WO2018181939A1 - 可変静翼、及び圧縮機 - Google Patents

可変静翼、及び圧縮機 Download PDF

Info

Publication number
WO2018181939A1
WO2018181939A1 PCT/JP2018/013732 JP2018013732W WO2018181939A1 WO 2018181939 A1 WO2018181939 A1 WO 2018181939A1 JP 2018013732 W JP2018013732 W JP 2018013732W WO 2018181939 A1 WO2018181939 A1 WO 2018181939A1
Authority
WO
WIPO (PCT)
Prior art keywords
stationary blade
rotating shaft
main body
variable
guide surface
Prior art date
Application number
PCT/JP2018/013732
Other languages
English (en)
French (fr)
Inventor
良介 三戸
英貴 奥井
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to KR1020197028329A priority Critical patent/KR20190118650A/ko
Priority to US16/498,069 priority patent/US11168704B2/en
Priority to CN201880021607.4A priority patent/CN110520631B/zh
Priority to JP2019509379A priority patent/JP6874121B2/ja
Priority to DE112018001703.6T priority patent/DE112018001703T5/de
Priority to KR1020217029965A priority patent/KR102351758B1/ko
Publication of WO2018181939A1 publication Critical patent/WO2018181939A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/56Fluid-guiding means, e.g. diffusers adjustable
    • F04D29/563Fluid-guiding means, e.g. diffusers adjustable specially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/16Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
    • F01D17/162Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes for axial flow, i.e. the vanes turning around axes which are essentially perpendicular to the rotor centre line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/042Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector fixing blades to stators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/002Axial flow fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/007Axial-flow pumps multistage fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/121Fluid guiding means, e.g. vanes related to the leading edge of a stator vane

Definitions

  • the present invention relates to a variable stationary blade and a compressor.
  • the rotor body housed in the casing, a plurality of blades arranged radially outside the rotor body, and the blades are alternately arranged with respect to the extending direction of the rotor body. And a plurality of variable vanes.
  • Patent Document 1 discloses a variable stator blade including a stationary blade body, a first blade shaft, and a second blade shaft.
  • the stationary blade body is disposed between the inner casing and the outer casing.
  • the first blade axis is connected to one end of the stationary blade body.
  • the first blade axis is supported so as to be swingable with respect to the inner casing.
  • the second blade axis is connected to the other end of the stationary blade body.
  • the second blade shaft is supported so as to be able to swing with respect to the outer casing.
  • variable stator blade having such a configuration When the variable stator blade having such a configuration is applied to a compressor, it is between the outer peripheral surface of the inner casing and one end surface of the stator blade body, and between the inner peripheral surface of the outer casing and the other end surface of the stator blade body. A clearance is formed.
  • variable stator blade is provided with a diameter-enlarged portion that has a disk shape and is larger in diameter than the blade shaft between the stator blade body and the blade shaft.
  • an object of the present invention is to provide a variable stator blade and a compressor that can suppress pressure loss even when the arrangement pitch of the variable stator blades is narrow.
  • a variable stator blade is disposed in a flow path through which a working fluid flows, and a stationary blade body that forms a clearance with an inner casing, A rotating shaft that rotates so as to vary an angle of the stationary blade body with respect to a mainstream flow direction; and a connecting portion that connects the stationary blade body and the rotating shaft.
  • a first guide surface for guiding the flow direction of the leakage flow of the working fluid flowing into the leading edge side of the stationary blade body in a direction toward the flow direction of the main flow is included.
  • the first guide surface that guides the flow direction of the leakage flow of the working fluid passing through the clearance formed on the leading edge side of the stationary blade body in the direction toward the main flow direction Interference between the leakage flow of the working fluid that has passed through the clearance and the main flow of the working fluid can be suppressed.
  • production of the vortex resulting from interference with the leakage flow of a working fluid and the main flow of a working fluid is suppressed, pressure loss can be reduced.
  • the first guide surface is a portion of the connecting portion that is located on a front edge side of the stationary blade body and on a suction surface side of the stationary blade body. You may arrange in.
  • the first guide surface is disposed on the front edge side of the stationary blade body and on the suction surface side of the stationary blade body in the connection portion, thereby being disposed on the front edge side of the stationary blade body. It is possible to guide the flow direction of the leakage flow of the working fluid that flows into the clearance and collides with the connection portion in a direction toward the main flow direction.
  • the first guide surface may be a curved surface protruding toward the suction surface side of the stator blade body.
  • the first guide surface is a curved surface projecting toward the suction surface side of the stationary blade body, the leakage flow of the working fluid can easily flow along the first guide surface.
  • the direction can be easily guided in the direction toward the mainstream flow direction.
  • connection portion may have a notch portion including the first guide surface.
  • Such a configuration eliminates the need to expand the diameter of the connecting portion, so that pressure loss can be reduced even when the arrangement pitch of the variable stationary blades is narrow.
  • connection portion includes a connection portion main body that connects the stator blade main body and the rotating shaft, and a front edge side of the stationary blade body among the connection portion main bodies. Projecting from the connecting portion main body in a state of being in contact with the end face on the front edge side of the stationary vane main body facing the inner casing and facing the inner casing, and including a first guide surface. May be included.
  • the projecting portion configured as described above, the collision of the main flow of the working fluid with the main body of the connection portion can be suppressed, and the flow direction of the leakage flow of the working fluid is guided in the direction toward the main flow direction. It becomes possible to do. Thereby, even when the arrangement pitch of the variable stationary blades is narrow, the pressure loss can be reduced.
  • the projecting portion includes a second guide surface disposed on the pressure surface side of the stator blade body, and the first and second guide surfaces are provided. May be arranged so that the distance between the first guide surface and the second guide surface increases from the tip of the protrusion toward the base end of the protrusion.
  • the main flow of the working fluid is divided into two flows before the working fluid collides with the connection body by the first and second guide surfaces. It is possible to guide the flow direction of the leakage flow of the working fluid passing through the leading edge side of the stationary blade body so as to be directed to the main flow direction using the first guide surface.
  • the shape of the tip portion of the protruding portion may be a rounded shape.
  • the tip of the protrusion is less likely to be damaged, and the working fluid can be smoothly guided to the base end side of the protrusion. it can.
  • the protruding portion may be provided so as to cover the entire end face on the front edge side of the stator blade body.
  • the length of the first guide surface can be increased by providing the protruding portion so as to cover the entire end surface on the front edge side of the stationary blade body.
  • the leakage flow direction of the working fluid can be guided in the direction toward the main flow direction. Therefore, the pressure loss can be further reduced.
  • the rotating shaft connects the rotating shaft main body, the rotating shaft main body, and the connecting portion, and has a diameter larger than the outer diameter of the rotating shaft main body.
  • the connecting portion may have a wider shape from the stationary blade body toward the enlarged diameter portion.
  • connection strength between the connection portion and the rotary shaft body can be increased by having the enlarged diameter portion configured as described above.
  • the rotating shaft connects the rotating shaft main body, the rotating shaft main body, and the connecting portion, and has a diameter larger than the outer diameter of the rotating shaft main body.
  • the projecting portion is provided so as to cover at least a part of the end surface on the front edge side of the stationary blade body, and is disposed so as to extend to the side surface of the enlarged diameter portion. Also good.
  • the projecting portion is disposed so as to cover at least a part of the end surface on the front edge side of the stationary blade body and to extend to the side surface of the enlarged diameter portion, so that the working fluid in the vicinity of the outer peripheral surface of the inner casing is projected. Can collide with.
  • a compressor includes a variable stator blade, a rotor body, and a rotor including a plurality of rotor blades arranged in the axial direction and the circumferential direction of the rotor body.
  • An inner casing provided outside the rotor; an outer casing provided outside the inner casing; and a rotation drive unit that is connected to the rotating shaft and rotates the rotating shaft.
  • a shaft housing portion for housing the rotating shaft.
  • the pressure loss can be suppressed even when the arrangement pitch of the variable stator blades is narrow by having the above-described variable stator blades.
  • a compressor includes a variable stationary blade, a rotor main body, and a rotor including a plurality of moving blades arranged in the axial direction and the circumferential direction of the rotor main body, An inner casing provided on the outer side of the rotor, an outer casing provided on the outer side of the inner casing, and a rotation drive unit connected to the rotating shaft and rotating the rotating shaft, the inner casing comprising: A shaft accommodating portion that accommodates the rotating shaft; and a chamfered portion that forms a gap between the protruding portion and the inner casing, and the chamfered surface of the chamfered portion is a side surface of the shaft accommodating portion. Connected.
  • the working fluid can be guided to the gap by forming a gap between the protruding portion and the inner casing and providing a chamfered portion having a chamfered surface connected to the side surface of the shaft accommodating portion. It becomes. Thereby, the flow direction of the leakage flow can be more reliably guided to the main flow direction.
  • variable stationary blade is connected to the stationary blade body located on the side opposite to the side on which the rotating shaft is provided, and is rotatable to the outer casing. It may include other rotating shafts supported by.
  • FIG. 3 is a cross-sectional view of the structure shown in FIG. 2 in the C 1 -C 2 line direction.
  • FIG. 3 is a cross-sectional view of the structure shown in FIG. 2 in the D 1 -D 2 line direction. It is sectional drawing for demonstrating the connection part which concerns on the modification of the 1st Embodiment of this invention.
  • FIG. 9 is a cross-sectional view of the structure shown in FIG. 8 in the G 1 -G 2 line direction.
  • FIG. 9 is a cross-sectional view of the structure shown in FIG. 8 in the H 1 -H 2 line direction.
  • FIG. 1 An axial flow compressor is illustrated as an example of the compressor 10.
  • O 1 indicates the axis of the rotor 11 (hereinafter referred to as “axis O 1 ”).
  • axis O 1 indicates the axis of the rotating shafts 43 and 47 (hereinafter referred to as “axis O 2 ”).
  • the compressor 10 includes a rotor 11, a casing 13, a plurality of variable stator blade mechanisms 15, and a plurality of stator blade groups 17.
  • the rotor 11 includes a rotor body 21, a plurality of moving blades 23, and first to sixth moving blade groups 23A to 23F configured by a plurality of moving blades 23.
  • the rotor main body 21 is a columnar member and extends in one direction.
  • the rotor body 21 has a structure in which a plurality of rotor disks (not shown) are stacked.
  • the rotor body 21 is rotatably supported by a bearing (not shown).
  • a plurality of rotor blades 23 are provided for each of a plurality of rotor disks.
  • a plurality of rotor blades 23 provided on each rotor disk extend radially from the outer peripheral surface of the rotor disk.
  • a first rotor blade group 23A is provided on the first rotor disk disposed at a position closest to the suction port 28 side.
  • the first blade group 23A includes a plurality of blades 23 arranged in the circumferential direction of the first rotor disk.
  • a second rotor blade group 23B is provided on the second rotor disk disposed on the discharge port side of the first rotor disk.
  • the third blade group 23C, the fourth blade group 23D, and the fourth blade group 23D are sequentially provided.
  • FIG. 1 only the first to sixth blade groups 23A to 23F are shown for the sake of space, but a plurality of blade groups are also arranged on the discharge port side of the sixth blade group 23F along the axis O 1. Arranged in the direction.
  • the casing 13 includes an inner casing 25 and an outer casing 26.
  • the inner casing 25 is a cylindrical member disposed outside the rotor 11.
  • the inner casing 25 has a shaft accommodating portion 25 ⁇ / b> A that accommodates the rotating shaft 43 of the variable stationary blade 35 constituting the variable stationary blade mechanism 15.
  • Shaft accommodating portion 25A is provided with a plurality in the circumferential and axial O 1 direction of the inner casing 25.
  • the inner casing 25 supports one end side of the variable stationary blade 35 in a state where the rotating shaft 43 is rotatable.
  • the outer casing 26 is a cylindrical member disposed outside the inner casing 25.
  • the outer casing 26 has a shaft housing portion 26 ⁇ / b> A in which the rotating shaft 43 of the variable stationary blade 35 constituting the variable stationary blade mechanism 15 is housed.
  • Shaft accommodating portion 26A is provided with a plurality in the circumferential and axial O 1 direction of the outer casing 26.
  • the outer casing 26 supports the other end side of the variable stationary blade 35 in a state where the rotating shaft 43 is rotatable.
  • a cylindrical channel 27 is defined between the outer casing 26 and the inner casing 25.
  • the casing 13 has a suction port 28 and a discharge port (not shown).
  • the suction port 28 is provided on one side of the axis O 1 .
  • the suction port 28 communicates with the flow path 27.
  • the suction port 28 sucks working fluid (for example, outside air) into the casing 13.
  • Discharge port is provided on the other side of the axis O 1.
  • the discharge port communicates with the flow path 27.
  • the discharge port discharges the working fluid compressed in the casing 13 to the outside of the casing 13.
  • variable vane mechanisms 15 are provided on the suction port 28 side of the first to fourth blade groups 23A to 23D, respectively.
  • FIG.1 and FIG.2 the structure of the variable stationary blade mechanism 15 is demonstrated. 2, the same components as those in the structure shown in FIG.
  • variable vane mechanisms 15 are provided in the direction of the axis O 1 in a state of being separated from each other (four in the case of FIG. 1 as an example).
  • the variable stationary blade mechanism 15 includes a movable ring 31, a plurality of link mechanisms 33, a plurality of variable stationary blades 35, and a rotation driving unit 37.
  • the movable ring 31 is an annular member.
  • the movable ring 31 is provided outside the casing 13 so as to surround the casing 13.
  • the plurality of link mechanisms 33 are arranged at predetermined intervals in the circumferential direction of the movable ring 31. One end of each of the plurality of link mechanisms 33 is fixed to the movable ring 31. The other ends of the plurality of link mechanisms 33 protrude toward the suction port 28 side.
  • E is a flow direction of the main flow of the working fluid (hereinafter referred to as “E direction”)
  • F is a flow direction of the leakage flow of the working fluid flowing along the first guide surface 48a (hereinafter, “ "F direction”).
  • E direction a flow direction of the main flow of the working fluid
  • F direction a flow direction of the leakage flow of the working fluid flowing along the first guide surface 48a
  • the variable vane 35 includes a vane main body 41, rotating shafts 43 and 47, and connection portions 45 and 48.
  • the stationary blade body 41 is a member having a blade shape.
  • the stationary blade body 41 is disposed between the inner casing 25 and the outer casing 26.
  • the stationary blade body 41 includes a positive pressure surface 41a, a negative pressure surface 41b, a front edge 41A, a rear edge 41B, the other end surface 41c, and one end surface 41d.
  • the front edge 41A constitutes one end connecting the positive pressure surface 41a and the negative pressure surface 41b.
  • the trailing edge 41B constitutes the other end connecting the positive pressure surface 41a and the negative pressure surface 41b.
  • the positive pressure surface 41a and the negative pressure surface 41b are curved surfaces.
  • the other end surface 41 c is an end surface on the front edge 41 ⁇ / b> A side of the stationary blade body 41 that faces the inner peripheral surface 26 a of the outer casing 26. Among other end surface 41c, between the connection portion 45 is not provided part and the inner peripheral surface 26a, the clearance CL 1 is formed.
  • the one end face 41d is an end face on the front edge 41A side of the stationary blade body 41 facing the outer peripheral face 25a of the inner casing 25.
  • the connecting portion 48 between the portion and the outer peripheral surface 25a is not provided, the clearance CL 2 are formed.
  • the rotating shaft 43 (another rotating shaft) includes a rotating shaft main body 52 and a diameter-enlarged portion 53.
  • the rotating shaft main body 52 is a columnar member extending in one direction.
  • One end side of the rotary shaft main body 52 is disposed in the shaft accommodating portion 26 ⁇ / b> A, and the other end side protrudes outside the outer casing 26.
  • the other end of the rotating shaft main body 52 is fixed to the other end of the link mechanism 33.
  • the rotating shaft 43 rotates in the direction of the arrow shown in FIG. 3 when the movable ring 31 is driven to rotate in the circumferential direction by the rotation driving unit 37, so that the stationary blade body 41 has a main flow direction E with respect to the main fluid flow direction E. Change the angle.
  • the enlarged diameter portion 53 is configured integrally with one end of the rotary shaft main body 52.
  • the enlarged diameter portion 53 is larger than the outer diameter of the rotary shaft main body 52.
  • the enlarged diameter portion 53 connects one end of the rotary shaft main body 52 and the connection portion 45.
  • the connecting portion 45 is provided between the other end of the stationary blade body 41 and the enlarged diameter portion 53.
  • the connecting portion 45 is configured integrally with the other end of the stationary blade body 41.
  • the shape of the connecting portion 45 is a wider shape from the other end surface 41 c of the stationary blade body 41 toward the diameter-expanded portion 53.
  • the rotation shaft 47 has a rotation shaft main body 55 and an enlarged diameter portion 56.
  • the rotating shaft main body 55 is a columnar member extending in one direction.
  • the entire rotating shaft main body 55 is disposed in the shaft accommodating portion 25A.
  • the enlarged diameter portion 56 is configured integrally with one end of the rotary shaft main body 55.
  • the enlarged diameter portion 56 is larger than the outer diameter of the rotary shaft main body 55.
  • the enlarged diameter portion 56 connects one end of the rotary shaft main body 55 and the connection portion 48.
  • the connecting portion 48 is provided between the other end of the stationary blade body 41 and the enlarged diameter portion 53.
  • the connecting portion 45 is configured integrally with the other end of the stationary blade body 41.
  • the connecting portion 45 has a wider shape from the other end surface 41 c of the stationary blade main body 41 toward the enlarged diameter portion 53.
  • the connection part 48 has a notch 48A.
  • the notch 48A has a first guide surface 48a.
  • the first guide surface 48a extends from the front edge side toward the rear edge side from the positive pressure surface 41a toward the negative pressure surface 41b side.
  • the first guide surface 48 a as viewed from the radial direction is formed at a position overlapping the stationary blade body 41. Specifically, the first guide surface 48a is formed so as to recede from the negative pressure surface 41b when viewed from the radial direction.
  • the first guide surface 48a, of the clearance CL 2 flow direction of the leakage flow of the working fluid flowing into the leading edge 41A side of the vane body 41 is guided in the direction F toward the main flow direction E.
  • the first guide surface 48 a is disposed in a portion of the connecting portion 48 that is located on the front edge 41 A side of the stationary blade body 41 and on the negative pressure surface 41 b side of the stationary blade body 41.
  • the first guide surface 48 a is formed over the entire height direction of the connection portion 48. Note that “the height direction of the connecting portion 48” refers to a direction in which the axis O 2 extends.
  • the first guide surface 48a is disposed in the connecting portion 48 on the front edge 41A side of the stationary blade body 41 and on the negative pressure surface 41b side of the stationary blade body 41, whereby the stationary blade 48 flows into the clearance CL 2 arranged in the front edge 41A of the main body 41, the flow direction of the leakage flow of the working fluid having collided with the connecting portion 48 can be guided in the direction F toward the main flow direction E.
  • the first guide surface 48a may be a curved surface that protrudes toward the negative pressure surface 41b of the stationary blade body 41.
  • the first guide surface 48a is a curved surface protruding toward the negative pressure surface 41b side of the stationary blade body 41, the leakage flow of the working fluid can easily flow along the first guide surface 48a.
  • the flow direction of the leakage flow can be easily guided in the direction toward the main flow direction.
  • the first guide surface 48 a may be a surface orthogonal to the one end surface 41 d of the stationary blade body 41 or a surface intersecting the one end surface 41 d of the stationary blade body 41.
  • the shape of the 1st guide surface 48a should just be a shape which can guide in the direction where the flow direction of a leak flow goes to the flow direction of a main flow, and is not limited to a curved surface.
  • a connection portion having a first guide surface different from the shape of the first guide surface 48a for example, a connection portion 50 according to a modification of the first embodiment shown in FIGS. 6 and 7 is illustrated. Is possible.
  • connection unit 50 will be described with reference to FIGS. 6 and 7.
  • FIG. 6 the same components as those of the structure shown in FIG.
  • the stationary blade body 48 is shown in cross section.
  • VC indicates a virtual circle (hereinafter referred to as “virtual circle”)
  • r indicates a radius of the virtual circle VC (hereinafter referred to as “radius r”).
  • FIG. 7 the same components as those in the structure shown in FIG.
  • the connecting portion 50 is provided between the enlarged diameter portion 56 and the stationary blade body 41, and is disposed closer to the positive pressure surface 41a than the first guide surface 50a and the position where the first guide surface 50a is formed.
  • the first guide surface 50a has a rounded round shape.
  • the shape of the first guide surface 50a can be, for example, a shape that coincides with a part of the virtual circle VC having the radius r.
  • the shape of the surface 50b can also be the same shape as the first guide surface 50a described above.
  • the shape of the first guide surface 50a is a shape that coincides with a part of the virtual circle VC has been described as an example.
  • the shape of the first guide surface 50a is different from this.
  • One guide surface may be used. Specifically, for example, instead of a curved or round shape, a first guide surface that is a straight line in a plan view (in other words, a first guide surface that is a flat surface) may be used. Even when the first guide surface having such a shape is used, it is possible to guide the flow direction of the leakage flow in a direction toward the main flow direction.
  • first guide surface 48a By having a first guide surface 48a as described above, it is possible to suppress interference with mainstream working fluid leakage flow of the working fluid passing through the clearance CL 2. Thereby, since generation
  • first guide surface 48a in the notch 48A it is not necessary to increase the outer diameter of the connecting portion 48, so that the pressure loss can be reduced even when the arrangement pitch of the variable stationary blades 35 is narrow. it can.
  • the 1st guide surface 50a mentioned above the effect similar to the 1st guide surface 48a can be acquired.
  • the plurality of variable stator blades 35 having the above-described configuration is configured such that the diameter of the movable ring 31 from the movable ring 31 toward the rotor 11 in a state where the rotary shaft main body 52 of each variable stator blade 35 is fixed to the other end of the link mechanism 33. Arranged in the direction.
  • the rotation drive unit 37 is provided outside the movable ring 31.
  • the rotation driving unit 37 rotates the movable ring 31 in the circumferential direction of the movable ring 31.
  • variable stationary blade mechanism 15 configured as described above rotates the movable ring 31 by the rotation drive unit 37 and rotates the entire variable stationary blade 35 connected to the link mechanism 33, so that the main flow direction of the working fluid flows.
  • the angle of the plurality of stationary blade bodies 41 with respect to is varied so as to be a desired angle.
  • variable stator vane mechanism 15 in the axial O 1 direction
  • the number of the variable stator vane mechanism 15 that is disposed in the axial O 1 direction One or more may be sufficient and it is not limited to one.
  • the plurality of stationary blade groups 17 are disposed at a predetermined interval on the discharge port side in the region where the plurality of variable stationary blade mechanisms 15 are disposed.
  • Each stationary blade group 17 includes a plurality of stationary blades 58 fixed in the circumferential direction of the inner surface of the outer casing 26.
  • Each of the plurality of stationary blades 58 has a stationary blade body 59.
  • the stationary blades 58 are disposed in the flow path 27 and are disposed between the moving blades 23 in the direction of the axis O 1 .
  • the stationary blades 58 constituting the plurality of stationary blade groups 17 are configured such that the angles of the plurality of stationary blade bodies 59 with respect to the flow direction of the main flow of the working fluid cannot be varied.
  • cutout portions 48A provided in the connecting portion 48 is that it has a first guide surface 48a, actuating the leakage flow of the working fluid passing through the clearance CL 2 Interference with the main flow of the fluid can be suppressed.
  • production of the vortex resulting from interference with the leakage flow of a working fluid and the main flow of a working fluid is suppressed, pressure loss can be reduced.
  • by providing the first guide surface 48a in the notch 48A it is not necessary to increase the outer diameter of the connecting portion 48, so that the pressure loss can be reduced even when the arrangement pitch of the variable stationary blades 35 is narrow. it can.
  • variable stator blades 35 configured as described above, it is possible to suppress pressure loss even when the arrangement pitch of the variable stator blades 35 is narrow.
  • connection portion 48A including the first guide surface 48a is provided only in one connection portion 48
  • the other connection portion 45 also includes the first connection portion 48.
  • a notch 48A including the guide surface 48a may be provided.
  • connection part 48 with respect to the stationary blade main body 41 is not limited to the position shown in FIG.2 and FIG.4.
  • Position of the connecting portion 48 with respect to the stationary blade body 41 may be a position where the clearance CL 2 is formed between the outer peripheral surface 25a of the end surface 41d and the inner casing 25 of the vane body 41.
  • E is a flow direction of the main flow of the working fluid (hereinafter referred to as “E direction”)
  • I is a flow direction of the leakage flow of the working fluid flowing along the first guide surface 72a
  • J direction indicates the flow direction of the leakage flow of the working fluid flowing along the second guide surface 72b (hereinafter referred to as "J direction").
  • the compressor 65 of the second embodiment is configured in the same manner as the compressor 10 except that the variable stator blade 66 is provided instead of the variable stator blade 35 configuring the compressor 10 of the first embodiment. .
  • variable stator blade 66 is configured in the same manner as the variable stator blade 35 except that it has a connection portion 67 in place of the connection portion 48 configuring the variable stator blade 35 of the first embodiment.
  • the connecting portion 67 has a connecting portion main body 71 and a protruding portion 72.
  • the connection portion main body 71 is provided between the other end of the stationary blade main body 41 and the enlarged diameter portion 56.
  • the connection portion main body 71 is configured integrally with the other end of the stationary blade main body 41 and the enlarged diameter portion 56.
  • the connection portion main body 71 has a wider shape from the one end surface 41 d of the stationary blade main body 41 toward the enlarged diameter portion 56.
  • the protruding portion 72 is provided in a portion of the connecting portion main body 71 located on the front edge 41 ⁇ / b> A side of the stationary blade main body 41.
  • the protruding portion 72 protrudes from the connecting portion main body 71 toward the front edge 41 ⁇ / b> A while being in contact with one end surface 41 d on the front edge 41 ⁇ / b> A side of the stationary blade body 41 facing the outer peripheral surface 25 a of the inner casing 25.
  • the protrusion 72 has a first guide surface 72a and a second guide surface 72b.
  • the first guide surface 72 a is disposed on the positive pressure surface 41 a side of the stationary blade body 41.
  • the first guide surface 72a guides the flow direction of the leakage flow toward the main flow direction E.
  • the second guide surface 72 b is disposed on the negative pressure surface 41 b side of the stationary blade body 41.
  • the second guide surface 72b suppresses the leakage flow from flowing toward the negative pressure surface 41b by guiding the flow direction of the leakage flow in the J direction.
  • the first and second guide surfaces 72a and 72b are, for example, the first guide surface 72a and the second guide as they go from the distal end portion 72A of the projecting portion 72 toward the proximal end of the projecting portion 72 (on the connection portion main body 71 side). It is good to arrange so that distance with surface 72b may become large.
  • the main flow of the working fluid is divided into two flows, and the working fluid passing through the front edge 41A side of the stationary blade main body 41 is divided using the first guide surface 72a.
  • the flow direction of the leakage flow can be guided toward the main flow direction E.
  • the shape of the distal end portion 72A of the protruding portion 72 may be, for example, a rounded shape.
  • damage to the distal end portion 72A of the projecting portion can be suppressed, and the working fluid can be smoothly supplied to the proximal end side of the projecting portion 72. Can be guided to.
  • variable stationary blade 66 of the second embodiment the main flow of the working fluid collides with the connection portion main body 71 by having the protrusion 72 including the first and second guide surfaces 72a and 72b described above.
  • the flow direction of the leakage flow of the working fluid can be guided in the direction toward the main flow direction E.
  • variable stator blade 80 is configured in the same manner as the variable stator blade 66 except that it has a connection portion 81 instead of the connection portion 67 constituting the variable stator blade 66 of the second embodiment.
  • the connecting portion 81 is configured in the same manner as the connecting portion 67 except that the connecting portion 81 includes a protruding portion 83 instead of the protruding portion 72 configuring the connecting portion 67 described in the second embodiment.
  • the protrusion 83 is provided so as to cover the entire one end surface (one end surface 41d shown in FIG. 2) of the stationary blade body 41 on the front edge 41A side.
  • the protrusion 83 has a first guide surface 83a, a second guide surface 83b, and a bottom surface 83c.
  • the bottom surface 83c is a surface that connects the lower end of the first guide surface 83a and the lower end of the second guide surface 83b.
  • the front end 41 ⁇ / b> A side of the stator blade body 41 is provided by including the protruding portion 83 that covers the entire end surface of the front edge 41 ⁇ / b> A side of the stator blade body 41.
  • the length of the first guide surface 83a can be increased as compared with the case where the protruding portion is provided on a part of the end surface.
  • FIGS. 12 and 13 A compressor 90 according to the third embodiment will be described with reference to FIGS. 12 and 13. 12, the same components as those shown in FIGS. 8 and 11 are denoted by the same reference numerals. In FIG. 13, the same components as those shown in FIGS. 11 and 12 are denoted by the same reference numerals.
  • the compressor 90 of the third embodiment has a variable vane 91 instead of the variable vane 35 constituting the compressor 10 of the first embodiment, and has a chamfered portion 96 formed in the inner casing 25. Other than that, the configuration is the same as that of the compressor 10.
  • variable stator blade 91 is configured in the same manner as the variable stator blade 80 except that it has a connection portion 93 instead of the connection portion 81 that configures the variable stator blade 80 according to the modification of the second embodiment.
  • the connecting portion 93 is configured in the same manner as the connecting portion 81 except that the connecting portion 93 includes a protruding portion 94 instead of the protruding portion 83 that configures the connecting portion 81 described in the modification of the second embodiment.
  • the projecting portion 94 covers one end surface 41 d (the end surface on the front edge 41 ⁇ / b> A side of the stationary blade body 41) and a part of the projecting portion 94 extends to the side surface 56 a of the enlarged diameter portion 56.
  • the protruding portion 94 is disposed so as to extend to the front edge 41 ⁇ / b> A of the stationary blade body 41.
  • the protruding portion 94 is different from the protruding portion 83 in that a part of the protruding portion 94 is disposed so as to extend to the side surface 56 a of the enlarged diameter portion 56, and the other configuration is the same as the protruding portion 83.
  • connection portion 93 is cut by the J 1 -J 2 line shown in FIG. 12 is, for example, the same shape as the connection portion 50 shown in FIG.
  • the connecting portion 93 in the form extends toward the stationary blade leading edge 41A side. That is, the connecting portion 93 is different in that the enlarged diameter portion 56 protrudes to the stationary blade leading edge 41A side.
  • the chamfered portion 96 is formed in a portion of the outer peripheral portion of the inner casing 25 that faces the protruding portion 94.
  • the chamfered portion 96 forms a gap K between the protruding portion 94 and the inner casing 25.
  • the chamfered portion 96 defines a part of the gap K and has a chamfered surface 96 a that faces the protruding portion 94.
  • the chamfered surface 96a is a surface inclined with respect to the outer peripheral surface 25a.
  • the chamfered surface 96a is connected to the side surface 25Aa of the shaft housing portion 25A (specifically, the side surface of the portion of the shaft housing portion 25A in which the enlarged diameter portion 56 is housed).
  • the working fluid in the vicinity of the outer peripheral surface 25a of the inner casing 25 can collide with the projecting portion 94 by having the projecting portion 94 configured as described above. Thereby, it can suppress that the working fluid of the outer peripheral surface 25a vicinity of the inner side casing 25 collides with the connection part main body 71.
  • the working fluid can be guided to the gap K. Thereby, the flow direction of the leakage flow can be more reliably guided to the main flow direction.
  • the protruding portion 94 is arranged so as to extend to the front edge 41 ⁇ / b> A of the stationary blade body 41 has been described as an example, but the protruding portion with respect to the direction toward the front edge 41 ⁇ / b> A is described.
  • the protrusion amount 94 is not limited to the protrusion amounts shown in FIGS. 12 and 13.
  • the protrusion amount of the protrusion 94 may be, for example, 1 ⁇ 2 or 1 ⁇ 4 of the protrusion amount shown in FIGS. 12 and 13.
  • the protruding amount of the protruding portion 94 can be set as appropriate.
  • variable stationary blades 35 and 66 supported by the rotary shafts 43 and 47 from both sides of the stationary blade body 41 have been described as an example.
  • the present invention can also be applied to a variable stationary blade that supports the stationary blade body 41 from the side of the rotating shaft.
  • the present invention is applicable to variable stationary blades and compressors.
  • Rotor 13 Casing 15 Variable vane mechanism 17 Stator blade group 21 Rotor body 23 Rotor blade 23A First blade group 23B Second blade group 23C Third blade group 23D Fourth Rotor blade group 23E Fifth rotor blade group 23F Sixth rotor blade group 25 Inner casing 25a Outer peripheral surface 25A, 26A Shaft receiving portion 26a Inner peripheral surface 26 Outer casing 27 Flow path 28 Suction port 31 Movable ring 33 Link mechanism 35 , 66, 80, 91 Variable vane 37 Rotation drive unit 41, 59 Stator blade body 41a Pressure surface 41A Front edge 41b Negative pressure surface 41B Rear edge 41c Other end surface 41d One end surface 43, 47 Rotating shaft 45, 48, 50, 67, 81, 93 Connection portion 48a, 50a, 72a, 83a First guide surface 48A Notch portion 50b Surface 52, 55 Rotating shaft Body 53, 56 the enlarged diameter portion 56a side 58 stationary blade 71 connecting portion main body 72,83,94 projecting portion

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Rotary Pumps (AREA)

Abstract

作動流体が流通する流路内に配置され、内側ケーシングとの間にクリアランスを形成する静翼本体(41)と、作動流体の主流の流れ方向に対する静翼本体(41)の角度を可変させるように回転する回転軸と、静翼本体(41)と回転軸とを接続する接続部(48)と、を備え、接続部(48)は、クリアランスのうち、静翼本体(41)の前縁(41A)側に流入した作動流体の漏れ流れの流れ方向が主流の流れ方向(E)に向かう方向に案内する第1の案内面(48a)を含む。

Description

可変静翼、及び圧縮機
 本発明は、可変静翼、及び圧縮機に関する。
 本願は、2017年3月30日に、日本に出願された特願2017-066611号に基づき優先権を主張し、その内容をここに援用する。
 圧縮機には、ケーシング内に収容されたロータ本体と、ロータ本体の径方向外側に放射状に配列された複数の動翼と、ロータ本体の延在方向に対して、動翼と交互に配置された複数の可変静翼と、を備えたものがある。
 特許文献1には、静翼本体と、第1の翼軸と、第2の翼軸と、を備えた可変静翼が開示されている。静翼本体は、内側ケーシングと外側ケーシングとの間に配置されている。
 第1の翼軸は、静翼本体の一端と接続されている。第1の翼軸は、内側ケーシングに対して揺動可能に支持されている。第2の翼軸は、静翼本体の他端と接続されている。第2の翼軸は、外側ケーシングに対して揺動可能に支持されている。
 このような構成とされた可変静翼を圧縮機に適用する場合、内側ケーシングの外周面と静翼本体の一端面の間、及び外側ケーシングの内周面と静翼本体の他端面との間には、クリアランスが形成されている。
 なお、可変静翼には、静翼本体と翼軸との間に、円盤形状とされ、かつ翼軸よりも拡径された拡径部を設けることが行われている。
特開2012-233424号公報
 ところで、静翼本体の一端面と内側ケーシングの内周面との間に形成されたクリアランスのうち、静翼本体の前縁側に位置する部分では、作動流体の主流を横切る方向(正圧面側から負圧面側に向かう方向)に漏れ流れ(ジェット流)が発生する。
 この漏れ流れと作動流体の主流とが干渉すると、渦が発生する。そして、この渦が静翼本体の負圧面に沿って巻き上がることで、圧力損失が発生する可能性があった。
 なお、上述した円盤形状とされた拡径部を拡径させて、静翼本体の一端面の前縁側を覆うことで、クリアランスを無くして、上記漏れ損失を抑制することも考えられる。
 しかしながら、接続部の外径を大きくすると、可変静翼の配列ピッチが制限を受けるため、可変静翼の配列ピッチが狭い場合には適用することが困難であった。
 そこで、本発明は、可変静翼の配列ピッチが狭い場合でも圧力損失を抑制することの可能な可変静翼、及び圧縮機を提供することを目的とする。
 上記課題を解決するため、本発明の一態様に係る可変静翼は、作動流体が流通する流路内に配置され、内側ケーシングとの間にクリアランスを形成する静翼本体と、前記作動流体の主流の流れ方向に対する前記静翼本体の角度を可変させるように、回転する回転軸と、前記静翼本体と前記回転軸とを接続する接続部と、を備え、前記接続部は、前記クリアランスのうち、前記静翼本体の前縁側に流入した前記作動流体の漏れ流れの流れ方向が前記主流の流れ方向に向かう方向に案内する第1の案内面を含む。
 本発明によれば、静翼本体の前縁側に形成されたクリアランスを通過する作動流体の漏れ流れの流れ方向を主流の流れ方向に向かう方向に案内する第1の案内面を有することで、該クリアランスを通過した作動流体の漏れ流れと作動流体の主流との干渉を抑制することが可能となる。
 これにより、作動流体の漏れ流れと作動流体の主流との干渉に起因する渦の発生が抑制されるため、圧力損失を低減することができる。
 また、接続部の外径を大きくする必要が無いため、可変静翼の配列ピッチが狭い場合でも圧力損失を低減することができる。
 また、本発明の一態様に係る可変静翼において、前記第1の案内面は、前記接続部のうち、前記静翼本体の前縁側で、かつ前記静翼本体の負圧面側に位置する部分に配置してもよい。
 このように、接続部のうち、静翼本体の前縁側で、かつ静翼本体の負圧面側に位置する部分に第1の案内面を配置することで、静翼本体の前縁側に配置されたクリアランスに流入し、接続部に衝突した作動流体の漏れ流れの流れ方向を主流の流れ方向に向かう方向に案内することができる。
 また、本発明の一態様に係る可変静翼において、前記第1の案内面は、前記静翼本体の負圧面側に突出する湾曲面であってもよい。
 このように、第1の案内面を静翼本体の負圧面側に突出する湾曲面とすることで、作動流体の漏れ流れが第1の案内面に沿って流れやすくなるため、漏れ流れの流れ方向が主流の流れ方向に向かう方向に容易に案内することができる。
 また、本発明の一態様に係る可変静翼において、前記接続部は、前記第1の案内面を含む切欠き部を有してもよい。
 このような構成とすることで、接続部を拡径する必要がなくなるため、可変静翼の配列ピッチが狭い場合でも圧力損失を低減することができる。
 また、本発明の一態様に係る可変静翼において、前記接続部は、前記静翼本体と前記回転軸とを接続する接続部本体と、前記接続部本体のうち、前記静翼本体の前縁側に位置する部分に設けられ、前記内側ケーシングと対向する前記静翼本体の前縁側の端面に接触した状態で前記接続部本体から突出するとともに、前記第1の案内面を含む突出部と、を含んでもよい。
 このような構成とされた突出部を有することで、作動流体の主流の接続部本体への衝突が抑制可能になるとともに、作動流体の漏れ流れの流れ方向を主流の流れ方向に向かう方向に案内することが可能となる。これにより、可変静翼の配列ピッチが狭い場合でも圧力損失を低減することができる。
 また、本発明の一態様に係る可変静翼において、前記突出部は、前記静翼本体の正圧面側に配置された第2の案内面を備えており、前記第1及び第2の案内面は、前記突出部の先端から該突出部の基端に向かうにつれて第1の案内面と第2の案内面との距離が大きくなるように配置させてもよい。
 このような構成とされた第1及び第2の案内面を有することで、第1及び第2の案内面により、接続部本体に作動流体が衝突する前に、作動流体の主流を2つの流れに分けて、第1の案内面を用いて、静翼本体の前縁側を通過する作動流体の漏れ流れの流れ方向を主流の流れ方向に向かうように案内することができる。
 また、本発明の一態様に係る可変静翼において、前記突出部の先端部の形状は、丸みを帯びた形状であってもよい。
 このように、突出部の先端部の形状を、丸みを帯びた形状にすることで、突出部の先端が破損しにくくなるとともに、作動流体を突出部の基端側にスムーズに案内することができる。
 また、本発明の一態様に係る可変静翼において、前記突出部は、前記静翼本体の前縁側の端面の全体を覆うように設けてもよい。
 このように、静翼本体の前縁側の端面の全体を覆うように突出部を設けることで、第1の案内面の長さを長くすることが可能になる。また、作動流体が静翼本体の前縁に到達した段階で、作動流体の漏れ流れの方向を主流の流れ方向に向かう方向に案内することが可能となる。したがって、圧力損失をさらに低減することができる。
 また、本発明の一態様に係る可変静翼において、前記回転軸は、回転軸本体と、該回転軸本体と前記接続部とを接続するとともに、該回転軸本体の外径よりも拡径された拡径部と、を備えており、前記接続部は、前記静翼本体から前記拡径部に向かうにつれて幅広形状であってもよい。
 このような構成とされた拡径部を有することで、接続部と回転軸本体との間の接続強度を高めることができる。
 また、本発明の一態様に係る可変静翼において、前記回転軸は、回転軸本体と、該回転軸本体と前記接続部とを接続するとともに、該回転軸本体の外径よりも拡径された拡径部と、を備えており、前記突出部は、前記静翼本体の前縁側の端面の少なくとも一部を覆うように設けられるとともに、前記拡径部の側面に延びて配置されていてもよい。
 このように、静翼本体の前縁側の端面の少なくとも一部を覆うとともに、拡径部の側面に延びるように、突出部を配置させることで、内側ケーシングの外周面付近の作動流体を突出部に衝突させることができる。
 上記課題を解決するため、本発明の一態様に係る圧縮機は、上記可変静翼と、ロータ本体、及び該ロータ本体の軸線方向及び周方向に配列された複数の動翼を含むロータと、前記ロータの外側に設けられた内側ケーシングと、前記内側ケーシングの外側に設けられた外側ケーシングと、前記回転軸と接続され、前記回転軸を回転させる回転駆動部と、を備え、前記内側ケーシングは、前記回転軸を収容する軸収容部を有する。
 このような構成とされた圧縮機によれば、上述した可変静翼を有することで、可変静翼の配列ピッチが狭い場合でも圧力損失を抑制できる。
 上記課題を解決するため、本発明の一態様に係る圧縮機は、可変静翼と、ロータ本体、及び該ロータ本体の軸線方向及び周方向に配列された複数の動翼を含むロータと、前記ロータの外側に設けられた内側ケーシングと、前記内側ケーシングの外側に設けられた外側ケーシングと、前記回転軸と接続され、前記回転軸を回転させる回転駆動部と、を備え、前記内側ケーシングは、前記回転軸を収容する軸収容部と、前記突出部と該内側ケーシングとの間に隙間を形成する面取り部と、を有しており、前記面取り部の面取り面は、前記軸収容部の側面と接続される。
 このように、突出部と内側ケーシングとの間に隙間を形成するとともに、軸収容部の側面と接続された面取り面を有する面取り部を設けることで、作動流体を該隙間に案内することが可能となる。これにより、漏れ流れの流れ方向をより確実に主流の流れ方向に案内することができる。
 また、本発明の一態様に係る圧縮機において、前記可変静翼は、前記回転軸が設けられた側とは反対側に位置する前記静翼本体と接続され、前記外側ケーシングに回転可能な状態で支持された他の回転軸を含んでもよい。
 このような構成とされた圧縮機に上記可変静翼を適用した場合も圧力損失を抑制することができる。
 本発明によれば、可変静翼の配列ピッチが狭い場合でも作動流体の漏れ流れに起因する圧力損失を抑制できる。
本発明の第1の実施形態に係る圧縮機の主要部(吸込口側の上半分)の断面図である。 図1に示す圧縮機のうち、領域Aで囲まれた部分を拡大した断面図である。 図1に示す圧縮機のうち、領域Bで囲まれた部分を拡大した断面図である。 図2に示す構造体のC-C線方向の断面図である。 図2に示す構造体のD-D線方向の断面図である。 本発明の第1の実施形態の変形例に係る接続部を説明するための断面図である。 図6に示す接続部の断面図である。 本発明の第2の実施形態に係る圧縮機の一部を拡大した断面図である。 図8に示す構造体のG-G線方向の断面図である。 図8に示す構造体のH-H線方向の断面図である。 本発明の第2の実施形態の変形例に係る可変静翼の主要部を拡大した斜視図である。 本発明の第3の実施形態圧縮機の一部を拡大した断面図である。 図12に示す可変静翼の主要部を拡大した斜視図である。
 以下、図面を参照して本発明を適用した実施形態について詳細に説明する。
 (第1の実施形態)
 図1~図3を参照して、第1の実施形態に係る圧縮機10について説明する。図1では、圧縮機10の一例として、軸流圧縮機を図示する。図1では、ケーシング13及びロータ11のみを断面で図示する。図1において、Oはロータ11の軸線(以下、「軸線O」という)を示している。また、図1では、図2に示すクリアランスCL、及び図3に示すクリアランスCLを図示することが困難なため、これらの図示を省略する。
 図2及び図3において、Oは回転軸43,47の軸線(以下、「軸線O」という)を示している。
 圧縮機10は、ロータ11と、ケーシング13と、複数の可変静翼機構15と、複数の静翼群17と、を有する。
 ロータ11は、ロータ本体21と、複数の動翼23と、複数の動翼23で構成された第1~第6の動翼群23A~23Fと、を有する。
 ロータ本体21は、柱状の部材であり、一方向に延在している。ロータ本体21は、複数のロータディスク(図示せず)が積層された構成とされている。ロータ本体21は、軸受(図示せず)により回転可能に支持されている。
 動翼23は、複数のロータディスク毎に複数設けられている。各ロータディスクに設けられた複数の動翼23は、ロータディスクの外周面から放射方向に延出している。
 複数のロータディスクのうち、吸込口28側に最も近い位置に配置された第1のロータディスクには、第1の動翼群23Aが設けられている。第1の動翼群23Aは、第1のロータディスクの周方向に配列された複数の動翼23で構成されている。
 第1のロータディスクの吐出口側に配置された第2のロータディスクには、第2の動翼群23Bが設けられている。第2のロータディスクの吐出口側には、吸込口28から吐出口に向かう方向に対して、所定の間隔を空けた状態で、第3の動翼群23C、第4の動翼群23D、第5の動翼群23E、第6の動翼群23Fが順次設けられている。
 なお、図1では、紙面の都合上、第1~第6の動翼群23A~23Fのみ図示したが、第6の動翼群23Fの吐出口側にも複数の動翼群が軸線O方向に配列されている。
 ケーシング13は、内側ケーシング25と、外側ケーシング26と、を有する。
 内側ケーシング25は、ロータ11の外側に配置された筒状の部材である。内側ケーシング25は、可変静翼機構15を構成する可変静翼35の回転軸43が収容される軸収容部25Aを有する。軸収容部25Aは、内側ケーシング25の周方向及び軸線O方向に複数設けられている。内側ケーシング25は、回転軸43が回転可能な状態で、可変静翼35の一端側を支持している。
 外側ケーシング26は、内側ケーシング25の外側に配置された筒状の部材である。外側ケーシング26は、可変静翼機構15を構成する可変静翼35の回転軸43が収容される軸収容部26Aを有する。軸収容部26Aは、外側ケーシング26の周方向及び軸線O方向に複数設けられている。
 外側ケーシング26は、回転軸43が回転可能な状態で、可変静翼35の他端側を支持している。外側ケーシング26と内側ケーシング25との間には、筒状の流路27が区画されている。
 ケーシング13は、吸込口28と、吐出口(図示せず)と、を有する。吸込口28は、軸線Oの一方の側に設けられている。吸込口28は、流路27と連通している。吸込口28は、ケーシング13内に作動流体(例えば、外気)を吸い込む。
 吐出口は、軸線Oの他方の側に設けられている。吐出口は、流路27と連通している。吐出口は、ケーシング13内で圧縮された作動流体をケーシング13の外部に吐き出す。
 複数の可変静翼機構15は、第1~第4の動翼群23A~23Dの吸込口28側にそれぞれ設けられている。
 ここで、図1及び図2を参照して、可変静翼機構15の構成について説明する。図2において、図1に示す構造体と同一構成部分には、同一符号を付す。
 可変静翼機構15は、互いに離間した状態で軸線O方向に複数(図1の場合、一例として4つ)設けられている。
 可変静翼機構15は、可動環31と、複数のリンク機構33と、複数の可変静翼35と、回転駆動部37と、を有する。
 可動環31は、環状とされた部材である。可動環31は、ケーシング13を囲むように、ケーシング13の外側に設けられている。
 複数のリンク機構33は、可動環31の周方向に所定間隔で配置されている。複数のリンク機構33は、一端が可動環31に固定されている。複数のリンク機構33の他端は、吸込口28側に突出している。
 図1~図5を参照して、可変静翼35について説明する。図4及び図5において、Eは作動流体の主流の流れ方向(以下、「E方向」という)、Fは第1の案内面48aに沿って流れる作動流体の漏れ流れの流れ方向(以下、「F方向」という)をそれぞれ示している。図4では、図1~図3に示す構造体と同一構成部分には、同一符号を付す。図5では、図4に示す構造体と同一構成部分には、同一符号を付す。
 可変静翼35は、静翼本体41と、回転軸43,47と、接続部45,48と、を有する。
 静翼本体41は、翼形状とされた部材である。静翼本体41は、内側ケーシング25と外側ケーシング26との間に配置されている。静翼本体41は、静翼本体41は、正圧面41aと、負圧面41bと、前縁41Aと、後縁41Bと、他端面41cと、一端面41dと、を有する。
 前縁41Aは、正圧面41aと負圧面41bとを結ぶ一端を構成している。後縁41Bは、正圧面41aと負圧面41bとを結ぶ他端を構成している。正圧面41a及び負圧面41bは、湾曲した面である。
 他端面41cは、外側ケーシング26の内周面26aと対向する静翼本体41の前縁41A側の端面である。他端面41cのうち、接続部45が設けられていない部分と内周面26aとの間には、クリアランスCLが形成されている。
 一端面41dは、内側ケーシング25の外周面25aと対向する静翼本体41の前縁41A側の端面である。一端面41dのうち、接続部48が設けられていない部分と外周面25aとの間には、クリアランスCLが形成されている。
 回転軸43(他の回転軸)は、回転軸本体52と、拡径部53と、を有する。回転軸本体52は、一方向に延在する柱状の部材である。回転軸本体52は、一端側が軸収容部26Aに配置されており、他端側が外側ケーシング26の外側に突出している。回転軸本体52の他端は、リンク機構33の他端に固定されている。
 回転軸43は、回転駆動部37により可動環31が周方向に回転駆動させられた際、図3に示す矢印方向に回転することで、作動流体の主流の流れ方向Eに対する静翼本体41の角度を可変させる。
 拡径部53は、回転軸本体52の一端と一体に構成されている。拡径部53は、回転軸本体52の外径よりも拡径されている。拡径部53は、回転軸本体52の一端と接続部45とを接続している。
 このように、回転軸本体52の一端と接続部45とを接続する拡径部53を設けることで、回転軸本体52と接続部45との間の接続強度を向上させることができる。
 接続部45は、静翼本体41の他端と拡径部53との間に設けられている。接続部45は、静翼本体41の他端と一体に構成されている。接続部45の形状は、静翼本体41の他端面41cから拡径部53に向かうにつれて幅広形状とされている。
 回転軸47は、回転軸本体55と、拡径部56と、を有する。回転軸本体55は、一方向に延在する柱状の部材である。回転軸本体55は、全体が軸収容部25Aに配置されている。
 拡径部56は、回転軸本体55の一端と一体に構成されている。拡径部56は、回転軸本体55の外径よりも拡径されている。拡径部56は、回転軸本体55の一端と接続部48とを接続している。
 このように、回転軸本体55の一端と接続部48とを接続する拡径部56を設けることで、回転軸本体55と接続部48との間の接続強度を向上させることができる。
 接続部48は、静翼本体41の他端と拡径部53との間に設けられている。接続部45は、静翼本体41の他端と一体に構成されている。接続部45は、静翼本体41の他端面41cから拡径部53に向かうにつれて幅広形状とされている。
 接続部48は、切欠き部48Aを有する。切欠き部48Aは、第1の案内面48aを有する。第1の案内面48aは、正圧面41aから負圧面41b側に向かうに従って、前縁側から後縁側に向かって延びている。径方向から見て第一の案内面48aは、静翼本体41と重なる位置に形成されている。具体的には、径方向から見て、第一の案内面48aは、負圧面41bから後退するように形成されている。
 第1の案内面48aは、クリアランスCLのうち、静翼本体41の前縁41A側に流入した作動流体の漏れ流れの流れ方向が主流の流れ方向Eに向かう方向Fに案内する。
 第1の案内面48aは、接続部48のうち、静翼本体41の前縁41A側で、かつ静翼本体41の負圧面41b側に位置する部分に配置されている。第1の案内面48aは、接続部48の高さ方向全体に亘って形成されている。
 なお、「接続部48の高さ方向」とは、軸線Oが延びる方向のことをいう。
 このように、接続部48のうち、静翼本体41の前縁41A側で、かつ静翼本体41の負圧面41b側に位置する部分に第1の案内面48aを配置することで、静翼本体41の前縁41A側に配置されたクリアランスCLに流入し、接続部48に衝突した作動流体の漏れ流れの流れ方向を主流の流れ方向Eに向かう方向Fに案内することができる。
 第1の案内面48aは、例えば、静翼本体41の負圧面41b側に突出する湾曲面にしてもよい。
 このように、第1の案内面48aを静翼本体41の負圧面41b側に突出する湾曲面とすることで、作動流体の漏れ流れが第1の案内面48aに沿って流れやすくなるため、漏れ流れの流れ方向が主流の流れ方向に向かう方向に容易に案内することができる。
 なお、第1の案内面48aは、静翼本体41の一端面41dに対して直交する面でもよいし、静翼本体41の一端面41dに対して交差する面であってもよい。
 また、第1の案内面48aの形状は、漏れ流れの流れ方向が主流の流れ方向に向かう方向に案内可能な形状であればよく、湾曲面に限定されない。
 第1の案内面48aの形状とは異なる第1の案内面を有する接続部の一例として、例えば、図6及び図7に示す第1の実施形態の変形例に係る接続部50を例示することが可能である。
 ここで、図6及び図7を参照して、接続部50について説明する。図6において、図4に示す構造体と同一構成部分には、同一符号を付す。図6では、静翼本体48を断面で示す。図7において、VCは仮想円(以下、「仮想円」という)、rは仮想円VCの半径(以下、「半径r」という)をそれぞれ示している。図7において、図6に示す構造体と同一構成部分には、同一符号を付す。
 接続部50は、拡径部56と静翼本体41との間に設けられており、第1の案内面50aと、第1の案内面50aの形成位置よりも正圧面41a側に配置された面50bと、を有する。
 第1の案内面50aは、丸みを帯びたラウンド形状とされている。第1の案内面50aの形状は、例えば、半径rの仮想円VCの一部と一致する形状とすることが可能である。
 面50bの形状についても上述した第1の案内面50aと同様な形状にすることが可能である。
 なお、図6及び図7では、第1の案内面50aの形状が、仮想円VCの一部と一致する形状である場合を例に挙げて説明したが、これとは異なる形状とされた第1の案内面を用いてもよい。
 具体的には、例えば、湾曲やラウンド形状ではなく、平面視した状態で直線とされた第1の案内面(言い換えれば、平面とされた第1の案内面)を用いてもよい。
 このような形状とされた第1の案内面を用いた場合も漏れ流れの流れ方向を主流の流れ方向に向かう方向に案内することが可能である。
 上述した第1の案内面48aを有することで、クリアランスCLを通過した作動流体の漏れ流れと作動流体の主流との干渉を抑制することが可能となる。これにより、作動流体の漏れ流れと作動流体の主流との干渉に起因する渦の発生が抑制されるため、圧力損失を低減することができる。
 また、切欠き部48Aに第1の案内面48aを設けることで、接続部48の外径を大きくする必要が無いため、可変静翼35の配列ピッチが狭い場合でも圧力損失を低減することができる。
 なお、上述した第1の案内面50aを有する場合も、第1の案内面48aと同様な効果を得ることができる。
 上記構成とされた複数の可変静翼35は、各可変静翼35の回転軸本体52がリンク機構33の他端に固定された状態で、可動環31からロータ11に向かう可動環31の径方向に配列されている。
 回転駆動部37は、可動環31の外側に設けられている。回転駆動部37は、可動環31の周方向に可動環31を回転させる。
 上記構成とされた可変静翼機構15は、回転駆動部37により可動環31を回転させて、リンク機構33と接続された可変静翼35全体が回転させることで、作動流体の主流の流れ方向に対する複数の静翼本体41の角度が所望の角度となるように可変させる。
 なお、図1では、一例として、軸線O方向に4つの可変静翼機構15を設けた場合を例に挙げて説明したが、軸線O方向に配置させる可変静翼機構15の数は、1つ以上であればよく、1つに限定されない。
 複数の静翼群17は、複数の可変静翼機構15が配置された領域の吐出口側に所定の間隔を空けて配置されている。各静翼群17は、外側ケーシング26の内面の周方向に固定された複数の静翼58で構成されている。複数の静翼58は、それぞれ静翼本体59を有する。静翼58は、流路27に配置されるとともに、軸線O方向において動翼23の間に配置されている。
 複数の静翼群17を構成する静翼58は、作動流体の主流の流れ方向に対する複数の静翼本体59の角度が可変できない構成とされている。
 第1の実施形態の可変静翼35によれば、接続部48に設けられた切欠き部48Aが第1の案内面48aを有することで、クリアランスCLを通過した作動流体の漏れ流れと作動流体の主流との干渉を抑制することが可能となる。これにより、作動流体の漏れ流れと作動流体の主流との干渉に起因する渦の発生が抑制されるため、圧力損失を低減することができる。
 また、切欠き部48Aに第1の案内面48aを設けることで、接続部48の外径を大きくする必要が無いため、可変静翼35の配列ピッチが狭い場合でも圧力損失を低減することができる。
 第1の実施形態の圧縮機10によれば、上記構成とされた可変静翼35を有することで、可変静翼35の配列ピッチが狭い場合でも圧力損失を抑制することができる。
 なお、第1の実施形態では、一方の接続部48のみに第1の案内面48aを含む切欠き部48Aを設けた場合を例に挙げて説明したが、他方の接続部45にも第1の案内面48aを含む切欠き部48Aを設けてもよい。
 この場合、クリアランスCLを通過した作動流体の漏れ流れと作動流体の主流との干渉を抑制することが可能となり、作動流体の漏れ流れと作動流体の主流との干渉に起因する渦の発生が抑制されるため、圧力損失を低減することができる。
 また、静翼本体41に対する接続部48の位置は、図2及び図4に示す位置に限定されない。静翼本体41に対する接続部48の位置は、静翼本体41の一端面41dと内側ケーシング25の外周面25aとの間にクリアランスCLが形成される位置であればよい。
 (第2の実施形態)
 図8~図10を参照して、第2の実施形態の圧縮機65について説明する。図9及び図10において、Eは作動流体の主流の流れ方向(以下、「E方向」という)、Iは第1の案内面72aに沿って流れる作動流体の漏れ流れの流れ方向(以下、「I方向」という)、Jは、第2の案内面72bに沿って流れる作動流体の漏れ流れの流れ方向(以下、「J方向」という)をそれぞれ示している。図8~図10において、図2~図4に示す構造体と同一構成部分には、同一符号を付す。
 第2の実施形態の圧縮機65は、第1の実施形態の圧縮機10を構成する可変静翼35に替えて可変静翼66を有すること以外は、圧縮機10と同様に構成されている。
 可変静翼66は、第1の実施形態の可変静翼35を構成する接続部48に替えて接続部67を有すること以外は、可変静翼35と同様に構成される。
 接続部67は、接続部本体71と、突出部72と、を有する。接続部本体71は、静翼本体41の他端と拡径部56との間に設けられている。接続部本体71は、静翼本体41の他端及び拡径部56と一体に構成されている。接続部本体71は、静翼本体41の一端面41dから拡径部56に向かうにつれて幅広形状とされている。
 突出部72は、接続部本体71のうち、静翼本体41の前縁41A側に位置する部分に設けられている。突出部72は、内側ケーシング25の外周面25aと対向する静翼本体41の前縁41A側の一端面41dに接触した状態で接続部本体71から前縁41A側に突出している。
 突出部72は、第1の案内面72aと、第2の案内面72bと、を有する。第1の案内面72aは、静翼本体41の正圧面41a側に配置されている。第1の案内面72aは、漏れ流れの流れ方向が主流の流れ方向Eに向かう方向に案内する。
 第2の案内面72bは、静翼本体41の負圧面41b側に配置されている。第2の案内面72bは、漏れ流れの流れ方向をJ方向に案内することで、漏れ流れが負圧面41b側に流れることを抑制する。
 このような構成とされた突出部72を有することで、作動流体の主流が接続部本体71に衝突することを抑制することが可能になるとともに、作動流体の漏れ流れの流れ方向を主流の流れ方向Eに向かう方向に案内することが可能となる。これにより、可変静翼66の配列ピッチが狭い場合でも圧力損失を低減することができる。
 第1及び第2の案内面72a,72bは、例えば、突出部72の先端部72Aから突出部72の基端(接続部本体71側)に向かうにつれて第1の案内面72aと第2の案内面72bとの距離が大きくなるように配置させるとよい。
 このように、突出部72の先端部72Aから突出部72の基端(接続部本体71側)に向かうにつれて第1の案内面72aと第2の案内面72bとの距離が大きくすることで、接続部本体71に作動流体が衝突する前に、作動流体の主流を2つの流れに分けて、第1の案内面72aを用いて、静翼本体41の前縁41A側を通過する作動流体の漏れ流れの流れ方向を主流の流れ方向Eに向かうように案内することができる。
 また、突出部72の先端部72Aの形状は、例えば、丸みを帯びた形状にするとよい。
 このように、突出部72の先端部72Aの形状を、丸みを帯びた形状にすることで、突出部の先端部72Aの破損を抑制できるとともに、作動流体を突出部72の基端側にスムーズに案内することができる。
 第2の実施形態の可変静翼66によれば、上述した第1及び第2の案内面72a,72bを含む突出部72を有することで、作動流体の主流が接続部本体71に衝突することを抑制することが可能になるとともに、作動流体の漏れ流れの流れ方向を主流の流れ方向Eに向かう方向に案内することが可能となる。これにより、可変静翼66の配列ピッチが狭い場合でも圧力損失を低減することができる。
 次に、図11を参照して、第2の実施形態の変形例に係る可変静翼80について説明する。
 可変静翼80は、第2の実施形態の可変静翼66を構成する接続部67に替えて、接続部81を有すること以外は、可変静翼66と同様に構成されている。
 接続部81は、第2の実施形態で説明した接続部67を構成する突出部72に替えて、突出部83を有すること以外は、接続部67と同様に構成されている。
 突出部83は、静翼本体41の前縁41A側の一端面(図2に示す一端面41d)の全体を覆うように設けられている。突出部83は、第1の案内面83aと、第2の案内面83bと、底面83cと、を有する。底面83cは、第1の案内面83aの下端と第2の案内面83bの下端とを接続する面である。
 第2の実施形態の変形例に係る可変静翼80によれば、静翼本体41の前縁41A側の端面の全体を覆う突出部83を有することで、静翼本体41の前縁41A側の端面の一部に突出部を設けた場合と比較して、第1の案内面83aの長さを長くすることが可能になる。
 これにより、作動流体が静翼本体41の前縁41Aに到達した段階で、作動流体の漏れ流れの方向を主流の流れ方向に向かう方向に案内することが可能となるので、圧力損失をさらに低減することができる。
 (第3の実施形態)
 図12及び図13を参照して、第3の実施形態の圧縮機90について説明する。図12において、図8及び図11に示す構造体と同一構成部分には同一符号を付す。図13において、図11及び図12に示す構造体と同一構成部分には同一符号を付す。
 第3の実施形態の圧縮機90は、第1の実施形態の圧縮機10を構成する可変静翼35に替えて、可変静翼91を有するとともに、内側ケーシング25に面取り部96を形成したこと以外は、圧縮機10と同様に構成されている。
 可変静翼91は、第2の実施形態の変形例に係る可変静翼80を構成する接続部81に替えて、接続部93を有すること以外は可変静翼80と同様に構成されている。
 接続部93は、第2の実施形態の変形例で説明した接続部81を構成する突出部83に替えて、突出部94を有すること以外は、接続部81と同様に構成されている。
 突出部94は、一端面41d(静翼本体41の前縁41A側の端面)を覆うとともに、一部が拡径部56の側面56aに延びて配置されている。突出部94は、静翼本体41の前縁41Aまで延びて配置されている。
 突出部94は、一部が拡径部56の側面56aに延びて配置されている点が、突出部83と異なる点であり、これ以外については突出部83と同様な構成とされている。
 図12に示すJ-J線で接続部93を切断した際の形状は、例えば、図7に示す接続部50と同様な形状となるが、図7の接続部50よりも、本実施形態の接続部93の方が、静翼前縁41A側に伸びる。すなわち、接続部93は、拡径部56を静翼前縁41A側にはみ出す点で相違する。
 面取り部96は、内側ケーシング25の外周部のうち、突出部94と対向する部分に形成されている。面取り部96は、突出部94と内側ケーシング25との間に隙間Kを形成している。
 面取り部96は、隙間Kの一部を区画するとともに、突出部94と対向する面取り面96aを有する。面取り面96aは、外周面25aに対して傾斜した面である。
 面取り面96aは、軸収容部25Aの側面25Aa(具体的には、軸収容部25Aのうち、拡径部56が収容される部分の側面)と接続されている。
 第3の実施形態の圧縮機90によれば、上記構成とされた突出部94を有することで、内側ケーシング25の外周面25a付近の作動流体を突出部94に衝突させることができる。これにより、内側ケーシング25の外周面25a付近の作動流体が接続部本体71に衝突することを抑制できる。
 また、上記構成とされた面取り部96を有することで、作動流体を隙間Kに案内することが可能となる。これにより、漏れ流れの流れ方向をより確実に主流の流れ方向に案内することができる。
 なお、図12及び図13では、一例として、静翼本体41の前縁41Aまで延びるように突出部94を配置させた場合を例に挙げて説明したが、前縁41Aに向かう方向に対する突出部94の突出量は、図12及び図13に示す突出量に限定されない。突出部94の突出量は、例えば、図12及び図13に示す突出量の1/2でもよいし、1/4でもよい。突出部94の突出量は、適宜設定することが可能である。
 以上、本発明の好ましい実施形態について詳述したが、本発明はかかる特定の実施形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
 例えば、第1及び第2の実施形態では、一例として、静翼本体41の両側から回転軸43,47で支持する可変静翼35,66を例に挙げて説明したが、本発明は、一方の側から静翼本体41を回転軸で支持する可変静翼にも適用可能である。
 本発明は、可変静翼、及び圧縮機に適用可能である。
 10,65,90  圧縮機
 11  ロータ
 13  ケーシング
 15  可変静翼機構
 17  静翼群
 21  ロータ本体
 23  動翼
 23A  第1の動翼群
 23B  第2の動翼群
 23C  第3の動翼群
 23D  第4の動翼群
 23E  第5の動翼群
 23F  第6の動翼群
 25  内側ケーシング
 25a  外周面
 25A,26A  軸収容部
 26a  内周面
 26  外側ケーシング
 27  流路
 28  吸込口
 31  可動環
 33  リンク機構
 35,66,80,91  可変静翼
 37  回転駆動部
 41,59  静翼本体
 41a  正圧面
 41A  前縁
 41b  負圧面
 41B  後縁
 41c  他端面
 41d  一端面
 43,47  回転軸
 45,48,50,67,81,93  接続部
 48a,50a,72a,83a  第1の案内面
 48A  切欠き部
 50b  面
 52,55  回転軸本体
 53,56  拡径部
 56a  側面
 58  静翼
 71  接続部本体
 72,83,94  突出部
 72A  先端部
 72b,83b  第2の案内面
 96  面取り部
 96a  面取り面
 CL,CL  クリアランス
 E,F,I,J  方向
 K 隙間
 O,O  軸線
 VC  仮想円
 r  半径

Claims (13)

  1.  作動流体が流通する流路内に配置され、内側ケーシングとの間にクリアランスを形成する静翼本体と、
     前記作動流体の主流の流れ方向に対する前記静翼本体の角度を可変させるように、回転する回転軸と、
     前記静翼本体と前記回転軸とを接続する接続部と、
     を備え、
     前記接続部は、前記クリアランスのうち、前記静翼本体の前縁側に流入した前記作動流体の漏れ流れの流れ方向が前記主流の流れ方向に向かう方向に案内する第1の案内面を含む可変静翼。
  2.  前記第1の案内面は、前記接続部のうち、前記静翼本体の前縁側で、かつ前記静翼本体の負圧面側に位置する部分に配置する請求項1記載の可変静翼。
  3.  前記第1の案内面は、前記静翼本体の負圧面側に突出する湾曲面である請求項1または2記載の可変静翼。
  4.  前記接続部は、前記第1の案内面を含む切欠き部を有する請求項1から3のうち、いずれか一項記載の可変静翼。
  5.  前記接続部は、前記静翼本体と前記回転軸とを接続する接続部本体と、
     前記接続部本体のうち、前記静翼本体の前縁側に位置する部分に設けられ、前記内側ケーシングと対向する前記静翼本体の前縁側の端面に接触した状態で前記接続部本体から突出するとともに、前記第1の案内面を含む突出部と、
     を含む請求項1から3のうち、いずれか一項記載の可変静翼。
  6.  前記突出部は、前記静翼本体の正圧面側に配置された第2の案内面を備えており、
     前記第1及び第2の案内面は、前記突出部の先端から該突出部の基端に向かうにつれて第1の案内面と第2の案内面との距離が大きくなるように配置させる請求項5記載の可変静翼。
  7.  前記突出部の先端部の形状は、丸みを帯びた形状である請求項5または6記載の可変静翼。
  8.  前記突出部は、前記静翼本体の前縁側の端面の全体を覆うように設けられている請求項5から7のうち、いずれか一項記載の可変静翼。
  9.  前記回転軸は、回転軸本体と、該回転軸本体と前記接続部とを接続するとともに、該回転軸本体の外径よりも拡径された拡径部と、を備えており、
     前記接続部は、前記静翼本体から前記拡径部に向かうにつれて幅広形状である請求項1から8のうち、いずれか一項記載の可変静翼。
  10.  前記回転軸は、回転軸本体と、該回転軸本体と前記接続部とを接続するとともに、該回転軸本体の外径よりも拡径された拡径部と、を備えており、
     前記突出部は、前記静翼本体の前縁側の端面の少なくとも一部を覆うように設けられるとともに、前記拡径部の側面に延びて配置されている請求項5から7のうち、いずれか一項記載の可変静翼。
  11.  請求項1から9のうち、いずれか一項記載の可変静翼と、
     ロータ本体、及び該ロータ本体の軸線方向及び周方向に配列された複数の動翼を含むロータと、
     前記ロータの外側に設けられた内側ケーシングと、
     前記内側ケーシングの外側に設けられた外側ケーシングと、
     前記回転軸と接続され、前記回転軸を回転させる回転駆動部と、
     を備え、
     前記内側ケーシングは、前記回転軸を収容する軸収容部を有する圧縮機。
  12.  請求項10記載の可変静翼と、
     ロータ本体、及び該ロータ本体の軸線方向及び周方向に配列された複数の動翼を含むロータと、
     前記ロータの外側に設けられた内側ケーシングと、
     前記内側ケーシングの外側に設けられた外側ケーシングと、
     前記回転軸と接続され、前記回転軸を回転させる回転駆動部と、
     を備え、
     前記内側ケーシングは、前記回転軸を収容する軸収容部と、前記突出部と該内側ケーシングとの間に隙間を形成する面取り部と、を有しており、
     前記面取り部の面取り面は、前記軸収容部の側面と接続されている圧縮機。
  13.  前記可変静翼は、前記回転軸が設けられた側とは反対側に位置する前記静翼本体と接続され、前記外側ケーシングに回転可能な状態で支持された他の回転軸を含む請求項11または12記載の圧縮機。
PCT/JP2018/013732 2017-03-30 2018-03-30 可変静翼、及び圧縮機 WO2018181939A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020197028329A KR20190118650A (ko) 2017-03-30 2018-03-30 가변 정익 및 압축기
US16/498,069 US11168704B2 (en) 2017-03-30 2018-03-30 Variable stator vane and compressor
CN201880021607.4A CN110520631B (zh) 2017-03-30 2018-03-30 可变静叶及压缩机
JP2019509379A JP6874121B2 (ja) 2017-03-30 2018-03-30 可変静翼、及び圧縮機
DE112018001703.6T DE112018001703T5 (de) 2017-03-30 2018-03-30 Variable statorschaufel und verdichter
KR1020217029965A KR102351758B1 (ko) 2017-03-30 2018-03-30 가변 정익 및 압축기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-066611 2017-03-30
JP2017066611 2017-03-30

Publications (1)

Publication Number Publication Date
WO2018181939A1 true WO2018181939A1 (ja) 2018-10-04

Family

ID=63677915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013732 WO2018181939A1 (ja) 2017-03-30 2018-03-30 可変静翼、及び圧縮機

Country Status (6)

Country Link
US (1) US11168704B2 (ja)
JP (1) JP6874121B2 (ja)
KR (2) KR20190118650A (ja)
CN (1) CN110520631B (ja)
DE (1) DE112018001703T5 (ja)
WO (1) WO2018181939A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019218911A1 (de) * 2019-12-04 2021-06-10 MTU Aero Engines AG Leitschaufelanordnung für eine strömungsmaschine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113803274B (zh) * 2021-11-19 2022-03-04 中国航发上海商用航空发动机制造有限责任公司 轴流压气机及涡扇发动机
CN114109522B (zh) * 2021-11-29 2022-12-02 清华大学 控制间隙损失的导叶结构和动力系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60145500A (ja) * 1983-12-07 1985-07-31 ソシエテ・ナシオナル・デテユード・エ・ドウ・コンストリユクシオン・ドウ・モトール・ダヴイアシオン、“エス.エヌ.ウ.セ.エム.アー” 軸流圧縮機の静翼の軸支装置
US4834613A (en) * 1988-02-26 1989-05-30 United Technologies Corporation Radially constrained variable vane shroud
JPH11315702A (ja) * 1998-03-05 1999-11-16 Soc Natl Etud Constr Mot Aviat <Snecma> 内側端部が連結リングで連結されるベ―ンの円形段
JP2000345997A (ja) * 1999-06-04 2000-12-12 Ishikawajima Harima Heavy Ind Co Ltd 軸流圧縮機の可変静翼機構
JP2003193999A (ja) * 2001-11-15 2003-07-09 General Electric Co <Ge> 可変ステータベーンの支持装置
JP2005299667A (ja) * 2004-04-14 2005-10-27 General Electric Co <Ge> ガスタービンエンジンを組立てるための方法及び装置
US20150285085A1 (en) * 2014-04-02 2015-10-08 Solar Turbines Incorporated Variable guide vane extended variable fillet
US20160076548A1 (en) * 2014-09-12 2016-03-17 Honeywell International Inc. Variable stator vane assemblies and variable stator vanes thereof having a locally swept leading edge and methods for minimizing endwall leakage therewith

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5752802A (en) * 1996-12-19 1998-05-19 Solar Turbines Incorporated Sealing apparatus for airfoils of gas turbine engines
JP2002138997A (ja) 2000-10-31 2002-05-17 Mitsubishi Heavy Ind Ltd 可変静翼装置及びこれを備えた圧縮機
US7963742B2 (en) * 2006-10-31 2011-06-21 United Technologies Corporation Variable compressor stator vane having extended fillet
US7806652B2 (en) * 2007-04-10 2010-10-05 United Technologies Corporation Turbine engine variable stator vane
DE102008014743A1 (de) * 2008-03-18 2009-09-24 Rolls-Royce Deutschland Ltd & Co Kg Verdichterstator mit Teildeckband
US8123471B2 (en) * 2009-03-11 2012-02-28 General Electric Company Variable stator vane contoured button
FR2966530B1 (fr) * 2010-10-21 2012-11-02 Snecma Etage redresseur a calage variable pour un compresseur d'une turbomachine
JP2012233424A (ja) 2011-04-28 2012-11-29 Ihi Corp 軸流式圧縮機の可変静翼機構
US9334751B2 (en) * 2012-04-03 2016-05-10 United Technologies Corporation Variable vane inner platform damping
FR3014964B1 (fr) * 2013-12-13 2018-09-28 Safran Aircraft Engines Redresseur a calage variable en materiaux composites
US20160160874A1 (en) * 2014-12-04 2016-06-09 Solar Turbines Incorporated Airfoil for inlet guide vane (igv) of multistage compressor
JP6607752B2 (ja) 2015-09-28 2019-11-20 株式会社Kvk 水栓のカバー
US10208619B2 (en) * 2015-11-02 2019-02-19 Florida Turbine Technologies, Inc. Variable low turbine vane with aft rotation axis

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60145500A (ja) * 1983-12-07 1985-07-31 ソシエテ・ナシオナル・デテユード・エ・ドウ・コンストリユクシオン・ドウ・モトール・ダヴイアシオン、“エス.エヌ.ウ.セ.エム.アー” 軸流圧縮機の静翼の軸支装置
US4834613A (en) * 1988-02-26 1989-05-30 United Technologies Corporation Radially constrained variable vane shroud
JPH11315702A (ja) * 1998-03-05 1999-11-16 Soc Natl Etud Constr Mot Aviat <Snecma> 内側端部が連結リングで連結されるベ―ンの円形段
JP2000345997A (ja) * 1999-06-04 2000-12-12 Ishikawajima Harima Heavy Ind Co Ltd 軸流圧縮機の可変静翼機構
JP2003193999A (ja) * 2001-11-15 2003-07-09 General Electric Co <Ge> 可変ステータベーンの支持装置
JP2005299667A (ja) * 2004-04-14 2005-10-27 General Electric Co <Ge> ガスタービンエンジンを組立てるための方法及び装置
US20150285085A1 (en) * 2014-04-02 2015-10-08 Solar Turbines Incorporated Variable guide vane extended variable fillet
US20160076548A1 (en) * 2014-09-12 2016-03-17 Honeywell International Inc. Variable stator vane assemblies and variable stator vanes thereof having a locally swept leading edge and methods for minimizing endwall leakage therewith

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019218911A1 (de) * 2019-12-04 2021-06-10 MTU Aero Engines AG Leitschaufelanordnung für eine strömungsmaschine
WO2021110192A1 (de) * 2019-12-04 2021-06-10 MTU Aero Engines AG Leitschaufelanordnung für eine strömungsmaschine

Also Published As

Publication number Publication date
KR102351758B1 (ko) 2022-01-14
JP6874121B2 (ja) 2021-05-19
CN110520631B (zh) 2021-06-08
US20210115946A1 (en) 2021-04-22
KR20210119551A (ko) 2021-10-05
DE112018001703T5 (de) 2019-12-24
US11168704B2 (en) 2021-11-09
CN110520631A (zh) 2019-11-29
KR20190118650A (ko) 2019-10-18
JPWO2018181939A1 (ja) 2020-02-06

Similar Documents

Publication Publication Date Title
JP6198200B2 (ja) 回転機械
WO2018181939A1 (ja) 可変静翼、及び圧縮機
JP5959816B2 (ja) ラジアルガスエキスパンダ
WO2016030952A1 (ja) シール機構、回転機械
RU2019106858A (ru) Холодильная система с диагональным компрессором
JPWO2017138199A1 (ja) 遠心圧縮機
WO2018155458A1 (ja) 遠心回転機械
CN111448396B (zh) 可变静叶片、及压缩机
WO2017072843A1 (ja) 回転機械
WO2017150554A1 (ja) 遠心回転機械
JP6234343B2 (ja) 回転機械
KR102199473B1 (ko) 유체 이송 장치
JP7235595B2 (ja) 回転機械
JP6930896B2 (ja) タービン及び動翼
JP6215154B2 (ja) 回転機械
WO2017072844A1 (ja) 回転機械
WO2022259625A1 (ja) 遠心圧縮機および過給機
JP6700893B2 (ja) 羽根車、回転機械
JP2022184085A (ja) 遠心圧縮機
JP6249219B2 (ja) インペラ及び遠心圧縮機
WO2019187330A1 (ja) 回転機械
CN117280124A (zh) 离心压缩机以及增压器
JP2023068953A (ja) ベーンドディフューザおよび遠心圧縮機
JP2020118105A (ja) 過給機用軸流タービン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776036

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509379

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20197028329

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18776036

Country of ref document: EP

Kind code of ref document: A1