WO2018186086A1 - 俯瞰映像生成装置、俯瞰映像表示装置、俯瞰映像生成方法およびプログラム - Google Patents

俯瞰映像生成装置、俯瞰映像表示装置、俯瞰映像生成方法およびプログラム Download PDF

Info

Publication number
WO2018186086A1
WO2018186086A1 PCT/JP2018/008416 JP2018008416W WO2018186086A1 WO 2018186086 A1 WO2018186086 A1 WO 2018186086A1 JP 2018008416 W JP2018008416 W JP 2018008416W WO 2018186086 A1 WO2018186086 A1 WO 2018186086A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
reference object
overhead
video
host vehicle
Prior art date
Application number
PCT/JP2018/008416
Other languages
English (en)
French (fr)
Inventor
浅山 学
昇 勝俣
拓之 照内
Original Assignee
株式会社Jvcケンウッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017073795A external-priority patent/JP2018182373A/ja
Priority claimed from JP2017098054A external-priority patent/JP6730618B2/ja
Priority claimed from JP2017098143A external-priority patent/JP6730619B2/ja
Application filed by 株式会社Jvcケンウッド filed Critical 株式会社Jvcケンウッド
Priority to EP18781926.3A priority Critical patent/EP3550829B1/en
Publication of WO2018186086A1 publication Critical patent/WO2018186086A1/ja
Priority to US16/374,760 priority patent/US10873720B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • H04N5/262Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
    • H04N5/2628Alteration of picture size, shape, position or orientation, e.g. zooming, rotation, rolling, perspective, translation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/44Receiver circuitry for the reception of television signals according to analogue transmission standards
    • H04N5/445Receiver circuitry for the reception of television signals according to analogue transmission standards for displaying additional information
    • H04N5/44504Circuit details of the additional information generator, e.g. details of the character or graphics signal generator, overlay mixing circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/20Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/22Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles for viewing an area outside the vehicle, e.g. the exterior of the vehicle
    • B60R1/23Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles for viewing an area outside the vehicle, e.g. the exterior of the vehicle with a predetermined field of view
    • B60R1/27Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles for viewing an area outside the vehicle, e.g. the exterior of the vehicle with a predetermined field of view providing all-round vision, e.g. using omnidirectional cameras
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/20Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/22Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles for viewing an area outside the vehicle, e.g. the exterior of the vehicle
    • B60R1/28Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles for viewing an area outside the vehicle, e.g. the exterior of the vehicle with an adjustable field of view
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/027Parking aids, e.g. instruction means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0481Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
    • G06F3/04817Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance using icons
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/30Scenes; Scene-specific elements in albums, collections or shared content, e.g. social network photos or video
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/63Control of cameras or camera modules by using electronic viewfinders
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/63Control of cameras or camera modules by using electronic viewfinders
    • H04N23/633Control of cameras or camera modules by using electronic viewfinders for displaying additional information relating to control or operation of the camera
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/698Control of cameras or camera modules for achieving an enlarged field of view, e.g. panoramic image capture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • H04N5/262Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
    • H04N5/265Mixing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • H04N5/262Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
    • H04N5/272Means for inserting a foreground image in a background image, i.e. inlay, outlay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30236Traffic on road, railway or crossing
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/168Driving aids for parking, e.g. acoustic or visual feedback on parking space

Definitions

  • the present invention relates to an overhead video generation device, an overhead video display device, an overhead video generation method, and a program.
  • Patent Document 1 A technique related to a vehicle periphery display device that assists parking by displaying an overhead video of a vehicle together with a vehicle image when the vehicle is parked is known (see, for example, Patent Document 1 and Patent Document 2).
  • the technique described in Patent Document 1 sets a boundary between adjacent parking areas from a car stop extending in the vehicle width direction in a parking lot where a white line is not drawn on the road surface as a boundary line between the parking areas, Superimposed display.
  • Patent Literature 2 displays an extended line image indicating an extended line of the parking frame superimposed on the overhead video when the predetermined portion of the parking frame is outside the display range.
  • the technique described in Patent Document 1 requires a device that indicates a boundary between adjacent parking areas, such as a car stop extending in the vehicle width direction.
  • the technique described in Patent Document 2 requires that the parking frame extends in the vehicle direction. For example, when a straight frame line that does not extend in the vehicle direction exists outside the display range, neither technique can be applied. Further, when the vehicle is parked, the relative orientation of the vehicle and the reference line including the parking lane line and the vehicle stop varies in conjunction with the steering operation. In the bird's-eye view video in which the direction of the host vehicle icon is fixed, the direction of the reference object changes in conjunction with the steering operation with respect to the host vehicle icon.
  • the present invention has been made in view of the above, and an object thereof is to enable appropriate confirmation of the relative positional relationship between a vehicle and the surroundings.
  • an overhead image generation apparatus includes a video data acquisition unit that acquires peripheral video data captured by a capturing unit that captures the periphery of a vehicle, and the video data.
  • An overhead video generation unit that performs a viewpoint conversion process and a synthesis process including a host vehicle icon indicating a vehicle on the peripheral video acquired by the acquisition unit, and generates an overhead video that displays a predetermined display range from the vehicle, and surroundings of the vehicle
  • a reference object detection unit that detects a reference object in the vehicle, a direction specifying unit that specifies a relative direction between the reference object detected by the reference object detection unit and the vehicle, and a relative relationship between the reference object and the vehicle.
  • a superimposition processing unit that generates a superimposed video in which information indicating a direction is superimposed on the overhead view video generated by the overhead view video generation unit as a relative orientation with respect to the host vehicle icon; Parts, characterized in that it comprises a display control unit for displaying on the display unit a superimposed image generated.
  • An overhead video display device is at least one of the above-described overhead video generation device, a photographing unit that supplies peripheral video data to the video data acquisition unit, and a display unit that causes the display control unit to display a superimposed video. It is characterized by providing.
  • a bird's-eye view video generation method includes a video data acquisition step of acquiring peripheral video data captured by a photographing unit that captures the periphery of a vehicle, a viewpoint conversion process and a vehicle on the peripheral video acquired in the video data acquisition step.
  • An overhead view video generation step for generating a bird's-eye view video for displaying a predetermined display range from the vehicle, a reference target detection step for detecting a reference target around the vehicle, and the reference
  • a direction specifying step for specifying a relative direction between the reference object detected in the object detection step and the vehicle, and information indicating a relative direction between the reference object and the vehicle relative to the vehicle icon.
  • a superimposition processing step for generating a superimposed image superimposed on the overhead view video generated in the overhead view video generation step as a general orientation; And a display control step of displaying the superimposed image generated by the processing steps in the display unit.
  • a program includes a video data acquisition step of acquiring peripheral video data captured by a photographing unit that captures the periphery of a vehicle, and a host vehicle indicating a viewpoint conversion process and a vehicle in the peripheral video acquired in the video data acquisition step
  • An overhead view video generation step for performing a synthesis process including an icon and generating an overhead view video for displaying a predetermined display range from the vehicle, a reference target detection step for detecting a reference target around the vehicle, and the reference target detection step
  • a direction specifying step for specifying a relative orientation between the reference object and the vehicle detected in step (b), and information indicating a relative orientation between the reference object and the vehicle relative to the vehicle icon.
  • FIG. 1 is a block diagram illustrating a configuration example of the overhead video generation apparatus according to the first embodiment.
  • FIG. 2 is a diagram illustrating an example of an overhead video generated by the overhead video generation device according to the first embodiment.
  • FIG. 3 is a diagram illustrating an example of the superimposed video generated by the overhead view video generation device according to the first embodiment.
  • FIG. 4 is a diagram illustrating another example of the superimposed video generated by the overhead view video generation device according to the first embodiment.
  • FIG. 5 is a flowchart showing a flow of processing in the overhead view video generation apparatus according to the first embodiment.
  • FIG. 6 is a diagram illustrating an example of a positional relationship among the host vehicle, the reference object, the display range, and the imaging range in the first embodiment.
  • FIG. 1 is a block diagram illustrating a configuration example of the overhead video generation apparatus according to the first embodiment.
  • FIG. 2 is a diagram illustrating an example of an overhead video generated by the overhead video generation device according to the first embodiment.
  • FIG. 3
  • FIG. 7 is a diagram illustrating another example of the positional relationship among the host vehicle, the reference object, the display range, and the imaging range in the first embodiment.
  • FIG. 8 is a diagram illustrating another example of the superimposed video generated by the overhead view video generation device according to the first embodiment.
  • FIG. 9 is a diagram illustrating another example of the superimposed video generated by the overhead view video generation device according to the first embodiment.
  • FIG. 10 is a diagram illustrating another example of the positional relationship among the host vehicle, the reference object, the display range, and the imaging range in the first embodiment.
  • FIG. 11 is a diagram illustrating an example of a positional relationship among the host vehicle, the reference object, the display range, and the imaging range in the second embodiment.
  • FIG. 12 is a diagram illustrating an example of a superimposed video generated by the overhead view video generation device according to the second embodiment.
  • FIG. 13 is a diagram illustrating another example of the superimposed video generated by the overhead view video generation device according to the second embodiment.
  • FIG. 14 is a diagram illustrating another example of the positional relationship among the host vehicle, the reference object, the display range, and the shooting range in the second embodiment.
  • FIG. 15 is a diagram illustrating an example of an overhead video generated by the overhead video generation device according to the second embodiment.
  • FIG. 16 is a diagram illustrating an example of a positional relationship among the host vehicle, the reference object, the display range, and the imaging range in the third embodiment.
  • FIG. 17 is a diagram illustrating an example of a superimposed video generated by the overhead video generation device according to the fourth embodiment.
  • FIG. 18 is a diagram illustrating another example of the superimposed video generated by the overhead video generation device according to the fourth embodiment.
  • FIG. 19 is a flowchart showing a flow of processing in the overhead view video generation device according to the fourth embodiment.
  • FIG. 20 is a diagram illustrating an example of a positional relationship among the host vehicle, the reference object, the display range, and the shooting range.
  • FIG. 21 is a diagram illustrating another example of the positional relationship among the host vehicle, the reference object, the display range, and the imaging range.
  • FIG. 22 is a diagram illustrating another example of the superimposed video generated by the overhead video generation device according to the fourth embodiment.
  • FIG. 20 is a diagram illustrating an example of a positional relationship among the host vehicle, the reference object, the display range, and the shooting range.
  • FIG. 21 is a diagram illustrating another example of the positional relationship among the host vehicle
  • FIG. 23 is a diagram illustrating another example of the superimposed video generated by the overhead video generation device according to the fourth embodiment.
  • FIG. 24 is a diagram illustrating another example of the positional relationship among the host vehicle, the reference object, the display range, and the imaging range.
  • FIG. 25 is a diagram illustrating another example of the superimposed video generated by the overhead video generation device according to the fourth embodiment.
  • FIG. 26 is a flowchart showing the flow of processing in the overhead view video generation device according to the fifth embodiment.
  • FIG. 27 is a diagram illustrating an example of a positional relationship among the host vehicle, the reference object, the display range, and the shooting range.
  • FIG. 28 is a diagram illustrating an example of a superimposed image generated by the overhead image generation device according to the fifth embodiment.
  • FIG. 29 is a diagram illustrating another example of the positional relationship among the host vehicle, the reference object, the display range, and the shooting range.
  • FIG. 30 is a diagram illustrating another example of the superimposed video generated by the overhead video generation apparatus according to the fifth embodiment.
  • FIG. 31 is a diagram illustrating an example of the positional relationship between the host vehicle, the reference object, the display range, and the imaging range.
  • FIG. 32 is a diagram illustrating an example of the superimposed video generated by the overhead video generation apparatus according to the sixth embodiment.
  • FIG. 33 is a diagram illustrating another example of the positional relationship among the host vehicle, the reference object, the display range, and the shooting range.
  • FIG. 34 is a diagram illustrating another example of the superimposed video generated by the overhead video generation apparatus according to the sixth embodiment.
  • FIG. 35 is a diagram illustrating another example of the superimposed video generated by the overhead video generation apparatus according to the sixth embodiment.
  • FIG. 36 is a flowchart showing a flow of processing in the overhead view video generation device according to the seventh embodiment.
  • FIG. 37 is a diagram illustrating an example of the positional relationship between the host vehicle, the reference object, the display range, and the shooting range.
  • FIG. 38 is a diagram illustrating another example of the positional relationship among the host vehicle, the reference object, the display range, and the imaging range.
  • FIG. 39 is a diagram illustrating another example of the positional relationship among the host vehicle, the reference object, the display range, and the shooting range.
  • FIG. 40 is a diagram illustrating an example of a positional relationship among the own vehicle, the reference object, the display range, and the imaging range.
  • FIG. 41 is a diagram illustrating an example of the superimposed video generated by the overhead video generation apparatus according to the ninth embodiment.
  • FIG. 42 is a diagram illustrating an example of the positional relationship between the host vehicle, the reference object, the display range, and the shooting range.
  • FIG. 43 is a diagram illustrating another example of the superimposed video generated by the overhead video generation apparatus according to the ninth embodiment.
  • FIG. 1 is a block diagram illustrating a configuration example of the overhead video generation apparatus according to the first embodiment.
  • the overhead view video display device 1 generates a first overhead view video 100 (see FIG. 2) of the vehicle.
  • the overhead view video generation device 40 and the overhead view video display device 1 are mounted on a vehicle.
  • the overhead image generation device 40 and the overhead image display device 1 may be portable devices that can be used in the vehicle.
  • the overhead view video display device 1 will be described with reference to FIG.
  • the overhead view video display device 1 includes a front camera (shooting unit) 11, a rear camera (shooting unit) 12, a left side camera (shooting unit) 13, a right side camera (shooting unit) 14, and a display panel (display unit). ) 31 and a bird's-eye view video generation device 40.
  • the front camera 11 is an overhead video camera.
  • the front camera 11 is disposed in front of the vehicle and captures a periphery around the front of the vehicle.
  • the front camera 11 shoots the first shooting range A1 (see FIG. 6) of about 180 °, for example.
  • the first shooting range A1 includes a wider range in front of the host vehicle V than the display range A of the first bird's-eye view image 100 (see FIG. 6).
  • the front camera 11 outputs the captured video to the video data acquisition unit 42 of the overhead video generation device 40.
  • the rear camera 12 is an overhead video camera.
  • the rear camera 12 is disposed behind the vehicle and photographs a periphery around the rear of the vehicle.
  • the rear camera 12 shoots the second shooting range A2 (see FIG. 6) of about 180 °, for example.
  • the second shooting range A ⁇ b> 2 includes a wider range behind the host vehicle V than the display range A of the first bird's-eye view image 100.
  • the rear camera 12 outputs the captured video to the video data acquisition unit 42 of the overhead video generation device 40.
  • the left side camera 13 is an overhead video camera.
  • the left-side camera 13 is disposed on the left side of the vehicle and captures the periphery around the left side of the vehicle.
  • the left side camera 13 shoots a third shooting range A3 (see FIG. 6) of about 180 °, for example.
  • the third shooting range A3 includes a wider range on the left side of the host vehicle V than the display range A of the first bird's-eye view video 100.
  • the left side camera 13 outputs the captured video to the video data acquisition unit 42 of the overhead video generation device 40.
  • the right side camera 14 is an overhead video camera.
  • the right-side camera 14 is disposed on the right side of the vehicle and captures the periphery around the right side of the vehicle.
  • the right side camera 14 shoots a fourth shooting range A4 (see FIG. 6) of about 180 °, for example.
  • the fourth shooting range A4 includes a wider range on the right side of the host vehicle V than the display range A of the first bird's-eye view video 100.
  • the right-side camera 14 outputs the captured video to the video data acquisition unit 42 of the overhead view video generation device 40.
  • the front camera 11, the rear camera 12, the left side camera 13, and the right side camera 14 photograph all directions of the vehicle.
  • the display panel 31 is a display including, for example, a liquid crystal display (LCD: Liquid Crystal Display) or an organic EL (Organic Electro-Luminescence) display.
  • the display panel 31 displays the first overhead video 100 (see FIG. 2) or the superimposed video 100A (see FIG. 3) based on the video signal output from the overhead video generation device 40 of the overhead video display device 1.
  • the display panel 31 may be dedicated to the overhead view video display device 1 or may be used jointly with other systems including a navigation system, for example.
  • the display panel 31 is disposed at a position that is easily visible to the driver.
  • the overhead image generation device 40 includes a control unit 41 and a storage unit 50.
  • the control unit 41 is an arithmetic processing unit configured with, for example, a CPU (Central Processing Unit).
  • the control unit 41 loads the program stored in the storage unit 50 into the memory and executes instructions included in the program.
  • the control unit 41 includes a video data acquisition unit 42, a vehicle information acquisition unit 43, an overhead video generation unit 44, a reference target detection unit 45, a direction identification unit 46, a superimposition processing unit 48, and a display control unit 49.
  • Have The control unit 41 includes an internal memory (not shown), and the internal memory is used for temporary storage of data in the control unit 41.
  • the video data acquisition unit 42 acquires peripheral video data obtained by photographing the periphery of the vehicle. More specifically, the video data acquisition unit 42 acquires video data output from the front camera 11, the rear camera 12, the left camera 13, and the right camera 14. The video data acquisition unit 42 outputs the acquired video data to the overhead video generation unit 44 and the reference target detection unit 45. Video data acquired from each camera is, for example, a moving image composed of 30 frames of images per second.
  • the vehicle information acquisition unit 43 acquires vehicle information indicating a vehicle status that triggers the start of display of a bird's-eye view image, such as vehicle gear operation information, from CAN (Controller Area Network) or various sensors that sense the state of the vehicle. To do.
  • vehicle information acquisition unit 43 acquires a reverse trigger, for example.
  • vehicle information acquisition unit 43 acquires vehicle speed information, for example.
  • the vehicle information acquisition unit 43 outputs the acquired vehicle information to the overhead view video generation unit 44.
  • the bird's-eye view video generation unit 44 performs a viewpoint conversion process and a synthesis process including the host vehicle icon 110 indicating the vehicle from the surrounding image acquired by the video data acquisition unit 42 so as to look down from the upper side.
  • a first bird's-eye view video 100 displaying the display range A is generated. More specifically, the bird's-eye view image generation unit 44 generates the first bird's-eye view image 100 based on images taken by the front camera 11, the rear camera 12, the left side camera 13, and the right side camera 14.
  • the method for generating the first bird's-eye view image 100 may be any known method and is not limited.
  • the overhead video generation unit 44 outputs the generated first overhead video 100 to the superimposition processing unit 48 and the display control unit 49.
  • the overhead view video generation unit 44 includes a viewpoint conversion processing unit 441, a cut-out processing unit 442, and a composition processing unit 443.
  • the viewpoint conversion processing unit 441 performs viewpoint conversion processing on the surrounding video data acquired by the video data acquisition unit 42 so that the host vehicle V is looked down from above. More specifically, the viewpoint conversion processing unit 441 generates a video on which the viewpoint conversion processing has been performed based on peripheral video data captured by the front camera 11, the rear camera 12, the left side camera 13, and the right side camera 14.
  • the method of viewpoint conversion processing may be any known method and is not limited.
  • the viewpoint conversion processing unit 441 outputs the peripheral video data that has undergone the viewpoint conversion processing to the clipping processing unit 442.
  • the cut-out processing unit 442 performs a cut-out process for cutting out a predetermined range of video from the peripheral video data subjected to the viewpoint conversion process. Which range is the cut-out range is registered and stored in advance.
  • the cutout processing unit 442 outputs the video data of the video that has undergone the cutout processing to the composition processing unit 443.
  • the composition processing unit 443 performs composition processing for synthesizing the video data subjected to the clipping processing.
  • the composition processing unit 443 generates the first bird's-eye view video 100 in which the own vehicle icon 110 is displayed on the synthesized video.
  • the reference object detection unit 45 detects a reference object B that exists farther from the display range A around the vehicle.
  • the reference target detection unit 45 performs object recognition processing on the peripheral video acquired by the video data acquisition unit 42 and detects the reference target B existing farther from the display range A.
  • the reference object detection unit 45 may detect, as the reference object B, an object to be photographed having a linearity of a predetermined length or more from the peripheral video by edge detection processing.
  • the reference object detection unit 45 may detect the reference object B from the surrounding video using a recognition dictionary that stores the reference object B.
  • the object recognition process may be an existing white line detection process, a specific object detection process using a recognition dictionary, or the like, or may be used in combination.
  • the reference object B is an object that has a linearity of a predetermined length or more and serves as a reference for aligning the direction of the host vehicle V during parking.
  • the reference object B is, for example, a curb, a vehicle stop, a parking lot line, a roadway outer line, or a line drawn on the road surface.
  • the reference object B has directionality. In other words, the reference object B exists on a straight line along a predetermined direction.
  • the reference object B extends straight along a predetermined direction without bending or bending. In the object recognition process, an object having a condition as the reference object B is detected.
  • the reference object B When the reference object detection unit 45 detects a plurality of reference objects B, the reference object B may be a reference object B having a small distance from the host vehicle V. Alternatively, the reference object detection unit 45 may select the reference object B present in the traveling direction of the host vehicle V when detecting a plurality of reference objects B. In this case, the reference object detection unit 45 detects the reference object B from the peripheral video in the traveling direction of the host vehicle V. Alternatively, when the reference object detection unit 45 detects a plurality of reference objects B, the reference object B may have a large linear continuity as the reference object B. Alternatively, for example, the reference object detection unit 45 may use the rear frame line as the reference object B when detecting a U-shaped parking frame line.
  • the peripheral image in the traveling direction of the host vehicle V is image data output by at least one of the front camera 11, the rear camera 12, the left camera 13, and the right camera 14 facing the traveling direction of the host vehicle V. It is.
  • the traveling direction of the host vehicle V is the rear, the video data captured by the rear camera 12 and the video data of the rear side of the vehicle among the video data captured by the left side camera 13 and the right side camera 14. It is.
  • priority may be given to video data output by a camera facing in a direction that is more likely to contact the host vehicle V.
  • the video data captured by the rear camera 12 is the video data in the rear side of the vehicle among the video data captured by the left camera 13 and the right camera 14. More priority may be given.
  • the vehicle data in the video data captured by the rear camera 12 or the video data captured by the left-side camera 13 or the right-side camera 14 in the steering direction may be given to the video data in the rear side range of the vehicle among the video data in the rear side range and the video data taken by the right side camera 14 or the left side camera 13 in the direction opposite to the steering direction.
  • the direction specifying unit 46 specifies the relative direction between the reference object B detected by the reference object detection unit 45 and the host vehicle V. More specifically, the direction specifying unit 46 specifies a relative direction with respect to the host vehicle V from the direction and position in the video data of the reference target B detected by the reference target detection unit 45. For example, the direction specifying unit 46 specifies the relative direction with respect to the host vehicle V based on the direction and position in the video data of the reference target B detected by the reference target detection unit 45 and the direction of the optical axis of the photographed camera. May be.
  • the direction specifying unit 46 specifies the relative direction with respect to the host vehicle V based on the direction and position in the video data of the reference target B detected by the reference target detection unit 45 and the direction of the subject of the video data. May be.
  • the relative direction with respect to the host vehicle V is a relative direction with respect to the extending direction L in the front-rear direction of the host vehicle.
  • the relative orientation of the reference target B with respect to the host vehicle V is an angle ⁇ between the extending direction of the reference target B and the direction of the extending direction L in the front-rear direction of the host vehicle V.
  • the superimposition processing unit 48 uses the information indicating the relative orientation of the reference object B and the host vehicle V as the relative orientation with the host vehicle icon 110 as a reference to the first overhead view video 100 generated by the overhead view video generating unit 44. A superimposed video 100A is generated.
  • the superimposition processing unit 48 indicates information indicating the relative direction between the reference target B and the host vehicle V detected by the direction specifying unit 46 as a reference direction icon (information indicating the direction) 120, A superimposed image 100A superimposed on the overhead image 100 is generated. More specifically, the superimposition processing unit 48 superimposes the reference direction icon 120 so that the angle between the reference direction icon 120 and the direction of the extending direction L in the front-rear direction of the host vehicle V is ⁇ in the superimposed image 100A. .
  • the reference direction icon 120 is an icon for informing the direction of the reference target B.
  • the reference direction icon 120 is a broken line extending along the extending direction of the reference object B.
  • the superimposition processing unit 48 superimposes the reference orientation icon 120 on the side where the reference target B exists with respect to the host vehicle icon 110 in the first bird's-eye view video 100. For example, when the reference object B is detected behind the host vehicle V, the superimposition processing unit 48 superimposes the reference direction icon 120 on the rear image 102 that is behind the host vehicle icon 110 in the first overhead image 100. . More specifically, for example, when the reference object B is detected behind the host vehicle V, the superimposition processing unit 48 sets the reference orientation icon 120 with the center of the rear image 102 as a reference, in other words, the center of the rear image 102. You may superimpose so that it may pass.
  • the superimposition processing unit 48 may superimpose the reference orientation icon 120 so that only the rear video 102 passes.
  • the superimposition processing unit 48 passes the reference direction icon 120 through a position away from the end of the host vehicle icon 110 on the traveling direction side by a predetermined distance. You may superimpose on.
  • the superimposition processing unit 48 may superimpose the reference orientation icon 120 on the basis of the center of the host vehicle icon 110, in other words, so as to pass through the center of the host vehicle icon 110.
  • the display control unit 49 causes the display panel 31 to display the first overhead image 100 or the superimposed video 100A generated by the superimposition processing unit 48.
  • FIG. 2 is a diagram illustrating an example of an overhead video generated by the overhead video generation device according to the first embodiment.
  • FIG. 3 is a diagram illustrating an example of the superimposed video generated by the overhead view video generation device according to the first embodiment.
  • FIG. 4 is a diagram illustrating another example of the superimposed video generated by the overhead view video generation device according to the first embodiment.
  • the first bird's-eye view image 100 will be described with reference to FIG.
  • the first bird's-eye view image 100 has a vertically long rectangular shape.
  • the first bird's-eye view image 100 is a central portion surrounded by a front image 101, a rear image 102, a left side image 103, a right side image 104, a front image 101, a rear image 102, a left side image 103, and a right side image 104.
  • the own vehicle icon 110 located in the area.
  • a vehicle stop B1 and a rear frame line B2 are displayed as objects to be photographed.
  • the front video 101, the rear video 102, the left side video 103, the right side video 104, and the host vehicle icon 110 may be separated by a frame-like boundary line.
  • the host vehicle icon 110 indicates the position and orientation of the host vehicle V.
  • the host vehicle icon 110 is arranged in the center with the front-rear direction parallel to the front-rear direction of the first bird's-eye view image 100.
  • the driver knows the position and orientation of the vehicle stop B1 and the rear frame line B2.
  • the driver steers the host vehicle V according to the vehicle stop B1 and the rear frame line B2.
  • FIG. 2 diagonal broken lines indicating boundaries between the front video 101, the rear video 102, the left side video 103, and the right side video 104 are illustrated for explanation, but are actually displayed on the display panel 31.
  • the broken line may not be displayed in the first bird's-eye view video 100. The same applies to the other figures.
  • the superimposed image 100A will be described with reference to FIG.
  • the superimposed image 100 ⁇ / b> A has the same vertically long rectangular shape as the first overhead image 100.
  • the superimposed image 100A includes the same front image 101A, rear image 102A, left side image 103A, right side image 104A, own vehicle icon 110, and the superimposed reference direction icon 120 as the first overhead image 100.
  • the reference orientation icon 120 is superimposed on the rear image 102A.
  • the reference direction icon 120 indicates the direction with respect to the reference target B, for example, the rear frame line B2.
  • the reference direction icon 120 allows the driver to know that there is a reference object B along the direction of the reference direction icon 120 in the traveling direction of the vehicle. Accordingly, the driver steers the host vehicle V in accordance with the reference direction icon 120.
  • the superimposed video 100A will be described with reference to FIG.
  • the superimposed image 100A is different from the superimposed image 100A shown in FIG. 3 in that the reference orientation icon 120 is superimposed so as to pass through the center of the host vehicle icon 110.
  • the storage unit 50 stores data and various processing results required for various processes in the overhead view video generation device 40.
  • the storage unit 50 is, for example, a semiconductor memory element such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory (Flash Memory), or a storage device such as a hard disk or an optical disk.
  • FIG. 5 is a flowchart showing a flow of processing in the overhead view video generation apparatus according to the first embodiment.
  • the control unit 41 determines whether or not to start the overhead view video display (step S11). As an example of the determination to start the overhead view video display, the control unit 41 determines whether or not to disclose the overhead view video display based on the presence or absence of a reverse trigger.
  • the reverse trigger means that, for example, the shift position is “reverse”. Alternatively, the reverse trigger means that the traveling direction of the vehicle is rearward in the front-rear direction of the vehicle.
  • the control unit 41 determines not to start the overhead view video display (No in step S11), and executes the process of step S11 again.
  • the control unit 41 determines to start the overhead view video display (Yes in Step S11), and proceeds to Step S12.
  • the control unit 41 generates and displays the first overhead video 100 (step S12). More specifically, the control unit 41 causes the overhead view video generation unit 44 to generate the first overhead view video 100 in which the viewpoint conversion is performed so that the vehicle is looked down from above from the peripheral video acquired by the video data acquisition unit 42. The control unit 41 proceeds to step S13.
  • the control unit 41 determines whether or not the reference object B has been detected (step S13). More specifically, the control unit 41 determines whether or not the reference target B is detected by the reference target detection unit 45. When it is determined that the reference target B is detected by the reference target detection unit 45 (Yes in step S13), the control unit 41 proceeds to step S14. If the control unit 41 determines that the reference target B is not detected by the reference target detection unit 45 (No in step S13), the control unit 41 proceeds to step S18.
  • the control unit 41 determines whether or not the reference object B exists in the display range A of the first bird's-eye view image 100 (step S14). More specifically, the control unit 41 determines whether or not the position where the reference object B is detected by the reference object detection unit 45 is included in the display range A of the first overhead image 100. When the control unit 41 determines that the reference object B is included in the display range A of the first overhead video 100 (Yes in step S14), the control unit 41 proceeds to step S18. When the control unit 41 determines that the reference object B is not included in the display range A of the first overhead video 100 (No in step S14), the control unit 41 proceeds to step S15.
  • the control unit 41 specifies a relative direction (step S15). More specifically, the control unit 41 causes the direction specifying unit 46 to specify the relative direction with respect to the host vehicle V from the direction and position in the video data of the reference target B detected by the reference target detection unit 45. The control unit 41 proceeds to step S16.
  • Control unit 41 generates superimposed image 100A (step S16). More specifically, the control unit 41 causes the superimposition processing unit 48 to superimpose the reference orientation icon 120 on the first overhead view video 100 generated by the overhead view video generation unit 44 as a relative orientation with respect to the host vehicle icon 110. A superimposed image 100A is generated. The control unit 41 causes the superimposition processing unit 48 to superimpose the reference orientation icon 120 on the side where the reference target B is present on the host vehicle icon 110 in the first bird's-eye view video 100. Alternatively, the control unit 41 may superimpose the reference orientation icon 120 so as to pass through the center of the host vehicle icon 110 in the superimposition processing unit 48. The control unit 41 proceeds to step S17.
  • the control unit 41 displays the superimposed video 100A (step S17). More specifically, the control unit 41 causes the display control unit 49 to display the superimposed video 100 ⁇ / b> A generated by the superimposition processing unit 48 on the display panel 31. The control unit 41 proceeds to step S19.
  • the control unit 41 displays the first bird's-eye view video 100 (step S18). More specifically, the control unit 41 causes the display control unit 49 to display the first overhead view video 100 generated by the overhead view video generation unit 44 on the display panel 31. The control unit 41 proceeds to step S19.
  • the control unit 41 determines whether or not to end the overhead view video display (step S19). More specifically, the control unit 41 determines whether or not to end the bird's-eye view video display including the display of the first bird's-eye view image 100 and the display of the superimposed image 100A based on the presence or absence of the reverse end trigger.
  • the reverse end trigger means, for example, that the shift position has changed from “reverse” to another position.
  • the displayed video is the first overhead video 100 or the superimposed video 100A.
  • the control unit 41 determines to end the display of the first bird's-eye view image 100 or the superimposed image 100A (Yes in step S19), and ends the process.
  • the control unit 41 determines that the display of the first bird's-eye view image 100 or the superimposed image 100A is not ended (No in step S19), and executes the process of step S12 again.
  • the overhead image display device 1 displays the superimposed image 100A on which the reference orientation icon 120 is superimposed on the display panel 31. Output video signal.
  • the display panel 31 displays, for example, the superimposed video 100A together with the navigation screen based on the video signal output from the overhead video display device 1.
  • FIG. 6 is a diagram illustrating an example of a positional relationship among the host vehicle, the reference object, the display range, and the imaging range in the first embodiment.
  • FIG. 7 is a diagram illustrating another example of the positional relationship among the host vehicle, the reference object, the display range, and the imaging range in the first embodiment.
  • FIG. 8 is a diagram illustrating another example of the superimposed video generated by the overhead view video generation device according to the first embodiment.
  • FIG. 9 is a diagram illustrating another example of the superimposed video generated by the overhead view video generation device according to the first embodiment.
  • FIG. 10 is a diagram illustrating another example of the positional relationship among the host vehicle, the reference object, the display range, and the imaging range in the first embodiment.
  • the vehicle is positioned near the parking position, and the shift position is set to “reverse”.
  • the vehicle information acquisition unit 43 acquires a reverse trigger.
  • the host vehicle V, the vehicle stop B1, and the rear frame B2 are separated from each other.
  • the vehicle stop B ⁇ b> 1 and the rear frame line B ⁇ b> 2 exist in the first shooting range A ⁇ b> 2 and are located farther from the display range A of the first overhead view image 100.
  • a reference object B that is present in the traveling direction of the host vehicle V and has a large linear continuity is defined as the reference object B.
  • the back frame line B2 is set as the reference object B.
  • the angle between the extending direction of the rear frame B2 that is the reference target B and the direction of the extending direction L in the front-rear direction of the host vehicle V is ⁇ 1.
  • step S ⁇ b> 11 the control unit 41 determines that there is a backward trigger and starts the overhead view video display.
  • step S ⁇ b> 12 the control unit 41 causes the overhead view video generation unit 44 to generate the first overhead view video 100.
  • step S13 the control unit 41 determines that, for example, the rear frame B2 is detected as the reference object B.
  • step S14 the control part 41 determines with the reference
  • step S15 the control unit 41 identifies the relative orientation of the reference target B.
  • step S ⁇ b> 16 the control unit 41 generates a superimposed image 100 ⁇ / b> A in which the reference orientation icon 120 is superimposed on the first overhead image 100.
  • step S ⁇ b> 17 the control unit 41 displays the generated superimposed video 100 ⁇ / b> A on the display panel 31.
  • control unit 41 causes the display panel 31 to display a superimposed image 100A as shown in FIG.
  • the reference orientation icon 120 is superimposed on the rear image 102A.
  • An angle between the reference direction icon 120 and the direction of the extending direction L in the front-rear direction of the host vehicle V is ⁇ 1.
  • control unit 41 may cause the display panel 31 to display a superimposed image 100A as shown in FIG.
  • the reference orientation icon 120 is superimposed so as to pass through the center of the host vehicle icon 110.
  • An angle between the reference direction icon 120 and the direction of the extending direction L in the front-rear direction of the host vehicle V is ⁇ 1.
  • FIG. 7 shows a state in which the host vehicle V has moved backward from the state shown in FIG.
  • the vehicle stop B ⁇ b> 1 and the rear frame line B ⁇ b> 2 exist in the first shooting range A ⁇ b> 2 and are located farther from the display range A of the first overhead view image 100.
  • the angle between the extending direction of the reference object B and the direction of the extending direction L in the front-rear direction of the host vehicle V is ⁇ 2.
  • the angle ⁇ 2 is larger than the angle ⁇ 1.
  • step S13 the control unit 41 determines that the reference object B has been detected.
  • step S ⁇ b> 14 the control unit 41 determines that the reference target B does not exist in the display range A of the first overhead view video 100.
  • step S15 the control unit 41 identifies the relative orientation of the reference target B.
  • step S ⁇ b> 16 the control unit 41 generates a superimposed image 100 ⁇ / b> A in which the reference orientation icon 120 is superimposed on the first overhead image 100.
  • step S ⁇ b> 17 the control unit 41 displays the generated superimposed video 100 ⁇ / b> A on the display panel 31.
  • control unit 41 causes the display panel 31 to display a superimposed image 100A as shown in FIG.
  • the reference orientation icon 120 is superimposed on the rear image 102A.
  • the angle between the reference direction icon 120 and the direction of the vehicle direction V extending in the front-rear direction is ⁇ 2.
  • control unit 41 causes the display panel 31 to display a superimposed image 100A as shown in FIG.
  • the reference orientation icon 120 is superimposed so as to pass through the center of the host vehicle icon 110.
  • the angle between the reference direction icon 120 and the direction of the vehicle direction V extending in the front-rear direction is ⁇ 2.
  • FIG. 10 shows a state where the host vehicle V moves backward from the state shown in FIG. 7 and the host vehicle V is positioned in the vicinity of the reference target B.
  • the vehicle stop B1 and the rear frame line B2 exist in the first shooting range A2 and exist in the display range A of the first overhead image 100.
  • the angle between the extending direction of the reference object B and the direction of the extending direction L in the front-rear direction of the host vehicle V is 90 °.
  • step S13 the control unit 41 determines that the reference object B has been detected.
  • step S ⁇ b> 14 the control unit 41 determines that the reference target B exists in the display range A of the first overhead view video 100.
  • step S ⁇ b> 18 the control unit 41 displays the first overhead view video 100 on the display panel 31.
  • control unit 41 causes the display panel 31 to display the first overhead image 100 as shown in FIG.
  • a vehicle stop B1 and a rear frame line B2 are displayed as objects to be photographed.
  • the video displayed on the display panel 31 is switched from the superimposed video 100A to the first bird's-eye video 100, a vehicle stop B1 and a rear frame B2 are displayed as objects to be photographed instead of the reference orientation icon 120.
  • the present embodiment can display the direction of the reference object B far from the display range A of the first overhead image 100.
  • the present embodiment can appropriately check the relative positional relationship between the vehicle and the surroundings.
  • the host vehicle V it is possible to confirm whether or not the host vehicle V matches the direction of the reference target B and how much it is based on the direction of the reference direction icon 120 with respect to the host vehicle icon 110.
  • the host vehicle V is appropriate while checking whether or not the host vehicle V matches the direction of the reference object B by changing the direction of the reference direction icon 120 with respect to the host vehicle icon 110. It can be operated in the direction.
  • the reference orientation icon 120 is superimposed on the side where the reference target B is present with respect to the host vehicle icon 110. According to the present embodiment, the direction in which the reference object B exists can be confirmed by the display position of the reference direction icon 120.
  • the reference orientation icon 120 may be superimposed on the host vehicle icon 110 so as to pass through the center of the video on the side where the reference target B exists.
  • the superimposition processing unit 48 may superimpose the reference orientation icon 120 so as to pass through the center of the rear video 102.
  • the reference orientation icon 120 may be superimposed so as to pass through the center of the host vehicle icon 110. According to this embodiment, since the reference direction icon 120 is displayed so as to be superimposed on the host vehicle icon 110, it is possible to display the host vehicle V and the direction of the reference target B more easily.
  • FIG. 11 is a diagram illustrating an example of a positional relationship among the host vehicle, the reference object, the display range, and the imaging range in the second embodiment.
  • FIG. 12 is a diagram illustrating an example of a superimposed video generated by the overhead view video generation device according to the second embodiment.
  • FIG. 13 is a diagram illustrating another example of the superimposed video generated by the overhead view video generation device according to the second embodiment.
  • FIG. 14 is a diagram illustrating another example of the positional relationship among the host vehicle, the reference object, the display range, and the shooting range in the second embodiment.
  • FIG. 11 is a diagram illustrating an example of a positional relationship among the host vehicle, the reference object, the display range, and the imaging range in the second embodiment.
  • FIG. 12 is a diagram illustrating an example of a superimposed video generated by the overhead view video generation device according to the second embodiment.
  • FIG. 13 is a diagram illustrating another example of the superimposed video generated by the overhead view video generation device according to the second embodiment.
  • the overhead image display device 1 has the same basic configuration as the overhead image display device 1 of the first embodiment.
  • the same components as those of the overhead video display device 1 are denoted by the same reference numerals or corresponding reference numerals, and detailed description thereof is omitted.
  • the host vehicle V is parked in parallel along the roadway outer line B3 which is the reference target B. There are another vehicle V1 and another vehicle V2 across a space where the host vehicle V is to be parked.
  • the reference target detection unit 45 performs object recognition processing on the peripheral video acquired by the video data acquisition unit 42, and detects the roadway outer line B3 as the reference target B existing far from the display range A.
  • the superimposition processing unit 48 sets the reference orientation icon 120 to the rear image 102 that is the left rear with respect to the host vehicle icon 110 in the first overhead view image 100. It is superimposed on the left side image 103. More specifically, for example, when the reference object B is detected to the left rear of the host vehicle V, the superimposition processing unit 48 displays the reference orientation icon 120 at the midpoint of the boundary line between the rear image 102A and the left image 103A. You may superimpose so that it may pass. For example, when the reference object B is detected to the left rear of the host vehicle V, the superimposition processing unit 48 passes the reference direction icon 120 through a position away from the left rear end of the host vehicle icon 110 by a predetermined distance. You may superimpose.
  • the superimposition processing unit 48 may superimpose the reference orientation icon 120 so as to pass through the center of the host vehicle icon 110.
  • the vehicle is positioned near the parking position, and the shift position is set to “reverse”.
  • the vehicle information acquisition unit 43 acquires a reverse trigger.
  • the host vehicle V and the roadway outside line B3 are separated.
  • the roadway outer line B3 exists across the second shooting range A2 and the third shooting range A3, and is located farther from the display range A of the first overhead view video 100.
  • An angle between the extending direction of the roadway outer line B3 and the direction of the extending direction L in the front-rear direction of the host vehicle V is ⁇ 3.
  • step S ⁇ b> 11 the control unit 41 determines that there is a backward trigger and starts the overhead view video display.
  • step S ⁇ b> 12 the control unit 41 causes the overhead view video generation unit 44 to generate the first overhead view video 100.
  • step S13 the control unit 41 determines that the roadway outer line B3 is detected as the reference object B.
  • step S ⁇ b> 14 the control unit 41 determines that the roadway outer line B ⁇ b> 3 does not exist in the display range A of the first overhead view video 100.
  • step S15 the control unit 41 specifies the relative direction of the roadway outer line B3.
  • step S ⁇ b> 16 the control unit 41 generates a superimposed image 100 ⁇ / b> A in which the reference orientation icon 120 is superimposed on the first overhead image 100.
  • step S ⁇ b> 17 the control unit 41 displays the generated superimposed video 100 ⁇ / b> A on the display panel 31.
  • control unit 41 causes the display panel 31 to display a superimposed image 100A as shown in FIG.
  • the reference orientation icon 120 is superimposed on the rear video 102A and the left video 103A.
  • the angle between the reference direction icon 120 and the direction of the extending direction L in the front-rear direction of the host vehicle V is ⁇ 3.
  • control unit 41 may cause the display panel 31 to display a superimposed image 100A as shown in FIG.
  • the reference orientation icon 120 is superimposed so as to pass through the center of the host vehicle icon 110.
  • the angle between the reference direction icon 120 and the direction of the extending direction L in the front-rear direction of the host vehicle V is ⁇ 3.
  • the extending direction L in the front-rear direction of the host vehicle V and the left frame line of the superimposed image 100 ⁇ / b> A are parallel, so the angle ⁇ ⁇ b> 3 is illustrated as the angle between the reference orientation icon 120 and the left frame line. Yes.
  • FIG. 14 shows a state where the host vehicle V moves backward from the state shown in FIG. 11 and the host vehicle V is positioned in the vicinity of the roadway outer line B3.
  • the roadway outer line B3 exists across the first shooting range A1, the second shooting range A2, and the third shooting range A3, and exists in the display range A of the first bird's-eye view video 100.
  • the other vehicle V1 exists in the display range A and exists in the first shooting range A1.
  • the other vehicle V2 exists in the display range A and exists in the second imaging range A2.
  • An angle between the extending direction of the roadway outer line B3 and the direction of the extending direction L in the front-rear direction of the host vehicle V is ⁇ 4.
  • step S13 the control unit 41 determines that the roadway outer line B3 has been detected.
  • step S ⁇ b> 14 the control unit 41 determines that the roadway outer line B ⁇ b> 3 exists in the display range A of the first bird's-eye view image 100.
  • step S ⁇ b> 18 the control unit 41 displays the first overhead view video 100 on the display panel 31.
  • the control unit 41 causes the display panel 31 to display the first overhead image 100 as shown in FIG.
  • a roadway outer line B3 is displayed as an object to be photographed.
  • Other vehicle V1 and other vehicle V2 are displayed.
  • the roadway outer line B3 is displayed as an object to be photographed instead of the reference orientation icon 120.
  • this embodiment can display the direction of the roadway outer line B3 far from the display range A of the first bird's-eye view image 100. This embodiment can make it possible to appropriately confirm the relative positional relationship between the vehicle and the surroundings even during parallel parking.
  • FIG. 16 is a diagram illustrating an example of a positional relationship among the host vehicle, the reference object, the display range, and the imaging range in the third embodiment.
  • the host vehicle V is parked in parallel along a roadway outer line B3 which is a reference target B in a narrow alley.
  • a roadway outer line B3 which is a reference target B in a narrow alley.
  • the distance between the roadway outer line B3 and the roadway outer line B4 is d.
  • the reference target detection unit 45 performs object recognition processing on the peripheral video acquired by the video data acquisition unit 42, and detects the roadway outer line B3 as the reference target B existing far from the display range A.
  • the roadway outer line B4 is not detected as the reference object B because it exists on the side opposite to the traveling direction of the host vehicle V.
  • the reference target detection unit 45 performs object recognition processing on the peripheral video acquired by the video data acquisition unit 42, and is a reference target B that exists farther from the display range A and is closer to the vehicle V outside.
  • Line B3 is detected.
  • the roadway outer line B4 is not detected as the reference object B because the distance to the host vehicle V is farther than the roadway outer line B3.
  • the present embodiment can appropriately check the relative positional relationship between the vehicle and the periphery even when parallel parking in a narrow alley.
  • FIG. 17 is a diagram illustrating an example of a superimposed video generated by the overhead video generation device according to the fourth embodiment.
  • FIG. 18 is a diagram illustrating another example of the superimposed video generated by the overhead video generation device according to the fourth embodiment.
  • FIG. 19 is a flowchart showing a flow of processing in the overhead view video generation device according to the fourth embodiment.
  • FIG. 20 is a diagram illustrating an example of a positional relationship among the host vehicle, the reference object, the display range, and the shooting range.
  • FIG. 21 is a diagram illustrating another example of the positional relationship among the host vehicle, the reference object, the display range, and the imaging range.
  • FIG. 22 is a diagram illustrating another example of the superimposed video generated by the overhead video generation device according to the fourth embodiment.
  • FIG. 23 is a diagram illustrating another example of the superimposed video generated by the overhead video generation device according to the fourth embodiment.
  • FIG. 24 is a diagram illustrating another example of the positional relationship among the host vehicle, the reference object, the display range, and the imaging range.
  • FIG. 25 is a diagram illustrating another example of the superimposed video generated by the overhead video generation device according to the fourth embodiment.
  • the overhead image display device 1 has the same basic configuration as the overhead image display device 1 of the first embodiment. In the following description, the same components as those of the overhead video display device 1 are denoted by the same reference numerals or corresponding reference numerals, and detailed description thereof is omitted.
  • the overhead view video display device 1 generates a first overhead view video 100 (see FIG. 2), a superimposed video 100A (see FIG. 17), or a superimposed video 100B (see FIG. 23) of the vehicle.
  • the bird's-eye view video generation unit 44 generates the first bird's-eye view image 100 based on the host vehicle icon 110 when the relative positional relationship between the reference object B and the host vehicle V does not satisfy the predetermined condition.
  • the overhead view video generation unit 44 fixes the orientation and position of the host vehicle icon 110 while the relative positional relationship between the reference object B and the host vehicle V does not satisfy the predetermined condition. 100 is generated.
  • the first bird's-eye view image 100 based on the host vehicle icon 110 is also the first bird's-eye view image based on the host vehicle V.
  • the overhead view video generation unit 44 When the relative positional relationship between the reference object B and the host vehicle V satisfies a predetermined condition, the overhead view video generation unit 44 replaces the first overhead image 100 with the host vehicle icon 110 as a reference, A bird's-eye view video (not shown) (hereinafter referred to as “second bird's-eye view video”) based on information indicating a relative orientation with the host vehicle V is generated.
  • the overhead video generation unit 44 generates an overhead video in which the arrangement of information indicating the relative direction is fixed.
  • the bird's-eye view video generation unit 44 replaces the first bird's-eye view video 100 when the relative orientation difference between the reference object B specified by the direction specifying unit 46 and the host vehicle V is less than the threshold.
  • the second overhead view video is generated.
  • the threshold is 5 °.
  • the information indicating the relative direction is relative to the first bird's-eye view video 100 when it is determined that the difference in relative direction between the reference object B and the host vehicle V is less than the threshold value. You may fix by arrangement
  • the information indicating the relative direction may be arranged and fixed in parallel with the front-rear direction or the left-right direction of the bird's-eye view video.
  • information indicating a relative direction is arranged and fixed in parallel with the horizontal direction of the overhead view video.
  • the difference in relative orientation between the reference object B and the host vehicle V is a difference in relative orientation between the reference object B and the target portion of the host vehicle V that aligns with the reference object B. In the present embodiment, it is a difference in relative orientation between the reference object B and the rear end portion Va of the host vehicle V. More specifically, it is the difference in angle between the reference object B and the rear end portion Va of the host vehicle V.
  • the cutout processing unit 442 When the relative positional relationship between the reference target B and the host vehicle V satisfies a predetermined condition, the cutout processing unit 442 generates a second overhead view video from the peripheral video data subjected to the viewpoint conversion process. A cut-out process is performed to cut out the video in a cut-out range different from the cut-out range of the one-view image 100.
  • the composition processing unit 443 generates the first overhead video 100 or the second overhead video in which the vehicle icon 110 is displayed on the synthesized video.
  • the reference object detection unit 45 detects the reference object B existing around the host vehicle V.
  • the reference object detection unit 45 detects the reference object B imaged in the first imaging range A1, the second imaging range A2, the third imaging range A3, and the fourth imaging range A4. For this reason, the reference object B detected by the reference object detection unit 45 also includes the reference object B existing far from the display range A.
  • the direction specifying unit 46 specifies the relative direction with respect to the rear end portion Va of the host vehicle V as the relative direction between the reference object B and the host vehicle V.
  • the superimposition processing unit 48 uses the reference orientation so that the relative orientation between the reference orientation icon 120 and the rear end 110a of the host vehicle icon 110 is the relative orientation specified by the orientation specifying unit 46.
  • the icon 120 is superimposed.
  • the superimposition processing unit 48 When the relative positional relationship between the reference object B and the host vehicle V satisfies a predetermined condition, the superimposition processing unit 48 superimposes the reference orientation icon 120 on the second overhead image instead of the first overhead image 100. A superimposed image 100B is generated.
  • the superimposed video 100A will be described with reference to FIG. 17, the rotation center 120 a is illustrated in a cross shape, but the cross shape may not be displayed in the superimposed image 100 ⁇ / b> A actually displayed on the display panel 31. The same applies to the other figures.
  • the reference orientation icon 120 rotates around the rotation center 120a in the superimposed image 100A.
  • the superimposed image 100A will be described with reference to FIG.
  • the superimposed image 100A is different from the superimposed image 100A shown in FIG. 17 in that the reference orientation icon 120 is superimposed so as to pass through the center of the host vehicle icon 110.
  • the display control unit 49 displays the first bird's-eye view image 100, the superimposed image 100A, or the superimposed image 100B on the display panel 31.
  • Steps SS11 to SS15, step SS20, and step SS21 are the same as steps S11 to S15, step S18, and step S19.
  • the control unit 41 may transition to step SS15 without performing the process of step SS14 after determining Yes in step SS13.
  • the control unit 41 performs the process of step SS14 when the reference object B is detected for the first time after the display of the overhead video in step SS11 is started, and after the superimposed overhead video is once displayed in step SS19, the control unit 41 performs the process in step SS13.
  • the process may proceed to step SS15 without performing the process of step SS14.
  • the control unit 41 determines whether or not the relative orientation difference is less than the threshold value (step SS16). More specifically, the control unit 41 determines whether or not the relative direction difference between the reference object B specified by the direction specifying unit 46 and the host vehicle V is less than a threshold value. When it is determined that the relative direction difference is less than the threshold value (Yes in Step SS16), the control unit 41 proceeds to Step SS17. When it is determined that the relative direction difference is not less than the threshold (No in Step SS16), the control unit 41 proceeds to Step SS18.
  • the control unit 41 generates a superimposed image 100B based on the reference object B (step SS17). More specifically, the control unit 41 generates a second overhead view video with the reference target B as a reference at the overhead view video generation unit 44. And the control part 41 produces
  • the control unit 41 generates a superimposed image 100A based on the host vehicle icon 110 (step SS18). More specifically, the control unit 41 uses the overhead view video generation unit 44 to generate the first overhead view video 100 based on the host vehicle icon 110.
  • the control unit 41 causes the superimposition processing unit 48 to generate a superimposed image 100A in which the reference orientation icon 120 is superimposed on the first overhead image 100 with the relative orientation with respect to the host vehicle icon 110 as a reference. In the superimposition processing unit 48, the control unit 41 superimposes the reference orientation icon 120 on the side where the reference target B exists with respect to the host vehicle icon 110.
  • the control unit 41 proceeds to step SS19.
  • the control unit 41 displays the superimposed video 100A or the superimposed video 100B (step SS19). More specifically, the control unit 41 causes the display control unit 49 to display the superimposed video 100A or the superimposed video 100B generated by the superimposition processing unit 48 on the display panel 31. The control unit 41 proceeds to step SS21.
  • the overhead view video display device 1 when the reference object B is detected around the host vehicle V, the overhead view video display device 1 generates a video signal for displaying the first overhead view video 100, the superimposed video 100A, or the superimposed video 100B on the display panel 31. Output.
  • the display panel 31 displays, for example, the superimposed video 100A together with the navigation screen based on the video signal output from the overhead video display device 1.
  • FIG. 20 For example, referring to FIG. 20, FIG. 17, FIG. 21 to FIG. 25, when a vehicle stop B1 and a rear frame line B2 exist at the rear when the vehicle is reversing, the superimposed image 100A generated by the overhead view video display device 1 Alternatively, an example of the superimposed image 100B will be described.
  • the vehicle is positioned near the parking position, and the shift position is set to “reverse”.
  • the vehicle information acquisition unit 43 acquires a reverse trigger.
  • the host vehicle V, the vehicle stop B1, and the rear frame B2 are separated from each other.
  • the vehicle stop B ⁇ b> 1 and the rear frame line B ⁇ b> 2 exist in the second imaging range A ⁇ b> 2 and are located farther from the display range A of the first overhead view image 100.
  • the reference object detection unit 45 a reference object B that is present in the traveling direction of the host vehicle V and has a large linear continuity is set as the reference object B.
  • the back frame line B2 is set as the reference object B.
  • the difference in angle between the rear frame B2 that is the reference object B and the rear end portion Va of the host vehicle V is equal to or greater than a threshold value.
  • step SS11 the control unit 41 determines that there is a backward trigger and starts the overhead view video display.
  • step SS ⁇ b> 12 the control unit 41 generates the first bird's-eye view image 100 at the bird's-eye view image generation unit 44.
  • step SS13 the control part 41 determines with having detected the back frame line B2 as the reference
  • step SS ⁇ b> 14 the control unit 41 determines that the rear frame line B ⁇ b> 2 does not exist in the display range A of the first overhead image 100.
  • step SS15 the control part 41 specifies the relative direction of the back frame line B2.
  • step SS16 the control unit 41 determines that the relative orientation difference is not less than the threshold (No in step SS16).
  • the control unit 41 generates a superimposed image 100A in which the reference orientation icon 120 is superimposed on the first overhead view image 100 based on the host vehicle icon 110.
  • step SS19 the control unit 41 displays the generated superimposed video 100A on the display panel 31.
  • control unit 41 displays a superimposed image 100A as shown in FIG.
  • the superimposed image 100A is based on the host vehicle icon 110.
  • the reference orientation icon 120 is superimposed on the rear image 102A.
  • the difference in angle between the reference orientation icon 120 and the rear end 110a of the host vehicle icon 110 is equal to or greater than a threshold value.
  • FIG. 21 shows a state in which the host vehicle V moves backward while being steered from the state shown in FIG. 20 and the host vehicle V and the rear frame line B2 approach each other.
  • the vehicle stop B ⁇ b> 1 and the rear frame line B ⁇ b> 2 exist in the second imaging range A ⁇ b> 2 and are located farther from the display range A of the first overhead view image 100.
  • the difference in angle between the rear frame line B2 and the rear end portion Va of the host vehicle V is equal to or greater than a threshold value.
  • control unit 41 displays a superimposed image 100A as shown in FIG.
  • the superimposed image 100A is based on the host vehicle icon 110.
  • the reference orientation icon 120 rotates counterclockwise around the rotation center 120a with respect to the state shown in FIG.
  • the difference in angle between the reference orientation icon 120 and the rear end 110a of the host vehicle icon 110 is equal to or greater than a threshold value.
  • step SS13 the control unit 41 determines that the rear frame line B2 has been detected.
  • step SS ⁇ b> 14 the control unit 41 determines that the rear frame line B ⁇ b> 2 does not exist in the display range A of the first overhead image 100.
  • step SS15 the control part 41 specifies the relative direction of the back frame line B2.
  • step SS16 the control unit 41 determines that the relative orientation difference is less than the threshold value (Yes in step SS16).
  • step SS17 the control unit 41 generates a superimposed image 100B in which the reference orientation icon 120 is superimposed on the overhead view image with the rear frame line B2 as a reference.
  • step SS19 the control unit 41 displays the generated superimposed video 100B on the display panel 31.
  • the control unit 41 displays a superimposed image 100B as shown in FIG.
  • the superimposed image 100B is based on the reference orientation icon 120.
  • the reference orientation icon 120 is arranged in parallel with the left-right direction.
  • the difference in angle between the reference orientation icon 120 and the rear end 110a of the host vehicle icon 110 is less than the threshold value.
  • the own vehicle icon 110 is arranged to be inclined with respect to the reference orientation icon 120. More specifically, the host vehicle icon 110 rotates counterclockwise with the center portion as the rotation center with respect to the state shown in FIG.
  • the host vehicle icon is linked to the change in the relative direction between the host vehicle V and the rear frame line B2.
  • the host vehicle icon 110 rotates around the center of 110 as the rotation center.
  • the reference orientation icon 120 is fixed.
  • FIG. 24 shows a state in which the host vehicle V moves backward while being steered and the host vehicle V is positioned in the vicinity of the rear frame line B2.
  • the vehicle stop B1 and the rear frame line B2 exist in the second imaging range A2 and exist in the display range A of the first overhead image 100.
  • the difference in angle between the rear frame line B2 and the rear end portion Va of the host vehicle V is zero.
  • the rear frame line B2 and the rear end portion Va of the host vehicle V are parallel.
  • step SS13 the control unit 41 determines that the rear frame line B2 has been detected.
  • step SS ⁇ b> 14 the control unit 41 determines that the rear frame line B ⁇ b> 2 exists in the display range A of the first overhead view image 100.
  • step SS20 the control unit 41 displays the first bird's-eye view video 100 on the display panel 31.
  • the control unit 41 displays the first overhead image 100 as shown in FIG.
  • a vehicle stop B1 and a rear frame line B2 are displayed as objects to be photographed.
  • the reference orientation icon 120 may be superimposed and displayed together with the vehicle stop B1 and the rear frame line B2. Alternatively, the reference orientation icon 120 may not be displayed in step SS20.
  • the reference orientation icon 120 is used as a reference instead of the first bird's-eye view image 100 using the host vehicle icon 110 as a reference.
  • the superimposed image 100B is displayed on the display panel 31.
  • the superimposed image 100B in which the direction of the reference direction icon 120 is fixed is displayed.
  • a display that makes it easy to quickly determine the direction of the host vehicle icon 110 with respect to the reference direction icon 120 is displayed. can do.
  • the host vehicle when the parking position is fine-adjusted because the difference in relative orientation between the reference object B and the host vehicle V becomes small at the time of parking, the host vehicle is compared with the fixed reference direction icon 120. The direction of the icon 110 changes. Thereby, this embodiment can be operated so that the own vehicle V becomes an appropriate direction while confirming whether or not the own vehicle V is suitable for the direction of the reference target B.
  • step SS ⁇ b> 16 in a state where the superimposed overhead view image 100 ⁇ / b> A based on the host vehicle icon 110 is generated is determined as Yes
  • the threshold of the relative direction difference for starting the generation of the superimposed overhead view video 100B with reference to B is set as a first threshold, and the threshold is set to 5 °.
  • the determination in step SS16 is No, and the relative for starting the generation of the superimposed overhead view image 100A based on the own vehicle icon 110.
  • the threshold value for the difference in direction may be a second threshold value that is larger than the first threshold value, and the threshold value may be 15 °.
  • step SS ⁇ b> 16 is Yes when the superimposed overhead view image 100 ⁇ / b> A based on the vehicle icon 110 is generated.
  • the determination of step SS16 is not performed and the generation of the superimposed overhead view video 100B based on the reference target B is determined until the determination in step SS21 is Yes. May be continued. Thereby, it can suppress that the direction of the image
  • the present embodiment can appropriately check the relative positional relationship between the vehicle and the surroundings.
  • FIG. 26 is a flowchart showing the flow of processing in the overhead view video generation device according to the fifth embodiment.
  • FIG. 27 is a diagram illustrating an example of a positional relationship among the host vehicle, the reference object, the display range, and the shooting range.
  • FIG. 28 is a diagram illustrating an example of a superimposed image generated by the overhead image generation device according to the fifth embodiment.
  • FIG. 29 is a diagram illustrating another example of the positional relationship among the host vehicle, the reference object, the display range, and the shooting range.
  • FIG. 30 is a diagram illustrating another example of the superimposed video generated by the overhead video generation apparatus according to the fifth embodiment.
  • the overhead image display device 1 has the same basic configuration as the overhead image display device 1 of the fourth embodiment.
  • the same components as those of the overhead video display device 1 are denoted by the same reference numerals or corresponding reference numerals, and detailed description thereof is omitted.
  • the overhead view video generation unit 44 replaces the first overhead view video 100 with the first Generates a two-view video.
  • the bird's-eye view video generation unit 44 generates a bird's-eye view video in which the orientation of the reference orientation icon 120 is fixed when the orientations of the reference target B and the target portion of the host vehicle V that aligns with the reference target B match.
  • the bird's-eye view image generation unit 44 generates a bird's-eye view image in which the direction and position of the reference direction icon 120 are fixed when the directions of the reference object B and the rear end portion Va of the host vehicle V coincide.
  • steps SS31 to SS35 and steps SS37 to SS41 are the same as those in steps SS11 to SS15 and steps SS17 to SS21.
  • the control unit 41 determines whether or not the relative directions match (step SS36). More specifically, the control unit 41 determines whether or not the directions of the reference target B specified by the direction specifying unit 46 and the target part of the host vehicle V match. If the control unit 41 determines that the relative directions match (Yes in Step SS36), the control unit 41 proceeds to Step SS37. When it is determined that the relative directions do not match (No in Step SS36), the control unit 41 proceeds to Step SS38.
  • the term “match” as used herein may include a range of about ⁇ 2 °, for example, in addition to perfect match.
  • the judgment of coincidence is a case where the coincidence is temporarily coincident in a state where the relative orientation is fluctuating.
  • the direction of the host vehicle V matches the reference target B.
  • the direction of the host vehicle V with respect to the reference target B is when the direction of the host vehicle V becomes parallel to the reference target B or becomes vertical. In other words, the direction of the host vehicle V with respect to the reference target B is when the direction of the host vehicle V is the correct direction with respect to the reference target B.
  • step SS33 the control unit 41 determines that the rear frame line B2 has been detected.
  • step SS ⁇ b> 34 the control unit 41 determines that the rear frame line B ⁇ b> 2 does not exist in the display range A of the first overhead image 100.
  • step SS35 the control part 41 specifies the relative direction of the back frame line B2.
  • step SS36 the control unit 41 determines that the relative directions match (Yes in step SS36).
  • step SS37 the control unit 41 generates a superimposed image 100B in which the reference orientation icon 120 is superimposed on the overhead view image with the rear frame line B2 as a reference.
  • step SS39 the control unit 41 displays the generated superimposed video 100B on the display panel 31.
  • control unit 41 displays a superimposed image 100B as shown in FIG.
  • the superimposed image 100B is based on the reference orientation icon 120.
  • the reference orientation icon 120 is arranged in parallel with the left-right direction.
  • the orientations of the reference orientation icon 120 and the rear end portion 110a of the host vehicle icon 110 are the same.
  • FIG. 29 shows a state turned back to adjust the parking position from the state shown in FIG.
  • the direction of the rear frame line B2 and the rear end portion Va of the host vehicle V do not match.
  • control unit 41 displays a superimposed image 100B as shown in FIG.
  • the superimposed image 100B has the same orientation and position as the reference orientation icon 120 of the superimposed image 100B shown in FIG.
  • the own vehicle icon 110 is arranged to be inclined with respect to the reference orientation icon 120. More specifically, the host vehicle icon 110 rotates counterclockwise with the center as the rotation center with respect to the state shown in FIG.
  • the reference direction icon is used instead of the first bird's-eye view image 100 based on the host vehicle icon 110.
  • a superimposed image 100B based on 120 is displayed on the display panel 31.
  • the superimposed image 100B in which the orientation of the reference orientation icon 120 is fixed is displayed.
  • step SS36 in a state where the superimposed overhead view video 100A based on the own vehicle icon 110 is generated is determined as Yes
  • the determination in step SS36 after the generation of the superimposed overhead view video 100B with reference to B is started, as in step SS16 in the fourth embodiment, for example, whether or not the threshold is less than about 5 ° to 15 °.
  • step SS36 may be determined as No.
  • step SS36 is judged Yes, only when the difference in relative orientation between the reference object B and the host vehicle V is less than the threshold value, the superimposed overhead view video 100B based on the reference object B is displayed. The display can be continued.
  • step SS36 in a state where the superimposed overhead view video 100A based on the host vehicle icon 110 is generated is determined as Yes.
  • the superimposed overhead image 100B is generated based on the reference object B until the determination in step SS41 is Yes without performing the determination in step SS36. May be continued. Thereby, it can suppress that the direction of the image
  • FIG. 31 is a diagram illustrating an example of the positional relationship between the host vehicle, the reference object, the display range, and the imaging range.
  • FIG. 32 is a diagram illustrating an example of the superimposed video generated by the overhead video generation apparatus according to the sixth embodiment.
  • FIG. 33 is a diagram illustrating another example of the positional relationship among the host vehicle, the reference object, the display range, and the shooting range.
  • FIG. 34 is a diagram illustrating another example of the superimposed video generated by the overhead video generation apparatus according to the sixth embodiment.
  • FIG. 35 is a diagram illustrating another example of the superimposed video generated by the overhead video generation apparatus according to the sixth embodiment.
  • the host vehicle V is parked in parallel along the roadway outer line B3 which is the reference target B. There are another vehicle V1 and another vehicle V2 across a space where the host vehicle V is to be parked.
  • the reference target detection unit 45 performs object recognition processing on the peripheral video acquired by the video data acquisition unit 42 and detects the roadway outer line B3 as the reference target B existing around the host vehicle V.
  • the superimposition processing unit 48 changes the reference direction icon 120 into the rear video 102 and the left side video 103 that are left rear with respect to the host vehicle icon 110.
  • Superimpose More specifically, for example, when the reference object B is detected to the left rear of the host vehicle V, the superimposition processing unit 48 displays the reference orientation icon 120 at the midpoint of the boundary line between the rear image 102A and the left image 103A. You may superimpose so that it may pass.
  • the superimposition processing unit 48 passes the reference direction icon 120 through a position away from the left rear end of the host vehicle icon 110 by a predetermined distance. You may superimpose.
  • the superimposition processing unit 48 may superimpose the reference orientation icon 120 so as to pass through the center of the host vehicle icon 110.
  • the superimposed image 100A or the superimposed image 100B generated by the overhead image display device 1 is used. An example will be described.
  • the vehicle is positioned near the parking position, and the shift position is set to “reverse”.
  • the vehicle information acquisition unit 43 acquires a reverse trigger.
  • the host vehicle V and the roadway outside line B3 are separated.
  • the roadway outer line B3 exists across the second shooting range A2 and the third shooting range A3, and is located farther from the display range A of the first overhead view video 100.
  • the difference in angle between the roadway outer line B3 and the left side Vb of the host vehicle V is equal to or greater than a threshold value.
  • control unit 41 displays a superimposed image 100A as shown in FIG.
  • the superimposed image 100A is based on the host vehicle icon 110.
  • the reference orientation icon 120 is superimposed on the rear video 102A and the left video 103A.
  • the difference in angle between the reference orientation icon 120 and the left side 110b of the host vehicle icon 110 is equal to or greater than a threshold value.
  • FIG. 33 shows a state where the host vehicle V retreats while being steered from the state shown in FIG. 31 and the host vehicle V is positioned in the vicinity of the roadway outer line B3.
  • the roadway outer line B3 exists across the first shooting range A1, the second shooting range A2, and the third shooting range A3, and is located farther from the display range A of the first overhead image 100.
  • the other vehicle V1 exists in the display range A and exists in the first shooting range A1.
  • the other vehicle V2 exists in the display range A and exists in the second imaging range A2.
  • control unit 41 displays a superimposed image 100A as shown in FIG.
  • the superimposed image 100A is based on the host vehicle icon 110.
  • the other vehicle V1 and the other vehicle V2 are displayed.
  • the reference orientation icon 120 rotates clockwise about the rotation center 120a with respect to the state shown in FIG.
  • the control unit 41 displays a superimposed image 100B as shown in FIG.
  • the superimposed image 100B is based on the reference orientation icon 120.
  • the reference direction icons 120 are arranged in parallel in the front-rear direction.
  • the difference in angle between the reference orientation icon 120 and the left side 110b of the host vehicle icon 110 is less than the threshold value.
  • the host vehicle icon 110 is displayed tilted with respect to the reference orientation icon 120. More specifically, the host vehicle icon 110 rotates clockwise with respect to the state shown in FIG.
  • the first overhead image 100 based on the host vehicle icon 110 is used as a reference.
  • the superimposed image 100B based on the orientation icon 120 is displayed on the display panel 31.
  • FIG. 36 is a flowchart showing a flow of processing in the overhead view video generation device according to the seventh embodiment.
  • FIG. 37 is a diagram illustrating an example of the positional relationship between the host vehicle, the reference object, the display range, and the shooting range.
  • FIG. 38 is a diagram illustrating another example of the positional relationship among the host vehicle, the reference object, the display range, and the imaging range.
  • the overhead image display device 1 has the same basic configuration as the overhead image display device 1 of the first embodiment.
  • the control unit 41 includes a video data acquisition unit 42, a vehicle information acquisition unit 43, an overhead video generation unit 44, a reference target detection unit 45, a direction identification unit 46, a distance detection unit 47, and a superimposition processing unit 48. And a display control unit 49.
  • the bird's-eye view image generation unit 44 When the distance d1 between the reference object B and the host vehicle V does not satisfy the predetermined condition, the bird's-eye view image generation unit 44 generates the first bird's-eye view image 100 based on the host vehicle icon 110.
  • the overhead view video generation unit 44 generates the first overhead view video 100 in which the direction and position of the host vehicle icon 110 are fixed while the distance d1 between the reference target B and the host vehicle V does not satisfy the predetermined condition. To do.
  • the first bird's-eye view image 100 based on the host vehicle icon 110 is also the first bird's-eye view image based on the host vehicle V.
  • the overhead image generation unit 44 replaces the first overhead image 100 with the reference object B and the host vehicle V.
  • a bird's-eye view video (not shown) (hereinafter referred to as “second bird's-eye view video”) is generated with reference to information indicating the relative orientation of the video.
  • the overhead image generation unit 44 generates an overhead image in which the arrangement of information indicating the relative direction is fixed.
  • the overhead image generation unit 44 when the distance d1 between the reference target B and the host vehicle V is less than the threshold th1, the overhead image generation unit 44 generates a second overhead image instead of the first overhead image 100.
  • the threshold th1 is preferably larger than the display range A. In the present embodiment, the threshold th1 is 2.5 m.
  • the information indicating the relative direction indicates the relative direction in the first bird's-eye view image 100 when it is determined that the distance d1 between the reference object B and the host vehicle V is less than the threshold th1. You may fix by arrangement of information.
  • the information indicating the relative direction may be arranged and fixed in parallel with the front-rear direction or the left-right direction of the bird's-eye view video.
  • information indicating a relative direction is arranged and fixed in parallel with the horizontal direction of the overhead view video.
  • the clipping processing unit 442 When the distance d1 between the reference object B and the host vehicle V satisfies a predetermined condition, the clipping processing unit 442 generates the first overhead video so as to generate the second overhead video from the peripheral video data subjected to the viewpoint conversion processing. A cut-out process for cutting out an image with a cut-out range different from the cut-out range of 100 is performed.
  • the distance detection unit 47 detects the distance d1 between the reference object B detected by the reference object detection unit 45 and the host vehicle V. More specifically, the direction identifying unit 46 detects the distance d1 between the reference target B and the host vehicle V from the position in the video data of the reference target B detected by the reference target detection unit 45.
  • the distance d1 between the reference target B and the host vehicle V is the distance d1 of the closest position between the reference target B and the host vehicle V. More specifically, the distance d1 is the distance of the closest position between the reference object B and the rear end portion Va of the host vehicle V.
  • the superimposition processing unit 48 When the distance d1 between the reference object B and the host vehicle V satisfies a predetermined condition, the superimposition processing unit 48 superimposes the reference orientation icon 120 on the second overhead image instead of the first overhead image 100. Is generated.
  • steps ST11 to ST15 and steps ST17 to ST21 are the same as those in steps SS11 to SS15 and steps SS17 to SS21.
  • the control unit 41 determines whether or not the distance d1 to the reference target B is less than the threshold th1 (step ST16). More specifically, the control unit 41 determines whether or not the distance d1 between the reference object B specified by the direction specifying unit 46 and the host vehicle V is less than the threshold th1. When it is determined that the distance d1 between the reference target B and the host vehicle V is less than the threshold th1 (Yes in step ST16), the control unit 41 proceeds to step ST17. When it is determined that the distance d1 between the reference target B and the host vehicle V is not less than the threshold th1 (No in step ST16), the control unit 41 proceeds to step ST18.
  • the bird's-eye view video display device 1 displays the first bird's-eye view image 100, the superimposed image 100A, or the superimposed image 100B on the display panel 31. Is output.
  • the display panel 31 displays, for example, the superimposed video 100A together with the navigation screen based on the video signal output from the overhead video display device 1.
  • the overhead view video display device 1 An example of the generated superimposed image 100A or superimposed image 100B will be described.
  • the vehicle is positioned near the parking position, and the shift position is set to “reverse”.
  • the vehicle information acquisition unit 43 acquires a reverse trigger.
  • the distance d1 between the rear frame B2 as the reference object B and the host vehicle V is equal to or greater than the threshold th1.
  • the vehicle stop B ⁇ b> 1 and the rear frame line B ⁇ b> 2 exist in the second imaging range A ⁇ b> 2 and are located farther from the display range A of the first overhead view image 100.
  • a reference object B that is present in the traveling direction of the host vehicle V and has a large linear continuity is set as the reference object B.
  • the back frame line B2 is set as the reference object B.
  • step ST11 the control unit 41 determines that there is a backward trigger and starts the overhead view video display.
  • step ST ⁇ b> 12 the control unit 41 generates the first bird's-eye view image 100 using the bird's-eye view image generation unit 44.
  • step ST13 the control unit 41 determines that, for example, the rear frame B2 is detected as the reference target B.
  • step ST ⁇ b> 14 the control unit 41 determines that the rear frame line B ⁇ b> 2 does not exist in the display range A of the first bird's-eye view image 100.
  • step ST15 the control part 41 specifies the relative direction of the back frame line B2.
  • step ST16 the control unit 41 determines that the distance d1 between the rear frame B2 and the host vehicle V is not less than the threshold th1 (No in step ST16).
  • step ST ⁇ b> 18 the control unit 41 generates a superimposed image 100 ⁇ / b> A in which the reference orientation icon 120 is superimposed on the first overhead image 100.
  • step ST19 the control unit 41 displays the generated superimposed video 100A on the display panel 31.
  • control unit 41 displays a superimposed image 100A as shown in FIG.
  • the superimposed image 100A is based on the host vehicle icon 110.
  • the reference orientation icon 120 is superimposed on the rear image 102A.
  • the distance d1 between the rear frame line B2 and the host vehicle V is equal to or greater than the threshold th1.
  • control unit 41 displays a superimposed image 100A as shown in FIG.
  • the superimposed image 100A is based on the host vehicle icon 110.
  • the reference orientation icon 120 rotates clockwise around the rotation center 120a with respect to the state shown in FIG.
  • FIG. 38 shows a state in which the host vehicle V moves backward while being steered and the host vehicle V and the rear frame line B2 approach each other.
  • the distance d1 between the rear frame line B2 and the host vehicle V is less than the threshold th1.
  • the vehicle stop B ⁇ b> 1 and the rear frame line B ⁇ b> 2 exist in the second imaging range A ⁇ b> 2 and are located farther from the display range A of the first overhead view image 100.
  • step ST13 the control unit 41 determines that the rear frame line B2 has been detected.
  • step ST ⁇ b> 14 the control unit 41 determines that the rear frame line B ⁇ b> 2 does not exist in the display range A of the first bird's-eye view image 100.
  • step ST15 the control part 41 specifies the relative direction of the back frame line B2.
  • step ST16 the control unit 41 determines that the distance d1 between the rear frame B2 and the host vehicle V is less than the threshold th1 (Yes in step ST16).
  • step ST ⁇ b> 17 the control unit 41 generates a superimposed image 100 ⁇ / b> B in which the reference orientation icon 120 is superimposed on the overhead view image with the rear frame line B ⁇ b> 2 as a reference.
  • step ST19 the control unit 41 displays the generated superimposed video 100B on the display panel 31.
  • control unit 41 displays a superimposed image 100B as shown in FIG.
  • the superimposed image 100B is based on the reference orientation icon 120.
  • the reference orientation icon 120 is arranged in parallel with the left-right direction.
  • the own vehicle icon 110 is arranged to be inclined with respect to the reference orientation icon 120. More specifically, the host vehicle icon 110 rotates counterclockwise with the center portion as the rotation center with respect to the state shown in FIG.
  • the host vehicle icon is linked to the change in the relative direction between the host vehicle V and the rear frame line B2.
  • the host vehicle icon 110 rotates around the center of 110 as the rotation center.
  • the reference orientation icon 120 is fixed.
  • FIG. 24 shows a state in which the host vehicle V moves backward while being steered and the host vehicle V is positioned in the vicinity of the rear frame line B2.
  • the distance d1 between the rear frame line B2 and the host vehicle V is less than the threshold th1.
  • the vehicle stop B1 and the rear frame line B2 exist in the second imaging range A2 and exist in the display range A of the first overhead image 100.
  • the difference in angle between the rear frame line B2 and the rear end portion Va of the host vehicle V is zero.
  • the rear frame line B2 and the rear end portion Va of the host vehicle V are parallel.
  • step ST13 the control unit 41 determines that the rear frame B2 has been detected.
  • step ST ⁇ b> 14 the control unit 41 determines that the rear frame line B ⁇ b> 2 exists in the display range A of the first bird's-eye view image 100.
  • step ST ⁇ b> 20 the control unit 41 displays the first bird's-eye view image 100 on the display panel 31.
  • the control unit 41 displays the first overhead image 100 as shown in FIG.
  • a vehicle stop B1 and a rear frame line B2 are displayed as objects to be photographed.
  • the reference orientation icon 120 may be superimposed and displayed together with the vehicle stop B1 and the rear frame line B2. Alternatively, the reference orientation icon 120 need not be displayed in step ST20.
  • the superimposed image based on the reference orientation icon 120 instead of the first overhead image 100 based on the host vehicle icon 110. 100B is displayed on the display panel 31.
  • the superimposed image 100B in which the direction of the reference direction icon 120 is fixed is displayed.
  • the direction of the host vehicle icon 110 with respect to the fixed reference direction icon 120 Changes.
  • this embodiment can be operated so that the own vehicle V becomes an appropriate direction while confirming whether or not the own vehicle V is suitable for the direction of the reference target B.
  • the threshold value th1 in step ST16 in a state where the superimposed overhead view image 100A based on the host vehicle icon 110 is generated is set to 2. 5m. Furthermore, the threshold value th1 in step ST16 in a state where the superimposed overhead video 100B based on the reference object B is generated may be set to 3.5 m, for example. Thereby, only when the distance d1 between the reference object B and the host vehicle V is small and the parking position is finely adjusted, the display of the superimposed overhead view video 100B based on the reference object B can be continued. .
  • step ST16 in a state where the superimposed overhead view video 100A based on the host vehicle icon 110 is generated is determined as Yes.
  • the generation of the superimposed overhead video 100B based on the reference object B is performed until the determination of step ST21 is Yes without performing the determination of step ST16. May be continued. Thereby, it can suppress that the direction of the image
  • the present embodiment can appropriately check the relative positional relationship between the vehicle and the surroundings.
  • FIG. 39 is a diagram illustrating another example of the positional relationship among the host vehicle, the reference object, the display range, and the shooting range.
  • the overhead image display device 1 has the same basic configuration as the overhead image display device 1 of the seventh embodiment. In the following description, the same components as those of the overhead video display device 1 are denoted by the same reference numerals or corresponding reference numerals, and detailed description thereof is omitted.
  • the distance between the reference object B and the host vehicle V is a distance d2 between the reference object B detected by the reference object detection unit 45 and a reference position at a facing portion of the host vehicle V facing the reference object B.
  • the reference position is the central portion of the facing portion.
  • the facing portion of the host vehicle V that faces the reference target B is a target portion that aligns with the reference target B in the host vehicle V. In the present embodiment, it is the rear end portion Va of the host vehicle V.
  • the threshold th2 is the same value as the threshold th1 of the seventh embodiment or a value greater than the threshold th1.
  • the reference orientation icon 120 is used instead of the first bird's-eye view image 100 based on the host vehicle icon 110. Is displayed on the display panel 31.
  • FIG. 40 is a diagram illustrating an example of a positional relationship among the own vehicle, the reference object, the display range, and the imaging range.
  • FIG. 41 is a diagram illustrating an example of the superimposed video generated by the overhead video generation apparatus according to the ninth embodiment.
  • FIG. 42 is a diagram illustrating an example of the positional relationship between the host vehicle, the reference object, the display range, and the shooting range.
  • FIG. 43 is a diagram illustrating another example of the superimposed video generated by the overhead video generation apparatus according to the ninth embodiment.
  • the host vehicle V is parked in parallel along the roadway outer line B3 which is the reference target B. There are another vehicle V1 and another vehicle V2 across a space where the host vehicle V is to be parked.
  • the reference target detection unit 45 performs object recognition processing on the peripheral video acquired by the video data acquisition unit 42 and detects the roadway outer line B3 as the reference target B existing around the host vehicle V.
  • the superimposition processing unit 48 changes the reference direction icon 120 into the rear video 102 and the left side video 103 that are left rear with respect to the host vehicle icon 110.
  • Superimpose More specifically, for example, when the reference object B is detected to the left rear of the host vehicle V, the superimposition processing unit 48 displays the reference orientation icon 120 at the midpoint of the boundary line between the rear image 102A and the left image 103A. You may superimpose so that it may pass.
  • the superimposition processing unit 48 passes the reference direction icon 120 through a position away from the left rear end of the host vehicle icon 110 by a predetermined distance. You may superimpose.
  • the superimposition processing unit 48 may superimpose the reference orientation icon 120 so as to pass through the center of the host vehicle icon 110.
  • the superimposed video 100A or the superimposed video 100B generated by the overhead view video display device 1 is used. An example will be described.
  • the vehicle is positioned near the parking position, and the shift position is set to “reverse”.
  • the vehicle information acquisition unit 43 acquires a reverse trigger.
  • the distance d1 between the roadway outer line B3 and the host vehicle V is equal to or greater than a threshold th1.
  • the roadway outer line B3 exists across the second shooting range A2 and the third shooting range A3, and is located farther from the display range A of the first overhead view video 100.
  • control unit 41 displays a superimposed image 100A as shown in FIG.
  • the superimposed image 100A is based on the host vehicle icon 110.
  • the reference orientation icon 120 is superimposed on the rear video 102A and the left video 103A.
  • the distance d1 between the rear frame line B2 and the host vehicle V is equal to or greater than the threshold th1.
  • control unit 41 displays a superimposed image 100A as shown in FIG.
  • the superimposed image 100A is based on the host vehicle icon 110.
  • the other vehicle V1 and the other vehicle V2 are displayed.
  • the reference orientation icon 120 rotates clockwise about the rotation center 120a with respect to the state shown in FIG.
  • FIG. 42 shows a state where the host vehicle V is steered and the distance d1 between the roadway outer line B3 and the host vehicle V is less than the threshold th1.
  • control unit 41 displays a superimposed image 100B as shown in FIG.
  • the superimposed image 100B is based on the reference orientation icon 120.
  • the reference direction icons 120 are arranged in parallel in the front-rear direction.
  • the host vehicle icon 110 is displayed tilted with respect to the reference orientation icon 120. More specifically, the host vehicle icon 110 rotates clockwise with respect to the state shown in FIG.
  • the reference orientation icon 120 is used instead of the first overhead image 100 based on the host vehicle icon 110. Is displayed on the display panel 31.
  • the overhead video display device 1 has been described so far, but may be implemented in various different forms other than the above-described embodiment.
  • the constituent elements of the overhead view video display device 1 shown in the figure are functionally conceptual and may not necessarily be physically configured as shown in the figure. That is, the specific form of each device is not limited to the one shown in the figure, and all or a part of them is functionally or physically distributed or integrated in arbitrary units according to the processing load or usage status of each device. May be.
  • the configuration of the overhead view video display device 1 is realized by, for example, a program loaded in a memory as software.
  • the above embodiment has been described as a functional block realized by cooperation of these hardware or software. That is, these functional blocks can be realized in various forms by hardware only, software only, or a combination thereof.
  • the superimposition processing unit 48 may superimpose the reference orientation icon 120 by changing the display mode according to the distance between the reference target B and the host vehicle V.
  • the reference orientation icon 120 may change at least one of thickness, color, and line type according to the distance between the reference object B and the host vehicle V.
  • the reference orientation icon 120 may be displayed with a thicker line as the distance between the reference object B and the host vehicle V is shorter.
  • the reference orientation icon 120 may be displayed in a darker color as the distance between the reference object B and the host vehicle V is shorter.
  • the reference orientation icon 120 may be displayed with a broken line when the distance between the reference object B and the host vehicle V is long, and may be displayed with a solid line when close.
  • the superimposition processing unit 48 may superimpose the reference direction icon 120 by changing the display mode according to the relative direction between the reference object B and the host vehicle V.
  • the reference direction icon 120 may change at least one of the thickness, the color, and the line type according to the direction of the host vehicle V with respect to the extending direction of the reference target B.
  • the reference direction icon 120 is indicated by a thin line when the deviation of the direction of the own vehicle V with respect to the extending direction of the reference object B is larger than a predetermined value, and the deviation of the direction of the own vehicle V with respect to the extending direction of the reference object B. It may be displayed with a thicker line as becomes smaller.
  • the reference direction icon 120 is displayed in red when the deviation of the direction of the own vehicle V with respect to the extending direction of the reference object B is larger than a predetermined value, and the deviation of the direction of the own vehicle V with respect to the extending direction of the reference object B. You may display so that it may change to green as it becomes small.
  • the reference direction icon 120 is displayed by a broken line when the deviation of the direction of the own vehicle V with respect to the extending direction of the reference object B is larger than a predetermined value, and the deviation of the direction of the own vehicle V with respect to the extending direction of the reference object B. You may display so that it may change to a continuous line, so that becomes small.
  • the direction of the own vehicle V matches the extending direction of the reference object B. That the direction of the host vehicle V is aligned with the extending direction of the reference object B is when the direction of the host vehicle V is parallel to or perpendicular to the extending direction of the reference object B. is there. In other words, the direction of the host vehicle V matches the direction in which the reference target B extends is when the direction of the host vehicle V is the correct direction with respect to the reference target B.
  • the own vehicle icon 110 may be displayed by coloring the end portion of the own vehicle V in the traveling direction, in other words, the target portion of the own vehicle V whose direction matches the reference direction icon 120. Thereby, confirmation of direction of standard object B and self-vehicle V becomes easier by superposition picture 100A.
  • the target portion whose direction is aligned with the reference direction icon 120 performs a relative positional relationship between the traveling direction of the host vehicle V and the reference target B and image processing on the shooting data, and a positional relationship with surrounding objects to be shot. You may specify by.
  • the target part that matches the direction with the reference orientation icon 120 may specify a part selected by the user on the host vehicle icon 110 displayed on the display panel 31 as the target part.
  • the reference orientation icon 120 has been described as being configured with a broken line, it is not limited to this.
  • the reference orientation icon 120 may be, for example, a strip shape.
  • Overhead video display device 11 Front camera (shooting unit) 12 Rear camera (shooting unit) 13 Left-side camera (shooting unit) 14 Right-side camera (shooting unit) 31 Display panel (display section) 40 Overhead Image Generation Device 41 Control Unit 42 Video Data Acquisition Unit 43 Vehicle Information Acquisition Unit 44 Overhead View Video Generation Unit 441 Viewpoint Conversion Processing Unit 442 Cutout Processing Unit 443 Compositing Processing Unit 45 Reference Object Detection Unit 46 Orientation Identification Unit 48 Superimposition Processing Unit 49 Display Control Unit 50 Storage Unit 100 First Bird's-eye View Video 100A Superimposed Video 110 Own Vehicle Icon 120 Reference Direction Icon (Information indicating Direction)

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Graphics (AREA)
  • Transportation (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Image Processing (AREA)

Abstract

車両の周辺を撮影する複数のカメラが撮影した周辺映像データを取得する映像データ取得部42と、映像データ取得部42が取得した周辺映像に視点変換処理および車両を示す自車両アイコンを含む合成処理を行い、車両から所定の表示範囲を表示する俯瞰映像を生成する俯瞰映像生成部44と、車両の周囲における基準対象を検出する基準対象検出部45と、基準対象検出部45が検出した基準対象と車両との相対的な向きを特定する向き特定部46と、基準対象と車両との相対的な向きを示す情報を自車両アイコンを基準とした相対的な向きとして俯瞰映像生成部44が生成した俯瞰映像に重畳させた重畳映像を生成する重畳処理部48と、重畳処理部48が生成した重畳映像を表示パネル31に表示させる表示制御部49とを備えることを特徴とする。

Description

俯瞰映像生成装置、俯瞰映像表示装置、俯瞰映像生成方法およびプログラム
 本発明は、俯瞰映像生成装置、俯瞰映像表示装置、俯瞰映像生成方法およびプログラムに関する。
 車両の駐車時、運転者は、例えば、駐車区画線、車両止め、車道外側線、縁石などの基準対象に車両の向きを合わせて駐車する。車両の駐車時、車両の俯瞰映像を車両画像と共に表示して駐車を支援する車両周辺表示装置に関する技術が知られている(例えば、特許文献1、特許文献2参照)。特許文献1に記載の技術は、駐車領域間の境界線として白線が路面に描かれていない駐車場において、車幅方向に延びた車止めから隣接する駐車領域間の境界を設定し、俯瞰映像に重畳して表示する。特許文献2に記載の技術は、駐車枠の既定部分が表示範囲外にあるとき、駐車枠の延長線を示す延長線画像を俯瞰映像に重畳して表示する。
特開2013-116696号公報 特開2008-083990号公報
 特許文献1に記載された技術は、車幅方向に延びた車止めのように、隣接する駐車領域間の境界を示すものを必要とする。特許文献2に記載された技術は、駐車枠が車両方向に延びていることを必要とする。例えば、車両方向に延びていない直線状の枠線が表示範囲外に存在する場合、どちらの技術も適用することができない。また、車両の駐車時、車両と駐車区画線、車両止めを含む基準対象との相対的な向きはステアリング操作に連動して変動する。自車両アイコンの向きが固定された俯瞰映像においては、自車両アイコンに対して基準対象の向きがステアリング操作に連動して変動する。このため、基準対象の向きに車両の向きを合わせるために、どのようにステアリング操作を行えばよいかを迅速に判断することが難しい場合がある。このように、俯瞰映像において、車両と周辺との相対的な位置関係を適切に確認可能に表示することには改善の余地がある。
 本発明は、上記に鑑みてなされたものであって、車両と周辺との相対的な位置関係を適切に確認可能にすることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る俯瞰映像生成装置は、車両の周辺を撮影する撮影部が撮影した周辺映像データを取得する映像データ取得部と、前記映像データ取得部が取得した周辺映像に視点変換処理および車両を示す自車両アイコンを含む合成処理を行い、前記車両から所定の表示範囲を表示する俯瞰映像を生成する俯瞰映像生成部と、前記車両の周囲における基準対象を検出する基準対象検出部と、前記基準対象検出部が検出した基準対象と前記車両との相対的な向きを特定する向き特定部と、前記基準対象と前記車両との相対的な向きを示す情報を前記自車両アイコンを基準とした相対的な向きとして前記俯瞰映像生成部が生成した俯瞰映像に重畳させた重畳映像を生成する重畳処理部と、前記重畳処理部が生成した重畳映像を表示部に表示させる表示制御部とを備えることを特徴とする。
 本発明に係る俯瞰映像表示装置は、上記の俯瞰映像生成装置と、前記映像データ取得部に周辺映像データを供給する撮影部、前記表示制御部が重畳映像を表示させる表示部、の少なくともどちらかを備えることを特徴とする。
 本発明に係る俯瞰映像生成方法は、車両の周辺を撮影する撮影部が撮影した周辺映像データを取得する映像データ取得ステップと、前記映像データ取得ステップで取得した周辺映像に視点変換処理および車両を示す自車両アイコンを含む合成処理を行い、前記車両から所定の表示範囲を表示する俯瞰映像を生成する俯瞰映像生成ステップと、前記車両の周囲における基準対象を検出する基準対象検出ステップと、前記基準対象検出ステップで検出した基準対象と前記車両との相対的な向きを特定する向き特定ステップと、前記基準対象と前記車両との相対的な向きを示す情報を前記自車両アイコンを基準とした相対的な向きとして前記俯瞰映像生成ステップで生成した俯瞰映像に重畳させた重畳映像を生成する重畳処理ステップと、前記重畳処理ステップで生成した重畳映像を表示部に表示させる表示制御ステップとを含む。
 本発明に係るプログラムは、車両の周辺を撮影する撮影部が撮影した周辺映像データを取得する映像データ取得ステップと、前記映像データ取得ステップで取得した周辺映像に視点変換処理および車両を示す自車両アイコンを含む合成処理を行い、前記車両から所定の表示範囲を表示する俯瞰映像を生成する俯瞰映像生成ステップと、前記車両の周囲における基準対象を検出する基準対象検出ステップと、前記基準対象検出ステップで検出した基準対象と前記車両との相対的な向きを特定する向き特定ステップと、前記基準対象と前記車両との相対的な向きを示す情報を前記自車両アイコンを基準とした相対的な向きとして前記俯瞰映像生成ステップで生成した俯瞰映像に重畳させた重畳映像を生成する重畳処理ステップと、前記重畳処理ステップで生成した重畳映像を表示部に表示させる表示制御ステップとを俯瞰映像生成装置として動作するコンピュータに実行させる。
 本発明によれば、車両と周辺との相対的な位置関係を適切に確認可能にすることができるという効果を奏する。
図1は、第一実施形態に係る俯瞰映像生成装置の構成例を示すブロック図である。 図2は、第一実施形態に係る俯瞰映像生成装置で生成した俯瞰映像の一例を示す図である。 図3は、第一実施形態に係る俯瞰映像生成装置で生成した重畳映像の一例を示す図である。 図4は、第一実施形態に係る俯瞰映像生成装置で生成した重畳映像の他の例を示す図である。 図5は、第一実施形態に係る俯瞰映像生成装置における処理の流れを示すフローチャートである。 図6は、第一実施形態における、自車両と基準対象と表示範囲と撮影範囲との位置関係の一例を示す図である。 図7は、第一実施形態における、自車両と基準対象と表示範囲と撮影範囲との位置関係の他の例を示す図である。 図8は、第一実施形態に係る俯瞰映像生成装置で生成した重畳映像の他の例を示す図である。 図9は、第一実施形態に係る俯瞰映像生成装置で生成した重畳映像の他の例を示す図である。 図10は、第一実施形態における、自車両と基準対象と表示範囲と撮影範囲との位置関係の他の例を示す図である。 図11は、第二実施形態における、自車両と基準対象と表示範囲と撮影範囲との位置関係の一例を示す図である。 図12は、第二実施形態に係る俯瞰映像生成装置で生成した重畳映像の一例を示す図である。 図13は、第二実施形態に係る俯瞰映像生成装置で生成した重畳映像の他の例を示す図である。 図14は、第二実施形態における、自車両と基準対象と表示範囲と撮影範囲との位置関係の他の例を示す図である。 図15は、第二実施形態に係る俯瞰映像生成装置で生成した俯瞰映像の一例を示す図である。 図16は、第三実施形態における、自車両と基準対象と表示範囲と撮影範囲との位置関係の一例を示す図である。 図17は、第四実施形態に係る俯瞰映像生成装置で生成した重畳映像の一例を示す図である。 図18は、第四実施形態に係る俯瞰映像生成装置で生成した重畳映像の他の例を示す図である。 図19は、第四実施形態に係る俯瞰映像生成装置における処理の流れを示すフローチャートである。 図20は、自車両と基準対象と表示範囲と撮影範囲との位置関係の一例を示す図である。 図21は、自車両と基準対象と表示範囲と撮影範囲との位置関係の他の例を示す図である。 図22は、第四実施形態に係る俯瞰映像生成装置で生成した重畳映像の他の例を示す図である。 図23は、第四実施形態に係る俯瞰映像生成装置で生成した重畳映像の他の例を示す図である。 図24は、自車両と基準対象と表示範囲と撮影範囲との位置関係の他の例を示す図である。 図25は、第四実施形態に係る俯瞰映像生成装置で生成した重畳映像の他の例を示す図である。 図26は、第五実施形態に係る俯瞰映像生成装置における処理の流れを示すフローチャートである。 図27は、自車両と基準対象と表示範囲と撮影範囲との位置関係の一例を示す図である。 図28は、第五実施形態に係る俯瞰映像生成装置で生成した重畳映像の一例を示す図である。 図29は、自車両と基準対象と表示範囲と撮影範囲との位置関係の他の例を示す図である。 図30は、第五実施形態に係る俯瞰映像生成装置で生成した重畳映像の他の例を示す図である。 図31は、自車両と基準対象と表示範囲と撮影範囲との位置関係の一例を示す図である。 図32は、第六実施形態に係る俯瞰映像生成装置で生成した重畳映像の一例を示す図である。 図33は、自車両と基準対象と表示範囲と撮影範囲との位置関係の他の例を示す図である。 図34は、第六実施形態に係る俯瞰映像生成装置で生成した重畳映像の他の例を示す図である。 図35は、第六実施形態に係る俯瞰映像生成装置で生成した重畳映像の他の例を示す図である。 図36は、第七実施形態に係る俯瞰映像生成装置における処理の流れを示すフローチャートである。 図37は、自車両と基準対象と表示範囲と撮影範囲との位置関係の一例を示す図である。 図38は、自車両と基準対象と表示範囲と撮影範囲との位置関係の他の例を示す図である。 図39は、自車両と基準対象と表示範囲と撮影範囲との位置関係の他の例を示す図である。 図40は、自車両と基準対象と表示範囲と撮影範囲との位置関係の一例を示す図である。 図41は、第九実施形態に係る俯瞰映像生成装置で生成した重畳映像の一例を示す図である。 図42は、自車両と基準対象と表示範囲と撮影範囲との位置関係の一例を示す図である。 図43は、第九実施形態に係る俯瞰映像生成装置で生成した重畳映像の他の例を示す図である。
 以下に添付図面を参照して、本発明に係る俯瞰映像生成装置40、俯瞰映像表示装置1、俯瞰映像生成方法およびプログラムの実施形態を詳細に説明する。なお、以下の実施形態により本発明が限定されるものではない。
[第一実施形態]
 図1は、第一実施形態に係る俯瞰映像生成装置の構成例を示すブロック図である。俯瞰映像表示装置1は、車両の第一俯瞰映像100(図2参照)を生成する。俯瞰映像生成装置40および俯瞰映像表示装置1は、車両に搭載されている。俯瞰映像生成装置40および俯瞰映像表示装置1は、車両に載置されているものに加えて、可搬型で車両において利用可能な装置であってもよい。
 図1を用いて、俯瞰映像表示装置1について説明する。俯瞰映像表示装置1は、前方カメラ(撮影部)11と、後方カメラ(撮影部)12と、左側方カメラ(撮影部)13と、右側方カメラ(撮影部)14と、表示パネル(表示部)31と、俯瞰映像生成装置40とを有する。
 前方カメラ11は、俯瞰映像用カメラである。前方カメラ11は、車両の前方に配置され、車両の前方を中心とした周辺を撮影する。前方カメラ11は、例えば、180°程度の第一撮影範囲A1(図6参照)を撮影する。第一撮影範囲A1は、第一俯瞰映像100の表示範囲A(図6参照)より自車両Vの前方に広い範囲を含む。前方カメラ11は、撮影した映像を俯瞰映像生成装置40の映像データ取得部42へ出力する。
 後方カメラ12は、俯瞰映像用カメラである。後方カメラ12は、車両の後方に配置され、車両の後方を中心とした周辺を撮影する。後方カメラ12は、例えば、180°程度の第二撮影範囲A2(図6参照)を撮影する。第二撮影範囲A2は、第一俯瞰映像100の表示範囲Aより自車両Vの後方に広い範囲を含む。後方カメラ12は、撮影した映像を俯瞰映像生成装置40の映像データ取得部42へ出力する。
 左側方カメラ13は、俯瞰映像用カメラである。左側方カメラ13は、車両の左側方に配置され、車両の左側方を中心とした周辺を撮影する。左側方カメラ13は、例えば、180°程度の第三撮影範囲A3(図6参照)を撮影する。第三撮影範囲A3は、第一俯瞰映像100の表示範囲Aより自車両Vの左側方に広い範囲を含む。左側方カメラ13は、撮影した映像を俯瞰映像生成装置40の映像データ取得部42へ出力する。
 右側方カメラ14は、俯瞰映像用カメラである。右側方カメラ14は、車両の右側方に配置され、車両の右側方を中心とした周辺を撮影する。右側方カメラ14は、例えば、180°程度の第四撮影範囲A4(図6参照)を撮影する。第四撮影範囲A4は、第一俯瞰映像100の表示範囲Aより自車両Vの右側方に広い範囲を含む。右側方カメラ14は、撮影した映像を俯瞰映像生成装置40の映像データ取得部42へ出力する。
 前方カメラ11と後方カメラ12と左側方カメラ13と右側方カメラ14とで、車両の全方位を撮影する。
 表示パネル31は、例えば、液晶ディスプレイ(LCD:Liquid Crystal Display)または有機EL(Organic Electro-Luminescence)ディスプレイを含むディスプレイである。表示パネル31は、俯瞰映像表示装置1の俯瞰映像生成装置40から出力された映像信号に基づいて、第一俯瞰映像100(図2参照)または重畳映像100A(図3参照)を表示する。表示パネル31は、俯瞰映像表示装置1に専用のものであっても、例えば、ナビゲーションシステムを含む他のシステムと共同で使用するものであってもよい。表示パネル31は、運転者から視認容易な位置に配置されている。
 俯瞰映像生成装置40は、制御部41と、記憶部50とを有する。
 制御部41は、例えば、CPU(Central Processing Unit)などで構成された演算処理装置である。制御部41は、記憶部50に記憶されているプログラムをメモリにロードして、プログラムに含まれる命令を実行する。制御部41は、映像データ取得部42と、車両情報取得部43と、俯瞰映像生成部44と、基準対象検出部45と、向き特定部46と、重畳処理部48と、表示制御部49とを有する。制御部41には図示しない内部メモリが含まれ、内部メモリは制御部41におけるデータの一時記憶などに用いられる。
 映像データ取得部42は、車両の周辺を撮影した周辺映像データを取得する。より詳しくは、映像データ取得部42は、前方カメラ11と後方カメラ12と左側方カメラ13と右側方カメラ14とが出力した映像データを取得する。映像データ取得部42は、取得した映像データを俯瞰映像生成部44と基準対象検出部45とに出力する。各々のカメラから取得する映像データは、例えば毎秒30フレームの画像から構成される動画像である。
 車両情報取得部43は、車両のギア操作情報など、俯瞰映像の表示開始のトリガとなる車両の状況を示す車両情報を、CAN(Controller Area Network)や車両の状態をセンシングする各種センサなどから取得する。車両情報取得部43は、例えば、後退トリガを取得する。車両情報取得部43は、例えば、車速情報を取得する。車両情報取得部43は、取得した車両情報を俯瞰映像生成部44に出力する。
 俯瞰映像生成部44は、映像データ取得部42で取得した周辺映像から車両を上方から見下ろすように視点変換処理と車両を示す自車両アイコン110を含む合成処理とを行い、自車両Vから所定の表示範囲Aを表示する第一俯瞰映像100を生成する。より詳しくは、俯瞰映像生成部44は、前方カメラ11と後方カメラ12と左側方カメラ13と右側方カメラ14とで撮影した映像に基づいて、第一俯瞰映像100を生成する。第一俯瞰映像100を生成する方法は、公知のいずれの方法でもよく、限定されない。俯瞰映像生成部44は、生成した第一俯瞰映像100を重畳処理部48と表示制御部49とに出力する。
 俯瞰映像生成部44は、視点変換処理部441と、切出処理部442と、合成処理部443とを有する。
 視点変換処理部441は、映像データ取得部42で取得した周辺映像データに対して、自車両Vを上方から見下ろすように視点変換処理を行う。より詳しくは、視点変換処理部441は、前方カメラ11と後方カメラ12と左側方カメラ13と右側方カメラ14とで撮影した周辺映像データに基づいて、視点変換処理を行った映像を生成する。視点変換処理の方法は、公知のいずれの方法でもよく、限定されない。視点変換処理部441は、視点変換処理を行った周辺映像データを切出処理部442に出力する。
 切出処理部442は、視点変換処理を行った周辺映像データから所定の範囲の映像を切出す切出処理を行う。どの範囲を切出範囲とするかは、あらかじめ登録され記憶されている。切出処理部442は、切出処理を行った映像の映像データを合成処理部443に出力する。
 合成処理部443は、切出処理を行った映像データを合成する合成処理を行う。合成処理部443は、合成した映像に自車両アイコン110を表示した第一俯瞰映像100を生成する。
 基準対象検出部45は、車両の周囲における表示範囲Aより遠方に存在する基準対象Bを検出する。基準対象検出部45は、映像データ取得部42で取得した周辺映像に対して物体認識処理を行い、表示範囲Aより遠方に存在する基準対象Bを検出する。基準対象検出部45は、エッジ検出処理により、周辺映像から所定長さ以上の直線性を備えた被撮影物を基準対象Bとして検出してもよい。基準対象検出部45は、基準対象Bを記憶した認識辞書により、周辺映像から基準対象Bを検出してもよい。物体認識処理は、既存の白線検出処理や、認識辞書を用いた特定の物体検出処理などを用い、または併用してもよい。
 基準対象Bとは、所定長さ以上の直線性を備え、駐車時に自車両Vの向きを合わせる基準となる対象である。基準対象Bは、例えば、縁石、車両止め、駐車区画線、車道外側線、路面上に引かれた線である。基準対象Bは、方向性を有する。言い換えると、基準対象Bは、所定方向に沿った直線上に存在する。基準対象Bは、屈曲や湾曲せずに所定方向に沿ってまっすぐ延びている。物体認識処理は、基準対象Bとしての条件を備える対象物を検出する。
 基準対象検出部45は、複数の基準対象Bを検出したとき、自車両Vからの距離が小さいものを基準対象Bとしてもよい。または、基準対象検出部45は、複数の基準対象Bを検出したとき、自車両Vの進行方向に存在する基準対象Bを選択してもよい。この場合、基準対象検出部45は、自車両Vの進行方向における周辺映像から基準対象Bを検出する。または、基準対象検出部45は、複数の基準対象Bを検出したとき、直線連続性の大きいものを基準対象Bとしてもよい。または、基準対象検出部45は、例えば、コの字型の駐車枠線を検出したとき、後方枠線を基準対象Bとしてもよい。
 自車両Vの進行方向における周辺映像とは、自車両Vの進行方向を向いた、前方カメラ11と後方カメラ12と左側方カメラ13と右側方カメラ14との少なくともいずれか一つが出力した映像データである。例えば、自車両Vの進行方向が後方のとき、後方カメラ12が撮影した映像データと、左側方カメラ13と右側方カメラ14とが撮影した映像データの中で車両の側後方の範囲の映像データである。
 自車両Vの進行方向における周辺映像は、自車両Vと接触する可能性がより高い方向を向いたカメラが出力した映像データを優先してもよい。例えば、自車両Vの進行方向が後方のとき、後方カメラ12が撮影した映像データを、左側方カメラ13と右側方カメラ14とが撮影した映像データの中で車両の側後方の範囲の映像データより優先してもよい。または、例えば、自車両Vの進行方向が後方で操舵されているとき、後方カメラ12が撮影した映像データ、操舵方向の左側方カメラ13または右側方カメラ14が撮影した映像データの中で車両の側後方の範囲の映像データ、操舵方向とは反対方向の右側方カメラ14または左側方カメラ13が撮影した映像データの中で車両の側後方の範囲の映像データの順で優先してもよい。
 向き特定部46は、基準対象検出部45が検出した基準対象Bと自車両Vとの相対的な向きを特定する。より詳しくは、向き特定部46は、基準対象検出部45が検出した基準対象Bの映像データにおける向きおよび位置から、自車両Vに対する相対的な向きを特定する。例えば、向き特定部46は、基準対象検出部45が検出した基準対象Bの映像データにおける向きおよび位置と撮影したカメラの光軸の向きとに基づいて、自車両Vに対する相対的な向きを特定してもよい。例えば、向き特定部46は、基準対象検出部45が検出した基準対象Bの映像データにおける向きおよび位置と映像データの被撮影物の向きとに基づいて、自車両Vに対する相対的な向きを特定してもよい。自車両Vに対する相対的な向きとは、自車両の前後方向への延在方向Lに対する相対的な向きである。本実施形態では、基準対象Bの自車両Vに対する相対的な向きは、基準対象Bの延在方向と自車両Vの前後方向への延在方向Lの向きとの角度θとする。
 重畳処理部48は、基準対象Bと自車両Vとの相対的な向きを示す情報を自車両アイコン110を基準とした相対的な向きとして俯瞰映像生成部44が生成した第一俯瞰映像100に重畳させた重畳映像100Aを生成する。本実施形態では、重畳処理部48は、向き特定部46で検出した基準対象Bと自車両Vとの相対的な向きを示す情報を基準向きアイコン(向きを示す情報)120で示し、第一俯瞰映像100に重畳させた重畳映像100Aを生成する。より詳しくは、重畳処理部48は、重畳映像100Aにおいて、基準向きアイコン120と自車両Vの前後方向への延在方向Lの向きとの角度がθとなるように基準向きアイコン120を重畳する。
 基準向きアイコン120は、基準対象Bの向きを報知するアイコンである。本実施形態では、基準向きアイコン120は、基準対象Bの延在方向に沿って延びた破線である。
 重畳処理部48は、基準向きアイコン120を、第一俯瞰映像100における自車両アイコン110に対し基準対象Bが存在する側に重畳させる。例えば、基準対象Bが自車両Vの後方に検出されたとき、重畳処理部48は、基準向きアイコン120を、第一俯瞰映像100における自車両アイコン110に対し後方である後方映像102に重畳させる。より詳しくは、例えば、基準対象Bが自車両Vの後方に検出されたとき、重畳処理部48は、基準向きアイコン120を、後方映像102の中心を基準として、言い換えると、後方映像102の中心を通過するように重畳させてもよい。例えば、基準対象Bが自車両Vの後方に検出されたとき、重畳処理部48は、基準向きアイコン120を、後方映像102のみを通過するように重畳させてもよい。例えば、基準対象Bが自車両Vの後方に検出されたとき、重畳処理部48は、基準向きアイコン120を、自車両アイコン110の進行方向側の端部から所定距離離れた位置を通過するように重畳させてもよい。
 または、重畳処理部48は、基準向きアイコン120を、自車両アイコン110の中心を基準として、言い換えると、自車両アイコン110の中心を通過するように重畳させてもよい。
 表示制御部49は、第一俯瞰映像100または重畳処理部48が生成した重畳映像100Aを表示パネル31に表示させる。
 図2ないし図4を用いて、俯瞰映像表示装置1で生成された第一俯瞰映像100と重畳映像100Aとについて説明する。図2は、第一実施形態に係る俯瞰映像生成装置で生成した俯瞰映像の一例を示す図である。図3は、第一実施形態に係る俯瞰映像生成装置で生成した重畳映像の一例を示す図である。図4は、第一実施形態に係る俯瞰映像生成装置で生成した重畳映像の他の例を示す図である。
 図2を用いて、第一俯瞰映像100について説明する。第一俯瞰映像100は、縦長の矩形状である。第一俯瞰映像100は、前方映像101と後方映像102と左側方映像103と右側方映像104と、前方映像101と後方映像102と左側方映像103と右側方映像104とで囲まれた中央部に位置する自車両アイコン110とを含む。後方映像102には、被撮影物として車両止めB1と後方枠線B2とが表示されている。前方映像101と後方映像102と左側方映像103と右側方映像104と、自車両アイコン110とは、枠状の境界線で区切られていてもよい。自車両アイコン110は、自車両Vの位置と向きとを示す。自車両アイコン110は、前後方向を第一俯瞰映像100の前後方向と平行にして、中央部に配置されている。運転者は、車両止めB1と後方枠線B2との位置と向きとがわかる。これにより、運転者は、車両止めB1と後方枠線B2とに合わせて自車両Vを操舵する。
 図2においては、前方映像101と後方映像102と左側方映像103と右側方映像104との境界を示す斜めの破線を説明のために図示しているが、実際に表示パネル31に表示される第一俯瞰映像100には当該破線は表示されなくてもよい。他の図も同様である。
 図3を用いて、重畳映像100Aについて説明する。重畳映像100Aは、第一俯瞰映像100と同じ縦長の矩形状である。重畳映像100Aは、第一俯瞰映像100と同じ前方映像101Aと後方映像102Aと左側方映像103Aと右側方映像104Aと自車両アイコン110と、重畳された基準向きアイコン120とを含む。基準向きアイコン120は、後方映像102Aに重畳されている。基準向きアイコン120は、基準対象Bである例えば後方枠線B2との向きを示す。基準向きアイコン120によって、運転者は、車両の進行方向に、基準向きアイコン120の向きに沿った基準対象Bが存在することがわかる。これにより、運転者は、基準向きアイコン120に合わせて自車両Vを操舵する。
 図4を用いて、重畳映像100Aについて説明する。重畳映像100Aは、基準向きアイコン120が、自車両アイコン110の中心を通過するように重畳されている点で、図3に示す重畳映像100Aと異なる。
 記憶部50は、俯瞰映像生成装置40における各種処理に要するデータおよび各種処理結果を記憶する。記憶部50は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ(Flash Memory)などの半導体メモリ素子、または、ハードディスク、光ディスクなどの記憶装置である。
 次に、図5を用いて、俯瞰映像生成装置40における処理の流れについて説明する。図5は、第一実施形態に係る俯瞰映像生成装置における処理の流れを示すフローチャートである。
 制御部41は、俯瞰映像表示を開始するか否かを判定する(ステップS11)。俯瞰映像表示を開始する判定の例として、制御部41は、後退トリガの有無に基づいて、俯瞰映像表示を開示するか否かを判定する。後退トリガとは、例えば、シフトポジションが「リバース」とされたことをいう。または、後退トリガとは、車両の進行方向が車両の前後方向の後方となったことをいう。制御部41は、後退トリガがない場合、俯瞰映像表示を開始しないと判定し(ステップS11でNo)、ステップS11の処理を再度実行する。制御部41は、後退トリガがある場合、俯瞰映像表示を開始すると判定し(ステップS11でYes)、ステップS12に進む。
 制御部41は、第一俯瞰映像100を生成し表示する(ステップS12)。より詳しくは、制御部41は、俯瞰映像生成部44で、映像データ取得部42が取得した周辺映像から車両を上方から見下ろすように視点変換を行った第一俯瞰映像100を生成させる。制御部41は、ステップS13に進む。
 制御部41は、基準対象Bを検出したか否かを判定する(ステップS13)。より詳しくは、制御部41は、基準対象検出部45で基準対象Bが検出されたか否かを判定する。制御部41は、基準対象検出部45で基準対象Bが検出されたと判定した場合(ステップS13でYes)、ステップS14に進む。制御部41は、基準対象検出部45で基準対象Bが検出されていないと判定した場合(ステップS13でNo)、ステップS18に進む。
 制御部41は、基準対象Bが第一俯瞰映像100の表示範囲Aに存在するか否かを判定する(ステップS14)。より詳しくは、制御部41は、基準対象検出部45で基準対象Bが検出された位置が、第一俯瞰映像100の表示範囲Aに含まれるか否かを判定する。制御部41は、基準対象Bが第一俯瞰映像100の表示範囲Aに含まれると判定した場合(ステップS14でYes)、ステップS18に進む。制御部41は、基準対象Bが第一俯瞰映像100の表示範囲Aに含まれないと判定した場合(ステップS14でNo)、ステップS15に進む。
 制御部41は、相対的な向きを特定する(ステップS15)。より詳しくは、制御部41は、向き特定部46で、基準対象検出部45が検出した基準対象Bの映像データにおける向きおよび位置から、自車両Vに対する相対的な向きを特定させる。制御部41は、ステップS16に進む。
 制御部41は、重畳映像100Aを生成する(ステップS16)。より詳しくは、制御部41は、重畳処理部48で、基準向きアイコン120を自車両アイコン110を基準とした相対的な向きとして俯瞰映像生成部44が生成した第一俯瞰映像100に重畳させた重畳映像100Aを生成させる。制御部41は、重畳処理部48で、基準向きアイコン120を、第一俯瞰映像100における自車両アイコン110に対し基準対象Bが存在する側に重畳させる。または、制御部41は、重畳処理部48で、基準向きアイコン120を、自車両アイコン110の中心を通過するように重畳させてもよい。制御部41は、ステップS17に進む。
 制御部41は、重畳映像100Aを表示する(ステップS17)。より詳しくは、制御部41は、表示制御部49で、重畳処理部48が生成した重畳映像100Aを表示パネル31に表示させる。制御部41は、ステップS19に進む。
 制御部41は、第一俯瞰映像100を表示する(ステップS18)。より詳しくは、制御部41は、表示制御部49で、俯瞰映像生成部44が生成した第一俯瞰映像100を表示パネル31に表示させる。制御部41は、ステップS19に進む。
 制御部41は、俯瞰映像表示を終了するか否かを判定する(ステップS19)。より詳しくは、制御部41は、後退終了トリガの有無に基づいて、第一俯瞰映像100の表示と重畳映像100Aの表示を含む俯瞰映像表示を終了するか否かを判定する。後退終了トリガとは、例えば、シフトポジションが「リバース」から他のポジションとなったことをいう。ステップS19においては、表示されている映像は第一俯瞰映像100または重畳映像100Aである。制御部41は、後退終了トリガがある場合、第一俯瞰映像100または重畳映像100Aの表示を終了すると判定し(ステップS19でYes)、処理を終了する。制御部41は、後退終了トリガがない場合、第一俯瞰映像100または重畳映像100Aの表示を終了しないと判定し(ステップS19でNo)、ステップS12の処理を再度実行する。
 このようにして、俯瞰映像表示装置1は、第一俯瞰映像100の表示範囲Aより遠方に基準対象Bが検出されると、基準向きアイコン120を重畳した重畳映像100Aを表示パネル31に表示させる映像信号を出力する。表示パネル31は、俯瞰映像表示装置1から出力された映像信号に基づいて、例えば、ナビゲーション画面とともに重畳映像100Aを表示する。
 例えば、車両の後退時、後方に車両止めB1と後方枠線B2とが存在する場合の一例を、図2ないし図4、図6ないし図10を用いて説明する。本実施形態では、隣接する駐車位置を区画する区画線は存在していない。図6は、第一実施形態における、自車両と基準対象と表示範囲と撮影範囲との位置関係の一例を示す図である。図7は、第一実施形態における、自車両と基準対象と表示範囲と撮影範囲との位置関係の他の例を示す図である。図8は、第一実施形態に係る俯瞰映像生成装置で生成した重畳映像の他の例を示す図である。図9は、第一実施形態に係る俯瞰映像生成装置で生成した重畳映像の他の例を示す図である。図10は、第一実施形態における、自車両と基準対象と表示範囲と撮影範囲との位置関係の他の例を示す図である。
 まず、車両が駐車位置の近傍に位置して、シフトポジションが「リバース」とされる。車両情報取得部43は、後退トリガを取得する。このとき、図6に示すように、自車両Vと車両止めB1と後方枠線B2とが離れているものとする。車両止めB1と後方枠線B2とは、第一撮影範囲A2に存在し、第一俯瞰映像100の表示範囲Aより遠方に存在している。本実施形態では、基準対象検出部45において、自車両Vの進行方向に存在し、直線連続性の大きいものが基準対象Bとする。このため、本実施形態では、後方枠線B2が基準対象物Bとされる。基準対象Bである後方枠線B2の延在方向と自車両Vの前後方向への延在方向Lの向きとの角度はθ1である。
 ステップS11において、制御部41は、後退トリガがあり、俯瞰映像表示を開始すると判定する。そして、ステップS12において、制御部41は、俯瞰映像生成部44で、第一俯瞰映像100を生成させる。
 ステップS13において、制御部41は、基準対象Bとして例えば後方枠線B2とを検出したと判定する。
 そして、ステップS14において、制御部41は、基準対象Bは第一俯瞰映像100の表示範囲Aに存在しないと判定される。そして、ステップS15において、制御部41は、基準対象Bの相対的な向きを特定する。そして、ステップS16において、制御部41は、基準向きアイコン120を第一俯瞰映像100に重畳させた重畳映像100Aを生成する。そして、ステップS17において、制御部41は、生成した重畳映像100Aを表示パネル31に表示させる。
 例えば、制御部41は、図3に示すような重畳映像100Aを表示パネル31に表示させる。基準向きアイコン120は、後方映像102Aに重畳されている。基準向きアイコン120と自車両Vの前後方向への延在方向Lの向きとの角度はθ1である。
 または、例えば、制御部41は、図4に示すような重畳映像100Aを表示パネル31に表示させてもよい。基準向きアイコン120は、自車両アイコン110の中心を通過するように重畳されている。基準向きアイコン120と自車両Vの前後方向への延在方向Lの向きとの角度はθ1である。
 図6に示す状態から、自車両Vが後退して、自車両Vと基準対象Bとが近づいた状態を、図7に示す。車両止めB1と後方枠線B2とは、第一撮影範囲A2に存在し、第一俯瞰映像100の表示範囲Aより遠方に存在している。基準対象Bの延在方向と自車両Vの前後方向への延在方向Lの向きとの角度はθ2である。角度θ2は、角度θ1より大きい。
 ステップS13において、制御部41は、基準対象Bを検出したと判定する。そして、ステップS14において、制御部41は、基準対象Bは第一俯瞰映像100の表示範囲Aに存在しないと判定される。そして、ステップS15において、制御部41は、基準対象Bの相対的な向きを特定する。そして、ステップS16において、制御部41は、基準向きアイコン120を第一俯瞰映像100に重畳させた重畳映像100Aを生成する。そして、ステップS17において、制御部41は、生成した重畳映像100Aを表示パネル31に表示させる。
 例えば、制御部41は、図8に示すような重畳映像100Aを表示パネル31に表示させる。基準向きアイコン120は、後方映像102Aに重畳されている。基準向きアイコン120と自車両Vの前後方向への延在方向Lの向きとの角度はθ2である。
 または、例えば、制御部41は、図9に示すような重畳映像100Aを表示パネル31に表示させる。基準向きアイコン120は、自車両アイコン110の中心を通過するように重畳されている。基準向きアイコン120と自車両Vの前後方向への延在方向Lの向きとの角度はθ2である。
 図7に示す状態から、自車両Vが後退して、自車両Vが基準対象Bの近傍に位置する状態を、図10に示す。車両止めB1と後方枠線B2とは、第一撮影範囲A2に存在し、第一俯瞰映像100の表示範囲Aに存在している。基準対象Bの延在方向と自車両Vの前後方向への延在方向Lの向きとの角度は90°である。
 ステップS13において、制御部41は、基準対象Bを検出したと判定する。そして、ステップS14において、制御部41は、基準対象Bは第一俯瞰映像100の表示範囲Aに存在すると判定される。そして、ステップS18において、制御部41は、第一俯瞰映像100を表示パネル31に表示させる。
 例えば、制御部41は、図2に示すような第一俯瞰映像100を表示パネル31に表示させる。後方映像102には、被撮影物として車両止めB1と後方枠線B2とが表示されている。表示パネル31に表示される映像が重畳映像100Aから第一俯瞰映像100に切り替わることで、基準向きアイコン120に代わって、被撮影物として車両止めB1と後方枠線B2とが表示されている。
 上述したように、第一俯瞰映像100の表示範囲Aより遠方に基準対象Bが検出されると、基準向きアイコン120を重畳した重畳映像100Aを表示パネル31に表示させる。このように、本実施形態は、第一俯瞰映像100の表示範囲Aより遠方の基準対象Bの向きを表示することができる。本実施形態は、車両と周辺との相対的な位置関係を適切に確認可能にすることができる。
 本実施形態によれば、自車両アイコン110に対する基準向きアイコン120の向きによって、自車両Vが基準対象Bの向きに合っているかや、どれくらいずれているかを確認することができる。特に、駐車時には、自車両アイコン110に対する基準向きアイコン120の向きの変化によって、自車両Vが基準対象Bの向きに合っているかや、どれくらいずれているかを確認しながら、自車両Vが適切な向きとなるように操作することができる。
 本実施形態は、基準向きアイコン120を、自車両アイコン110に対し基準対象Bが存在する側に重畳させる。本実施形態によれば、基準向きアイコン120の表示位置によって、基準対象Bが存在する方向を確認可能にすることができる。
 特に、基準向きアイコン120を、自車両アイコン110に対し基準対象Bが存在する側の映像の中心を通過するように重畳させてもよい。例えば、基準対象Bが自車両Vの後方に検出されたとき、重畳処理部48は、基準向きアイコン120を、後方映像102の中心を通過するように重畳させてもよい。このように基準向きアイコン120を表示することで、自車両アイコン110に対する基準向きアイコン120の向きが変化した際に、自車両Vと基準対象Bとの相対的な向きと向きの変化とを把握しやすい表示にすることができる。
 本実施形態は、基準向きアイコン120を、自車両アイコン110の中心を通過するように重畳させてもよい。本実施形態によれば、自車両アイコン110に重畳して基準向きアイコン120が表示されているので、自車両Vと基準対象Bの向きとをより容易に認識できる表示にすることができる。
[第二実施形態]
 図11ないし図15を参照しながら、本実施形態に係る俯瞰映像表示装置1について説明する。図11は、第二実施形態における、自車両と基準対象と表示範囲と撮影範囲との位置関係の一例を示す図である。図12は、第二実施形態に係る俯瞰映像生成装置で生成した重畳映像の一例を示す図である。図13は、第二実施形態に係る俯瞰映像生成装置で生成した重畳映像の他の例を示す図である。図14は、第二実施形態における、自車両と基準対象と表示範囲と撮影範囲との位置関係の他の例を示す図である。図15は、第二実施形態に係る俯瞰映像生成装置で生成した俯瞰映像の一例を示す図である。俯瞰映像表示装置1は、基本的な構成は第一実施形態の俯瞰映像表示装置1と同様である。以下の説明においては、俯瞰映像表示装置1と同様の構成要素には、同一の符号または対応する符号を付し、その詳細な説明は省略する。
 本実施形態では、自車両Vが基準対象Bである車道外側線B3に沿って縦列駐車するものとする。自車両Vを駐車しようとしているスペースを挟んで、他車両V1と他車両V2とが存在している。
 基準対象検出部45は、映像データ取得部42で取得した周辺映像に対して物体認識処理を行い、表示範囲Aより遠方に存在する基準対象Bとして車道外側線B3を検出する。
 例えば、基準対象Bが自車両Vの左後方に検出されたとき、重畳処理部48は、基準向きアイコン120を、第一俯瞰映像100における自車両アイコン110に対し左後方である後方映像102と左側方映像103とに重畳させる。より詳しくは、例えば、基準対象Bが自車両Vの左後方に検出されたとき、重畳処理部48は、基準向きアイコン120を、後方映像102Aと左側方映像103Aとの境界線の中点を通過するように重畳させてもよい。例えば、基準対象Bが自車両Vの左後方に検出されたとき、重畳処理部48は、基準向きアイコン120を、自車両アイコン110の左後端部から所定距離離れた位置を通過するように重畳させてもよい。
 または、重畳処理部48は、基準向きアイコン120を、自車両アイコン110の中心を通過するように重畳させてもよい。
 例えば、車両の縦列駐車時、左後方に基準対象Bである車道外側線B3が存在する場合の一例を、図11ないし図15を用いて説明する。
 まず、車両が駐車位置の近傍に位置して、シフトポジションが「リバース」とされる。車両情報取得部43は、後退トリガを取得する。このとき、図11に示すように、自車両Vと車道外側線B3とが離れているものとする。車道外側線B3は、第二撮影範囲A2と第三撮影範囲A3とにまたがって存在し、第一俯瞰映像100の表示範囲Aより遠方に存在している。車道外側線B3の延在方向と自車両Vの前後方向への延在方向Lの向きとの角度はθ3である。
 ステップS11において、制御部41は、後退トリガがあり、俯瞰映像表示を開始すると判定する。そして、ステップS12において、制御部41は、俯瞰映像生成部44で、第一俯瞰映像100を生成させる。
 ステップS13において、制御部41は、車道外側線B3を基準対象Bとして検出したと判定する。そして、ステップS14において、制御部41は、車道外側線B3は第一俯瞰映像100の表示範囲Aに存在しないと判定される。そして、ステップS15において、制御部41は、車道外側線B3の相対的な向きを特定する。そして、ステップS16において、制御部41は、基準向きアイコン120を第一俯瞰映像100に重畳させた重畳映像100Aを生成する。そして、ステップS17において、制御部41は、生成した重畳映像100Aを表示パネル31に表示させる。
 例えば、制御部41は、図12に示すような重畳映像100Aを表示パネル31に表示させる。基準向きアイコン120は、後方映像102Aと左側方映像103Aとに重畳されている。基準向きアイコン120と自車両Vの前後方向への延在方向Lの向きとの角度はθ3である。
 または、例えば、制御部41は、図13に示すような重畳映像100Aを表示パネル31に表示させてもよい。基準向きアイコン120は、自車両アイコン110の中心を通過するように重畳されている。基準向きアイコン120と自車両Vの前後方向への延在方向Lの向きとの角度はθ3である。図13において、自車両Vの前後方向への延在方向Lと重畳映像100Aの左枠線とは平行であるので、角度θ3は、基準向きアイコン120と左枠線との角度として図示している。
 図11に示す状態から、自車両Vが後退して、自車両Vが車道外側線B3の近傍に位置する状態を、図14に示す。車道外側線B3は、第一撮影範囲A1と第二撮影範囲A2と第三撮影範囲A3とにまたがって存在し、第一俯瞰映像100の表示範囲Aに存在している。他車両V1は、表示範囲Aに存在し、かつ、第一撮影範囲A1に存在している。他車両V2は、表示範囲Aに存在しかつ第二撮影範囲A2に存在している。車道外側線B3の延在方向と自車両Vの前後方向への延在方向Lの向きとの角度はθ4である。
 ステップS13おいて、制御部41は、車道外側線B3を検出したと判定する。そして、ステップS14において、制御部41は、車道外側線B3は第一俯瞰映像100の表示範囲Aに存在すると判定される。そして、ステップS18において、制御部41は、第一俯瞰映像100を表示パネル31に表示させる。
 例えば、制御部41は、図15に示すような第一俯瞰映像100を表示パネル31に表示させる。後方映像102と左側方映像103とには、被撮影物として車道外側線B3が表示されている。他車両V1と他車両V2とが表示されている。表示パネル31に表示される映像が重畳映像100Aから第一俯瞰映像100に切り替わることで、基準向きアイコン120に代わって、被撮影物として車道外側線B3が表示されている。
 上述したように、第一俯瞰映像100の表示範囲Aより遠方に車道外側線B3が検出されると、基準向きアイコン120を重畳した重畳映像100Aを表示パネル31に表示させる。このように、本実施形態は、第一俯瞰映像100の表示範囲Aより遠方の車道外側線B3の向きを表示することができる。本実施形態は、縦列駐車時であっても、車両と周辺との相対的な位置関係を適切に確認可能にすることができる。
[第三実施形態]
 図16を参照しながら、本実施形態に係る俯瞰映像表示装置1について説明する。図16は、第三実施形態における、自車両と基準対象と表示範囲と撮影範囲との位置関係の一例を示す図である。
 本実施形態では、狭い路地で、自車両Vが基準対象Bである車道外側線B3に沿って縦列駐車するものとする。車道外側線B3と向かい合って反対側の車道外側線B4が存在している。車道外側線B3と車道外側線B4との間隔はdである。自車両Vを駐車しようとしているスペースを挟んで、他車両V1と他車両V2とが存在している。
 基準対象検出部45は、映像データ取得部42で取得した周辺映像に対して物体認識処理を行い、表示範囲Aより遠方に存在する基準対象Bとして車道外側線B3を検出する。車道外側線B4は、自車両Vの進行方向とは反対側に存在しているため、基準対象Bとして検出されない。
 または、基準対象検出部45は、映像データ取得部42で取得した周辺映像に対して物体認識処理を行い、表示範囲Aより遠方に存在する基準対象Bであって、自車両Vにより近い車道外側線B3を検出する。車道外側線B4は、車道外側線B3より自車両Vまでの距離が遠いため、基準対象Bとして検出されない。
 このようにして、基準対象検出部45で基準対象Bとして車道外側線B3が検出されるので、第二実施形態と同様にフローチャートに沿った処理が実行されて、第一俯瞰映像100または重畳映像100Aが表示パネル31に表示される。
 上述したように、本実施形態は、狭い路地での縦列駐車時であっても、車両と周辺との相対的な位置関係を適切に確認可能にすることができる。
[第四実施形態]
 図17ないし図25を参照しながら、本実施形態に係る俯瞰映像表示装置1について説明する。図17は、第四実施形態に係る俯瞰映像生成装置で生成した重畳映像の一例を示す図である。図18は、第四実施形態に係る俯瞰映像生成装置で生成した重畳映像の他の例を示す図である。図19は、第四実施形態に係る俯瞰映像生成装置における処理の流れを示すフローチャートである。図20は、自車両と基準対象と表示範囲と撮影範囲との位置関係の一例を示す図である。図21は、自車両と基準対象と表示範囲と撮影範囲との位置関係の他の例を示す図である。図22は、第四実施形態に係る俯瞰映像生成装置で生成した重畳映像の他の例を示す図である。図23は、第四実施形態に係る俯瞰映像生成装置で生成した重畳映像の他の例を示す図である。図24は、自車両と基準対象と表示範囲と撮影範囲との位置関係の他の例を示す図である。図25は、第四実施形態に係る俯瞰映像生成装置で生成した重畳映像の他の例を示す図である。俯瞰映像表示装置1は、基本的な構成は第一実施形態の俯瞰映像表示装置1と同様である。以下の説明においては、俯瞰映像表示装置1と同様の構成要素には、同一の符号または対応する符号を付し、その詳細な説明は省略する。俯瞰映像表示装置1は、車両の第一俯瞰映像100(図2参照)または重畳映像100A(図17参照)または重畳映像100B(図23参照)を生成する。
 俯瞰映像生成部44は、基準対象Bと自車両Vとの相対的な位置関係が所定条件を満たしてないとき、自車両アイコン110を基準とした第一俯瞰映像100を生成する。言い換えると、俯瞰映像生成部44は、基準対象Bと自車両Vとの相対的な位置関係が所定条件を満たしてない間は、自車両アイコン110の向きと位置とを固定した第一俯瞰映像100を生成する。自車両アイコン110を基準とした第一俯瞰映像100とは、言い換えると、自車両Vを基準とした第一俯瞰映像でもある。
 俯瞰映像生成部44は、基準対象Bと自車両Vとの相対的な位置関係が所定条件を満たしたとき、自車両アイコン110を基準とした第一俯瞰映像100に代えて、基準対象Bと自車両Vとの相対的な向きを示す情報を基準とした、図示しない俯瞰映像(以下、「第二俯瞰映像」という。)を生成する。言い換えると、俯瞰映像生成部44は、基準対象Bと自車両Vとの相対的な位置関係が所定条件を満たす間は、相対的な向きを示す情報の配置を固定した俯瞰映像を生成する。
 本実施形態では、俯瞰映像生成部44は、向き特定部46が特定した基準対象Bと自車両Vとの相対的な向きの差が閾値未満となったとき、第一俯瞰映像100に代えて、第二俯瞰映像を生成する。本実施形態では、閾値は5°とする。
 第二俯瞰映像において、相対的な向きを示す情報は、基準対象Bと自車両Vとの相対的な向きの差が閾値未満であると判定されたときの、第一俯瞰映像100における相対的な向きを示す情報の配置で固定してもよい。または、第二俯瞰映像において、相対的な向きを示す情報は、俯瞰映像の前後方向または左右方向と平行に配置して固定してもよい。本実施形態では、相対的な向きを示す情報を俯瞰映像の左右方向と平行に配置して固定する。
 基準対象Bと自車両Vとの相対的な向きの差とは、基準対象Bと、基準対象Bと向きを合わせる自車両Vの対象部との相対的な向きの差である。本実施形態では、基準対象Bと、自車両Vの後端部Vaとの相対的な向きの差である。より詳しくは、基準対象Bと、自車両Vの後端部Vaとの角度の差である。
 切出処理部442は、基準対象Bと自車両Vとの相対的な位置関係が所定条件を満たしたとき、視点変換処理を行った周辺映像データから、第二俯瞰映像を生成するよう、第一俯瞰映像100の切出範囲と異なる切出範囲で映像を切出す切出処理を行う。
 合成処理部443は、合成した映像に自車両アイコン110を表示した第一俯瞰映像100または第二俯瞰映像を生成する。
 基準対象検出部45は、自車両Vの周囲に存在する基準対象Bを検出する。基準対象検出部45は、第一撮影範囲A1、第二撮影範囲A2、第三撮影範囲A3、第四撮影範囲A4において撮影されている基準対象物Bを検出する。このため、基準対象検出部45が検出する基準対象Bは、表示範囲Aより遠方に存在する基準対象Bも含む。
 本実施形態では、向き特定部46は、基準対象Bと自車両Vとの相対的な向きとして、自車両Vの後端部Vaに対する相対的な向きを特定する。
 重畳処理部48は、重畳映像100Aにおいて、基準向きアイコン120と自車両アイコン110の後端部110aとの相対的な向きが、向き特定部46で特定した相対的な向きとなるように基準向きアイコン120を重畳する。
 重畳処理部48は、基準対象Bと自車両Vとの相対的な位置関係が所定条件を満たしたとき、基準向きアイコン120を、第一俯瞰映像100に代わって第二俯瞰映像に重畳させた重畳映像100Bを生成する。
 図17を用いて、重畳映像100Aについて説明する。図17においては、回転中心120aを十字形状で図示しているが、実際に表示パネル31に表示される重畳映像100Aには当該十字形状は表示されなくてもよい。他の図も同様である。
 重畳映像100Aが表示されている間、基準対象Bと自車両Vとの相対的な位置関係が変化すると、重畳映像100Aにおいては、基準向きアイコン120は、回転中心120aを中心にして回転する。
 重畳映像100Bが表示されている間、基準対象Bと自車両Vとの相対的な向きが変化すると、基準向きアイコン120に対して自車両アイコン110の向きが変化する。
 図18を用いて、重畳映像100Aについて説明する。重畳映像100Aは、基準向きアイコン120が、自車両アイコン110の中心を通過するように重畳されている点で、図17に示す重畳映像100Aと異なる。
 表示制御部49は、第一俯瞰映像100または重畳映像100Aまたは重畳映像100Bを表示パネル31に表示する。
 次に、図19を用いて、俯瞰映像生成装置40における処理の流れについて説明する。ステップSS11~ステップSS15、ステップSS20、ステップSS21の処理は、ステップS11~ステップS15、ステップS18、ステップS19と同様の処理を行う。
 制御部41は、ステップSS13でYesと判定された後、ステップSS14の処理を行わずにステップSS15に推移してもよい。また、制御部41は、ステップSS11における俯瞰映像の表示開始後に基準対象Bが初めて検出された場合はステップSS14の処理を行い、ステップSS19において重畳俯瞰映像が一旦表示された後は、ステップSS13でYesと判定された後、ステップSS14の処理を行わずにステップSS15に推移してもよい。
 制御部41は、相対的な向きの差が閾値未満であるか否かを判定する(ステップSS16)。より詳しくは、制御部41は、向き特定部46で特定した基準対象Bと自車両Vとの相対的な向きの差が閾値未満であるか否かを判定する。制御部41は、相対的な向きの差が閾値未満であると判定した場合(ステップSS16でYes)、ステップSS17に進む。制御部41は、相対的な向きの差が閾値未満ではないと判定した場合(ステップSS16でNo)、ステップSS18に進む。
 制御部41は、基準対象Bを基準とした重畳映像100Bを生成する(ステップSS17)。より詳しくは、制御部41は、俯瞰映像生成部44で、基準対象Bを基準とした第二俯瞰映像を生成する。そして、制御部41は、重畳処理部48で、第二俯瞰映像に、基準対象Bの向きを示す基準向きアイコン120を重畳させた重畳映像100Bを生成する。制御部41は、重畳処理部48で、自車両アイコン110に対し基準対象Bが存在する側に基準向きアイコン120を重畳させた重畳映像100Bを生成する。制御部41は、ステップSS19に進む。
 制御部41は、自車両アイコン110を基準とした重畳映像100Aを生成する(ステップSS18)。より詳しくは、制御部41は、俯瞰映像生成部44で、自車両アイコン110を基準とした第一俯瞰映像100を生成する。制御部41は、重畳処理部48で、基準向きアイコン120を自車両アイコン110を基準とした相対的な向きとして、第一俯瞰映像100に重畳させた重畳映像100Aを生成する。制御部41は、重畳処理部48で、基準向きアイコン120を、自車両アイコン110に対し基準対象Bが存在する側に重畳する。制御部41は、ステップSS19に進む。
 制御部41は、重畳映像100Aまたは重畳映像100Bを表示する(ステップSS19)。より詳しくは、制御部41は、表示制御部49で、重畳処理部48が生成した重畳映像100Aまたは重畳映像100Bを表示パネル31に表示する。制御部41は、ステップSS21に進む。
 このようにして、俯瞰映像表示装置1は、自車両Vの周囲に基準対象Bが検出されると、第一俯瞰映像100または重畳映像100Aまたは重畳映像100Bを表示パネル31に表示する映像信号を出力する。表示パネル31は、俯瞰映像表示装置1から出力された映像信号に基づいて、例えば、ナビゲーション画面とともに重畳映像100Aを表示する。
 例えば、図20、図17、図21ないし図25を用いて、車両の後退時、後方に車両止めB1と後方枠線B2とが存在する場合、俯瞰映像表示装置1で生成された重畳映像100Aまたは重畳映像100Bの一例について説明する。
 まず、車両が駐車位置の近傍に位置して、シフトポジションが「リバース」とされる。車両情報取得部43は、後退トリガを取得する。このとき、図20に示すように、自車両Vと車両止めB1と後方枠線B2とが離れているものとする。図20に示す駐車区画においては、車幅方向を区画する側方枠線が存在していない。車両止めB1と後方枠線B2とは、第二撮影範囲A2に存在し、第一俯瞰映像100の表示範囲Aより遠方に存在している。本実施形態では、基準対象検出部45において、自車両Vの進行方向に存在し、直線連続性の大きいものを基準対象Bとする。このため、本実施形態では、後方枠線B2が基準対象Bとされる。基準対象Bである後方枠線B2と自車両Vの後端部Vaとの角度の差は閾値以上である。
 ステップSS11において、制御部41は、後退トリガがあり、俯瞰映像表示を開始すると判定する。そして、ステップSS12において、制御部41は、俯瞰映像生成部44で、第一俯瞰映像100を生成する。そして、ステップSS13において、制御部41は、基準対象Bとして例えば後方枠線B2を検出したと判定する。そして、ステップSS14において、制御部41は、後方枠線B2は第一俯瞰映像100の表示範囲Aに存在しないと判定する。そして、ステップSS15において、制御部41は、後方枠線B2の相対的な向きを特定する。そして、ステップSS16において、制御部41は、相対的な向きの差が閾値未満ではないと判定する(ステップSS16でNo)。そして、ステップSS18において、制御部41は、自車両アイコン110を基準とした第一俯瞰映像100に基準向きアイコン120を重畳させた重畳映像100Aを生成する。そして、ステップSS19において、制御部41は、生成した重畳映像100Aを表示パネル31に表示する。
 例えば、制御部41は、図17に示すような重畳映像100Aを表示パネル31に表示する。重畳映像100Aは、自車両アイコン110を基準としている。基準向きアイコン120は、後方映像102Aに重畳されている。基準向きアイコン120と自車両アイコン110の後端部110aとの角度の差は閾値以上である。
 図20に示す状態から、自車両Vが操舵されながら後退して、自車両Vと後方枠線B2とが近づいた状態を、図21に示す。車両止めB1と後方枠線B2とは、第二撮影範囲A2に存在し、第一俯瞰映像100の表示範囲Aより遠方に存在している。後方枠線B2と自車両Vの後端部Vaとの角度の差は閾値以上である。
 例えば、制御部41は、図22に示すような重畳映像100Aを表示パネル31に表示する。重畳映像100Aは、自車両アイコン110を基準としている。基準向きアイコン120は、図17に示す状態に対して、回転中心120aを中心に反時計回りに回転している。基準向きアイコン120と自車両アイコン110の後端部110aとの角度の差は閾値以上である。
 さらに、図21に示す状態から、自車両Vが操舵されて、後方枠線B2と自車両Vの後端部Vaとの角度が閾値未満となった状態について説明する。
 ステップSS13において、制御部41は、後方枠線B2を検出したと判定する。そして、ステップSS14において、制御部41は、後方枠線B2は第一俯瞰映像100の表示範囲Aに存在しないと判定する。そして、ステップSS15において、制御部41は、後方枠線B2の相対的な向きを特定する。そして、ステップSS16において、制御部41は、相対的な向きの差が閾値未満であると判定する(ステップSS16でYes)。そして、ステップSS17において、制御部41は、後方枠線B2を基準とした俯瞰映像に基準向きアイコン120を重畳させた重畳映像100Bを生成する。そして、ステップSS19において、制御部41は、生成した重畳映像100Bを表示パネル31に表示する。
 例えば、制御部41は、図23に示すような重畳映像100Bを表示パネル31に表示する。重畳映像100Bは、基準向きアイコン120を基準とする。基準向きアイコン120は、左右方向と平行に配置されている。基準向きアイコン120と自車両アイコン110の後端部110aとの角度の差は閾値未満である。自車両アイコン110は、基準向きアイコン120に対して傾いて配置されている。より詳しくは、自車両アイコン110は、図22に示す状態に対して、中心部を回転中心にして反時計回りに回転している。
 重畳映像100Bが表示されている状態で、例えば、駐車位置を調整するために切り返し操作されると、自車両Vと後方枠線B2との相対的な向きの変化に連動して、自車両アイコン110の中心部を回転中心として、自車両アイコン110が回転する。基準向きアイコン120は固定である。
 さらに、自車両Vが操舵されながら後退して、自車両Vが後方枠線B2の近傍に位置した状態を、図24に示す。車両止めB1と後方枠線B2とは、第二撮影範囲A2に存在し、第一俯瞰映像100の表示範囲Aに存在している。後方枠線B2と自車両Vの後端部Vaとの角度の差はゼロである。後方枠線B2と自車両Vの後端部Vaとは平行である。
 ステップSS13において、制御部41は、後方枠線B2を検出したと判定する。そして、ステップSS14において、制御部41は、後方枠線B2は第一俯瞰映像100の表示範囲Aに存在すると判定する。そして、ステップSS20において、制御部41は、第一俯瞰映像100を表示パネル31に表示する。
 例えば、制御部41は、図25に示すような第一俯瞰映像100を表示パネル31に表示する。後方映像102には、被撮影物として車両止めB1と後方枠線B2とが表示されている。ステップSS20において、図25に示すように、車両止めB1と後方枠線B2とともに基準向きアイコン120を重畳して表示してもよい。または、ステップSS20において、基準向きアイコン120を表示しなくてもよい。
 上述したように、基準対象Bと自車両Vとの相対的な向きの差が閾値未満になると、自車両アイコン110を基準とした第一俯瞰映像100に代えて、基準向きアイコン120を基準にした重畳映像100Bを表示パネル31に表示する。本実施形態によれば、基準対象Bと自車両Vとの相対的な向きの差が閾値未満の間、基準向きアイコン120の向きを固定した重畳映像100Bを表示する。これにより、本実施形態によれば、基準対象Bと自車両Vとの相対的な向きの差が閾値未満のとき、基準向きアイコン120に対する自車両アイコン110の向きを迅速に判断し易い表示をすることができる。
 特に、本実施形態によれば、駐車時に基準対象Bと自車両Vとの相対的な向きの差が小さくなり駐車位置を微調整するときに、固定された基準向きアイコン120に対して自車両アイコン110の向きが変化する。これにより、本実施形態は、基準対象Bの向きに自車両Vが合っているかや、どれくらいずれているかを確認しながら、自車両Vが適切な向きとなるように操作することができる。
 第四実施形態の変形例としては、例えば図19に示すフローチャートの処理において、自車両アイコン110を基準とした重畳俯瞰映像100Aが生成されている状態でのステップSS16がYesの判断で、基準対象Bを基準とした重畳俯瞰映像100Bの生成を開始するための相対的な向きの差の閾値を第1の閾値として閾値を5°とする。さらに、基準対象Bを基準とした重畳俯瞰映像100Bが生成されている状態でのステップSS16がNoの判断で、自車両アイコン110を基準とした重畳俯瞰映像100Aの生成を開始するための相対的な向きの差の閾値を第1の閾値より大きい第2の閾値として閾値を15°としてもよい。これにより、基準対象Bと自車両Vとの相対的な向きの差が小さく、駐車位置を微調整するようなときに限って、基準対象Bを基準とした重畳俯瞰映像100Bの表示を継続することができる。
 第四実施形態の他の変形例としては、例えば図19に示すフローチャートの処理において、自車両アイコン110を基準とした重畳俯瞰映像100Aが生成されている状態でのステップSS16がYesの判断で、基準対象Bを基準とした重畳俯瞰映像100Bの生成を開始した後は、ステップSS16の判断を行わずに、ステップSS21がYesの判断となるまで基準対象Bを基準とした重畳俯瞰映像100Bの生成を継続させるようにしてもよい。これにより、表示される映像の向きが頻繁に切り替わることを抑制することができる。
 このように、本実施形態は、車両と周辺との相対的な位置関係を適切に確認可能にすることができる。
[第五実施形態]
 図26ないし図30を参照しながら、本実施形態に係る俯瞰映像表示装置1について説明する。図26は、第五実施形態に係る俯瞰映像生成装置における処理の流れを示すフローチャートである。図27は、自車両と基準対象と表示範囲と撮影範囲との位置関係の一例を示す図である。図28は、第五実施形態に係る俯瞰映像生成装置で生成した重畳映像の一例を示す図である。図29は、自車両と基準対象と表示範囲と撮影範囲との位置関係の他の例を示す図である。図30は、第五実施形態に係る俯瞰映像生成装置で生成した重畳映像の他の例を示す図である。俯瞰映像表示装置1は、基本的な構成は第四実施形態の俯瞰映像表示装置1と同様である。以下の説明においては、俯瞰映像表示装置1と同様の構成要素には、同一の符号または対応する符号を付し、その詳細な説明は省略する。
 俯瞰映像生成部44は、向き特定部46が特定した基準対象Bと自車両Vとの相対的な向きが自車両アイコン110が示す向きに一致したとき、第一俯瞰映像100に代えて、第二俯瞰映像を生成する。言い換えると、俯瞰映像生成部44は、基準対象Bと、基準対象Bと向きを合わせる自車両Vの対象部との向きが一致すると、基準向きアイコン120の向きを固定した俯瞰映像を生成する。本実施形態では、俯瞰映像生成部44は、基準対象Bと自車両Vの後端部Vaとの向きが一致すると、基準向きアイコン120の向きと位置とを固定した俯瞰映像を生成する。
 次に、図26を用いて、俯瞰映像生成装置40における処理の流れについて説明する。図26に示すフローチャートの処理は、図19に示すフローチャートのステップSS16の処理に代わって、ステップSS36の処理を実行する。ステップSS31~ステップSS35、ステップSS37~ステップSS41の処理は、ステップSS11~ステップSS15、ステップSS17~ステップSS21と同様の処理を行う。
 制御部41は、相対的な向きが一致するか否かを判定する(ステップSS36)。より詳しくは、制御部41は、向き特定部46で特定した基準対象Bと自車両Vの対象部との向きが一致するか否かを判定する。制御部41は、相対的な向きが一致すると判定した場合(ステップSS36でYes)、ステップSS37に進む。制御部41は、相対的な向きが一致しないと判定した場合(ステップSS36でNo)、ステップSS38に進む。ここでいう一致とは、完全一致に加えて、例えば±2°程度の範囲を持たせてもよい。ここでいう一致したという判断は、相対的な向きが変動している状態において、一時的に一致している状態となった場合である。
 基準対象Bに対して自車両Vの向きの差がゼロになると、基準対象Bに対して自車両Vの向きが合う。基準対象Bに対して自車両Vの向きが合うとは、基準対象Bに対して自車両Vの向きが平行になったとき、または、垂直になったときである。言い換えると、基準対象Bに対して自車両Vの向きが合うとは、基準対象Bに対して自車両Vの向きが正しい向きになったときである。
 例えば、図27ないし図30を用いて、車両の後退時、後方に車両止めB1と後方枠線B2とが存在する場合、俯瞰映像表示装置1で生成された重畳映像100Bの一例について説明する。
 図27に示すように、後方枠線B2と自車両Vの後端部Vaとが一致した状態について説明する。後方枠線B2と自車両Vの後端部Vaとの角度の差はゼロである。後方枠線B2と自車両Vの後端部Vaとは平行である。
 ステップSS33おいて、制御部41は、後方枠線B2を検出したと判定する。そして、ステップSS34において、制御部41は、後方枠線B2は第一俯瞰映像100の表示範囲Aに存在しないと判定する。そして、ステップSS35において、制御部41は、後方枠線B2の相対的な向きを特定する。そして、ステップSS36において、制御部41は、相対的な向きが一致すると判定する(ステップSS36でYes)。そして、ステップSS37において、制御部41は、後方枠線B2を基準とした俯瞰映像に基準向きアイコン120を重畳させた重畳映像100Bを生成する。そして、ステップSS39において、制御部41は、生成した重畳映像100Bを表示パネル31に表示する。
 例えば、制御部41は、図28に示すような重畳映像100Bを表示パネル31に表示する。重畳映像100Bは、基準向きアイコン120を基準とする。基準向きアイコン120は、左右方向と平行に配置されている。基準向きアイコン120と自車両アイコン110の後端部110aとの向きが一致している。
 図27に示す状態から、駐車位置を調整するために切り返しされた状態を、図29に示す。後方枠線B2と自車両Vの後端部Vaとの向きが一致していない。
 例えば、制御部41は、図30に示すような重畳映像100Bを表示パネル31に表示する。重畳映像100Bは、基準向きアイコン120の向きと位置とが固定され、図28に示す重畳映像100Bの基準向きアイコン120と同じ向きと位置である。自車両アイコン110は、基準向きアイコン120に対して傾いて配置されている。より詳しくは、自車両アイコン110は、図28に示す状態に対して、中心部を回転中心にして反時計回りに回転している。
 上述したように、基準対象Bと自車両Vとの相対的な向きが自車両アイコン110が示す向きに一致すると、自車両アイコン110を基準とした第一俯瞰映像100に代えて、基準向きアイコン120を基準にした重畳映像100Bを表示パネル31に表示する。本実施形態によれば、基準対象Bと自車両Vとの相対的な向きが一致すると、基準向きアイコン120の向きを固定した重畳映像100Bを表示する。これにより、本実施形態は、特に、駐車時に切り返しをしている際に、基準対象Bと自車両Vとの相対的な向きが一致した後にずれたことを確認しやすい表示とすることができる。このように、本実施形態は、車両と周辺との相対的な位置関係を適切に確認可能にすることができる。
 第五実施形態の変形例としては、例えば図26に示すフローチャートの処理において、自車両アイコン110を基準とした重畳俯瞰映像100Aが生成されている状態でのステップSS36がYesの判断で、基準対象Bを基準とした重畳俯瞰映像100Bの生成を開始した後におけるステップSS36の判断は、第四実施形態におけるステップSS16のように、例えば5°~15°程度の閾値未満であるか否かの判断により、ステップSS36をNoの判断としてもよい。これにより、ステップSS36がYesの判断された後、基準対象Bと自車両Vとの相対的な向きの差が閾値未満である場合に限って、基準対象Bを基準とした重畳俯瞰映像100Bの表示を継続することができる。
 第五実施形態の他の変形例としては、例えば図26に示すフローチャートの処理において、自車両アイコン110を基準とした重畳俯瞰映像100Aが生成されている状態でのステップSS36がYesの判断で、基準対象Bを基準とした重畳俯瞰映像100Bの生成を開始した後は、ステップSS36の判断を行わずに、ステップSS41がYesの判断となるまで基準対象Bを基準とした重畳俯瞰映像100Bの生成を継続させるようにしてもよい。これにより、表示される映像の向きが頻繁に切り替わることを抑制することができる。
[第六実施形態]
 図31ないし図35を参照しながら、本実施形態に係る俯瞰映像表示装置1について説明する。図31は、自車両と基準対象と表示範囲と撮影範囲との位置関係の一例を示す図である。図32は、第六実施形態に係る俯瞰映像生成装置で生成した重畳映像の一例を示す図である。図33は、自車両と基準対象と表示範囲と撮影範囲との位置関係の他の例を示す図である。図34は、第六実施形態に係る俯瞰映像生成装置で生成した重畳映像の他の例を示す図である。図35は、第六実施形態に係る俯瞰映像生成装置で生成した重畳映像の他の例を示す図である。
 本実施形態では、自車両Vが基準対象Bである車道外側線B3に沿って縦列駐車するものとする。自車両Vを駐車しようとしているスペースを挟んで、他車両V1と他車両V2とが存在している。
 基準対象検出部45は、映像データ取得部42で取得した周辺映像に対して物体認識処理を行い、自車両Vの周囲に存在する基準対象Bとして車道外側線B3を検出する。
 例えば、基準対象Bが自車両Vの左後方に検出されたとき、重畳処理部48は、基準向きアイコン120を、自車両アイコン110に対し左後方である後方映像102と左側方映像103とに重畳させる。より詳しくは、例えば、基準対象Bが自車両Vの左後方に検出されたとき、重畳処理部48は、基準向きアイコン120を、後方映像102Aと左側方映像103Aとの境界線の中点を通過するように重畳させてもよい。例えば、基準対象Bが自車両Vの左後方に検出されたとき、重畳処理部48は、基準向きアイコン120を、自車両アイコン110の左後端部から所定距離離れた位置を通過するように重畳させてもよい。
 または、重畳処理部48は、基準向きアイコン120を、自車両アイコン110の中心を通過するように重畳させてもよい。
 例えば、図31ないし図35を用いて、車両の縦列駐車時、左後方に基準対象Bである車道外側線B3が存在する場合、俯瞰映像表示装置1で生成された重畳映像100Aまたは重畳映像100Bの一例について説明する。
 まず、車両が駐車位置の近傍に位置して、シフトポジションが「リバース」とされる。車両情報取得部43は、後退トリガを取得する。このとき、図31に示すように、自車両Vと車道外側線B3とが離れているものとする。車道外側線B3は、第二撮影範囲A2と第三撮影範囲A3とにまたがって存在し、第一俯瞰映像100の表示範囲Aより遠方に存在している。車道外側線B3と自車両Vの左側部Vbとの角度の差は閾値以上である。
 例えば、制御部41は、図32に示すような重畳映像100Aを表示パネル31に表示する。重畳映像100Aは、自車両アイコン110を基準としている。基準向きアイコン120は、後方映像102Aと左側方映像103Aとに重畳されている。基準向きアイコン120と自車両アイコン110の左側部110bとの角度の差は閾値以上である。
 図31に示す状態から、自車両Vが操舵されながら後退して、自車両Vが車道外側線B3の近傍に位置する状態を、図33に示す。車道外側線B3は、第一撮影範囲A1と第二撮影範囲A2と第三撮影範囲A3とにまたがって存在し、第一俯瞰映像100の表示範囲Aより遠方に存在している。他車両V1は、表示範囲Aに存在し、かつ、第一撮影範囲A1に存在している。他車両V2は、表示範囲Aに存在しかつ第二撮影範囲A2に存在している。
 例えば、制御部41は、図34に示すような重畳映像100Aを表示パネル31に表示する。重畳映像100Aは、自車両アイコン110を基準としている。重畳映像100Aには、他車両V1と他車両V2とが表示されている。基準向きアイコン120は、図32に示す状態に対して、回転中心120aを中心に時計回りに回転している。
 さらに、自車両Vが操舵されて、車道外側線B3と自車両Vの左側部Vbとの相対的な向きの差が閾値未満である状態について説明する。
 例えば、制御部41は、図35に示すような重畳映像100Bを表示パネル31に表示する。重畳映像100Bは、基準向きアイコン120を基準とする。基準向きアイコン120は、前後方向を平行に配置されている。基準向きアイコン120と自車両アイコン110の左側部110bとの角度の差は閾値未満である。自車両アイコン110は、基準向きアイコン120に対して傾いて表示されている。より詳しくは、自車両アイコン110は、図34に示す状態に対して、中心部を回転中心にして時計回りに回転している。
 上述したように、縦列駐車する際も、基準対象Bと自車両Vとの相対的な向きの差が閾値未満になると、自車両アイコン110を基準とした第一俯瞰映像100に代えて、基準向きアイコン120を基準にした重畳映像100Bを表示パネル31に表示する。このように、本実施形態は、縦列駐車時であっても、車両と周辺との相対的な位置関係を適切に確認可能にすることができる。
[第七実施形態]
 図36ないし図38を参照しながら、本実施形態に係る俯瞰映像表示装置1について説明する。図36は、第七実施形態に係る俯瞰映像生成装置における処理の流れを示すフローチャートである。図37は、自車両と基準対象と表示範囲と撮影範囲との位置関係の一例を示す図である。図38は、自車両と基準対象と表示範囲と撮影範囲との位置関係の他の例を示す図である。俯瞰映像表示装置1は、基本的な構成は第一実施形態の俯瞰映像表示装置1と同様である。以下の説明においては、俯瞰映像表示装置1と同様の構成要素には、同一の符号または対応する符号を付し、その詳細な説明は省略する。制御部41は、映像データ取得部42と、車両情報取得部43と、俯瞰映像生成部44と、基準対象検出部45と、向き特定部46と、距離検出部47と、重畳処理部48と、表示制御部49とを有する。
 俯瞰映像生成部44は、基準対象Bと自車両Vとの距離d1が所定条件を満たしてないとき、自車両アイコン110を基準とした第一俯瞰映像100を生成する。言い換えると、俯瞰映像生成部44は、基準対象Bと自車両Vとの距離d1が所定条件を満たしてない間は、自車両アイコン110の向きと位置とを固定した第一俯瞰映像100を生成する。自車両アイコン110を基準とした第一俯瞰映像100とは、言い換えると、自車両Vを基準とした第一俯瞰映像でもある。
 俯瞰映像生成部44は、向き特定部46が特定した基準対象Bと自車両Vとの距離d1が所定条件を満たしたとき、第一俯瞰映像100に代えて、基準対象Bと自車両Vとの相対的な向きを示す情報を基準とした、図示しない俯瞰映像(以下、「第二俯瞰映像」という。)を生成する。言い換えると、俯瞰映像生成部44は、基準対象Bと自車両Vとの距離d1が所定条件を満たす間は、相対的な向きを示す情報の配置を固定した俯瞰映像を生成する。
 本実施形態では、俯瞰映像生成部44は、基準対象Bと自車両Vとの距離d1が閾値th1未満となったとき、第一俯瞰映像100に代えて、第二俯瞰映像を生成する。閾値th1は、表示範囲Aより大きいことが好ましい。本実施形態では、閾値th1は、2.5mとする。
 第二俯瞰映像において、相対的な向きを示す情報は、基準対象Bと自車両Vとの距離d1が閾値th1未満であると判定されたときの第一俯瞰映像100における相対的な向きを示す情報の配置で固定してもよい。または、第二俯瞰映像において、相対的な向きを示す情報は、俯瞰映像の前後方向または左右方向と平行に配置して固定してもよい。本実施形態では、相対的な向きを示す情報を俯瞰映像の左右方向と平行に配置して固定する。
 切出処理部442は、基準対象Bと自車両Vとの距離d1が所定条件を満たしたとき、視点変換処理を行った周辺映像データから、第二俯瞰映像を生成するよう、第一俯瞰映像100の切出範囲と異なる切出範囲で映像を切出す切出処理を行う。
 距離検出部47は、基準対象検出部45が検出した基準対象Bと自車両Vとの距離d1を検出する。より詳しくは、向き特定部46は、基準対象検出部45が検出した基準対象Bの映像データにおける位置から、基準対象Bと自車両Vとの距離d1を検出する。本実施形態では、基準対象Bと自車両Vとの距離d1とは、基準対象Bと自車両Vとの間の最も近接した位置の距離d1である。より詳しくは、距離d1は、基準対象Bと自車両Vの後端部Vaとの最も近接した位置の距離である。
 重畳処理部48は、基準対象Bと自車両Vとの距離d1が所定条件を満たしたとき、基準向きアイコン120を、第一俯瞰映像100に代わって第二俯瞰映像に重畳させた重畳映像100Bを生成する。
 次に、図36を用いて、俯瞰映像生成装置40における処理の流れについて説明する。ステップST11~ステップST15、ステップST17~ステップST21の処理は、ステップSS11~ステップSS15、ステップSS17~ステップSS21と同様の処理を行う。
 制御部41は、基準対象Bとの距離d1が閾値th1未満であるか否かを判定する(ステップST16)。より詳しくは、制御部41は、向き特定部46で特定した基準対象Bと自車両Vとの距離d1が閾値th1未満であるか否かを判定する。制御部41は、基準対象Bと自車両Vとの距離d1が閾値th1未満であると判定した場合(ステップST16でYes)、ステップST17に進む。制御部41は、基準対象Bと自車両Vとの距離d1が閾値th1未満ではないと判定した場合(ステップST16でNo)、ステップST18に進む。
 このようにして、俯瞰映像表示装置1は、自車両Vの周囲にに基準対象Bが検出されると、第一俯瞰映像100または重畳映像100Aまたは重畳映像100Bを表示パネル31に表示する映像信号を出力する。表示パネル31は、俯瞰映像表示装置1から出力された映像信号に基づいて、例えば、ナビゲーション画面とともに重畳映像100Aを表示する。
 例えば、図37、図17、図22、図38、図23ないし図25を用いて、車両の後退時、後方に車両止めB1と後方枠線B2とが存在する場合、俯瞰映像表示装置1で生成された重畳映像100Aまたは重畳映像100Bの一例について説明する。
 まず、車両が駐車位置の近傍に位置して、シフトポジションが「リバース」とされる。車両情報取得部43は、後退トリガを取得する。このとき、図37に示すように、基準対象Bである後方枠線B2と自車両Vとの距離d1は閾値th1以上である。図37に示す駐車区画においては、車幅方向を区画する側方枠線が存在していない。車両止めB1と後方枠線B2とは、第二撮影範囲A2に存在し、第一俯瞰映像100の表示範囲Aより遠方に存在している。本実施形態では、基準対象検出部45において、自車両Vの進行方向に存在し、直線連続性の大きいものを基準対象Bとする。このため、本実施形態では、後方枠線B2が基準対象Bとされる。
 ステップST11において、制御部41は、後退トリガがあり、俯瞰映像表示を開始すると判定する。そして、ステップST12において、制御部41は、俯瞰映像生成部44で、第一俯瞰映像100を生成する。そして、ステップST13において、制御部41は、基準対象Bとして例えば後方枠線B2を検出したと判定する。そして、ステップST14において、制御部41は、後方枠線B2は第一俯瞰映像100の表示範囲Aに存在しないと判定する。そして、ステップST15において、制御部41は、後方枠線B2の相対的な向きを特定する。そして、ステップST16において、制御部41は、後方枠線B2と自車両Vとの距離d1が閾値th1未満ではないと判定する(ステップST16でNo)。そして、ステップST18において、制御部41は、第一俯瞰映像100に基準向きアイコン120を重畳させた重畳映像100Aを生成する。そして、ステップST19において、制御部41は、生成した重畳映像100Aを表示パネル31に表示する。
 例えば、制御部41は、図17に示すような重畳映像100Aを表示パネル31に表示する。重畳映像100Aは、自車両アイコン110を基準としている。基準向きアイコン120は、後方映像102Aに重畳されている。
 図37に示す状態から、自車両Vが操舵されながら後退した状態について説明する。後方枠線B2と自車両Vとの距離d1は閾値th1以上である。
 例えば、制御部41は、図22に示すような重畳映像100Aを表示パネル31に表示する。重畳映像100Aは、自車両アイコン110を基準としている。基準向きアイコン120は、図17に示す状態に対して、回転中心120aを中心に時計回りに回転している。
 さらに、自車両Vが操舵されながら後退して、自車両Vと後方枠線B2とが近づいた状態を、図38に示す。後方枠線B2と自車両Vとの距離d1は閾値th1未満である。車両止めB1と後方枠線B2とは、第二撮影範囲A2に存在し、第一俯瞰映像100の表示範囲Aより遠方に存在している。
 ステップST13おいて、制御部41は、後方枠線B2を検出したと判定する。そして、ステップST14において、制御部41は、後方枠線B2は第一俯瞰映像100の表示範囲Aに存在しないと判定する。そして、ステップST15において、制御部41は、後方枠線B2の相対的な向きを特定する。そして、ステップST16において、制御部41は、後方枠線B2と自車両Vとの距離d1が閾値th1未満であると判定する(ステップST16でYes)。そして、ステップST17において、制御部41は、後方枠線B2を基準とした俯瞰映像に基準向きアイコン120を重畳させた重畳映像100Bを生成する。そして、ステップST19において、制御部41は、生成した重畳映像100Bを表示パネル31に表示する。
 例えば、制御部41は、図23に示すような重畳映像100Bを表示パネル31に表示する。重畳映像100Bは、基準向きアイコン120を基準とする。基準向きアイコン120は、左右方向と平行に配置されている。自車両アイコン110は、基準向きアイコン120に対して傾いて配置されている。より詳しくは、自車両アイコン110は、図22に示す状態に対して、中心部を回転中心にして反時計回りに回転している。
 重畳映像100Bが表示されている状態で、例えば、駐車位置を調整するために切り返し操作されると、自車両Vと後方枠線B2との相対的な向きの変化に連動して、自車両アイコン110の中心部を回転中心として、自車両アイコン110が回転する。基準向きアイコン120は固定である。
 さらに、自車両Vが操舵されながら後退して、自車両Vが後方枠線B2の近傍に位置した状態を、図24に示す。後方枠線B2と自車両Vとの距離d1は閾値th1未満である。車両止めB1と後方枠線B2とは、第二撮影範囲A2に存在し、第一俯瞰映像100の表示範囲Aに存在している。後方枠線B2と自車両Vの後端部Vaとの角度の差はゼロである。後方枠線B2と自車両Vの後端部Vaとは平行である。
 ステップST13において、制御部41は、後方枠線B2を検出したと判定する。そして、ステップST14において、制御部41は、後方枠線B2は第一俯瞰映像100の表示範囲Aに存在すると判定する。そして、ステップST20において、制御部41は、第一俯瞰映像100を表示パネル31に表示する。
 例えば、制御部41は、図25に示すような第一俯瞰映像100を表示パネル31に表示する。後方映像102には、被撮影物として車両止めB1と後方枠線B2とが表示されている。ステップST20において、図25に示すように、車両止めB1と後方枠線B2とともに基準向きアイコン120を重畳して表示してもよい。または、ステップST20において、基準向きアイコン120を表示しなくてもよい。
 上述したように、基準対象Bと自車両Vとの距離d1が閾値th1未満になると、自車両アイコン110を基準とした第一俯瞰映像100に代えて、基準向きアイコン120を基準にした重畳映像100Bを表示パネル31に表示する。本実施形態によれば、基準対象Bと自車両Vとの距離d1が閾値th1未満の間、基準向きアイコン120の向きを固定した重畳映像100Bを表示する。これにより、本実施形態によれば、基準対象Bと自車両Vとの距離d1が閾値th1未満のとき、基準向きアイコン120に対する自車両アイコン110の向きを迅速に判断し易い表示をすることができる。
 特に、本実施形態によれば、駐車時に基準対象Bと自車両Vとの距離d1が小さくなり駐車位置を微調整するときに、固定された基準向きアイコン120に対して自車両アイコン110の向きが変化する。これにより、本実施形態は、基準対象Bの向きに自車両Vが合っているかや、どれくらいずれているかを確認しながら、自車両Vが適切な向きとなるように操作することができる。
 第七実施形態の変形例としては、例えば図36に示すフローチャートの処理において、自車両アイコン110を基準とした重畳俯瞰映像100Aが生成されている状態でのステップST16における閾値th1を、例えば2.5mとする。さらに、基準対象Bを基準とした重畳俯瞰映像100Bが生成されている状態でのステップST16における閾値th1を、例えば3.5mとしてもよい。これにより、基準対象Bと自車両Vとの距離d1がが小さく、駐車位置を微調整するようなときに限って、基準対象Bを基準とした重畳俯瞰映像100Bの表示を継続することができる。
 第七実施形態の他の変形例としては、例えば図36に示すフローチャートの処理において、自車両アイコン110を基準とした重畳俯瞰映像100Aが生成されている状態でのステップST16がYesの判断で、基準対象Bを基準とした重畳俯瞰映像100Bの生成を開始した後は、ステップST16の判断を行わずに、ステップST21がYesの判断となるまで基準対象Bを基準とした重畳俯瞰映像100Bの生成を継続させるようにしてもよい。これにより、表示される映像の向きが頻繁に切り替わることを抑制することができる。
 このように、本実施形態は、車両と周辺との相対的な位置関係を適切に確認可能にすることができる。
[第八実施形態]
 図39を参照しながら、本実施形態に係る俯瞰映像表示装置1について説明する。図39は、自車両と基準対象と表示範囲と撮影範囲との位置関係の他の例を示す図である。俯瞰映像表示装置1は、基本的な構成は第七実施形態の俯瞰映像表示装置1と同様である。以下の説明においては、俯瞰映像表示装置1と同様の構成要素には、同一の符号または対応する符号を付し、その詳細な説明は省略する。
 基準対象Bと自車両Vとの距離とは、基準対象検出部45が検出した基準対象Bと自車両Vの基準対象Bに対向した対向部における基準位置との距離d2である。本実施形態では、基準位置は、対向部の中央部とする。自車両Vの基準対象Bに対向した対向部とは、自車両Vにおいて基準対象Bと向きを合せる対象部である。本実施形態では、自車両Vの後端部Vaである。
 閾値th2は、第七実施形態の閾値th1と同じ値か閾値th1より大きい値である。
 上述したように、基準対象Bと自車両Vの対向部における基準位置との距離d2が閾値th2未満になると、自車両アイコン110を基準とした第一俯瞰映像100に代えて、基準向きアイコン120を基準にした重畳映像100Bを表示パネル31に表示する。このように、本実施形態は、車両と周辺との相対的な位置関係を適切に確認可能にすることができる。
[第九実施形態]
 図40ないし図43を参照しながら、本実施形態に係る俯瞰映像表示装置1について説明する。図40は、自車両と基準対象と表示範囲と撮影範囲との位置関係の一例を示す図である。図41は、第九実施形態に係る俯瞰映像生成装置で生成した重畳映像の一例を示す図である。図42は、自車両と基準対象と表示範囲と撮影範囲との位置関係の一例を示す図である。図43は、第九実施形態に係る俯瞰映像生成装置で生成した重畳映像の他の例を示す図である。
 本実施形態では、自車両Vが基準対象Bである車道外側線B3に沿って縦列駐車するものとする。自車両Vを駐車しようとしているスペースを挟んで、他車両V1と他車両V2とが存在している。
 基準対象検出部45は、映像データ取得部42で取得した周辺映像に対して物体認識処理を行い、自車両Vの周囲に存在する基準対象Bとして車道外側線B3を検出する。
 例えば、基準対象Bが自車両Vの左後方に検出されたとき、重畳処理部48は、基準向きアイコン120を、自車両アイコン110に対し左後方である後方映像102と左側方映像103とに重畳させる。より詳しくは、例えば、基準対象Bが自車両Vの左後方に検出されたとき、重畳処理部48は、基準向きアイコン120を、後方映像102Aと左側方映像103Aとの境界線の中点を通過するように重畳させてもよい。例えば、基準対象Bが自車両Vの左後方に検出されたとき、重畳処理部48は、基準向きアイコン120を、自車両アイコン110の左後端部から所定距離離れた位置を通過するように重畳させてもよい。
 または、重畳処理部48は、基準向きアイコン120を、自車両アイコン110の中心を通過するように重畳させてもよい。
 例えば、図40ないし図43を用いて、車両の縦列駐車時、左後方に基準対象Bである車道外側線B3が存在する場合、俯瞰映像表示装置1で生成された重畳映像100Aまたは重畳映像100Bの一例について説明する。
 まず、車両が駐車位置の近傍に位置して、シフトポジションが「リバース」とされる。車両情報取得部43は、後退トリガを取得する。このとき、図40に示すように、車道外側線B3と自車両Vとの距離d1は閾値th1以上である。車道外側線B3は、第二撮影範囲A2と第三撮影範囲A3とにまたがって存在し、第一俯瞰映像100の表示範囲Aより遠方に存在している。
 例えば、制御部41は、図32に示すような重畳映像100Aを表示パネル31に表示する。重畳映像100Aは、自車両アイコン110を基準としている。基準向きアイコン120は、後方映像102Aと左側方映像103Aとに重畳されている。
 図40に示す状態から、自車両Vが操舵されながら後退した状態について説明する。後方枠線B2と自車両Vとの距離d1は閾値th1以上である。
 例えば、制御部41は、図41に示すような重畳映像100Aを表示パネル31に表示する。重畳映像100Aは、自車両アイコン110を基準としている。重畳映像100Aには、他車両V1と他車両V2とが表示されている。基準向きアイコン120は、図32に示す状態に対して、回転中心120aを中心に時計回りに回転している。
 さらに、自車両Vが操舵されて、車道外側線B3と自車両Vとの距離d1が閾値th1未満である状態を、図42に示す。
 例えば、制御部41は、図43に示すような重畳映像100Bを表示パネル31に表示する。重畳映像100Bは、基準向きアイコン120を基準とする。基準向きアイコン120は、前後方向を平行に配置されている。自車両アイコン110は、基準向きアイコン120に対して傾いて表示されている。より詳しくは、自車両アイコン110は、図41に示す状態に対して、中心部を回転中心にして時計回りに回転している。
 上述したように、縦列駐車する際も、基準対象Bと自車両Vとの距離d1が閾値th1未満になると、自車両アイコン110を基準とした第一俯瞰映像100に代えて、基準向きアイコン120を基準にした重畳映像100Bを表示パネル31に表示する。このように、本実施形態は、縦列駐車時であっても、車両と周辺との相対的な位置関係を適切に確認可能にすることができる。
 さて、これまで本発明に係る俯瞰映像表示装置1について説明したが、上述した実施形態以外にも種々の異なる形態にて実施されてよいものである。
 図示した俯瞰映像表示装置1の各構成要素は、機能概念的なものであり、必ずしも物理的に図示の如く構成されていなくてもよい。すなわち、各装置の具体的形態は、図示のものに限られず、各装置の処理負担や使用状況などに応じて、その全部または一部を任意の単位で機能的または物理的に分散または統合してもよい。
 俯瞰映像表示装置1の構成は、例えば、ソフトウェアとして、メモリにロードされたプログラムなどによって実現される。上記実施形態では、これらのハードウェアまたはソフトウェアの連携によって実現される機能ブロックとして説明した。すなわち、これらの機能ブロックについては、ハードウェアのみ、ソフトウェアのみ、または、それらの組み合わせによって種々の形で実現できる。
 上記した構成要素には、当業者が容易に想定できるもの、実質的に同一のものを含む。さらに、上記した構成は適宜組み合わせが可能である。また、本発明の要旨を逸脱しない範囲において構成の種々の省略、置換または変更が可能である。
 重畳処理部48は、基準向きアイコン120を、基準対象Bと自車両Vとの距離に応じて表示態様を変化させて重畳させてもよい。例えば、基準向きアイコン120は、基準対象Bと自車両Vとの距離に応じて、太さと色と線種の少なくともいずれかを変えてもよい。基準向きアイコン120は、基準対象Bと自車両Vとの距離が近いほど、太い線で表示してもよい。基準向きアイコン120は、基準対象Bと自車両Vとの距離が近いほど、濃い色で表示してもよい。基準向きアイコン120は、基準対象Bと自車両Vとの距離が遠いときは破線で表示し、近いときは実線で表示してもよい。
 重畳処理部48は、基準向きアイコン120を、基準対象Bと自車両Vとの相対的な向きに応じて表示態様を変化させて重畳させてもよい。例えば、基準向きアイコン120は、基準対象Bの延在方向に対する自車両Vの向きに応じて、太さと色と線種の少なくともいずれかを変えてもよい。基準向きアイコン120は、基準対象Bの延在方向に対する自車両Vの向きのズレが所定値より大きいときは薄い線で示し、基準対象Bの延在方向に対して自車両Vの向きのズレが小さくなるにつれて太くした線で表示してもよい。基準向きアイコン120は、基準対象Bの延在方向に対する自車両Vの向きのズレが所定値より大きいときは赤い色で示し、基準対象Bの延在方向に対して自車両Vの向きのズレが小さくなるにつれて緑色へと変化するように表示してもよい。基準向きアイコン120は、基準対象Bの延在方向に対する自車両Vの向きのズレが所定値より大きいときは破線で表示し、基準対象Bの延在方向に対して自車両Vの向きのズレが小さくなるにつれて実線へと変化させるように表示してもよい。
 基準対象Bの延在方向に対して自車両Vの向きのズレがゼロになると、基準対象Bの延在方向に対して自車両Vの向きが合う。基準対象Bの延在方向に対して自車両Vの向きが合うとは、基準対象Bの延在方向に対して自車両Vの向きが平行になったとき、または、垂直になったときである。言い換えると、基準対象Bの延在方向に対して自車両Vの向きが合うとは、基準対象Bに対して自車両Vの向きが正しい向きになったときである。
 自車両アイコン110は、自車両Vの進行方向の端部、言い換えると、基準向きアイコン120と向きを合せる自車両Vの対象部を着色して表示してもよい。これにより、重畳映像100Aによって、基準対象Bと自車両Vとの向きの確認がより容易になる。基準向きアイコン120と向きを合せる対象部は、自車両Vの進行方向と基準対象Bとの相対的な位置関係や、撮影データに対して画像処理を行い、周囲の被撮影物との位置関係によって特定してもよい。または、基準向きアイコン120と向きを合せる対象部は、ユーザが表示パネル31に表示された自車両アイコン110上で選択した部分を対象部として特定してもよい。
 基準向きアイコン120は、破線で構成されるものとして説明したが、これに限定されない。基準向きアイコン120は、例えば、帯状の図形でもよい。
 1    俯瞰映像表示装置
 11   前方カメラ(撮影部)
 12   後方カメラ(撮影部)
 13   左側方カメラ(撮影部)
 14   右側方カメラ(撮影部)
 31   表示パネル(表示部)
 40   俯瞰映像生成装置
 41   制御部
 42   映像データ取得部
 43   車両情報取得部
 44   俯瞰映像生成部
 441  視点変換処理部
 442  切出処理部
 443  合成処理部
 45   基準対象検出部
 46   向き特定部
 48   重畳処理部
 49   表示制御部
 50   記憶部
 100  第一俯瞰映像
 100A 重畳映像
 110  自車両アイコン
 120  基準向きアイコン(向きを示す情報)

Claims (20)

  1.  車両の周辺を撮影する撮影部が撮影した周辺映像データを取得する映像データ取得部と、
     前記映像データ取得部が取得した周辺映像に視点変換処理および車両を示す自車両アイコンを含む合成処理を行い、前記車両から所定の表示範囲を表示する俯瞰映像を生成する俯瞰映像生成部と、
     前記車両の周囲における基準対象を検出する基準対象検出部と、
     前記基準対象検出部が検出した基準対象と前記車両との相対的な向きを特定する向き特定部と、
     前記基準対象と前記車両との相対的な向きを示す情報を前記自車両アイコンを基準とした相対的な向きとして前記俯瞰映像生成部が生成した俯瞰映像に重畳させた重畳映像を生成する重畳処理部と、
     前記重畳処理部が生成した重畳映像を表示部に表示させる表示制御部と、
     を備えることを特徴とする俯瞰映像生成装置。
  2.  前記基準対象検出部は、前記車両の周囲における前記表示範囲より遠方に存在する基準対象を検出する、
     請求項1に記載の俯瞰映像生成装置。
  3.  前記重畳処理部は、前記基準対象と前記車両との相対的な向きを示す情報を、前記自車両アイコンに対し前記基準対象が存在する側に重畳させる、
     請求項1または2に記載の俯瞰映像生成装置。
  4.  前記重畳処理部は、前記基準対象と前記車両との相対的な向きを示す情報を、前記自車両アイコンの中心を基準として重畳させる、
     請求項1または2に記載の俯瞰映像生成装置。
  5.  前記基準対象検出部は、前記車両の周囲における前記表示範囲より遠方に基準対象が複数存在する場合は前記車両から最も近い基準対象を選択する、
     請求項1から4のいずれか一項に記載の俯瞰映像生成装置。
  6.  前記基準対象検出部は、前記車両の周囲における前記表示範囲より遠方に基準対象が複数存在する場合は前記車両の進行方向に存在する基準対象を選択する、
     請求項1から5のいずれか一項に記載の俯瞰映像生成装置。
  7.  前記俯瞰映像生成部は、前記基準対象と前記車両との相対的な位置関係が所定条件を満たしたとき、前記自車両アイコンを基準とした俯瞰映像に代えて、前記相対的な向きを示す情報を基準とした俯瞰映像を生成する、
     請求項1に記載の俯瞰映像生成装置。
  8.  前記俯瞰映像生成部は、前記向き特定部が特定した基準対象と前記車両との相対的な向きの差が閾値未満となったとき、前記自車両アイコンを基準とした俯瞰映像に代えて、前記相対的な向きを示す情報を基準とした俯瞰映像を生成する、
     請求項7に記載の俯瞰映像生成装置。
  9.  前記俯瞰映像生成部は、前記向き特定部が特定した基準対象と前記車両との相対的な向きが前記自車両アイコンが示す向きに一致したとき、前記自車両アイコンを基準とした俯瞰映像に代えて、前記相対的な向きを示す情報を基準とした俯瞰映像を生成する、
     請求項8に記載の俯瞰映像生成装置。
  10.  前記俯瞰映像生成部は、前記向き特定部が特定した基準対象と前記車両との相対的な向きの差が閾値未満である間は、前記自車両アイコンを基準とした俯瞰映像に代えて、前記相対的な向きを示す情報を基準とした俯瞰映像を生成する、
     請求項8または9に記載の俯瞰映像生成装置。
  11.  前記重畳処理部は、前記基準対象と自車との相対的な向きを示す情報を、前記基準対象と自車との相対的な向きに応じて表示態様を変化させて重畳させる、
     請求項7から10のいずれか一項に記載の俯瞰映像生成装置。
  12.  前記基準対象検出部が検出した基準対象と前記車両との距離を検出する距離検出部と、
     をさらに備え、
     前記俯瞰映像生成部は、前記距離検出部が検出した基準対象と前記車両との距離が所定条件を満たしたとき、前記自車両アイコンを基準とした俯瞰映像に代えて、前記相対的な向きを示す情報を基準とした俯瞰映像を生成する、
     請求項1に記載の俯瞰映像生成装置。
  13.  前記俯瞰映像生成部は、前記距離検出部が検出した基準対象と前記車両との距離が閾値未満となったとき、前記自車両アイコンを基準とした俯瞰映像に代えて、前記相対的な向きを示す情報を基準とした俯瞰映像を生成する、
     請求項12に記載の俯瞰映像生成装置。
  14.  前記距離検出部は、前記基準対象検出部が検出した基準対象と前記車両との間における最も近接した距離を検出し、
     前記俯瞰映像生成部は、前記距離検出部が検出した基準対象と前記車両との間の最も近接した距離が閾値未満となったとき、前記自車両アイコンを基準とした俯瞰映像に代えて、前記相対的な向きを示す情報を基準とした俯瞰映像を生成する、
     請求項13に記載の俯瞰映像生成装置。
  15.  前記距離検出部は、前記基準対象検出部が検出した基準対象と前記車両の前記基準対象に対向した対向部における基準位置との距離を検出し、
     前記俯瞰映像生成部は、前記距離検出部が検出した基準対象と前記車両の前記基準対象に対向した対向部における基準位置との距離が所定未満となったとき、前記自車両アイコンを基準とした俯瞰映像に代えて、前記相対的な向きを示す情報を基準とした俯瞰映像を生成する、
     請求項13または14に記載の俯瞰映像生成装置。
  16.  前記俯瞰映像生成部は、前記向き特定部が特定した基準対象物と前記車両との距離が閾値未満である間は、前記自車両アイコンを基準とした俯瞰映像に代えて、前記相対的な向きを示す情報を基準とした俯瞰映像を生成する、
     請求項13から15のいずれか一項に記載の俯瞰映像生成装置。
  17.  前記重畳処理部は、前記基準対象と自車との相対的な向きを示す情報を、前記基準対象と自車との距離に応じて表示態様を変化させて重畳させる、
     請求項1から6、12から16のいずれか一項に記載の俯瞰映像生成装置。
  18.  請求項1から17のいずれか一項に記載の俯瞰映像生成装置と、
     前記映像データ取得部に周辺映像データを供給する撮影部、前記表示制御部が重畳映像を表示させる表示部、の少なくともどちらかを備える、俯瞰映像表示装置。
  19.  車両の周辺を撮影する撮影部が撮影した周辺映像データを取得する映像データ取得ステップと、
     前記映像データ取得ステップで取得した周辺映像に視点変換処理および車両を示す自車両アイコンを含む合成処理を行い、前記車両から所定の表示範囲を表示する俯瞰映像を生成する俯瞰映像生成ステップと、
     前記車両の周囲における基準対象を検出する基準対象検出ステップと、
     前記基準対象検出ステップで検出した基準対象と前記車両との相対的な向きを特定する向き特定ステップと、
     前記基準対象と前記車両との相対的な向きを示す情報を前記自車両アイコンを基準とした相対的な向きとして前記俯瞰映像生成ステップで生成した俯瞰映像に重畳させた重畳映像を生成する重畳処理ステップと、
     前記重畳処理ステップで生成した重畳映像を表示部に表示させる表示制御ステップと、
     を含む俯瞰映像生成方法。
  20.  車両の周辺を撮影する撮影部が撮影した周辺映像データを取得する映像データ取得ステップと、
     前記映像データ取得ステップで取得した周辺映像に視点変換処理および車両を示す自車両アイコンを含む合成処理を行い、前記車両から所定の表示範囲を表示する俯瞰映像を生成する俯瞰映像生成ステップと、
     前記車両の周囲における基準対象を検出する基準対象検出ステップと、
     前記基準対象検出ステップで検出した基準対象と前記車両との相対的な向きを特定する向き特定ステップと、
     前記基準対象と前記車両との相対的な向きを示す情報を前記自車両アイコンを基準とした相対的な向きとして前記俯瞰映像生成ステップで生成した俯瞰映像に重畳させた重畳映像を生成する重畳処理ステップと、
     前記重畳処理ステップで生成した重畳映像を表示部に表示させる表示制御ステップと、
     を俯瞰映像生成装置として動作するコンピュータに実行させるためのプログラム。
PCT/JP2018/008416 2017-04-03 2018-03-05 俯瞰映像生成装置、俯瞰映像表示装置、俯瞰映像生成方法およびプログラム WO2018186086A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18781926.3A EP3550829B1 (en) 2017-04-03 2018-03-05 Bird's-eye-view video generation device, bird's-eye-view video display device, bird's-eye-view video generation method, and program
US16/374,760 US10873720B2 (en) 2017-04-03 2019-04-04 Bird's-eye view video generation device, bird's-eye view video display device, bird's-eye view video generation method, and non-transitory storage medium

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017-073795 2017-04-03
JP2017073795A JP2018182373A (ja) 2017-04-03 2017-04-03 俯瞰映像生成装置、俯瞰映像表示装置、俯瞰映像生成方法およびプログラム
JP2017098054A JP6730618B2 (ja) 2017-05-17 2017-05-17 俯瞰映像生成装置、俯瞰映像表示装置、俯瞰映像生成方法およびプログラム
JP2017-098054 2017-05-17
JP2017098143A JP6730619B2 (ja) 2017-05-17 2017-05-17 俯瞰映像生成装置、俯瞰映像表示装置、俯瞰映像生成方法およびプログラム
JP2017-098143 2017-05-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/374,760 Continuation US10873720B2 (en) 2017-04-03 2019-04-04 Bird's-eye view video generation device, bird's-eye view video display device, bird's-eye view video generation method, and non-transitory storage medium

Publications (1)

Publication Number Publication Date
WO2018186086A1 true WO2018186086A1 (ja) 2018-10-11

Family

ID=63712557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008416 WO2018186086A1 (ja) 2017-04-03 2018-03-05 俯瞰映像生成装置、俯瞰映像表示装置、俯瞰映像生成方法およびプログラム

Country Status (3)

Country Link
US (1) US10873720B2 (ja)
EP (1) EP3550829B1 (ja)
WO (1) WO2018186086A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113163137A (zh) * 2021-04-29 2021-07-23 众立智能科技(深圳)有限公司 海思编解码芯片实现多画面叠加的方法和系统
US20230050240A1 (en) * 2021-08-10 2023-02-16 Ford Global Technologies, Llc Passive access calibration

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006224778A (ja) * 2005-02-16 2006-08-31 Nippon Soken Inc 駐車支援装置
JP2008083990A (ja) 2006-09-27 2008-04-10 Aisin Aw Co Ltd 駐車支援装置および駐車支援方法
JP2008179253A (ja) * 2007-01-24 2008-08-07 Nissan Motor Co Ltd 駐車支援装置及び駐車支援方法
JP2009096306A (ja) * 2007-10-16 2009-05-07 Hiroshima Industrial Promotion Organization 駐車支援方法
JP2009248765A (ja) * 2008-04-07 2009-10-29 Nissan Motor Co Ltd 駐車支援装置および駐車支援方法
JP2009284386A (ja) * 2008-05-26 2009-12-03 Suzuki Motor Corp 車両用駐車支援装置
JP2011006005A (ja) * 2009-06-26 2011-01-13 Kyocera Corp 駐車時における運転支援装置及び方法
JP2013116696A (ja) 2011-12-05 2013-06-13 Clarion Co Ltd 駐車支援装置
JP2016088104A (ja) * 2014-10-29 2016-05-23 株式会社デンソー 駐車支援装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4023478B2 (ja) * 2004-08-03 2007-12-19 株式会社デンソー 駐車支援システム
JP4900326B2 (ja) * 2008-06-10 2012-03-21 日産自動車株式会社 駐車支援装置及び駐車支援方法
JP4661917B2 (ja) * 2008-07-25 2011-03-30 日産自動車株式会社 駐車支援装置および駐車支援方法
TW201100279A (en) * 2009-06-23 2011-01-01 Automotive Res & Testing Ct Composite-image-type parking auxiliary system
JP5747181B2 (ja) * 2010-02-26 2015-07-08 パナソニックIpマネジメント株式会社 駐車支援装置
DE102010034139A1 (de) * 2010-08-12 2012-02-16 Valeo Schalter Und Sensoren Gmbh Verfahren zur Unterstützung eines Parkvorgangs eines Kraftfahrzeugs, Fahrerassistenzsystem und Kraftfahrzeug
KR102176773B1 (ko) * 2014-06-11 2020-11-09 현대모비스 주식회사 자동차의 주차시스템
JP6724653B2 (ja) * 2015-12-21 2020-07-15 株式会社Jvcケンウッド 車両用表示装置、表示方法および表示プログラム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006224778A (ja) * 2005-02-16 2006-08-31 Nippon Soken Inc 駐車支援装置
JP2008083990A (ja) 2006-09-27 2008-04-10 Aisin Aw Co Ltd 駐車支援装置および駐車支援方法
JP2008179253A (ja) * 2007-01-24 2008-08-07 Nissan Motor Co Ltd 駐車支援装置及び駐車支援方法
JP2009096306A (ja) * 2007-10-16 2009-05-07 Hiroshima Industrial Promotion Organization 駐車支援方法
JP2009248765A (ja) * 2008-04-07 2009-10-29 Nissan Motor Co Ltd 駐車支援装置および駐車支援方法
JP2009284386A (ja) * 2008-05-26 2009-12-03 Suzuki Motor Corp 車両用駐車支援装置
JP2011006005A (ja) * 2009-06-26 2011-01-13 Kyocera Corp 駐車時における運転支援装置及び方法
JP2013116696A (ja) 2011-12-05 2013-06-13 Clarion Co Ltd 駐車支援装置
JP2016088104A (ja) * 2014-10-29 2016-05-23 株式会社デンソー 駐車支援装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3550829A4

Also Published As

Publication number Publication date
US20190230309A1 (en) 2019-07-25
EP3550829A4 (en) 2019-12-18
US10873720B2 (en) 2020-12-22
EP3550829B1 (en) 2021-08-11
EP3550829A1 (en) 2019-10-09

Similar Documents

Publication Publication Date Title
JP4957807B2 (ja) 移動物検知装置及び移動物検知プログラム
US8098933B2 (en) Method and apparatus for partitioning an object from an image
WO2017110144A1 (ja) 俯瞰映像生成装置、俯瞰映像生成システム、俯瞰映像生成方法およびプログラム
CN109327660B (zh) 图像获取方法和设备
US9682655B2 (en) Method and device for operating a vehicle
JP4670721B2 (ja) ナンバープレート番号認識装置
JP6081247B2 (ja) 車両後方画像の表示切替装置および表示切替方法
JP2019186853A (ja) 車両用表示制御装置、車両用表示システム、車両用表示制御方法、およびプログラム
WO2018186086A1 (ja) 俯瞰映像生成装置、俯瞰映像表示装置、俯瞰映像生成方法およびプログラム
JP2020065141A (ja) 車両の俯瞰映像生成システム及びその方法
JP6152261B2 (ja) 車載用駐車枠認識装置
JP2004173048A (ja) 車載カメラシステム
JP2006003994A (ja) 道路標識認識装置
US20200114823A1 (en) Bird's-eye view video generation device, bird's-eye view video generation method, and non-transitory storage medium
WO2018096792A1 (ja) 俯瞰映像生成装置、俯瞰映像生成システム、俯瞰映像生成方法およびプログラム
JP6852556B2 (ja) 俯瞰映像生成装置、俯瞰映像表示システム、俯瞰映像生成方法およびプログラム
JP2006344133A (ja) 道路区画線検出装置
JP2010165299A (ja) 白線検出装置
JP2005039547A (ja) 車両用前方視界支援装置
JP6730619B2 (ja) 俯瞰映像生成装置、俯瞰映像表示装置、俯瞰映像生成方法およびプログラム
JP6727451B2 (ja) 後側方映像制御装置および後側方映像制御方法
KR20160136636A (ko) 파노라마 뷰 가변 시스템 및 이의 제어방법
WO2015001747A1 (ja) 走行路面標示検知装置および走行路面標示検知方法
JP2018195971A (ja) 俯瞰映像生成装置、俯瞰映像表示装置、俯瞰映像生成方法およびプログラム
JP2007022134A (ja) 車両用車線維持支援装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18781926

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018781926

Country of ref document: EP

Effective date: 20190702

NENP Non-entry into the national phase

Ref country code: DE