや重量センサによって検知することで、袋状容器Bの損傷(破損)を検知することができる。なお、図2においてはトレイTの中間壁T4(図4参照)上にセンサSが設けられているが、これに限られるものではない。例えばトレイTの下面(底壁T3の下面)に、潜熱蓄熱材HとトレイTの自重を支えて床スラブFSに荷重を伝える突起部を設けておき、そこに圧力センサや重量センサを設けるようにしてもよい。
 また、センサSは、重量センサ、圧力センサ及び濡れセンサに限られるものではなく、袋状容器Bの破損を検出可能であれば、受発光素子からなる光センサなど、他のセンサが用いられてもよい。
 図5(a)~(c)は、図2に示した袋状容器Bの一例を示す斜視図であり、図5(a)は第1の例を示し、図5(b)は第2の例を示し、図5(c)は第3の例を示している。図5(a)に示す袋状容器B1は、重ね合わされた2枚のフィルムシートの上下辺及び左右辺に相当する箇所をヒートシールにより圧着し、所定箇所に開閉可能な開口部APを形成したものである。開口部APは、例えばペットボトルのキャップ部分と同様の構造によって構成可能である。袋状容器Bは、開口部APの開放時に内部と外部が連通状態となり、閉塞持には袋状容器Bの内部と外部とが遮断された状態となる。なお、袋状容器B1は、内部に潜熱蓄熱材Hが充填されるのと同時に、上下辺及び左右辺がヒートシールされるものであって開口部APを備えないものであってもよい。
 図5(b)及び図5(c)に示す袋状容器B2,B3は、折り畳み可能なフィルム製の容器となっており、展開時において略立方体形状又は直方体形状となる。この袋状容器B2,B3は、展開時において上面となる部位に開閉可能な開口部APが形成されている。なお、折り畳んだときの形態(非展開時の形態)は、図5(b)及び図5(c)に示すものに限らず、様々な形態とすることが可能である。また、開口部APは、図5(a)に示すものと同様である。
 上記のような袋状容器Bは、フィルム製で折り畳み可能であることから持ち運びに優れている。また、フィルム製の袋状容器Bであると、その外壁が薄膜であることから、蓄熱空間HSSにおける空気との熱交換を円滑に行い易い構造といえる。なお、袋状容器Bは、蓄熱空間HSSにおける空気との熱交換を円滑に行い易くするために(特に後述するように袋状容器Bの上部にヒートシンクHSが載置されることから)封入時に空気が入らないようにすることが好ましい。
 また、潜熱蓄熱材Hの凝固時における膨張に対応できるように、袋状容器Bの最大体積よりもやや小さい体積分の潜熱蓄熱材Hを封入することが好ましい。さらに、シーズンを越えた冷温熱の利用を行うためには、床面積1平方メートルあたり1kWh以上の蓄熱容量又は20kg以上の重量をもつ潜熱蓄熱材Hが封入されることが好ましい。
 再度図1を参照する。ヒートシンクHSは、伝熱特性の良いアルミニウム、鉄、銅などの金属材料により構成される金属部材であって、表面積を大きくするために互いに平行に配置される多数の放熱フィンを有している。本実施形態においてヒートシンクHSは、袋状容器Bの上に載置されている。特に、本実施形態では袋状容器Bがフィルム製の薄膜構造であるため、袋状容器Bの上にヒートシンクHSを載せるだけで袋状容器BがヒートシンクHSを受け止め可能な形状に柔軟に変化し、薄膜の袋状容器Bを介してヒートシンクHSにより蓄熱空間HSSの空気と熱伝達させることができる。なお、蓄熱空間HSS内の空気は、第1換気装置NV1から第2換気装置NV2に向けて流れることから、ヒートシンクHSの放熱フィンと空気の流れ方向とが平行となるように、ヒートシンクHSを袋状容器Bの上に載置することが好ましい。すなわち図1に示す例の場合、図示の関係上、ヒートシンクHSの放熱フィンと空気の流れ方向とが直交しているが、直交する関係でなくヒートシンクHSの放熱フィンと空気の流れ方向とが平行となるようにヒートシンクHSを載置すれば、より一層熱伝達させることができる。
 さらに、本実施形態において蓄熱システム1は、ファンFを有すると共に、フロアプレートFCに貫通孔THが形成されていることが好ましい。ファンFは、室内空間IDSの空気を蓄熱空間HSSに送り込むものである。ファンFが室内空間IDSの空気を蓄熱空間HSSに送り込むことで、フロアプレートFCの貫通孔THを介して蓄熱空間HSSから冷却又は加熱された空気を室内空間IDSに取り込むことができる。
 図6(a)、(b)は、図1に示したフロアプレートFCの貫通孔THの一例を示す斜視図であり、図6(a)は第1の例を示し、図6(b)は第2の例を示している。
 図6(a)に示すように、例えばフロアプレートFCには、長尺な貫通孔THがフロアプレートFCの対角方向と平行に延びて複数形成されている。このようなフロアプレートFC上には通気性に優れる通気性カーペットCが置かれることにより、貫通孔THを介して冷却又は加熱された空気を室内空間IDSに取り込むことができる。
 また、図6(b)に示すように、フロアプレートFCに対して大き目の孔を形成し、この孔の周囲を枠部材FMで覆い、この枠部材FM上に複数の貫通孔THを有する蓋部材LMを設ける。このような構成であっても、貫通孔THを介して冷却又は加熱された空気を室内空間IDSに取り込むことができる。
 なお、貫通孔THの構造は上記に限られるものではなく、種々の構成をとることができる。また、本実施形態においてはフリーアクセスフロアを蓄熱空間HSSとして利用しているが、これに限らず、例えば蓄熱空間HSSを天井側に設ける場合には、天井材に貫通孔THが形成されることとなる。
 次に、本実施形態に係る蓄熱システム1の潜熱蓄熱材Hの設置方法について説明する。本実施形態に係る設置方法では、工場等にて予め袋状容器Bに潜熱蓄熱材Hを封入し現地まで運搬する方式ではなく、現地にて潜熱蓄熱材Hを封入するようになっている。
 まず、潜熱蓄熱材Hは工場等から、蒸気で加温できるヒーティングコイルが付いたISOタンクコンテナ(タンクの一例)や保温・加温機能のついた液体輸送コンテナ(タンクの一例)に入れられた状態で、現地まで運搬される。
 また、ピロー包装資材や折り畳んだ状態の袋状容器Bを現地まで運搬し、設置階(複数階のうちの特定階)まで運ぶ。これにより、ピロー包装資材や袋状容器Bが設置階に用意される(第1工程)。ここで、ピロー包装資材は、長尺なフィルムロールであってもよいし、予め3方がヒートシールされたフィルムであってもよいし、長尺筒状のフィルムであってもよい。これらのピロー包装資材や袋状容器Bは運搬性に優れることから、設置階までは比較的容易に運搬することができる。
 次いで、ISOタンクコンテナや液体輸送コンテナに収納される潜熱蓄熱材Hを第1ポンプ(ポンプ)によって設置階まで運搬する。このとき、潜熱蓄熱材Hは融点よりも摂氏10度以上高い状態とされ、ポンプ圧送可能な程度の流動性を有した状態となっている(第2工程)。
 または、上記に代えて、潜熱蓄熱材Hを収納した上記のISOタンクコンテナや液体輸送コンテナを大型クレーン等によって釣り上げて、コンテナごと潜熱蓄熱材Hを設置階に運搬する(第2工程)。
 なお、この時点において設置階には、第2ポンプとなる液体充填機が運搬されている。第1工程においてピロー包装資材を運搬していた場合、ピロー包装資材をヒートシールしてなる袋状容器B内に、液体充填機によって潜熱蓄熱材Hが充填され、ヒートシールや開口部APを閉じることによって封止される(第3工程)。
 また、第1工程において折り畳んだ状態の袋状容器Bを運搬していた場合、液体充填機によって、袋状容器Bの開口部APを通じて潜熱蓄熱材Hが袋状容器Bに充填される。充填後、袋状容器Bの開口部APは封止される(第3工程)。
 なお、充填に際しては、第2工程における第1ポンプの圧送によってホッパーまで潜熱蓄熱材Hを運搬し、ホッパーからの重力落下によって袋状容器B内に潜熱蓄熱材Hが充填されるようになっていてもよい。
 その後、袋状容器BはトレイTに乗せられて蓄熱空間HSSに設置される(第4工程)。
 上記のように、現地で潜熱蓄熱材Hを袋状容器Bに詰める場合には、潜熱蓄熱材Hを詰め込んだ袋状容器Bを現地まで運搬する場合と比較して運搬作業の軽減を図ることとなる。特に、工場で袋状容器Bに詰めて現地まで運搬する場合には、工場から袋状容器Bの積み上げ作業等が必要となるが、上記方法であると潜熱蓄熱材Hのままタンクに入れて運搬が可能となり、一層作業の軽減を図ることとなる。
 次に、本実施形態に係る蓄熱システム1の作用を、図1を参照して説明する。まず、蓄熱空間HSSには摂氏5度以上摂氏30度以下の範囲に融点又は凝固点をもつ潜熱蓄熱材Hが設置されている。このため、潜熱蓄熱材Hは室内空間IDSの居住等する者の快適温度帯のものとなる。
 さらに、蓄熱空間HSSと外気との熱抵抗が、蓄熱空間HSSと室内空間IDSとの熱抵抗よりも大きくされていることから、潜熱蓄熱材Hからの冷温熱は室内空間IDSへ選択的に漏洩することとなり、漏洩を利用して室内空間IDSを快適温度とする冷房及び暖房が可能となる。すなわち、本実施形態では、従来問題視していた漏洩を逆に利用して冷暖房を行うこととなる。
 加えて、潜熱蓄熱材Hが快適温度帯であることから、例えば冷熱を貯蔵したい夏直前においても偶然気温が低く潜熱蓄熱材Hの凝固点以下となる日が存在すれば冷熱を蓄えることができ、同様に温熱を貯蔵したい冬直前においても偶然気温が高く潜熱蓄熱材Hの融点以上となる日が存在すれば温熱を蓄えることができ、逐次冷温熱の貯蔵の機会が与えられることから、潜熱蓄熱材Hの軽量化を図ることとなる。
 すなわち、従来のように、融点及び凝固点を摂氏0度とする水を蓄熱材として用いた場合には、快適温度帯ではないことから、快適温度帯を下回る温度(例えば摂氏0度以下)でしか、冷熱を貯蔵できなくなる。このため、夏直前に冷熱を蓄える機会がなく、冬に貯蔵した冷熱を夏まで漏洩が少ないまま維持する必要があるが、本実施形態では逐次冷熱を貯蔵する機会が与えられて潜熱蓄熱材Hの軽量化を図ることとなる。温熱貯蔵時も同様である。
 このようにして、本実施形態に係る蓄熱システム1によれば、蓄熱空間HSSには摂氏5度以上摂氏30度以下の範囲に融点又は凝固点をもつ潜熱蓄熱材Hが設置されるため、潜熱蓄熱材Hは快適温度帯のものとなる。さらに、蓄熱空間HSSと外気との熱抵抗が、蓄熱空間HSSと室内空間IDSとの熱抵抗よりも大きくされていることから、潜熱蓄熱材Hからの冷温熱は室内空間IDSへ選択的に漏洩することとなり、漏洩を利用して室内空間IDSを快適温度とする冷房及び暖房が可能となる。加えて、快適温度帯の潜熱蓄熱材Hを用いるので、例えば冷熱を貯蔵したい夏直前においても偶然気温が低く潜熱蓄熱材Hの凝固点以下となる日が存在すれば冷熱を蓄えることができ、同様に温熱を貯蔵したい冬直前においても偶然気温が高く潜熱蓄熱材Hの融点以上となる日が存在すれば温熱を蓄えることができ、逐次冷温熱の貯蔵の機会が与えられることから、潜熱蓄熱材Hの軽量化を図ることができる。したがって、冷暖房の双方が可能であって、シーズンを超えて蓄熱する際の潜熱蓄熱材Hの使用重量の軽減を図ることができる。
 また、潜熱蓄熱材Hは袋状容器B内に収納されて複数のトレイT上に載置されるため、袋状容器Bが損傷したときに漏れ出した潜熱蓄熱材Hを受け止めることができると共に、周囲の空気が露点以下に冷やされて結露した場合の結露水についても受け止めることができる。
 また、フィルム製の袋状容器Bを用いるため、薄膜の袋状容器Bを介して蓄熱空間HSSの空気と熱伝達させることができ、凝固点や融点に対して小さな温度差の冷温熱を更に効率よく取り込み貯蔵したり、放熱したりすることができる。
 また、フィルム製の袋状容器B上に載置されるヒートシンクHSをさらに備えるため、フィルムという薄膜によりヒートシンクHSを載せるだけで袋状容器Bがヒートシンクを受け止め可能な形状となり、ヒートシンクHSにより蓄熱空間HSSの空気と熱伝達させることができ、凝固点や融点に対して小さな温度差の冷温熱を更により一層効率よく取り込み貯蔵したり、放熱したりすることができる。
 また、複数のトレイTは、フロアプレートFCと略同寸法であって4隅にペデスタルPDをよける切欠部T1が形成されているため、複数のトレイTを隙間なく並べ、面積効率良く設置し床スラブFSの全面等をカバーすると共に、トレイTの切欠部T1にペデスタルPDを合わせるように載置でき、ペデスタルPDの位置決めを容易に行うことができる。また、複数のトレイT’がフロアプレートの2以上の整数倍の大きさを縦方向及び横方向に有する寸法である場合も同様に、複数のトレイT’を隙間なく並べ、面積効率良く設置し床スラブFSの全面等をカバーすると共に、トレイT’の切欠部T1’及び孔部T2’にペデスタルPDを合わせるように載置でき、ペデスタルPDの位置決めを容易に行うことができる。
 また、床面積1平方メートルあたり1kWh以上の蓄熱容量又は20kg以上の重量を持つ潜熱蓄熱材Hが設置されるため、潜熱蓄熱材Hについてシーズンを越えた冷温熱の利用に適した量とすることができる。
 また、複数のトレイTは、袋状容器B内に収納された潜熱蓄熱材Hと床スラブFSとの間に、両者を断熱するための断熱層ALを有するため、内断熱の建物など、床スラブFSと断熱する必要がある場合に断熱性を確保することができ、貯蔵した冷温熱の床スラブFSを介した漏洩量を抑えることができる。
 また、複数のトレイTは、袋状容器Bの破損を検出するための重量センサ、圧力センサ又は濡れセンサ等のセンサSを有するため、袋状容器Bが破損して袋状容器B内から潜熱蓄熱材Hが風解した場合にはこれを重量センサや圧力センサによって検知でき、また潜熱蓄熱材Hが漏れ出した場合にはこれを濡れセンサによって検知することができる。
 また、蓄熱空間HSSは、室内空間IDSの床材(天井材でも可)を介して室内空間IDSに隣接しており、床材には、貫通孔THが形成されているため、貫通孔THを介して蓄熱空間HSSの潜熱蓄熱材Hが貯蔵する冷温熱を室内空間IDSに提供することができる。
 また、本実施形態に係る蓄熱システム1における潜熱蓄熱材Hの設置方法によれば、開口部APを有すると共にピロー包装資材又は折り畳み可能なフィルム製の袋状容器Bを特定階において用意する工程を有するため、持ち運びに便利なピロー包装資材や袋状容器Bを用意することとなる。また、潜熱蓄熱材Hを第1ポンプによる圧送又は潜熱蓄熱材Hを収納したタンクを釣り上げにより特定階まで運搬し、ピロー包装資材をヒートシールしてなる袋状容器Bや折り畳み可能なフィルム製の袋状容器B内に潜熱蓄熱材Hを充填のうえ封止するため、現地で潜熱蓄熱材Hを袋状容器Bに詰めることとなり、既に潜熱蓄熱材Hを詰め込んだ袋状容器Bを運搬する場合と比較して運搬作業の軽減を図ることとなる。特に、工場で容器に詰めて現地まで運搬する場合には、工場から袋状容器B等の積み上げ作業等が必要となるが、上記方法では潜熱蓄熱材Hのままタンク等に入れて運搬が可能となり、作業の一層の軽減を図ることとなる。そして、潜熱蓄熱材Hを封入した袋状容器Bを特定階における蓄熱空間HSSに設置するため、全体として潜熱蓄熱材Hの設置作業の軽減を図ることができる。
 以上、実施形態に基づき本発明を説明したが、本発明は上記実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で、変更を加えてもよいし、可能な範囲で適宜他の技術を組み合わせてもよい。さらに、可能な範囲で公知又は周知の技術を組み合わせてもよい。
 例えば、上記実施形態において蓄熱空間HSSは複数のフロアプレートFCを介して室内空間IDSに隣接しているが、これに限らず、天井材や壁材(仕切材の一例)を介して室内空間IDSに隣接する構造となっていてもよいし、ファサード部や壁部のダブルスキン等によって画成された空間であってもよい。
 また、上記実施形態では建物が内断熱である場合を想定して説明したが、建物が外断熱である場合以下のように構成されてもよい。まず建物が外断熱である場合には、断熱性が高い外皮により建物を覆っていることとなる。このため、建物の躯体は断熱空間ASの中に位置することとなる。よって、躯体を蓄熱材料として用いるようにしてもよい。この場合において、潜熱蓄熱材Hは床スラブFSと熱伝達可能に設置するとよい。特にトレイTを用いる場合には、例えばトレイTを一重底としたり、伝熱性の良い金属製にて構成したりするなどすればよい。
 さらに、建物が外断熱である場合において、蓄熱・放熱の効果を直上の室内空間IDSに対して限定的に作用させるには、床スラブFSの下面に例えばアルミ蒸着シートと発泡シートを貼り合わせたり発泡剤を吹き付けたりした断熱層を設けるか、床スラブFSの直下の室内空間IDSの天井材に断熱性の高いものを使用するとよい。また、床スラブFS直下の室内空間IDSに限定的に作用させたい場合には、潜熱蓄熱材Hの上に例えばアルミ蒸着シートと発泡シートを貼り合わせた断熱層を設けておくか、断熱性の高いフロアプレートFCを用いるとよい。また、直上、直下両方の室内空間IDSに作用させるようにしてもよい。
 なお、念のため記載するが、建物が日本国内で一般的である内断熱である場合、外気に対する断熱は断熱層を躯体の内部空間に設けることでなされており、躯体は断熱空間ASの外にある。すなわち、内断熱仕様の建物の場合、躯体を介した外気への放熱を抑制するために、蓄熱空間HSSを躯体から断熱することが望ましい。その場合、潜熱蓄熱材Hを床スラブFS上に設置するときは、上記した断熱層ALを有したトレイTを用いるなどして、潜熱蓄熱材Hを床スラブFSから断熱するように設置することが必要となる。なお、この場合、蓄熱・放熱の効果は直上の室内空間に対して限定的に作用させることとなる。
 また、本実施形態ではトレイT上に4つの袋状容器Bが載置されるが、これに限らず、1~3個又は5個以上載置されるようになっていてもよい。特に、複数個の袋状容器Bを用いる場合には、数百gから20kg程度の容量に小分けされることとなり、長期間溶融状態が続いても成分の分離による問題を回避することができると共に、充填後に運ぶ工程がある場合には作業性の観点からも好適である。
 加えて、トレイTは、スタッキング可能な形状であることが好ましい。例えば図4に示すトレイTの側壁TWを上方側がやや開くようにすることで、すなわちトレイTを断面亀甲括弧形状とすることで、下方側のトレイTの中間壁T4と上方側のトレイTの底壁T3とが接触するようにして、複数のトレイTをスタッキングさせることができる。これにより、トレイTについても持ち運びし易いものとすることができる。
 ここで、上述した本発明の実施形態に係る蓄熱システム及びその潜熱蓄熱材の設置方法の特徴をそれぞれ以下[1]~[10]に簡潔に纏めて列記する。
 [1] 室内空間(IDS)と、
 前記室内空間に隣接すると共に摂氏5度以上摂氏30度以下の範囲に融点又は凝固点をもつ潜熱蓄熱材(H)が設置された蓄熱空間(HSS)と、
 前記蓄熱空間への外気の導入及び遮断を制御する制御手段(自然換気装置NV)と、を備え、
 前記蓄熱空間と外気との熱抵抗が、前記蓄熱空間と前記室内空間との熱抵抗よりも大きくされている
 蓄熱システム(1)。
 [2] 前記蓄熱空間に設置される複数のトレイ(T)を有し、
 前記複数のトレイには、前記潜熱蓄熱材を収納した容器が載置される
 上記[1]に記載の蓄熱システム。
 [3] 前記容器はフィルム製の袋状容器(B)である
 上記[2]に記載の蓄熱システム。
 [4] 前記袋状容器に対して載置されるヒートシンク(HS)をさらに備える
 上記[3]に記載の蓄熱システム。
 [5] 平面視して縦方向及び横方向に一定間隔で配置された複数のペデスタル(PD)によって4隅が支えられる複数のフロアプレートによって、前記室内空間と前記蓄熱空間とは仕切られており、
 前記複数のトレイは、前記フロアプレートと略同寸法であって4隅にペデスタルをよける切欠部(T1)が形成され、又は、前記フロアプレートの2以上の整数倍の大きさを縦方向及び横方向に有する寸法であって、ペデスタルをよける複数の切欠部(T1’)と、ペデスタルが貫通するための孔部(T2’)とが形成されている
 上記[2]から[4]のいずれかに記載の蓄熱システム。
 [6] 前記蓄熱空間は、床スラブ(FS)の直上に位置しており、床面積1平方メートルあたり1kWh以上の蓄熱容量又は20kg以上の重量を持つ前記潜熱蓄熱材が設置される
 上記[2]から[5]のいずれかに記載の蓄熱システム。
 [7] 前記複数のトレイは、前記容器内に収納された前記潜熱蓄熱材と床スラブ(FS)との間に、両者を断熱するための断熱層(AL)を有する
 上記[6]に記載の蓄熱システム。
 [8] 前記複数のトレイは、前記容器の破損を検出するためのセンサ(S)を有する
 上記[2]から[7]のいずれかに記載の蓄熱システム。
 [9] 前記蓄熱空間は、前記室内空間の天井材又は床材である仕切材を介して前記室内空間に隣接しており、
 前記仕切材には、貫通孔が形成されている
 上記[1]から[8]のいずれかに記載の蓄熱システム。
 [10] 複数階のうちの特定階における室内空間(IDS)と、前記室内空間に隣接すると共に摂氏5度以上摂氏30度以下の範囲に融点又は凝固点をもつ潜熱蓄熱材が設置された蓄熱空間(HSS)と、前記蓄熱空間への外気の導入及び遮断を制御する制御手段(自然換気装置NV)と、を備え、前記蓄熱空間と外気との熱抵抗が、前記蓄熱空間と前記室内空間との熱抵抗よりも大きくされている蓄熱システム(1)における潜熱蓄熱材(H)の設置方法であって、
 ピロー包装資材又は折り畳み可能なフィルム製の袋状容器(B)を前記特定階において用意する第1工程と、
 前記融点より摂氏10度以上高い温度とした前記潜熱蓄熱材をポンプによる圧送又は前記潜熱蓄熱材を収納したタンクを釣り上げにより前記特定階まで運搬する第2工程と、
 前記第1工程においてピロー包装資材が用意された場合、当該ピロー包装資材をヒートシールしてなる袋状容器内に、前記第2工程にて運搬された潜熱蓄熱材を前記特定階で充填のうえ封止し、前記第1工程において折り畳み可能なフィルム製の袋状容器が用意された場合、当該袋状容器内に、前記第2工程にて運搬された潜熱蓄熱材を前記特定階で充填のうえ封止する第3工程と、
 前記第3工程において潜熱蓄熱材が封入された袋状容器を前記特定階における前記室内空間に隣接する前記蓄熱空間に設置する第4工程と、
 を備える潜熱蓄熱材の設置方法。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2017年4月7日出願の日本特許出願(特願2017-076791)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明によれば、冷暖房の双方が可能であって、シーズンを超えて蓄熱する際の潜熱蓄熱材の使用重量の軽減を図ることが可能な蓄熱システム及びその潜熱蓄熱材の設置方法を提供できるという効果を奏する。この効果を奏する本発明は、建物に用いられる蓄熱システム及びその潜熱蓄熱材の設置方法に関して有用である。
1   :蓄熱システム
AS  :断熱空間
IDS :室内空間
HSS :蓄熱空間
H   :潜熱蓄熱材
B,B1~B3:袋状容器(容器)
AP  :開口部
NV  :自然換気装置(制御手段)
T,T’:トレイ
T1,T1’  :切欠部
T2' :孔部
T3  :底壁
T4  :中間壁
AL  :断熱層
TW  :側壁
HS  :ヒートシンク
F   :ファン
TH  :貫通孔
FC  :フロアプレート
FS  :床スラブ
PD  :ペデスタル
S   :センサ

Claims (10)

  1.  室内空間と、
     前記室内空間に隣接すると共に摂氏5度以上摂氏30度以下の範囲に融点又は凝固点をもつ潜熱蓄熱材が設置された蓄熱空間と、
     前記蓄熱空間への外気の導入及び遮断を制御する制御手段と、を備え、
     前記蓄熱空間と外気との熱抵抗が、前記蓄熱空間と前記室内空間との熱抵抗よりも大きくされている
     蓄熱システム。
  2.  前記蓄熱空間に設置される複数のトレイを有し、
     前記複数のトレイには、前記潜熱蓄熱材を収納した容器が載置される
     請求項1に記載の蓄熱システム。
  3.  前記容器はフィルム製の袋状容器である
     請求項2に記載の蓄熱システム。
  4.  前記袋状容器に対して載置されるヒートシンクをさらに備える
     請求項3に記載の蓄熱システム。
  5.  平面視して縦方向及び横方向に一定間隔で配置された複数のペデスタルによって4隅が支えられる複数のフロアプレートによって、前記室内空間と前記蓄熱空間とは仕切られており、
     前記複数のトレイは、前記フロアプレートと略同寸法であって4隅にペデスタルをよける切欠部が形成され、又は、前記フロアプレートの2以上の整数倍の大きさを縦方向及び横方向に有する寸法であって、ペデスタルをよける複数の切欠部と、ペデスタルが貫通するための孔部とが形成されている
     請求項2から請求項4のいずれか1項に記載の蓄熱システム。
  6.  前記蓄熱空間は、床スラブの直上に位置しており、床面積1平方メートルあたり1kWh以上の蓄熱容量又は20kg以上の重量を持つ前記潜熱蓄熱材が設置される
     請求項2から請求項5のいずれか1項に記載の蓄熱システム。
  7.  前記複数のトレイは、前記容器内に収納された前記潜熱蓄熱材と床スラブとの間に、両者を断熱するための断熱層を有する
     請求項6に記載の蓄熱システム。
  8.  前記複数のトレイは、前記容器の破損を検出するためのセンサを有する
     請求項2から請求項7のいずれか1項に記載の蓄熱システム。
  9.  前記蓄熱空間は、前記室内空間の天井材又は床材である仕切材を介して前記室内空間に隣接しており、
     前記仕切材には、貫通孔が形成されている
     請求項1から請求項8のいずれか1項に記載の蓄熱システム。
  10.  複数階のうちの特定階における室内空間と、前記室内空間に隣接すると共に摂氏5度以上摂氏30度以下の範囲に融点又は凝固点をもつ潜熱蓄熱材が設置された蓄熱空間と、前記蓄熱空間への外気の導入及び遮断を制御する制御手段と、を備え、前記蓄熱空間と外気との熱抵抗が、前記蓄熱空間と前記室内空間との熱抵抗よりも大きくされている蓄熱システムにおける潜熱蓄熱材の設置方法であって、
     ピロー包装資材又は折り畳み可能なフィルム製の袋状容器を前記特定階において用意する第1工程と、
     前記融点より摂氏10度以上高い温度とした前記潜熱蓄熱材をポンプによる圧送又は前記潜熱蓄熱材を収納したタンクを釣り上げにより前記特定階まで運搬する第2工程と、
     前記第1工程においてピロー包装資材が用意された場合、当該ピロー包装資材をヒートシールしてなる袋状容器内に、前記第2工程にて運搬された潜熱蓄熱材を前記特定階で充填のうえ封止し、前記第1工程において折り畳み可能なフィルム製の袋状容器が用意された場合、当該袋状容器内に、前記第2工程にて運搬された潜熱蓄熱材を前記特定階で充填のうえ封止する第3工程と、
     前記第3工程において潜熱蓄熱材が封入された袋状容器を前記特定階における前記室内空間に隣接する前記蓄熱空間に設置する第4工程と、
     を備える潜熱蓄熱材の設置方法。
PCT/JP2018/012612 2017-04-07 2018-03-27 蓄熱システム及びその潜熱蓄熱材の設置方法 WO2018186246A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2018249092A AU2018249092B2 (en) 2017-04-07 2018-03-27 Heat storage system and installation method of latent heat storage material therefor
CN201880023546.5A CN110476020A (zh) 2017-04-07 2018-03-27 蓄热系统及其潜热蓄热材料的设置方法
EP18781227.6A EP3608598B1 (en) 2017-04-07 2018-03-27 Heat storage system and installation method for latent heat storage material therefor
US16/590,355 US20200033069A1 (en) 2017-04-07 2019-10-01 Heat storage system and installation method of latent heat storage material thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017076791A JP7107640B2 (ja) 2017-04-07 2017-04-07 蓄熱システム及びその潜熱蓄熱材の設置方法
JP2017-076791 2017-04-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/590,355 Continuation US20200033069A1 (en) 2017-04-07 2019-10-01 Heat storage system and installation method of latent heat storage material thereof

Publications (1)

Publication Number Publication Date
WO2018186246A1 true WO2018186246A1 (ja) 2018-10-11

Family

ID=63713017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012612 WO2018186246A1 (ja) 2017-04-07 2018-03-27 蓄熱システム及びその潜熱蓄熱材の設置方法

Country Status (6)

Country Link
US (1) US20200033069A1 (ja)
EP (1) EP3608598B1 (ja)
JP (1) JP7107640B2 (ja)
CN (1) CN110476020A (ja)
AU (1) AU2018249092B2 (ja)
WO (1) WO2018186246A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11898802B2 (en) * 2020-11-02 2024-02-13 Phasestor Llc Hybrid systems and methods for managing thermal energy

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS525246B2 (ja) 1971-08-26 1977-02-10
JPS587799B2 (ja) 1977-03-18 1983-02-12 コムパニ− フランセ−ズ デ ペトロ−ル 水中の2つのユニットを相互に位置決めし連結する方法及び装置
JPH05157279A (ja) 1991-12-11 1993-06-22 Takenaka Komuten Co Ltd アンダーフロア型空気調和装置
JPH0634289A (ja) * 1992-07-21 1994-02-08 Hitachi Ltd 熱媒体利用熱回収システム
JP2000213776A (ja) 1999-01-25 2000-08-02 Shimizu Corp 躯体蓄熱式空調設備
JP2001304626A (ja) * 2000-04-18 2001-10-31 Sanyo Electric Co Ltd 蓄熱装置
JP3226093B2 (ja) 1997-10-02 2001-11-05 大成建設株式会社 躯体蓄熱を利用した空調システム
JP2003185373A (ja) 2001-12-25 2003-07-03 Shimizu Corp 潜熱蓄熱材を用いた全面床吹出空調システム
JP2004177051A (ja) * 2002-11-28 2004-06-24 Kimura Kohki Co Ltd スリム形空調ユニット
JP2006207985A (ja) 2005-01-25 2006-08-10 Hokkaido 自然環境冷熱利用の季節間冷熱システム
JP2009299920A (ja) 2008-06-10 2009-12-24 Masahiro Mikami 蓄熱装置、蓄熱システム及び空調装置
JP2011133222A (ja) * 2008-07-04 2011-07-07 Nasakoa Kk 蓄熱パネル体およびその製造方法
JP4992045B2 (ja) 2007-11-14 2012-08-08 清水建設株式会社 全面床吹き出し空調システム
JP2012220131A (ja) 2011-04-12 2012-11-12 Eom Kk ソーラー暖冷房換気装置およびそれを用いたソーラー暖冷房換気方法
JP5666820B2 (ja) 2010-03-29 2015-02-12 日立機材株式会社 フリーアクセスフロア
JP2016145668A (ja) * 2015-02-06 2016-08-12 株式会社イゼナ 家屋の冷暖房構造
JP2017076791A (ja) 2015-10-13 2017-04-20 株式会社リコー ダイシング用シートおよびその製造方法およびダイシング処理方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2561314Y2 (ja) * 1991-04-12 1998-01-28 鐘淵化学工業株式会社 太陽熱利用建築物
JPH06240853A (ja) * 1993-02-19 1994-08-30 Hitachi Rubber Kako Kk 乾式二重床の床暖房装置
JP2000310032A (ja) * 1999-04-27 2000-11-07 Custom Ace Kk 床放射式空調システム
JP4376383B2 (ja) * 1999-11-12 2009-12-02 株式会社イゼナ 冷暖房構造を形成する建築物構成部材
JP4444446B2 (ja) * 2000-05-12 2010-03-31 株式会社イゼナ 蓄熱層を用いた構造物の冷暖房構造
EP2098655A1 (en) * 2008-03-04 2009-09-09 Corus Technology BV Ceiling with corrugated steel sheet
US9315710B2 (en) * 2010-09-01 2016-04-19 Reg Synthetic Fuels, Llc Plastic phase change material and articles made therefrom
JP5466738B2 (ja) * 2012-08-22 2014-04-09 株式会社インターセントラル ヒートポンプエアコンを利用した蓄熱型放射冷暖房システム
US8782976B2 (en) * 2012-11-05 2014-07-22 Gary Meyer Bi-surfaced raised access floor panel and cold isle forming system in a data center
JP2014194327A (ja) * 2013-03-29 2014-10-09 Panasonic Corp 冷暖房装置
JP2016014517A (ja) * 2014-06-13 2016-01-28 株式会社カネカ 空調システム
JP6172860B2 (ja) * 2014-07-29 2017-08-02 積水ハウス株式会社 蓄熱機能を備える建具
CN105352015B (zh) * 2015-12-16 2018-12-25 中建五局装饰幕墙有限公司 基于相变蓄能的主被动对流与辐射换热内墙系统
CN105735516B (zh) * 2016-02-20 2018-01-05 太原理工大学 一种蓄热型可控双通道通风保温墙系统及其运行方法

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS525246B2 (ja) 1971-08-26 1977-02-10
JPS587799B2 (ja) 1977-03-18 1983-02-12 コムパニ− フランセ−ズ デ ペトロ−ル 水中の2つのユニットを相互に位置決めし連結する方法及び装置
JPH05157279A (ja) 1991-12-11 1993-06-22 Takenaka Komuten Co Ltd アンダーフロア型空気調和装置
JPH0634289A (ja) * 1992-07-21 1994-02-08 Hitachi Ltd 熱媒体利用熱回収システム
JP3226093B2 (ja) 1997-10-02 2001-11-05 大成建設株式会社 躯体蓄熱を利用した空調システム
JP2000213776A (ja) 1999-01-25 2000-08-02 Shimizu Corp 躯体蓄熱式空調設備
JP2001304626A (ja) * 2000-04-18 2001-10-31 Sanyo Electric Co Ltd 蓄熱装置
JP2003185373A (ja) 2001-12-25 2003-07-03 Shimizu Corp 潜熱蓄熱材を用いた全面床吹出空調システム
JP2004177051A (ja) * 2002-11-28 2004-06-24 Kimura Kohki Co Ltd スリム形空調ユニット
JP2006207985A (ja) 2005-01-25 2006-08-10 Hokkaido 自然環境冷熱利用の季節間冷熱システム
JP4992045B2 (ja) 2007-11-14 2012-08-08 清水建設株式会社 全面床吹き出し空調システム
JP2009299920A (ja) 2008-06-10 2009-12-24 Masahiro Mikami 蓄熱装置、蓄熱システム及び空調装置
JP2011133222A (ja) * 2008-07-04 2011-07-07 Nasakoa Kk 蓄熱パネル体およびその製造方法
JP5666820B2 (ja) 2010-03-29 2015-02-12 日立機材株式会社 フリーアクセスフロア
JP2012220131A (ja) 2011-04-12 2012-11-12 Eom Kk ソーラー暖冷房換気装置およびそれを用いたソーラー暖冷房換気方法
JP2016145668A (ja) * 2015-02-06 2016-08-12 株式会社イゼナ 家屋の冷暖房構造
JP2017076791A (ja) 2015-10-13 2017-04-20 株式会社リコー ダイシング用シートおよびその製造方法およびダイシング処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3608598A4

Also Published As

Publication number Publication date
JP7107640B2 (ja) 2022-07-27
AU2018249092A1 (en) 2019-10-24
EP3608598A4 (en) 2020-04-22
AU2018249092B2 (en) 2021-02-04
US20200033069A1 (en) 2020-01-30
JP2018179355A (ja) 2018-11-15
EP3608598B1 (en) 2023-01-11
CN110476020A (zh) 2019-11-19
EP3608598A1 (en) 2020-02-12

Similar Documents

Publication Publication Date Title
US7500593B2 (en) Container having passive controlled temperature interior, and method of construction
JP6703084B2 (ja) 冷却装置内における使用のための恒温容器
EP3368442B1 (en) A transportation box
JP5558415B2 (ja) 冷蔵庫
US20170350635A1 (en) Container with passive temperature controls
CA2790360C (en) Thermal management systems and methods
US8938986B2 (en) Modular system for thermally controlled packaging devices
US20040079794A1 (en) Container having passive controlled temperature interior
WO2012137878A1 (ja) 保管容器
US20110067852A1 (en) Temperature controlled cargo containers
US9994385B2 (en) Shipping container with multiple temperature zones
KR101989583B1 (ko) 보냉 패키징 장치
US20160109187A1 (en) Device for conserving and transporting fresh or frozen products, in particular for thermally insulated containers or the like
JP5800575B2 (ja) 冷蔵庫
WO2018186246A1 (ja) 蓄熱システム及びその潜熱蓄熱材の設置方法
JP2003318452A (ja) 熱電装置と貯蔵庫
JPH0875185A (ja) 蓄熱装置
JP5800576B2 (ja) 冷蔵庫
WO2015063820A1 (ja) 断熱箱
CN216036356U (zh) 一种空调铜管存储箱
JP6657809B2 (ja) 展示装置、及び、展示方法
JPH1037336A (ja) 蓄熱カプセル
JPH1062082A (ja) 蓄熱材および蓄熱装置並びに容器
JPH10132338A (ja) 空調設備及びその使用方法
JPH09268665A (ja) 蓄熱壁構造、及び、蓄熱ユニット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18781227

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018249092

Country of ref document: AU

Date of ref document: 20180327

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018781227

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018781227

Country of ref document: EP

Effective date: 20191107