WO2018186167A1 - 室温硬化性オルガノポリシロキサン組成物及び基材 - Google Patents

室温硬化性オルガノポリシロキサン組成物及び基材 Download PDF

Info

Publication number
WO2018186167A1
WO2018186167A1 PCT/JP2018/010930 JP2018010930W WO2018186167A1 WO 2018186167 A1 WO2018186167 A1 WO 2018186167A1 JP 2018010930 W JP2018010930 W JP 2018010930W WO 2018186167 A1 WO2018186167 A1 WO 2018186167A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
unsubstituted
substituted
parts
room temperature
Prior art date
Application number
PCT/JP2018/010930
Other languages
English (en)
French (fr)
Inventor
晃嗣 藤原
山田 哲郎
宗直 廣神
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to JP2019511132A priority Critical patent/JP6939878B2/ja
Priority to EP18780759.9A priority patent/EP3608367A4/en
Priority to US16/500,989 priority patent/US10941317B2/en
Publication of WO2018186167A1 publication Critical patent/WO2018186167A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/14Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • C08G77/382Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon
    • C08G77/392Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon containing sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1656Antifouling paints; Underwater paints characterised by the film-forming substance
    • C09D5/1662Synthetic film-forming substance
    • C09D5/1675Polyorganosiloxane-containing compositions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • C09J183/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/28Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen sulfur-containing groups

Definitions

  • the present invention relates to a room temperature curable organopolysiloxane composition suitable as a substrate coating material for underwater structures and ships, and a substrate coated with the cured product.
  • RTV silicone rubber composition Rubber (silicone rubber) obtained from a room temperature curable silicone rubber composition (hereinafter referred to as RTV silicone rubber composition) has superior weather resistance, durability, heat resistance and cold resistance compared to other hydrocarbon organic rubbers. Because of its properties, it is used in various fields. Especially in the construction field, it is frequently used for bonding glass, bonding metal and glass, sealing concrete joints, and the like. In recent years, it has been widely used as a coating material for buildings, plants, water pipe inner surfaces, water pipe outer surfaces, and the like. Furthermore, in the electric / electronic field, it is also used as a coating material for liquid crystal peripherals and power circuit boards, for which demand has been increasing rapidly in recent years.
  • antifouling paints containing toxic antifouling agents such as organotin compounds and cuprous oxide were applied to the structures. Although adherence and growth of living organisms were almost prevented, a toxic antifouling agent was used, which is undesirable for environmental safety and hygiene during the manufacture and painting of paints. In the long term, there is a risk of contaminating the water area, so its use is legally prohibited.
  • Non-toxic antifouling paints containing paraffin or petrolatum have been proposed (Japanese Patent Laid-Open No. 58-13673: Patent Document 1, Japanese Patent Laid-Open No. 62-84166: Patent Document 2).
  • the volume shrinkage accompanying the curing of the reaction-curable silicone resin composition causes the non-reactive and non-reactive polar group-containing silicone resin to ooze out to the surface, and the low surface tension and compatibility with the reaction-curable silicone resin composition.
  • Non-toxic antifouling paint compositions that exhibit antifouling properties (Patent No. 2503986: Patent Document 3, Patent No. 2952375: Patent Document 4) have also been proposed.
  • the non-toxic antifouling paint composition is a polyoxyethylene in which ethylene oxide, propylene oxide, etc. are added to Si atoms via a C—C bond with a poorly compatible and non-reactive polar group-containing silicone resin. Since the silicone resin having a group or the silicone resin in which an alkoxy group is introduced into the molecular terminal through an ethylene oxide or propylene oxide group in Si atom is oil-bleeded, there is a problem in environmental safety and health.
  • the RTV silicone rubber composition contained in the conventional antifouling paint composition is mostly a moisture curable type, and among them, the oxime curable type occupies the majority. The reason is that good curability can be obtained without using a harmful organotin catalyst, and the strength of the cured film is high.
  • the oxime curable type generates methyl ethyl ketoxime (MEKO) at the time of curing, the antifouling paint market mainly in Europe tends to be avoided in consideration of the environmental load.
  • MEKO methyl ethyl ketoxime
  • the alcohol curable type can be made MEKO free, but generally the alcohol curable type requires organotin as a curing catalyst. Moreover, since the curable property of the alcohol curable type is slower than that of the oxime curable type, workability may be reduced when the antifouling paint is used.
  • the present invention has been made in view of the above circumstances, and does not contain an organic tin compound that is problematic in terms of environmental safety and health, and is excellent even though it does not contain MEKO, which tends to be avoided in the antifouling paint market.
  • a room temperature curable organopolysiloxane composition having a curability and an obtained cured coating film having excellent rubber strength and excellent antifouling performance for a long period of time, and a substrate coated with a cured product of the composition The purpose is to provide.
  • hydrolyzable silyl group-containing monovalent organic group having an S atom (thioether bond) at the ⁇ -position of the silicon atom of the hydrolyzable silyl group Is used as the main agent (base polymer), and a hydrolyzable (organo) silane compound and / or a partially hydrolyzed condensate thereof (hydrolyzable siloxane oligomer) is used as a crosslinking agent (curing agent).
  • a dealcohol-free room temperature curable organopolysiloxane composition containing no MEKO / organotin compound can be prepared, and the composition is a cured product having excellent fast curing properties and good storage stability. Furthermore, the cured coating film obtained by blending with a specific bleed oil has excellent rubber strength and surface smoothness, and exhibits excellent antifouling performance for a long time. The heading, thereby forming the basis of the present invention.
  • a room temperature-curable organopolysiloxane composition containing the following components (A) to (C) and (F): (A) 100 parts by mass of an organopolysiloxane having a hydrolyzable silyl group-containing monovalent organic group represented by the following general formula (1) at the molecular chain terminal (Wherein, R 1 s , independently of each other, represent an unsubstituted or substituted alkyl group having 1 to 10 carbon atoms or an unsubstituted or substituted aryl group having 6 to 10 carbon atoms, and R 2 represents Independent of each other, it represents an unsubstituted or substituted alkyl group having 1 to 10 carbon atoms or an unsubstituted or substituted aryl group having 6 to 10 carbon atoms, and R 3 may be the same or different, And represents a
  • the room temperature curable organopolysiloxane composition of the present invention is excellent as an organic tin compound which is useful as a curing catalyst but has no problem in terms of environmental safety and hygiene and MEKO which tends to be avoided in the antifouling paint market.
  • the cured coating film obtained has excellent rubber strength, and if used as an antifouling paint, it exhibits excellent antifouling performance for a long period of time. In particular, it is coated on an underwater structure, and is suitable for preventing the attachment and growth of aquatic organisms on the surface of the underwater structure, and the sustainability of the effect is good.
  • the coating film obtained from the room temperature curable organopolysiloxane composition of the present invention is non-toxic, and when the coating film is provided on an underwater structure, it prevents adhesion and growth of aquatic organisms over a long period of time. It shows antifouling properties. Therefore, the composition of the present invention can be applied to ship bottom paint, power plant seawater introduction pipe paint, fishnet paint and other water-resistant coating materials, LCD and PDP moisture-proof coating materials such as LCD and PDP, and between electric wires and resin coatings. Highly compatible with applications such as adhesive seals, resin cases or adhesive seals between resin connectors and wires, adhesive seals for decompression or pressure chambers, especially ship bottom paints, power plant seawater inlet pipe paints, fish net paints, etc. It is useful for preventing the attachment and growth of aquatic organisms on these surfaces.
  • the room temperature-curable organopolysiloxane composition according to the present invention is characterized by containing at least the following components (A) to (C) and (F).
  • the component (A) contains a hydrolyzable silyl group-containing monovalent organic group having an S atom (thioether bond) at the ⁇ -position of the silicon atom of the hydrolyzable silyl group represented by the following general formula (1). (Preferably at both ends of the molecular chain), preferably a linear organopolysiloxane, which acts as the main agent (base polymer) in the composition of the present invention.
  • a room temperature curable organopolysiloxane composition room temperature curable silicone that can give a cured product that is particularly excellent in fast curability and at the same time excellent in storage stability and durability by using siloxane as the main agent (base polymer). Rubber composition).
  • the component (A) can be synthesized by subjecting an organopolysiloxane having an alkenyl group such as a general-purpose terminal vinyl group and a hydrolyzable silane such as an alkoxysilane having a thiol group to an enethiol reaction.
  • an organopolysiloxane having an alkenyl group such as a general-purpose terminal vinyl group and a hydrolyzable silane such as an alkoxysilane having a thiol group to an enethiol reaction.
  • R 1 s independently of each other, represent an unsubstituted or substituted alkyl group having 1 to 10 carbon atoms or an unsubstituted or substituted aryl group having 6 to 10 carbon atoms
  • R 2 represents Independent of each other, it represents an unsubstituted or substituted alkyl group having 1 to 10 carbon atoms or an unsubstituted or substituted aryl group having 6 to 10 carbon atoms
  • R 3 may be the same or different
  • And represents a substituted or substituted alkyl group having 1 to 20 carbon atoms or a hydrogen atom
  • m is an integer of 1 to 3
  • n is an integer of 2 or more
  • a broken line represents a bond.
  • R 1 and R 2 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, neopentyl group, Hexyl, heptyl, octyl, 2-ethylhexyl, nonyl, decyl and other alkyl groups; cyclopentyl, cyclohexyl and other cycloalkyl groups; phenyl, tolyl, xylyl, ⁇ -, ⁇ -naphthyl Aryl groups such as groups; groups in which some or all of the hydrogen atoms of these groups are substituted with halogen atoms such as F, Cl, Br, cyano groups, etc., such as 3-chloropropyl groups, 3, Examples thereof include 3,3-trifluoropropyl group and 2-cyano
  • R 1 is a group in which part of the hydrogen atoms of the alkyl group is substituted with a lower alkoxy group, for example, an alkoxy-substituted alkyl group such as a methoxymethyl group, a methoxyethyl group, an ethoxymethyl group, and an ethoxyethyl group. Etc.
  • R 1 and R 2 a methyl group, an ethyl group, and a phenyl group are preferable, and a methyl group is particularly preferable from the viewpoints of curability, availability, productivity, and cost.
  • R 3 may be the same or different and is an unsubstituted or substituted alkyl group having 1 to 20 carbon atoms or a hydrogen atom.
  • the unsubstituted or substituted alkyl group represented by R 3 preferably has 1 to 10 carbon atoms, more preferably about 1 to 3, and may be the same or different.
  • R 3 include a hydrogen atom or an unsubstituted or substituted alkyl group similar to those exemplified for the alkyl groups of R 1 and R 2 above.
  • R 3 a hydrogen atom and a methyl group are preferable, and a hydrogen atom is particularly preferable from the viewpoints of curability, availability, productivity, and cost.
  • m is an integer of 1 to 3, preferably 2 or 3, and more preferably 3 from the viewpoint of reactivity.
  • n is an integer of 2 or more, but from the viewpoint of reactivity, an integer of 2 to 10 is preferable, an integer of 2 to 6 is more preferable, 2 or 3 is further preferable, and 2 is particularly preferable.
  • the organopolysiloxane of the component (A) of the present invention contains at least one hydrolyzable silyl group-containing monovalent organic group represented by the structural formula (1) in one molecule at the molecular chain end.
  • the average number of hydrolyzable silyl group-containing monovalent organic groups represented by the structural formula (1) contained in one molecule is less than 1, the curability of the composition and the machine of the cured product.
  • the amount of the hydrolyzable silyl group-containing monovalent organic group is too large, the crosslinking density becomes too high, and the resulting cured product may not exhibit good mechanical properties.
  • the number of hydrolyzable silyl group-containing monovalent organic groups contained in one molecule is 1 or more per molecule, preferably 1 to 6 per molecule, more preferably 1 molecule. 2 to 4, more preferably 2 or 3 per molecule, particularly preferably 2 per molecule, and (A) the average value (number average value) of all components is 1. 1 to 4, more preferably 1.5 to 3, and still more preferably 2.
  • the organopolysiloxane of component (A) of the present invention has an S atom (thioether bond) at the ⁇ -position of the silicon atom of the hydrolyzable silyl group represented by the following general formula (3).
  • a siloxane compound is preferred, and by using such a compound, the mechanical properties of the resulting cured product and the storage stability of the composition are further improved.
  • Z represents an organopolysiloxane skeleton having a main chain linear structure, branched structure, cyclic structure and / or crosslinked structure).
  • Z is a linear structure of a main chain, a branched structure (a structure containing a small amount of a trifunctional organosilsesquioxane unit in a bifunctional diorganosiloxane unit as a main structural unit. ),
  • An organopolysiloxane skeleton having a cyclic structure and / or a crosslinked structure (a higher-order branched structure containing a trifunctional organosilsesquioxane unit and / or a SiO 2 unit as a main constituent unit), and the main chain skeleton is an organopolysiloxane.
  • the siloxane is not particularly limited, and the main chain skeleton may have a linear structure, a branched structure, a cyclic structure, and / or a crosslinked structure.
  • Z is a diorganopolysiloxane skeleton having a linear structure (that is, only from repeating bifunctional diorganosiloxane units) from the viewpoint of mechanical properties of the resulting cured product and storage stability of the composition. And a linear diorganopolysiloxane structure).
  • Z in the above formula (3) has a linear diorganopolysiloxane skeleton composed of repeating units represented by the following structural formula (4).
  • the use of such an organopolysiloxane compound further improves the mechanical properties of the resulting cured product and the storage stability of the composition.
  • R 4 s independently of each other represent an unsubstituted or substituted alkyl group having 1 to 10 carbon atoms, or an unsubstituted or substituted aryl group having 6 to 10 carbon atoms, and p is 1 or more. (The broken line represents a bond.)
  • Each R 4 may be the same or different and is an unsubstituted or substituted alkyl group or an unsubstituted or substituted aryl group.
  • the unsubstituted or substituted alkyl group for R 4 has 1 to 10 carbon atoms, preferably about 1 to 3 carbon atoms, and may be the same or different.
  • the unsubstituted or substituted aryl group has 6 to 10 carbon atoms and may be the same or different.
  • Examples of R 4 are the same as those exemplified above for R 1 and R 2 . Among these, as R 4 , a methyl group and a phenyl group are preferable, and a methyl group is particularly preferable from the viewpoint of curability and yellowing resistance.
  • p is a number of 1 or more, but from the viewpoint of the mechanical properties of the resulting cured product and the workability of the composition, p is preferably 10 to 2,000, more preferably 50 to 1,500. Preferably, 100 to 1,000 is particularly preferable.
  • the number average molecular weight of the organopolysiloxane of the component (A) of the present invention is not particularly limited, but it is sufficient to improve workability by setting the viscosity of the curable composition containing the compound to an appropriate range.
  • the number average molecular weight is preferably 800 to 100,000, more preferably 2,000 to 50,000, and even more preferably 5,000 to 20,000.
  • the number average molecular weight in the present invention (and the number average degree of polymerization indicated as the number of repeating diorganosiloxane units in the general formula (4) calculated from the above: p) is, for example, toluene or the like as a developing solvent. It is a polystyrene conversion value in gel permeation chromatography (GPC) analysis.
  • Viscosity of component (A) mu (A) but is not particularly limited, improves the workability of the viscosity of the curable composition comprising the compound such as a suitable range, to impart sufficient curability
  • the viscosity ⁇ (A) is preferably 100 to 100,000 mPa ⁇ s, more preferably 300 to 50,000 mPa ⁇ s, and particularly preferably 500 to 20,000 mPa ⁇ s.
  • the viscosity is a value measured at 25 ° C. by a B-type rotational viscometer (for example, BL type, BH type, BS type, etc.) (hereinafter the same).
  • Component (A) is a reaction between a silicon-containing compound having at least one alkenyl group in one molecule and a compound having a mercapto group and an alkoxysilyl group represented by formula (5) (hereinafter referred to as mercaptosilane). Can be obtained. More specifically, a thiol-ene reaction is performed between the alkenyl group of the silicon-containing compound and the mercapto group of mercaptosilane.
  • mercaptosilane represented by the formula (5) include mercaptomethyltrimethoxysilane, mercaptomethyldimethoxymethylsilane, mercaptomethylmethoxydimethylsilane, mercaptomethyltriethoxysilane, mercaptomethyldiethoxymethylsilane, mercaptomethylethoxy.
  • examples include dimethylsilane.
  • mercaptomethyltrimethoxysilane, mercaptomethyldimethoxymethylsilane, and mercaptomethyltriethoxysilane are preferable, and mercaptomethyltrimethoxysilane is more preferable.
  • the silicon-containing compound having at least one alkenyl group in one molecule is not particularly limited as long as it has a main chain skeleton (polysiloxane skeleton) composed of a silicon-containing organic group. It may have a linear structure, a branched structure, or a crosslinked structure. Specific examples include vinyl pentamethyldisiloxane, 1,1-divinyltetramethyldisiloxane, 1,1,1-trivinyltrimethyldisiloxane, 1,3-divinyltetramethyldisiloxane, 1,3-divinyltetrasiloxane.
  • Phenyldisiloxane 1,3-diallyltetramethyldisiloxane, 1,1,3,3-tetravinyldimethyldisiloxane, hexavinyldisiloxane, 1,3,5,7-tetravinyltetramethylcyclotetrasiloxane, molecule Both ends of the chain vinyldimethylsiloxy group-blocked dimethylpolysiloxane, Molecular chain both ends divinylmethylsiloxy group-blocked dimethylpolysiloxane, Molecular chain both ends trivinylsiloxy group-blocked dimethylpolysiloxane, Molecular chain both ends vinyldiphenylsiloxy group-blocked diphenylpolysiloxane , Minutes Both ends of the chain vinyldiphenylsiloxy group-blocked phenylmethylpolysiloxane, Molecular chain both ends vinyldimethylsiloxy group-blocked dimethylsiloxane /
  • a linear structure is preferable from the viewpoint of mechanical properties of the obtained cured product and storage stability of the composition.
  • an organopolysiloxane compound having alkenyl groups at both ends of the molecular chain represented by the following structural formula (6) is preferable.
  • Z represents the same meaning as described above.
  • the linear diorganopolysiloxane structure represented by the formula (4) described above is preferable as Z.
  • r is an integer of 0 or more, but from the viewpoint of reactivity, an integer of 0 to 8 is preferable, an integer of 0 to 4 is more preferable, 0 or 1 is more preferable, and 0 is more preferable. Even more preferred.
  • the number average molecular weight of the silicon-containing compound having at least one alkenyl group in one molecule is not particularly limited, but the workability is improved by setting the viscosity of the curable composition containing the compound to an appropriate range.
  • the number average molecular weight is preferably 500 to 100,000, more preferably 1,500 to 50,000, and even more preferably 4,000 to 20,000.
  • silicon-containing compound represented by the above formula (6) organopolysiloxane compound containing both alkenyl groups at the molecular chain
  • the ratio of the silicon-containing compound represented by the above formula (6) and the mercaptosilane represented by the formula (5) suppresses by-products during the thiol-ene reaction and also preserves the storage stability of the resulting organosilicon compound.
  • the ratio of the mercapto group of the mercaptosilane represented by the formula (5) to 0.8 to 1.5 mol is preferable with respect to 1 mol of the alkenyl group in the silicon-containing compound. A ratio of 9 to 1.2 mol is more preferable.
  • a catalyst may not be used, but a catalyst may be used for improving the reaction rate.
  • the catalyst is not particularly limited, and may be appropriately selected from those generally used in the thiol-ene reaction.
  • a radical polymerization initiator that generates radicals by heat, light, redox reaction, or the like. Is preferred.
  • the catalyst may be used in an amount of catalyst, but is usually 0.001 to 10 based on the total of the silicon-containing compound whose molecular chain terminal is blocked with an alkenyl group and the mercaptosilane represented by the formula (5). % By mass.
  • the thiol-ene reaction proceeds even without solvent, but a solvent that does not adversely influence the reaction can also be used.
  • a solvent that does not adversely influence the reaction can also be used.
  • Specific examples thereof include hydrocarbon solvents such as pentane, hexane, heptane, octane, decane and cyclohexane; aromatic solvents such as benzene, toluene and xylene; formamide, N, N-dimethylformamide, pyrrolidone and N-methyl.
  • Amide solvents such as pyrrolidone; ester solvents such as ethyl acetate, butyl acetate, ⁇ -butyrolactone, propylene glycol-1-monomethyl ether-2-acetate, etc., may be used alone or in combination of two or more May be used.
  • the reaction temperature during the thiol-ene reaction is not particularly limited, but it is preferably 25 to 150 ° C., more preferably 40 to 100 ° C. in consideration of suppressing side reactions while making the reaction rate appropriate.
  • the reaction time is not particularly limited, but is usually 10 minutes to 24 hours.
  • the component (B) is a hydrolyzable (organo) silane compound represented by the following general formula (2) and / or a partially hydrolyzed condensate thereof (that is, the (organo) silane compound is partially hydrolyzed and condensed.
  • (Organo) siloxane oligomer) having at least 2, preferably 3 or more residual hydrolyzable groups in the molecule to be produced, and acts as a curing agent for the composition.
  • the component (B) is clearly differentiated from the component (A) in that it does not have a hydrolyzable silyl group-containing monovalent organic group represented by the general formula (1) in the molecule. Is.
  • R 5 is a halogen atom substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, X is a hydrolyzable group, and a is 3 or 4.
  • R 5 is a halogen atom substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms.
  • hydrolyzable group X examples include alkoxy groups having 1 to 4 carbon atoms, particularly 1 or 2 carbon atoms such as methoxy group, ethoxy group, propoxy group and butoxy group, methoxymethoxy group, methoxyethoxy group and ethoxymethoxy group.
  • An alkoxy-substituted alkoxy group having 2 to 4 carbon atoms such as an ethoxyethoxy group, an aryloxy group such as a phenyloxy group, a ketoxime group such as an ethylmethylketoxime group, and an alkenyloxy having 2 to 4 carbon atoms such as an isopropenoxy group Groups, an acyloxy group such as an acetoxy group, a dialkylaminoxy group such as a dimethylaminoxy group, and the like.
  • An alkoxy group and an alkenyloxy group are preferable, and an alkoxy group is particularly preferable.
  • methyltris (dimethylketoxime) silane examples include methyltris (dimethylketoxime) silane, methyltris (methylethylketoxime) silane, ethyltris (methylethylketoxime) silane, methyltris (methylisobutylketoxime) silane, vinyltris (methylethylketoxime) silane, phenyltris (methylethylketoxime) silane.
  • ketoxime silane methyltrimethoxysilane, vinyltrimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, tetramethoxysilane, tetraethoxysilane, etc.
  • This curing agent may be used alone or in combination of two or more.
  • the blending amount of the curing agent (that is, (B) hydrolyzable (organo) silane compound and / or partial hydrolysis condensate thereof) is 0.1 to 30 parts by mass, preferably 100 parts by mass of component (A). Is in the range of 0.5 to 20 parts by mass, particularly preferably 1 to 15 parts by mass. If the amount is less than 0.1 parts by mass, sufficient crosslinkability cannot be obtained, and it is difficult to obtain a desired composition having rubber elasticity. Moreover, when it exceeds 30 mass parts, the hardened
  • component (C)- The curing catalyst of component (C) is used to accelerate the hydrolysis condensation reaction between the present composition and moisture in the air, and is generally called a curing catalyst.
  • a curing catalyst As this, a known material usually used in a room temperature curable silicone resin composition that cures in the presence of moisture can be used, but organic tin compounds that are problematic in terms of environmental safety are excluded.
  • Examples of the curing catalyst for component (C) include tetraisopropoxy titanium, tetra-n-butoxy titanium, tetrakis (2-ethylhexoxy) titanium, isopropoxy titanium bis (ethyl acetoacetate), isopropoxy bis (acetylacetonate) titanium.
  • Titanic acid esters or titanium chelate compounds such as titanium isopropoxyoctylene glycol, N, N, N ′, N ′, N ′′, N ′′ -hexamethyl-N ′ ′′-(trimethylsilylmethyl) -phosphorimidic Phosphazene-containing compounds such as triamide; aminoalkyl group-substituted alkoxysilanes such as 3-aminopropyltriethoxysilane and N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane; amine compounds such as hexylamine and dodecylamine phosphate Or Quaternary ammonium salts such as benzyltriethylammonium acetate; dialkylhydroxylamines such as dimethylhydroxylamine and diethylhydroxylamine; tetramethylguanidylpropyltrimethoxysilane, tetramethylguanidylprop
  • the amount of these curing catalysts used may be a so-called catalytic amount, and the amount of component (C) is 0.001 to 10 parts by weight, especially 0.000, based on 100 parts by weight of the organopolysiloxane of component (A). 005 to 10 parts by mass, more preferably 0.01 to 5 parts by mass is preferred. If the amount is less than 0.001 part by mass, good curability cannot be obtained, so that a problem that the curing rate is delayed occurs. On the other hand, if the amount exceeds 10 parts by mass, the curability of the composition is too fast, and the allowable range of working time after application of the composition may be shortened, or the mechanical properties of the resulting rubber may be reduced. is there.
  • component- Component (F) is a bleed oil and is a non-reactive (non-condensation reactive) organopolysiloxane (so-called silicone oil) that does not undergo a condensation reaction with the diorganopolysiloxane of component (A), and the main chain is siloxane.
  • silicone oil is not particularly limited as long as it bleeds from the cured silicone rubber (crosslinked organosiloxane matrix) obtained by curing the composition of the present invention to the surface of the cured product.
  • a dimethyl silicone oil in which all of the organo groups (unsubstituted or substituted monovalent hydrocarbon groups) bonded to silicon atoms in the diorganosiloxane unit constituting the main chain siloxane skeleton are methyl groups
  • Methyl phenyl silicone oil in which a part of the methyl group is substituted with a phenyl group, an amino-modified silicone oil substituted with a monoamine, a diamine or an amino polyether group, an epoxy, an alicyclic epoxy, an epoxy polyether or an epoxy Epoxy-modified silicone oil substituted with aralkyl groups, carbinol-modified silicone oil substituted with carbinol groups, mercapto-modified silicone oil substituted with mercapto groups, carboxyl-modified silicone oil substituted with carboxyl groups, meta Methacryl-modified silicone oil obtained by substituting Lil group, polyether or polyether long chain (C 6-18) substituted alkyl, aralkyl polyether-
  • the number average molecular weight in terms of polystyrene by gel permeation chromatography (GPC) of component (F) is preferably 250 to 90,000, more preferably 350 to 40,000, and still more preferably 500 to 10,000. . If the number average molecular weight is less than 250, the antifouling property may be inferior, and if it is more than 90,000, the viscosity of the composition may be too high to be used.
  • the viscosity ⁇ (F) at 25 ° C. of the component (F) is preferably 20 to 30,000 mPa ⁇ s, and more preferably 50 to 10,000 mPa ⁇ s. If the viscosity at 25 ° C. is less than 20 mPa ⁇ s, the antifouling property may be inferior. If it is higher than 30,000 mPa ⁇ s, the composition may be too viscous to be used, and the antifouling property is also reduced. there's a possibility that.
  • the ratio of the viscosity at 25 ° C. of the component (F) to the viscosity at 25 ° C. of the component (A); bleed is that ⁇ (F) / ⁇ (A) is in the range of 0.05 to 1.0. From the viewpoint of property and antifouling property, more preferably in the range of 0.06 to 0.95, still more preferably in the range of 0.08 to 0.80.
  • ⁇ (A) is the viscosity (mPa ⁇ s) of component (A) at 25 ° C.
  • any one or more of the components (F) are contained in an amount of 0.01 to 100 parts by mass in total with respect to 100 parts by mass of the component (A), preferably It is contained in an amount of 10 to 100 parts by mass.
  • the amount of this silicone oil is in the above range, for example, when used as an antifouling paint, there is a tendency to obtain a (antifouling) paint film excellent in both antifouling properties and paint film strength, which is less than the above range. In some cases, the antifouling property may be lowered, and if it is more than the above range, the coating strength may be lowered.
  • -Component (D)- Component (D) is a filler (inorganic filler and / or organic resin filler), which is an optional component that can be blended as necessary, and provides sufficient mechanical strength to the cured product formed from this composition. Used for.
  • this filler known ones can be used. For example, fine silica, fumed silica, precipitated silica, and reinforcing silica-based fillers such as silica whose surface is hydrophobized with an organosilicon compound.
  • the blending amount of the component (D) is preferably 0 to 100 parts by weight per 100 parts by weight of the component (A). When blended, it is preferably 1 part by weight or more, particularly 3 to 60 parts by weight. If it is used in a larger amount than 100 parts by mass, not only the viscosity of the composition increases and the workability deteriorates, but also the rubber strength after curing decreases and it becomes difficult to obtain rubber elasticity.
  • the component (E) is an adhesion promoter and is an optional component that can be blended as necessary.
  • the component (E) is used for imparting sufficient adhesion to a cured product formed from the composition.
  • Adhesion promoter that is, a functional group having a monovalent hydrocarbon group containing a functional group having a hetero atom such as oxygen, nitrogen or sulfur and a plurality of (two or three) hydrolyzable groups such as an alkoxy group in the molecule
  • the group-containing hydrolyzable silane si-called CF silane
  • CF silane group-containing hydrolyzable silane
  • CF silane group-containing hydrolyzable silane
  • CF silane group-containing hydrolyzable silane
  • CF silane group-containing hydrolyzable silane
  • CF silane group-containing hydrolyzable silane
  • CF silane group-containing hydrolyzable silane
  • a known one is preferably used, and a (meth) acryl silane coupling agent,
  • epoxy silanes such as ⁇ -glycidoxypropyltrimethoxysilane and ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and isocyanate silane are particularly preferable.
  • the component (E) is 0 to 20 parts by mass with respect to 100 parts by mass of the component (A), and when blended, it is preferably 0.1 parts by mass or more, particularly preferably 0.1 to 10 parts by mass.
  • the adhesion promoter is not used with the filler and the adherend, it is not necessary to use it.
  • composition of this invention in addition to the said component in the range which does not impair the objective of this invention.
  • additives include polyethers as wetters and thixotropy improvers, isoparaffins, and reticulated polysiloxanes composed of trimethylsiloxy units [(CH 3 ) 3 SiO 1/2 units] and SiO 2 units as crosslink density improvers.
  • colorants such as pigments, dyes, fluorescent whitening agents, fungicides, antibacterial agents, surface modifiers such as organic liquids incompatible with silicone, toluene, xylene, solvent volatile oil, Solvents such as cyclohexane, methylcyclohexane, and low boiling point isoparaffin may be added.
  • the room temperature curable organopolysiloxane composition of the present invention further includes, as additives, known flame retardants such as pigments, dyes, anti-aging agents, antioxidants, antistatic agents, antimony oxides, and paraffin chlorides. Additives can be blended.
  • the above components are mixed under normal pressure or reduced pressure, preferably under reduced pressure of ⁇ 0.09 to ⁇ 0.01 MPa, and unheated, preferably 60 It can be produced by mixing at a temperature of °C or less, usually for about 30 minutes to 3 hours.
  • the composition contains the filler of component (D), component (A) and component (D) are mixed in advance under reduced pressure and heated, preferably at 80 to 160 ° C. for 30 minutes to 3 minutes.
  • the room temperature curable organopolysiloxane composition of the present invention is used as a coating material, paint, particularly antifouling paint, etc., it is excellent in stability during preparation, storage and storage, and has good curability, and the resulting coating film Is excellent in a good balance of rubber physical properties such as hardness, tensile strength and elongation, and also has excellent antifouling properties and the like, and can be suitably used particularly as an antifouling coating film.
  • the room temperature curable organopolysiloxane composition of the present invention has a viscosity at 25 ° C. of preferably 500 to 200,000 mPa ⁇ s, particularly preferably 1,000 to 150,000 mPa ⁇ s, and is particularly suitable for coating. Viscosity.
  • a coated substrate can be obtained by coating (applying) the room temperature curable organopolysiloxane composition of the present invention described above on the surface of various substrates and curing to form a coating layer.
  • the coating method of the composition is not particularly limited, and specific examples thereof are appropriately selected from known methods such as spray coating, spin coating, dip coating, roller coating, brush coating, bar coating, and flow coating. Can be used.
  • the room temperature curable organopolysiloxane composition of the present invention is a coating material requiring water resistance such as ship bottom paint, power plant seawater introduction pipe paint, fish net paint, etc., moisture proof coating material such as LCD and PDP, etc. It is highly compatible with applications such as adhesive seals between plastic and resin coatings, resin cases or adhesive seals between resin connectors and wires, and adhesive seals for vacuum or pressurized chambers.
  • the coating amount on the underwater structure of the room temperature curable organopolysiloxane composition of the present invention is not particularly limited, but is an amount such that the film thickness after curing is 10 to 1,000 ⁇ m, particularly 50 to 500 ⁇ m. It is preferable that The room temperature curable organopolysiloxane composition obtained by the production method of the present invention may be applied and cured at room temperature (room temperature).
  • parts means “parts by mass” and the number average molecular weight indicates the number average molecular weight in terms of polystyrene by gel permeation chromatography (GPC) analysis using toluene as a developing solvent,
  • the viscosity is a value measured by a B-type rotational viscometer at 25 ° C.
  • Example 1 room temperature curable organopolysiloxane compositions are described below.
  • 90 parts of product 1 both ends of molecular chain ⁇ - (trimethoxysilylmethylthio) ethyl group-blocked dimethylpolysiloxane
  • 10 parts of fumed silica having a specific surface area of 200 m 2 / g which is not surface-treated are uniformly mixed.
  • the mixture was mixed at 150 ° C. for 2 hours under a reduced pressure of ⁇ 0.08 MPa.
  • the obtained base was passed once through three rolls, and then 4.5 parts of methyltrimethoxysilane and 1.5 parts of methyltrimethoxysilane hydrolyzed condensate (average 3 to 4 mer) were added. Further, 0.4 part of ⁇ -aminopropyltriethoxysilane and 0.7 part of tetramethylguanidylpropyltrimethoxysilane were added, and at 20 to 40 ° C. under reduced pressure of ⁇ 0.04 to ⁇ 0.06 MPa. Mix until uniform.
  • composition 1 30 parts of ⁇ , ⁇ -trimethylsiloxy-dimethyldiphenylpolysiloxane having a viscosity ⁇ (F) of 300 mPa ⁇ s is added and uniformized at 20 to 40 ° C. under a reduced pressure of ⁇ 0.04 to ⁇ 0.06 MPa.
  • ⁇ (F) viscosity at 25 ° C. of component (F) to component (A) is 0.49.
  • Example 2 A composition 2 was prepared in the same manner as in Example 1, except that 0.4 part of 3--2- (aminoethylamino) propyltrimethoxysilane was used instead of ⁇ -aminopropyltriethoxysilane of Example 1. .
  • Example 3 90 parts of product 2 (both ends of the molecular chain ⁇ - (trimethoxysilylmethylthio) ethyl-blocked dimethylpolysiloxane) and 10 parts of fumed silica having a specific surface area of 200 m 2 / g which is not surface-treated are uniformly mixed. The mixture was mixed at 150 ° C. for 2 hours under a reduced pressure of ⁇ 0.08 MPa. Two hours later, the obtained base was passed once through three rolls, and then 4.5 parts of methyltrimethoxysilane and 1.5 parts of methyltrimethoxysilane hydrolyzed condensate (average 3 to 4 mer) were added.
  • composition 3 was prepared. In composition 3, the ratio ⁇ (F) / ⁇ (A) of the viscosity at 25 ° C. of component (F) to component (A) is 0.25.
  • Example 4 A composition 4 was prepared in the same manner as in Example 3, except that 0.4 part of 3--2- (aminoethylamino) propyltrimethoxysilane was used instead of ⁇ -aminopropyltriethoxysilane of Example 3. .
  • Example 5 90 parts of product 1 (both ends of molecular chain ⁇ - (trimethoxysilylmethylthio) ethyl group-blocked dimethylpolysiloxane) and 10 parts of fumed silica having a specific surface area of 200 m 2 / g which is not surface-treated are uniformly mixed. The mixture was mixed at 150 ° C. for 2 hours under a reduced pressure of ⁇ 0.08 MPa. Two hours later, the obtained base was passed once through three rolls, and then 4.5 parts of methyltrimethoxysilane and 1.5 parts of methyltrimethoxysilane hydrolyzed condensate (average 3 to 4 mer) were added.
  • composition 5 was prepared by mixing at 20 to 40 ° C. until uniform. In composition 5, the ratio ⁇ (F) / ⁇ (A) of the viscosity at 25 ° C. of component (F) to component (A) is 0.098.
  • Example 6 A composition 6 was prepared in the same manner as in Example 5 except that 0.4 part of 3--2- (aminoethylamino) propyltrimethoxysilane was used instead of ⁇ -aminopropyltriethoxysilane of Example 5. .
  • Composition 7 was prepared in the same manner as in Example 1, except that 30 parts of ⁇ , ⁇ -trimethylsiloxy-dimethyldiphenyl polysiloxane having a viscosity of 300 mPa ⁇ s was excluded from the composition of Example 1.
  • Example 2 instead of the product 1 of Example 1 (both ends of molecular chain ⁇ - (trimethoxysilylmethylthio) ethyl group-blocked dimethylpolysiloxane), the viscosity at 25 ° C. was blocked at both ends of the molecular chain with trimethoxysilyl groups.
  • a composition 8 was prepared in the same manner as in Example 1 except that the polydimethylsiloxane was changed to 900 mPa ⁇ s.
  • composition 9 was prepared.
  • compositions 1 to 9 were applied to a coated plate preliminarily coated with an epoxy anticorrosive coating (thickness: 200 ⁇ m) so that the cured film thickness was 200 ⁇ m.
  • the test coated plate thus prepared was cured for 7 days under the condition of 23 ° C./50% RH.
  • the test plate after curing was subjected to a suspension test for 24 months at a depth of 1.5 m off the coast of Kanagawa Prefecture. The state of adhesion of shellfish such as barnacles and seaweeds was observed after 3, 6, 12 and 24 months.
  • Adhesive Compositions 1 to 9 were applied to a coated plate preliminarily coated with an epoxy anticorrosive paint (film thickness 200 ⁇ m) so that the cured film thickness was 200 ⁇ m to prepare test coating plates. After coating, the surface of the coating film was cut into the anti-corrosion paint using a cutter, and then the adhesion of the coating film was evaluated by rubbing with a finger in a direction perpendicular to the cutting. The case where the coating film was not peeled off was evaluated as ⁇ , and the case where the coating film was peeled off was evaluated as ⁇ . The test results are shown in Tables 1 and 2.
  • the composition of the present invention is a composition that does not contain an organic tin compound and MEKO, with an emphasis on environmental aspects.
  • the obtained coating film has coating film strength, coating film hardness, rubber physical properties, water resistance, and moisture resistance, water resistance such as ship bottom coating, power plant seawater introduction pipe coating, fish net coating, etc.
  • Coating materials that require high resistance, moisture-proof coating materials that require moisture resistance such as LCD and PDP, adhesive seals between electric wires and resin coatings, adhesive seals between resin cases or resin connectors and electric wires, vacuum or pressurized chambers It is highly compatible with applications such as adhesive seals, and in particular, it can prevent adhesion and growth of aquatic organisms on these surfaces as ship bottom paint, power plant seawater introduction pipe paint, fish net paint, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Paints Or Removers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

(A) 式(1)で示される加水分解性シリル基含有1価有機基を分子鎖末端に有するオルガノポリシロキサン、 (R1は非置換もしくは置換の炭素原子数1~10のアルキル基、又は非置換もしくは置換の炭素原子数6~10のアリール基、R2は非置換もしくは置換の炭素原子数1~10のアルキル基、又は非置換もしくは置換の炭素原子数6~10のアリール基、R3は非置換もしくは置換の炭素原子数1~20のアルキル基又は水素原子。mは1~3、nは2以上の整数。破線は結合手を表す。) (B) 加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物、 (C) 硬化触媒、及び (F) ブリードオイル を含有する室温硬化性オルガノポリシロキサン組成物である。これにより、有機錫化合物フリー及びMEKOフリーとし、速硬化性に優れその硬化塗膜はゴム強度に優れかつ長期間優れた防汚性能が発揮される。

Description

室温硬化性オルガノポリシロキサン組成物及び基材
 本発明は、水中構造物や船舶などの基材コーティング材として好適な室温硬化性オルガノポリシロキサン組成物及びこの硬化物でコーティングされた基材に関する。
 従来から、室温(通常、25℃±10℃)で大気中の湿気により縮合反応することにより架橋・硬化してゴム弾性体(シリコーンゴム硬化物)を与える室温硬化性シリコーンゴム組成物としては種々のものが知られている。室温硬化性シリコーンゴム組成物(以下、RTVシリコーンゴム組成物という)から得られるゴム(シリコーンゴム)は、他の炭化水素系有機ゴムと比較して優れた耐候性、耐久性、耐熱性、耐寒性等を有することから各種分野で使用され、特に建築分野においては、ガラス同士の接着用、金属とガラスとの接着用、コンクリート目地のシール用等に多用されている。また近年では、建築物、プラント類、水管内面、水管外面等のコーティング材として広く利用されるようになってきた。さらに、電気・電子分野では、近年急速に需要が伸びてきている液晶周辺や電源回路基板のコーティング材としても使用されている。
 ところで、水中構造物が設置され又は就航すると、その飛沫部から没水部表面に亘り、海、河川等の水中に棲息しているフジツボ、カキ、ホヤ、セルプラ、ムラサキイガイ、カラスガイ、フサコケムシ、アオノリ、アオサ等の水生生物が付着・生育して種々の被害が発生する。例えば、船体にこれら生物が付着した場合、水との摩擦抵抗が増大し、航行速度が低下することから、一定の速度を維持するためには燃料消費量が増加し、経済的に不利である。また、港湾施設等の水中又は水面に固定させておく構造物に生物が付着すると、これらが有する個々の機能を十分に発揮することが困難となり、基材を侵食することもある。更に、養殖網、定置網等に生物が付着すると網目が閉塞して魚類が死滅してしまう事がある。
 水中構造物への水生生物の付着・生育の防止対策としては、有機錫化合物、亜酸化銅等の毒性防汚剤を配合した防汚塗料を構造物に塗装して対応していたが、水生生物の付着・生育はほぼ防止できたものの、毒性防汚剤を用いているために、塗料の製造や塗装時において環境安全衛生上好ましくなく、しかも水中において塗膜から毒性の防汚剤が徐々に溶出し、長期的にみれば水域を汚染するおそれがあることから、その使用が法的に禁止されることとなった。
 そこで、水生生物の付着・生育の防止効果があり、毒性防汚剤を含有しない塗料として、塗膜の表面張力を低くして防汚性を付与させる事が可能なRTVシリコーンゴム組成物に流動パラフィン又はペトロラタムを配合した無毒性防汚塗料が提案された(特開昭58-13673号公報:特許文献1、特開昭62-84166号公報:特許文献2)。また、反応硬化型シリコーン樹脂組成物の硬化に伴う体積収縮によって、相溶性が乏しく非反応性の極性基含有シリコーン樹脂が表面へにじみ出し、反応硬化型シリコーン樹脂組成物のもつ低表面張力と相俟って防汚性を示す無毒性防汚塗料組成物(特許第2503986号公報:特許文献3、特許第2952375号公報:特許文献4)も提案されている。しかしながら、前記無毒性防汚塗料組成物は、相溶性が乏しく非反応性の極性基含有シリコーン樹脂がSi原子にC-C結合を介してエチレンオキサイド、プロピレンオキサイド等が付加しているポリオキシエチレン基を有するシリコーン樹脂、又はSi原子にエチレンオキサイド又はプロピレンオキサイド基を介して分子末端にアルコキシ基が導入されたシリコーン樹脂をオイルブリードさせているために、環境安全衛生に問題があった。
 また、従来の防汚塗料組成物に含有するRTVシリコーンゴム組成物は湿気硬化型が殆どであるが、その中でもオキシム硬化型が大半を占めている。その理由は、有害な有機錫触媒を使用しなくても良好な硬化性が得られる事、硬化した被膜強度が大きい事などが挙げられる。しかし、オキシム硬化型は硬化時にメチルエチルケトオキシム(MEKO)を発生することから、欧州を中心とした防汚塗料市場では環境に対する負荷を考慮して敬遠されがちである。アルコール硬化型ではMEKOフリーとすることは可能だが、一般的にアルコール硬化型は硬化触媒として有機錫が必要である。また、アルコール硬化型の硬化性はオキシム硬化型と比較して遅いため、防汚塗料とした場合、作業性が低下する可能性がある。
 従って、MEKOフリー及び有機錫フリーとし、かつ速硬化性に優れる防汚塗料として適用できるRTVシリコーンゴム組成物が世界的に求められている。
特開昭58-13673号公報 特開昭62-84166号公報 特許第2503986号公報 特許第2952375号公報
 本発明は、上記事情に鑑みなされたもので、環境安全衛生面で問題のある有機錫化合物が非含有であり、かつ防汚塗料市場で敬遠されがちなMEKOも非含有としながらも、優れた硬化性を有し、得られる硬化塗膜はゴム強度に優れ、かつ長期間優れた防汚性能が発揮される室温硬化性オルガノポリシロキサン組成物及び該組成物の硬化物で被覆された基材を提供することを目的とする。
 本発明者らは、上記目的を達成するために鋭意研究を重ねた結果、加水分解性シリル基のケイ素原子のβ位にS原子(チオエーテル結合)を有する加水分解性シリル基含有1価有機基を分子鎖末端に有するオルガノポリシロキサンを主剤(ベースポリマー)として使用し、加水分解性(オルガノ)シラン化合物及び/又はその部分加水分解縮合物(加水分解性シロキサンオリゴマー)を架橋剤(硬化剤)とすることで、MEKO・有機錫化合物を非含有とする脱アルコールタイプの室温硬化性オルガノポリシロキサン組成物を調製でき、該組成物は速硬化性に優れ、保存安定性も良好な硬化物を与え、さらに特定のブリードオイルを配合する事により得られる硬化塗膜はゴム強度、表面平滑性に優れ、長期間優れた防汚性能が発揮されることを見出し、本発明を成すに至った。
 従って、本発明は、下記に示す室温硬化性オルガノポリシロキサン組成物及び、これの硬化物によりコーティングされた基材を提供する。
〔1〕
 下記(A)~(C)成分及び(F)成分を含有する室温硬化性オルガノポリシロキサン組成物。
(A) 下記一般式(1)で示される加水分解性シリル基含有1価有機基を分子鎖末端に有するオルガノポリシロキサン   100質量部
Figure JPOXMLDOC01-appb-C000004
(式中、R1は、互いに独立して、非置換もしくは置換の炭素原子数1~10のアルキル基、または非置換もしくは置換の炭素原子数6~10のアリール基を表し、R2は、互いに独立して、非置換もしくは置換の炭素原子数1~10のアルキル基、または非置換もしくは置換の炭素原子数6~10のアリール基を表し、R3はそれぞれ同一若しくは異なってもよく、非置換もしくは置換の炭素原子数1~20のアルキル基又は水素原子を表す。mは、1~3の整数であり、nは2以上の整数である。破線は結合手を表す。)
(B) 下記一般式(2)で示される加水分解性(オルガノ)シラン化合物及び/又はその部分加水分解縮合物   0.1~30質量部
Figure JPOXMLDOC01-appb-C000005
(式中、R5は、炭素原子数1~10のハロゲン原子置換又は非置換一価炭化水素基であり、Xは加水分解性基であり、aは3又は4である。)
(C) 硬化触媒   0.001~10質量部
(F) ブリードオイル   0.01~100質量部
〔2〕
 前記(A)成分が下記構造式(3)で示されるものである〔1〕記載の室温硬化性オルガノポリシロキサン組成物。
Figure JPOXMLDOC01-appb-C000006
(式中、R1、R2、m、nは前記と同じ意味を表し、Zは主鎖の直鎖状構造、分岐鎖状構造、環状構造及び/又は架橋構造のオルガノポリシロキサン骨格を表す。)
〔3〕
 前記(A)成分の25℃における粘度μ(A)が100~100,000mPa・sである〔1〕又は〔2〕記載の室温硬化性オルガノポリシロキサン組成物。
〔4〕
 前記(F)成分の25℃における粘度μ(F)が20~30,000mPa・sである〔1〕~〔3〕のいずれかに記載の室温硬化性オルガノポリシロキサン組成物。
〔5〕
 前記(A)成分の25℃における粘度に対する(F)成分の25℃における粘度比μ(F)/μ(A)が、0.05~1.0である〔1〕~〔4〕のいずれかに記載の室温硬化性オルガノポリシロキサン組成物。
〔6〕
 更に、
(D)充填剤   1~100質量部及び
(E)接着促進剤   0.1~10質量部
から選ばれる1種以上を含有する〔1〕~〔5〕のいずれかに記載の室温硬化性オルガノポリシロキサン組成物。
〔7〕
 〔1〕~〔6〕のいずれかに記載の室温硬化性オルガノポリシロキサン組成物の硬化物でコーティングされた基材。
〔8〕
 基材が水中構造物である〔7〕に記載の基材。
 本発明の室温硬化性オルガノポリシロキサン組成物は、硬化触媒としては有用であるものの環境安全衛生面で問題のある有機錫化合物と防汚塗料市場で敬遠されがちなMEKOを非含有としながらも優れた硬化性を有し、かつ得られる硬化塗膜はゴム強度に優れ、また防汚塗料として用いれば、長期間優れた防汚性能が発揮される。特に水中構造物に塗装され、水中構造物の表面への水生生物の付着・生育を防止するために好適であり、その効果の持続性が良好である。
 すなわち、本発明の室温硬化性オルガノポリシロキサン組成物より得られる塗膜は、無毒であり、該塗膜を水中構造物に設けた場合、長期間にわたって水生生物の付着・生育を防止し、優れた防汚性を示すものである。従って、本発明の組成物は、船底塗料、発電所海水導入管用塗料、魚網塗料等の耐水性が必要なコーティング材料、LCDやPDP等の耐湿性が必要な防湿コーティング材料、電線と樹脂被覆間の接着シール、樹脂ケース、又は樹脂コネクタと電線の間の接着シール、減圧又は加圧チャンバーの接着シール等の用途に対する適合性が高く、とりわけ、船底塗料、発電所海水導入管用塗料、魚網塗料等として、これらの表面への水生生物の付着・生育を防止することに有用である。
 以下、本発明を更に詳細に説明する。
<室温硬化性オルガノポリシロキサン組成物>
 本発明に係る室温硬化性オルガノポリシロキサン組成物は、少なくとも下記(A)~(C)成分及び(F)成分を含有することを特徴とするものである。
-(A)成分-
 (A)成分は、下記一般式(1)で示される、加水分解性シリル基のケイ素原子のβ位にS原子(チオエーテル結合)を有する加水分解性シリル基含有1価有機基を分子鎖末端に(好適には分子鎖両末端に)有する、好ましくは直鎖状のオルガノポリシロキサンであり、本発明の組成物において主剤(ベースポリマー)として作用するものである。
 また、下記一般式(1)で示される、加水分解性シリル基のケイ素原子のβ位にS原子(チオエーテル結合)を有する加水分解性シリル基含有1価有機基を分子鎖末端に有するオルガノポリシロキサンを主剤(ベースポリマー)として使用することにより、とりわけ速硬化性に優れ、同時に保存安定性、耐久性も良好な硬化物を与えることができる室温硬化性オルガノポリシロキサン組成物(室温硬化性シリコーンゴム組成)を得ることができる。(A)成分は、汎用の末端ビニル基等のアルケニル基を有するオルガノポリシロキサンとチオール基を有するアルコキシシラン等の加水分解性シランをエンチオール反応させることにより合成できる。
Figure JPOXMLDOC01-appb-C000007

(式中、R1は、互いに独立して、非置換もしくは置換の炭素原子数1~10のアルキル基、または非置換もしくは置換の炭素原子数6~10のアリール基を表し、R2は、互いに独立して、非置換もしくは置換の炭素原子数1~10のアルキル基、または非置換もしくは置換の炭素原子数6~10のアリール基を表し、R3はそれぞれ同一若しくは異なってもよく、非置換もしくは置換の炭素原子数1~20のアルキル基又は水素原子を表す。mは、1~3の整数であり、nは2以上の整数である。破線は結合手を表す。)
 R1、R2として、具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;フェニル基、トリル基、キシリル基、α-,β-ナフチル基等のアリール基;また、これらの基の水素原子の一部又は全部が、F、Cl、Br等のハロゲン原子やシアノ基等で置換された基、例えば、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、2-シアノエチル基などを例示することができる。また、R1としては、上記したアルキル基の水素原子の一部が低級アルコキシ基で置換された基、例えば、メトキシメチル基、メトキシエチル基、エトキシメチル基、エトキシエチル基等のアルコキシ置換アルキル基などが挙げられる。
 これらの中でも、R1、R2としては、メチル基、エチル基、フェニル基が好ましく、硬化性や入手の容易さ、生産性、コストの面からメチル基が特に好ましい。
 R3はそれぞれ同一若しくは異なってもよく、非置換もしくは置換の炭素原子数1~20のアルキル基又は水素原子である。R3の非置換もしくは置換のアルキル基としては、炭素原子数が好ましくは1~10、より好ましくは1~3程度であり、同一又は異なっていてもよい。
 R3としては、水素原子又は上記R1、R2のアルキル基で例示したものと同様の非置換又は置換のアルキル基を例示することができる。
 これらの中でも、R3としては、水素原子、メチル基が好ましく、硬化性や入手の容易さ、生産性、コストの面から水素原子が特に好ましい。
 上記式(1)中、mは1~3の整数であり、反応性の観点から2又は3が好ましく、3がより好ましい。また、nは2以上の整数であるが、反応性の観点から2~10の整数が好ましく、2~6の整数がより好ましく、2又は3が更に好ましく、2が特に好ましい。
 また、本発明の(A)成分のオルガノポリシロキサンは、1分子中に少なくとも1個の上記構造式(1)で示される加水分解性シリル基含有1価有機基を分子鎖末端に含有するが、1分子中に含まれる上記構造式(1)で示される加水分解性シリル基含有1価有機基の数が平均して1個未満であると、組成物の硬化性およびその硬化物の機械特性が不十分になり、一方で、該加水分解性シリル基含有1価有機基が多すぎると架橋密度が高くなりすぎるため、得られる硬化物が良好な機械特性を示さない可能性が有り、また組成物の保存安定性が悪化するおそれがある。そのため、1分子中に含まれる該加水分解性シリル基含有1価有機基の数は1分子中に1個以上であり、好ましくは1分子中に1~6個、より好ましくは1分子中に2~4個、更に好ましくは1分子中に2個又は3個、特に好ましくは1分子中に2個であり、又、(A)成分全体での平均値(数平均値)として、1.1~4個、より好ましくは1.5~3個、更に好ましくは2個である。
 以上の事から、本発明の(A)成分のオルガノポリシロキサンとしては、下記一般式(3)で表される、加水分解性シリル基のケイ素原子のβ位にS原子(チオエーテル結合)を有する加水分解性シリル基含有1価有機基を分子鎖の両末端に有し、主鎖部分に直鎖状構造、分岐鎖状構造、環状構造及び/又は架橋構造のオルガノポリシロキサン骨格を有するオルガノポリシロキサン化合物であることが好ましく、このような化合物を用いることで、得られる硬化物の機械特性および組成物の保存安定性がさらに良好となる。
Figure JPOXMLDOC01-appb-C000008
(式中、R1、R2、m、nは上記と同じである。Zは主鎖の直鎖状構造、分岐鎖状構造、環状構造及び/又は架橋構造のオルガノポリシロキサン骨格を表す。)
 上記式(3)中、Zは主鎖の直鎖状構造、分岐鎖状構造(主要構成単位としての2官能性ジオルガノシロキサン単位中に少量の3官能性オルガノシルセスキオキサン単位を含む構造)、環状構造及び/又は架橋構造(主要構成単位として3官能性オルガノシルセスキオキサン単位及び/又はSiO2単位を含む高次分岐構造)のオルガノポリシロキサン骨格を表し、主鎖骨格がオルガノポリシロキサンであれば特に限定されるものではなく、主鎖骨格中に直鎖状構造、分岐鎖状構造、環状構造及び/又は架橋構造を有していてもよい。
 これらの中でも、Zとしては、得られる硬化物の機械特性および組成物の保存安定性の観点から直鎖状構造のジオルガノポリシロキサン骨格(即ち、2官能性のジオルガノシロキサン単位の繰り返しのみからなる直鎖状のジオルガノポリシロキサン構造)であることが好ましい。
 即ち、本発明の(A)成分のオルガノポリシロキサンとしては、上記式(3)中のZが下記構造式(4)で表される繰り返し単位からなる直鎖状のジオルガノポリシロキサン骨格を有するものが好ましく、このようなオルガノポリシロキサン化合物を用いることで、得られる硬化物の機械特性および組成物の保存安定性がさらに良好となる。
Figure JPOXMLDOC01-appb-C000009
(式中、R4は、互いに独立して、非置換もしくは置換の炭素原子数1~10のアルキル基、または非置換もしくは置換の炭素原子数6~10のアリール基を表し、pは1以上の数である。破線は結合手を表す。)
 R4はそれぞれ同一若しくは異なってもよく、非置換もしくは置換のアルキル基、または非置換もしくは置換のアリール基である。R4の非置換もしくは置換のアルキル基としては、炭素原子数が1~10、好ましくは1~3程度であり、同一又は異なっていてもよい。非置換もしくは置換のアリール基としては、炭素原子数が6~10であり、同一又は異なっていてもよい。
 R4としては、上記R1、R2で例示したものと同様のものを例示することができる。
 これらの中でも、R4としては、メチル基、フェニル基が好ましく、硬化性や耐黄変性の面からメチル基が特に好ましい。
 上記式(4)中、pは1以上の数であるが、得られる硬化物の機械特性や組成物の作業性の観点からpは10~2,000が好ましく、50~1,500がより好ましく、100~1,000が特に好ましい。
 本発明の(A)成分のオルガノポリシロキサンの数平均分子量は、特に限定されるものではないが、当該化合物を含む硬化性組成物の粘度等を適切な範囲として作業性を向上させるとともに、十分な硬化性を付与することを考慮すると、数平均分子量800~100,000が好ましく、2,000~50,000がより好ましく、5,000~20,000がより一層好ましい。なお、本発明における数平均分子量(及びこれから算出される上記一般式(4)におけるジオルガノシロキサン単位の繰り返し数:pなどとして示される数平均重合度)は、例えば、トルエン等を展開溶媒としたゲルパーミエーションクロマトグラフィー(GPC)分析におけるポリスチレン換算値である。
 (A)成分の粘度μ(A)は特に限定されるものではないが、当該化合物を含む硬化性組成物の粘度等を適切な範囲として作業性を向上させるとともに、十分な硬化性を付与することを考慮すると、粘度μ(A)が100~100,000mPa・sのものが好ましく、より好ましくは300~50,000mPa・s、特に好ましくは500~20,000mPa・sのものである。ここで、粘度は、B型回転粘度計(例えば、BL型、BH型、BS型等)による25℃における測定値である(以下、同じ)。
 (A)成分は、1分子中に少なくとも1個のアルケニル基を有するケイ素含有化合物と、式(5)で表されるメルカプト基およびアルコキシシリル基を有する化合物(以下、メルカプトシランという)とを反応させて得ることができる。
 より具体的には、ケイ素含有化合物のアルケニル基と、メルカプトシランのメルカプト基との間でチオール-エン反応を行う。
Figure JPOXMLDOC01-appb-C000010
(式中、R1、R2およびmは、上記と同じ意味を表す。)
 式(5)で表されるメルカプトシランの具体例としては、メルカプトメチルトリメトキシシラン、メルカプトメチルジメトキシメチルシラン、メルカプトメチルメトキシジメチルシラン、メルカプトメチルトリエトキシシラン、メルカプトメチルジエトキシメチルシラン、メルカプトメチルエトキシジメチルシラン等が挙げられる。
 これらの中でも、加水分解性の観点から、メルカプトメチルトリメトキシシラン、メルカプトメチルジメトキシメチルシラン、メルカプトメチルトリエトキシシランが好ましく、メルカプトメチルトリメトキシシランがより好ましい。
 1分子中に少なくとも1個のアルケニル基を有するケイ素含有化合物は、ケイ素含有有機基からなる主鎖骨格(ポリシロキサン骨格)を有するものであれば特に限定されるものではなく、主鎖骨格中に直鎖状構造、分岐状構造、または架橋構造を有していてもよい。
 その具体例としては、ビニルペンタメチルジシロキサン、1,1-ジビニルテトラメチルジシロキサン、1,1,1-トリビニルトリメチルジシロキサン、1,3-ジビニルテトラメチルジシロキサン、1,3-ジビニルテトラフェニルジシロキサン、1,3-ジアリルテトラメチルジシロキサン、1,1,3,3-テトラビニルジメチルジシロキサン、ヘキサビニルジシロキサン、1,3,5,7-テトラビニルテトラメチルシクロテトラシロキサン、分子鎖両末端ビニルジメチルシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジビニルメチルシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端トリビニルシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ビニルジフェニルシロキシ基封鎖ジフェニルポリシロキサン、分子鎖両末端ビニルジフェニルシロキシ基封鎖フェニルメチルポリシロキサン、分子鎖両末端ビニルジメチルシロキシ基封鎖ジメチルシロキサン・ジフェニルシロキサン共重合体、分子鎖両末端ビニルジメチルシロキシ基封鎖ジメチルシロキサン・フェニルメチルシロキサン共重合体、分子鎖両末端ビニルジフェニルシロキシ基封鎖ジメチルシロキサン・ジフェニルシロキサン共重合体、分子鎖両末端ビニルジフェニルシロキシ基封鎖ジメチルシロキサン・フェニルメチルシロキサン共重合体、末端ビニル基含有メチル系シリコーンレジン(ビニルジメチルシロキシ単位/SiO2単位からなる三次元網状共重合体、ビニルジメチルシロキシ単位/ビニルシルセスキオキサン単位/SiO2単位からなる三次元網状共重合体、トリメチルシロキシ単位/ビニルシルセスキオキサン単位/SiO2単位からなる三次元網状共重合体、ビニルジメチルシロキシ単位/ジメチルシロキサン単位/SiO2単位からなる三次元網状共重合体など)、末端ビニル基含有フェニル系シリコーンレジン(ビニルジフェニルシロキシ単位/SiO2単位からなる三次元網状共重合体、ビニルジフェニルシロキシ単位/ビニルシルセスキオキサン単位/SiO2単位からなる三次元網状共重合体、ビニルジフェニルシロキシ単位/ジフェニルシロキサン単位/SiO2単位からなる三次元網状共重合体など)、末端ビニル基含有メチル/フェニル系シリコーンレジン(ビニルジメチルシロキシ単位/ジフェニルシロキサン単位/SiO2単位からなる三次元網状共重合体、ビニルジメチルシロキシ単位/フェニルメチルシロキサン単位/SiO2単位からなる三次元網状共重合体、ビニルジフェニルシロキシ単位/ジメチルシロキサン単位/SiO2単位からなる三次元網状共重合体など)等が挙げられる。
 これらの中でも、得られる硬化物の機械特性および組成物の保存安定性の観点から、直鎖状構造が好ましい。
 したがって、1分子中に少なくとも1個のアルケニル基を有するケイ素含有化合物としては、下記構造式(6)で表される分子鎖両末端にアルケニル基を有するオルガノポリシロキサン化合物が好ましく、このようなオルガノポリシロキサン化合物を用いることで、得られる硬化物の機械特性および組成物の保存安定性がさらに良好となる。
Figure JPOXMLDOC01-appb-C000011
 式(6)において、Zは、上記と同じ意味を表すが、この場合も、Zとしては、上述した式(4)で示される直鎖状ジオルガノポリシロキサン構造が好ましく、このような構造を採用することで、得られる硬化物の機械特性および組成物の保存安定性がさらに良好となる。
 また、式(6)中、rは0以上の整数であるが、反応性の観点から0~8の整数が好ましく、0~4の整数がより好ましく、0又は1が更に好ましく、0がより一層好ましい。
 1分子中に少なくとも1個のアルケニル基を有するケイ素含有化合物の数平均分子量は、特に限定されるものではないが、当該化合物を含む硬化性組成物の粘度等を適切な範囲として作業性を向上させるとともに、十分な硬化性を付与することを考慮すると、数平均分子量500~100,000が好ましく、1,500~50,000がより好ましく、4,000~20,000がより一層好ましい。
 上記式(6)で表されるケイ素含有化合物(分子鎖両末端アルケニル基含有オルガノポリシロキサン化合物)の具体例としては、下記構造式で表される分子鎖両末端ビニルジメチルシロキシ基封鎖ジメチルポリシロキサン等が挙げられるが、これに限定されるものではない。
Figure JPOXMLDOC01-appb-C000012
(式中、Meは、メチル基を表し、pは、上記と同じ意味を表す。)
 上記式(6)で表されるケイ素含有化合物と、式(5)で表されるメルカプトシランとの割合は、チオール-エン反応時の副生物を抑制するとともに、得られる有機ケイ素化合物の保存安定性や特性を高めることを考慮すると、上記ケイ素含有化合物中のアルケニル基1molに対し、式(5)で表されるメルカプトシランのメルカプト基が0.8~1.5molとなる割合が好ましく、0.9~1.2molとなる割合がより好ましい。
 また、上記チオール-エン反応時には、触媒を使用しなくてもよいが、反応速度向上のため触媒を使用してもよい。
 触媒としては、特に限定されるものではないが、一般的にチオール-エン反応で使用されているものから適宜選択すればよく、熱、光、あるいはレドックス反応などによりラジカルを発生させるラジカル重合開始剤が好適である。
 その具体例としては、過酸化水素水、tert-ブチルハイドロパーオキサイド、ジtert-ブチルパーオキサイド、(2-エチルヘキサノイル)(tert-ブチル)ペルオキシド、ベンゾイルパーオキサイド、クメンヒドロパーオキサイド、ジクミルパーオキサイド等の有機過酸化物;2,2’-アゾビスプロパン、2,2’-アゾビスイソブタン、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス-2-メチルブチロニトリル、2,2’-アゾビス-2-メチルバレロニトリル、2,2’-アゾビス-2,4-ジメチルバレロニトリル、2,2’-アゾビス-2-メチルプロピオン酸メチル、2,2’-ジクロロ-2,2’-アゾビスプロパン、2,2’-ジクロロ-2,2’-アゾビスブタン、1,1’-アゾ(メチルエチル)ジアセテート、2,2’-アゾビスイソブチルアミド、2,2’-アゾビスイソ酪酸ジメチル、3,5-ジヒドロキシメチルフェニルアゾ-2-メチルマロノジニトリル、4,4’-アゾビス-4-シアノ吉草酸ジメチル等のアゾ化合物;過酸化水素-鉄(II)塩、セリウム(IV)塩-アルコール、有機過酸化物-ジメチルアニリン等のレドックス開始剤;2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-1-ブタノン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルフォリン-4-イルフェニル)ブタン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチルプロピオニル)ベンジル]フェニル}-2-メチルプロパン-1-オン、2,4,6-トリメチルベンゾイル-ジフェニルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイド等の光重合開始剤;テトラアルキルチウラムジスルフィド等のジアルキルジスルフィドなどが挙げられ、これらは単独で用いても、2種以上組み合わせて用いてもよい。
 これらの中でも、チオール-エン反応時の反応速度の観点から、(2-エチルヘキサノイル)(tert-ブチル)ペルオキシド、2,2’-アゾビス-2-メチルブチロニトリルが好ましく、2,2’-アゾビス-2-メチルブチロニトリルがより好ましい。
 触媒の使用量は触媒量であればよいが、通常、分子鎖末端がアルケニル基で封鎖されたケイ素含有化合物と、式(5)で表されるメルカプトシランの合計に対して0.001~10質量%である。
 なお、上記チオール-エン反応は無溶媒でも進行するが、反応に悪影響を及ぼさない溶媒を用いることもできる。
 その具体例としては、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、シクロヘキサン等の炭化水素系溶媒;ベンゼン、トルエン、キシレン等の芳香族系溶媒;ホルムアミド、N,N-ジメチルホルムアミド、ピロリドン、N-メチルピロリドン等のアミド系溶媒;酢酸エチル、酢酸ブチル、γ-ブチロラクトン、プロピレングリコール-1-モノメチルエーテル-2-アセタート等のエステル系溶媒などが挙げられ、これらは単独で用いても、2種以上組み合わせて用いてもよい。
 チオール-エン反応時の反応温度は、特に限定されるものではないが、反応速度を適切にしつつ、副反応を抑制することを考慮すると、25~150℃が好ましく、40~100℃がより好ましい。
 反応時間は特に制限されないが、通常10分~24時間である。
-(B)成分-
 (B)成分は、下記一般式(2)で示される加水分解性(オルガノ)シラン化合物及び/又はその部分加水分解縮合物(即ち、該(オルガノ)シラン化合物を部分的に加水分解縮合して生成する分子中に残存加水分解性基を少なくとも2個、好ましくは3個以上有する(オルガノ)シロキサンオリゴマー)であり、本組成物の硬化剤として作用するものである。なお(B)成分は、上記一般式(1)で示される加水分解性シリル基含有1価有機基を分子中に有さないものである点において、(A)成分とは明確に差別化されるものである。
Figure JPOXMLDOC01-appb-C000013
(式中、R5は、炭素原子数1~10のハロゲン原子置換又は非置換一価炭化水素基であり、Xは加水分解性基であり、aは3又は4である。)
 式中、R5は炭素原子数1~10のハロゲン原子置換又は非置換一価炭化水素基であり、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基などのアルキル基;シクロペンチル基、シクロヘキシル基などのシクロアルキル基;ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、イソブテニル基、ペンテニル基、ヘキセニル基、シクロヘキセニル基などのアルケニル基;フェニル基、トリル基、キシリル基、α-,β-ナフチル基などのアリール基;ベンジル基、2-フェニルエチル基、3-フェニルプロピル基などのアラルキル基;及びこれらの基の水素原子が部分的にハロゲン原子で置換された基、例えば3,3,3-トリフルオロプロピル基等である。これらの中では、メチル基、エチル基、ビニル基が好ましく、メチル基、ビニル基が特に好ましい。aは3又は4の整数である。
 加水分解性基Xとしては、例えばメトキシ基、エトキシ基、プロポキシ基、ブトキシ基等の炭素原子数1~4、特に炭素原子数1又は2のアルコキシ基、メトキシメトキシ基、メトキシエトキシ基、エトキシメトキシ基、エトキシエトキシ基等の炭素原子数2~4のアルコキシ置換アルコキシ基、フェニルオキシ基等のアリーロキシ基、エチルメチルケトオキシム基等のケトオキシム基、イソプロペノキシ基等の炭素原子数2~4のアルケニルオキシ基、アセトキシ基等のアシロキシ基、ジメチルアミノキシ基等のジアルキルアミノキシ基等が挙げられ、アルコキシ基、アルケニルオキシ基が好ましく、アルコキシ基が特に好ましい。
 具体例としては、メチルトリス(ジメチルケトオキシム)シラン、メチルトリス(メチルエチルケトオキシム)シラン、エチルトリス(メチルエチルケトオキシム)シラン、メチルトリス(メチルイソブチルケトオキシム)シラン、ビニルトリス(メチルエチルケトオキシム)シラン、フェニルトリス(メチルエチルケトオキシム)シラン等のケトオキシムシラン、メチルトリメトキシシラン、ビニルトリメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、テトラメトキシシラン、テトラエトキシシラン等のアルコキシシラン、メチルトリイソプロペノキシシラン、エチルトリイソプロペノキシシラン、ビニルトリイソプロペノキシシラン、フェニルトリイソプロペノキシシラン等のイソプロペノキシ基含有シラン、メチルトリアセトキシシラン、エチルトリアセトキシシラン、ビニルトリアセトキシシラン等のアセトキシシラン、並びにこれらシランの部分加水分解縮合物(即ち、上記加水分解性シラン化合物を部分的に加水分解・縮合して得られる、分子中に残存加水分解性基を2個以上、好ましくは3個以上有するオルガノシロキサンオリゴマー)が挙げられる。この硬化剤は1種を単独で使用しても2種以上を併用してもよい。
 硬化剤(即ち、(B)加水分解性(オルガノ)シラン化合物及び/又はその部分加水分解縮合物)の配合量は、(A)成分100質量部に対して0.1~30質量部、好ましくは0.5~20質量部、特に好ましくは1~15質量部の範囲である。0.1質量部未満では、十分な架橋性が得られず、目的とするゴム弾性を有する組成物が得難い。また30質量部を超えると、得られる硬化物は機械的特性が低下し易く、硬化速度も遅くなるなどの欠点がある。
-(C)成分-
 (C)成分の硬化触媒は、本組成物と空気中の水分との加水分解縮合反応を促進させるために使用され、一般的に硬化触媒と呼ばれるものである。これは湿分の存在下で硬化する室温硬化性シリコーン樹脂組成物に通常使用されている公知のものを使用することができるが、環境安全面に問題のある有機錫化合物は除く。
 (C)成分の硬化触媒としては、例えば、テトライソプロポキシチタン、テトラ-n-ブトキシチタン、テトラキス(2-エチルヘキソキシ)チタン、イソプロポキシチタンビス(エチルアセトアセテート)、イソプロポキシビス(アセチルアセトナート)チタン、チタニウムイソプロポキシオクチレングリコール等のチタン酸エステル又はチタンキレート化合物、N,N,N’,N’,N’’,N’’-ヘキサメチル-N’’’-(トリメチルシリルメチル)-ホスホリミディックトリアミド等のホスファゼン含有化合物;3-アミノプロピルトリエトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン等のアミノアルキル基置換アルコキシシラン;ヘキシルアミン、リン酸ドデシルアミン等のアミン化合物又はその塩;ベンジルトリエチルアンモニウムアセテート等の第4級アンモニウム塩;ジメチルヒドロキシルアミン、ジエチルヒドロキシルアミン等のジアルキルヒドロキシルアミン;テトラメチルグアニジルプロピルトリメトキシシラン、テトラメチルグアニジルプロピルメチルジメトキシシラン、テトラメチルグアニジルプロピルトリス(トリメチルシロキシ)シラン等のグアニジル基を含有するシラン及びシロキサン等が例示されるが、(C)成分はこれらに限定されない。また、(C)成分は1種でも2種以上混合して使用してもよい。
 これらの硬化触媒の使用量はいわゆる触媒量でよく、(C)成分の配合量は前記(A)成分のオルガノポリシロキサン100質量部に対して0.001~10質量部であり、特に0.005~10質量部、更に0.01~5質量部が好ましい。0.001質量部未満であると良好な硬化性を得ることができないため、硬化速度が遅れる不具合を生じる。逆に、10質量部を超える量になると、組成物の硬化性が速すぎるため、組成物塗布後の作業時間の許容範囲が短くなったり、得られるゴムの機械特性が低下したりするおそれがある。
-(F)成分-
 (F)成分は、ブリードオイルであり、(A)成分のジオルガノポリシロキサンと縮合反応しない非反応性(非縮合反応性)のオルガノポリシロキサン(いわゆるシリコーンオイル)であって、主鎖がシロキサン骨格(特には、2官能性のジオルガノシロキサン単位の繰り返しからなる直鎖状のジオルガノポリシロキサン構造)であり、分子鎖末端がトリオルガノシロキシ基で封鎖された無官能性のシリコーンオイルであり、本発明の組成物を硬化してなるシリコーンゴム硬化物(架橋したオルガノシロキサンマトリックス)中から硬化物の表面にブリードしていくシリコーンオイルなら特に制限されない。
 例えば、主鎖のシロキサン骨格を構成するジオルガノシロキサン単位中のケイ素原子に結合したオルガノ基(非置換又は置換1価炭化水素基)の全てがメチル基であるジメチルシリコーンオイル、このジメチルシリコーンオイルのメチル基の一部がそれぞれフェニル基に置換されたメチルフェニルシリコーンオイル、モノアミン、ジアミン又はアミノ・ポリエーテル基に置換されたアミノ変性シリコーンオイル、エポキシ、脂環式エポキシ、エポキシ・ポリエーテル又はエポキシ・アラルキル基に置換されたエポキシ変性シリコーンオイル、カルビノール基に置換されたカルビノール変性シリコーンオイル、メルカプト基に置換されたメルカプト変性シリコーンオイル、カルボキシル基に置換されたカルボキシル変性シリコーンオイル、メタクリル基に置換されたメタクリル変性シリコーンオイル、ポリエーテル又はポリエーテル・長鎖(C6-18)アルキル・アラルキル基に置換されたポリエーテル変性シリコーンオイル、長鎖(C6-18)アルキル又は長鎖(C6-18)アルキル・アラルキル基に置換された長鎖(C6-18)アルキル変性シリコーンオイル、高級脂肪酸エステル基に置換された高級脂肪酸変性シリコーンオイル、フロロアルキル基に置換されたフロロアルキル変性シリコーンオイル等が挙げられ、中でもメチルフェニルシリコーンオイル、ポリエーテル変性シリコーンオイル、長鎖(C6-18)アルキル変性シリコーンオイル等が好ましい。
 (F)成分のゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算数平均分子量は250~90,000であることが好ましく、より好ましくは350~40,000、更に好ましくは500~10,000である。数平均分子量が250未満であると防汚性が劣る場合があり、90,000より大きいと組成物の粘度が高すぎて使用しにくい場合がある。
 また、(F)成分の25℃における粘度μ(F)は20~30,000mPa・sであることが好ましく、より好ましくは50~10,000mPa・sである。25℃における粘度が20mPa・s未満であると防汚性が劣る場合があり、30,000mPa・sより高いと組成物の粘度が高すぎて使用しにくい場合があり、また防汚性も低下する可能性がある。
 また、(A)成分の25℃における粘度に対する(F)成分の25℃における粘度の比;μ(F)/μ(A)が、0.05~1.0の範囲内であることがブリード性、防汚性等の点から好ましく、0.06~0.95の範囲内であることがより好ましく、0.08~0.80の範囲内であることが更に好ましい。なお、μ(A)は(A)成分の25℃における粘度(mPa・s)である。
 本発明においては、(F)成分のうちのいずれか1種又は2種以上が、(A)成分100質量部に対して、合計で0.01~100質量部の量で含有され、好ましくは10~100質量部の量で含有される。このシリコーンオイルの量が上記範囲にあると、例えば、防汚塗料として用いた場合に、防汚性、塗膜強度共に優れた(防汚)塗膜が得られる傾向があり、上記範囲より少ないと防汚性が低下する場合があり、また上記範囲より多いと塗膜強度が低下することがある。
 本発明組成物には、必要に応じて、以下の成分を配合してもよい。
-(D)成分-
 (D)成分は充填剤(無機質充填剤及び/又は有機樹脂充填剤)であり、必要に応じて配合できる任意成分であり、この組成物から形成される硬化物に十分な機械的強度を与えるために使用される。この充填剤としては公知のものを使用することができ、例えば微粉末シリカ、煙霧質シリカ、沈降性シリカ、これらのシリカ表面を有機ケイ素化合物で疎水化処理したシリカなどの補強性シリカ系充填剤、ガラスビーズ、ガラスバルーン、透明樹脂ビーズ、シリカエアロゲル、珪藻土、酸化鉄、酸化亜鉛、酸化チタン、煙霧状金属酸化物などの金属酸化物、湿式シリカあるいはこれらの表面をシラン処理したもの、石英粉末(結晶性シリカ微粉末)、カーボンブラック、タルク、ゼオライト及びベントナイト等の補強剤、アスベスト、ガラス繊維、炭素繊維、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛などの金属炭酸塩、アスベスト、ガラスウール、微粉マイカ、溶融シリカ粉末、ポリスチレン、ポリ塩化ビニル、ポリプロピレンなどの合成樹脂粉末等が使用される。これらの充填剤のうち、シリカ、炭酸カルシウム、ゼオライトなどの無機質充填剤が好ましく、特に煙霧質シリカが好ましい。
 (D)成分の配合量は、前記(A)成分100質量部当たり、0~100質量部、配合する場合は1質量部以上、特に3~60質量部とすることが好ましい。100質量部よりも多量に使用すると、組成物の粘度が増大して作業性が悪くなるばかりでなく、硬化後のゴム強度が低下してゴム弾性が得難くなる。
-(E)成分-
 (E)成分は接着促進剤であり、必要に応じて配合できる任意成分であり、この組成物から形成される硬化物に十分な接着性を与えるために使用される。接着促進剤(即ち、酸素、窒素、硫黄等のヘテロ原子を有する官能性基含有1価炭化水素基と分子中にアルコキシ基等の加水分解性基を複数(2個又は3個)有する官能性基含有加水分解性シラン(いわゆるCFシラン)等のシランカップリング剤など)としては公知のものが好適に使用され、(メタ)アクリルシランカップリング剤、エポキシシランカップリング剤、アミノシランカップリング剤、メルカプトシランカップリング剤などが例示され、具体的には、ビニルトリス(β-メトキシエトキシ)シラン、γ-メタクリロキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-メルカプトプロピルトリメトキシシラン、イソシアネートシラン等が例示される。これらのうち、特にγ-グリシドキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン類、イソシアネートシランが好ましい。
 (E)成分は前記(A)成分100質量部に対して0~20質量部、配合する場合は0.1質量部以上、特に0.1~10質量部配合するのが好ましい。充填剤及び被着体により接着促進剤を使用しなくても接着するときは、これを使用しなくてもよい。
-その他の成分-
 また、本発明の組成物には、本発明の目的を損なわない範囲において上記成分以外に、添加剤等を配合してもよい。
 例えば、ウェッターやチキソトロピー向上剤としてのポリエーテル、イソパラフィン、架橋密度向上剤としてのトリメチルシロキシ単位〔(CH33SiO1/2単位〕とSiO2単位とからなる網状ポリシロキサン等が挙げられる。更に、必要に応じて、顔料、染料、蛍光増白剤等の着色剤、防かび剤、抗菌剤、シリコーンと非相溶の有機液体等の表面改質剤、トルエン、キシレン、溶剤揮発油、シクロヘキサン、メチルシクロヘキサン、低沸点イソパラフィン等の溶剤を添加してもよい。
 また、本発明の室温硬化性オルガノポリシロキサン組成物には、更に、添加剤として、顔料、染料、老化防止剤、酸化防止剤、帯電防止剤、酸化アンチモン、塩化パラフィン等の難燃剤など公知の添加剤を配合することができる。
[室温硬化性オルガノポリシロキサン組成物の製造]
 本発明の室温硬化性オルガノポリシロキサン組成物は、例えば、上記各成分を常圧下又は減圧下、好ましくは-0.09~-0.01MPaの減圧下で混合し、非加熱下、好ましくは60℃以下で、通常30分~3時間程度混合することによって製造することができる。また、組成物に(D)成分の充填剤を含む場合には、予め(A)成分と(D)成分を減圧下で混合し、加熱下、好ましくは80~160℃で、30分~3時間程度混合し、残りの成分を、常圧下又は減圧下、好ましくは-0.09~-0.01MPaの減圧下で混合し、非加熱下、好ましくは60℃以下で、通常30分~3時間程度混合することによって製造することにより、硬化塗膜の表面平滑性、経時での粘度安定性がより優れたものが得られる。
 本発明の室温硬化性オルガノポリシロキサン組成物をコーティング材、塗料、特に防汚塗料等として用いると、調製・保管・貯蔵時の安定性にも優れ、硬化性も良好であり、得られる塗膜は、硬さ、引張強さ、伸び等のゴム物性にバランスよく優れ、しかも、防汚性等にも優れたものであるため、特に防汚塗膜として好適に用いることができる。
 なお、本発明の室温硬化性オルガノポリシロキサン組成物は、25℃における粘度が好ましくは500~200,000mPa・s、特に好ましくは1,000~150,000mPa・sであり、特に塗装に適した粘度である。
 以上説明した本発明の室温硬化性オルガノポリシロキサン組成物を各種の基材の表面にコーティング(塗布)し、硬化させて被覆層を形成することで被覆基材が得られる。このとき、組成物のコーティング方法は、特に制限されず、その具体例としてはスプレーコート、スピンコート、ディップコート、ローラーコート、刷毛塗り、バーコート、フローコート等の公知の方法から適宜選択して用いることができる。
 本発明の室温硬化性オルガノポリシロキサン組成物は、船底塗料、発電所海水導入管用塗料、魚網塗料等の耐水性が必要なコーティング材料、LCDやPDP等の耐湿性が必要な防湿コーティング材料、電線と樹脂被覆間の接着シール、樹脂ケース、又は樹脂コネクタと電線の間の接着シール、減圧又は加圧チャンバーの接着シール等の用途に対する適合性が高く、とりわけ、基材として船舶、港湾施設、ブイ、パイプライン、橋梁、海底基地、海底油田掘削設備、発電所の導水路管、養殖網、定置網等の水中構造物にコーティングすることができ、該組成物の硬化塗膜は、無毒であり、環境面において何らの問題もなく、且つ、長期間にわたって水生生物の付着・生育を防止し、優れた防汚性を示すものとなり得る。
 本発明の室温硬化性オルガノポリシロキサン組成物の水中構造物へのコーティング量としては、特に限定されるものではないが、硬化後の膜厚が10~1,000μm、特に50~500μmとなる量とすることが好ましい。なお、本発明の製造方法で得られた室温硬化性オルガノポリシロキサン組成物は、室温(常温)で塗布、硬化させればよい。
 以下、合成例、実施例及び比較例を示し、本発明を具体的に説明するが、本発明はこれら実施例に制限されるものではない。なお、下記の具体例において、「部」は「質量部」を意味し、数平均分子量はトルエンを展開溶媒としたゲルパーミエーションクロマトグラフィー(GPC)分析によるポリスチレン換算での数平均分子量を示し、また粘度は25℃でのB型回転粘度計による測定値を示したものである。
[合成例]
 (A)成分のオルガノポリシロキサンの合成方法は、以下の通りである。
[合成例1]
 撹拌機、還流冷却器および温度計を備えた200mLセパラブルフラスコに、数平均分子量13,600の分子鎖両末端ビニルジメチルシロキシ基封鎖ジメチルポリシロキサン100g(末端ビニル基の官能基換算0.015モル)およびメルカプトメチルトリメトキシシラン2.6g(メルカプト基の官能基量0.015モル)を仕込み、90℃に加熱した。その中に、2,2’-アゾビス-2-メチルブチロニトリル0.1gを投入し、90℃にて3時間加熱撹拌した。1H-NMR測定により原料のビニル基およびメルカプト基由来のピークが完全に消失し、代わりに目的物である有機ケイ素化合物(即ち、前記一般式(3)において、R1=メチル基、m=3、n=2であり、Zが直鎖状ジメチルポリシロキサン構造である、分子鎖両末端がβ-(トリメトキシシリルメチルチオ)エチル基で封鎖されたジメチルポリシロキサン)由来のピークが生成したことを確認、反応終了とし生成物1を得た。
 得られた生成物1は、無色透明液体であり、数平均分子量13,900、粘度μ(A)610mPa・sであった。
[合成例2]
 撹拌機、還流冷却器および温度計を備えた200mLセパラブルフラスコに、数平均分子量15,400の分子鎖両末端ビニルジメチルシロキシ基封鎖ジメチルポリシロキサン100g(末端ビニル基の官能基換算0.012モル)およびメルカプトメチルトリメトキシシラン2.0g(メルカプト基の官能基量0.012モル)を仕込み、90℃に加熱した。その中に、2,2’-アゾビス-2-メチルブチロニトリル0.1gを投入し、90℃にて3時間加熱撹拌した。1H-NMR測定により原料のビニル基およびメルカプト基由来のピークが完全に消失し、代わりに目的物である有機ケイ素化合物(即ち、前記一般式(3)において、R1=メチル基、m=3、n=2であり、Zが直鎖状ジメチルポリシロキサン構造である、分子鎖両末端がβ-(トリメトキシシリルメチルチオ)エチル基で封鎖されたジメチルポリシロキサン)由来のピークが生成したことを確認、反応終了とし生成物2を得た。
 得られた生成物2は、無色透明液体であり、数平均分子量15,600、粘度μ(A)1,200mPa・sであった。
 以下、室温硬化性オルガノポリシロキサン組成物の実施例について記載する。
[実施例1]
 生成物1(分子鎖両末端β-(トリメトキシシリルメチルチオ)エチル基封鎖ジメチルポリシロキサン)を90部、表面処理されていない比表面積が200m2/gの煙霧状シリカ10部を均一に混合し、150℃で2時間、-0.08MPaの減圧下にて混合した。2時間後、得られたベースを3本ロールに一回通した後、メチルトリメトキシシラン4.5部とメチルトリメトキシシランの加水分解縮合物(平均3~4量体)を1.5部、更にγ-アミノプロピルトリエトキシシラン0.4部とテトラメチルグアニジルプロピルトリメトキシシラン0.7部を加えて、-0.04~-0.06MPaの減圧下、20~40℃にて均一になるまで混合した。更に、粘度μ(F)が300mPa・sのα,ω-トリメチルシロキシ-ジメチルジフェニルポリシロキサン30部を加えて-0.04~-0.06MPaの減圧下、20~40℃にて均一になるまで混合して組成物1を調製した。
 組成物1において、(A)成分に対する(F)成分の25℃における粘度の比μ(F)/μ(A)は0.49である。
[実施例2]
 実施例1のγ-アミノプロピルトリエトキシシランの代わりに、3-2-(アミノエチルアミノ)プロピルトリメトキシシラン0.4部を用いた以外は実施例1と同様にして組成物2を調製した。
[実施例3]
 生成物2(分子鎖両末端β-(トリメトキシシリルメチルチオ)エチル基封鎖ジメチルポリシロキサン)を90部、表面処理されていない比表面積が200m2/gの煙霧状シリカ10部を均一に混合し、150℃で2時間、-0.08MPaの減圧下にて混合した。2時間後、得られたベースを3本ロールに一回通した後、メチルトリメトキシシラン4.5部とメチルトリメトキシシランの加水分解縮合物(平均3~4量体)を1.5部、更にγ-アミノプロピルトリエトキシシラン0.4部とテトラメチルグアニジルプロピルトリメトキシシラン0.7部を加えて、-0.04~-0.06MPaの減圧下、20~40℃にて均一になるまで混合した。更に、粘度μ(F)が300mPa・sのα,ω-トリメチルシロキシ-ジメチルジフェニルポリシロキサン30部を加えて-0.04~-0.06MPaの減圧下、20~40℃にて均一になるまで混合して組成物3を調製した。
 組成物3において、(A)成分に対する(F)成分の25℃における粘度の比μ(F)/μ(A)は0.25である。
[実施例4]
 実施例3のγ-アミノプロピルトリエトキシシランの代わりに、3-2-(アミノエチルアミノ)プロピルトリメトキシシラン0.4部を用いた以外は実施例3と同様にして組成物4を調製した。
[実施例5]
 生成物1(分子鎖両末端β-(トリメトキシシリルメチルチオ)エチル基封鎖ジメチルポリシロキサン)を90部、表面処理されていない比表面積が200m2/gの煙霧状シリカ10部を均一に混合し、150℃で2時間、-0.08MPaの減圧下にて混合した。2時間後、得られたベースを3本ロールに一回通した後、メチルトリメトキシシラン4.5部とメチルトリメトキシシランの加水分解縮合物(平均3~4量体)を1.5部、更にγ-アミノプロピルトリエトキシシラン0.4部とテトラメチルグアニジルプロピルトリメトキシシラン0.7部を加えて、-0.04~-0.06MPaの減圧下、20~40℃にて均一になるまで混合した。更に、粘度μ(F)が60mPa・sのポリエーテル変性ポリシロキサン(X-22-2516:信越化学工業(株)製)を30部加えて-0.04~-0.06MPaの減圧下、20~40℃にて均一になるまで混合して組成物5を調製した。
 組成物5において、(A)成分に対する(F)成分の25℃における粘度の比μ(F)/μ(A)は0.098である。
[実施例6]
 実施例5のγ-アミノプロピルトリエトキシシランの代わりに、3-2-(アミノエチルアミノ)プロピルトリメトキシシラン0.4部を用いた以外は実施例5と同様にして組成物6を調製した。
[比較例1]
 実施例1の組成物から粘度が300mPa・sのα,ω-トリメチルシロキシ-ジメチルジフェニルポリシロキサン30部を除いたこと以外は、実施例1と同様にして組成物7を調製した。
[比較例2]
 実施例1の生成物1(分子鎖両末端β-(トリメトキシシリルメチルチオ)エチル基封鎖ジメチルポリシロキサン)の代わりに、分子鎖両末端がトリメトキシシリル基で封鎖された、25℃における粘度が900mPa・sのポリジメチルシロキサンに変更した以外は、実施例1と同様にして組成物8を調製した。
[比較例3]
 分子鎖両末端がトリメトキシシリル基で封鎖された、25℃における粘度が900mPa・sのポリジメチルシロキサン90部、表面処理されていない比表面積が200m2/gの煙霧状シリカ10部を均一に混合し、150℃で2時間、-0.08MPaの減圧下にて混合した。2時間後、得られたベースを3本ロールに一回通した後、メチルトリメトキシシラン4.5部とメチルトリメトキシシランの加水分解縮合物(平均3~4量体)を1.5部、更にγ-アミノプロピルトリエトキシシラン0.4部とイソプロポキシチタンビス(エチルアセトアセテート)2部を加えて、-0.04~-0.06MPaの減圧下、20~40℃にて均一になるまで混合した。更に、粘度が300mPa・sのα,ω-トリメチルシロキシ-ジメチルジフェニルポリシロキサン30部を加えて-0.04~-0.06MPaの減圧下、20~40℃にて均一になるまで混合して組成物9を調製した。
<性能試験>
 上記で得られた組成物を用いて、下記に示す試験方法により各種性能試験を行った。
[試験方法]
(A)硬化性確認
 JIS K 6249に規定された方法に準じて、塗布厚200μmにおけるタックフリータイムを測定した。
(B)硬化後物性
 2mm厚のシートを成形し、23℃/50%RHで7日間硬化させ、JIS K 6249に準じてゴム物性(硬さ、伸び、引張強さ)を測定した。
(C)塗装作業性
 上記組成物1~9 90gとキシレン10gを混合し、試験用サンプルを調製した。大きさ1,000mm×1,000mm×1mm(厚)のブリキ板中央に、100mm×100mm×1mm(厚)の軟鋼板を貼り付け、ブリキ板を垂直に立て掛けた状態でエアレススプレー塗装を行い、スプレー時の器具のツマリの有無(スプレー性)の確認(目視)及び膜のタレが生じる限界膜厚を塗膜乾燥後測定した。
(D)防汚性
 エポキシ系防食塗料(膜厚200μm)を用いて予め塗装した被塗板に、硬化膜厚が200μmになるように組成物1~9を塗装して試験塗板とした。このように作製した試験塗板を、23℃/50%RHの条件で7日間かけて硬化させた。硬化後の試験塗板を神奈川県海岸の沖合いに1.5mの深さで24ヶ月間にわたって懸垂試験を行った。3,6,12及び24ヶ月経過時のフジツボ等の貝類、海藻類の付着状況を観察した。
(E)塗料安定性
 塗料調製後、密閉した状態で23℃/6ヶ月経過後の塗料状態(安定性)及び塗装作業性について試験を行った。塗料状態(安定性)は目視及び開缶後の塗料を撹拌し、ツブゲージにて検査した。塗装作業性は上記と同様にして測定した。
(F)接着性
 エポキシ系防食塗料(膜厚200μm)を用いて予め塗装した被塗板に、硬化膜厚が200μmになるように組成物1~9を塗布して試験塗板とした。塗布してから一定時間で塗膜表面に、カッターを使用して防食塗料まで達する切り込みを入れた後、切り込みに対して垂直方向に指で強く擦る事で塗膜の接着性を評価した。塗膜が剥がれない場合を○、塗膜が剥がれる場合を×として評価した。
 これらの試験結果を表1,2に示す。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 なお、これまで本発明を上記に示した実施形態をもって説明してきたが、本発明は上記実施形態に限定されるものではなく、他の実施形態、追加、変更、削除など、当業者が想到することができる範囲内で変更することができ、いずれの態様においても本発明の作用効果を奏する限り、本発明の範囲に含まれるものである。
 本発明組成物は、環境面を重視した、有機錫化合物及びMEKOを含有しない組成物である。また、硬化性に優れ、得られた塗膜は、塗膜強度、塗膜硬度、ゴム物性、耐水性、耐湿性を有することから、船底塗料、発電所海水導入管用塗料、魚網塗料等の耐水性が必要なコーティング材料、LCDやPDP等の耐湿性が必要な防湿コーティング材料、電線と樹脂被覆間の接着シール、樹脂ケース、又は樹脂コネクタと電線の間の接着シール、減圧又は加圧チャンバーの接着シール等の用途に対する適合性が高く、とりわけ、船底塗料、発電所海水導入管用塗料、魚網塗料等として、これらの表面への水生生物の付着・生育を防止することができる。

Claims (8)

  1.  下記(A)~(C)成分及び(F)成分を含有する室温硬化性オルガノポリシロキサン組成物。
    (A) 下記一般式(1)で示される加水分解性シリル基含有1価有機基を分子鎖末端に有するオルガノポリシロキサン   100質量部
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は、互いに独立して、非置換もしくは置換の炭素原子数1~10のアルキル基、または非置換もしくは置換の炭素原子数6~10のアリール基を表し、R2は、互いに独立して、非置換もしくは置換の炭素原子数1~10のアルキル基、または非置換もしくは置換の炭素原子数6~10のアリール基を表し、R3はそれぞれ同一若しくは異なってもよく、非置換もしくは置換の炭素原子数1~20のアルキル基又は水素原子を表す。mは、1~3の整数であり、nは2以上の整数である。破線は結合手を表す。)
    (B) 下記一般式(2)で示される加水分解性(オルガノ)シラン化合物及び/又はその部分加水分解縮合物   0.1~30質量部
    Figure JPOXMLDOC01-appb-C000002
    (式中、R5は、炭素原子数1~10のハロゲン原子置換又は非置換一価炭化水素基であり、Xは加水分解性基であり、aは3又は4である。)
    (C) 硬化触媒   0.001~10質量部
    (F) ブリードオイル   0.01~100質量部
  2.  前記(A)成分が下記構造式(3)で示されるものである請求項1記載の室温硬化性オルガノポリシロキサン組成物。
    Figure JPOXMLDOC01-appb-C000003
    (式中、R1、R2、m、nは前記と同じ意味を表し、Zは主鎖の直鎖状構造、分岐鎖状構造、環状構造及び/又は架橋構造のオルガノポリシロキサン骨格を表す。)
  3.  前記(A)成分の25℃における粘度μ(A)が100~100,000mPa・sである請求項1又は2記載の室温硬化性オルガノポリシロキサン組成物。
  4.  前記(F)成分の25℃における粘度μ(F)が20~30,000mPa・sである請求項1~3のいずれか1項記載の室温硬化性オルガノポリシロキサン組成物。
  5.  前記(A)成分の25℃における粘度に対する(F)成分の25℃における粘度比μ(F)/μ(A)が、0.05~1.0である請求項1~4のいずれか1項に記載の室温硬化性オルガノポリシロキサン組成物。
  6.  更に、
    (D)充填剤   1~100質量部及び
    (E)接着促進剤   0.1~10質量部
    から選ばれる1種以上を含有する請求項1~5のいずれか1項記載の室温硬化性オルガノポリシロキサン組成物。
  7.  請求項1~6のいずれか1項記載の室温硬化性オルガノポリシロキサン組成物の硬化物でコーティングされた基材。
  8.  基材が水中構造物である請求項7に記載の基材。
PCT/JP2018/010930 2017-04-07 2018-03-20 室温硬化性オルガノポリシロキサン組成物及び基材 WO2018186167A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019511132A JP6939878B2 (ja) 2017-04-07 2018-03-20 室温硬化性オルガノポリシロキサン組成物及び基材
EP18780759.9A EP3608367A4 (en) 2017-04-07 2018-03-20 COMPOSITION OF CURING ORGANOPOLYSILOXANE AT ROOM TEMPERATURE, AND BASE MATERIAL
US16/500,989 US10941317B2 (en) 2017-04-07 2018-03-20 Room-temperature-curable organopolysiloxane composition and base material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017076512 2017-04-07
JP2017-076512 2017-04-07

Publications (1)

Publication Number Publication Date
WO2018186167A1 true WO2018186167A1 (ja) 2018-10-11

Family

ID=63712111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010930 WO2018186167A1 (ja) 2017-04-07 2018-03-20 室温硬化性オルガノポリシロキサン組成物及び基材

Country Status (4)

Country Link
US (1) US10941317B2 (ja)
EP (1) EP3608367A4 (ja)
JP (1) JP6939878B2 (ja)
WO (1) WO2018186167A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019143110A (ja) * 2018-02-23 2019-08-29 中国塗料株式会社 防汚塗料組成物、防汚塗膜、防汚塗膜付き基材及びその製造方法、並びに防汚塗料組成物の貯蔵安定性の改善方法
CN114025474A (zh) * 2021-11-22 2022-02-08 百强电子(深圳)有限公司 印刷电路板及其制造方法
US11377522B2 (en) * 2019-05-14 2022-07-05 Tokyo Ohka Kogyo Co., Ltd. Silicon-containing polymer, film-forming composition, method for forming silicon-containing polymer coating, method for forming silica-based coating, and production method for silicon-containing polymer
WO2022163515A1 (ja) 2021-01-26 2022-08-04 信越化学工業株式会社 縮合硬化型シリコーン組成物、硬化物及び該硬化物の製造方法
WO2023054487A1 (ja) * 2021-09-29 2023-04-06 中国塗料株式会社 防汚塗料組成物

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111138983B (zh) * 2020-01-09 2022-09-13 苏州市新广益电子股份有限公司 一种硅胶声学胶膜及其生产方法
CN112406129B (zh) * 2020-10-29 2021-11-30 清华大学 一种橡胶件的生产方法及生产系统
CN112391120B (zh) * 2021-01-21 2021-05-14 佛山市纳德新材料科技有限公司 一种纯色瓷砖防渗蜡防污剂及其制备方法与应用

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56501604A (ja) * 1979-12-03 1981-11-05
JPS56501650A (ja) * 1979-12-03 1981-11-12
JPS56501682A (ja) * 1979-12-03 1981-11-19
JPS5813673A (ja) 1981-07-16 1983-01-26 Chugoku Toryo Kk 海洋生物付着防止用塗料
JPS61108665A (ja) * 1984-11-02 1986-05-27 Toshiba Silicone Co Ltd 室温硬化性組成物
JPS6284166A (ja) 1985-10-08 1987-04-17 Chugoku Toryo Kk 無毒性防汚塗料組成物
JPH07503748A (ja) * 1992-02-07 1995-04-20 ミネソタ マイニング アンド マニュファクチャリング カンパニー 湿分硬化性ポリシロキサン剥離コーティング組成物
JP2503986B2 (ja) 1986-08-08 1996-06-05 関西ペイント株式会社 無毒性防汚塗料組成物
JP2952375B2 (ja) 1990-03-05 1999-09-27 関西ペイント株式会社 無毒性防汚塗料組成物
JP2005089560A (ja) * 2003-09-16 2005-04-07 Shin Etsu Chem Co Ltd 防汚性縮合硬化型オルガノポリシロキサン組成物及び水中構造物
JP2006160983A (ja) * 2004-12-10 2006-06-22 Shin Etsu Chem Co Ltd 防汚性縮合硬化型オルガノポリシロキサン組成物及び水中構造物
JP2007238820A (ja) * 2006-03-09 2007-09-20 Chugoku Marine Paints Ltd オルガノポリシロキサン親水性組成物、その塗膜、その硬化物、およびその用途
JP2009185169A (ja) * 2008-02-06 2009-08-20 Chugoku Marine Paints Ltd 新規ポリオルガノシロキサン及びそれを架橋剤として含有する室温硬化性シリコーン組成物
JP2014108950A (ja) * 2012-12-03 2014-06-12 Toyo Tire & Rubber Co Ltd シラン化合物及びその製造方法
JP2017203025A (ja) * 2017-03-09 2017-11-16 信越化学工業株式会社 有機ケイ素化合物およびその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1421129B1 (de) * 2001-08-28 2005-06-15 Consortium für elektrochemische Industrie GmbH Einkomponentige alkoxysilanterminierte polymere enthaltende schnell härtende abmischungen
JP2003147208A (ja) * 2001-11-14 2003-05-21 Shin Etsu Chem Co Ltd 室温硬化性オルガノポリシロキサン組成物

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56501650A (ja) * 1979-12-03 1981-11-12
JPS56501682A (ja) * 1979-12-03 1981-11-19
JPS56501604A (ja) * 1979-12-03 1981-11-05
JPS5813673A (ja) 1981-07-16 1983-01-26 Chugoku Toryo Kk 海洋生物付着防止用塗料
JPS61108665A (ja) * 1984-11-02 1986-05-27 Toshiba Silicone Co Ltd 室温硬化性組成物
JPS6284166A (ja) 1985-10-08 1987-04-17 Chugoku Toryo Kk 無毒性防汚塗料組成物
JP2503986B2 (ja) 1986-08-08 1996-06-05 関西ペイント株式会社 無毒性防汚塗料組成物
JP2952375B2 (ja) 1990-03-05 1999-09-27 関西ペイント株式会社 無毒性防汚塗料組成物
JPH07503748A (ja) * 1992-02-07 1995-04-20 ミネソタ マイニング アンド マニュファクチャリング カンパニー 湿分硬化性ポリシロキサン剥離コーティング組成物
JP2005089560A (ja) * 2003-09-16 2005-04-07 Shin Etsu Chem Co Ltd 防汚性縮合硬化型オルガノポリシロキサン組成物及び水中構造物
JP2006160983A (ja) * 2004-12-10 2006-06-22 Shin Etsu Chem Co Ltd 防汚性縮合硬化型オルガノポリシロキサン組成物及び水中構造物
JP2007238820A (ja) * 2006-03-09 2007-09-20 Chugoku Marine Paints Ltd オルガノポリシロキサン親水性組成物、その塗膜、その硬化物、およびその用途
JP2009185169A (ja) * 2008-02-06 2009-08-20 Chugoku Marine Paints Ltd 新規ポリオルガノシロキサン及びそれを架橋剤として含有する室温硬化性シリコーン組成物
JP2014108950A (ja) * 2012-12-03 2014-06-12 Toyo Tire & Rubber Co Ltd シラン化合物及びその製造方法
JP2017203025A (ja) * 2017-03-09 2017-11-16 信越化学工業株式会社 有機ケイ素化合物およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3608367A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019143110A (ja) * 2018-02-23 2019-08-29 中国塗料株式会社 防汚塗料組成物、防汚塗膜、防汚塗膜付き基材及びその製造方法、並びに防汚塗料組成物の貯蔵安定性の改善方法
JP7042111B2 (ja) 2018-02-23 2022-03-25 中国塗料株式会社 防汚塗料組成物、防汚塗膜、防汚塗膜付き基材及びその製造方法、並びに防汚塗料組成物の貯蔵安定性の改善方法
US11377522B2 (en) * 2019-05-14 2022-07-05 Tokyo Ohka Kogyo Co., Ltd. Silicon-containing polymer, film-forming composition, method for forming silicon-containing polymer coating, method for forming silica-based coating, and production method for silicon-containing polymer
JP7464443B2 (ja) 2019-05-14 2024-04-09 東京応化工業株式会社 含ケイ素ポリマー、膜形成用組成物、含ケイ素ポリマー被膜の形成方法、シリカ系被膜の形成方法、及び含ケイ素ポリマーの製造方法
WO2022163515A1 (ja) 2021-01-26 2022-08-04 信越化学工業株式会社 縮合硬化型シリコーン組成物、硬化物及び該硬化物の製造方法
KR20230132446A (ko) 2021-01-26 2023-09-15 신에쓰 가가꾸 고교 가부시끼가이샤 축합 경화형 실리콘 조성물, 경화물 및 그 경화물의 제조 방법
WO2023054487A1 (ja) * 2021-09-29 2023-04-06 中国塗料株式会社 防汚塗料組成物
CN114025474A (zh) * 2021-11-22 2022-02-08 百强电子(深圳)有限公司 印刷电路板及其制造方法

Also Published As

Publication number Publication date
US20200032103A1 (en) 2020-01-30
EP3608367A1 (en) 2020-02-12
JP6939878B2 (ja) 2021-09-22
EP3608367A4 (en) 2020-12-23
US10941317B2 (en) 2021-03-09
JPWO2018186167A1 (ja) 2020-05-14

Similar Documents

Publication Publication Date Title
JP6939878B2 (ja) 室温硬化性オルガノポリシロキサン組成物及び基材
JP4777591B2 (ja) 室温硬化性オルガノポリシロキサン組成物
DK2172523T3 (en) PROCEDURE FOR THE PREPARATION OF ORGANOPOLYSILOXAN COMPOSITION VULCANIZABLE AT ROOM TEMPERATURE AND BASIC MATERIAL COATED WITH THE COMPOSITION OBTAINED IN THE PROCEDURE
US6906161B2 (en) Room-temperature curable organopolysiloxane composition
JP5186079B2 (ja) オルガノポリシロキサン組成物、塗料添加剤および防汚塗料組成物
JP4508794B2 (ja) 防汚性縮合硬化型オルガノポリシロキサン組成物及び水中構造物
JP6729687B2 (ja) 室温硬化性オルガノポリシロキサン組成物の硬化物でコーティングされた水中構造物、水中構造物のコーティング用の室温硬化性オルガノポリシロキサン組成物及び水中構造物表面への水生生物の付着・生育を防止する方法
JP2007106944A (ja) 室温硬化性オルガノポリシロキサン組成物
KR20170106404A (ko) 실온 경화성 오르가노폴리실록산 조성물
WO2022113437A1 (ja) 室温硬化性オルガノポリシロキサン組成物及び物品並びに加水分解性オルガノシラン化合物及びその製造方法
JP5882851B2 (ja) 変色性オルガノポリシロキサン組成物及び該組成物で接着した構造体
JP2003221506A (ja) 室温硬化性オルガノポリシロキサン組成物
JP2006131824A (ja) 室温硬化性オルガノポリシロキサン組成物
JP2006265372A (ja) 室温硬化性オルガノポリシロキサン組成物
JP3210815B2 (ja) 常温硬化性オルガノポリシロキサン組成物及びその硬化物
JP5482698B2 (ja) 2液混合型室温硬化性オルガノポリシロキサン組成物
JP4386190B2 (ja) 防汚性縮合硬化型オルガノポリシロキサン組成物及び水中構造物
WO2014185276A1 (ja) アルミニウムキレート化合物及びこれを含有する室温硬化性樹脂組成物
JP4178396B2 (ja) 防汚方法及び防汚性構造物
KR101856788B1 (ko) 경화성 오르가노폴리실록산 조성물
JP5241613B2 (ja) アクリル樹脂用接着剤
JP2023161342A (ja) 室温硬化性オルガノポリシロキサン組成物及び物品
JP2013049747A (ja) 室温硬化性オルガノポリシロキサン組成物及びその製造方法並びに基材
KR20240052040A (ko) 오르가노폴리실록산 화합물, 실온 경화성 오르가노폴리실록산 조성물 및 물품

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18780759

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019511132

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018780759

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018780759

Country of ref document: EP

Effective date: 20191107