WO2018181926A1 - 合金部材の製造方法、合金部材、電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、および固体酸化物形燃料電池 - Google Patents

合金部材の製造方法、合金部材、電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、および固体酸化物形燃料電池 Download PDF

Info

Publication number
WO2018181926A1
WO2018181926A1 PCT/JP2018/013693 JP2018013693W WO2018181926A1 WO 2018181926 A1 WO2018181926 A1 WO 2018181926A1 JP 2018013693 W JP2018013693 W JP 2018013693W WO 2018181926 A1 WO2018181926 A1 WO 2018181926A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
alloy
electrochemical
base material
alloy member
Prior art date
Application number
PCT/JP2018/013693
Other languages
English (en)
French (fr)
Inventor
越後満秋
大西久男
Original Assignee
大阪瓦斯株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大阪瓦斯株式会社 filed Critical 大阪瓦斯株式会社
Priority to JP2019510267A priority Critical patent/JP7174491B2/ja
Priority to US16/498,120 priority patent/US11767586B2/en
Priority to KR1020197024359A priority patent/KR20190132353A/ko
Priority to CA3058585A priority patent/CA3058585A1/en
Priority to EP18775767.9A priority patent/EP3604625A4/en
Priority to CN201880022207.5A priority patent/CN110462109B/zh
Publication of WO2018181926A1 publication Critical patent/WO2018181926A1/ja
Priority to US18/235,219 priority patent/US20230392249A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/16Oxidising using oxygen-containing compounds, e.g. water, carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/16Oxidising using oxygen-containing compounds, e.g. water, carbon dioxide
    • C23C8/18Oxidising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • C23C18/1692Heat-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • H01M8/1226Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material characterised by the supporting layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an alloy member used for an electrochemical device, a solid oxide fuel cell, and the like, and a manufacturing method thereof.
  • a steam oxidation inhibition layer consisting of a MnCr oxide layer and a composite oxide layer containing Mn and Co is formed on the surface of the Cr alloy material by slurry coating and oxidation treatment The material which was made was used (patent document 1).
  • Patent Document 1 the method of applying a complex composite oxide layer to an alloy material requires high cost for manufacturing the alloy member. There was also room for improvement in terms of suppressing Cr volatilization.
  • the present invention has been made in view of the above-mentioned problems, and an object of the present invention is to form a Cr film that can be formed at a low cost by a simple method and that causes deterioration of a fuel cell more than a conventional high-cost material.
  • An object of the present invention is to provide an alloy member having a metal oxide film capable of suppressing volatilization.
  • the characteristic configuration of the manufacturing method of the alloy member for achieving the above object includes a coating process step of coating Co on a Fe-Cr alloy base material, and the moisture treatment atmosphere after the coating process step. It is in the point which performs the oxidation process process which performs the oxidation process of a base material.
  • an alloy member having high heat resistance can be manufactured at low cost.
  • the effect of suppressing Cr volatilization can be enhanced as compared with the prior art.
  • Another feature of the method for manufacturing an alloy member according to the present invention is that the coating of Co is performed by plating in the coating process.
  • the alloy member can be manufactured at a lower cost.
  • the oxidation treatment step is performed in an atmosphere having a dew point of 25 ° C. or higher, an alloy member having a great effect of suppressing Cr volatilization can be produced.
  • the oxidation treatment step is more preferably performed in an atmosphere having a dew point of 30 ° C. or higher, and more preferably performed in an atmosphere having a dew point of 35 ° C. or higher. This is because it becomes easier to manufacture an alloy member having a greater effect of suppressing Cr volatilization.
  • a characteristic configuration of the alloy member for achieving the above object is an alloy member having a Fe—Cr alloy base material and a coating layer formed on the base material, wherein the coating layer is made of Co. And a Co-containing region is formed in the vicinity of the surface inside the base material.
  • the coating layer contains Co, and a Co-containing region is formed in the vicinity of the surface inside the substrate.
  • the alloy member having such a configuration has a high effect of suppressing Cr volatilization, and is suitably used for electrochemical elements, electrochemical devices, solid oxide fuel cells, and the like.
  • the characteristic configuration of the alloy member for achieving the above object is an alloy member having a Fe—Cr-based alloy base material and a coating layer formed on the base material, wherein the coating layer has a first structure. Having one layer and a second layer; The first layer is formed on the base material, and is a metal oxide layer containing Cr, The second layer is formed on the first layer and is formed as a metal oxide layer containing Co.
  • an alloy member provided with a coating layer is formed on the assumption that the first layer of the coating layer contains Cr and the second layer contains Co.
  • the alloy member having such a configuration has a high effect of suppressing Cr volatilization, and is suitably used for electrochemical elements, electrochemical devices, solid oxide fuel cells, and the like.
  • the characteristic configuration of the alloy member for achieving the above object is an alloy member having a Fe—Cr alloy base material and a coating layer formed on the base material. Having one layer and a second layer; The first layer is formed on the base material, and is a metal oxide layer containing Cr, The second layer is formed on the first layer and is a metal oxide layer containing Co; The Co-containing region is formed in the vicinity of the surface inside the base material.
  • the first layer of the coating layer contains Cr
  • the second layer contains Co
  • a Co-containing region is formed in the vicinity of the surface inside the substrate.
  • the alloy member having such a configuration has a high effect of suppressing Cr volatilization, and is suitably used for electrochemical elements, electrochemical devices, solid oxide fuel cells, and the like.
  • the second layer contains Mn, an alloy member having a high effect of suppressing Cr volatilization is obtained, which is more preferable.
  • the Fe—Cr alloy of the base material contains 0.05% by mass or more of Mn, it is more preferable because an alloy member having a coating layer having a high effect of suppressing Cr volatilization can be easily obtained. Further, when Mn is contained in an amount of 0.1% by mass or more, an alloy member having a coating layer having a high effect of suppressing Cr volatilization is more easily obtained, which is more preferable.
  • the Fe—Cr-based alloy of the base material contains Fe—Cr-based alloy containing 0.15% by mass or more and 1.0% by mass or less of Ti; Fe—Cr alloy containing 15% by mass or more and 1.0% by mass or less, Fe—containing Ti and Zr, and the total content of Ti and Zr being 0.15% by mass or more and 1.0% by mass or less It is in the point which is either a Cr-type alloy.
  • the metal support contains an Fe—Cr-based alloy containing 0.15% by mass to 1.0% by mass of Ti, and 0.15% by mass to 1.0% by mass of Zr. Since the Fe—Cr alloy, which contains Ti and Zr, the total content of Ti and Zr is 0.15 mass% or more and 1.0 mass% or less, Since the effect of improving the oxidation resistance and high-temperature strength of Fe-Cr alloys can be obtained, it is possible to suppress the volatilization of Cr from a metal support even when used for a long time at high temperatures, and to produce an electrochemical device with excellent durability. realizable.
  • the Ti content is preferably 0.20% by mass or more, and more preferably 0.25% by mass or more. This is because the effect of improving the oxidation resistance and high temperature strength of the Fe—Cr alloy by adding Ti or Zr can be increased. Further, the Ti content is preferably 0.90% by mass or less, and more preferably 0.80% by mass or less. This is because the cost increase of the Fe—Cr alloy by adding Ti or Zr can be further reduced.
  • the Zr content is preferably 0.20% by mass or more, and more preferably 0.25% by mass or more. This is because the effect of improving the oxidation resistance and high temperature strength of the Fe—Cr alloy by adding Ti or Zr can be increased.
  • the Zr content is preferably 0.90% by mass or less, and more preferably 0.80% by mass or less. This is because the cost increase of the Fe—Cr alloy by adding Ti or Zr can be further reduced.
  • the total content of Ti and Zr is preferably 0.20% by mass or more, and more preferably 0.25% by mass or more. This is because the effect of improving the oxidation resistance and high temperature strength of the Fe—Cr alloy by adding Ti or Zr can be increased.
  • the total content of Ti and Zr is preferably 0.90% by mass or less, and more preferably 0.80% by mass or less. This is because the cost increase of the Fe—Cr alloy by adding Ti or Zr can be further reduced.
  • Another characteristic configuration of the alloy member according to the present invention is that the Fe—Cr alloy of the base contains Cu in a range of 0.10% by mass to 1.0% by mass.
  • Cu has the effect of reducing contact resistance (electrical resistance). According to said characteristic structure, since a metal support body contains Cu 0.10 mass% or more and 1.0 mass% or less, the electrical resistance value as an electrochemical element is suppressed low, and high performance electrochemical An element can be realized.
  • the Cu content is more preferably 0.20% by mass or more, and further preferably 0.30% by mass or more. This is because the contact resistance reduction effect by adding Cu to the Fe—Cr alloy can be further increased.
  • the Cu content is more preferably 0.90% by mass or less, and further preferably 0.70% by mass or less. This is because the cost increase due to the addition of Cu to the Fe—Cr alloy can be further reduced.
  • Another characteristic configuration of the alloy member according to the present invention is that the Fe—Cr alloy of the base material contains 18 mass% or more and 25 mass% or less of Cr.
  • the thermal expansion coefficient of a zirconia-based material or a ceria-based material included in the material of the SOFC electrode layer or the electrolyte layer can be made close to the thermal expansion coefficient of the Fe—Cr-based alloy. Therefore, even when the electrochemical element is used at a high temperature or when it is subjected to a heat cycle, the electrode layer or the electrolyte layer can be prevented from cracking or peeling off, and a highly reliable electrochemical element can be realized.
  • the Cr content is more preferably 20% by mass or more. This is because the thermal expansion coefficient of the Fe—Cr alloy can be made closer to that of the zirconia material or ceria material. Further, the upper limit value of the Cr content is more preferably 23% by mass or less. This is because the cost increase of the Fe—Cr alloy can be further reduced.
  • the volatilization of Cr from the alloy member is suppressed, and the alloy member serves as a metal support for the electrochemical device. Because it functions, it becomes a high-performance electrochemical device.
  • the characteristic configuration of the electrochemical module according to the present invention is that it is arranged in a state where a plurality of the aforementioned electrochemical elements are assembled.
  • the electrochemical module is excellent in strength and reliability while suppressing material cost and processing cost and being compact and high-performance. Can be obtained.
  • a characteristic configuration of an electrochemical device includes at least the above-described electrochemical module and a reformer, and a fuel supply unit that supplies a fuel gas containing a reducing component to the electrochemical module. It is in having.
  • said characteristic structure since it has a fuel supply part which has an electrochemical module and a reformer and supplies the fuel gas containing a reducing component with respect to an electrochemical module, existing raw fuels, such as city gas An electrochemical apparatus equipped with an electrochemical module that uses supply infrastructure and has excellent durability, reliability, and performance can be realized. Moreover, since it becomes easy to construct a system for recycling unused fuel gas discharged from the electrochemical module, a highly efficient electrochemical device can be realized.
  • the characteristic configuration of the electrochemical device according to the present invention is that it includes at least the above-described electrochemical module and an inverter that extracts electric power from the electrochemical module.
  • the electrical output obtained from the electrochemical module excellent in durability, reliability and performance can be boosted by an inverter or converted from direct current to alternating current. It is preferable because the electric output obtained in the above can be easily used.
  • the separator member is a member that separates the fuel gas flow path and the air flow path when supplying fuel gas / air to a plurality of assembled electrochemical elements.
  • the manifold member is a member that supplies fuel gas or air to a plurality of assembled electrochemical elements.
  • the interconnector member is a member that joins a plurality of electrochemical elements.
  • a current collection member is a member which has electronic conductivity and is connected to the electrode layer of an electrochemical element.
  • the characteristic configuration of the energy system according to the present invention is that it includes the above-described electrochemical device and an exhaust heat utilization unit that reuses the heat discharged from the electrochemical device.
  • the above characteristic configuration because it has an electrochemical device and a waste heat utilization part that reuses the heat exhausted from the electrochemical device, it is excellent in durability, reliability, and performance, and also in energy efficiency.
  • An energy system can be realized. It is also possible to realize a hybrid system with excellent energy efficiency in combination with a power generation system that generates power using the combustion heat of unused fuel gas discharged from an electrochemical device.
  • the characteristic configuration of the solid oxide fuel cell according to the present invention is that it includes the above-described electrochemical element and generates a power generation reaction with the electrochemical element.
  • the raw fuel is converted to hydrogen in a fuel cell system using a hydrocarbon gas such as city gas as the raw fuel. It is more preferable because it is possible to construct a system that can cover the necessary heat with the exhaust heat of the fuel cell, so that the power generation efficiency of the fuel cell system can be increased.
  • a solid oxide fuel cell that is operated in a temperature range of 900 ° C.
  • a solid oxide fuel cell operated in a temperature range of 850 ° C. or lower is more preferable because the effect of suppressing Cr volatilization can be further enhanced and the long-term durability can be improved.
  • the alloy member is manufactured by coating Co on a substrate and performing an oxidation treatment in an atmosphere to which water vapor is added.
  • the alloy member manufactured in this manner has suppressed volatilization of Cr, and can be suitably used for electrochemical elements, electrochemical devices, solid oxide fuel cells, and the like.
  • it is used as the metal substrate 1 (metal support) of the electrochemical element E shown in FIG.
  • it is used as the U-shaped member 7 (separator member) or the current collecting member 26 of the electrochemical module M shown in FIG.
  • the alloy member may be composed of a base material and a coating layer (metal oxide layer 1b (diffusion suppression layer)) formed by directly coating Co on the surface of the base material and then oxidizing it. .
  • a coating layer metal oxide layer 1b (diffusion suppression layer)
  • the base material of the alloy member As the base material of the alloy member, an Fe—Cr alloy is used.
  • the Fe—Cr alloy of the base material preferably contains 0.05% by mass or more of Mn.
  • the base Fe—Cr alloy is an Fe—Cr alloy containing 0.15 to 1.0 mass% of Ti, and Fe— containing Zr of 0.15 to 1.0 mass%. More preferably, it is any one of a Cr-based alloy and a Fe—Cr-based alloy containing Ti and Zr and having a total content of Ti and Zr of 0.15% by mass or more and 1.0% by mass or less. . More preferably, the base Fe—Cr alloy contains Cu in a range of 0.10% by mass to 1.0% by mass. It is more preferable that the Fe—Cr alloy of the base material contains 18 mass% or more and 25 mass% or less of Cr.
  • Co is coated on the Fe—Cr alloy base material.
  • the substrate can be coated with Co by plating (electrolytic plating or electroless plating), vapor deposition, or coating with a coating containing Co.
  • Co may be directly coated on the surface of the base material, or Co may be coated on an intervening layer between the base material and the coating layer.
  • the substrate is oxidized in a humid atmosphere.
  • the dew point of the atmosphere is preferably 25 ° C. or higher, more preferably the atmospheric dew point is 30 ° C. or higher, and even more preferably the atmospheric dew point is 35 ° C. or higher.
  • the temperature of the oxidation treatment is preferably 600 ° C. or higher, and more preferably 700 ° C. or higher.
  • the temperature of the oxidation treatment is preferably 1100 ° C. or lower, and more preferably 1050 ° C. or lower.
  • An alloy member can be manufactured as described above.
  • the separator member, the manifold member, the current collecting member, etc., the cutting, bending, press forming, etc. are performed before the coating treatment step and the oxidation treatment step. It is preferable to perform machining. It is also possible to perform machining such as cutting and bending after the coating treatment step and the oxidation treatment step.
  • the alloy member obtained as described above is preferable to use the alloy member obtained as described above as the metal substrate 1 of the electrochemical element E because a high-performance electrochemical element E in which the internal resistance of the electrochemical element is suppressed can be obtained.
  • Example> A sample of an alloy member was prepared using a substrate having the composition shown in Table 1 below. In addition, the unit of the value of the composition shown in Table 1 is mass%.
  • the substrate was coated with Co by electrolytic plating. The thickness of the Co coating is three types: 1 ⁇ m, 2 ⁇ m, and 3 ⁇ m.
  • the oxidation treatment was performed under two conditions: in a 40 ° C. dew point atmosphere (Example) and in a 20 ° C. dew point atmosphere (Comparative Example).
  • the oxidation treatment temperature was performed by two-stage treatment at 850 ° C. (60 minutes) + 1000 ° C. (90 minutes).
  • the six samples prepared were measured for the volatilization amount of Cr.
  • the Cr volatilization amount was measured using a metal plate sample having a width of 25 mm and a length of 250 to 300 mm, in an air of 0.5 L / min (dew point 20 ° C. or dew point 40 ° C.) at a temperature of 850 ° C. Each metal plate sample was exposed for 100 hours, and the volatilization amount (integrated amount) of Cr during that time was measured.
  • the measurement results are shown in Table 2.
  • the unit of Cr volatilization amount shown in Table 2 is ⁇ g / 600 cm 2 , and is a value converted to the volatilization amount of Cr per metal surface area equivalent to 600 cm 2 .
  • Some Cr was volatilized in the three samples of the comparative examples.
  • the Cr volatilization amount was extremely small in the three types of samples of the example.
  • the Cr volatilization amount was below the measurement limit. From the above results, it was found that an alloy member having an extremely small amount of Cr volatilization can be obtained by the method for manufacturing an alloy member according to this embodiment.
  • FIG. 5 shows the results of the example (oxidation treatment in a 40 ° C. dew point atmosphere, coating thickness 3 ⁇ m).
  • the horizontal axis is the position (unit: mm) in the direction perpendicular to the substrate surface, the right direction (positive direction) is the direction toward the substrate surface, and the left direction (negative direction) is the direction toward the inside of the substrate.
  • the vertical axis represents the signal intensity of each element, but is a relative value and does not reflect the ratio of distribution between elements.
  • the signal intensity is strong at positions 0 to 0.005, the signal intensity decreases near positions 0.005 to 0.006, and the signal intensity is almost 0 after position 0.007. . Accordingly, it is presumed that the vicinity of the position 0 to 0.006 is the base material (alloy), and the right (front side) from the vicinity of the position 0.006 is the coating layer.
  • Cr Cr is distributed in many locations from 0.006 to 0.009. Therefore, it is estimated that Cr is distributed in a region near the base material of the coating layer. Mn is distributed in a large amount at 0.009 to 0.013. Therefore, it is presumed that Mn is distributed in a large amount in a region where the distribution of Cr is small in the region away from the substrate in the coating layer. Co is widely distributed at positions 0.003 to 0.006 and positions 0.009 to 0.013. Therefore, Co is estimated to be distributed in two regions. One is a region in the vicinity of the interface between the base material and the coating layer inside the base material, that is, in the vicinity of the surface of the base material. The other is a region where the distribution of Cr is small, that is, the same region as Mn, in a region away from the substrate in the coating layer.
  • a coating layer is formed in the vicinity of the surface of the base material in the alloy member according to this embodiment.
  • the coating layer is formed on the base material (formed above the base material and formed in contact with the base material, or formed close to the base material).
  • One layer and a second layer on the first layer (formed above the first layer and in contact with the first layer, or close to the first layer) And have.
  • the first layer contains a large amount of Cr.
  • the second layer contains a large amount of Co and Mn.
  • region) containing Co is formed in the vicinity of the surface inside the base material.
  • FIG. 6 shows the results of a comparative example (oxidation treatment in a 20 ° C. dew point atmosphere, coating thickness 3 ⁇ m).
  • the signal intensity is strong at positions 0 to 0.006, the signal intensity decreases near positions 0.006 to 0.008, and the signal intensity is almost 0 after position 0.008. . Accordingly, it is presumed that the vicinity of the position 0 to 0.008 is the base material (alloy), and the right (front side) from the vicinity of the position 0.008 is the coating layer.
  • Mn is distributed in a large amount at positions 0.010 to 0.012. Therefore, it is estimated that Mn is distributed in a large area in the coating layer away from the substrate. Unlike the embodiment of FIG. 5, Mn is distributed so as to overlap with a region where Cr is distributed. Co is widely distributed at positions 0 to 0.008. Unlike the example of FIG. 5, Co is presumed to be distributed inside the substrate.
  • the electrochemical element E is used, for example, as a component of a solid oxide fuel cell that generates electric power by receiving supply of a fuel gas containing hydrogen and air.
  • the side of the counter electrode layer 6 as viewed from the electrolyte layer 4 is referred to as “upper” or “upper”, and the side of the electrode layer 2 is referred to as “lower” or “lower”.
  • the surface of the metal substrate 1 on which the electrode layer 2 is formed may be referred to as “front side”, and the opposite surface may be referred to as “back side”.
  • the electrochemical element E includes a metal substrate 1 (metal support), an electrode layer 2 formed on the metal substrate 1, and an intermediate layer 3 formed on the electrode layer 2. And an electrolyte layer 4 formed on the intermediate layer 3.
  • the electrochemical element E further includes a reaction preventing layer 5 formed on the electrolyte layer 4 and a counter electrode layer 6 formed on the reaction preventing layer 5. That is, the counter electrode layer 6 is formed on the electrolyte layer 4, and the reaction preventing layer 5 is formed between the electrolyte layer 4 and the counter electrode layer 6.
  • the electrode layer 2 is porous, and the electrolyte layer 4 is dense.
  • the metal substrate 1 serves as a support that supports the electrode layer 2, the intermediate layer 3, the electrolyte layer 4, and the like and maintains the strength of the electrochemical element E.
  • the above-described alloy member is used as the metal substrate 1.
  • the plate-shaped metal substrate 1 is used as the metal support, but the metal support may have other shapes such as a box shape or a cylindrical shape.
  • the metal substrate 1 only needs to have sufficient strength to form an electrochemical element as a support, and is, for example, about 0.1 mm to 2 mm, preferably about 0.1 mm to 1 mm, more preferably about 0.1 mm. Those having a thickness of about 1 mm to 0.5 mm can be used.
  • the metal substrate 1 has a plurality of through holes 1a provided through the front surface and the back surface.
  • the through-hole 1a can be provided in the metal substrate 1 by mechanical, chemical or optical drilling.
  • the through hole 1a has a function of allowing gas to pass from the back surface of the metal substrate 1 to the front surface.
  • a porous metal can be used.
  • the metal substrate 1 can use a sintered metal, a foam metal, or the like.
  • YSZ yttria stabilized zirconia
  • GDC gadolinium doped ceria
  • the electrode layer 2 can be provided in a thin layer on a surface on the front side of the metal substrate 1 and larger than the region where the through hole 1 a is provided.
  • the thickness can be, for example, about 1 ⁇ m to 100 ⁇ m, preferably 5 ⁇ m to 50 ⁇ m. With such a thickness, it is possible to ensure sufficient electrode performance while reducing the amount of expensive electrode layer material used and reducing costs.
  • the entire region where the through hole 1 a is provided is covered with the electrode layer 2. That is, the through hole 1a is formed inside the region of the metal substrate 1 where the electrode layer 2 is formed. In other words, all the through holes 1 a are provided facing the electrode layer 2.
  • the electrode layer 2 As a material for the electrode layer 2, for example, a composite material such as NiO-GDC, Ni-GDC, NiO-YSZ, Ni-YSZ, CuO-CeO 2 , Cu-CeO 2 can be used. In these examples, GDC, YSZ, and CeO 2 can be referred to as composite aggregates.
  • the electrode layer 2 may be formed by a low-temperature baking method (for example, a wet method using a baking process in a low temperature range that does not perform a baking process in a high temperature range higher than 1100 ° C.) or a spray coating method (a thermal spraying method, an aerosol deposition method, an aerosol gas).
  • It is preferably formed by a deposition method, a powder jet deposition method, a particle jet deposition method, a cold spray method or the like), a PVD method (such as a sputtering method or a pulse laser deposition method), a CVD method or the like.
  • the electrode layer 2 has a plurality of pores inside and on the surface in order to impart gas permeability. That is, the electrode layer 2 is formed as a porous layer.
  • the electrode layer 2 is formed, for example, so that the density thereof is 30% or more and less than 80%.
  • As the size of the pores a size suitable for a smooth reaction to proceed during the electrochemical reaction can be appropriately selected.
  • the fine density is the ratio of the material constituting the layer to the space, and can be expressed as (1-porosity), and is equivalent to the relative density.
  • the intermediate layer 3 can be formed in a thin layer on the electrode layer 2 while covering the electrode layer 2.
  • the thickness can be, for example, about 1 ⁇ m to 100 ⁇ m, preferably about 2 ⁇ m to 50 ⁇ m, more preferably about 4 ⁇ m to 25 ⁇ m. With such a thickness, it is possible to ensure sufficient performance while reducing the cost by reducing the amount of expensive intermediate layer material used.
  • Examples of the material of the intermediate layer 3 include YSZ (yttria-stabilized zirconia), SSZ (scandium-stabilized zirconia), GDC (gadolinium-doped ceria), YDC (yttrium-doped ceria), and SDC (samarium-doped ceria). Ceria) or the like can be used. In particular, ceria-based ceramics are preferably used.
  • the intermediate layer 3 is formed by a low-temperature baking method (for example, a wet method using a baking process in a low temperature range that does not perform a baking process in a high temperature range higher than 1100 ° C.) or a spray coating method (a thermal spraying method, an aerosol deposition method, an aerosol gas deposition). It is preferably formed by a method such as a method such as a powder jet deposition method, a particle jet deposition method, or a cold spray method), a PVD method (such as a sputtering method or a pulse laser deposition method), or a CVD method.
  • a low-temperature baking method for example, a wet method using a baking process in a low temperature range that does not perform a baking process in a high temperature range higher than 1100 ° C.
  • a spray coating method a thermal spraying method, an aerosol deposition method, an aerosol gas deposition. It is preferably formed by a method such as a method such as a powder
  • the intermediate layer 3 can be obtained without firing in a high temperature region higher than 1100 ° C., for example. Therefore, elemental interdiffusion between the metal substrate 1 and the electrode layer 2 can be suppressed without damaging the metal substrate 1, and an electrochemical element E having excellent durability can be realized. Further, it is more preferable to use a low-temperature baking method because handling of raw materials becomes easy.
  • the intermediate layer 3 preferably has oxygen ion (oxide ion) conductivity. Further, it is more preferable to have mixed conductivity of oxygen ions (oxide ions) and electrons. The intermediate layer 3 having these properties is suitable for application to the electrochemical element E.
  • the electrolyte layer 4 is formed in a thin layer on the intermediate layer 3 while covering the electrode layer 2 and the intermediate layer 3. Moreover, it can also form in the state of a thin film whose thickness is 10 micrometers or less. Specifically, as shown in FIG. 1, the electrolyte layer 4 is provided over (over straddling) the intermediate layer 3 and the metal substrate 1. By comprising in this way and joining the electrolyte layer 4 to the metal substrate 1, the whole electrochemical element can be excellent in robustness.
  • the electrolyte layer 4 is provided in a region on the front side surface of the metal substrate 1 which is larger than the region in which the through hole 1 a is provided. That is, the through hole 1a is formed inside the region of the metal substrate 1 where the electrolyte layer 4 is formed.
  • gas leakage from the electrode layer 2 and the intermediate layer 3 can be suppressed around the electrolyte layer 4.
  • gas is supplied from the back side of the metal substrate 1 to the electrode layer 2 through the through hole 1a when the SOFC is operated.
  • gas leakage can be suppressed without providing another member such as a gasket.
  • the entire periphery of the electrode layer 2 is covered with the electrolyte layer 4, but the electrolyte layer 4 may be provided above the electrode layer 2 and the intermediate layer 3, and a gasket or the like may be provided around the electrode layer 2.
  • Examples of the material of the electrolyte layer 4 include YSZ (yttria stabilized zirconia), SSZ (scandium stabilized zirconia), GDC (gadolinium doped ceria), YDC (yttrium doped ceria), SDC (samarium doped ceria).
  • LSGM sinrontium / magnesium-added lanthanum gallate
  • zirconia ceramics are preferably used.
  • the material of the electrolyte layer 4 is made of a material that can exhibit high electrolyte performance even in a high temperature range of about 650 ° C. or higher, such as YSZ.
  • a highly efficient SOFC system that uses heat generated in the SOFC cell stack for raw fuel gas reforming Can be built.
  • the electrolyte layer 4 is formed by a low temperature baking method (for example, a wet method using a baking process in a low temperature range in which a baking process is not performed in a high temperature range exceeding 1100 ° C.) or a spray coating method (a thermal spraying method, an aerosol deposition method, an aerosol gas deposition). It is preferably formed by a method such as a method such as a powder jet deposition method, a particle jet deposition method, or a cold spray method), a PVD method (such as a sputtering method or a pulse laser deposition method), or a CVD method.
  • a low temperature baking method for example, a wet method using a baking process in a low temperature range in which a baking process is not performed in a high temperature range exceeding 1100 ° C.
  • a spray coating method a thermal spraying method, an aerosol deposition method, an aerosol gas deposition. It is preferably formed by a method such as a method such as a powder jet
  • the electrolyte layer 4 having a high density and a high gas barrier property can be obtained without firing in a high temperature region exceeding 1100 ° C., for example. Therefore, damage to the metal substrate 1 can be suppressed, elemental interdiffusion between the metal substrate 1 and the electrode layer 2 can be suppressed, and an electrochemical element E excellent in performance and durability can be realized.
  • a low-temperature firing method or a spray coating method because a low-cost element can be realized.
  • it is more preferable to use a spray coating method because a dense electrolyte layer having a high gas tightness and gas barrier property can be easily obtained in a low temperature range.
  • Electrolyte layer 4 is densely configured to shield gas leakage of anode gas and cathode gas and to exhibit high ionic conductivity.
  • the density of the electrolyte layer 4 is preferably 90% or more, more preferably 95% or more, and further preferably 98% or more.
  • the density is preferably 95% or more, and more preferably 98% or more.
  • the electrolyte layer 4 is configured in a plurality of layers, it is preferable that at least a part thereof includes a layer (dense electrolyte layer) having a density of 98% or more, and 99% It is more preferable that the above layer (dense electrolyte layer) is included.
  • the reaction preventing layer 5 can be formed on the electrolyte layer 4 in a thin layer state.
  • the thickness can be, for example, about 1 ⁇ m to 100 ⁇ m, preferably about 2 ⁇ m to 50 ⁇ m, more preferably about 4 ⁇ m to 25 ⁇ m. With such a thickness, it is possible to secure sufficient performance while reducing the cost by reducing the amount of expensive reaction preventing layer material used.
  • the reaction preventing layer 5 may be made of any material that can prevent the reaction between the components of the electrolyte layer 4 and the counter electrode layer 6. For example, a ceria material or the like is used.
  • the reaction preventing layer 5 By introducing the reaction preventing layer 5 between the electrolyte layer 4 and the counter electrode layer 6, the reaction between the constituent material of the counter electrode layer 6 and the constituent material of the electrolyte layer 4 is effectively suppressed, and the electrochemical element E The long-term stability of performance can be improved.
  • the reaction preventing layer 5 is formed by appropriately using a method that can be formed at a processing temperature of 1100 ° C. or less, damage to the metal substrate 1 is suppressed, and interdiffusion between the metal substrate 1 and the electrode layer 2 is suppressed. This is preferable because an electrochemical element E excellent in performance and durability can be realized.
  • low-temperature firing methods for example, wet methods using a firing treatment in a low temperature range that does not perform a firing treatment in a high temperature range exceeding 1100 ° C.
  • spray coating methods thermal spraying method, aerosol deposition method, aerosol gas deposition method, powder
  • a PVD method a sputtering method, a pulse laser deposition method, or the like
  • CVD method or the like
  • it is preferable to use a low-temperature firing method or a spray coating method because a low-cost element can be realized.
  • it is more preferable to use a low-temperature firing method because handling of raw materials becomes easy.
  • the counter electrode layer 6 can be formed in a thin layer on the electrolyte layer 4 or the reaction preventing layer 5.
  • the thickness can be, for example, about 1 ⁇ m to 100 ⁇ m, preferably 5 ⁇ m to 50 ⁇ m. With such a thickness, it is possible to secure sufficient electrode performance while reducing the cost by reducing the amount of expensive counter electrode layer material used.
  • composite oxides such as LSCF and LSM, ceria-based oxides, and mixtures thereof can be used.
  • the counter electrode layer 6 preferably includes a perovskite oxide containing two or more elements selected from the group consisting of La, Sr, Sm, Mn, Co, and Fe.
  • the counter electrode layer 6 configured using the above materials functions as a cathode.
  • the counter electrode layer 6 is formed by appropriately using a method that can be formed at a processing temperature of 1100 ° C. or less, and damage to the metal substrate 1 is suppressed, and element mutual diffusion between the metal substrate 1 and the electrode layer 2 is suppressed. Can be suppressed, and an electrochemical element E excellent in performance and durability can be realized.
  • low-temperature firing methods for example, wet methods using a firing treatment in a low temperature range that does not perform a firing treatment in a high temperature range exceeding 1100 ° C.
  • spray coating methods thermal spraying method, aerosol deposition method, aerosol gas deposition method, powder
  • a PVD method a sputtering method, a pulse laser deposition method, or the like
  • CVD method or the like
  • it is preferable to use a low-temperature firing method or a spray coating method because a low-cost element can be realized.
  • it is more preferable to use a low-temperature firing method because handling of raw materials becomes easy.
  • the electrochemical element E can be used as a power generation cell of a solid oxide fuel cell.
  • a fuel gas containing hydrogen is supplied from the back surface of the metal substrate 1 to the electrode layer 2 through the through-hole 1a, and air is supplied to the counter electrode layer 6 which is the counter electrode of the electrode layer 2, for example, 600 ° C. or higher 850 Operate at a temperature below °C.
  • oxygen O 2 contained in the air reacts with electrons e ⁇ in the counter electrode layer 6 to generate oxygen ions O 2 ⁇ .
  • the oxygen ions O 2 ⁇ move through the electrolyte layer 4 to the electrode layer 2.
  • the electrode layer 2 hydrogen H 2 contained in the supplied fuel gas reacts with oxygen ions O 2 ⁇ to generate water H 2 O and electrons e ⁇ . Due to the above reaction, an electromotive force is generated between the electrode layer 2 and the counter electrode layer 6.
  • the electrode layer 2 functions as an SOFC fuel electrode (anode)
  • the counter electrode layer 6 functions as an air electrode (cathode).
  • the electrode layer 2 is formed in a thin film state in a region wider than a region where the through hole 1a on the front side surface of the metal substrate 1 is provided.
  • the through hole of the metal substrate 1 can be provided by laser processing or the like.
  • the electrode layer 2 is formed by a low-temperature baking method (wet method in which baking is performed at a low temperature of 1100 ° C.
  • a spray coating method (a thermal spraying method, an aerosol deposition method, an aerosol gas deposition method, A method such as a powder jet deposition method, a particle jet deposition method, or a cold spray method), a PVD method (such as a sputtering method or a pulse laser deposition method), or a CVD method can be used. Regardless of which method is used, it is desirable to carry out at a temperature of 1100 ° C. or lower in order to suppress the deterioration of the metal substrate 1.
  • the electrode layer forming step is performed by a low temperature firing method, specifically, it is performed as in the following example.
  • the material powder of the electrode layer 2 and a solvent (dispersion medium) are mixed to prepare a material paste, which is applied to the surface on the front side of the metal substrate 1.
  • the electrode layer 2 is compression-molded (electrode layer smoothing step) and fired at 1100 ° C. or lower (electrode layer firing step).
  • the compression molding of the electrode layer 2 can be performed by, for example, CIP (Cold Isostatic Pressing) molding, roll pressing molding, RIP (Rubber Isostatic Pressing) molding, or the like.
  • the firing of the electrode layer 2 is preferably performed at a temperature of 800 ° C.
  • the order of the electrode layer smoothing step and the electrode layer firing step can be interchanged.
  • the electrode layer smoothing step and the electrode layer firing step are omitted, or the electrode layer smoothing step and the electrode layer firing step are described later. It can also be included in the firing step.
  • the electrode layer smoothing step can also be performed by lapping, leveling, surface cutting / polishing, or the like.
  • the metal oxide layer 1b (diffusion suppression layer (coating layer)) is formed on the surface of the metal substrate 1.
  • the firing step includes a firing step in which the firing atmosphere is an atmospheric condition with a low oxygen partial pressure, a high-quality metal oxide layer 1b (diffusion restraint) that has a high element interdiffusion suppression effect and a low resistance value. Layer) is preferable.
  • a separate diffusion suppression layer forming step may be included, including the case where the electrode layer forming step is a coating method without firing.
  • the metal oxide layer 1b (diffusion suppression layer (coating layer)) is formed by coating Co on the metal substrate 1 and then oxidizing it.
  • the metal oxide layer 1b (diffusion suppression layer (coating layer)) is formed by coating Co on the intervening layer formed on the metal substrate 1 and then oxidizing it. It is formed. In any case, it is desirable to carry out at a processing temperature of 1100 ° C. or less that can suppress damage to the metal substrate 1.
  • the metal oxide layer 1b (diffusion suppression layer) may be formed on the surface of the metal substrate 1 during the firing step in the intermediate layer forming step described later.
  • the intermediate layer 3 is formed in a thin layer on the electrode layer 2 so as to cover the electrode layer 2.
  • the intermediate layer 3 is formed by a low-temperature baking method (wet method in which baking is performed in a low temperature region of 1100 ° C. or lower), a spray coating method (a thermal spraying method, an aerosol deposition method, an aerosol gas deposition method, A method such as a powder jet deposition method, a particle jet deposition method, or a cold spray method), a PVD method (such as a sputtering method or a pulse laser deposition method), or a CVD method can be used. Regardless of which method is used, it is desirable to carry out at a temperature of 1100 ° C. or lower in order to suppress the deterioration of the metal substrate 1.
  • the intermediate layer forming step is performed by a low-temperature firing method, specifically, it is performed as in the following example.
  • the material powder of the intermediate layer 3 and a solvent (dispersion medium) are mixed to prepare a material paste, which is applied to the front surface of the metal substrate 1.
  • the intermediate layer 3 is compression-molded (intermediate layer smoothing step) and fired at 1100 ° C. or less (intermediate layer firing step).
  • the intermediate layer 3 can be rolled by, for example, CIP (Cold Isostatic Pressing) molding, roll pressing molding, RIP (Rubber Isostatic Pressing) molding, or the like.
  • the intermediate layer is preferably fired at a temperature of 800 ° C. or higher and 1100 ° C. or lower.
  • the intermediate layer 3 having a high strength can be formed while suppressing damage and deterioration of the metal substrate 1 at such a temperature. Moreover, it is more preferable when baking of the intermediate
  • the electrolyte layer 4 is formed in a thin layer on the intermediate layer 3 while covering the electrode layer 2 and the intermediate layer 3. Moreover, you may form in the state of a thin film whose thickness is 10 micrometers or less. As described above, the electrolyte layer 4 is formed by a low temperature baking method (wet method in which baking is performed in a low temperature region of 1100 ° C.
  • a spray coating method (a thermal spraying method, an aerosol deposition method, an aerosol gas deposition method, A method such as a powder jet deposition method, a particle jet deposition method, or a cold spray method), a PVD method (such as a sputtering method or a pulse laser deposition method), or a CVD method can be used. Regardless of which method is used, it is desirable to carry out at a temperature of 1100 ° C. or lower in order to suppress the deterioration of the metal substrate 1.
  • the electrolyte layer forming step In order to form a high-quality electrolyte layer 4 that is dense, airtight and has high gas barrier performance in a temperature range of 1100 ° C. or lower, it is desirable to perform the electrolyte layer forming step by a spray coating method. In that case, the material of the electrolyte layer 4 is sprayed toward the intermediate layer 3 on the metal substrate 1 to form the electrolyte layer 4.
  • reaction prevention layer formation step the reaction preventing layer 5 is formed on the electrolyte layer 4 in a thin layer state.
  • the reaction preventing layer 5 is formed by a low-temperature baking method, a spray coating method (a thermal spraying method, an aerosol deposition method, an aerosol gas deposition method, a powder jet deposition method, a particle jet deposition method, a cold spray method). Etc.), PVD method (sputtering method, pulsed laser deposition method, etc.), CVD method and the like can be used. Regardless of which method is used, it is desirable to carry out at a temperature of 1100 ° C. or lower in order to suppress the deterioration of the metal substrate 1.
  • a leveling process or a surface cutting / polishing process may be performed after the formation of the reaction preventing layer 5, or a press working may be performed after the wet formation and before firing. Good.
  • the counter electrode layer 6 is formed in a thin layer on the reaction preventing layer 5.
  • the counter electrode layer 6 is formed by a low-temperature firing method, a spray coating method (a thermal spraying method, an aerosol deposition method, an aerosol gas deposition method, a powder jet deposition method, a particle jet deposition method, a cold spray method). Etc.), PVD method (sputtering method, pulsed laser deposition method, etc.), CVD method and the like can be used. Regardless of which method is used, it is desirable to carry out at a temperature of 1100 ° C. or lower in order to suppress the deterioration of the metal substrate 1.
  • the electrochemical element E can be manufactured as described above.
  • substrate B with an electrode layer for metal support type electrochemical elements can be manufactured by performing the electrode layer formation step and intermediate
  • the intermediate layer 3 and the reaction preventing layer 5 may be configured so as not to include either one or both. That is, a form in which the electrode layer 2 and the electrolyte layer 4 are formed in contact with each other, or a form in which the electrolyte layer 4 and the counter electrode layer 6 are formed in contact with each other is possible.
  • the intermediate layer forming step and the reaction preventing layer forming step are omitted. Note that a step of forming another layer can be added, or a plurality of layers of the same type can be stacked. In any case, it is preferable to perform the step at a temperature of 1100 ° C. or lower.
  • the electrochemical element E has a U-shaped member 7 attached to the back surface of the metal substrate 1, and a cylindrical support is formed by the metal substrate 1 and the U-shaped member 7. is doing.
  • the above-described alloy member is used for the U-shaped member 7 (separator member).
  • a plurality of electrochemical elements E are stacked with the current collecting member 26 interposed therebetween, so that an electrochemical module M is configured.
  • the current collecting member 26 is joined to the counter electrode layer 6 of the electrochemical element E and the U-shaped member 7 to electrically connect them.
  • the above-described alloy member is used for the current collecting member 26.
  • the electrochemical module M includes a gas manifold 17, a current collecting member 26, a termination member, and a current drawing portion.
  • a plurality of stacked electrochemical elements E are supplied with gas from the gas manifold 17 with one open end of the cylindrical support connected to the gas manifold 17. The supplied gas flows through the inside of the cylindrical support and is supplied to the electrode layer 2 through the through hole 1 a of the metal substrate 1.
  • the above-mentioned alloy member is used for the gas manifold 17 (manifold member).
  • the separator member (U-shaped member 7), the manifold member (gas manifold 17), and the current collecting member 26 may be the metal member described above.
  • FIG. 3 shows an outline of the energy system Z and the electrochemical device Y.
  • the energy system Z includes an electrochemical device Y and a heat exchanger 53 as an exhaust heat utilization unit that reuses the heat discharged from the electrochemical device Y.
  • the electrochemical device Y includes an electrochemical module M, a desulfurizer 31 and a reformer 34, a fuel supply unit that supplies a fuel gas containing a reducing component to the electrochemical module M, and an electrochemical module. And an inverter 38 for extracting electric power from M.
  • the electrochemical device Y includes a desulfurizer 31, a reforming water tank 32, a vaporizer 33, a reformer 34, a blower 35, a combustion unit 36, an inverter 38, a control unit 39, a storage container 40, and an electrochemical module M.
  • a desulfurizer 31 a reforming water tank 32, a vaporizer 33, a reformer 34, a blower 35, a combustion unit 36, an inverter 38, a control unit 39, a storage container 40, and an electrochemical module M.
  • the desulfurizer 31 removes (desulfurizes) sulfur compound components contained in hydrocarbon-based raw fuel such as city gas.
  • hydrocarbon-based raw fuel such as city gas.
  • the vaporizer 33 generates steam from the reformed water supplied from the reformed water tank 32.
  • the reformer 34 steam-reforms the raw fuel desulfurized by the desulfurizer 31 using the steam generated by the vaporizer 33 to generate a reformed gas containing hydrogen.
  • the electrochemical module M uses the reformed gas supplied from the reformer 34 and the air supplied from the blower 35 to generate an electrochemical reaction to generate power.
  • the combustion unit 36 mixes the reaction exhaust gas discharged from the electrochemical module M and air, and combusts the combustible component in the reaction exhaust gas.
  • the electrochemical module M has a plurality of electrochemical elements E and a gas manifold 17.
  • the plurality of electrochemical elements E are arranged in parallel while being electrically connected to each other, and one end (lower end) of the electrochemical element E is fixed to the gas manifold 17.
  • the electrochemical element E generates electricity by causing an electrochemical reaction between the reformed gas supplied through the gas manifold 17 and the air supplied from the blower 35.
  • the inverter 38 adjusts the output power of the electrochemical module M to the same voltage and the same frequency as the power received from the commercial system (not shown).
  • the control unit 39 controls the operation of the electrochemical device Y and the energy system Z.
  • the vaporizer 33, the reformer 34, the electrochemical module M, and the combustion unit 36 are stored in the storage container 40.
  • the reformer 34 performs the reforming process of the raw fuel using the combustion heat generated by the combustion of the reaction exhaust gas in the combustion unit 36.
  • the raw fuel is supplied to the desulfurizer 31 through the raw fuel supply path 42 by the operation of the booster pump 41.
  • the reforming water in the reforming water tank 32 is supplied to the vaporizer 33 through the reforming water supply path 44 by the operation of the reforming water pump 43.
  • the raw fuel supply path 42 is downstream of the desulfurizer 31 and is joined to the reformed water supply path 44, and the reformed water and raw fuel merged outside the storage container 40 are stored in the storage container.
  • the carburetor 33 provided in 40 is supplied.
  • the reformed water is vaporized by the vaporizer 33 and becomes steam.
  • the raw fuel containing the steam generated in the vaporizer 33 is supplied to the reformer 34 through the steam-containing raw fuel supply path 45.
  • the raw fuel is steam-reformed by the reformer 34, and a reformed gas (first gas having a reducing component) containing hydrogen gas as a main component is generated.
  • the reformed gas generated in the reformer 34 is supplied to the gas manifold 17 of the electrochemical module M through the reformed gas supply path 46.
  • the reformed gas supplied to the gas manifold 17 is distributed to the plurality of electrochemical elements E, and is supplied to the electrochemical elements E from the lower end that is a connecting portion between the electrochemical elements E and the gas manifold 17.
  • Hydrogen (reducing component) in the reformed gas is mainly used for electrochemical reaction in the electrochemical element E.
  • the reaction exhaust gas containing the remaining hydrogen gas that has not been used for the reaction is discharged from the upper end of the electrochemical element E to the combustion section 36.
  • the reaction exhaust gas is combusted in the combustion part 36 and is discharged as combustion exhaust gas from the combustion exhaust gas outlet 50 to the outside of the storage container 40.
  • a combustion catalyst portion 51 (for example, a platinum-based catalyst) is disposed at the combustion exhaust gas outlet 50 to burn and remove reducing components such as carbon monoxide and hydrogen contained in the combustion exhaust gas.
  • the combustion exhaust gas discharged from the combustion exhaust gas outlet 50 is sent to the heat exchanger 53 through the combustion exhaust gas discharge passage 52.
  • the heat exchanger 53 exchanges heat between the flue gas generated by the combustion in the combustion unit 36 and the supplied cold water to generate hot water. That is, the heat exchanger 53 operates as an exhaust heat utilization unit that reuses the heat exhausted from the electrochemical device Y.
  • reaction exhaust gas utilization part which utilizes the reaction exhaust gas discharged
  • the reaction exhaust gas contains residual hydrogen gas that was not used for the reaction in the electrochemical element E.
  • the remaining hydrogen gas is used to use heat by combustion, or to generate power by a fuel cell or the like, thereby effectively using energy.
  • FIG. 4 shows another embodiment of the electrochemical module M.
  • the electrochemical module M according to this embodiment constitutes the electrochemical module M by laminating the above-described electrochemical element E with the inter-cell connecting member 71 interposed therebetween.
  • the inter-cell connection member 71 is a plate-like member that has conductivity and does not have gas permeability, and grooves 72 that are orthogonal to each other are formed on the front surface and the back surface.
  • the inter-cell connection member 71 can be made of metal such as stainless steel or metal oxide.
  • the alloy member described above is used for the inter-cell connection member 71 (interconnector member).
  • one groove 72 becomes the first gas flow path 72 a and supplies gas to the front side of the electrochemical element E, that is, the counter electrode layer 6.
  • the other groove 72 becomes the second gas flow path 72b, and gas is supplied to the electrode layer 2 through the through-hole 1a from the back side of the electrochemical element E, that is, the back side surface of the metal substrate 1.
  • this electrochemical module M When operating this electrochemical module M as a fuel cell, oxygen is supplied to the first gas channel 72a and hydrogen is supplied to the second gas channel 72b. Then, the reaction as a fuel cell proceeds in the electrochemical element E, and electromotive force / current is generated. The generated electric power is taken out of the electrochemical module M from the inter-cell connection members 71 at both ends of the stacked electrochemical element E.
  • the grooves 72 that are orthogonal to each other are formed on the front and back surfaces of the inter-cell connection member 71, but the grooves 72 that are parallel to each other can also be formed on the front and back surfaces of the inter-cell connection member 71. .
  • the electrochemical element E is used for a solid oxide fuel cell, but the electrochemical element E uses a solid oxide electrolytic cell or a solid oxide. It can also be used for an oxygen sensor or the like.
  • the alloy member of this invention can also be utilized for various apparatuses other than the electrochemical element which needs suppression of Cr volatilization from a member, especially various apparatuses which operate
  • the metal support 1 is used for a metal support type solid oxide fuel cell using the metal substrate 1 as a support.
  • the present application is an electrode support using the electrode layer 2 or the counter electrode layer 6 as a support.
  • the present invention can also be applied to a solid oxide fuel cell of the type and an electrolyte supported solid oxide fuel cell using the electrolyte layer 4 as a support.
  • the electrode layer 2 or the counter electrode layer 6 or the electrolyte layer 4 can be made to have a necessary thickness so that a function as a support can be obtained.
  • a composite material such as NiO—GDC, Ni—GDC, NiO—YSZ, Ni—YSZ, CuO—CeO 2 , and Cu—CeO 2 is used as the material of the electrode layer 2 , and the counter electrode
  • a complex oxide such as LSCF or LSM was used.
  • the electrochemical device E configured in this way supplies hydrogen gas to the electrode layer 2 to form a fuel electrode (anode), and supplies air to the counter electrode layer 6 to form an air electrode (cathode). It can be used as a fuel cell.
  • the electrochemical element E can be configured such that the electrode layer 2 can be an air electrode and the counter electrode layer 6 can be a fuel electrode.
  • a composite oxide such as LSCF or LSM is used as the material of the electrode layer 2, and NiO—GDC, Ni—GDC, NiO—YSZ, Ni—YSZ, CuO—CeO 2 , Cu is used as the material of the counter electrode layer 6, for example.
  • a composite material such as CeO 2 .
  • air is supplied to the electrode layer 2 to be an air electrode
  • hydrogen gas is supplied to the counter electrode layer 6 to be a fuel electrode
  • the electrochemical element E is in a solid oxide form. It can be used as a fuel cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

簡便な方法で低コストに成膜可能であり、かつ、従来の高コストな材料よりも燃料電池の劣化を引き起こすCrの揮発を抑制可能な、金属酸化物被膜を有する合金部材を提供する。Fe-Cr系合金の基材の上にCoをコーティングするコーティング処理工程と、コーティング処理工程の後に、含湿雰囲気中で基材の酸化処理工程を行う、合金部材の製造方法。

Description

合金部材の製造方法、合金部材、電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、および固体酸化物形燃料電池
 本発明は、電気化学装置や固体酸化物形燃料電池等に用いられる合金部材と、その製造方法に関する。
 従来の固体酸化物形燃料電池用の耐熱合金材料としては、Cr合金材料表面にMnCr酸化物層およびMnとCoを含む複合酸化物層からなる水蒸気酸化抑制層等をスラリー塗布と酸化処理によって形成した材料が用いられていた(特許文献1)。
特開2010-250965号公報
 特許文献1のように、合金材料に複雑な複合酸化物層を塗布する方法は、合金部材の製造に高いコストがかかってしまう。またCr揮発の抑制に関しても改善の余地があった。
 本発明は上述の課題に鑑みてなされたものであり、その目的は、簡便な方法で低コストに成膜可能であり、かつ、従来の高コストな材料よりも燃料電池の劣化を引き起こすCrの揮発を抑制可能な、金属酸化物被膜を有する合金部材を提供することを目的とする。
 上記目的を達成するための合金部材の製造方法の特徴構成は、Fe-Cr系合金の基材の上にCoをコーティングするコーティング処理工程と、前記コーティング処理工程の後に、含湿雰囲気中で前記基材の酸化処理を行う酸化処理工程とを行う点にある。
 上記の特徴構成によれば、耐熱性の高い合金部材を低コストで製造することができる。加えて、Cr揮発の抑制効果を従来より高めることができる。
 本発明に係る合金部材の製造方法の別の特徴構成は、前記コーティング処理工程にて、Coのコーティングがメッキ処理によって行われる点にある。
 上記の特徴構成によれば、さらに低コストで合金部材を製造することができる。
 前記酸化処理工程が、露点25℃以上の雰囲気中で行われると、Cr揮発の抑制効果が大きな合金部材を製造できるので好適である。また、前記酸化処理工程が、露点30℃以上の雰囲気中で行われるとより好ましく、露点35℃以上の雰囲気中で行われると更に好ましい。これは、Cr揮発の抑制効果がより大きな合金部材を製造しやくなるからである。
 上記目的を達成するための合金部材の特徴構成は、Fe-Cr系合金の基材と、前記基材の上に形成された被膜層とを有する合金部材であって、前記被膜層がCoを含有し、前記基材の内部において表面の近傍にCo含有領域が形成されている点にある。
 上記の特徴構成によれば、被膜層がCoを含有し、基材の内部において表面の近傍にCo含有領域が形成されたものとなる。このような構成を有する合金部材は、Cr揮発の抑制効果が高く、電気化学素子や電気化学装置、固体酸化物形燃料電池等に好適に用いられる。
 上記目的を達成するための合金部材の特徴構成は、Fe-Cr系合金の基材と、前記基材の上に形成された被膜層とを有する合金部材であって、前記被膜層が、第1層と第2層とを有し、
 前記第1層は前記基材の上に形成されており、かつ、Crを含有する金属酸化物の層であり、
 前記第2層は前記第1層の上に形成されており、かつ、Coを含有する金属酸化物の層として、形成されている点にある。
 上記の特徴構成によれば、被膜層の第1層がCrを含有し、第2層がCoを含有するものとして、被膜層を備えた合金部材が形成されたものとなる。このような構成を有する合金部材は、Cr揮発の抑制効果が高く、電気化学素子や電気化学装置、固体酸化物形燃料電池等に好適に用いられる。
 上記目的を達成するための合金部材の特徴構成は、Fe-Cr系合金の基材と、前記基材の上に形成された被膜層とを有する合金部材であって、前記被膜層は、第1層と第2層とを有し、
 前記第1層は前記基材の上に形成されており、かつ、Crを含有する金属酸化物の層であり、
 前記第2層は前記第1層の上に形成されており、かつ、Coを含有する金属酸化物の層であり、
 前記基材の内部において表面の近傍にCo含有領域が形成されている点にある。
 上記の特徴構成によれば、被膜層の第1層がCrを含有し、第2層がCoを含有し、基材の内部において表面の近傍にCo含有領域が形成されたものとなる。このような構成を有する合金部材は、Cr揮発の抑制効果が高く、電気化学素子や電気化学装置、固体酸化物形燃料電池等に好適に用いられる。
 前記第2層がMnを含有すると、Cr揮発の抑制効果が高い合金部材となり、さらに好適である。
 前記基材のFe-Cr系合金が、Mnを0.05質量%以上含有すると、Cr揮発の抑制効果が高い被膜層を有する合金部材を得やすくなるため、さらに好適である。また、Mnを0.1質量%以上含有すると、Cr揮発の抑制効果が高い被膜層を有する合金部材をより得やすくなるため、より好ましい。
 本発明に係る合金部材の別の特徴構成は、前記基材のFe-Cr系合金が、Tiを0.15質量%以上1.0質量%以下含有するFe-Cr系合金、Zrを0.15質量%以上1.0質量%以下含有するFe-Cr系合金、TiおよびZrを含有しTiとZrとの合計の含有量が0.15質量%以上1.0質量%以下であるFe-Cr系合金、のいずれかである点にある。
 TiとZrは鋼材中で炭素と反応して安定な炭化物を形成しやすい。上記の特徴構成によれば、金属支持体が、Tiを0.15質量%以上1.0質量%以下含有するFe-Cr系合金、Zrを0.15質量%以上1.0質量%以下含有するFe-Cr系合金、TiおよびZrを含有しTiとZrとの合計の含有量が0.15質量%以上1.0質量%以下であるFe-Cr系合金、のいずれかであるから、Fe-Cr系合金の耐酸化性と高温強度を向上する効果が得られるため、高温で長時間使用した際でも金属支持体からのCrの揮発を抑制でき、耐久性に優れた電気化学素子を実現できる。
 なおTiの含有量は、0.20質量%以上であると好ましく、0.25質量%以上であると更に好ましい。これは、TiやZrを添加することによるFe-Cr系合金の耐酸化性と高温強度の向上効果をより大きくすることができるためである。またTiの含有量は、0.90質量%以下であると好ましく、0.80質量%以下であると更に好ましい。TiやZrを添加することによるFe-Cr系合金のコストアップをより小さくすることができるからである。
 なおZrの含有量は、0.20質量%以上であると好ましく、0.25質量%以上であると更に好ましい。これは、TiやZrを添加することによるFe-Cr系合金の耐酸化性と高温強度の向上効果をより大きくすることができるためである。またZrの含有量は、0.90質量%以下であると好ましく、0.80質量%以下であると更に好ましい。TiやZrを添加することによるFe-Cr系合金のコストアップをより小さくすることができるからである。
 なおTiとZrとの合計の含有量は、0.20質量%以上であると好ましく、0.25質量%以上であると更に好ましい。これは、TiやZrを添加することによるFe-Cr系合金の耐酸化性と高温強度の向上効果をより大きくすることができるためである。またTiとZrとの合計の含有量は、0.90質量%以下であると好ましく、0.80質量%以下であると更に好ましい。TiやZrを添加することによるFe-Cr系合金のコストアップをより小さくすることができるからである。
 本発明に係る合金部材の別の特徴構成は、前記基材のFe-Cr系合金が、Cuを0.10質量%以上1.0質量%以下含有する点にある。
 Cuは接触抵抗(電気抵抗)を低減する効果がある。上記の特徴構成によれば、金属支持体がCuを0.10質量%以上1.0質量%以下含有するから、電気化学素子としての電気的な抵抗値を低く抑制し、高性能な電気化学素子を実現できる。
 なおCuの含有量は、0.20質量%以上であるとより好ましく、0.30質量%以上であると更に好ましい。これは、Fe-Cr系合金にCuを添加することによる接触抵抗低減効果をより大きくすることができるためである。またCuの含有量は、0.90質量%以下であるとより好ましく、0.70質量%以下であると更に好ましい。これは、Fe-Cr系合金にCuを添加することによるコストアップをより小さくすることができるためである。
 本発明に係る合金部材の別の特徴構成は、前記基材のFe-Cr系合金が、Crを18質量%以上25質量%以下含有する点にある。
 上記の特徴構成によれば、例えばSOFCの電極層の材料や電解質層の材料に含まれるジルコニア系材料やセリア系材料の熱膨張係数とFe-Cr系合金の熱膨張係数を近くすることができるため、電気化学素子を高温で使用する場合やヒートサイクルを施す場合でも、電極層や電解質層が割れたり剥がれたりすることを抑制でき、信頼性の高い電気化学素子を実現できる。
 なお、Crの含有量は、20質量%以上であるとより好ましい。これは、Fe-Cr系合金の熱膨張係数をジルコニア系材料やセリア系材料の熱膨張係数とより近くすることができるためである。また、Crの含有量の上限値は、23質量%以下であるとより好ましい。これは、Fe-Cr系合金のコストアップをより小さくすることができるためである。
 上述の合金部材の上に、少なくとも電極層と電解質層と対極電極層とが設けられた電気化学素子は、合金部材からのCrの揮発が抑制され、合金部材が電気化学素子の金属支持体として機能するので、高性能な電気化学素子となる。
 本発明に係る電気化学モジュールの特徴構成は、上述の電気化学素子が複数集合した状態で配置される点にある。
 上記の特徴構成によれば、上述の電気化学素子が複数集合した状態で配置されるので、材料コストと加工コストを抑制しつつ、コンパクトで高性能な、強度と信頼性に優れた電気化学モジュールを得ることができる。
 本発明に係る電気化学装置の特徴構成は、上述の電気化学モジュールと改質器とを少なくとも有し、前記電気化学モジュールに対して還元性成分を含有する燃料ガスを供給する燃料供給部とを有する点にある。
 上記の特徴構成によれば、電気化学モジュールと改質器を有し電気化学モジュールに対して還元性成分を含有する燃料ガスを供給する燃料供給部を有するので、都市ガス等の既存の原燃料供給インフラを用いる、耐久性・信頼性および性能に優れた電気化学モジュールを備えた電気化学装置を実現することができる。また、電気化学モジュールから排出される未利用の燃料ガスをリサイクルするシステムを構築し易くなるため、高効率な電気化学装置を実現することができる。
 本発明に係る電気化学装置の特徴構成は、上述の電気化学モジュールと、前記電気化学モジュールから電力を取り出すインバータとを少なくとも有する点にある。
 上記の特徴構成によれば、耐久性・信頼性および性能に優れた電気化学モジュールから得られる電気出力を、インバータによって昇圧したり、直流を交流に変換したりすることができるため、電気化学モジュールで得られる電気出力を利用しやすくなるので好ましい。
 電気化学装置がセパレータ部材を有し、セパレータ部材が上述の合金部材であると、セパレータ部材からのCrの揮発が抑制され好適である。なおセパレータ部材とは、複数集合された電気化学素子に燃料ガス・空気を供給するに際して、燃料ガス流路と空気流路を隔てる部材である。
 電気化学装置がマニホールド部材を有し、マニホールド部材が上述の合金部材であると、マニホールド部材からのCrの揮発が抑制され好適である。なおマニホールド部材とは、複数集合された電気化学素子に対して燃料ガスまたは空気を供給する部材である。
 電気化学装置がインターコネクタ部材を有し、インターコネクタ部材が上述の合金部材であると、インターコネクタ部材からのCrの揮発が抑制され好適である。なおインターコネクタ部材とは、複数の電気化学素子を接合する部材である。
 電気化学装置が集電部材を有し、集電部材が上述の合金部材であると、集電部材からのCrの揮発が抑制され好適である。なお集電部材とは、電子電導性を有し、電気化学素子の電極層に接続される部材である。
 本発明に係るエネルギーシステムの特徴構成は、上述の電気化学装置と、前記電気化学装置から排出される熱を再利用する排熱利用部を有する点にある。
 上記の特徴構成によれば、電気化学装置と、電気化学装置から排出される熱を再利用する排熱利用部を有するので、耐久性・信頼性および性能に優れ、かつエネルギー効率にも優れたエネルギーシステムを実現することができる。なお、電気化学装置から排出される未利用の燃料ガスの燃焼熱を利用して発電する発電システムと組み合わせてエネルギー効率に優れたハイブリットシステムを実現することもできる。
 本発明に係る固体酸化物形燃料電池の特徴構成は、上述の電気化学素子を備え、前記電気化学素子で発電反応を生じさせる点にある。
 上記の特徴構成によれば、電気化学素子の劣化を抑制して燃料電池の性能を長期間維持することが可能となる。なお、定格運転時に650℃以上の温度域で運転可能な固体酸化物形燃料電池であると、都市ガス等の炭化水素系ガスを原燃料とする燃料電池システムにおいて、原燃料を水素に変換する際に必要となる熱を燃料電池の排熱で賄うことが可能なシステムを構築できるため、燃料電池システムの発電効率を高めることができるので、より好ましい。また、定格運転時に900℃以下の温度域で運転される固体酸化物形燃料電池であるとCr揮発の抑制効果が高く維持でき、長期耐久性に優れたものにできるのでより好ましく、定格運転時に850℃以下の温度域で運転される固体酸化物形燃料電池であると、Cr揮発の抑制効果を更に高められ長期耐久性に優れたものにできるので更に好ましい。
電気化学素子の構成を示す概略図 電気化学素子および電気化学モジュールの構成を示す概略図 電気化学装置およびエネルギーシステムの構成を示す概略図 電気化学モジュールの構成を示す概略図 作成サンプルの元素分布測定結果(実施例) 作成サンプルの元素分布測定結果(比較例)
<第1実施形態>
 以下、本実施形態に係る合金部材の製造方法、および合金部材について説明する。合金部材は、基材の上にCoをコーティングし、水蒸気を添加した雰囲気中で酸化処理を行って、製造される。このように製造された合金部材は、Crの揮発が抑制されており、電気化学素子や電気化学装置、固体酸化物形燃料電池等に好適に用いられる。例えば図1に示される電気化学素子Eの金属基板1(金属支持体)として用いられる。例えば図2に示される電気化学モジュールMのU字部材7(セパレータ部材)や集電部材26として用いられる。例えば図3に示される電気化学装置Yのガスマニホールド17(マニホールド部材)として用いられる。
 なお、合金部材は、基材と、基材の表面に直接Coをコーティングした後に酸化処理して形成された被膜層(金属酸化物層1b(拡散抑制層))とから構成されていてもよい。あるいは、基材と、基材と被膜層との間の介在層と、介在層にCoをコーティングした後に酸化処理して形成された被膜層とから構成されていてもよい。
(基材)
 合金部材の基材としては、Fe-Cr系合金が用いられる。基材のFe-Cr系合金が、Mnを0.05質量%以上含有すると好適である。基材のFe-Cr系合金が、Tiを0.15質量%以上1.0質量%以下含有するFe-Cr系合金、Zrを0.15質量%以上1.0質量%以下含有するFe-Cr系合金、TiおよびZrを含有しTiとZrとの合計の含有量が0.15質量%以上1.0質量%以下であるFe-Cr系合金、のいずれかであるとより好適である。基材のFe-Cr系合金が、Cuを0.10質量%以上1.0質量%以下含有するとより好適である。基材のFe-Cr系合金が、Crを18質量%以上25質量%以下含有するとより好適である。
(合金部材の製造方法)
 次に、本実施形態に係る合金部材の製造方法について説明する。
(コーティング処理ステップ)
 コーティング処理ステップでは、Fe-Cr系合金の基材の上にCoをコーティングする。基板へのCoのコーティングは、メッキ処理(電解メッキや無電解メッキ)や蒸着処理、Coを含んだ塗料による塗装などによって行うことができる。
 なお、コーティング処理ステップでは、基材の表面に直接Coをコーティングしてもよいし、あるいは、基材と被膜層との間の介在層にCoをコーティングしてもよい。
(酸化処理ステップ)
 酸化処理ステップでは、含湿雰囲気中で基材の酸化処理が行われる。雰囲気の露点は25℃以上であると好ましく、雰囲気の露点が30℃以上であるとより好ましく、雰囲気の露点が35℃以上であると更に好ましい。酸化処理の温度は600℃以上であると好ましく、700℃以上であるとより好ましい。酸化処理の温度は1100℃以下であると好ましく、1050℃以下であるとより好ましい。
 以上のようにして合金部材を製造することができる。なお合金部材を電気化学素子Eの金属基板1や、セパレータ部材、マニホールド部材、集電部材等として用いる場合には、コーティング処理ステップおよび酸化処理ステップを行う前に切断・曲げ・プレス成形加工等の機械加工を施すと好適である。コーティング処理ステップおよび酸化処理ステップを行った後に切断・曲げ等の機械加工を施すことも可能である。
 また、以上のようにして得た合金部材を電気化学素子Eの金属基板1として用いると電気化学素子の内部抵抗を小さく抑えた高性能な電気化学素子Eを得ることができるので好ましい。
<実施例>
 以下の表1の組成の基板を用いて合金部材のサンプルを作成した。なお表1に示す組成の値の単位は、質量%である。基板へのCoのコーティング処理は電解メッキにより行った。Coコーティングの厚さは、1μm、2μm、3μmの3種である。酸化処理は、40℃露点雰囲気中(実施例)と、20℃露点雰囲気中(比較例)の2つの条件で行った。酸化処理の温度は何れも、850℃(60分)+1000℃(90分)の2段処理により行った。
Figure JPOXMLDOC01-appb-T000001
 作成した6種のサンプルについて、Crの揮発量を測定した。なお、Cr揮発量の測定は、幅25mm、長さ250~300mmのサイズの金属板サンプルを用い、0.5L/分の空気(露点20℃もしくは露点40℃)中、850℃の温度で、それぞれの金属板サンプルを100時間暴露して、その間のCrの揮発量(積算量)を測定した。測定結果を表2に示す。なお、表2に示すCr揮発量の単位はμg/600cmであり、600cm相当の金属表面積あたりのCrの揮発量に換算した値としている。
Figure JPOXMLDOC01-appb-T000002
 比較例の3種のサンプルでは、ある程度のCrが揮発した。これに対し、実施例の3種のサンプルでは、Cr揮発量が極めて少なくなった。特にコーティング厚さが2μm以上の2種のサンプルでは、Cr揮発量が測定限界以下となった。以上の結果から、本実施形態に係る合金部材の製造方法により、Cr揮発量が極めて小さい合金部材が得られることが分かった。
 作成した実施例と比較例のサンプルについて、表面近傍の元素分布(Cr,Fe,Mn,Co)の測定を行った。分析は、合金部材の断面を露出させ、EPMA分析により行った。結果を図5と図6に示す。
 図5は実施例(40℃露点雰囲気中で酸化処理、コーティング厚さ3μm)の結果を示している。横軸は基板表面に垂直な方向の位置(単位:mm)であって、右方向(正の方向)が基板の表面へ向かう方向、左方向(負の方向)が基板内部へ向かう方向である。縦軸は各元素の信号強度であるが、相対的な値であり、元素間での分布の比を反映していない。
 Feの分布に着目すると、位置0~0.005は信号強度が強く、位置0.005~0.006付近で信号強度が減少し、位置0.007以降は信号強度がほぼ0となっている。したがって、位置0~0.006付近は基材(合金)であり、位置0.006付近より右(表面側)は被膜層であると推定される。
 Crは位置0.006~0.009に多く分布している。したがってCrは、被膜層の基材に近い領域に分布していると推定される。Mnは位置0.009~0.013に多く分布している。したがってMnは、被膜層において基材から離れた領域の、Crの分布が小さい領域に多く分布していると推定される。Coは位置0.003~0.006と、位置0.009~0.013に多く分布している。したがってCoは、2つの領域に分布していると推定される。1つは、基材の内部における基材と被膜層との界面の付近、すなわち基材の表面の近傍の領域である。もう1つは、被膜層において基材から離れた領域の、Crの分布が小さい領域、すなわちMnと同じ領域である。
 以上の元素分布の結果から、本実施形態に係る合金部材においては、基材の表面近傍に被膜層が形成されていると認められる。そして被膜層は、基材の上に形成されており(基材の上方に形成されており、基材に接して形成されており、又は、基材に近接して形成されており)、第1層と、第1層の上に第2層(第1層の上方に形成されており、第1層に接して形成されており、又は、第1層に近接して形成されている)とを有している。第1層には、Crが多く含有されている。第2層には、CoおよびMnが多く含有されている。そして基材の内部において、表面の近傍にCoを含有する領域(Co含有領域)が形成されている。
 図6は比較例(20℃露点雰囲気中で酸化処理、コーティング厚さ3μm)の結果を示している。
 Feの分布に着目すると、位置0~0.006は信号強度が強く、位置0.006~0.008付近で信号強度が減少し、位置0.008以降は信号強度がほぼ0となっている。したがって、位置0~0.008付近は基材(合金)であり、位置0.008付近より右(表面側)は被膜層であると推定される。
 Crは位置0.007~0.012に多く分布している。したがってCrは、被膜層の領域に広く分布していると推定される。Mnは位置0.010~0.012に多く分布している。したがってMnは、被膜層において基材から離れた領域に多く分布していると推定される。図5の実施例と異なり、MnはCrが分布する領域に重なって分布している。Coは位置0~0.008に多く分布している。図5の実施例と異なり、Coは基材の内部に分布していると推定される。
 図6に示される通り、比較例では被膜層の全体にCrが分布している。一方、図5の実施例では、被膜層の表面近傍にはMnおよびCoが多く分布し、Crの分布は小さい。このような構成により、Cr揮発量を非常に少なくできていると考えられる。
<第2実施形態>
 以下、図1を参照しながら、本実施形態に係る電気化学素子Eおよび固体酸化物形燃料電池(Solid Oxide Fuel Cell:SOFC)について説明する。電気化学素子Eは、例えば、水素を含む燃料ガスと空気の供給を受けて発電する固体酸化物形燃料電池の構成要素として用いられる。なお以下、層の位置関係などを表す際、例えば電解質層4から見て対極電極層6の側を「上」または「上側」、電極層2の側を「下」または「下側」という場合がある。また、金属基板1における電極層2が形成されている側の面を「表側」、反対側の面を「裏側」という場合がある。
(電気化学素子)
 電気化学素子Eは、図1に示される通り、金属基板1(金属支持体)と、金属基板1の上に形成された電極層2と、電極層2の上に形成された中間層3と、中間層3の上に形成された電解質層4とを有する。そして電気化学素子Eは、更に、電解質層4の上に形成された反応防止層5と、反応防止層5の上に形成された対極電極層6とを有する。つまり対極電極層6は電解質層4の上に形成され、反応防止層5は電解質層4と対極電極層6との間に形成されている。電極層2は多孔質であり、電解質層4は緻密である。
(金属基板)
 金属基板1は、電極層2、中間層3および電解質層4等を支持して電気化学素子Eの強度を保つ、支持体としての役割を担う。本実施形態では、金属基板1として上述の合金部材が用いられる。なお本実施形態では、金属支持体として板状の金属基板1が用いられるが、金属支持体としては他の形状、例えば箱状、円筒状などの形状も可能である。
 なお、金属基板1は、支持体として電気化学素子を形成するのに充分な強度を有すれば良く、例えば、0.1mm~2mm程度、好ましくは0.1mm~1mm程度、より好ましくは0.1mm~0.5mm程度の厚みのものを用いることができる。
 金属基板1は、表側の面と裏側の面とを貫通して設けられる複数の貫通孔1aを有する。なお、例えば、貫通孔1aは、機械的、化学的あるいは光学的穿孔加工などにより、金属基板1に設けることができる。貫通孔1aは、金属基板1の裏側の面から表側の面へ気体を透過させる機能を有する。金属基板1に気体透過性を持たせるために、多孔質金属を用いることも可能である。例えば、金属基板1は、焼結金属や発泡金属等を用いることもできる。
 金属基板1の基材の材料としてフェライト系ステンレス材を用いた場合、電極層2や電解質層4の材料として用いられるYSZ(イットリア安定化ジルコニア)やGDC(ガドリウム・ドープ・セリア、CGOとも呼ぶ)等と熱膨張係数が近い。従って、低温と高温の温度サイクルが繰り返された場合も電気化学素子Eがダメージを受けにくい。よって、長期耐久性に優れた電気化学素子Eを実現できるので好ましい。
(電極層)
 電極層2は、図1に示すように、金属基板1の表側の面であって貫通孔1aが設けられた領域より大きな領域に、薄層の状態で設けることができる。薄層とする場合は、その厚さを、例えば、1μm~100μm程度、好ましくは、5μm~50μmとすることができる。このような厚さにすると、高価な電極層材料の使用量を低減してコストダウンを図りつつ、十分な電極性能を確保することが可能となる。貫通孔1aが設けられた領域の全体が、電極層2に覆われている。つまり、貫通孔1aは金属基板1における電極層2が形成された領域の内側に形成されている。換言すれば、全ての貫通孔1aが電極層2に面して設けられている。
 電極層2の材料としては、例えばNiO-GDC、Ni-GDC、NiO-YSZ、Ni-YSZ、CuO-CeO2、Cu-CeO2などの複合材を用いることができる。これらの例では、GDC、YSZ、CeO2を複合材の骨材と呼ぶことができる。なお、電極層2は、低温焼成法(例えば1100℃より高い高温域での焼成処理をしない低温域での焼成処理を用いる湿式法)やスプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PVD法(スパッタリング法やパルスレーザーデポジション法など)、CVD法などにより形成することが好ましい。これらの、低温域で使用可能なプロセスにより、例えば1100℃より高い高温域での焼成を用いずに、良好な電極層2が得られる。そのため、金属基板1を傷めることなく、また、金属基板1と電極層2との元素相互拡散を抑制することができ、耐久性に優れた電気化学素子を実現できるので好ましい。更に、低温焼成法を用いると、原材料のハンドリングが容易になるので更に好ましい。
 電極層2は、気体透過性を持たせるため、その内部および表面に複数の細孔を有する。
 すなわち電極層2は、多孔質な層として形成される。電極層2は、例えば、その緻密度が30%以上80%未満となるように形成される。細孔のサイズは、電気化学反応を行う際に円滑な反応が進行するのに適したサイズを適宜選ぶことができる。なお緻密度とは、層を構成する材料の空間に占める割合であって、(1-空孔率)と表すことができ、また、相対密度と同等である。
(中間層)
 中間層3は、図1に示すように、電極層2を覆った状態で、電極層2の上に薄層の状態で形成することができる。薄層とする場合は、その厚さを、例えば、1μm~100μm程度、好ましくは2μm~50μm程度、より好ましくは4μm~25μm程度とすることができる。このような厚さにすると、高価な中間層材料の使用量を低減してコストダウンを図りつつ、十分な性能を確保することが可能となる。中間層3の材料としては、例えば、YSZ(イットリア安定化ジルコニア)、SSZ(スカンジウム安定化ジルコニア)やGDC(ガドリウム・ドープ・セリア)、YDC(イットリウム・ドープ・セリア)、SDC(サマリウム・ドープ・セリア)等を用いることができる。特にセリア系のセラミックスが好適に用いられる。
 中間層3は、低温焼成法(例えば1100℃より高い高温域での焼成処理をしない低温域での焼成処理を用いる湿式法)やスプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PVD法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などにより形成することが好ましい。これらの、低温域で使用可能な成膜プロセスにより、例えば1100℃より高い高温域での焼成を用いずに中間層3が得られる。そのため、金属基板1を傷めることなく、金属基板1と電極層2との元素相互拡散を抑制することができ、耐久性に優れた電気化学素子Eを実現できる。また、低温焼成法を用いると、原材料のハンドリングが容易になるので更に好ましい。
 中間層3としては、酸素イオン(酸化物イオン)伝導性を有することが好ましい。また、酸素イオン(酸化物イオン)と電子との混合伝導性を有すると更に好ましい。これらの性質を有する中間層3は、電気化学素子Eへの適用に適している。
(電解質層)
 電解質層4は、図1に示すように、電極層2および中間層3を覆った状態で、中間層3の上に薄層の状態で形成される。また、厚さが10μm以下の薄膜の状態で形成することもできる。詳しくは電解質層4は、図1に示すように、中間層3の上と金属基板1の上とにわたって(跨って)設けられる。このように構成し、電解質層4を金属基板1に接合することで、電気化学素子全体として堅牢性に優れたものとすることができる。
 また電解質層4は、図1に示すように、金属基板1の表側の面であって貫通孔1aが設けられた領域より大きな領域に設けられる。つまり、貫通孔1aは金属基板1における電解質層4が形成された領域の内側に形成されている。
 また電解質層4の周囲においては、電極層2および中間層3からのガスのリークを抑制することができる。説明すると、電気化学素子EをSOFCの構成要素として用いる場合、SOFCの作動時には、金属基板1の裏側から貫通孔1aを通じて電極層2へガスが供給される。電解質層4が金属基板1に接している部位においては、ガスケット等の別部材を設けることなく、ガスのリークを抑制することができる。なお、本実施形態では電解質層4によって電極層2の周囲をすべて覆っているが、電極層2および中間層3の上部に電解質層4を設け、周囲にガスケット等を設ける構成としてもよい。
 電解質層4の材料としては、YSZ(イットリア安定化ジルコニア)、SSZ(スカンジウム安定化ジルコニア)やGDC(ガドリウム・ドープ・セリア)、YDC(イットリウム・ドープ・セリア)、SDC(サマリウム・ドープ・セリア)、LSGM(ストロンチウム・マグネシウム添加ランタンガレート)等を用いることができる。特にジルコニア系のセラミックスが好適に用いられる。電解質層4をジルコニア系セラミックスとすると、電気化学素子Eを用いたSOFCの稼働温度をセリア系セラミックスに比べて高くすることができる。例えば電気化学素子EをSOFCに用いる場合、電解質層4の材料としてYSZのような650℃程度以上の高温域でも高い電解質性能を発揮できる材料を用い、システムの原燃料に都市ガスやLPG等の炭化水素系の原燃料を用い、原燃料を水蒸気改質等によってSOFCのアノードガスとするシステム構成とすると、SOFCのセルスタックで生じる熱を原燃料ガスの改質に用いる高効率なSOFCシステムを構築することができる。
 電解質層4は、低温焼成法(例えば1100℃を越える高温域での焼成処理をしない低温域での焼成処理を用いる湿式法)やスプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PVD法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などにより形成することが好ましい。これらの、低温域で使用可能な成膜プロセスにより、例えば1100℃を越える高温域での焼成を用いずに、緻密で気密性およびガスバリア性の高い電解質層4が得られる。そのため、金属基板1の損傷を抑制し、また、金属基板1と電極層2との元素相互拡散を抑制することができ、性能・耐久性に優れた電気化学素子Eを実現できる。特に、低温焼成法やスプレーコーティング法などを用いると低コストな素子が実現できるので好ましい。更に、スプレーコーティング法を用いると、緻密で気密性およびガスバリア性の高い電解質層が低温域で容易に得られやすいので更に好ましい。
 電解質層4は、アノードガスやカソードガスのガスリークを遮蔽し、かつ、高いイオン伝導性を発現するために、緻密に構成される。電解質層4の緻密度は90%以上が好ましく、95%以上であるとより好ましく、98%以上であると更に好ましい。電解質層4は、均一な層である場合は、その緻密度が95%以上であると好ましく、98%以上であるとより好ましい。また、電解質層4が、複数の層状に構成されているような場合は、そのうちの少なくとも一部が、緻密度が98%以上である層(緻密電解質層)を含んでいると好ましく、99%以上である層(緻密電解質層)を含んでいるとより好ましい。このような緻密電解質層が電解質層の一部に含まれていると、電解質層が複数の層状に構成されている場合であっても、緻密で気密性およびガスバリア性の高い電解質層を形成しやすくできるからである。
(反応防止層)
 反応防止層5は、電解質層4の上に薄層の状態で形成することができる。薄層とする場合は、その厚さを、例えば、1μm~100μm程度、好ましくは2μm~50μm程度、より好ましくは4μm~25μm程度とすることができる。このような厚さにすると、高価な反応防止層材料の使用量を低減してコストダウンを図りつつ、十分な性能を確保することが可能となる。反応防止層5の材料としては、電解質層4の成分と対極電極層6の成分との間の反応を防止できる材料であれば良い。例えばセリア系材料等が用いられる。反応防止層5を電解質層4と対極電極層6との間に導入することにより、対極電極層6の構成材料と電解質層4の構成材料との反応が効果的に抑制され、電気化学素子Eの性能の長期安定性を向上できる。反応防止層5の形成は、1100℃以下の処理温度で形成できる方法を適宜用いて行うと、金属基板1の損傷を抑制し、また、金属基板1と電極層2との元素相互拡散を抑制でき、性能・耐久性に優れた電気化学素子Eを実現できるので好ましい。例えば、低温焼成法(例えば1100℃を越える高温域での焼成処理をしない低温域での焼成処理を用いる湿式法)、スプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PVD法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などを適宜用いて行うことができる。特に、低温焼成法やスプレーコーティング法などを用いると低コストな素子が実現できるので好ましい。更に、低温焼成法を用いると、原材料のハンドリングが容易になるので更に好ましい。
(対極電極層)
 対極電極層6は、電解質層4もしくは反応防止層5の上に薄層の状態で形成することができる。薄層とする場合は、その厚さを、例えば、1μm~100μm程度、好ましくは、5μm~50μmとすることができる。このような厚さにすると、高価な対極電極層材料の使用量を低減してコストダウンを図りつつ、十分な電極性能を確保することが可能となる。対極電極層6の材料としては、例えば、LSCF、LSM等の複合酸化物、セリア系酸化物およびこれらの混合物を用いることができる。特に対極電極層6が、La、Sr、Sm、Mn、CoおよびFeからなる群から選ばれる2種類以上の元素を含有するペロブスカイト型酸化物を含むことが好ましい。以上の材料を用いて構成される対極電極層6は、カソードとして機能する。
 なお、対極電極層6の形成は、1100℃以下の処理温度で形成できる方法を適宜用いて行うと、金属基板1の損傷を抑制し、また、金属基板1と電極層2との元素相互拡散を抑制でき、性能・耐久性に優れた電気化学素子Eを実現できるので好ましい。例えば、低温焼成法(例えば1100℃を越える高温域での焼成処理をしない低温域での焼成処理を用いる湿式法)、スプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PVD法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などを適宜用いて行うことができる。特に、低温焼成法やスプレーコーティング法などを用いると低コストな素子が実現できるので好ましい。更に、低温焼成法を用いると、原材料のハンドリングが容易になるので更に好ましい。
(固体酸化物形燃料電池)
 以上のように電気化学素子Eを構成することで、電気化学素子Eを固体酸化物形燃料電池の発電セルとして用いることができる。例えば、金属基板1の裏側の面から貫通孔1aを通じて水素を含む燃料ガスを電極層2へ供給し、電極層2の対極となる対極電極層6へ空気を供給し、例えば、600℃以上850℃以下の温度で作動させる。そうすると、対極電極層6において空気に含まれる酸素O2が電子e-と反応して酸素イオンO2-が生成される。その酸素イオンO2-が電解質層4を通って電極層2へ移動する。電極層2においては、供給された燃料ガスに含まれる水素H2が酸素イオンO2-と反応し、水H2Oと電子e-が生成される。以上の反応により、電極層2と対極電極層6との間に起電力が発生する。この場合、電極層2はSOFCの燃料極(アノード)として機能し、対極電極層6は空気極(カソード)として機能する。
(電気化学素子の製造方法)
 次に、本実施形態に係る電気化学素子Eの製造方法について説明する。
(電極層形成ステップ)
 電極層形成ステップでは、金属基板1の表側の面の貫通孔1aが設けられた領域より広い領域に電極層2が薄膜の状態で形成される。金属基板1の貫通孔はレーザー加工等によって設けることができる。電極層2の形成は、上述したように、低温焼成法(1100℃以下の低温域での焼成処理を行う湿式法)、スプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PVD法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などの方法を用いることができる。いずれの方法を用いる場合であっても、金属基板1の劣化を抑制するため、1100℃以下の温度で行うことが望ましい。
 電極層形成ステップを低温焼成法で行う場合には、具体的には以下の例のように行う。まず、電極層2の材料粉末と溶媒(分散媒)とを混合して材料ペーストを作成し、金属基板1の表側の面に塗布する。そして電極層2を圧縮成形し(電極層平滑化工程)、1100℃以下で焼成する(電極層焼成工程)。電極層2の圧縮成形は、例えば、CIP(Cold Isostatic Pressing、冷間静水圧加圧)成形、ロール加圧成形、RIP(Rubber Isostatic Pressing)成形などにより行うことができる。また、電極層2の焼成は、800℃以上1100℃以下の温度で行うと好適である。また、電極層平滑化工程と電極層焼成工程の順序を入れ替えることもできる。
 なお、中間層を有する電気化学素子を形成する場合では、電極層平滑化工程や電極層焼成工程を省いたり、電極層平滑化工程や電極層焼成工程を後述する中間層平滑化工程や中間層焼成工程に含めることもできる。
 なお、電極層平滑化工程は、ラップ成形やレベリング処理、表面の切削・研磨処理などを施すことによって行うことでもできる。
(拡散抑制層形成ステップ)
 上述した電極層形成ステップにおける焼成工程時に、金属基板1の表面に金属酸化物層1b(拡散抑制層(被膜層))が形成される。なお、上記焼成工程に、焼成雰囲気を酸素分圧が低い雰囲気条件とする焼成工程が含まれていると元素の相互拡散抑制効果が高く、抵抗値の低い良質な金属酸化物層1b(拡散抑制層)が形成されるので好ましい。電極層形成ステップを、焼成を行わないコーティング方法とする場合を含め、別途の拡散抑制層形成ステップを含めても良い。例えば、別途の拡散抑制層形成ステップでは、金属基板1の上にCoをコーティングした後に酸化処理することで金属酸化物層1b(拡散抑制層(被膜層))が形成される。あるいは、例えば、別途の拡散抑制層形成ステップでは、金属基板1の上に形成された介在層にCoをコーティングした後に酸化処理することで金属酸化物層1b(拡散抑制層(被膜層))が形成される。
 いずれにおいても、金属基板1の損傷を抑制可能な1100℃以下の処理温度で実施することが望ましい。また、後述する中間層形成ステップにおける焼成工程時に、金属基板1の表面に金属酸化物層1b(拡散抑制層)が形成されても良い。
(中間層形成ステップ)
 中間層形成ステップでは、電極層2を覆う形態で、電極層2の上に中間層3が薄層の状態で形成される。中間層3の形成は、上述したように、低温焼成法(1100℃以下の低温域での焼成処理を行う湿式法)、スプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PVD法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などの方法を用いることができる。いずれの方法を用いる場合であっても、金属基板1の劣化を抑制するため、1100℃以下の温度で行うことが望ましい。
 中間層形成ステップを低温焼成法で行う場合には、具体的には以下の例のように行う。まず、中間層3の材料粉末と溶媒(分散媒)とを混合して材料ペーストを作成し、金属基板1の表側の面に塗布する。そして中間層3を圧縮成形し(中間層平滑化工程)、1100℃以下で焼成する(中間層焼成工程)。中間層3の圧延は、例えば、CIP(Cold Isostatic Pressing、冷間静水圧加圧)成形、ロール加圧成形、RIP(Rubber Isostatic Pressing)成形などにより行うことができる。また、中間層の焼成は、800℃以上1100℃以下の温度で行うと好適である。このような温度であると、金属基板1の損傷・劣化を抑制しつつ、強度の高い中間層3を形成できるためである。また、中間層3の焼成を1050℃以下で行うとより好ましく、1000℃以下で行うと更に好ましい。これは、中間層3の焼成温度を低下させる程に、金属基板1の損傷・劣化をより抑制しつつ、電気化学素子Eを形成できるからである。また、中間層平滑化工程と中間層焼成工程の順序を入れ替えることもできる。
 なお、中間層平滑化工程は、ラップ成形やレベリング処理、表面の切削・研磨処理などを施すことによって行うことでもできる。
(電解質層形成ステップ)
 電解質層形成ステップでは、電極層2および中間層3を覆った状態で、電解質層4が中間層3の上に薄層の状態で形成される。また、厚さが10μm以下の薄膜の状態で形成されても良い。電解質層4の形成は、上述したように、低温焼成法(1100℃以下の低温域での焼成処理を行う湿式法)、スプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PVD法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などの方法を用いることができる。いずれの方法を用いる場合であっても、金属基板1の劣化を抑制するため、1100℃以下の温度で行うことが望ましい。
 緻密で気密性およびガスバリア性能の高い、良質な電解質層4を1100℃以下の温度域で形成するためには、電解質層形成ステップをスプレーコーティング法で行うことが望ましい。その場合、電解質層4の材料を金属基板1上の中間層3に向けて噴射し、電解質層4を形成する。
(反応防止層形成ステップ)
 反応防止層形成ステップでは、反応防止層5が電解質層4の上に薄層の状態で形成される。反応防止層5の形成は、上述したように、低温焼成法、スプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PVD法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などの方法を用いることができる。いずれの方法を用いる場合であっても、金属基板1の劣化を抑制するため、1100℃以下の温度で行うことが望ましい。なお反応防止層5の上側の面を平坦にするために、例えば反応防止層5の形成後にレベリング処理や表面を切削・研磨処理を施したり、湿式形成後焼成前に、プレス加工を施してもよい。
(対極電極層形成ステップ)
 対極電極層形成ステップでは、対極電極層6が反応防止層5の上に薄層の状態で形成される。対極電極層6の形成は、上述したように、低温焼成法、スプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PVD法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などの方法を用いることができる。いずれの方法を用いる場合であっても、金属基板1の劣化を抑制するため、1100℃以下の温度で行うことが望ましい。
 以上の様にして、電気化学素子Eを製造することができる。なお、以上述べた電極層形成ステップおよび中間層形成ステップを行って、金属支持型電気化学素子用の電極層付基板Bを製造することができる。すなわち本実施形態に係る製造方法は、金属基板1(金属支持体)と、金属基板1の上に形成された電極層2と、電極層2の上に形成された中間層3とを有する金属支持型電気化学素子用の電極層付基板Bの製造方法であって、中間層3の表面を平滑化する中間層平滑化工程を含み、中間層3の焼成を1100℃以下で行う中間層焼成工程を含む。
 なお電気化学素子Eにおいて、中間層3と反応防止層5とは、何れか一方、あるいは両方を備えない形態とすることも可能である。すなわち、電極層2と電解質層4とが接触して形成される形態、あるいは電解質層4と対極電極層6とが接触して形成される形態も可能である。この場合に上述の製造方法では、中間層形成ステップ、反応防止層形成ステップが省略される。なお、他の層を形成するステップを追加したり、同種の層を複数積層したりすることも可能であるが、いずれの場合であっても、1100℃以下の温度で行うことが望ましい。
<第3実施形態>
 図2・図3を用いて、本実施形態に係る電気化学素子E、電気化学モジュールM、電気化学装置YおよびエネルギーシステムZについて説明する。
 本実施形態に係る電気化学素子Eは、図2に示すように、金属基板1の裏面にU字部材7が取り付けられており、金属基板1とU字部材7とで筒状支持体を形成している。U字部材7(セパレータ部材)には、上述の合金部材が用いられる。
 そして集電部材26を間に挟んで電気化学素子Eが複数積層されて、電気化学モジュールMが構成されている。集電部材26は、電気化学素子Eの対極電極層6と、U字部材7とに接合され、両者を電気的に接続している。集電部材26には、上述の合金部材が用いられる。
 電気化学モジュールMは、ガスマニホールド17、集電部材26、終端部材および電流引出し部を有する。複数積層された電気化学素子Eは、筒状支持体の一方の開口端部がガスマニホールド17に接続されて、ガスマニホールド17から気体の供給を受ける。供給された気体は、筒状支持体の内部を通流し、金属基板1の貫通孔1aを通って電極層2に供給される。ガスマニホールド17(マニホールド部材)には、上述の合金部材が用いられる。
 なお、セパレータ部材(U字部材7)と、マニホールド部材(ガスマニホールド17)と、集電部材26との少なくともいずれかが上述の金属部材であってもよい。
 図3には、エネルギーシステムZおよび電気化学装置Yの概要が示されている。
 エネルギーシステムZは、電気化学装置Yと、電気化学装置Yから排出される熱を再利用する排熱利用部としての熱交換器53とを有する。
 電気化学装置Yは、電気化学モジュールMと、脱硫器31と改質器34とを有し電気化学モジュールMに対して還元性成分を含有する燃料ガスを供給する燃料供給部と、電気化学モジュールMから電力を取り出すインバータ38とを有する。
 詳しくは電気化学装置Yは、脱硫器31、改質水タンク32、気化器33、改質器34、ブロア35、燃焼部36、インバータ38、制御部39、収納容器40および電気化学モジュールMを有する。
 脱硫器31は、都市ガス等の炭化水素系の原燃料に含まれる硫黄化合物成分を除去(脱硫)する。原燃料中に硫黄化合物が含有される場合、脱硫器31を備えることにより、硫黄化合物による改質器34あるいは電気化学素子Eに対する影響を抑制することができる。気化器33は、改質水タンク32から供給される改質水から水蒸気を生成する。改質器34は、気化器33にて生成された水蒸気を用いて脱硫器31にて脱硫された原燃料を水蒸気改質して、水素を含む改質ガスを生成する。
 電気化学モジュールMは、改質器34から供給された改質ガスと、ブロア35から供給された空気とを用いて、電気化学反応させて発電する。燃焼部36は、電気化学モジュールMから排出される反応排ガスと空気とを混合させて、反応排ガス中の可燃成分を燃焼させる。
 電気化学モジュールMは、複数の電気化学素子Eとガスマニホールド17とを有する。複数の電気化学素子Eは互いに電気的に接続された状態で並列して配置され、電気化学素子Eの一方の端部(下端部)がガスマニホールド17に固定されている。電気化学素子Eは、ガスマニホールド17を通じて供給される改質ガスと、ブロア35から供給された空気とを電気化学反応させて発電する。
 インバータ38は、電気化学モジュールMの出力電力を調整して、商用系統(図示省略)から受電する電力と同じ電圧および同じ周波数にする。制御部39は電気化学装置YおよびエネルギーシステムZの運転を制御する。
 気化器33、改質器34、電気化学モジュールMおよび燃焼部36は、収納容器40内に収納される。そして改質器34は、燃焼部36での反応排ガスの燃焼により発生する燃焼熱を用いて原燃料の改質処理を行う。
 原燃料は、昇圧ポンプ41の作動により原燃料供給路42を通して脱硫器31に供給される。改質水タンク32の改質水は、改質水ポンプ43の作動により改質水供給路44を通して気化器33に供給される。そして、原燃料供給路42は脱硫器31よりも下流側の部位で、改質水供給路44に合流されており、収納容器40外にて合流された改質水と原燃料とが収納容器40内に備えられた気化器33に供給される。
 改質水は気化器33にて気化され水蒸気となる。気化器33にて生成された水蒸気を含む原燃料は、水蒸気含有原燃料供給路45を通して改質器34に供給される。改質器34にて原燃料が水蒸気改質され、水素ガスを主成分とする改質ガス(還元性成分を有する第1気体)が生成される。改質器34にて生成された改質ガスは、改質ガス供給路46を通して電気化学モジュールMのガスマニホールド17に供給される。
 ガスマニホールド17に供給された改質ガスは、複数の電気化学素子Eに対して分配され、電気化学素子Eとガスマニホールド17との接続部である下端から電気化学素子Eに供給される。改質ガス中の主に水素(還元性成分)が、電気化学素子Eにて電気化学反応に使用される。反応に用いられなかった残余の水素ガスを含む反応排ガスが、電気化学素子Eの上端から燃焼部36に排出される。
 反応排ガスは燃焼部36で燃焼され、燃焼排ガスとなって燃焼排ガス排出口50から収納容器40の外部に排出される。燃焼排ガス排出口50には燃焼触媒部51(例えば、白金系触媒)が配置され、燃焼排ガスに含有される一酸化炭素や水素等の還元性成分を燃焼除去する。燃焼排ガス排出口50から排出された燃焼排ガスは、燃焼排ガス排出路52により熱交換器53に送られる。
 熱交換器53は、燃焼部36における燃焼で生じた燃焼排ガスと、供給される冷水とを熱交換させ、温水を生成する。すなわち熱交換器53は、電気化学装置Yから排出される熱を再利用する排熱利用部として動作する。
 なお、排熱利用部の代わりに、電気化学モジュールMから(燃焼されずに)排出される反応排ガスを利用する反応排ガス利用部を設けてもよい。反応排ガスには、電気化学素子Eにて反応に用いられなかった残余の水素ガスが含まれる。反応排ガス利用部では、残余の水素ガスを利用して、燃焼による熱利用や、燃料電池等による発電が行われ、エネルギーの有効利用がなされる。
<第4実施形態>
 図4に、電気化学モジュールMの他の実施形態を示す。本実施形態に係る電気化学モジュールMは、上述の電気化学素子Eを、セル間接続部材71を間に挟んで積層することで、電気化学モジュールMを構成する。
 セル間接続部材71は、導電性を有し、かつ気体透過性を有さない板状の部材であり、表面と裏面に、互いに直交する溝72が形成されている。セル間接続部材71はステンレス等の金属や、金属酸化物を用いることができる。セル間接続部材71(インターコネクタ部材)には、上述の合金部材が用いられる。
 図4に示すように、このセル間接続部材71を間に挟んで電気化学素子Eを積層すると、溝72を通じて気体を電気化学素子Eに供給することができる。詳しくは一方の溝72が第1気体流路72aとなり、電気化学素子Eの表側、すなわち対極電極層6に気体を供給する。他方の溝72が第2気体流路72bとなり、電気化学素子Eの裏側、すなわち金属基板1の裏側の面から貫通孔1aを通じて電極層2へ気体を供給する。
 この電気化学モジュールMを燃料電池として動作させる場合は、第1気体流路72aに酸素を供給し、第2気体流路72bに水素を供給する。そうすると電気化学素子Eにて燃料電池としての反応が進行し、起電力・電流が発生する。発生した電力は、積層された電気化学素子Eの両端のセル間接続部材71から、電気化学モジュールMの外部に取り出される。
 なお、本実施形態では、セル間接続部材71の表面と裏面に、互いに直交する溝72を形成したが、セル間接続部材71の表面と裏面に、互いに並行する溝72を形成することもできる。
(他の実施形態)(1)上記の実施形態では、電気化学素子Eを固体酸化物形燃料電池に用いたが、電気化学素子Eは、固体酸化物形電解セルや、固体酸化物を利用した酸素センサ等に利用することもできる。また、本発明の合金部材は、部材からのCr揮発の抑制が必要となる電気化学素子以外の各種装置、特に高温域で作動する各種装置に利用することもできる。
(2)上記の実施形態では、金属基板1を支持体とする金属支持型の固体酸化物形燃料電池に用いたが、本願は、電極層2もしくは対極電極層6を支持体とする電極支持型の固体酸化物形燃料電池や電解質層4を支持体とする電解質支持型の固体酸化物形燃料電池に利用することもできる。それらの場合は、電極層2もしくは対極電極層6、または、電解質層4を必要な厚さとして、支持体としての機能が得られるようにすることができる。
(3)上記の実施形態では、電極層2の材料として例えばNiO-GDC、Ni-GDC、NiO-YSZ、Ni-YSZ、CuO-CeO2、Cu-CeO2などの複合材を用い、対極電極層6の材料として例えばLSCF、LSM等の複合酸化物を用いた。このように構成された電気化学素子Eは、電極層2に水素ガスを供給して燃料極(アノード)とし、対極電極層6に空気を供給して空気極(カソード)とし、固体酸化物形燃料電池セルとして用いることが可能である。この構成を変更して、電極層2を空気極とし、対極電極層6を燃料極とすることが可能なように、電気化学素子Eを構成することも可能である。すなわち、電極層2の材料として例えばLSCF、LSM等の複合酸化物を用い、対極電極層6の材料として例えばNiO-GDC、Ni-GDC、NiO-YSZ、Ni-YSZ、CuO-CeO2、Cu-CeO2などの複合材を用いる。このように構成した電気化学素子Eであれば、電極層2に空気を供給して空気極とし、対極電極層6に水素ガスを供給して燃料極とし、電気化学素子Eを固体酸化物形燃料電池セルとして用いることができる。
 なお、上記の実施形態で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能である。また本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。
 電気化学素子および固体酸化物形燃料電池セルとして利用可能である。
1    :金属基板(金属支持体、合金部材)
1a   :貫通孔
2    :電極層
3    :中間層
4    :電解質層
5    :反応防止層
6    :対極電極層
7    :U字部材(セパレータ部材、合金部材)
17   :ガスマニホールド(マニホールド部材、合金部材)
26   :集電部材(合金部材)
31   :脱硫器
32   :改質水タンク
33   :気化器
34   :改質器
35   :ブロア
36   :燃焼部
38   :インバータ
39   :制御部
40   :収納容器
41   :昇圧ポンプ
42   :原燃料供給路
43   :改質水ポンプ
44   :改質水供給路
45   :水蒸気含有原燃料供給路
46   :改質ガス供給路
50   :燃焼排ガス排出口
51   :燃焼触媒部
52   :燃焼排ガス排出路
53   :熱交換器
71   :セル間接続部材(インターコネクタ部材、合金部材)
72   :溝
72a  :第1気体流路
72b  :第2気体流路
E    :電気化学素子
M    :電気化学モジュール
Y    :電気化学装置
Z    :エネルギーシステム

Claims (18)

  1.  合金部材の製造方法であって、Fe-Cr系合金の基材の上にCoをコーティングするコーティング処理工程と、前記コーティング処理工程の後に、含湿雰囲気中で前記基材の酸化処理を行う酸化処理工程とを行う、合金部材の製造方法。
  2.  前記コーティング処理工程にて、Coのコーティングがメッキ処理によって行われる請求項1に記載の合金部材の製造方法。
  3.  前記酸化処理工程が、露点25℃以上の雰囲気中で行われる請求項1または2に記載の合金部材の製造方法。
  4.  Fe-Cr系合金の基材と、前記基材の上に形成された被膜層とを有する合金部材であって、前記被膜層がCoを含有し、前記基材の内部において表面の近傍にCo含有領域が形成されている合金部材。
  5.  Fe-Cr系合金の基材と、前記基材の上に形成された被膜層とを有する合金部材であって、前記被膜層は、第1層と第2層とを有し、
     前記第1層は前記基材の上に形成されており、かつ、Crを含有する金属酸化物の層であり、
     前記第2層は前記第1層の上に形成されており、かつ、Coを含有する金属酸化物の層である、合金部材。
  6.  前記基材の内部において表面の近傍にCo含有領域が形成されている、請求項5に記載の合金部材。
  7.  前記第2層がMnを含有する請求項5または6に記載の合金部材。
  8.  前記基材のFe-Cr系合金が、Mnを0.05質量%以上含有する請求項4から7のいずれか1項に記載の合金部材。
  9.  前記基材のFe-Cr系合金が、Tiを0.15質量%以上1.0質量%以下含有するFe-Cr系合金、Zrを0.15質量%以上1.0質量%以下含有するFe-Cr系合金、TiおよびZrを含有しTiとZrとの合計の含有量が0.15質量%以上1.0質量%以下であるFe-Cr系合金、のいずれかである請求項4から8のいずれか1項に記載の合金部材。
  10.  前記基材のFe-Cr系合金が、Cuを0.10質量%以上1.0質量%以下含有する請求項4から9のいずれか1項に記載の合金部材。
  11.  前記基材のFe-Cr系合金が、Crを18質量%以上25質量%以下含有する請求項4から10のいずれか1項に記載の合金部材。
  12.  請求項4から11のいずれか1項に記載の合金部材の上に、少なくとも電極層と電解質層と対極電極層とが設けられた電気化学素子。
  13.  請求項12に記載の電気化学素子が複数集合した状態で配置される電気化学モジュール。
  14.  請求項13に記載の電気化学モジュールと改質器とを少なくとも有し、前記電気化学モジュールに対して還元性成分を含有する燃料ガスを供給する燃料供給部を有する電気化学装置。
  15.  請求項13に記載の電気化学モジュールと、前記電気化学モジュールから電力を取り出すインバータとを有する電気化学装置。
  16.  セパレータ部材、マニホールド部材、インターコネクタ部材及び集電部材の少なくともいずれかを有し、前記セパレータ部材、前記マニホールド部材、前記インターコネクタ部材及び前記集電部材の少なくともいずれかが請求項4から11のいずれか1項に記載の合金部材により形成される電気化学装置。
  17.  請求項14から16のいずれか1項に記載の電気化学装置と、前記電気化学装置から排出される熱を再利用する排熱利用部を有するエネルギーシステム。
  18.  請求項12に記載の電気化学素子を備え、前記電気化学素子で発電反応を生じさせる固体酸化物形燃料電池。
PCT/JP2018/013693 2017-03-31 2018-03-30 合金部材の製造方法、合金部材、電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、および固体酸化物形燃料電池 WO2018181926A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2019510267A JP7174491B2 (ja) 2017-03-31 2018-03-30 合金部材の製造方法、合金部材、電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、および固体酸化物形燃料電池
US16/498,120 US11767586B2 (en) 2017-03-31 2018-03-30 Manufacturing method for alloy material, alloy material, electrochemical element, electrochemical module, electrochemical device, energy system and solid oxide fuel cell
KR1020197024359A KR20190132353A (ko) 2017-03-31 2018-03-30 합금 부재의 제조 방법, 합금 부재, 전기 화학 소자, 전기 화학 모듈, 전기 화학 장치, 에너지 시스템, 및 고체 산화물형 연료 전지
CA3058585A CA3058585A1 (en) 2017-03-31 2018-03-30 Manufacturing method for alloy material, alloy material, electrochemical element, electrochemical module, electrochemical device, energy system and solid oxide fuel cell
EP18775767.9A EP3604625A4 (en) 2017-03-31 2018-03-30 METHOD OF MANUFACTURING AN ALLOY ELEMENT, ALLOY ELEMENT, ELECTROCHEMICAL ELEMENT, ELECTROCHEMICAL MODULE, ELECTROCHEMICAL DEVICE, ENERGY SYSTEM, AND SOLID OXIDE FUEL CELL
CN201880022207.5A CN110462109B (zh) 2017-03-31 2018-03-30 合金部件的制造方法和合金部件
US18/235,219 US20230392249A1 (en) 2017-03-31 2023-08-17 Manufacturing Method for Alloy Material, Alloy Material, Electrochemical Element, Electrochemical Module, Electrochemical Device, Energy System and Solid Oxide Fuel Cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-073146 2017-03-31
JP2017073146 2017-03-31

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/498,120 A-371-Of-International US11767586B2 (en) 2017-03-31 2018-03-30 Manufacturing method for alloy material, alloy material, electrochemical element, electrochemical module, electrochemical device, energy system and solid oxide fuel cell
US18/235,219 Division US20230392249A1 (en) 2017-03-31 2023-08-17 Manufacturing Method for Alloy Material, Alloy Material, Electrochemical Element, Electrochemical Module, Electrochemical Device, Energy System and Solid Oxide Fuel Cell

Publications (1)

Publication Number Publication Date
WO2018181926A1 true WO2018181926A1 (ja) 2018-10-04

Family

ID=63676231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013693 WO2018181926A1 (ja) 2017-03-31 2018-03-30 合金部材の製造方法、合金部材、電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、および固体酸化物形燃料電池

Country Status (8)

Country Link
US (2) US11767586B2 (ja)
EP (1) EP3604625A4 (ja)
JP (1) JP7174491B2 (ja)
KR (1) KR20190132353A (ja)
CN (1) CN110462109B (ja)
CA (1) CA3058585A1 (ja)
TW (1) TWI761482B (ja)
WO (1) WO2018181926A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020149970A (ja) * 2019-03-07 2020-09-17 日本碍子株式会社 電気化学セル
JP2020149971A (ja) * 2019-03-07 2020-09-17 日本碍子株式会社 電気化学セル
US11575136B2 (en) * 2020-03-18 2023-02-07 Toshiba Energy Systems & Solutions Corporation Metal member and manufacturing method thereof
DE112023000196T5 (de) 2022-03-15 2024-05-23 Ngk Insulators, Ltd. Elektrochemische zelle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010250965A (ja) 2009-04-10 2010-11-04 Tokyo Gas Co Ltd 固体酸化物形燃料電池用インターコネクタ及びその形成方法
JP2011179063A (ja) * 2010-03-01 2011-09-15 Nisshin Steel Co Ltd 固体酸化物形燃料電池の導電部材
JP2014054637A (ja) * 2012-09-11 2014-03-27 Jfe Steel Corp 継目無鋼管圧延用プラグおよびその製造方法
JP2016173954A (ja) * 2015-03-17 2016-09-29 パナソニックIpマネジメント株式会社 燃料電池コージェネレーションシステム
JP2016195029A (ja) * 2015-03-31 2016-11-17 大阪瓦斯株式会社 電気化学素子、それを備えた電気化学モジュール、電気化学装置およびエネルギーシステム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5451469B2 (ja) * 2010-03-15 2014-03-26 大阪瓦斯株式会社 燃料電池用インターコネクタの製造方法
JP6392501B2 (ja) * 2013-05-10 2018-09-19 新日鐵住金ステンレス株式会社 絶縁性に優れた熱膨張係数の小さいステンレス製太陽電池用基板およびその製造方法
EP3176277B1 (en) * 2014-07-29 2020-05-06 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel material for fuel cell, and method for producing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010250965A (ja) 2009-04-10 2010-11-04 Tokyo Gas Co Ltd 固体酸化物形燃料電池用インターコネクタ及びその形成方法
JP2011179063A (ja) * 2010-03-01 2011-09-15 Nisshin Steel Co Ltd 固体酸化物形燃料電池の導電部材
JP2014054637A (ja) * 2012-09-11 2014-03-27 Jfe Steel Corp 継目無鋼管圧延用プラグおよびその製造方法
JP2016173954A (ja) * 2015-03-17 2016-09-29 パナソニックIpマネジメント株式会社 燃料電池コージェネレーションシステム
JP2016195029A (ja) * 2015-03-31 2016-11-17 大阪瓦斯株式会社 電気化学素子、それを備えた電気化学モジュール、電気化学装置およびエネルギーシステム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020149970A (ja) * 2019-03-07 2020-09-17 日本碍子株式会社 電気化学セル
JP2020149971A (ja) * 2019-03-07 2020-09-17 日本碍子株式会社 電気化学セル
US11575136B2 (en) * 2020-03-18 2023-02-07 Toshiba Energy Systems & Solutions Corporation Metal member and manufacturing method thereof
US11855307B2 (en) 2020-03-18 2023-12-26 Toshiba Energy Systems & Solutions Corporation Metal member and manufacturing method thereof
DE112023000196T5 (de) 2022-03-15 2024-05-23 Ngk Insulators, Ltd. Elektrochemische zelle

Also Published As

Publication number Publication date
JP7174491B2 (ja) 2022-11-17
US20230392249A1 (en) 2023-12-07
US20200102635A1 (en) 2020-04-02
EP3604625A4 (en) 2021-01-27
US11767586B2 (en) 2023-09-26
CA3058585A1 (en) 2018-10-04
EP3604625A1 (en) 2020-02-05
TWI761482B (zh) 2022-04-21
CN110462109B (zh) 2022-07-22
TW201843353A (zh) 2018-12-16
KR20190132353A (ko) 2019-11-27
JPWO2018181926A1 (ja) 2020-03-26
CN110462109A (zh) 2019-11-15

Similar Documents

Publication Publication Date Title
JP7105972B2 (ja) 電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池、および電気化学素子の製造方法
US20230392249A1 (en) Manufacturing Method for Alloy Material, Alloy Material, Electrochemical Element, Electrochemical Module, Electrochemical Device, Energy System and Solid Oxide Fuel Cell
JP7202061B2 (ja) 電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、および固体酸化物形燃料電池
WO2019189913A1 (ja) 電気化学素子の金属支持体、電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池、固体酸化物形電解セルおよび金属支持体の製造方法
US20240047702A1 (en) Substrate with Electrode Layer for Metal-Supported Electrochemical Element, Electrochemical Element, Electrochemical Module, Solid Oxide Fuel Cell and Manufacturing Method
JP2021163764A (ja) 電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池、固体酸化物形電解セル
JP7202060B2 (ja) 電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、および固体酸化物形燃料電池
JP2020095984A (ja) 電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池、および電気化学素子製造方法
TWI763812B (zh) 電化學裝置、能源系統、及固態氧化物型燃料電池
JP7145844B2 (ja) 電気化学素子、電気化学モジュール、固体酸化物形燃料電池、および製造方法
JP2023148146A (ja) 金属支持型電気化学素子の製造方法、金属支持型電気化学素子、固体酸化物形燃料電池、固体酸化物形電解セル、電気化学モジュール、電気化学装置及びエネルギーシステム
WO2019189914A1 (ja) 金属板の製造方法、金属板、電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池、および固体酸化物形電解セル
JP2020095983A (ja) 電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池、および電気化学素子製造方法
KR20200135471A (ko) 금속판, 전기화학 소자, 전기화학 모듈, 전기화학 장치, 에너지 시스템, 고체 산화물형 연료 전지, 및 금속판의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775767

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197024359

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019510267

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3058585

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018775767

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018775767

Country of ref document: EP

Effective date: 20191031