WO2018181818A1 - 液晶配向剤、液晶配向膜及び液晶表示素子 - Google Patents

液晶配向剤、液晶配向膜及び液晶表示素子 Download PDF

Info

Publication number
WO2018181818A1
WO2018181818A1 PCT/JP2018/013467 JP2018013467W WO2018181818A1 WO 2018181818 A1 WO2018181818 A1 WO 2018181818A1 JP 2018013467 W JP2018013467 W JP 2018013467W WO 2018181818 A1 WO2018181818 A1 WO 2018181818A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
organic group
formula
group
carbon atoms
Prior art date
Application number
PCT/JP2018/013467
Other languages
English (en)
French (fr)
Inventor
浩 北
達也 結城
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to CN201880023118.2A priority Critical patent/CN110476114B/zh
Priority to KR1020197030313A priority patent/KR102588725B1/ko
Priority to JP2019510190A priority patent/JP7100297B2/ja
Publication of WO2018181818A1 publication Critical patent/WO2018181818A1/ja
Priority to JP2022070136A priority patent/JP7345724B2/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a novel diamine compound (also referred to simply as “diamine” in the present specification) that is useful as a raw material for a polymer used in a liquid crystal alignment film, and a polymer (polyamic acid, polyamic acid) obtained using the diamine.
  • a novel diamine compound also referred to simply as “diamine” in the present specification
  • a polymer polyamic acid, polyamic acid obtained using the diamine.
  • Acid ester, polyimide, etc. a liquid crystal aligning agent
  • a liquid crystal aligning film a liquid crystal aligning film
  • a liquid crystal display element a novel diamine compound that is useful as a raw material for a polymer used in a liquid crystal alignment film
  • a polymer polyamic acid, polyamic acid obtained using the diamine.
  • Acid ester, polyimide, etc. a liquid crystal aligning agent
  • a liquid crystal aligning film a liquid crystal aligning film
  • a liquid crystal display element a
  • liquid crystal display elements have been widely used as display units for personal computers, mobile phones, television receivers, and the like.
  • vertical electric field methods such as TN method and VA method, IPS method, and fringe.
  • a lateral electric field method such as a field switching (hereinafter referred to as “FFS”) method is known.
  • FFS field switching
  • a vertical electric field that drives a liquid crystal by applying a voltage to electrodes formed on the upper and lower substrates.
  • a liquid crystal display element capable of high-quality display such as having a wide viewing angle characteristic is easily obtained.
  • a method for aligning the liquid crystal in a certain direction there is a method of performing a so-called rubbing process in which a polymer film such as polyimide is formed on a substrate and the surface is rubbed with a cloth.
  • ion density and the like can be mentioned. If the ion density is excessively high, the voltage applied to the liquid crystal during the frame period is lowered, and as a result, the luminance is lowered, which may hinder normal gradation display. Moreover, even if the initial ion density is low, the ion density after the high-temperature acceleration test may increase. Such deterioration in long-term reliability and generation of afterimages accompanying residual charges and ionic impurities cause the display quality of the liquid crystal to deteriorate.
  • a liquid crystal aligning agent containing a tertiary amine having a predetermined structure in addition to polyamic acid or an imide group-containing polyamic acid is used as a liquid crystal aligning film having a short time until an afterimage generated by a direct current voltage disappears
  • a liquid crystal aligning agent containing a soluble polyimide using a predetermined diamine compound having a pyridine skeleton or the like as a raw material
  • the rubbing treatment is widely used industrially as a method for aligning liquid crystals, but depending on the liquid crystal alignment film used, a phenomenon that the rubbing direction does not coincide with the alignment direction of the liquid crystal, a so-called twist angle may occur. That is, the horizontal electric field element displays black when no voltage is applied, but the luminance increases even when no voltage is applied due to this phenomenon, and as a result, the display contrast decreases. there were.
  • the present invention can suppress the ion density in the liquid crystal display element and reduce the accumulated charge quickly, and suppresses the deviation between the rubbing direction and the alignment direction of the liquid crystal, which is a problem particularly in the lateral electric field driving method.
  • An object of the present invention is to provide a liquid crystal alignment film that can be used.
  • Another object of the present invention is to provide a diamine, a polymer, and a liquid crystal aligning agent from which such a liquid crystal aligning film can be obtained.
  • an object of this invention is to provide the liquid crystal display element which comprises such a liquid crystal aligning film.
  • the present inventors have introduced various structures by introducing a specific structure ("specific structure" will be described later) into the polymer contained in the liquid crystal aligning agent.
  • the inventors have found that the characteristics are improved at the same time, and completed the present invention.
  • the present invention is based on such knowledge and has the following gist.
  • R represents a hydrogen atom or a monovalent organic group
  • R 1 represents a hydrogen atom or a linear or branched alkyl group or aryl group having 1 to 5 carbon atoms, and there are two on the same maleimide ring R 1 may be the same as or different from each other, and two R 1 may be bonded to each other to form an alkylene having 3 to 6 carbon atoms
  • W 1 represents a single bond or a divalent organic group.
  • W 2 represents a divalent organic group
  • Ar 1 represents an aromatic ring
  • L 1 represents a single bond, carbonyl, sulfonyl or alkylene having 1 to 20 carbon atoms.
  • Ar 1 is a 1,3-phenylene group or a 1,4-phenylene group. Liquid crystal aligning agent as described in.
  • W 1 is a single bond Or 2.
  • the polymer is at least one selected from a polyimide precursor containing a structural unit represented by the following formula (3) and a polyimide which is an imidized product thereof.
  • X 1 represents a tetravalent organic group derived from a tetracarboxylic acid derivative
  • Y 1 represents a divalent organic group derived from a diamine containing the structure of formula (1)
  • R 4 represents a hydrogen atom or a carbon number of 1 Represents an alkyl group of ⁇ 5.
  • the structure of X 1 is at least one selected from the following structures; Liquid crystal aligning agent as described in.
  • the polymer is at least one selected from a polyimide precursor further containing a structural unit represented by the following formula (4) and a polyimide which is an imidized product thereof. ⁇ 5. Liquid crystal aligning agent as described in any one of these.
  • X 2 represents a tetravalent organic group derived from a tetracarboxylic acid derivative
  • Y 2 represents a divalent organic group derived from a diamine not containing the structure of formula (1) in the main chain direction
  • R 14 is Each independently represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • each R 15 independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • Y 2 is represented by the following formula (11). Liquid crystal aligning agent as described in.
  • R 32 represents a single bond or a divalent organic group
  • R 33 represents a structure represented by — (CH 2 ) r —, r represents an integer of 2 to 10, and arbitrary —CH 2 — It may be replaced with an ether, ester, amide, urea, or carbamate bond under non-adjacent conditions
  • R 34 represents a single bond or a divalent organic group, and any hydrogen atom on the benzene ring is a monovalent organic group May be replaced.
  • the structural unit represented by the formula (3) is 10 mol% or more with respect to all the structural units of the polymer.
  • the liquid crystal display element which comprises the liquid crystal aligning film of description.
  • R represents a hydrogen atom or a monovalent organic group
  • R 1 represents a hydrogen atom or an alkyl group or an aryl group which may be linear or branched having 1 to 5 carbon atoms, and 2 on the same maleimide ring.
  • Two R 1 s may be the same or different from each other, and two R 1 s may be bonded to each other to form an alkylene having 3 to 6 carbon atoms
  • W 1 is a single bond or a divalent organic group.
  • W 2 represents a divalent organic group
  • Ar 1 represents an aromatic ring
  • L 1 represents a single bond, carbonyl, sulfonyl or alkylene having 1 to 20 carbon atoms.
  • R represents a hydrogen atom or a monovalent organic group
  • R 1 represents a hydrogen atom or an alkyl group or an aryl group which may be linear or branched having 1 to 5 carbon atoms, and 2 on the same maleimide ring.
  • Two R 1 s may be the same or different from each other, and two R 1 s may be bonded to each other to form an alkylene having 3 to 6 carbon atoms
  • W 1 is a single bond or a divalent organic group.
  • W 2 represents a divalent organic group
  • Ar 1 represents an aromatic ring
  • L 1 represents a single bond, carbonyl, sulfonyl or alkylene having 1 to 20 carbon atoms.
  • liquid crystal aligning agent of the present invention By using the liquid crystal aligning agent of the present invention, it is possible to keep the ion density in the liquid crystal display element low and to quickly relieve the accumulated charges, and particularly the rubbing direction and the liquid crystal are problematic in the lateral electric field driving method.
  • a liquid crystal alignment film that can suppress the displacement of the alignment direction is obtained.
  • the mechanism that can solve the above-described problems of the present invention is generally considered as follows.
  • the structure of the above formula (1) contained in the polymer of the present invention has a nitrogen atom. Accordingly, for example, in the liquid crystal alignment film, the ability to supplement ionic impurities can be provided, the movement of charges can be promoted, and the relaxation of accumulated charges can be promoted.
  • the polymer and the liquid crystal aligning agent can be obtained by using the diamine of the present invention. Further, by providing the liquid crystal alignment film of the present invention, such a liquid crystal display element excellent in various characteristics can be obtained.
  • the liquid crystal aligning agent of the present invention includes a polymer (hereinafter also referred to as a specific polymer) obtained from a diamine having a structure represented by the above formula (1) (hereinafter also referred to as a specific structure).
  • R represents a hydrogen atom or a monovalent organic group
  • R 1 represents a hydrogen atom, a linear or branched alkyl group or aryl group having 1 to 5 carbon atoms
  • Two R 1 on the maleimide ring may be the same or different from each other, and two R 1 may be bonded to each other to form an alkylene having 3 to 6 carbon atoms
  • W 1 may be a single bond or A divalent organic group
  • W 2 represents a divalent organic group
  • Ar 1 represents an aromatic ring
  • L 1 represents a single bond, carbonyl, sulfonyl or alkylene having 1 to 20 carbon atoms.
  • R is preferably a hydrogen atom or a linear alkyl group having 1 to 3 carbon atoms, more preferably a hydrogen atom or a methyl group.
  • R may be a protective group that undergoes a desorption reaction by heat and replaces a hydrogen atom. From the viewpoint of storage stability of the liquid crystal aligning agent, R does not desorb at room temperature, and preferably is desorbed by heat of 80 ° C. or higher. A protecting group which is released, and more preferably a protecting group which is released by heat at 100 ° C. or higher.
  • Examples thereof include 1,1-dimethyl-2-chloroethoxycarbonyl group, 1,1-dimethyl-2-cyanoethoxycarbonyl group, and tert-butoxycarbonyl group, preferably tert-butoxycarbonyl group.
  • R 1 is preferably a hydrogen atom, a methyl group, an ethyl group, an iso-propyl group, or a phenyl group, and more preferably a hydrogen atom, a methyl group, or a phenyl group.
  • the alkylene having 3 to 6 carbon atoms formed by bonding two R 1 's to each other is preferably — (CH 2 ) 3 —, — (CH 2 ) 4 —, — (CH 2 ) 5 —. More preferably — (CH 2 ) 4 —.
  • W 1 is a divalent bond selected from a single bond, —O—, —COO—, —OCO—, — (CH 2 ) p —, —O (CH 2 ) q O—, —CONH—, or —NHCO—.
  • An organic group is preferred, p represents a natural number of 1 to 10, and q represents a natural number of 1 to 10.
  • Ar 1 is preferably a 1,3-phenylene group or a 1,4-phenylene group.
  • L 1 represents a single bond, carbonyl, sulfonyl or alkylene having 1 to 20 carbon atoms.
  • the alkylene having 1 to 20 carbon atoms of L 1 may be linear or branched, and is linear alkylene represented by — (CH 2 ) n — (where n is 1 to 20).
  • the divalent organic group W 2 is represented by the following formulas [W 2 -1] to [W 2 -152].
  • W 2 ⁇ 7, W 2 ⁇ 20, W 2 ⁇ 21, W 2 ⁇ 23, W 2 ⁇ 26, W 2 ⁇ 39, and W 2 ⁇ 51 , W 2 -52, W 2 -53, W 2 -54, W 2 -55, W 2 -59, W 2 -60, W 2 -61, W 2 -64, W 2 -65, W 2 -67 , W 2 -68, W 2 -69, W 2 -70, and W 2 -71 are preferable.
  • the method for synthesizing a diamine having a specific structure (sometimes referred to as “specific diamine” in the present specification) of the present invention is not particularly limited.
  • a nitromaleimide compound represented by the following formula (A1) A method of reacting with a diamino compound represented by the following formula (B1) to obtain an aminonitro compound represented by the following formula (C1) and reducing this can be mentioned.
  • R, R 1 , L 1 , Ar 1 , W 1 and W 2 are the same as in the above formula (1).
  • the amount of the compound represented by the formula (B1) to be used is preferably 1 to 2 mol, preferably 1 to 1.2 mol, relative to 1 mol of the compound represented by the formula (A1). Further preferred. By using an excessive amount of the compound represented by the formula (B1), the reaction can proceed smoothly and by-products can be suppressed.
  • a solvent does not react with each raw material, it can be used without a restriction
  • aprotic polar organic solvents DMF, DMSO, DMAc, NMP, etc.
  • ethers Et 2 O, i-Pr 2 O, TBME, CPME, THF, dioxane, etc.
  • aliphatic hydrocarbons penentane, Hexane, heptane, petroleum ether, etc.
  • aromatic hydrocarbons benzene, toluene, xylene, mesitylene, chlorobenzene, dichlorobenzene, nitrobenzene, tetralin, etc.
  • halogenated hydrocarbons chloroform, dichloromethane, carbon tetrachloride, dichloroethane) Etc.
  • lower fatty acid esters methyl acetate, ethyl acetate, butyl acetate, methyl
  • solvents can be appropriately selected in consideration of the ease of reaction and the like, and can be used singly or in combination of two or more. If necessary, the solvent can be dried using a suitable dehydrating agent or desiccant and used as a non-aqueous solvent.
  • the amount of solvent used is not particularly limited, but is 0.1 to 100 times by mass with respect to the bismaleimide compound. The amount is preferably 0.5 to 30 times by mass, more preferably 1 to 10 times by mass.
  • the reaction temperature is not particularly limited, but it is in the range from ⁇ 100 ° C. to the boiling point of the solvent used, preferably ⁇ 50 to 150 ° C.
  • the reaction time is usually 0.05 to 350 hours, preferably 0.5 to 100 hours.
  • This reaction can be carried out in the presence of an inorganic base or an organic base as necessary.
  • the base used in the reaction include sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium hydrogen carbonate, potassium hydrogen carbonate, potassium phosphate, sodium carbonate, potassium carbonate, lithium carbonate, cesium carbonate and other inorganic bases; tert-butoxy Bases such as sodium, potassium tert-butoxy, sodium hydride and potassium hydride; amines such as trimethylamine, triethylamine, tripropylamine, triisopropylamine, tributylamine, diisopropylethylamine, pyridine, quinoline and collidine can be used.
  • the amount of the base used is not particularly limited, but is 0 to 100 times by mass with respect to the bismaleimide compound.
  • the amount is preferably 0 to 30 times by mass, and more preferably 0 to 10 times by mass.
  • the conditions for producing the specific diamine represented by the formula (1) by reducing the compound represented by the formula (C1) are described below.
  • a method for reducing the compound represented by the formula (C1) there is a reduction reaction performed in the presence of Fe, Sn, Zn, or a salt thereof and protons.
  • the amount of Fe, Sn, Zn or a salt thereof used is preferably 1 to 100 equivalents, particularly preferably 3 to 50 equivalents, relative to the compound represented by the above formula (1).
  • any solvent can be used as long as it does not interfere with the target reaction under the reaction conditions.
  • water alcohol solvents such as methyl alcohol, ethyl alcohol, tert-butyl alcohol; aprotic polar organic solvents such as dimethylformamide, dimethyl sulfoxide, dimethylacetamide, N-methylpyrrolidone; diethyl ether, diisopropyl ether, tert-butyl Ethers such as methyl ether, cyclopentyl methyl ether, tetrahydrofuran and dioxane; aliphatic hydrocarbons such as pentane, hexane, heptane and petroleum ether; aromatic hydrocarbons such as benzene, toluene, xylene, mesitylene and tetralin, chloroform, dichloromethane, Halogenated hydrocarbons such as carbon tetrachloride and dichloroethane; lower
  • solvents can be appropriately selected in consideration of the ease of reaction and the like, and can be used alone or in combination of two or more. Moreover, depending on the case, the said solvent can also be used as a solvent which does not contain water using a suitable dehydrating agent and a desiccant.
  • the amount of the solvent used is not particularly limited, but is 0.1 to 100 times by mass with respect to the compound represented by the above formula (C1). The amount is preferably 0.5 to 50 times by mass, more preferably 3 to 30 times by mass.
  • the reaction can be carried out under pressure in order to make the reaction proceed more effectively.
  • the reaction in order to avoid the reduction of the benzene nucleus, the reaction is preferably carried out in a pressure range of about 20 atm (kgf), more preferably in a range up to 10 atm.
  • acids such as hydrochloric acid, sulfuric acid, formic acid, acetic acid, and salts thereof may coexist.
  • the amount of these used is not particularly limited, but is 0 to 10 times by mass with respect to the compound represented by the above formula (C1).
  • the amount is preferably 0 to 5 times by mass, and more preferably 0 to 3 times by mass.
  • the reaction temperature can be selected from a temperature range of preferably ⁇ 100 ° C. or higher to the boiling point of the reaction solvent to be used, more preferably ⁇ 50 to 150 ° C., particularly preferably 0 to 100 ° C. .
  • the reaction time is 0.1 to 1000 hours, more preferably 1 to 200 hours.
  • a hydrogenation reaction using palladium-activated carbon or platinum-activated carbon as a catalyst a reduction reaction using formic acid as a hydrogen source, or hydrazine as a hydrogen source. Reaction. These reactions can also be carried out in combination.
  • the catalyst used for the reduction reaction is preferably an activated carbon-supported metal available as a commercial product, and examples thereof include palladium-activated carbon, platinum-activated carbon, and rhodium-activated carbon. Further, palladium hydroxide, platinum oxide, Raney nickel or the like is not necessarily an activated carbon-supported metal catalyst.
  • Palladium-activated carbon and platinum-activated carbon which are generally widely used are preferable because good results can be obtained.
  • the amount of these catalysts used may be a so-called catalytic amount, preferably 20 mol% or less, particularly preferably 10 mol% or less, relative to the compound represented by the above formula (C1).
  • any solvent can be used as long as it does not interfere with the target reaction under the reaction conditions.
  • alcohol solvents such as methyl alcohol, ethyl alcohol, tert-butyl alcohol; aprotic polar organic solvents such as dimethylformamide, dimethyl sulfoxide, dimethylacetamide, N-methylpyrrolidone; diethyl ether, isopropyl ether, tert-butyl methyl ether , Ethers such as cyclopentyl methyl ether, tetrahydrofuran and dioxane; aliphatic hydrocarbons such as pentane, hexane, heptane and petroleum ether; aromatic hydrocarbons such as benzene, toluene, xylene, mesitylene and tetralin, chloroform, dichloromethane and tetrachloride Halogen-based hydrocarbons such as carbon and dichloroethane; lower
  • the amount of the solvent used is not particularly limited, but is 0.1 to 100 times by mass with respect to the compound represented by the above formula (C1). The amount is preferably 0.5 to 50 times by mass, more preferably 3 to 30 times by mass.
  • the reaction temperature is not particularly limited, but it is in the range from ⁇ 100 ° C. to the boiling point of the solvent used, preferably ⁇ 50 to 150 ° C.
  • the reaction time is usually 0.05 to 350 hours, preferably 0.5 to 100 hours.
  • the reaction can be carried out in the presence of activated carbon.
  • the amount of the activated carbon to be used is not particularly limited, but is preferably in the range of 1 to 30% by mass, more preferably 10 to 20% by mass with respect to the dinitro compound (C1).
  • the reaction may be carried out under pressure. In this case, in order to avoid reduction of benzene nuclei, it is carried out in a pressure range up to 20 atm. The reaction is preferably carried out in the range up to 10 atm.
  • a hydrogenation reaction in view of the structure of the compound represented by the formula (C1) and the reactivity of the reduction reaction.
  • a maleimide compound represented by the following formula (A1) and an aminonitro compound represented by the following formula (B2) are reacted to form the following formula (C2).
  • the method of obtaining the dinitro compound represented by these and reducing this can be mentioned.
  • reaction conditions between the compound represented by the formula (B2) and the compound represented by the formula (A1) are the same as the reaction conditions between the compound represented by the formula (B1) and the compound represented by the formula (A1).
  • reaction conditions for obtaining the diamine represented by the formula (1) by reducing the dinitro compound represented by the formula (C2) are the same as those obtained by reducing the compound represented by the formula (C1). According to the conditions for producing the specific diamine represented by
  • a maleimide compound represented by the following formula (A2) and an aminonitro compound represented by the following formula (B2) are reacted to form the following formula (C3).
  • reaction conditions between the compound represented by the formula (B2) and the compound represented by the formula (A2) are the same as the reaction conditions between the compound represented by the formula (B1) and the compound represented by the formula (A1).
  • reaction conditions for obtaining the diamine represented by the formula (1) by reducing the aminonitro compound represented by the formula (C3) are the same as those obtained by reducing the compound represented by the formula (C1). According to the conditions for producing the specific diamine represented by 1).
  • the maleimide compound represented by a following formula (A2) and the diamino compound represented by a following formula (B1) are made to react, and (1) is obtained.
  • A2 and B1 are made to react, and (1) is obtained.
  • reaction conditions between the compound represented by the formula (B1) and the compound represented by the formula (A2) conform to the reaction conditions between the compound represented by the formula (B1) and the compound represented by the formula (A1). .
  • a compound in which R is a hydrogen atom in the dinitro compound represented by the above formula (C2) may be reacted with a compound capable of reacting with amines.
  • a compound capable of reacting with amines include acid halides, acid anhydrides, isocyanates, epoxies, oxetanes, halogenated aryls, and halogenated alkyls.
  • hydroxyl groups of alcohols can be OMs, OTf, OTs, and the like. Alcohols substituted with the leaving group can be used.
  • the method of introducing a monovalent organic group into the NH group is not particularly limited, and a method of reacting an acid halide in the presence of a suitable base can be mentioned.
  • acid halides include acetyl chloride, propionic acid chloride, methyl chloroformate, ethyl chloroformate, n-propyl chloroformate, i-propyl chloroformate, n-butyl chloroformate, i-butyl chloroformate, t-chloroformate. Butyl, benzyl chloroformate, and 9-fluorenyl chloroformate.
  • the base the aforementioned bases can be used.
  • the reaction solvent and reaction temperature are the same as described above.
  • the NH group may be reacted with an acid anhydride to introduce a monovalent organic group.
  • acid anhydrides include acetic anhydride, propionic anhydride, dimethyl dicarbonate, diethyl dicarbonate, ditertiary butyl dicarbonate. And dibenzyl dicarbonate.
  • a catalyst may be added, and pyridine, collidine, N, N-dimethyl-4-aminopyridine and the like may be used.
  • the amount of the catalyst is 0.0001 to 1 mol with respect to 1 mol of the compound in which R is a hydrogen atom in the dinitro compound represented by the above formula (C2).
  • the reaction solvent and reaction temperature are the same as described above.
  • a monovalent organic group may be introduced by reacting an isocyanate with an NH group, and examples of the isocyanate include methyl isocyanate, ethyl isocyanate, n-propyl isocyanate, and phenyl isocyanate.
  • the reaction solvent and reaction temperature are the same as described above.
  • a monovalent organic group may be introduced by reacting an NH group with an epoxy compound or oxetane compound.
  • the epoxy compound and oxetane include ethylene oxide, propylene oxide, 1,2-butylene oxide, trimethylene. And oxides.
  • the reaction solvent and reaction temperature are the same as described above.
  • Monovalent organic groups may be introduced by reacting aryl halides with NH in the presence of a metal catalyst, a ligand and a base.
  • aryl halides include iodobenzene, bromobenzene and chlorobenzene. Is mentioned.
  • metal catalysts include palladium acetate, palladium chloride, palladium chloride-acetonitrile complex, palladium-activated carbon, bis (dibenzylideneacetone) palladium, tris (dibenzylideneacetone) dipalladium, bis (acetonitrile) dichloropalladium, bis (benzo Nitrile) dichloropalladium, CuCl, CuBr, CuI, CuCN and the like, but are not limited thereto.
  • ligands include triphenylphosphine, tri-o-tolylphosphine, diphenylmethylphosphine, phenyldimethylphosphine, 1,2-bis (diphenylphosphino) ethane, 1,3-bis (diphenylphosphino) propane 1,4-bis (diphenylphosphino) butane, 1,1′-bis (diphenylphosphino) ferrocene, trimethyl phosphite, triethyl phosphite, triphenyl phosphite, tri-tert-butylphosphine and the like.
  • the base the aforementioned bases can be used.
  • the reaction solvent and reaction temperature are the same as described above.
  • a monovalent organic group may be introduced by reacting an alcohol in which a hydroxyl group of the alcohol is substituted with a leaving group such as OMs, OTf, OTs, etc. in the presence of a suitable base in the NH group. , Methanol, ethanol, 1-propanol and the like. By reacting these alcohols with methanesulfonyl chloride, trifluoromethanesulfonyl chloride, paratoluenesulfonic acid chloride, etc., elimination of OMs, OTf, OTs, etc. Alcohols substituted with groups can be obtained.
  • the base the aforementioned bases can be used.
  • the reaction solvent and reaction temperature are the same as described above.
  • Monovalent organic groups may be introduced by reacting an alkyl halide with an NH group in the presence of a suitable base.
  • alkyl halides include methyl iodide, ethyl iodide, and n-propyl iodide. , Methyl bromide, ethyl bromide, n-propyl bromide and the like.
  • the base include metal alkoxides such as potassium tert-butoxide and sodium tert-butoxide in addition to the above-mentioned bases. Reaction conditions such as reaction solvent, reaction temperature and reaction time are the same as described above.
  • the amount of the compound capable of reacting with the above amines is 1.0 to 3.0 with respect to 1.0 molar equivalent of the compound in which R is a hydrogen atom in the dinitro compound represented by the above formula (C2).
  • the molar equivalent can be obtained.
  • the range of 2.0 to 2.5 molar equivalent is preferred.
  • the compound which can react with said amines can be used individually or in combination.
  • each isomer and a mixture thereof are all represented by the diamine represented by Formula (1). included.
  • the diamine compound represented by the formula (1) has a different substitution position of R 1 . All of these mixtures are also included in the diamine represented by the formula (1).
  • the amount of the maleic anhydride derivative to be used is preferably 1 to 1.5 mol, more preferably 1 to 1.2 mol, per 1 mol of the nitroamine compound represented by the formula (D1). .
  • This reaction is preferably performed in a solvent. Preferred solvents and reaction conditions are the same as the production conditions for the compound (1).
  • the method for synthesizing the compound of the formula (A2) is not particularly limited.
  • the diamine represented by the following formula (D2) is described in JP-A No. 2003-321531 or WO 2004/012735 pamphlet. And a method of reacting a maleic anhydride derivative under the conditions described above.
  • the amount of the maleic anhydride derivative used is preferably 0.01 to 1 mol, more preferably 0.1 to 1.0 mol, relative to 1 mol of the diamine compound represented by the formula (D2). Further preferred.
  • diamine (D2) By making diamine (D2) into an excessive amount, reaction can be advanced smoothly and a by-product can be suppressed.
  • This reaction is preferably performed in a solvent.
  • Preferred solvents and reaction conditions are the same as the production conditions for the compound (1).
  • reaction conditions for obtaining the amine represented by the formula (A2) by reducing the nitro compound represented by the formula (A1) are the same as those obtained by reducing the compound represented by the formula (C1) above.
  • a reduction reaction performed in the presence of Fe, Sn, Zn, or a salt thereof and a proton is preferable from the viewpoint of suppressing reduction of the double bond.
  • the specific diamine of the present invention includes a maleimide compound represented by the following formula (A1) and ammonia, alkylamine, benzylamine and the like represented by a commercially available amino compound represented by the following formula (E).
  • a maleimide compound represented by the following formula (A1) and ammonia, alkylamine, benzylamine and the like represented by a commercially available amino compound represented by the following formula (E).
  • E a nitro compound represented by the following formula (F)
  • nitrobenzyl chloride, nitrobenzoyl chloride, nitrobenzenesulfonyl chloride or nitrobenzene isocyanate represented by the following formula (G) 4- A method of reducing this by reacting with fluoronitrobenzene, 4-iodonitrobenzene or the like to obtain the following formula (C2) can be mentioned.
  • reaction conditions between the compound represented by the formula (E) and the compound represented by the formula (A1) are the same as the reaction conditions between the compound represented by the formula (B1) and the compound represented by the formula (A1).
  • a compound in which Z is OH and L 1 is carbonyl in the above formula (G) and a compound represented by the above formula (F) are used, if necessary, using a solvent inert to the reaction, and if necessary By reacting with a condensing agent in the presence of a base, a compound in which L 1 is carbonyl in the general formula (C2) can be obtained.
  • As the amount of the reaction substrate 0.5 to 2 equivalents of the compound represented by the general formula (F) can be used with respect to 1 equivalent of the compound represented by the formula (G).
  • the condensing agent is not particularly limited as long as it is used for ordinary amide synthesis.
  • Mukaiyama reagent (2-chloro-N-methylpyridinium iodide), DCC (1,3-dicyclohexylcarbodiimide), WSC ( 1-ethyl-3- (3-dimethylaminopropyl) -carbodiimide hydrochloride), CDI (carbonyldiimidazole), dimethylpropynylsulfonium bromide, propargyltriphenylphosphonium bromide, DEPC (diethyl cyanophosphate), etc. 1) to 4 equivalents based on the compound in which Z is OH and L 1 is carbonyl.
  • the solvent to be used is not particularly limited as long as it does not inhibit the progress of the reaction.
  • aromatic hydrocarbons such as benzene, toluene and xylene
  • aliphatic hydrocarbons such as hexane and heptane.
  • Aliphatic halogenated hydrocarbons such as diethyl ether, 1,2-dimethoxyethane, tetrahydrofuran, ethers such as 1,4-dioxane, esters such as ethyl acetate and ethyl propionate, N, N-dimethylformamide, N, N-dimethylacetamide, N- Amides chill-2-pyrrolidone, triethylamine, tributylamine, N, N-amines dimethylaniline, pyridine, pyridine picoline, etc., include acetonitrile and dimethyl sulfoxide.
  • a base for example, an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide, an alkali metal carbonate such as sodium carbonate or potassium carbonate, sodium hydrogen carbonate, or potassium hydrogen carbonate.
  • Alkali metal bicarbonates such as triethylamine, tributylamine, N, N-dimethylaniline, pyridine, 4- (dimethylamino) pyridine, imidazole, 1,8-diazabicyclo [5,4,0] -7-undecene, etc.
  • An organic base or the like can be used in an amount of 1 to 4 equivalents with respect to the compound in which Z is OH and L 1 is carbonyl in the above formula (G).
  • the reaction temperature can be set to any temperature from ⁇ 60 ° C. to the reflux temperature of the reaction mixture, and the reaction time varies depending on the concentration of the reaction substrate and the reaction temperature, but is usually arbitrary within the range of 5 minutes to 100 hours. Can be set.
  • a compound in which Z is OH and L 1 is carbonyl or sulfonyl is reacted with a known method described in the literature, for example, with a chlorinating agent such as thionyl chloride, phosphorus pentachloride or oxalyl chloride. Or a method of reacting with an organic acid halide such as pivaloyl chloride or isobutyl chloroformate in the presence of a base, if necessary, or a method of reacting with carbonyldiimidazole or sulfonyldiimidazole.
  • a chlorinating agent such as thionyl chloride, phosphorus pentachloride or oxalyl chloride.
  • an organic acid halide such as pivaloyl chloride or isobutyl chloroformate in the presence of a base, if necessary, or a method of reacting with carbonyldiimidazole or sulfonyld
  • the amount of the reaction substrate used is 0.5 to 2 equivalents of the compound represented by the above formula (F) with respect to 1 equivalent of the compound in which Z is Cl and L 1 is carbonyl or sulfonyl in the above formula (G). be able to.
  • the solvent to be used is not particularly limited as long as it does not inhibit the progress of the reaction.
  • aromatic hydrocarbons such as benzene, toluene and xylene
  • aliphatic hydrocarbons such as hexane and heptane.
  • a base for example, an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide, an alkali metal carbonate such as sodium carbonate or potassium carbonate, sodium hydrogen carbonate, or potassium hydrogen carbonate.
  • Alkali metal bicarbonates such as triethylamine, tributylamine, N, N-dimethylaniline, pyridine, 4- (dimethylamino) pyridine, imidazole, 1,8-diazabicyclo [5,4,0] -7-undecene, etc.
  • An organic base or the like can be used in an amount of 1 to 4 equivalents with respect to the compound in which Z is Cl and L 1 is carbonyl or sulfonyl in the above formula (G).
  • the reaction temperature can be set to any temperature from ⁇ 60 ° C. to the reflux temperature of the reaction mixture, and the reaction time varies depending on the concentration of the reaction substrate and the reaction temperature, but is usually arbitrary within the range of 5 minutes to 100 hours. Can be set.
  • L 1 and W 1 are both a single bond, Z is F or Cl, and a NO 2 group is in the 2-position or 4-position with respect to Z.
  • the compound represented by the formula (F) can be reacted to obtain the dinitro compound represented by the above formula (C2).
  • Examples of the base used include inorganic bases such as sodium bicarbonate, potassium bicarbonate, potassium phosphate, sodium carbonate, potassium carbonate, lithium carbonate, cesium carbonate; trimethylamine, triethylamine, tripropylamine, triisopropylamine, tributylamine, diisopropyl Amines such as ethylamine, pyridine, quinoline and collidine; bases such as sodium hydride and potassium hydride; can be used.
  • inorganic bases such as sodium bicarbonate, potassium bicarbonate, potassium phosphate, sodium carbonate, potassium carbonate, lithium carbonate, cesium carbonate
  • trimethylamine, triethylamine, tripropylamine, triisopropylamine, tributylamine, diisopropyl Amines such as ethylamine, pyridine, quinoline and collidine
  • bases such as sodium hydride and potassium hydride
  • any solvent that does not react with the raw material can be used.
  • aprotic polar organic solvents N, N-dimethylformamide, dimethyl sulfoxide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, etc.
  • ethers Et 2 O, i-Pr 2 O, tert -Butyl methyl ether, cyclopentyl methyl ether, tetrahydrofuran, dioxane, etc.
  • aliphatic hydrocarbons pentane, hexane, heptane, petroleum ether, etc.
  • aromatic hydrocarbons benzene, toluene, xylene, mesitylene, chlorobenzene, di) Chlorobenzene, nitrobenzene, tetralin, etc.
  • halogenated hydrocarbons chloroform, dichloromethane, carbon tetrachloride, dichloroethane
  • the said solvent can be used individually by 1 type or in mixture of 2 or more types.
  • the solvent may be dehydrated and dried using an appropriate dehydrating agent or desiccant.
  • the reaction temperature is in the range from ⁇ 100 ° C. to the boiling point of the solvent used, and any temperature can be selected, but it is preferably in the range of ⁇ 50 to 150 ° C.
  • the reaction time can be arbitrarily selected in the range of 0.1 to 1000 hours, but is preferably 0.1 to 100 hours.
  • the NO 2 group may be in the 2nd , 3rd or 4th position with respect to X, and contains a suitable metal catalyst and ligand, and a CN crosslink in the presence of a base.
  • a dinitro compound can be obtained by using a coupling reaction.
  • metal catalysts include palladium acetate, palladium chloride, palladium chloride-acetonitrile complex, palladium-activated carbon, bis (dibenzylideneacetone) palladium, tris (dibenzylideneacetone) dipalladium, bis (acetonitrile) dichloropalladium, bis (benzo Nitrile) dichloropalladium, CuCl, CuBr, CuI, CuCN and the like, but are not limited thereto.
  • ligands include triphenylphosphine, tri-o-tolylphosphine, diphenylmethylphosphine, phenyldimethylphosphine, 1,2-bis (diphenylphosphino) ethane, 1,3-bis (diphenylphosphino) propane 1,4-bis (diphenylphosphino) butane, 1,1′-bis (diphenylphosphino) ferrocene, trimethyl phosphite, triethyl phosphite, triphenyl phosphite, tri-tert-butylphosphine and the like. However, it is not limited to these.
  • the aforementioned bases can be used.
  • the reaction solvent and reaction temperature are the same as described above.
  • the target product in each stage obtained by the above reactions may be purified by distillation, recrystallization, or column chromatography such as silica gel, or may be subjected to the next stage as it is without purification. it can.
  • the reaction conditions for obtaining the diamine represented by the formula (1) by reducing the dinitro compound represented by the formula (C2) are the same as described above.
  • the polymer of the present invention is obtained using the diamine.
  • Specific examples include polyamic acid, polyamic acid ester, polyimide, polyurea, polyamide and the like.
  • X 1 represents a tetravalent organic group derived from a tetracarboxylic acid derivative
  • Y 1 represents a divalent organic group derived from a diamine containing the structure of formula (1)
  • R 4 Represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • R 4 is preferably a hydrogen atom, a methyl group or an ethyl group from the viewpoint of ease of imidization by heating.
  • X 1 in the polyimide precursor is a required property such as solubility of the polymer in a solvent, application property of a liquid crystal aligning agent, liquid crystal alignment property when a liquid crystal alignment film is formed, voltage holding ratio, accumulated charge, and the like. Depending on the degree, it may be appropriately selected, and one type may be used in the same polymer, or two or more types may be mixed. If Specific examples of X 1 dare shown, is published in 13 pages to 14 pages of WO 2015/119168, the structure or the like of the formula (X-1) ⁇ (X -46) are mentioned. Below, shows the structure of a preferred X 1, the present invention is not limited thereto.
  • (A-1) and (A-2) are particularly preferable from the viewpoint of further improving rubbing resistance, and (A-4) is particularly preferable from the viewpoint of further improving the rate of relaxation of accumulated charges.
  • (A-15) to (A-17) are particularly preferred from the standpoint of further improving the liquid crystal orientation and the rate of relaxation of accumulated charges.
  • the polyimide precursor containing the structural unit represented by the formula (3) is at least selected from the structural unit represented by the following formula (4) and a polyimide that is an imidized product thereof, as long as the effects of the present invention are not impaired.
  • One kind may be included.
  • X 2 represents a tetravalent organic group derived from a tetracarboxylic acid derivative
  • Y 2 represents a divalent organic group derived from a diamine that does not include the structure of Formula (1) in the main chain direction.
  • R 14 is the same as the definition of R 4 in the formula (3), and R 15 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • X 2 include the same structures as those exemplified for X 1 in formula (3), including preferred examples.
  • Y 2 in the polyimide precursor is a divalent organic group derived from a diamine that does not include the structure of formula (1) in the main chain direction, and the structure is not particularly limited. Y 2 depends on the required properties such as the solubility of the polymer in the solvent, the coating property of the liquid crystal aligning agent, the orientation of the liquid crystal when it is used as the liquid crystal alignment film, the voltage holding ratio, the accumulated charge, etc. 1 type may be selected in the same polymer, and 2 or more types may be mixed.
  • Y 2 include groups represented by the above formulas [W 2 -1] to [W 2 -152]. Also, the structure of formula (2) published on page 4 of International Publication No. 2015/119168, and formulas (Y-1) to (Y-97), (Y- 101) to (Y-118); a divalent organic group obtained by removing two amino groups from Formula (2) published on page 6 of International Publication No. 2013/008906; 8 of International Publication No. 2015/122413 A divalent organic group obtained by removing two amino groups from the formula (1) published on the page; the structure of the formula (3) published on page 8 of International Publication No.
  • a preferable structure of Y 2 includes a structure of the following formula (11).
  • R 32 is a single bond or a divalent organic group, and a single bond is preferable.
  • R 33 is a structure represented by — (CH 2 ) r —. r is an integer of 2 to 10, preferably 3 to 7. Arbitrary —CH 2 — may be replaced with an ether, ester, amide, urea, or carbamate bond under the condition that they are not adjacent to each other.
  • R 34 represents a single bond or a divalent organic group. Any hydrogen atom on the benzene ring may be replaced with a monovalent organic group, and a fluorine atom or a methyl group is preferred.
  • Specific examples of the structure represented by the formula (11) include the following structures, but are not limited thereto.
  • the structural unit represented by the formula (3) is preferably 1 to 80 mol%, more preferably 5 to 60 mol% based on the total of the formula (3) and the formula (4).
  • the mol% is particularly preferably 10 to 40 mol%.
  • amino group, imino group, and structures having at least one are selected from the group consisting of nitrogen-containing heterocyclic ring.
  • a structure of Y 2 it has at least one structure selected from the group consisting of an amino group, an imino group, and a nitrogen-containing heterocyclic ring, or a thermal leaving group is substituted on the nitrogen atom.
  • the structure is not particularly limited as long as it has at least one structure selected from an amino group, an imino group, and a nitrogen-containing heterocyclic ring.
  • At least one selected from the group consisting of an amino group represented by the following formulas (YD-1) to (YD-5), an imino group, and a nitrogen-containing heterocyclic ring will be given.
  • Examples thereof include a divalent organic group having a structure.
  • a 1 represents a nitrogen atom-containing heterocyclic ring having 3 to 15 carbon atoms
  • Z 1 represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent.
  • V 1 represents a hydrocarbon group having 1 to 10 carbon atoms
  • a 2 is a monovalent organic group having 3 to 15 carbon atoms having a nitrogen atom-containing heterocyclic ring, or 1 carbon atom A disubstituted amino group substituted with an aliphatic group of ⁇ 6.
  • V 2 represents a divalent organic group having 6 to 15 carbon atoms and 1 to 2 benzene rings
  • V 3 represents alkylene or biphenylene having 2 to 5 carbon atoms
  • Z 2 represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a benzene ring, or a thermally leaving group
  • a represents an integer of 0 to 1.
  • a 3 represents a nitrogen atom-containing heterocycle having 3 to 15 carbon atoms.
  • a 4 represents a nitrogen atom-containing heterocycle having 3 to 15 carbon atoms
  • V 5 represents an alkylene having 2 to 5 carbon atoms.
  • pyrrolidine, pyrrole, imidazole, pyrazole, oxazole, thiazole, piperidine, piperazine, pyridine, pyrazine, indole, benzimidazole, quinoline, isoquinoline are included, and piperazine, piperidine, indole, benzimidazole, imidazole, carbazole, and pyridine are included. More preferred.
  • the thermally desorbable group may be any substituent that does not desorb at room temperature but desorbs when the alignment film is baked to replace a hydrogen atom.
  • a tert-butoxycarbonyl group and a 9-fluoro group can be used.
  • An oleenylmethoxycarbonyl group is mentioned.
  • Y 2 examples include divalent organic groups having nitrogen atoms represented by the following formulas (YD-6) to (YD-52), which can suppress charge accumulation due to AC driving. Therefore, the formulas (YD-14) to (YD-21) are more preferable, and (YD-14) and (YD-18) are particularly preferable.
  • j represents an integer of 0 to 3.
  • j represents an integer of 0 to 3.
  • n and n each represent an integer of 1 to 11, and m + n represents an integer of 2 to 12.
  • the polyamic acid which is a polyimide precursor used in the present invention can be synthesized by the following method. Specifically, tetracarboxylic dianhydride and diamine are reacted in the presence of an organic solvent at ⁇ 20 to 150 ° C., preferably 0 to 70 ° C., for 30 minutes to 24 hours, preferably 1 to 12 hours. Can be synthesized.
  • the organic solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, ⁇ -butyrolactone, etc. in view of the solubility of the monomer and polymer, and these may be used alone or in combination. May be used.
  • the concentration of the polymer is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight product is easily obtained.
  • the polyamic acid obtained as described above can be recovered by precipitating a polymer by pouring into a poor solvent while thoroughly stirring the reaction solution. Moreover, the powder of polyamic acid refine
  • the poor solvent is not particularly limited, and examples thereof include water, methanol, ethanol, 2-propanol, hexane, butyl cellosolve, acetone, toluene and the like, and water, methanol, ethanol, 2-propanol and the like are preferable.
  • the polyimide used in the present invention can be produced by imidizing the polyamic acid.
  • chemical imidation which adds a catalyst to the solution of the said polyamic acid obtained by reaction with a diamine component and tetracarboxylic dianhydride is simple.
  • Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer does not easily decrease during the imidization process.
  • Chemical imidation can be performed by stirring a polymer to be imidized in an organic solvent in the presence of a basic catalyst and an acid anhydride.
  • the solvent used at the time of the polymerization reaction mentioned above can be used.
  • the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
  • the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
  • the temperature for carrying out the imidization reaction is ⁇ 20 to 140 ° C., preferably 0 to 100 ° C., and the reaction time can be 1 to 100 hours.
  • the amount of the basic catalyst is 0.5 to 30 times mol, preferably 2 to 20 times mol of the polyamic acid group, and the amount of acid anhydride is 1 to 50 times mol, preferably 3 to 30 times mol of the polyamic acid group. Is a mole.
  • the imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time. Since the added catalyst and the like remain in the solution after the imidization reaction of the polyamic acid, the obtained imidized polymer is recovered by the means described below, and redissolved in an organic solvent. It is preferable to use a liquid crystal aligning agent.
  • the polyimide solution obtained as described above can be polymerized by pouring into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, a polymer powder purified by drying at normal temperature or by heating can be obtained.
  • the poor solvent include, but are not limited to, methanol, 2-propanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, and the like. Methanol, ethanol, 2-propanol, Acetone is preferred.
  • the polyamic acid ester which is a polyimide precursor used in the present invention can be produced by the following production method (1), (2) or (3).
  • polyamic acid ester can be manufactured by esterifying the polyamic acid manufactured as mentioned above. Specifically, the polyamic acid and the esterifying agent are reacted in the presence of an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. Can be manufactured.
  • the esterifying agent is preferably one that can be easily removed by purification, and N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide Dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3-p -Tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like.
  • the addition amount of the esterifying agent is preferably 2 to 6 molar equivalents per 1 mol of the polyamic acid repeating unit.
  • organic solvent examples include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or ⁇ -butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide or 1,3-dimethyl- Examples include imidazolidinone.
  • solvent solubility of the polyimide precursor is high, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, or the formulas [D-1] to [D-3] described later
  • the solvent shown by can be used.
  • solvents may be used alone or in combination. Furthermore, even if it is a solvent which does not dissolve a polyimide precursor, you may mix and use it for the said solvent in the range which the produced
  • the solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or ⁇ -butyrolactone in view of polymer solubility. These may be used alone or in combination of two or more. Good.
  • the concentration at the time of production is preferably 1 to 30% by mass and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
  • the polyamic acid ester can be manufactured from tetracarboxylic acid diester dichloride and diamine. Specifically, tetracarboxylic acid diester dichloride and diamine in the presence of a base and an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. It can be produced by reacting.
  • a base pyridine, triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently.
  • the addition amount of the base is preferably 2 to 4 times the molar amount of the tetracarboxylic acid diester dichloride from the viewpoint of easy removal and high molecular weight.
  • the solvent used in the above reaction is preferably N-methyl-2-pyrrolidone or ⁇ -butyrolactone in view of the solubility of the monomer and polymer, and these may be used alone or in combination.
  • the polymer concentration at the time of production is preferably 1 to 30% by mass, more preferably 5 to 20% by mass, from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
  • the solvent used for the production of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent mixing of outside air in a nitrogen atmosphere.
  • Polyamic acid ester can be manufactured by polycondensing tetracarboxylic-acid diester and diamine. Specifically, tetracarboxylic acid diester and diamine are reacted in the presence of a condensing agent, a base, and an organic solvent at 0 to 150 ° C., preferably 0 to 100 ° C., for 30 minutes to 24 hours, preferably 3 to 15 hours. Can be manufactured.
  • condensing agent examples include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazide.
  • Nylmethylmorpholinium O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N , N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, and the like.
  • the addition amount of the condensing agent is preferably 2 to 3 times the molar amount of the tetracarboxylic acid diester.
  • tertiary amines such as pyridine and triethylamine can be used.
  • the amount of the base added is preferably 2 to 4 times the mol of the diamine component from the viewpoint that it can be easily removed and a high molecular weight product can be easily obtained.
  • the reaction proceeds efficiently by adding Lewis acid as an additive.
  • Lewis acid lithium halides such as lithium chloride and lithium bromide are preferable.
  • the addition amount of the Lewis acid is preferably 0 to 1.0 times mol with respect to the diamine component.
  • the production method (1) or (2) is particularly preferable.
  • the polymer solution can be precipitated by injecting the polyamic acid ester solution obtained as described above into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying.
  • a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
  • the diamine represented by the formula (1) may be used as the diamine in the above production method.
  • the molecular weight of the polyimide precursor or polyimide that is a polymer contained in the liquid crystal aligning agent of the present invention is such that when the liquid crystal aligning film is obtained from the liquid crystal aligning agent containing the polymer, the coating film (liquid crystal aligning film)
  • the weight average molecular weight measured by GPC (Gel Permeation Chromatography) method is preferably 2,000 to 500,000, It is more preferably from 000 to 300,000, and even more preferably from 10,000 to 100,000.
  • the liquid crystal aligning agent of this invention contains the polymer (specific polymer) obtained from the diamine which has a structure represented by Formula (1).
  • polymer specific polymer obtained from the diamine which has a structure represented by Formula (1).
  • two or more kinds of specific polymers having different structures may be included within the limit of achieving the effects described in the present invention.
  • other polymers that is, a polymer having no divalent group represented by the formula (1) may be included.
  • polystyrene-phenylmaleimide poly (meta ) Acrylate and the like.
  • the ratio of the specific polymer to the total polymer components is preferably 5% by mass or more, and an example thereof is 5 to 95% by mass.
  • the liquid crystal aligning agent is used for producing a liquid crystal aligning film, and generally takes the form of a coating liquid from the viewpoint of forming a uniform thin film. Also in the liquid crystal aligning agent of this invention, it is preferable that it is a coating liquid containing an above-described polymer component and the organic solvent in which this polymer component is dissolved. At that time, the concentration of the polymer in the liquid crystal aligning agent can be appropriately changed by setting the thickness of the coating film to be formed. From the viewpoint of forming a uniform and defect-free coating film, the content is preferably 1% by mass or more, and from the viewpoint of storage stability of the solution, it is preferably 10% by mass or less. A particularly preferred polymer concentration is 2 to 8% by mass.
  • the organic solvent contained in the liquid crystal aligning agent is not particularly limited as long as the polymer component is uniformly dissolved.
  • Specific examples are N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethyl sulfoxide, ⁇ -butyrolactone, 1,3-dimethyl.
  • -Imidazolidinone methyl ethyl ketone, cyclohexanone, cyclopentanone and the like.
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, or ⁇ -butyrolactone is preferably used.
  • the organic solvent contained in the liquid crystal aligning agent should use the mixed solvent which used together the solvent which improves the applicability
  • a mixed solvent is also preferably used in the liquid crystal aligning agent of the present invention. Specific examples of the organic solvent to be used in combination are listed below, but are not limited to these examples.
  • ethanol isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, 1,2- Etanji 1,2-propanediol, 1,3-propaned
  • D 1 represents an alkyl group having 1 to 3 carbon atoms
  • D 2 represents an alkyl group having 1 to 3 carbon atoms
  • D-3 represents an alkyl group having 1 to 4 carbon atoms.
  • the kind and content of such a solvent are suitably selected according to the coating device, coating conditions, coating environment, etc. of the liquid crystal aligning agent.
  • the liquid crystal aligning agent of the present invention may additionally contain components other than the polymer component and the organic solvent as long as the effects of the present invention are not impaired.
  • additional components include an adhesion aid for increasing the adhesion between the liquid crystal alignment film and the substrate and the adhesion between the liquid crystal alignment film and the sealing material, a crosslinking agent for increasing the strength of the liquid crystal alignment film, and the liquid crystal alignment.
  • examples thereof include dielectrics and conductive materials for adjusting the dielectric constant and electrical resistance of the film. Specific examples of these additional components are as disclosed in various known literatures relating to liquid crystal alignment agents. For example, pages 53 [0105] to 55 of International Publication No. 2015/060357. Ingredients disclosed in [0116] can be mentioned.
  • the liquid crystal aligning film of this invention is obtained from the said liquid crystal aligning agent. If an example of the method of obtaining a liquid crystal aligning film from a liquid crystal aligning agent is given, a liquid crystal aligning agent in the form of a coating solution is applied to a substrate, dried and baked on a film obtained by rubbing or photo-aligning. And a method of performing an alignment treatment.
  • the substrate on which the liquid crystal aligning agent is applied is not particularly limited as long as it is a highly transparent substrate, and a plastic substrate such as an acrylic substrate or a polycarbonate substrate can be used together with a glass substrate or a silicon nitride substrate.
  • a substrate on which an ITO electrode or the like for driving the liquid crystal is formed in terms of simplification of the process.
  • an opaque material such as a silicon wafer can be used as long as it is only on one side of the substrate, and a material that reflects light such as aluminum can be used for the electrode in this case.
  • the application method of the liquid crystal aligning agent is not particularly limited, but industrially, screen printing, offset printing, flexographic printing, ink jet method and the like are common. As other coating methods, there are a dipping method, a roll coater method, a slit coater method, a spinner method, a spray method, and the like, and these may be used according to the purpose.
  • the solvent is evaporated and baked by a heating means such as a hot plate, a thermal circulation oven, an IR (infrared) oven, or the like. Arbitrary temperature and time can be selected for the drying and baking steps after applying the liquid crystal aligning agent.
  • the thickness of the liquid crystal alignment film after firing is not particularly limited, but if it is too thin, the reliability of the liquid crystal display element may be lowered, so that it is preferably 5 to 300 nm, more preferably 10 to 200 nm.
  • the liquid crystal alignment film of the present invention is suitable as a liquid crystal alignment film of a liquid crystal display element of a horizontal electric field type such as an IPS mode or an FFS mode, and particularly useful as a liquid crystal alignment film of an FFS mode liquid crystal display element.
  • the liquid crystal display element of the present invention can be obtained by using a liquid crystal cell by preparing a liquid crystal cell by a known method after obtaining a substrate with a liquid crystal alignment film obtained from the liquid crystal aligning agent.
  • a liquid crystal display element having a passive matrix structure will be described as an example.
  • the liquid crystal display element may be an active matrix structure in which switching elements such as TFTs (Thin Film Transistors) are provided in each pixel portion constituting the image display.
  • TFTs Thin Film Transistors
  • These electrodes can be ITO electrodes, for example, and are patterned so as to display a desired image.
  • an insulating film is provided on each substrate so as to cover the common electrode and the segment electrode.
  • the insulating film can be, for example, a film made of SiO 2 —TiO 2 formed by a sol-gel method.
  • a liquid crystal alignment film is formed on each substrate under the above conditions.
  • an ultraviolet curable sealing material is disposed at a predetermined position on one of the two substrates on which the liquid crystal alignment film is formed, and liquid crystal is disposed at predetermined positions on the liquid crystal alignment film surface.
  • the other substrate is bonded and pressure-bonded so that the liquid crystal alignment film faces, and the liquid crystal is spread on the front surface of the liquid crystal alignment film, and then the entire surface of the substrate is irradiated with ultraviolet rays to cure the sealing material. Get a cell.
  • an opening that can be filled with liquid crystal from the outside is provided when the sealing material is disposed at a predetermined location on one substrate, and the liquid crystal is After the substrates are bonded without being arranged, a liquid crystal material is injected into the liquid crystal cell through an opening provided in the sealing material, and then the opening is sealed with an adhesive to obtain a liquid crystal cell.
  • the liquid crystal material may be injected by a vacuum injection method or a method utilizing capillary action in the atmosphere.
  • liquid crystal material examples include a nematic liquid crystal and a smectic liquid crystal.
  • a nematic liquid crystal is preferable, and either a positive liquid crystal material or a negative liquid crystal material may be used.
  • a polarizing plate is installed. Specifically, it is preferable to attach a pair of polarizing plates to the surfaces of the two substrates opposite to the liquid crystal layer.
  • liquid crystal aligning film and liquid crystal display element of this invention are not limited to said description, as long as the liquid crystal aligning agent of this invention is used, The thing produced by the other well-known method may be used. Processes for obtaining a liquid crystal display element from a liquid crystal aligning agent are also disclosed in a number of documents in addition to, for example, JP-A-2015-135393, page 17 [0074] to page 19 [0081].
  • Viscosity measurement In the following examples or comparative examples, the viscosity of the polyamic acid solution was measured using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.), with a sample amount of 1.1 mL, cone rotor TE-1 (1 ° 34 ′, R24).
  • Example 5 Synthesis of polyamic acid solution (PAA-2) After adding 2.36 g (7 mmol) of (DA-1-1) to a 50 ml four-necked flask equipped with a stirrer and a nitrogen inlet tube, 24.6 g of NMP was added, and nitrogen was added. The solution was stirred and dissolved while feeding. While stirring this diamine solution, 0.61 g (2.8 mmol) of CA-1 and 0.75 g (3.9 mmol) of CA-2 were added, and 2.7 g of NMP was added, and further, at 50 ° C. for 12 hours. A polyamic acid solution (PAA-2) was obtained by stirring. The viscosity of this polyamic acid solution at 25 ° C. was 230 mPa ⁇ s.
  • Example 6 Preparation of Liquid Crystal Alignment Agent (Q-1) 7.5 g of the polyamic acid solution (PAA-1) obtained in Example 4 was collected and stirred with stirring, NMP 5.6 g, BCS 6.0 g, 3-aminopropyltriethoxy 0.9 g of NMP solution containing 1% by weight of silane was added and further stirred at room temperature for 2 hours to obtain a liquid crystal aligning agent (Q-1).
  • Example 7 Preparation of Liquid Crystal Alignment Agent (Q-2) 7.5 g of the polyamic acid solution (PAA-2) obtained in Example 5 was collected and stirred while stirring 5.6 g of NMP, 6.0 g of BCS, 3-aminopropyltriethoxy 0.9 g of NMP solution containing 1% by weight of silane was added, and further stirred at room temperature for 2 hours to obtain a liquid crystal aligning agent (Q-2).
  • This liquid crystal alignment film is rubbed (roller diameter: 120 mm, roller rotation speed: 1000 rpm, moving speed: 20 mm / sec, indentation length: 0.4 mm) with a rayon cloth (YA-20R, manufactured by Yoshikawa Chemical), and then into pure water.
  • the substrate was cleaned by irradiating with ultrasonic waves for 1 minute, and after removing water droplets by air blow, it was dried at 80 ° C. for 15 minutes to obtain a substrate with a liquid crystal alignment film.
  • a substrate with electrodes was prepared.
  • the substrate is a glass substrate having a size of 30 mm ⁇ 35 mm and a thickness of 0.7 mm.
  • an IZO electrode having a solid pattern constituting a counter electrode as a first layer is formed on the substrate.
  • a SiN (silicon nitride) film formed by the CVD method is formed as the second layer.
  • the second layer SiN film has a thickness of 500 nm and functions as an interlayer insulating film.
  • a comb-like pixel electrode formed by patterning an IZO film as the third layer is arranged to form two pixels, a first pixel and a second pixel. ing.
  • the size of each pixel is 10 mm long and about 5 mm wide.
  • the first-layer counter electrode and the third-layer pixel electrode are electrically insulated by the action of the second-layer SiN film.
  • the pixel electrode of the third layer has a comb-like shape configured by arranging a plurality of dog-shaped electrode elements having a bent central portion, as in the drawing described in Japanese Patent Application Laid-Open No. 2014-77845. .
  • the width in the short direction of each electrode element is 3 ⁇ m, and the distance between the electrode elements is 6 ⁇ m. Since the pixel electrode forming each pixel is configured by arranging a plurality of bent-shaped electrode elements having a bent central portion, the shape of each pixel is not a rectangular shape, and the central portion is similar to the electrode element. It has a shape similar to that of a bold, bent, bent at Each pixel is divided into upper and lower portions with a central bent portion as a boundary, and has a first region on the upper side of the bent portion and a second region on the lower side.
  • the formation directions of the electrode elements of the pixel electrodes constituting them are different. That is, when the rubbing direction of the liquid crystal alignment film described later is used as a reference, the electrode element of the pixel electrode is formed to form an angle of + 10 ° (clockwise) in the first region of the pixel, and the pixel in the second region of the pixel.
  • the electrode elements of the electrode are formed so as to form an angle of ⁇ 10 ° (clockwise). That is, in the first region and the second region of each pixel, the directions of the rotation operation (in-plane switching) of the liquid crystal induced by the voltage application between the pixel electrode and the counter electrode are mutually in the substrate plane. It is comprised so that it may become a reverse direction.
  • the polyimide film is rubbed with a rayon cloth in a predetermined rubbing direction (roll diameter 120 mm, rotation speed 500 rpm, moving speed 30 mm / sec, pushing amount 0.3 mm), and then irradiated with ultrasonic waves in pure water for 1 minute. And dried at 80 ° C. for 10 minutes.
  • a liquid crystal (MLC-3019, manufactured by Merck & Co., Inc.) was vacuum-injected into the empty cell at room temperature, and the injection port was sealed to obtain an anti-parallel alignment liquid crystal cell.
  • the obtained liquid crystal cell constitutes an FFS mode liquid crystal display element. Thereafter, the obtained liquid crystal cell was heated at 120 ° C. for 1 hour and allowed to stand overnight before being used for each evaluation.
  • the rotation angle when the liquid crystal cell was rotated from the angle at which the second region of the first pixel became darkest to the angle at which the first region became darkest was calculated as an angle ⁇ .
  • the second area was compared with the first area, and a similar angle ⁇ was calculated.
  • the average value of the angle ⁇ values of the first pixel and the second pixel was calculated as the angle ⁇ of the liquid crystal cell.
  • a liquid crystal cell having an angle ⁇ value of 0.15 ° or less was evaluated as good and a value higher than 0.15 ° was evaluated as defective.
  • the liquid crystal cell is placed between two polarizing plates arranged so that their polarization axes are orthogonal to each other, and the pixel electrode and the counter electrode are short-circuited to be at the same potential, and the LED is displayed from under the two polarizing plates.
  • the angle of the liquid crystal cell was adjusted so that the brightness of the LED backlight transmitted light measured on the two polarizing plates was minimized by irradiating the backlight.
  • the VT characteristics voltage-transmittance characteristics
  • an AC voltage with a relative transmittance of 23% is measured. Calculated. Since this AC voltage corresponds to a region where the change in luminance with respect to the voltage is large, it is convenient to evaluate the accumulated charge via the luminance.
  • a rectangular wave having an AC voltage with a relative transmittance of 23% and a frequency of 30 Hz was applied for 5 minutes, and then a +1.0 V DC voltage was superimposed and driven for 30 minutes. Thereafter, the DC voltage was turned off, and only a rectangular wave having an AC voltage with a relative transmittance of 23% and a frequency of 30 Hz was applied for 30 minutes.
  • Examples 1 to 4 Using the liquid crystal aligning agents Q1 to Q4 of Examples 6 to 7 and Comparative Examples 3 to 4, ion density measurement, evaluation of stability of liquid crystal alignment, and evaluation of relaxation characteristics of accumulated charges were performed. The results are shown in Table 1. In the table, liquid crystal cells produced using the liquid crystal aligning agents Q1 to Q2 are designated as Examples 8 to 9, respectively, and liquid crystal cells produced using the liquid crystal aligning agents Q3 to Q4 are designated as Comparative Examples 5 to 6, respectively.
  • the liquid crystal alignment film of the present invention can obtain display performance with excellent afterimage characteristics and contrast, particularly in an IPS drive type or FFS drive type liquid crystal display element that requires rubbing treatment. Therefore, it is particularly useful as a liquid crystal alignment film used in IPS drive type or FFS drive type liquid crystal display elements, multifunctional mobile phones (smartphones), tablet personal computers, liquid crystal televisions, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Polymers & Plastics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

下記式(1)で表される構造を有するジアミンから得られる重合体を含む液晶配向剤。Rは水素原子又は一価の有機基を示し、R1は水素原子又は炭素数1~5の直鎖又は分岐してもよい、アルキル基若しく又はアリール基を示し、同じマレイミド環上に2つあるR1は互いに同一でも、異なっていてもよく、2つあるR1が互いに結合して炭素数3~6のアルキレンを形成してもよく、W1は単結合又は2価の有機基を示し、W2は2価の有機基を示し、Ar1は芳香族環を示し、L1は単結合、カルボニル、スルホニル又は炭素数1~20のアルキレンを示す。

Description

液晶配向剤、液晶配向膜及び液晶表示素子
 本発明は、液晶配向膜に使用する重合体の原料として有用である新規なジアミン化合物(本明細書では、単に「ジアミン」とも称する)、該ジアミンを用いて得られる重合体(ポリアミック酸、ポリアミック酸エステル、及びポリイミド等)、液晶配向剤、液晶配向膜、及び液晶表示素子に関する。
 液晶表示素子は、従来からパーソナルコンピュータや携帯電話、テレビジョン受像機等の表示部として幅広く用いられており、その駆動方式としては、TN方式、VA方式等の縦電界方式や、IPS方式、フリンジフィールドスィッチング(Fringe Field Switching:以下、「FFS」という)方式等の横電界方式が知られている。一般に、基板の片側のみに電極を形成させ、基板と平行方向に電界を印加して液晶を駆動させる横電界方式では、上下基板に形成された電極に電圧を印加して液晶を駆動させる縦電界方式と比べ、広い視野角特性を有する等、高品位な表示が可能な液晶表示素子が得られやすい。液晶を一定方向に配向させるための手法として、基板上にポリイミド等の高分子膜を形成し、この表面を布で擦る、いわゆるラビング処理を行う方法がある。
 従来からの課題としては、アクティブマトリクス構造由来で印加される、直流電圧成分による電荷の蓄積等が挙げられる。液晶表示素子内に電荷が過度に蓄積すると、液晶配向の乱れや残像の発生により、表示に悪影響を与え、液晶表示素子の表示品位を低下させる。あるいは、電荷が蓄積された状態で液晶表示素子を駆動した場合、その駆動直後において、液晶分子の制御が正常に行われずにフリッカ(ちらつき)等を生じてしまう。
 また、液晶表示素子の表示品位を向上させるために液晶配向膜に要求される特性としては、イオン密度等が挙げられる。イオン密度が過度に高いと、フレーム期間中に液晶にかかる電圧が低下し、結果として輝度が低下して正常な諧調表示に支障をきたすことがある。また、たとえ初期のイオン密度が低くても、高温加速試験後のイオン密度が高くなってしまう場合もある。このような、残留電荷やイオン性不純物に伴う、長期信頼性の低下や残像の発生は、液晶の表示品位を低下させる原因になる。
 ポリイミド系の液晶配向膜においては、上記のような要求にこたえるために、種々の提案がなされている。例えば、直流電圧によって発生する残像が消えるまでの時間の短い液晶配向膜として、ポリアミド酸やイミド基含有ポリアミド酸に加えて、所定の構造の3級アミンを含有する液晶配向剤を使用すること(例えば、特許文献1参照)や、ピリジン骨格等を有する所定のジアミン化合物を原料に使用した、可溶性ポリイミドを含有する液晶配向剤を使用すること(例えば、特許文献2参照)が提案されている。
特開平9-316200号公報 特開平10-104633号公報
 液晶を配向させる方法としてラビング処理は工業的に広く用いられているが、用いる液晶配向膜によってはラビング方向と液晶の配向方向が一致しない、いわゆるツイスト角が発現するという現象が起こりうる。すなわち、横電界素子においては電圧を印加していない状態で黒表示を示すが、本現象により電圧を印加していない状態でも輝度が上がってしまい、その結果表示コントラストが低下してしまうという問題があった。
 本発明は、液晶表示素子中のイオン密度を低く抑えるとともに蓄積した電荷を速く緩和させることが可能であり、特に横電界駆動方式において問題となる、ラビング方向と液晶の配向方向のずれを抑制することができる液晶配向膜を提供することを目的とする。また、本発明は、そのような液晶配向膜が得られる、ジアミン、重合体、及び液晶配向剤を提供することを目的とする。更に、本発明は、そのような液晶配向膜を具備する液晶表示素子を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意検討を行った結果、液晶配向剤に含まれる重合体中に特定構造(「特定構造」については後述する)を導入することで、種々の特性が同時に改善されることを見出し、本発明を完成させた。本発明は、かかる知見に基づくものであり、下記を要旨とする。
 1. 下記式(1)で表される構造を有するジアミンから得られる重合体を含む液晶配向剤。
Figure JPOXMLDOC01-appb-C000008
 Rは水素原子又は一価の有機基を示し、Rは水素原子又は炭素数1~5の直鎖又は分岐してもよい、アルキル基若しくはアリール基を示し、同じマレイミド環上に2つあるRは互いに同一でも、異なっていてもよく、2つあるRが互いに結合して炭素数3~6のアルキレンを形成してもよく、Wは単結合又は2価の有機基を示し、Wは2価の有機基を示し、Arは芳香族環を示し、Lは単結合、カルボニル、スルホニル又は炭素数1~20のアルキレンを示す。
 2. 前記Arが1,3-フェニレン基又は1,4-フェニレン基である1.に記載の液晶配向剤。
 3. 前記Wが単結合である1.又は2.に記載の液晶配向剤。
 4. 前記重合体が、下記式(3)で表される構造単位を含むポリイミド前駆体、及びそのイミド化物であるポリイミドから選ばれる少なくとも1種である1.~3.のいずれか一つに記載の液晶配向剤。
Figure JPOXMLDOC01-appb-C000009
 Xはテトラカルボン酸誘導体に由来する4価の有機基を示し、Yは式(1)の構造を含むジアミンに由来する2価の有機基を示し、Rは水素原子又は炭素数1~5のアルキル基を示す。
 5. 前記Xの構造が下記構造から選ばれる少なくとも1種である、4.に記載の液晶配向剤。
Figure JPOXMLDOC01-appb-C000010
 6. 前記重合体が、下記式(4)で表される構造単位を更に含む、ポリイミド前駆体、及びそのイミド化物であるポリイミドから選ばれる少なくとも1種である1.~5.のいずれか一つに記載の液晶配向剤。
Figure JPOXMLDOC01-appb-C000011
 Xはテトラカルボン酸誘導体に由来する4価の有機基を示し、Yは式(1)の構造を主鎖方向に含まないジアミンに由来する2価の有機基を示し、R14は、それぞれ独立に水素原子又は炭素数1~5のアルキル基を示し、R15はそれぞれ独立に水素原子又は炭素数1~4のアルキル基を示す。
 7.前記Yが下記式(11)で表される6.に記載の液晶配向剤。
Figure JPOXMLDOC01-appb-C000012
 R32は単結合又は2価の有機基を示し、R33は-(CH-で表される構造を示し、rは2~10の整数を示し、任意の-CH-はそれぞれ隣り合わない条件でエーテル、エステル、アミド、ウレア、カルバメート結合に置き換えられてもよく、R34は単結合又は2価の有機基を示し、ベンゼン環上の任意の水素原子は1価の有機基で置き換えられてもよい。
 8.前記式(3)で表される構造単位が、前記重合体の全構造単位に対して10モル%以上である、4.~7.のいずれか一つに記載の液晶配向剤。
 9. 1.~8.のいずれか1つに記載の液晶配向剤から得られる液晶配向膜。
 10. 9.に記載の液晶配向膜を具備する液晶表示素子。
 11. 下記式(1)で表される構造を有するジアミンから得られる重合体。
Figure JPOXMLDOC01-appb-C000013
 Rは水素原子又は一価の有機基を示し、Rは水素原子又は炭素数1~5の直鎖又は分岐してもよい、アルキル基若しく又はアリール基を示し、同じマレイミド環上に2つあるRは互いに同一でも、異なっていてもよく、2つあるRが互いに結合して炭素数3~6のアルキレンを形成してもよく、Wは単結合又は2価の有機基を示し、Wは2価の有機基を示し、Arは芳香族環を示し、Lは単結合、カルボニル、スルホニル又は炭素数1~20のアルキレンを示す。
 12. 下記式(1)で表される構造を有するジアミンから得られるジアミン。
Figure JPOXMLDOC01-appb-C000014
 Rは水素原子又は一価の有機基を示し、Rは水素原子又は炭素数1~5の直鎖又は分岐してもよい、アルキル基若しく又はアリール基を示し、同じマレイミド環上に2つあるRは互いに同一でも、異なっていてもよく、2つあるRが互いに結合して炭素数3~6のアルキレンを形成してもよく、Wは単結合又は2価の有機基を示し、Wは2価の有機基を示し、Arは芳香族環を示し、Lは単結合、カルボニル、スルホニル又は炭素数1~20のアルキレンを示す。
 本発明の液晶配向剤を用いることにより、液晶表示素子中のイオン密度を低く抑えるとともに蓄積した電荷を速く緩和させることが可能であり、特に横電界駆動方式において問題となる、ラビング方向と液晶の配向方向のずれを抑制することができる液晶配向膜が得られる。本発明の、上記の課題を解決できるメカニズムについては、概ね次のように考えられる。本発明の重合体に含まれる上記式(1)の構造は、窒素原子を有する。これにより、例えば液晶配向膜中において、イオン性不純物を補足する能力を備えるとともに、電荷の移動を促進させることができ、蓄積電荷の緩和を促進させることができる。
 また、本発明のジアミンを用いることで、上記重合体及び上記液晶配向剤が得られる。また、本発明の上記液晶配向膜を具備することで、各種特性に優れたかかる液晶表示素子が得られる。
 本発明の液晶配向剤は、上記式(1)で表される構造(以下、特定構造ともいう)を有するジアミンから得られる重合体(以下、特定重合体ともいう)を含む。
 <特定構造を有するジアミン>
 上記式(1)中、Rは水素原子又は一価の有機基を示し、Rは水素原子又は炭素数1~5の直鎖又は分岐してもよい、アルキル基若しくはアリール基を示し、同じマレイミド環上に2つあるRは互いに同一でも、異なっていてもよく、2つあるRが互いに結合して炭素数3~6のアルキレンを形成してもよく、Wは単結合又は2価の有機基を示し、Wは2価の有機基を示し、Arは芳香族環を示し、Lは単結合、カルボニル、スルホニル又は炭素数1~20のアルキレンを示す。
 Rとしては、好ましくは、水素原子又は炭素数1~3の直鎖アルキル基であり、より好ましくは水素原子、又はメチル基である。また、Rは熱により脱離反応を生じ水素原子に置き換わる保護基であってもよく、液晶配向剤の保存安定性の点から、室温において脱離せず、好ましくは、80℃以上の熱で脱離する保護基であり、より好ましくは100℃以上での熱で脱離する保護基である。この例としては1,1-ジメチル-2-クロロエトキシカルボニル基、1,1-ジメチル-2-シアノエトキシカルボニル基、tert-ブトキシカルボニル基が挙げられ、好ましくはtert-ブトキシカルボニル基である。
 Rは、好ましくは水素原子、メチル基、エチル基、iso-プロピル基、又はフェニル基であり、より好ましくは水素原子、メチル基、又はフェニル基である。また、2つあるRが互いに結合して形成する炭素数3~6のアルキレンとしては、好ましくは-(CH-、-(CH-、-(CH-であり、より好ましくは-(CH-である。
 Wは単結合、-O-、-COO-、-OCO-、-(CH-、-O(CHO-、-CONH-、又は-NHCO-から選ばれる2価の有機基が好ましく、pは1~10の自然数を示し、qは1~10の自然数を示す。Arとしては1,3-フェニレン基、又は1,4-フェニレン基であるのが好ましい。
 Lは単結合、カルボニル、スルホニル又は炭素数1~20のアルキレンを示す。Lの炭素数1~20のアルキレンとしては、直鎖であっても分岐であってもよく、-(CH2-(ただし、nは1~20)で表される直鎖のアルキレンや、1-メチルメタン-1,1-ジイル、1-エチルメタン-1,1-ジイル、1-プロピルメタン-1,1-ジイル、1-メチルエタン-1,2-ジイル、1-エチルエタン-1,2-ジイル、1-プロピルエタン-1,2-ジイル、1-メチルプロパン-1,3-ジイル、1-エチルプロパン-1,3-ジイル、1-プロピルプロパン-1,3-ジイル、2-メチルプロパン-1,3-ジイル、2-エチルプロパン-1,3-ジイル、2-プロピルプロパン-1,3-ジイル、1-メチルブタン-1,4-ジイル、1-エチルブタン-1,4-ジイル、1-プロピルブタン-1,4-ジイル、2-メチルブタン-1,4-ジイル、2-エチルブタン-1,4-ジイル、2-プロピルブタン-1,4-ジイル、1-メチルペンタン-1,5-ジイル、1-エチルペンタン-1,5-ジイル、1-プロピルペンタン-1,5-ジイル、2-メチルペンタン-1,5-ジイル、2-エチルペンタン-1,5-ジイル、2-プロピルペンタン-1,5-ジイル、3-メチルペンタン-1,5-ジイル、3-エチルペンタン-1,5-ジイル、3-プロピルペンタン-1,5-ジイル、1-メチルへキサン-1,6-ジイル、1-エチルへキサン-1,6-ジイル、2-メチルへキサン-1,6-ジイル、2-エチルへキサン-1,6-ジイル、3-メチルへキサン-1,6-ジイル、3-エチルへキサン-1,6-ジイル、1-メチルヘプタン-1,7-ジイル、2-メチルヘプタン-1,7-ジイル、3-メチルヘプタン-1,7-ジイル、4-メチルヘプタン-1,7-ジイル、1-フェニルメタン-1,1-ジイル、1-フェニルエタン-1,2-ジイル、1-フェニルプロパン-1,3-ジイル等の分岐アルキレンが挙げられる。これら直鎖又は分岐のアルキレンは、酸素原子又は硫黄原子が互いに隣り合わない条件で、酸素原子又は硫黄原子により1~5回中断されていてもよい。
 2価の有機基Wは、下記式[W-1]~式[W-152]で表される。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
 中でも、イオン密度抑制と液晶配向安定性の両立という観点で、W-7、W-20、W-21、W-23、W-26、W-39、W-51、W-52、W-53、W-54、W-55、W-59、W-60、W-61、W-64、W-65、W-67、W-68、W-69、W-70、W-71が好ましい。
 <特定ジアミンの製造方法>
 本発明の、特定構造を有するジアミン(本明細書では「特定ジアミン」と称することがある)を合成する方法は特に限定されないが、例えば、下記式(A1)で表されるニトロマレイミド化合物と、下記式(B1)で表されるジアミノ化合物とを反応させて下記式(C1)で表されるアミノニトロ化合物を得て、これを還元する方法を挙げることができる。
Figure JPOXMLDOC01-appb-C000033
 R、R、L、Ar、W及びWの定義は、上記式(1)と同様である。
 式(B1)で表される化合物の使用量は、式(A1)で表される化合物の1モルに対して、1~2モルであるのが好ましく、1~1.2モルであるのが更に好ましい。式(B1)で表される化合物を過剰量とすることにより、反応を円滑に進行させ、なおかつ副生物を抑制することができる。
 本反応は、好ましくは溶媒中で行われる。溶媒は、各原料と反応しない溶媒であれば、制限なく使用することができる。例えば、非プロトン性極性有機溶媒(DMF、DMSO、DMAc、NMP等);エーテル類(EtO、i-PrO、TBME、CPME、THF、ジオキサン等);脂肪族炭化水素類(ペンタン、へキサン、ヘプタン、石油エーテル等);芳香族炭化水素類(ベンゼン、トルエン、キシレン、メシチレン、クロロベンゼン、ジクロロベンゼン、ニトロベンゼン、テトラリン等);ハロゲン系炭化水素類(クロロホルム、ジクロロメタン、四塩化炭素、ジクロロエタン等);低級脂肪酸エステル類(酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル等);ニトリル類(アセトニトリル、プロピオニトリル、ブチロニトリル等);が使用できる。
 これらの溶媒は、反応の起こり易さ等を考慮して適宜選択することができ、1種単独で又は2種以上混合して用いることができる。必要に応じて、適当な脱水剤や乾燥剤を用いて溶媒を乾燥し、非水溶媒として用いることもできる。溶媒の使用量(反応濃度)は特に限定されないが、ビスマレイミド化合物に対し、0.1~100質量倍である。好ましくは0.5~30質量倍であり、更に好ましくは1~10質量倍である。反応温度は特に限定されないが、-100℃から使用する溶媒の沸点までの範囲、好ましくは、-50~150℃である。反応時間は、通常0.05~350時間、好ましくは0.5~100時間である。
 本反応は必要に応じて、無機塩基や有機塩基の存在下において進行させることができる。反応に使用する塩基としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸水素ナトリウム、炭酸水素カリウム、燐酸カリウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸セシウム等の無機塩基;tert-ブトキシナトリウム、tert-ブトキシカリウム、水素化ナトリウム、水素化カリウム等の塩基;トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリイソプロピルアミン、トリブチルアミン、ジイソプロピルエチルアミン、ピリジン、キノリン、コリジン等のアミンを使用できる。なかでも、トリエチルアミン、ピリジン、tert-ブトキシナトリウム、tert-ブトキシカリウム、水素化ナトリウム、水素化カリウム等が好ましい。塩基の使用量としては特に限定されないが、ビスマレイミド化合物に対し、0~100質量倍である。好ましくは0~30質量倍であり、更に好ましくは0~10質量倍である。
 式(C1)で表される化合物を還元して式(1)で表される特定ジアミンを製造する際の条件を以下に述べる。上記式(C1)で表される化合物の還元の方法としては、Fe、Sn、Znやこれらの塩とプロトンの共存下で行う還元反応がある。Fe、Sn、Znやこれらの塩の使用量は、好ましくは、上記式(1)で表される化合物に対して1~100当量であり、特に好ましくは3~50当量である。
 この場合の反応溶媒としては、反応条件下において、目的とする反応を妨げない溶媒であればいずれも使用できる。例えば、水;メチルアルコール、エチルアルコール、tert-ブチルアルコール等のアルコール溶媒;ジメチルホルムアミド、ジメチルスルホキシド、ジメチルアセトアミド、N-メチルピロリドン等の非プロトン性極性有機溶媒;ジエチルエーテル、ジイソプロピルエーテル、tert-ブチルメチルエーテル、シクロペンチルメチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル;ペンタン、へキサン、ヘプタン、石油エーテル等の脂肪族炭化水素;ベンゼン、トルエン、キシレン、メシチレン、テトラリン等の芳香族炭化水素、クロロホルム、ジクロロメタン、四塩化炭素、ジクロロエタン等のハロゲン系炭化水素;酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル等の低級脂肪酸エステル;アセトニトリル、プロピオニトリル、ブチロニトリル等のニトリルが使用できる。これらの溶媒は、反応の起こり易さ等を考慮して適宜選択することができ、1種単独で又は2種以上混合して用いることができる。また場合によっては、上記溶媒は、適当な脱水剤や乾燥剤を用いて水を含まない溶媒として用いることもできる。溶媒の使用量(反応濃度)は特に限定されないが、上記式(C1)で表される化合物に対して0.1~100質量倍である。好ましくは0.5~50質量倍であり、更に好ましくは3~30質量倍である。
 更に、反応をより効果的に進行させるため、加圧下で反応を実施することもできる。この場合、ベンゼン核の還元を避けるため、好ましくは20気圧(kgf)程度の加圧範囲、より好ましくは10気圧までの範囲で反応を実施する。更に、塩酸、硫酸、蟻酸、酢酸等の酸、及びそれらの塩を共存させてもよい。これらの使用量は特に限定されないが、上記式(C1)で表される化合物に対して、0~10質量倍である。好ましくは0~5質量倍であり、更に好ましくは0~3質量倍である。
 反応温度は、好ましくは、-100℃以上から使用する反応溶媒の沸点の温度までの温度範囲を選ぶことができるが、より好ましくは、-50~150℃、特に好ましくは0~100℃である。反応時間は、0.1~1000時間、より好ましくは1~200時間である。
 また、上記式(C1)で表される化合物の還元の方法としては、触媒として、パラジウム-活性炭や白金-活性炭等を利用する水素添加反応、蟻酸を水素源とする還元反応、ヒドラジンを水素源とする反応等がある。また、これらの反応を組み合わせて実施することもできる。還元反応に用いられる触媒は、市販品として入手できる活性炭担持金属が好ましく、例えば、パラジウム-活性炭、白金-活性炭、ロジウム-活性炭等が挙げられる。また、水酸化パラジウム、酸化白金、ラネーニッケル等、必ずしも活性炭担持型の金属触媒でなくてもよい。一般的に広く使用されているパラジウム-活性炭や白金-活性炭が、良好な結果が得られるので好ましい。これら触媒の使用量は、いわゆる触媒量でよく、好ましくは、上記式(C1)で表される化合物に対して20モル%以下であり、特に好ましくは10モル%以下である。
 この場合の反応溶媒としては、反応条件下において、目的とする反応を妨げない溶媒であればいずれも使用できる。例えば、メチルアルコール、エチルアルコール、tert-ブチルアルコール等のアルコール溶媒;ジメチルホルムアミド、ジメチルスルホキシド、ジメチルアセトアミド、N-メチルピロリドン等の非プロトン性極性有機溶媒;ジエチルエーテル、イソプロピルエーテル、tert-ブチルメチルエーテル、シクロペンチルメチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル;ペンタン、へキサン、ヘプタン、石油エーテル等の脂肪族炭化水素;ベンゼン、トルエン、キシレン、メシチレン、テトラリン等の芳香族炭化水素、クロロホルム、ジクロロメタン、四塩化炭素、ジクロロエタン等のハロゲン系炭化水素;酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル等の低級脂肪酸エステル;アセトニトリル、プロピオニトリル、ブチロニトリル等のニトリルが使用できる。これらの溶媒は、反応の起こり易さ等を考慮して適宜選択することができ、1種単独で又は2種以上混合して用いることができる。また場合によっては、上記溶媒は、適当な脱水剤や乾燥剤を用いて水を含まない溶媒として用いることもできる。溶媒の使用量(反応濃度)は特に限定されないが、上記式(C1)で表される化合物に対して、0.1~100質量倍である。好ましくは0.5~50質量倍であり、更に好ましくは3~30質量倍である。反応温度は特に限定されないが、-100℃から使用する溶媒の沸点までの範囲、好ましくは、-50~150℃である。反応時間は、通常0.05~350時間、好ましくは0.5~100時間である。
 還元反応をより効果的に進行させるため、活性炭の共存下で反応を実施することもできる。このとき、使用する活性炭の量は特に限定されないが、ジニトロ化合物(C1)に対して1~30質量%の範囲が好ましく、10~20質量%がより好ましい。同様な理由により、加圧下で反応を実施する場合もある。この場合、ベンゼン核の還元を避けるため、20気圧までの加圧範囲で行う。好ましくは10気圧までの範囲で反応を実施する。上記に例示の還元反応のうち、上記式(C1)で表される化合物の構造と還元反応の反応性を考慮すると、水素添加反応の使用が好ましい。
 また、本発明の特定ジアミンを得るための方法としては、下記式(A1)で表されるマレイミド化合物と、下記式(B2)で表されるアミノニトロ化合物とを反応させて下記式(C2)で表されるジニトロ化合物を得て、これを還元する方法を挙げることができる。
Figure JPOXMLDOC01-appb-C000034
 式(B2)で表される化合物と式(A1)で表される化合物との反応条件は、上記式(B1)で表される化合物と式(A1)で表される化合物との反応条件に準ずる。また、式(C2)で表されるジニトロ化合物を還元して式(1)で表されるジアミンを得る際の反応条件は、上記式(C1)で表される化合物を還元して式(1)で表される特定ジアミンを製造する際の条件に準ずる。
 また、本発明の特定ジアミンを得るための方法としては、下記式(A2)で表されるマレイミド化合物と、下記式(B2)で表されるアミノニトロ化合物とを反応させて下記式(C3)で表されるアミノニトロ化合物を得て、これを還元する方法を挙げることができる。
Figure JPOXMLDOC01-appb-C000035
 式(B2)で表される化合物と式(A2)で表される化合物との反応条件は、上記式(B1)で表される化合物と式(A1)で表される化合物との反応条件に準ずる。また、式(C3)で表されるアミノニトロ化合物を還元して式(1)で表されるジアミンを得る際の反応条件は、上記式(C1)で表される化合物を還元して式(1)で表される特定ジアミンを製造する際の条件に準ずる。
 また、本発明の特定ジアミンを得るための方法としては、下記式(A2)で表されるマレイミド化合物と、下記式(B1)で表されるジアミノ化合物とを反応させて(1)を得る方法を挙げることができる。
Figure JPOXMLDOC01-appb-C000036
 式(B1)で表される化合物と式(A2)で表される化合物との反応条件は、式(B1)で表される化合物と式(A1)で表される化合物との反応条件に準ずる。
 Rとして1価の有機基を導入したい場合は、上記式(C2)で表されるジニトロ化合物においてRが水素原子である化合物を、アミン類と反応が可能な化合物と反応させればよい。そのような化合物としては、例えば、酸ハライド、酸無水物、イソシアネート類、エポキシ類、オキセタン類、ハロゲン化アリール類、ハロゲン化アルキル類が挙げられ、また、アルコールの水酸基をOMs、OTf、OTs等の脱離基に置換したアルコール類等が利用できる。
 NH基に1価の有機基を導入する方法には、特に制限はないが、適当な塩基存在下で酸ハライドを反応させる方法が挙げられる。酸ハライドの例としては、アセチルクロリド、プロピオン酸クロリド、クロロギ酸メチル、クロロギ酸エチル、クロロギ酸n-プロピル、クロロギ酸i-プロピル、クロロギ酸n-ブチル、クロロギ酸i-ブチル、クロロギ酸t-ブチル、クロロギ酸ベンジル、及びクロロギ酸-9-フルオレニルが挙げられる。塩基の例としては前述の塩基を用いることができる。反応溶媒、反応温度は、前記の記載に準ずる。
 NH基に酸無水物を反応させて1価の有機基を導入してもよく、酸無水物の例としては、無水酢酸、無水プロピオン酸、二炭酸ジメチル、二炭酸ジエチル、二炭酸ジターシャリーブチル、二炭酸ジベンジル等が挙げられる。反応を促進させるために触媒を入れてもよく、ピリジン、コリジン、N,N-ジメチル-4-アミノピリジン等を使用してもよい。触媒量は上記式(C2)で表されるジニトロ化合物においてRが水素原子である化合物の1モルに対し、0.0001~1モルである。反応溶媒、反応温度は、前記の記載に準ずる。
 NH基にイソシアネート類を反応させて1価の有機基を導入してもよく、イソシアネート類の例としては、メチルイソシアネート、エチルイソシアネート、n-プロピルイソシアネート、フェニルイソシアネート等が挙げられる。反応溶媒、反応温度は、前記の記載に準ずる。
 NH基にエポキシ化合物類やオキセタン化合物類を反応させて1価の有機基を導入してもよく、エポキシ類やオキセタン類の例としては、エチレンオキシド、プロピレンオキシド、1,2-ブチレンオキシド、トリメチレンオキシド等が挙げられる。反応溶媒、反応温度は、前記の記載に準ずる。
 NH基へ金属触媒と配位子と塩基存在下、ハロゲン化アリール類を反応させて1価の有機基を導入してもよく、ハロゲン化アリールの例としては、ヨードベンゼン、ブロモベンゼン、クロロベンゼン等が挙げられる。金属触媒の例としては、酢酸パラジウム、塩化パラジウム、塩化パラジウム-アセトニトリル錯体、パラジウム-活性炭、ビス(ジベンジリデンアセトン)パラジウム、トリス(ジベンジリデンアセトン)ジパラジウム、ビス(アセトニトリル)ジクロロパラジウム、ビス(ベンゾニトリル)ジクロロパラジウム、CuCl、CuBr、CuI、CuCN等が挙げられるが、これらに限定されない。配位子の例としては、トリフェニルホスフィン、トリ-o-トリルホスフィン、ジフェニルメチルホスフィン、フェニルジメチルホスフィン、1,2-ビス(ジフェニルホスフィノ)エタン、1,3-ビス(ジフェニルホスフィノ)プロパン、1,4-ビス(ジフェニルホスフィノ)ブタン、1,1’-ビス(ジフェニルホスフィノ)フェロセン、トリメチルホスファイト、トリエチルホスファイト、トリフェニルホスファイト、トリ-tert-ブチルホスフィン等が挙げられるが、これらに限定されない。塩基の例としては前述の塩基を用いることができる。反応溶媒、反応温度は、前記の記載に準ずる。
 NH基へ適当な塩基存在下でアルコールの水酸基をOMs、OTf、OTs等の脱離基に置換したアルコール類を反応させて1価の有機基を導入してもよく、アルコール類の例としては、メタノール、エタノール、1-プロパノール等が挙げられ、これらのアルコール類と、メタンスルホニルクロリド、トリフルオロメタンスルホニルクロリド、パラトルエンスルホン酸クロリド等とを反応させることで、OMs、OTf、OTs等の脱離基に置換されたアルコールを得ることができる。塩基の例としては前述の塩基を用いることができる。反応溶媒、反応温度は、前記の記載に準ずる。
 NH基に適当な塩基存在下、ハロゲン化アルキルを反応させて1価の有機基を導入してもよく、ハロゲン化アルキル類の例としては、ヨウ化メチル、ヨウ化エチル、ヨウ化n-プロピル、臭化メチル、臭化エチル、臭化n-プロピル等が挙げられる。塩基の例としては前述の塩基に加え、カリウム-tert-ブトキシド、ナトリウム-tert-ブトキシド、等の金属アルコキシド類を用いることができる。反応溶媒、反応温度及び反応時間等の反応条件は、前記の記載に準ずる。
 上記のアミン類と反応が可能な化合物の使用量は、上記式(C2)で表されるジニトロ化合物においてRが水素原子である化合物1.0モル当量に対して、1.0~3.0モル当量程度とすることができる。好ましくは2.0~2.5モル当量の範囲がよい。また、上記のアミン類と反応が可能な化合物は単独又は組み合わせて使用することができる。
 なお、式(1)で表されるジアミン化合物に、不斉点に由来する異性体が存在する場合、本願においては、各異性体及びその混合物のいずれも式(1)で表されるジアミンに含まれる。また、式(1)の同じマレイミド環における2つのRが互いに異なっている場合、式(1)で表されるジアミン化合物にはRの置換位置が異なるが、本願においては異性体も、それらの混合物も全て式(1)で表されるジアミンに含まれる。
[式(A1)の製法]
 式(A1)の化合物を合成する方法に特に制限はないが、例えば、下記式(D1)で表される市販のニトロアミンに、無水マレイン酸誘導体を反応させる方法が挙げられる。
Figure JPOXMLDOC01-appb-C000037
 無水マレイン酸誘導体の使用量は、式(D1)で表されるニトロアミン化合物の1モルに対して、1~1.5モルであるのが好ましく、1~1.2モルであるのが更に好ましい。無水マレイン酸を過剰量とすることにより、反応を円滑に進行させ、なおかつ副生物を抑制することができる。本反応は、好ましくは溶媒中で行われる。好ましい溶媒や反応条件は、上記化合物(1)の製造条件と同様である。
 [式(A2)の製法]
 式(A2)の化合物を合成する方法に特に制限はないが、例えば、下記式(D2)で表されるジアミンに、特開2003-321531号公報又は国際公開公報2004/012735号パンフレット等に記載されている条件下で、無水マレイン酸誘導体を反応させる方法が挙げられる。
Figure JPOXMLDOC01-appb-C000038
 無水マレイン酸誘導体の使用量は、式(D2)で表されるジアミン化合物の1モルに対して、0.01~1モルであるのが好ましく、0.1~1.0モルであるのが更に好ましい。ジアミン(D2)を過剰量とすることにより、反応を円滑に進行させ、なおかつ副生物を抑制することができる。本反応は、好ましくは溶媒中で行われる。好ましい溶媒や反応条件は、上記化合物(1)の製造条件と同様である。
 また、下記式(A1)で表されるジアミンを還元する方法も挙げられる。
Figure JPOXMLDOC01-appb-C000039
 式(A1)で表されるニトロ化合物を還元して式(A2)で表されるアミンを得る際の反応条件は、上記式(C1)で表される化合物を還元して式(1)で表される特定ジアミンを製造する際の条件に記載の反応のうち、二重結合の還元を抑制する観点から、Fe、Sn、Znやこれらの塩とプロトンの共存下で行う還元反応が好ましい。
 また、本発明の特定ジアミンは、下記式(A1)で表されるマレイミド化合物と、下記式(E)で表される市販されているアミノ化合物で表されるアンモニア、アルキルアミン、ベンジルアミン等とを反応させて下記式(F)で表されるニトロ化合物を得て、更に市販されている下記式(G)で表されるニトロベンジルクロライド、ニトロベンゾイルクロライド、ニトロベンゼンスルホニルクロライド又はニトロベンゼンイソシアネート、4-フルオロニトロベンゼン、4-ヨードニトロベンゼン等と反応させて下記式(C2)を得て、これを還元する方法を挙げることができる。
Figure JPOXMLDOC01-appb-C000040
 式(E)で表される化合物と式(A1)で表される化合物との反応条件は、上記式(B1)で表される化合物と式(A1)で表される化合物との反応条件に準ずる。
 上記式(G)においてZがOHでありLがカルボニルである化合物と上記式(F)で表される化合物とを、必要ならば該反応に対して不活性な溶媒を用い、必要ならば塩基の存在下、縮合剤を用いて反応させることにより、一般式(C2)においてLがカルボニルである化合物を得ることができる。反応基質の量は、式(G)で表される化合物1当量に対して0.5~2当量の一般式(F)で表される化合物を用いることができる。
 縮合剤は、通常のアミド合成に使用されるものであれば特に制限はないが、例えば向山試薬(2-クロロ-N-メチルピリジニウムアイオダイド)、DCC(1,3-ジシクロヘキシルカルボジイミド)、WSC(1-エチル-3-(3-ジメチルアミノプロピル)-カルボジイミド塩酸塩)、CDI(カルボニルジイミダゾール)、ジメチルプロピニルスルホニウムブロマイド、プロパルギルトリフェニルホスホニウムブロマイド、DEPC(シアノ燐酸ジエチル)等を、上記式(G)においてZがOHでありLがカルボニルである化合物に対して1~4当量用いることができる。
 溶媒を用いる場合、用いられる溶媒としては反応の進行を阻害しないものであれば特に制限はないが、例えばベンゼン、トルエン、キシレン等の芳香族炭化水素類、ヘキサン、ヘプタン等の脂肪族炭化水素類、シクロヘキサン等の脂環式炭化水素類、クロロベンゼン、ジクロロベンゼン等の芳香族ハロゲン化炭化水素類、ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン、1,1,1-トリクロロエタン、トリクロロエチレン、テトラクロロエチレン等の脂肪族ハロゲン化炭化水素類、ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、1,4-ジオキサン等のエーテル類、酢酸エチル、プロピオン酸エチル等のエステル類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミド類、トリエチルアミン、トリブチルアミン、N,N-ジメチルアニリン等のアミン類、ピリジン、ピコリン等のピリジン類、アセトニトリル及びジメチルスルホキシド等が挙げられる。これらの溶媒は単独で用いても、これらのうちの2種以上を混合して用いてもよい。
 塩基の添加は必ずしも必要ではないが、塩基を用いる場合、例えば水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩、炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ金属重炭酸塩、トリエチルアミン、トリブチルアミン、N,N-ジメチルアニリン、ピリジン、4-(ジメチルアミノ)ピリジン、イミダゾール、1,8-ジアザビシクロ[5,4,0]-7-ウンデセン等の有機塩基等を上記式(G)においてZがOHでありLがカルボニルである化合物に対して1~4当量用いることができる。反応温度は-60℃から反応混合物の還流温度までの任意の温度を設定することができ、反応時間は、反応基質の濃度、反応温度によって変化するが、通常5分~100時間の範囲で任意に設定できる。一般的には、例えば上記式(G)においてZがOHでありLがカルボニルである化合物1当量に対して1~20当量の上記式(F)で表される化合物及び1~4当量のWSC(1-エチル-3-(3-ジメチルアミノプロピル)-カルボジイミド塩酸塩)、CDI(カルボニルジイミダゾール)等の縮合剤を用い、必要ならば1~4当量の炭酸カリウム、トリエチルアミン、ピリジン、4-(ジメチルアミノ)ピリジン等の塩基存在下にて、無溶媒か又はジクロロメタン、クロロホルム、ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン等の溶媒を用い、0℃からこれらの溶媒の還流温度の範囲で、10分~24時間反応を行なうのが好ましい。
 また、上記式(G)においてZがOHでありLがカルボニル若しくはスルホニルである化合物から文献記載の公知の方法、例えば、塩化チオニル、五塩化リン又はオキザリルクロライド等のクロル化剤と反応させる方法、塩化ピバロイル又はクロルギ酸イソブチル等の有機酸ハロゲン化物と、必要ならば塩基の存在下、反応させる方法、或いは、カルボニルジイミダゾール又はスルホニルジイミダゾール等と反応させる方法等を用いて合成することのできる上記式(G)においてZがClでありLがカルボニル若しくはスルホニルである化合物と上記式(F)で表される化合物とを、必要ならば該反応に対して不活性な溶媒を用い、必要ならば塩基の存在下、反応させることにより、一般式(C2)においてLがカルボニル若しくはスルホニルである化合物を合成することもできる。反応基質の量は、上記式(G)においてZがClでありLがカルボニル若しくはスルホニルである化合物1当量に対して0.5~2当量の上記式(F)で表される化合物を用いることができる。
 溶媒を用いる場合、用いられる溶媒としては反応の進行を阻害しないものであれば特に制限はないが、例えばベンゼン、トルエン、キシレン等の芳香族炭化水素類、ヘキサン、ヘプタン等の脂肪族炭化水素類、シクロヘキサン等の脂環式炭化水素類、クロロベンゼン、ジクロロベンゼン等の芳香族ハロゲン化炭化水素類、ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン、1,1,1-トリクロロエタン、トリクロロエチレン、テトラクロロエチレン等の脂肪族ハロゲン化炭化水素類、ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、1,4-ジオキサン等のエーテル類、酢酸エチル、プロピオン酸エチル等のエステル類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミド類、トリエチルアミン、トリブチルアミン、N,N-ジメチルアニリン等のアミン類、ピリジン、ピコリン等のピリジン類、アセトニトリル及び水等が挙げられる。これらの溶媒は単独で用いても、これらのうちの2種以上を混合して用いてもよい。
 塩基の添加は必ずしも必要ではないが、塩基を用いる場合、例えば水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩、炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ金属重炭酸塩、トリエチルアミン、トリブチルアミン、N,N-ジメチルアニリン、ピリジン、4-(ジメチルアミノ)ピリジン、イミダゾール、1,8-ジアザビシクロ[5,4,0]-7-ウンデセン等の有機塩基等を、上記式(G)においてZがClでありLがカルボニル若しくはスルホニルである化合物に対して1~4当量用いることができる。反応温度は-60℃から反応混合物の還流温度までの任意の温度を設定することができ、反応時間は、反応基質の濃度、反応温度によって変化するが、通常5分~100時間の範囲で任意に設定できる。一般的には、例えば上記式(G)においてZがClでありLがカルボニルである化合物1当量に対して1~10当量の上記式(F)で表される化合物を、必要ならば1~2当量の炭酸カリウム、トリエチルアミン、ピリジン、4-(ジメチルアミノ)ピリジン等の塩基存在下にて、無溶媒か又はジクロロメタン、クロロホルム、ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン、酢酸エチル、アセトニトリル等の溶媒を用い、0℃からこれらの溶媒の還流温度の範囲で、10分~48時間反応を行なうのが好ましい。
 式(G)においてLとWがともに単結合であり、ZがF又はClであって、NO基がZに対して2位、又は4位にあるニトロ化合物を、適当な塩基の存在下、式(F)で表される化合物とを反応させ、上記式(C2)で表されるジニトロ体を得ることができる。使用する塩基は、例えば、炭酸水素ナトリウム、炭酸水素カリウム、燐酸カリウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸セシウム等の無機塩基;トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリイソプロピルアミン、トリブチルアミン、ジイソプロピルエチルアミン、ピリジン、キノリン、コリジン等のアミン類;水素化ナトリウム、水素化カリウム等の塩基;を使用できる。
 溶媒に関しては、原料と反応しない溶媒であれば、いずれも使用することができる。例えば、非プロトン性極性有機溶媒(N,N-ジメチルホルムアミド、ジメチルスルホキシド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等)、エーテル類(EtO,i-PrO,tert-ブチルメチルエーテル、シクロペンチルメチルエーテル、テトラヒドロフラン、ジオキサン等)、脂肪族炭化水素類(ペンタン、へキサン、ヘプタン、石油エーテル等)、芳香族炭化水素類(ベンゼン、トルエン、キシレン、メシチレン、クロロベンゼン、ジクロロベンゼン、ニトロベンゼン、テトラリン等)、ハロゲン系炭化水素類(クロロホルム、ジクロロメタン、四塩化炭素、ジクロロエタン等)、低級脂肪酸エステル類(酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル等)、ニトリル類(アセトニトリル、プロピオニトリル、ブチロニトリル等)が使用できる。これらの溶媒は、反応の起こり易さ等を考慮して、適宜選択することができる。この場合、上記溶媒は、1種単独で又は2種以上混合して用いることができる。場合によっては、適当な脱水剤や乾燥剤を用いて溶媒を脱水乾燥して用いることもできる。反応温度は-100℃から使用する溶媒の沸点までの範囲で、任意の温度を選択することができるが、好ましくは-50~150℃の範囲である。反応時間は0.1~1000時間の範囲で、任意に選択することができるが、好ましくは0.1~100時間である。
 ZがBr又はI原子であれば、NO基がXに対して2位でも、3位でも、4位でもよく、適当な金属触媒と配位子を含み、塩基存在下でC-Nクロスカップリング反応を用いることで、ジニトロ体を得ることができる。金属触媒の例としては、酢酸パラジウム、塩化パラジウム、塩化パラジウム-アセトニトリル錯体、パラジウム-活性炭、ビス(ジベンジリデンアセトン)パラジウム、トリス(ジベンジリデンアセトン)ジパラジウム、ビス(アセトニトリル)ジクロロパラジウム、ビス(ベンゾニトリル)ジクロロパラジウム、CuCl、CuBr、CuI、CuCN等が挙げられるが、これらに限定されない。配位子の例としては、トリフェニルホスフィン、トリ-o-トリルホスフィン、ジフェニルメチルホスフィン、フェニルジメチルホスフィン、1,2-ビス(ジフェニルホスフィノ)エタン、1,3-ビス(ジフェニルホスフィノ)プロパン、1,4-ビス(ジフェニルホスフィノ)ブタン、1,1’-ビス(ジフェニルホスフィノ)フェロセン、トリメチルホスファイト、トリエチルホスファイト、トリフェニルホスファイト、トリ-tert-ブチルホスフィン等が挙げられるが、これらに限定されない。塩基の例としては、前述の塩基を用いることができる。反応溶媒及び反応温度は、前記の記載に準ずる。上記各反応により得られた各段階における目的物は、蒸留、再結晶、又はシリカゲル等のカラムクロマトグラフィーで精製してもよいし、精製せずに、反応液のまま次の段階に供することもできる。また、式(C2)で表されるジニトロ化合物を還元して式(1)で表されるジアミンを得る際の反応条件は、前記と同じ条件である。
 <重合体>
 本発明の重合体は、上記ジアミンを用いて得られる。具体例としては、ポリアミック酸、ポリアミック酸エステル、ポリイミド、ポリウレア、ポリアミド等が挙げられるが、液晶配向剤としての使用の観点から、下記式(3)で表される構造単位を含む、ポリイミド前駆体、及びそのイミド化物であるポリイミドから選ばれる少なくとも1種であるとより好ましい。
Figure JPOXMLDOC01-appb-C000041
 上記式(3)において、Xはテトラカルボン酸誘導体に由来する4価の有機基を示し、Yは式(1)の構造を含むジアミンに由来する2価の有機基を示し、Rは水素原子又は炭素数1~5のアルキル基を示す。Rは、加熱によるイミド化のしやすさの点から、水素原子、メチル基又はエチル基が好ましい。
 <テトラカルボン酸二無水物>
 ポリイミド前駆体中のXは、重合体の溶媒への溶解性や液晶配向剤の塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷等、必要とされる特性の程度に応じて適宜選択され、同一重合体中に1種であってもよく、2種以上が混在していてもよい。Xの具体例をあえて示すならば、国際公開公報2015/119168の13頁~14頁に掲載される、式(X-1)~(X-46)の構造等が挙げられる。以下に、好ましいXの構造を示すが、本発明はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000042
 上記の構造のうち、(A-1)、(A-2)はラビング耐性の更なる向上という観点から特に好ましく、(A-4)は蓄積電荷の緩和速度の更なる向上という観点から特に好ましく、(A-15)~(A-17)等は、液晶配向性と蓄積電荷の緩和速度の更なる向上という観点から特に好ましい。
 <重合体(その他の構造単位)>
 式(3)で表される構造単位を含むポリイミド前駆体は、本発明の効果を損なわない範囲において、下記式(4)で表される構造単位、及びそのイミド化物であるポリイミドから選ばれる少なくとも1種を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000043
 式(4)において、Xはテトラカルボン酸誘導体に由来する4価の有機基を示し、Yは式(1)の構造を主鎖方向に含まないジアミンに由来する2価の有機基を示し、R14は、前記式(3)のRの定義と同じであり、R15はそれぞれ独立に水素原子又は炭素数1~4のアルキル基を示す。
 Xの具体例としては、好ましい例も含めて式(3)のXで例示したものと同じ構造を挙げることができる。また、ポリイミド前駆体中のYは式(1)の構造を主鎖方向に含まないジアミンに由来する二価の有機基であり、その構造は特に限定されない。また、Yは重合体の溶媒への溶解性や液晶配向剤の塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷等、必要とされる特性の程度に応じて適宜選択され、同一重合体中に1種であってもよく、2種以上が混在していてもよい。
 Yの具体例をあえて示すならば、上記式[W-1]~式[W-152]で表される基が挙げられる。また、国際公開公報2015/119168の4頁に掲載される式(2)の構造、及び、8頁~12頁に掲載される、式(Y-1)~(Y-97)、(Y-101)~(Y-118)の構造;国際公開公報2013/008906の6頁に掲載される式(2)からアミノ基を2つ除いた二価の有機基;国際公開公報2015/122413の8頁に掲載される式(1)からアミノ基を2つ除いた二価の有機基;国際公開公報2015/060360の8頁に掲載される式(3)の構造;日本国公開特許公報2012-173514の8頁に記載される式(1)からアミノ基を2つ除いた二価の有機基;国際公開公報2010-050523の9頁に掲載される式(A)~(F)からアミノ基を2つ除いた二価の有機基、等が挙げられる。好ましいYの構造としては、下記式(11)の構造が挙げられる。
Figure JPOXMLDOC01-appb-C000044
 式(11)中、R32は単結合又は2価の有機基であり、単結合が好ましい。R33は-(CH-で表される構造である。rは2~10の整数であり、3~7が好ましい。また、任意の-CH-はそれぞれ隣り合わない条件でエーテル、エステル、アミド、ウレア、カルバメート結合に置き換えられてもよい。R34は単結合又は2価の有機基を示す。ベンゼン環上の任意の水素原子は1価の有機基で置き換えられてもよく、フッ素原子又はメチル基が好ましい。式(11)で表される構造としては、具体的には以下のような構造が挙げられるが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
 式(3)で表される構造単位を含むポリイミド前駆体が、式(4)で表される構造単位を同時に含む場合、蓄積した電荷を速く緩和させるとともに、ラビング方向と液晶の配向方向のずれを制御するという観点から、式(3)で表される構造単位は、式(3)と式(4)の合計に対して1~80モル%であることが好ましく、より好ましくは5~60モル%であり、特に好ましくは10~40モル%である。
 また、好ましいYの構造としては、アミノ基、イミノ基、及び含窒素複素環からなる群から選ばれる少なくとも1種を有する構造が挙げられる。このようなYの構造としては、アミノ基、イミノ基、及び含窒素複素環からなる群から選ばれる少なくとも1種の構造を有しているか、窒素原子上に熱脱離性基が置換したアミノ基、イミノ基及び含窒素複素環から選ばれる少なくとも1種の構造を有していれば、その構造は特に限定されない。あえて、その具体例を挙げるとするならば、下記式(YD-1)~(YD-5)で表されるアミノ基、イミノ基、及び含窒素複素環からなる群から選ばれる少なくとも1種の構造を有する2価の有機基が挙げられる。
Figure JPOXMLDOC01-appb-C000048
 式(YD-1)において、Aは炭素数3~15の窒素原子含有複素環を示し、Zは、水素原子、又は置換基を有してよい炭素数1~20の炭化水素基を示す。式(YD-2)において、Vは、炭素数1~10の炭化水素基を示し、Aは窒素原子含有複素環を有する炭素数3~15の1価の有機基、又は炭素数1~6の脂肪族基で置換されたジ置換アミノ基を示す。式(YD-3)において、Vは炭素数6~15で、且つベンゼン環を1~2個有する2価の有機基を示し、Vは炭素数2~5のアルキレン又はビフェニレンを示し、Zは水素原子、炭素数1~5のアルキル基、ベンゼン環、又は熱脱離性基を示し、aは0~1の整数を示す。式(YD-4)において、Aは炭素数3~15の窒素原子含有複素環を示す。式(YD-5)において、Aは炭素数3~15の窒素原子含有複素環を示し、Vは炭素数2~5のアルキレンを示す。
 式(YD-1)、(YD-2)、(YD-4)、及び(YD-5)のA、A、A、及びAの炭素数3~15の窒素原子含有複素環としては、公知の構造であれば、特に限定されない。中でも、ピロリジン、ピロール、イミダゾール、ピラゾール、オキサゾール、チアゾール、ピペリジン、ピペラジン、ピリジン、ピラジン、インドール、ベンゾイミダゾール、キノリン、イソキノリンが挙げられ、ピペラジン、ピペリジン、インドール、ベンゾイミダゾール、イミダゾール、カルバゾール、及びピリジンがより好ましい。また、熱脱離性基は、室温では脱離せず、配向膜を焼成した際に脱離して水素原子に置き換わる置換基であればよく、具体的には、tert-ブトキシカルボニル基及び9-フルオレニルメトキシカルボニル基が挙げられる。
 このようなYの具体例としては、下記式(YD-6)~(YD-52)で表される窒素原子を有する2価の有機基が挙げられ、交流駆動による電荷蓄積を抑制できるためから、式(YD-14)~式(YD-21)がより好ましく、(YD-14)及び(YD-18)が特に好ましい。
Figure JPOXMLDOC01-appb-C000049
 式(YD-14)及び(YD-21)中、jは0~3の整数を示す。
Figure JPOXMLDOC01-appb-C000050

 式(YD-24)、(YD-25)、(YD-28)及び(YD-29)中、jは0~3の整数を示す。
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
 式(YD-50)中、m、nはそれぞれ1~11の整数を示し、m+nは2~12の整数を示す。
 <ポリアミック酸の製造方法>
 本発明に用いられるポリイミド前駆体であるポリアミック酸は、以下に示す方法により合成することができる。具体的には、テトラカルボン酸二無水物とジアミンとを有機溶媒の存在下で-20~150℃、好ましくは0~70℃において、30分~24時間、好ましくは1~12時間反応させることによって合成できる。上記の反応に用いる有機溶媒は、モノマー及び重合体の溶解性からN,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、γ-ブチロラクトン等が好ましく、これらは1種又は2種以上を混合して用いてもよい。重合体の濃度は、重合体の析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。
 上記のようにして得られたポリアミック酸は、反応溶液をよく撹拌させながら貧溶媒に注入することで、重合体を析出させて回収することができる。また、析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥することで精製されたポリアミック酸の粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、2-プロパノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられ、水、メタノール、エタノール、2-プロパノール等が好ましい。
 <ポリイミドの製造方法>
 本発明に用いられるポリイミドは、前記ポリアミック酸をイミド化することにより製造することができる。ポリアミック酸からポリイミドを製造する場合、ジアミン成分とテトラカルボン酸二無水物との反応で得られた前記ポリアミック酸の溶液に触媒を添加する化学的イミド化が簡便である。化学的イミド化は、比較的低温でイミド化反応が進行し、イミド化の課程で重合体の分子量低下が起こりにくいので好ましい。化学的イミド化は、イミド化させたい重合体を、有機溶媒中において塩基性触媒と酸無水物の存在下で攪拌することにより行うことができる。有機溶媒としては前述した重合反応時に用いる溶媒を使用することができる。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。また、酸無水物としては無水酢酸、無水トリメリット酸、無水ピロメリット酸等を挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。
 イミド化反応を行うときの温度は、-20~140℃、好ましくは0~100℃であり、反応時間は1~100時間で行うことができる。塩基性触媒の量はポリアミック酸基の0.5~30倍モル、好ましくは2~20倍モルであり、酸無水物の量はポリアミック酸基の1~50倍モル、好ましくは3~30倍モルである。得られる重合体のイミド化率は、触媒量、温度、反応時間を調節することで制御することができる。ポリアミック酸のイミド化反応後の溶液には、添加した触媒等が残存しているので、以下に述べる手段により、得られたイミド化重合体を回収し、有機溶媒で再溶解して、本発明の液晶配向剤とすることが好ましい。
 上記のようにして得られるポリイミドの溶液は、よく撹拌させながら貧溶媒に注入することで、重合体を析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して精製された重合体の粉末を得ることができる。前記貧溶媒は、特に限定されないが、メタノール、2-プロパノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン等が挙げられ、メタノール、エタノール、2-プロパノール、アセトン等が好ましい。
 <ポリイミド前駆体-ポリアミック酸エステルの製造>
 本発明に用いられるポリイミド前駆体であるポリアミック酸エステルは、以下に示す(1)、(2)又は(3)の製法で製造することができる。
 (1)ポリアミック酸から製造する場合
 ポリアミック酸エステルは、前記のように製造されたポリアミック酸をエステル化することによって製造できる。具体的には、ポリアミック酸とエステル化剤を有機溶剤の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~4時間反応させることによって製造することができる。エステル化剤としては、精製によって容易に除去できるものが好ましく、N,N-ジメチルホルムアミドジメチルアセタール、N,N-ジメチルホルムアミドジエチルアセタール、N,N-ジメチルホルムアミドジプロピルアセタール、N,N-ジメチルホルムアミドジネオペンチルブチルアセタール、N,N-ジメチルホルムアミドジ-t-ブチルアセタール、1-メチル-3-p-トリルトリアゼン、1-エチル-3-p-トリルトリアゼン、1-プロピル-3-p-トリルトリアゼン、4-(4,6-ジメトキシ-1,3,5-トリアジンー2-イル)-4-メチルモルホリニウムクロリド等が挙げられる。エステル化剤の添加量は、ポリアミック酸の繰り返し単位1モルに対して、2~6モル当量が好ましい。
 有機溶剤としては、例えば、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン又はγ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド又は1,3-ジメチル-イミダゾリジノンが挙げられる。また、ポリイミド前駆体の溶媒溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン、又は後述する式[D-1]~式[D-3]で示される溶媒を用いることができる。
 これら溶媒は単独で使用しても、混合して使用してもよい。更に、ポリイミド前駆体を溶解させない溶媒であっても、生成したポリイミド前駆体が析出しない範囲で、前記溶媒に混合して使用してもよい。また、溶媒中の水分は重合反応を阻害し、更には生成したポリイミド前駆体を加水分解させる原因となるので、溶媒は脱水乾燥させたものを用いることが好ましい。上記の反応に用いる溶媒は、ポリマーの溶解性からN,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。製造時の濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという点から、1~30質量%が好ましく、5~20質量%がより好ましい。
 (2)テトラカルボン酸ジエステルジクロリドとジアミンとの反応により製造する場合
 ポリアミック酸エステルは、テトラカルボン酸ジエステルジクロリドとジアミンから製造することができる。具体的には、テトラカルボン酸ジエステルジクロリドとジアミンとを塩基と有機溶剤の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~4時間反応させることによって製造することができる。前記塩基には、ピリジン、トリエチルアミン、4-ジメチルアミノピリジン等が使用できるが、反応が穏和に進行するためにピリジンが好ましい。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという点から、テトラカルボン酸ジエステルジクロリドに対して、2~4倍モルであることが好ましい。
 上記の反応に用いる溶媒は、モノマー及びポリマーの溶解性からN-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。製造時のポリマー濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという点から、1~30質量%が好ましく、5~20質量%がより好ましい。また、テトラカルボン酸ジエステルジクロリドの加水分解を防ぐため、ポリアミック酸エステルの製造に用いる溶媒はできるだけ脱水されていることが好ましく、窒素雰囲気中で、外気の混入を防ぐのが好ましい。
 (3)テトラカルボン酸ジエステルとジアミンから製造する場合
 ポリアミック酸エステルは、テトラカルボン酸ジエステルとジアミンを重縮合することにより製造することができる。具体的には、テトラカルボン酸ジエステルとジアミンを縮合剤、塩基、及び有機溶剤の存在下で0~150℃、好ましくは0~100℃において、30分~24時間、好ましくは3~15時間反応させることによって製造することができる。前記縮合剤には、トリフェニルホスファイト、ジシクロヘキシルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N’-カルボニルジイミダゾール、ジメトキシ-1,3,5-トリアジニルメチルモルホリニウム、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム テトラフルオロボラート、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロホスファート、(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホン酸ジフェニル等が使用できる。縮合剤の添加量は、テトラカルボン酸ジエステルに対して2~3倍モルが好ましい。
 前記塩基には、ピリジン、トリエチルアミン等の3級アミンが使用できる。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという点から、ジアミン成分に対して2~4倍モルが好ましい。また、上記反応において、ルイス酸を添加剤として加えることで反応が効率的に進行する。ルイス酸としては、塩化リチウム、臭化リチウム等のハロゲン化リチウムが好ましい。ルイス酸の添加量はジアミン成分に対して0~1.0倍モルが好ましい。上記3つのポリアミック酸エステルの製造方法の中でも、高分子量のポリアミック酸エステルが得られるため、上記(1)又は上記(2)の製法が特に好ましい。
 上記のようにして得られるポリアミック酸エステルの溶液は、よく撹拌させながら貧溶媒に注入することで、ポリマーを析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して精製されたポリアミック酸エステルの粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。
 本発明の重合体を製造するには、上記の製造方法において、ジアミンとして式(1)で表されるジアミンを用いればよい。本発明の液晶配向剤に含まれる重合体であるポリイミド前駆体やポリイミドの分子量は、当該重合体を含む液晶配向剤から液晶配向膜が得られた場合に、その塗膜(液晶配向膜)の強度、塗膜形成時の作業性、及び塗膜の均一性を考慮して、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量が2,000~500,000であることが好ましく、5,000~300,000であることがより好ましく、10,000~100,000であることが更に好ましい。
 <液晶配向剤>
 本発明の液晶配向剤は、式(1)で表される構造を有するジアミンから得られる重合体(特定重合体)を含む。また、本発明に記載の効果を奏する限度において、異なる構造の特定重合体を2種以上含んでいてもよい。また、特定重合体に加えて、その他の重合体、すなわち式(1)で表される2価の基を有さない重合体を含んでいてもよい。その他の重合体の種類としては、ポリアミック酸、ポリイミド、ポリアミック酸エステル、ポリエステル、ポリアミド、ポリウレア、ポリオルガノシロキサン、セルロース誘導体、ポリアセタール、ポリスチレン又はその誘導体、ポリ(スチレン-フェニルマレイミド)誘導体、ポリ(メタ)アクリレート等を挙げることができる。本発明の液晶配向剤がその他の重合体を含む場合、全重合体成分に対する特定重合体の割合は5質量%以上であることが好ましく、その一例として5~95質量%が挙げられる。
 液晶配向剤は、液晶配向膜を作製するために用いられ、均一な薄膜を形成させるという観点から、一般的には塗布液の形態をとる。本発明の液晶配向剤においても前記した重合体成分と、この重合体成分を溶解させる有機溶媒とを含む塗布液であることが好ましい。その際、液晶配向剤中の重合体の濃度は、形成させようとする塗膜の厚みの設定によって適宜変更することができる。均一で欠陥のない塗膜を形成させるという点からは、1質量%以上であることが好ましく、溶液の保存安定性の点からは、10質量%以下とすることが好ましい。特に好ましい重合体の濃度は、2~8質量%である。
 液晶配向剤に含まれる有機溶媒は、重合体成分が均一に溶解するものであれば特に限定されない。その具体例を挙げるならば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン等を挙げることができる。なかでも、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、又はγ-ブチロラクトンを用いることが好ましい。
 また、液晶配向剤に含まれる有機溶媒は、上記のような溶媒に加えて液晶配向剤を塗布する際の塗布性や塗膜の表面平滑性を向上させる溶媒を併用した混合溶媒を使用することが一般的であり、本発明の液晶配向剤においてもこのような混合溶媒は好適に用いられる。併用する有機溶媒の具体例を下記に挙げるが、これらの例に限定されない。例えば、エタノール、イソプロピルアルコール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、イソペンチルアルコール、tert-ペンチルアルコール、3-メチル-2-ブタノール、ネオペンチルアルコール、1-ヘキサノール、2-メチル-1-ペンタノール、2-メチル-2-ペンタノール、2-エチル-1-ブタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、1-オクタノール、2-オクタノール、2-エチル-1-ヘキサノール、シクロヘキサノール、1-メチルシクロヘキサノール、2-メチルシクロヘキサノール、3-メチルシクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、ジプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、1,2-ブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、2-ペンタノン、3-ペンタノン、2-ヘキサノン、2-ヘプタノン、4-ヘプタノン、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、2-(メトキシメトキシ)エタノール、エチレングリコールモノブチルエーテル、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、2-(ヘキシルオキシ)エタノール、フルフリルアルコール、ジエチレングリコール、プロピレングリコール、プロピレングリコールモノブチルエーテル、1-(ブトキシエトキシ)プロパノール、プロピレングリコールモノメチルエーテルアセタート、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセタート、エチレングリコールモノエチルエーテルアセタート、エチレングリコールモノブチルエーテルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル、下記式[D-1]~[D-3]で表される溶媒等を挙げることができる。
Figure JPOXMLDOC01-appb-C000054
 式[D-1]中、Dは炭素数1~3のアルキル基を示し、式[D-2]中、Dは炭素数1~3のアルキル基を示し、式[D-3]中、Dは炭素数1~4のアルキル基を示す。
 なかでも、1-ヘキサノール、シクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、プロピレングリコールモノブチルエーテル、ジエチレングリコールジエチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、エチレングリコールモノブチルエーテル又はジプロピレングリコールジメチルエーテルを用いることが好ましい。このような溶媒の種類及び含有量は、液晶配向剤の塗布装置、塗布条件、塗布環境等に応じて適宜選択される。
 本発明の液晶配向剤は、本発明の効果を損なわない範囲において、重合体成分及び有機溶媒以外の成分を追加的に含んでもよい。このような追加成分としては、液晶配向膜と基板との密着性や液晶配向膜とシール材との密着性を高めるための密着助剤、液晶配向膜の強度を高めるための架橋剤、液晶配向膜の誘電率や電気抵抗を調整するための誘電体や導電物質等が挙げられる。これら追加成分の具体例としては、液晶配向剤に関する公知の文献に種々開示されているとおりであるが、その一例を示すなら、国際公開公報2015/060357号パンフレットの53頁[0105]~55頁[0116]に開示されている成分等が挙げられる。
 <液晶配向膜>
 本発明の液晶配向膜は、前記液晶配向剤から得られる。液晶配向剤から液晶配向膜を得る方法の一例を挙げるなら、塗布液形態の液晶配向剤を基板に塗布し、乾燥し、焼成して得られた膜に対してラビング処理法又は光配向処理法で配向処理を施す方法が挙げられる。液晶配向剤を塗布する基板としては、透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板とともに、アクリル基板やポリカーボネート基板等のプラスチック基板等を用いることもできる。その際、液晶を駆動させるためのITO電極等が形成された基板を用いると、プロセスの簡素化の点から好ましい。また、反射型の液晶表示素子では、片側の基板のみにならば、シリコンウエハー等の不透明な物でも使用でき、この場合の電極にはアルミニウム等の光を反射する材料も使用できる。
 液晶配向剤の塗布方法は、特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェット法等が一般的である。その他の塗布方法としては、ディップ法、ロールコータ法、スリットコータ法、スピンナー法、スプレー法等があり、目的に応じてこれらを用いてもよい。液晶配向剤を基板上に塗布した後は、ホットプレート、熱循環型オーブン、IR(赤外線)型オーブン等の加熱手段により、溶媒を蒸発させ、焼成する。液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができる。通常は、含まれる溶媒を十分に除去するために、50~120℃で1~10分焼成し、その後、150~300℃で、5~120分焼成する条件が挙げられる。焼成後の液晶配向膜の厚みは、特に限定されないが、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5~300nmであることが好ましく、10~200nmがより好ましい。本発明の液晶配向膜は、IPS方式やFFS方式等の横電界方式の液晶表示素子の液晶配向膜として好適であり、特に、FFS方式の液晶表示素子の液晶配向膜として有用である。
 <液晶表示素子>
 本発明の液晶表示素子は、上記液晶配向剤から得られる液晶配向膜付きの基板を得た後、既知の方法で液晶セルを作製し、該液晶セルを使用して得ることができる。液晶セルの作製方法の一例として、パッシブマトリクス構造の液晶表示素子を例にとり説明する。なお、画像表示を構成する各画素部分にTFT(Thin Film Transistor)等のスイッチング素子が設けられたアクティブマトリクス構造の液晶表示素子であってもよい。具体的には、透明なガラス製の基板を準備し、一方の基板の上にコモン電極を、他方の基板の上にセグメント電極を設ける。これらの電極は、例えばITO電極とすることができ、所望の画像表示ができるようパターニングされている。次いで、各基板の上に、コモン電極とセグメント電極を被覆するようにして絶縁膜を設ける。絶縁膜は、例えば、ゾル-ゲル法によって形成されたSiO-TiOからなる膜とすることができる。次に、前記のような条件で、各基板の上に液晶配向膜を形成する。
 次いで、液晶配向膜を形成した2枚の基板のうちの一方の基板上の所定の場所に例えば紫外線硬化性のシール材を配置し、更に液晶配向膜面上の所定の数カ所に液晶を配置した後、液晶配向膜が対向するように他方の基板を貼り合わせて圧着することにより液晶を液晶配向膜前面に押し広げた後、基板の全面に紫外線を照射してシール材を硬化することで液晶セルを得る。又は、基板の上に液晶配向膜を形成した後の工程として、一方の基板上の所定の場所にシール材を配置する際に、外部から液晶を充填可能な開口部を設けておき、液晶を配置しないで基板を貼り合わせた後、シール材に設けた開口部を通じて液晶セル内に液晶材料を注入し、次いで、この開口部を接着剤で封止して液晶セルを得る。液晶材料の注入には、真空注入法でもよいし、大気中で毛細管現象を利用した方法でもよい。
 上記のいずれの方法においても、液晶セル内に液晶材料が充填される空間を確保する為に、一方の基板上に柱状の突起を設けるか、一方の基板上にスペーサーを散布するか、シール材にスペーサーを混入するか、又はこれらを組み合わせる等の手段を取ることが好ましい。上記の液晶材料としては、ネマチック液晶及びスメクチック液晶を挙げることができ、その中でもネマチック液晶が好ましく、ポジ型液晶材料やネガ型液晶材料のいずれを用いてもよい。次に、偏光板の設置を行う。具体的には、2枚の基板の液晶層とは反対側の面に一対の偏光板を貼り付けることが好ましい。なお、本発明の液晶配向膜及び液晶表示素子は、本発明の液晶配向剤を用いている限り上記の記載に限定されず、その他の公知の手法で作成されたものであってもよい。液晶配向剤から液晶表示素子を得るまでの工程は、例えば特開2015-135393号公報の17頁[0074]~19頁[0081]等の他、数多くの文献でも開示されている。
 以下に実施例を挙げ、本発明を更に詳しく説明するが、本発明はこれらに限定されない。
 本実施例及び比較例で使用した化合物の略号、及び特性評価の方法は、以下のとおりである。
 NMP:N-メチル-2-ピロリドン
 BCS:ブチルセロソルブ
 GBL:γ―ブチルラクトン 
 BCS:ブチルセロソルブ
 DA-1-1:下記式DA-1-1で表される化合物
 DA-2:下記式DA-2で表される化合物
 DA-3:下記式DA-3で表される化合物
 CA-1:下記式CA-1で表される化合物
 CA-2:下記式CA-2で表される化合物
Figure JPOXMLDOC01-appb-C000055
 [実施例1]
 (DA-1-1)の合成
Figure JPOXMLDOC01-appb-C000056
 フラスコ内に、N-(4-ニトロフェニル)マレイミド15.00g(68.8mmol)とテロラヒドロフラン(以下、THF)300gを加えた後、氷冷した。その混合物中へ、4-(2-メチルアミノエチル)アニリン10.84g(72.2mmol)を加えた。その後、徐々に室温に戻した後、室温にて3時間、撹拌した。反応が終了したことを確認後、THFを減圧下、留去した。得られた残留物中にn-ヘキサンを加え、撹拌した。得られた析出物をろ過した。得られた結晶を50℃で乾燥したところ、目的とするニトロ体中間体(DA-1-1-1)21.7gを得た(得率84%)。
 1H-NMR(D6-DMSO、δppm):8.36(d、2H)、7.61(d、2H)、6.88(d、2H)、6.49(d、2H)、4.84(brs、2H)、4.20-4.25(m、1H)、2.91-3.00(m、1H)、2.65-2.83(m、3H)、2.54-2.61(m、2H)、2.37(s、3H)
 窒素置換したフラスコ内に、(DA1-1-1)10g(27.1mmol)、5%Pd-C 1g(STDタイプ、wet品、エヌ・イー ケムキャット(株)製)及びTHF250gを入れた後、フラスコ内を水素置換した。この反応混合物を、水素圧常圧の条件下、室温にて2日間撹拌した。反応が終了したことを確認後、ろ過により反応混合物からPd-Cを取り除き、ろ液を、減圧下、留去した。得られた残留物中に、ジイソプロピルアルコール(以下、IPA)50gを加え、撹拌した。得られた結晶をろ過後、50℃で乾燥したところ、目的物である(DA-1-1)7.9gを淡赤色結晶として得た(得率86%)。
 1H-NMR(D6-DMSO、δppm):6.87(d、2H)、6.81(d、2H)、6.58(d、2H)、6.48(d、2H)、5.30(brs、2H)、4.83(brs、2H)、4.06-4.12(m、1H)、2.81-2.90(m、1H)、2.60-2.73(m、3H)、2.52-2.59(m、2H)、2.31(s、3H)
 [実施例2]
 (DA-1-2)の合成
Figure JPOXMLDOC01-appb-C000057
 フラスコ内に、N-(4-ニトロフェニル)マレイミド10.00g(45.8mmol)とTHF200gを加えた後、氷冷した。その混合物中へ、7%-メチルアミン‐THF溶液22.4g(50.0mmol)を滴下した。その後、氷冷下にて3時間、撹拌した。反応が終了したことを確認後、THFを減圧下、留去したところ、目的とする中間体(DA-1-2-1)を白色結晶として定量的に得た。
 1H-NMR(D6-DMSO、δppm):8.38(d、2H)、7.62(d、2H)、3.81-3.87(m、1H)、3.03-3.14(m、1H)、2.56-2.66(m、1H)、2.66(brs、1H)、2.42(s、3H)
 フラスコ内に、(DA-1-2-1)11.4g(45.7mmol)、THF200g及びトリエチルアミン5.10g(50.4mmol)を加えた後、氷冷した。その混合物中へ、4-ニトロベンゾイルクロライド8.08g(43.5mol)を加え、氷冷下にて3時間、撹拌した。反応が終了したことを確認後、析出物をろ過した。得られたろ液を減圧下、留去したところ、粗体の(DA-1-2-2)を得た。得られた粗体中に、IPA600gと純水100gを加え、撹拌した。得られた結晶をろ過後、45℃で減圧乾燥させたところ、目的とするジニトロ体(DA-1-2-2)を白色結晶として得た。
 1H-NMR(D6-DMSO、δppm):8.32-8.44(m、4H)、7.73-7.81(m、2H)、7.58-7.68(m、2H)、4.93-5.13(m、1H)、3.00-3.37(m+s、2H+3H)
 窒素置換したフラスコ内に、(DA-1-2-2)2g(5.02mmol)、5%Pd-C 0.5g(STDタイプ、wet品、エヌ・イー ケムキャット(株)製)及びN、N-ジメチルホルムアミド(以下、DMF)20gを入れた後、フラスコ内を水素置換した。この反応混合物を、水素圧常圧の条件下、室温にて2日間撹拌した。反応が終了したことを確認後、ろ過により反応混合物からPd-Cを取り除き、ろ液を、減圧下、留去した。得られた残留物中に、メチルアルコール50gと活性炭(日本エンバイロケミカルズ(株)製、商品名:特製白鷺)2gを加え、ろ過した。ろ液を減圧下、留去し、得られた残留物中に、IPA50gを加え結晶化させた。得られた結晶をろ過後、45℃で減圧乾燥したところ、目的とする(DA-1-2)を白色結晶として1.2g得た(得率71%)
 1H-NMR(D6-DMSO、δppm):7.19-7.25(m、2H)、6.83-6.88(m、2H)、6.53-6.62(m、4H)、5.93(brs、2H)、5.31(brs、2H)、4.50-4.90(m、1H)、2.98-3.20(m、3H)、2.71-2.96(m、2H)
 [実施例3]
 (DA-1-3)の合成
Figure JPOXMLDOC01-appb-C000058
 フラスコ内に、N-(4-ニトロフェニル)マレイミド15.66g(71.8mmol)とTHF300gを加えた後、氷冷した。その混合物中へ、7%-メチルアミン-THF溶液35.0g(78.9mmol)を滴下した。その後、氷冷下にて3時間、撹拌した。反応が終了したことを確認後、THFを減圧下、留去したところ、目的とする中間体(DA-1-2-1)を白色結晶として定量的に得た。
 フラスコ内に、上記で得られた(DA-1-2-1)17.8g(71.4mmol)、THF300g及びトリエチルアミン7.99g(79.0mmol)を加えた後、氷冷した。その混合物中へ、4-ニトロベンゼンスルホニルクロライド15.1g(68.1mol)を加え、40℃にて14時間、撹拌した。反応が終了したことを確認後、析出物をろ過した。得られたろ液を減圧下、留去したところ、粗体の(DA-1-3-1)を得た。得られた粗体中に、メタノール200gと純水30gを加え、50℃にて1時間、撹拌した。冷却後、得られた結晶をろ過した。得られた結晶を、メタノール250g中に加え、50℃にて1時間、撹拌した。本作業を2回繰り返した。得られた結晶を45℃で減圧乾燥させたところ、目的とするジニトロ体(DA-1-3-1)を紫色結晶として、19.5g得た。
 1H-NMR(D6-DMSO、δppm):8.43-8.8.48(m、2H)、8.34-8.41(m、2H)、8.12-8.17(m、2H)、7.57-7.63(m、2H)、5.48-5.55(m、1H)、3.04-3.14(m、1H)、2.91-3.02(m、1H)、2.86(s、3H)
 窒素置換したフラスコ内に、(DA-1-3-1)1g(2.30mmol)、5%Pd-C 0.5g(STDタイプ、wet品、エヌ・イー ケムキャット(株)製)及びN、N-ジメチルホルムアミド(以下、DMF)10g、メタノール5gを入れた後、フラスコ内を水素置換した。この反応混合物を、水素圧常圧の条件下、室温にて5日間、撹拌した。反応が終了したことを確認後、ろ過により反応混合物からPd-Cを取り除き、ろ液を、減圧下、留去した。得られた残留物中に、THF20gと活性炭(日本エンバイロケミカルズ(株)製、商品名:特製白鷺)1gを加え、ろ過した。ろ液を減圧下、留去し、得られた残留物中に、エチルアルコール10gを加え結晶化させた。得られた結晶をろ過後、45℃で減圧乾燥したところ、目的とする(DA-1-3)を黄色結晶として0.56g得た(得率65%)
 1H-NMR(D6-DMSO、δppm):7.42-7.48(m、2H)、6.80-6.86(m、2H)、6.61-6.68(m、2H)、6.54-6.60(m、2H)、6.10(brs、2H)、5.32(brs、2H)、5.14-5.20(m、1H)、2.66-2.79(m、1H)、2.60(s、3H)、2.51-2.59(m、1H)
 [粘度測定]
 以下の実施例又は比較例において、ポリアミック酸溶液の粘度は、E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)で測定した。
 [実施例4]
 ポリアミド酸溶液(PAA-1)の合成
 撹拌装置付き及び窒素導入管付きの50ml四つ口フラスコに(DA-1-1)を2.36g(7mmol)を加えた後、NMP25.0gを加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらCA-1 1.43g(6.58mmol)を加え、NMP2.8gを加えた後、更に50℃条件下にて12時間攪拌することでポリアミド酸溶液(PAA-1)を得た。このポリアミド酸溶液の25℃における粘度は250mPa・sであった。
 [実施例5]
 ポリアミド酸溶液(PAA-2)の合成
 撹拌装置付き及び窒素導入管付きの50ml四つ口フラスコに(DA-1-1)2.36g(7mmol)を加えた後、NMP24.6gを加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらCA-1 0.61g(2.8mmol)、CA-2 0.75g(3.9mmol)を加え、NMP2.7gを加えた後、更に50℃条件下にて12時間攪拌することでポリアミド酸溶液(PAA-2)を得た。このポリアミド酸溶液の25℃における粘度は230mPa・sであった。
 [比較例1]
 ポリアミド酸溶液(PAA-3)の合成
 撹拌装置付き及び窒素導入管付きの100ml四つ口フラスコに(DA-2)5.73g(20mmol)を加え、NMP65.1gを加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらCA-1 4.14g(19mmol)を加えた後、NMP7.2gを加えた後、更に室温条件下にて18時間攪拌することでポリアミド酸溶液(PAA-3)を得た。このポリアミド酸溶液の25℃における粘度は500mPa・sであった。
 [比較例2]
 ポリアミド酸溶液(PAA-4)の合成
 撹拌装置付き及び窒素導入管付きの50ml四つ口フラスコに(DA-3)1.98g(10mmol)を加えた後、NMP26.0gを加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらCA-1 0.87g(4.0mmol)、CA-2 1.08g(5.5mmol)を加え、NMP2.9gを加えた後、更に50℃条件下にて12時間攪拌することでポリアミド酸溶液(PAA-4)を得た。このポリアミド酸溶液の25℃における粘度は300mPa・sであった。
 [実施例6]
 液晶配向剤(Q-1)の作製
 実施例4で得られたポリアミック酸溶液(PAA-1)7.5gを分取し、攪拌しながらNMP5.6g、BCS6.0g、3-アミノプロピルトリエトキシシランを1重量%含むNMP溶液0.9gを加え、更に室温で2時間撹拌し液晶配向剤(Q-1)を得た。
 [実施例7]
 液晶配向剤(Q-2)の作製
 実施例5で得られたポリアミック酸溶液(PAA-2)7.5gを分取し、攪拌しながらNMP5.6g、BCS6.0g、3-アミノプロピルトリエトキシシランを1重量%含むNMP溶液0.9gを加え、更に室温で2時間撹拌し液晶配向剤(Q-2)を得た。
 [比較例3]
 液晶配向剤(Q-3)の作製
 比較例1で得られたポリアミック酸溶液(PAA-3)7.5gを分取し、攪拌しながらNMP5.6g、BCS6.0g、3-アミノプロピルトリエトキシシランを1重量%含むNMP溶液0.9gを加え、更に室温で2時間撹拌し液晶配向剤(Q-3)を得た。
 [比較例4]
 液晶配向剤(Q-4)の作製
 比較例2で得られたポリアミック酸溶液(PAA-4)7.5gを分取し、攪拌しながらNMP5.6g、BCS6.0g、3-アミノプロピルトリエトキシシランを1重量%含むNMP溶液0.9gを加え、更に室温で2時間撹拌し液晶配向剤(Q-4)を得た。
 [イオン密度測定用液晶セルの作製]
 液晶配向剤を1.0μmのフィルターで濾過した後、電極付き基板(横30mm×縦40mmの大きさで、厚さが1.1mmのガラス基板。電極は幅10mm×長さ40mmの矩形で、厚さ35nmのITO電極)に、スピンコート法により塗布した。50℃のホットプレート上で5分間乾燥させた後、230℃のIR式オーブンで20分間焼成を行い、膜厚100nmの塗膜を形成させて液晶配向膜付き基板を得た。この液晶配向膜をレーヨン布(吉川化工製YA-20R)でラビング(ローラー直径:120mm、ローラー回転数:1000rpm、移動速度:20mm/sec、押し込み長:0.4mm)した後、純水中にて1分間超音波照射をして洗浄を行い、エアブローにて水滴を除去した後、80℃で15分間乾燥して液晶配向膜付き基板を得た。
 上記の液晶配向膜付き基板を2枚用意し、その1枚の液晶配向膜面上に4μmのスペーサーを散布した後、その上からシール材を印刷し、もう1枚の基板をラビング方向が逆方向、かつ膜面が向き合うようにして張り合わせた後、シール材を硬化させて空セルを作製した。この空セルに減圧注入法によって、MLC-3019(メルク株式会社製)を注入し、注入口を封止して液晶セルを得た。その後、得られた液晶セルを110℃で1時間加熱し、23℃で一晩放置し、イオン密度測定用液晶セルを得た。
 [イオン密度測定]
 上記[イオン密度測定用液晶セルの作製]に記載の方法で作製した液晶セルについて、イオン密度の測定を行った。イオン密度の測定においては、液晶セルに電圧±10V、周波数0.01Hzの三角波を印加した時のイオン密度を測定した。測定温度は60℃で行った。測定装置は、東陽テクニカ社製6256型液晶物性評価装置を用いた。イオン密度の測定は液晶セル作製後及び、液晶セルを60℃、90%の高温高湿条件下で120時間エージングした後にて実施した。なお、イオン密度は、実施例6の液晶配向剤(Q-1)を用いて作製した液晶セルと、比較例3の液晶配向剤(Q-3)を用いて作製した液晶セルと、について測定した。
 [液晶表示素子の作製]
 初めに電極付きの基板を準備した。基板は、30mm×35mmの大きさで、厚さが0.7mmのガラス基板である。基板上には第1層目として対向電極を構成する、ベタ状のパターンを備えたIZO電極が形成されている。第1層目の対向電極の上には第2層目として、CVD法により成膜されたSiN(窒化珪素)膜が形成されている。第2層目のSiN膜の膜厚は500nmであり、層間絶縁膜として機能する。第2層目のSiN膜の上には、第3層目としてIZO膜をパターニングして形成された櫛歯状の画素電極が配置され、第1画素及び第2画素の2つの画素を形成している。各画素のサイズは、縦10mmで横約5mmである。このとき、第1層目の対向電極と第3層目の画素電極とは、第2層目のSiN膜の作用により電気的に絶縁されている。
 第3層目の画素電極は、特開2014-77845号に記載の図と同様、中央部分が屈曲した、くの字形状の電極要素を複数配列して構成された櫛歯状の形状を有する。各電極要素の短手方向の幅は3μmであり、電極要素間の間隔は6μmである。各画素を形成する画素電極が、中央部分の屈曲した、くの字形状の電極要素を複数配列して構成されているため、各画素の形状は長方形状ではなく、電極要素と同様に中央部分で屈曲する、太字の、くの字に似た形状を備える。そして、各画素は、その中央の屈曲部分を境にして上下に分割され、屈曲部分の上側の第1領域と下側の第2領域を有する。
 各画素の第1領域と第2領域とを比較すると、それらを構成する画素電極の電極要素の形成方向が異なっている。すなわち、後述する液晶配向膜のラビング方向を基準とした場合、画素の第1領域では画素電極の電極要素が+10°の角度(時計回り)をなすように形成され、画素の第2領域では画素電極の電極要素が-10°の角度(時計回り)をなすように形成されている。すなわち、各画素の第1領域と第2領域とでは、画素電極と対向電極との間の電圧印加によって誘起される液晶の、基板面内での回転動作(インプレーン・スイッチング)の方向が互いに逆方向となるように構成されている。
 次に、得られた液晶配向剤を1.0μmのフィルターで濾過した後、準備された上記電極付き基板と対向基板として裏面にITO膜が成膜されており、かつ高さ4μmの柱状のスペーサーを有するガラス基板のそれぞれにスピンコートした。次いで、80℃のホットプレート上で5分間乾燥後、230℃で20分間焼成して膜厚60nmの塗膜として、各基板上にポリイミド膜を得た。このポリイミド膜上を、所定のラビング方向で、レーヨン布によりラビング(ロール径120mm、回転数500rpm、移動速度30mm/sec、押し込み量0.3mm)した後、純水中にて1分間超音波照射を行い、80℃で10分間乾燥した。
 その後、上記液晶配向膜付きの2種類の基板を用いて、それぞれのラビング方向が逆平行になるように組み合わせ、液晶注入口を残して周囲をシールし、セルギャップが3.8μmの空セルを作製した。この空セルに液晶(MLC-3019、メルク社製)を常温で真空注入したのち、注入口を封止してアンチパラレル配向の液晶セルとした。得られた液晶セルは、FFSモード液晶表示素子を構成する。その後、得られた液晶セルを120℃で1時間加熱し、一晩放置してから各評価に使用した。
 [液晶配向の安定性評価]
 この液晶セルを用い、60℃の恒温環境下、周波数30Hzで10VPPの交流電圧を168時間印加した。その後、液晶セルの画素電極と対向電極との間を短絡させた状態にし、そのまま室温に一日放置した。放置の後、液晶セルを偏光軸が直交するように配置された2枚の偏光板の間に設置し、電圧無印加の状態でバックライトを点灯させておき、透過光の輝度が最も小さくなるように液晶セルの配置角度を調整した。そして、第1画素の第2領域が最も暗くなる角度から第1領域が最も暗くなる角度まで液晶セルを回転させたときの回転角度を角度Δとして算出した。第2画素でも同様に、第2領域と第1領域とを比較し、同様の角度Δを算出した。そして、第1画素と第2画素の角度Δ値の平均値を液晶セルの角度Δとして算出した。この液晶セルの角度Δの値が0.15°以下のものを良好、0.15°より高いものを不良として評価した。
 [蓄積電荷の緩和特性]
 上記液晶セルを、偏光軸が直交するように配置された2枚の偏光板の間に設置し、画素電極と対向電極とを短絡して同電位にした状態で、2枚の偏光板の下からLEDバックライトを照射しておき、2枚の偏光板の上で測定するLEDバックライト透過光の輝度が最小となるように、液晶セルの角度を調節した。次に、この液晶セルに周波数30Hzの矩形波を印加しながら、23℃の温度下でのV-T特性(電圧-透過率特性)を測定し、相対透過率が23%となる交流電圧を算出した。この交流電圧は電圧に対する輝度の変化が大きい領域に相当するため、蓄積電荷を輝度を介して評価するのに都合がよい。
 次に、相対透過率が23%となる交流電圧で、なおかつ周波数30Hzの矩形波を5分間印加した後、+1.0Vの直流電圧を重畳し30分間駆動させた。その後、直流電圧を切り、再び相対透過率が23%となる交流電圧で、なおかつ周波数30Hzの矩形波のみを30分間印加した。蓄積した電荷の緩和が速いほど、直流電圧を重畳したときの液晶セルへの電荷蓄積も速いことから、蓄積電荷の緩和特性は、直流電圧を重畳した直後の相対透過率が30%以上の状態から23%に低下するまでに要した時間で評価した。この時間が短いほど蓄積電荷の緩和特性が良好である。
 <実施例1~4>
 実施例6~7及び比較例3~4の液晶配向剤Q1~Q4を用いて、イオン密度測定、液晶配向の安定性評価及び蓄積電荷の緩和特性の評価を行った。結果を表1に示す。表中、液晶配向剤Q1~Q2を用いて作製した液晶セルを各々実施例8~9とし、液晶配向剤Q3~Q4を用いて作製した液晶セルを各々比較例5~6としてある。
Figure JPOXMLDOC01-appb-T000059
 本発明の液晶配向膜は、特にラビング処理を必要とするIPS駆動方式やFFS駆動方式の液晶表示素子において、残像特性やコントラストに優れた表示性能を得ることができる。よって、IPS駆動方式やFFS駆動方式の液晶表示素子、多機能携帯電話(スマートフォン)、タブレット型パーソナルコンピュータ、液晶テレビジョン等に用いられる液晶配向膜として特に有用である。

Claims (12)

  1.  下記式(1)で表される構造を有するジアミンから得られる重合体を含む液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
     Rは水素原子又は一価の有機基を示し、Rは水素原子又は炭素数1~5の直鎖又は分岐してもよい、アルキル基若しくはアリール基を示し、同じマレイミド環上に2つあるRは互いに同一でも、異なっていてもよく、2つあるRが互いに結合して炭素数3~6のアルキレンを形成してもよく、Wは単結合又は2価の有機基を示し、Wは2価の有機基を示し、Arは芳香族環を示し、Lは単結合、カルボニル、スルホニル又は炭素数1~20のアルキレンを示す。
  2.  前記Arが1,3-フェニレン基又は1,4-フェニレン基である請求項1に記載の液晶配向剤。
  3.  前記Wが単結合である請求項1又は2に記載の液晶配向剤。
  4.  前記重合体が、下記式(3)で表される構造単位を含むポリイミド前駆体、及びそのイミド化物であるポリイミドから選ばれる少なくとも1種である請求項1~3のいずれか一項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000002
     Xはテトラカルボン酸誘導体に由来する4価の有機基を示し、Yは式(1)の構造を含むジアミンに由来する2価の有機基を示し、Rは水素原子又は炭素数1~5のアルキル基を示す。
  5.  前記Xの構造が下記構造から選ばれる少なくとも1種である、請求項4に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000003
  6.  前記重合体が、下記式(4)で表される構造単位を更に含む、ポリイミド前駆体、及びそのイミド化物であるポリイミドから選ばれる少なくとも1種である請求項1~5のいずれか一項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000004
     Xはテトラカルボン酸誘導体に由来する4価の有機基を示し、Yは式(1)の構造を主鎖方向に含まないジアミンに由来する2価の有機基を示し、R14は、それぞれ独立に水素原子又は炭素数1~5のアルキル基を示し、R15はそれぞれ独立に水素原子又は炭素数1~4のアルキル基を示す。
  7.  前記Yが下記式(11)で表される請求項6に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000005
     R32は単結合又は2価の有機基を示し、R33は-(CH-で表される構造を示し、rは2~10の整数を示し、任意の-CH-はそれぞれ隣り合わない条件でエーテル、エステル、アミド、ウレア、カルバメート結合に置き換えられてもよく、R34は単結合又は2価の有機基を示し、ベンゼン環上の任意の水素原子は1価の有機基で置き換えられてもよい。
  8.  前記式(3)で表される構造単位が、前記重合体の全構造単位に対して10モル%以上である、請求項4~7のいずれか一項に記載の液晶配向剤。
  9.  請求項1~8のいずれか1項に記載の液晶配向剤から得られる液晶配向膜。
  10.  請求項9に記載の液晶配向膜を具備する液晶表示素子。
  11.  下記式(1)で表される構造を有するジアミンから得られる重合体。
    Figure JPOXMLDOC01-appb-C000006
     Rは水素原子又は一価の有機基を示し、Rは水素原子又は炭素数1~5の直鎖又は分岐してもよい、アルキル基若しくはアリール基を示し、同じマレイミド環上に2つあるRは互いに同一でも、異なっていてもよく、2つあるRが互いに結合して炭素数3~6のアルキレンを形成してもよく、Wは単結合又は2価の有機基を示し、Wは2価の有機基を示し、Arは芳香族環を示し、Lは単結合、カルボニル、スルホニル又は炭素数1~20のアルキレンを示す。
  12.  下記式(1)で表される構造を有するジアミン。
    Figure JPOXMLDOC01-appb-C000007
     Rは水素原子又は一価の有機基を示し、Rは水素原子又は炭素数1~5の直鎖又は分岐してもよい、アルキル基若しくはアリール基を示し、同じマレイミド環上に2つあるRは互いに同一でも、異なっていてもよく、2つあるRが互いに結合して炭素数3~6のアルキレンを形成してもよく、Wは単結合又は2価の有機基を示し、Wは2価の有機基を示し、Arは芳香族環を示し、Lは単結合、カルボニル、スルホニル又は炭素数1~20のアルキレンを示す。
PCT/JP2018/013467 2017-03-30 2018-03-29 液晶配向剤、液晶配向膜及び液晶表示素子 WO2018181818A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880023118.2A CN110476114B (zh) 2017-03-30 2018-03-29 液晶取向剂、液晶取向膜和液晶表示元件
KR1020197030313A KR102588725B1 (ko) 2017-03-30 2018-03-29 액정 배향제, 액정 배향막 및 액정 표시 소자
JP2019510190A JP7100297B2 (ja) 2017-03-30 2018-03-29 液晶配向剤、液晶配向膜及び液晶表示素子
JP2022070136A JP7345724B2 (ja) 2017-03-30 2022-04-21 ジアミン及び重合体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017068490 2017-03-30
JP2017-068490 2017-03-30

Publications (1)

Publication Number Publication Date
WO2018181818A1 true WO2018181818A1 (ja) 2018-10-04

Family

ID=63677977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013467 WO2018181818A1 (ja) 2017-03-30 2018-03-29 液晶配向剤、液晶配向膜及び液晶表示素子

Country Status (5)

Country Link
JP (2) JP7100297B2 (ja)
KR (1) KR102588725B1 (ja)
CN (1) CN110476114B (ja)
TW (1) TWI773748B (ja)
WO (1) WO2018181818A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4867394A (ja) * 1971-10-18 1973-09-14
JPS4941488A (ja) * 1972-08-16 1974-04-18
JPS60152528A (ja) * 1984-01-19 1985-08-10 Hitachi Ltd 熱硬化性樹脂組成物の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3613421B2 (ja) 1996-05-31 2005-01-26 Jsr株式会社 液晶配向剤
JP3650982B2 (ja) 1996-10-02 2005-05-25 Jsr株式会社 液晶配向剤および液晶表示素子
JP4639697B2 (ja) * 2004-08-31 2011-02-23 新日本理化株式会社 イミド基含有ジアミン、該イミド基含有ポリイミド前駆体、該前駆体を含有してなるポジ型感光性樹脂組成物、ポジ型パターンの製造方法及び電子部品
JP5003682B2 (ja) * 2006-07-28 2012-08-15 日産化学工業株式会社 液晶配向処理剤及びそれを用いた液晶表示素子
JP5105071B2 (ja) * 2007-02-27 2012-12-19 Jsr株式会社 液晶配向剤および液晶表示素子
JP4941488B2 (ja) 2009-03-19 2012-05-30 大日本印刷株式会社 湯切り孔付き蓋材
JP6349726B2 (ja) * 2013-04-26 2018-07-04 Jsr株式会社 液晶配向剤、液晶配向膜、液晶表示素子、位相差フィルム、位相差フィルムの製造方法、重合体及び化合物
CN117384077A (zh) * 2016-12-27 2024-01-12 日产化学株式会社 新型聚合物和二胺化合物、液晶取向剂、液晶取向膜和液晶表示元件

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4867394A (ja) * 1971-10-18 1973-09-14
JPS4941488A (ja) * 1972-08-16 1974-04-18
JPS60152528A (ja) * 1984-01-19 1985-08-10 Hitachi Ltd 熱硬化性樹脂組成物の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DEVENDRA KUMAR: "New Polypyromellitimide Films Based on Cyclotriphosphazene and Bisaspartimide Derived Diamines", JOURNAL OF POLYMER SCIENCE, POLYMER CHEMISTRY EDITION, vol. 22, 20 March 1984 (1984-03-20) - November 1984 (1984-11-01), pages 3439 - 3446, XP055612822 *

Also Published As

Publication number Publication date
KR20190126881A (ko) 2019-11-12
TWI773748B (zh) 2022-08-11
CN110476114A (zh) 2019-11-19
JPWO2018181818A1 (ja) 2020-02-06
JP7100297B2 (ja) 2022-07-13
TW201900728A (zh) 2019-01-01
KR102588725B1 (ko) 2023-10-12
JP2022109969A (ja) 2022-07-28
JP7345724B2 (ja) 2023-09-19
CN110476114B (zh) 2022-04-19

Similar Documents

Publication Publication Date Title
JP6638398B2 (ja) 新規な液晶配向剤、液晶配向膜、及び液晶表示素子
JP7315907B2 (ja) ジアミン及びそれを用いた重合体
JP7173194B2 (ja) 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
JP7176601B2 (ja) 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
CN110300921B (zh) 液晶取向剂、液晶取向膜及使用其的液晶表示元件
JP6993618B2 (ja) 新規重合体及びジアミン化合物、液晶配向剤、液晶配向膜及び液晶表示素子
CN111971617B (zh) 液晶取向剂、液晶取向膜和使用其的液晶表示元件
JP7345724B2 (ja) ジアミン及び重合体
CN110049971B (zh) 二胺、聚合物、液晶取向剂、液晶取向膜及液晶表示元件
WO2018092759A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776837

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019510190

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197030313

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18776837

Country of ref document: EP

Kind code of ref document: A1