WO2018181759A1 - 併用抗がん剤の感受性の判定マーカー - Google Patents

併用抗がん剤の感受性の判定マーカー Download PDF

Info

Publication number
WO2018181759A1
WO2018181759A1 PCT/JP2018/013340 JP2018013340W WO2018181759A1 WO 2018181759 A1 WO2018181759 A1 WO 2018181759A1 JP 2018013340 W JP2018013340 W JP 2018013340W WO 2018181759 A1 WO2018181759 A1 WO 2018181759A1
Authority
WO
WIPO (PCT)
Prior art keywords
salt
cssg
cancer
cutoff value
value
Prior art date
Application number
PCT/JP2018/013340
Other languages
English (en)
French (fr)
Inventor
伸二 杉本
祐介 谷川原
光寿 松尾
寛行 高橋
Original Assignee
学校法人慶應義塾
株式会社ヤクルト本社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人慶應義塾, 株式会社ヤクルト本社 filed Critical 学校法人慶應義塾
Priority to EP18777198.5A priority Critical patent/EP3605103A4/en
Priority to JP2019510147A priority patent/JP7054095B2/ja
Priority to CN202310317463.XA priority patent/CN116148481A/zh
Priority to US16/498,940 priority patent/US20200191772A1/en
Priority to CN201880023085.1A priority patent/CN110476066A/zh
Publication of WO2018181759A1 publication Critical patent/WO2018181759A1/ja
Priority to JP2022041257A priority patent/JP7308497B2/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5011Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing antineoplastic activity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/28Compounds containing heavy metals
    • A61K31/282Platinum compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/513Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim having oxo groups directly attached to the heterocyclic ring, e.g. cytosine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/622Ion mobility spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6848Methods of protein analysis involving mass spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/02Screening involving studying the effect of compounds C on the interaction between interacting molecules A and B (e.g. A = enzyme and B = substrate for A, or A = receptor and B = ligand for the receptor)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/52Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis

Definitions

  • the present invention relates to an anticancer agent sensitivity determination marker used for determining whether or not a cancer of a subject patient has therapeutic reactivity to an anticancer agent to be used, and use thereof.
  • anticancer agents such as alkylating agents, platinum preparations, antimetabolites, anticancer antibiotics, and anticancer plant alkaloids. These anticancer agents may or may not be effective depending on the type of cancer. However, it is known that some types of cancer that are recognized as effective may or may not be effective depending on the individual patient. Whether or not an anticancer drug shows an effect on such individual patient's cancer is called anticancer drug sensitivity.
  • Oxaliplatin (SP-4-2)-[(1R, 2R) -cyclohexane-1,2-diamine- ⁇ N, ⁇ N ′] [ethanedioato (2-)- ⁇ O 1 , ⁇ O 2 ] platinum (IUPAC) is the third It is a next generation platinum complex antineoplastic agent.
  • the mechanism of action is thought to be DNA synthesis inhibition and protein synthesis inhibition by cross-linking with DNA bases, as with the preceding drugs cisplatin (CDDP) and carboplatin (CBDCA).
  • CDDP cisplatin
  • CBDCA carboplatin
  • oxaliplatin (L-OHP) exhibits an antitumor effect and exhibits an antitumor spectrum different from that of conventional platinum complex antineoplastic agents.
  • cancer chemotherapy treatment schedule is generally long-term, monitoring over time of susceptibility to anticancer drugs during treatment can determine whether treatment can continue or not, and this will only reduce patient burden and side effects. It is considered useful from the viewpoint of medical economy. Predicting treatment response in individual patients, and predicting the effects of anticancer drugs such as oxaliplatin or response in order to realize “individualized treatment” in which early diagnosis is performed and appropriate drugs and treatment regimens are selected It is urgent to establish a biomarker that enables early diagnosis of sex.
  • the present inventors exposed a drug to a plurality of human cancer cell lines having different drug sensitivities or a tumor-bearing mouse transplanted with the cell line, and performed capillary electrophoresis-flight for changes in intracellular metabolism after the drug exposure.
  • a drug to a plurality of human cancer cell lines having different drug sensitivities or a tumor-bearing mouse transplanted with the cell line, and performed capillary electrophoresis-flight for changes in intracellular metabolism after the drug exposure.
  • CE-TOF MS time-type mass spectrometer
  • these markers have not yet been put into practical use.
  • combined therapy has been established by adding antibody drugs such as bevacizumab, cetuximab, and panitumumab to FOLFOX therapy. Therefore, it is important to use biomarkers that can predict the effect of FOLFOX therapy or make early diagnosis of treatment response. Sex is increasing more and more.
  • An object of the present invention is to provide an anticancer drug sensitivity determination marker capable of discriminating treatment responsiveness of individual patients and a new cancer treatment means using the same.
  • the present inventors have comprehensively analyzed blood metabolites before the start of mFOLFOX6 therapy combined with bevacizumab using CE-Q-TOF MS and CE-TOF MS for blood samples of patients with colorectal cancer.
  • patients in the responder group with high therapeutic response to mefolfox6 therapy combined with bevacizumab were treated with 2-deoxyglucose 6-phosphate (2DG6P), 2-methylserine (2MSE), cysteineine-glutidedeido (PSG) glutathione (GSSG), imidazole-4-acetate (I4A), and pyridine-2-carboxylic acid butyester (P The concentration of CB) were found to higher than the patient's treatment less reactive nonresponders group.
  • patients in the responder group were 1-methyl-2-pyrrolidone, aspartate (ASP), benzamide, glucoside, glucose 6-phosphate (GL6P), glycylglycin (Gly-Gly), hyPyHyPT (hyPyHyX).
  • ASP aspartate
  • benzamide glucoside
  • glucose 6-phosphate GL6P
  • Gly-Gly glycylglycin
  • hyPyHyPT hyPyHyX
  • 2DG6P, CSSG, HYPT, I4A and P2CB concentrations in a biological sample derived from a cancer patient (2) 2DG6P, 2MSE, ASP, CSSG, DOPM, GL6P and HYPT concentrations, or (3) CSSG If the concentration of DOPM and HYPT is measured, and whether or not the concentration is equal to or greater than (or less than) the responder's cutoff value is numerically substituted into a specific calculation formula, the cancer of the cancer patient is It has been found that it is possible to determine whether or not there is sensitivity to a cancer drug, specifically whether or not the cancer patient is a responder.
  • the size of a tumor before the start of treatment can be predicted by measuring the concentration of one or more molecules selected from ASP and CSSG in a biological sample derived from a cancer patient.
  • 2-aminobutyric acid, CSSG, gamma-glutamylcystein (gamma-Glu-Cys), glycerol-3-phosphate, quinic acid, ASP, glycacholic acid, HYPX, and HYPX in biological samples derived from cancer patients. It has been found that the prognosis of anticancer drug treatment can be predicted by measuring the concentration of one or more molecules.
  • Screening for anti-cancer drug sensitizers can be performed by using as an index the change in the expression of one or more molecules selected from 2-aminobutyric acid, gamma-Glu-Cys, glycerol-3-phosphate, quinic acid, glycocholic acid, and lactic acid.
  • the therapeutic effect of the anticancer drug can be dramatically improved if the anticancer drug sensitivity enhancer is used in combination with the anticancer drug targeted for increased sensitivity.
  • the present invention has been completed.
  • the present invention provides the following inventions [1] to [22].
  • [1] One or more molecules selected from 2DG6P, 2MSE, CSSG, DOPM, GSSG, I4A, P2CB, 1-methyl-2-pyrrolidone, ASP, benzamide, glucoside, GL6P, Gly-Gly, HYPT and HYPX
  • a marker for determining the sensitivity of an anticancer agent comprising oxaliplatin or a salt thereof, fluorouracil or a salt thereof and levofolinate or a salt thereof.
  • the anticancer drug sensitivity determination marker according to [1], wherein the anticancer drug further comprises bevacizumab.
  • a method for determining the sensitivity of an anticancer agent comprising oxaliplatin or a salt thereof, fluorouracil or a salt thereof, and levofolinate or a salt thereof, comprising a step of measuring the amount of one or more molecules selected from the group consisting of: [4] The determination method according to [3], further comprising a step of determining the sensitivity of the cancer patient to the anticancer agent by comparing the measurement result with a control level.
  • control level is a cut-off value of a responder and the cut-off value is 2DG6P, 5.304 ⁇ 10 ⁇ 4 ⁇
  • 2MSE 1.404 ⁇ 10 ⁇ 3 ⁇
  • CSSG 2.223 ⁇ 10 ⁇ 2 ⁇
  • DOPM 1.153 ⁇ 10 ⁇ 3 ⁇
  • GSSG 1.061 ⁇ 10 ⁇ 3 ⁇
  • I4A 3.316 ⁇ 10 ⁇ 3 ⁇ 5.995 ⁇ 10 ⁇ 4 ⁇ P2CB
  • ⁇ 8.422 ⁇ 10 ⁇ 2 1-methyl-2-pyrrolidone ASP a ⁇ 3.401 ⁇ 10 -2 to a ⁇ 9.859 ⁇ 10 -2 in the case of Benzamide, a ⁇ 1.058 ⁇ 10 -3 in the case of glucaric acid, ⁇ when the GL6P 8 167 ⁇ a 10 -4, a ⁇ 5.349 ⁇ 10
  • a probability (p) of being a responder by the following formula (1) and determining whether or not the cancer patient is a responder.
  • 2DG6P, CSSG, I4A and P2CB indicate 1 when the measurement result of each molecule is greater than or equal to the cut-off value of each molecule, and 0 when less than the cut-off value, and HYPT is measured.
  • 2DG6P indicates 10.2190 when the measurement result of 2DG6P is greater than or equal to the cutoff value, and ⁇ 10.2190 when the measurement result is less than the cutoff value.
  • 2MSE indicates that the measurement result of 2MSE is When the cutoff value is equal to or higher than the cutoff value, 1.4778 is indicated, and when the cutoff value is lower than the cutoff value, -1.4778 is indicated.
  • 4976 is 1.4976 when the cut-off value is less than the cut-off value
  • CSSG is 2.0937 when the CSSG measurement result is equal to or greater than the cut-off value
  • DOPM indicates 2.2258 when the DOPM measurement result is equal to or greater than the cutoff value, and ⁇ 2.2258 when the DOPM measurement value is less than the cutoff value.
  • GL P indicates ⁇ 1.6623 when the measurement result of GL6P is equal to or greater than the cutoff value, and 1.6623 when the measurement result is less than the cutoff value.
  • HYPT indicates that the measurement result of HYPT is equal to or greater than the cutoff value.
  • CSSG indicates 1.8701 when the CSSG measurement result is greater than or equal to the cutoff value, and ⁇ 1.8701 when the CSSG measurement value is less than the cutoff value
  • DOPM indicates that the DOPM measurement result is
  • the cutoff value is greater than or equal to the cutoff value
  • 1.4081 is indicated
  • HYPT indicates that the measured value of HYPT is greater than or equal to the cutoff value.
  • 0869 is 1.0869 if it is less than the cutoff value, which is 2.223 ⁇ 10 ⁇ 2 for CSSG and 1.153 ⁇ 10 ⁇ 3 for DOPM.
  • Oxaliplatin or a salt thereof consisting of one or more molecules selected from 2-aminobutyric acid, CSSG, gamma-Glu-Cys, glycerol-3-phosphate, quinic acid, ASP, glycocholic acid, HYPX, and lactic acid
  • a prognostic marker for anticancer drug treatment comprising fluorouracil or a salt thereof and levofolinate or a salt thereof.
  • the prognostic marker according to [12], wherein the anticancer agent further comprises bevacizumab.
  • [14] One or more molecules selected from 2-aminobutyric acid, CSSG, gamma-Glu-Cys, glycerol-3-phosphate, quinic acid, ASP, glycocholic acid, HYPX, and lactic acid in a biological sample derived from a cancer patient
  • a method for predicting prognosis during treatment with an anticancer agent comprising a step of measuring the amount of oxaliplatin or a salt thereof, fluorouracil or a salt thereof and levofolinate or a salt thereof.
  • a kit for carrying out the prognostic prediction method according to [14] or [15] comprising a protocol for measuring the amount of.
  • the anticancer agent further comprises bevacizumab.
  • An agent for enhancing sensitivity to an anticancer agent comprising oxaliplatin or a salt thereof, fluorouracil or a salt thereof and levofolinate or a salt thereof obtained by the method according to [18] or [19].
  • a composition for cancer treatment comprising a combination of the sensitivity enhancer according to [20], oxaliplatin or a salt thereof, fluorouracil or a salt thereof and an anticancer agent containing levofolinate or a salt thereof.
  • the cancer treatment composition according to [21], wherein the anticancer agent further comprises bevacizumab.
  • the anticancer drug sensitivity determination marker of the present invention uses the results of being able to accurately determine the anticancer drug sensitivity, prognosis or tumor anticancer drug resistance of an individual patient before the start of treatment or early after the start of treatment. It is possible to select an anticancer agent having a high therapeutic effect. Furthermore, unnecessary side effects can be avoided because it is possible to avoid the use of anticancer agents that are not effective. In addition, because treatment schedules using anticancer agents are long-term, the sensitivity of anticancer agents to cancer over time can be determined by determining anticancer agent sensitivity for each treatment cycle even during treatment. Evaluation is possible and it is possible to determine whether or not to continue treatment.
  • the measurement reagent of the anticancer drug sensitivity determination marker of the present invention is useful as an anticancer drug sensitivity determination reagent.
  • FIG. 7 is a distribution map of R and NR groups of 6 metabolites that became significant in analysis method 2 and having different therapeutic responsiveness to mFOLFOX6 therapy combined with bevacizumab.
  • A It is a figure which shows the ROC curve of the anticancer agent sensitivity determination model of Formula (2) (7 metabolite model).
  • B It is a figure which shows the ROC curve of the anticancer agent sensitivity determination model of Formula (3) (3 metabolite model).
  • a Kaplan-Meier curve is drawn after dividing into R group and NR group based on metabolites before the start of treatment according to formula (2) (7 metabolite model).
  • B The Kaplan-Meier curve is drawn after dividing into R group and NR group based on the metabolite before the start of treatment according to formula (3) (three metabolite model). It is a figure of the hazard ratio of the metabolite which showed the significant difference, and its 95-% confidence interval, when the relationship between the metabolite concentration before the start of treatment and OS was analyzed by the proportional hazard model of COX.
  • Kaplan-Meier when the 95% confidence interval was grouped by cutoff value for metabolites whose upper limit was less than 1 It is a figure of a curve and the result of a log rank test.
  • Kaplan-Meier curve when metabolite whose upper limit of 95% confidence exceeds 1 is grouped by cutoff value when analyzing the relationship between metabolite concentration and OS before the start of treatment with COX proportional hazard model It is a figure of the result of a log rank test.
  • Anti-cancer drug sensitivity determination markers in the present invention include 2-deoxyglucose 6-phosphate (2DG6P), 2-methylserine (2MSE), cysteine-glutathione disulphide (CSSG), dopamine (DOPM), oxidisedolGluteGolGineGluSolGide 4-acetate (I4A), pyridine-2-carboxylic acid butyester (P2CB), 1-methyl-2-pyrrolidone, aspartate (ASP), benzamide, glycicyl, glycose 6-Glyphine ), H Is 15 one metabolite of potaurine (HYPT) and hypoxanthine (HYPX).
  • 2DG6P 2-deoxyglucose 6-phosphate
  • 2MSE 2-methylserine
  • CSSG cysteine-glutathione disulphide
  • DOPM dopamine
  • I4A oxidisedolGluteGolGineGluSolGide 4-acetate
  • P2CB pyridine-2-carbox
  • 2DG6P, 2MSE, CSSG, DOPM, GSSG, I4A, and P2CB are targeted for blood samples derived from colorectal cancer patients, as shown in the examples below, and before the start of mFOLFOX6 therapy with bevacizumab.
  • the responders in the responder group were highly responsive to bevacizumab combined mFOLFOX6 therapy and had low therapeutic response It was found to be higher than patients in the non-responder group.
  • these 15 substances are susceptibility determination markers for anticancer agents including oxaliplatin or a salt thereof, fluorouracil or a salt thereof and levofolinate or a salt thereof, particularly oxaliplatin or a salt thereof, fluorouracil or a salt thereof and levofolinate or a salt thereof. It is useful as an anticancer drug sensitivity determination marker for anticancer drugs including bevacizumab.
  • the combination of three HYPT substances is particularly useful, and it is possible to determine whether or not the target cancer patient is a responder.
  • ASP shows a positive correlation with the sum of the tumor diameter before a cancer patient's treatment start
  • CSSG shows a negative correlation. Therefore, ASP and CSSG are useful as determination markers for the sum of tumor diameters of cancer patients.
  • CSSG alone is an anticancer agent comprising oxaliplatin or a salt thereof and fluorouracil or a salt thereof and levophorinate or a salt thereof, particularly an anticancer agent comprising oxaliplatin or a salt thereof, fluorouracil or a salt thereof, levofolinate or a salt thereof and bevacizumab.
  • these nine substances are singly anticancer agents containing oxaliplatin or a salt thereof and fluorouracil or a salt thereof and levophorinate or a salt thereof, particularly oxaliplatin or a salt thereof, fluorouracil or a salt thereof, levophorinate or a salt thereof and bevacizumab It is useful as a prognostic marker at the time of treatment with an anti-cancer agent containing, particularly as a marker for predicting the length of OS including the second and subsequent treatments.
  • 2DG6P is produced by glucose hexokinase after 2-deoxy-D-glucose, in which the OH group at the 2-position of glucose is H, is taken into the cell.
  • 2DG6P is a glycolytic system. It is known not only to accumulate in the cell because it is not metabolized by but also inhibits glucose metabolism to inhibit feedback of hexokinase, thereby suppressing the growth of cancer cells.
  • 2DG6P contains oxaliplatin or a salt thereof and fluorouracil or a salt thereof and levofolinate or a salt thereof. It is not known at all that it can be used as a susceptibility determination marker and can be determined as a responder when the concentration is high.
  • 2MSE is a substance that is also incorporated into cosmetics and the like as a moisturizing ingredient, but 2MSE can be used as a sensitivity determination marker for anticancer agents containing oxaliplatin or its salt and fluorouracil or its salt and levofolinate or its salt, concentration It is not known at all that it can be judged as a responder when it is high.
  • CSSG and GSSG are GSH metabolites known as substances involved in drug detoxification.
  • CSSG is a combination of GSH and Cys
  • GSSG is a GSH dimer formed by oxidation of GSH.
  • reports that focus on medicinal effects and CSSG and GSSG do not include reports related to cancer, and CSSG or GSSG contains oxaliplatin or a salt thereof and fluorouracil or a salt thereof and levofolinate or a salt thereof.
  • CSSG is a predictive marker for prognosis by anticancer drug treatment including oxaliplatin or a salt thereof and fluorouracil or a salt thereof and levofolinate or a salt thereof, in particular, when it is a predictive marker for PFS and OS or when the concentration is high No long-term survival is known.
  • CSSG is a marker for predicting the sum of tumor diameters in the body.
  • DOPM is a neurotransmitter that exists in the central nervous system and is involved in motor regulation, hormone regulation, emotion, motivation, learning, etc.
  • DOPM is oxaliplatin or its salt and fluorouracil or its salt and levofolinate or its It is not known at all that it can be used as a sensitivity determination marker for an anticancer agent containing salt, and can be determined as a responder when the concentration is high.
  • I4A is a substance on the metabolic pathway of histamine, which is an inflammation substance produced by mast cells, basophils, and macrophages, but I4A contains oxaliplatin or a salt thereof, fluorouracil or a salt thereof, and levofolinate or a salt thereof. It is not known at all that it can be used as a sensitivity determination marker for an anticancer agent and can be determined as a responder when the concentration is high.
  • P2CB is a butyline ester of pyridine-2-carboxylic acid.
  • Pyridine-2-carboxylic acid is a substance on the tryptophan metabolic pathway, has a chelating action, and acts as an inhibitor of glucose dehydrogenase activation, and cell protein synthesis is inhibited by about 50% by treatment with picolinic acid.
  • P2CB can be used as a sensitivity determination marker for an anticancer drug containing oxaliplatin or a salt thereof, fluorouracil or a salt thereof and levofolinate or a salt thereof, and can be determined as a responder when the concentration is high. Not.
  • 1-methyl-2-pyrrolidone is known to be used as an intermediate or synthetic reagent for pharmaceuticals and the like, but 1-methyl-2-pyrrolidone is oxaliplatin or a salt thereof and fluorouracil or a salt thereof and levofolinate or It is not known at all that it can be used as a sensitivity determination marker for an anticancer drug containing the salt and can be determined as a non-responder when the concentration is high.
  • ASP is one of the amino acids and is generally known to play a central role in in vivo nitrogen treatment.
  • ASP can be used as a sensitivity determination marker for anticancer drugs containing oxaliplatin or its salt and fluorouracil or its salt, and the oxaliplatin high-sensitivity cell line has a higher concentration than the low-sensitivity cell line.
  • Is known International Publication No. 2013/125675
  • ASP can be used as a prognostic marker at the time of treatment with an anticancer agent containing oxaliplatin or a salt thereof, fluorouracil or a salt thereof and levofolinate or a salt thereof, and has a short survival time when the concentration is high.
  • Benzamide is also called benzoic acid amide, and its derivatives are used as sedatives and antipsychotics, but benzamide is an anticancer drug containing oxaliplatin or a salt thereof and fluorouracil or a salt thereof and levofolinate or a salt thereof. It is not known at all that it can be used as a sensitivity determination marker and can be determined as a non-responder when the concentration is high.
  • Glucaric acid is one of typical sugar acids, and since its derivatives can be used as solvents, demand for raw materials is increasing, and several production methods are known (International Publication No. 2013/125509). ), But glucocaric acid can be used as a susceptibility determination marker for anticancer drugs containing oxaliplatin or its salt and fluorouracil or its salt and levofolinate or its salt, and it can be determined as a non-responder at high concentrations. Not.
  • GL6P is a substance that is metabolized by the pentose phosphate pathway, glycolysis, etc., but GL6P can be used as a sensitivity determination marker for anticancer agents containing oxaliplatin or its salt and fluorouracil or its salt and levofolinate or its salt It is not known at all that a non-responder can be determined when the concentration is high.
  • Gly-Gly is used as a buffer for biological experiments and as a raw material for the synthesis of more complex peptides, but Gly-Gly contains oxaliplatin or a salt thereof and fluorouracil or a salt thereof and levofolinate or a salt thereof. It is not known at all that it can be used as a susceptibility determination marker, and can be determined as a non-responder when the concentration is high.
  • HYPT is an intermediate product in the biosynthesis of taurine from cysteine, and is synthesized by oxidation of 3-sulfino-L-alanine or cysteine.
  • HYPT is known to have an anti-inflammatory action (Japanese Patent Laid-Open No. 2017-7980) and an antioxidant action (Japanese Patent Laid-Open No. 2017-14167), but HYPT is oxaliplatin or a salt thereof and fluorouracil or a salt thereof and levofolinate or It is not known at all that it can be used as a sensitivity determination marker for an anticancer drug containing the salt and can be determined as a non-responder when the concentration is high.
  • HYPX is a metabolite on the purine metabolic pathway, and is synthesized using inosine or H 2 O 2 generated from O 2 ⁇ by xenanthine by hydrogen peroxide.
  • HYPX is known to be a diagnostic biomarker for osteoarthritis and prostate cancer (Japanese Patent Publication No. 2006-504093 and Japanese Patent Application Laid-Open No. 2016-153808), but HYPX is oxaliplatin or a salt thereof and fluorouracil. It is not known at all that it can be used as a sensitivity determination marker for an anticancer agent containing a salt thereof and levofolinate or a salt thereof, and can be determined as a non-responder when the concentration is high.
  • HYPX can be used as a prognostic marker during treatment with an anticancer drug containing oxaliplatin or a salt thereof and fluorouracil or a salt thereof and levofolinate or a salt thereof, and that the survival time is short when the concentration is high.
  • 2-aminobutyric acid is a metabolite on the cysteine / methionine metabolic pathway, but 2-aminobutyric acid is a prognosis at the time of treatment with an anticancer agent containing oxaliplatin or a salt thereof, fluorouracil or a salt thereof and levofolinate or a salt thereof. It is not known at all that it can be used as a predictive marker and has a long survival time when the concentration is high.
  • Gamma-Glu-Cys is a metabolite on the glutathione metabolic pathway.
  • gamma-Glu-Cys can be used as a prognostic marker during treatment with an anticancer drug containing oxaliplatin or a salt thereof, fluorouracil or a salt thereof and levofolinate or a salt thereof, and has a long survival time when the concentration is high Is not known at all.
  • Glycerol-3-phosphate is a metabolite on the glycerolipid and glycerophosphate metabolic pathways and the choline metabolic pathway in cancer.
  • glycerol-3-phosphate can be used as a prognostic marker during treatment with an anticancer drug containing oxaliplatin or a salt thereof, fluorouracil or a salt thereof and levofolinate or a salt thereof, and has a long survival time when the concentration is high Is not known at all.
  • Quinic acid is a metabolite on the phenylalanine / tyrosine / tryptophan synthesis pathway.
  • quinic acid can be used as a prognostic marker in the treatment with an anticancer drug containing oxaliplatin or a salt thereof and fluorouracil or a salt thereof and levofolinate or a salt thereof, and has a long survival time when the concentration is high. It is not done.
  • glycocholic acid is a metabolite on the bile acid synthesis system and cholesterol metabolism pathway.
  • glycocholic acid can be used as a prognostic marker in treatment with an anticancer drug containing oxaliplatin or a salt thereof and fluorouracil or a salt thereof and levofolinate or a salt thereof, and that the survival time is short when the concentration is high. It is not done.
  • Lactic acid is involved in various pathways as a substance related to glycolysis and gluconeogenesis.
  • lactic acid can be used as a prognostic marker during treatment with an anticancer agent containing oxaliplatin or a salt thereof and fluorouracil or a salt thereof and levofolinate or a salt thereof, and that the survival time is short when the concentration is high. It is not done.
  • the responder is the result of image diagnosis by a radiologist according to the Recist standard (J Natl Cancer Inst. 2000 Feb 2: 92 (3): 205-16), and the maximum effect during the study treatment period is either complete response or A non-responder (N-R) refers to a patient who has shown a partial response.
  • N-R non-responder
  • the maximum effect during the study treatment period is either stable disease or progressive disease. Point to the patient.
  • the anticancer agent which is the target of the anticancer drug sensitivity determination marker of the present invention is an anticancer agent containing oxaliplatin or a salt thereof and fluorouracil or a salt thereof and levofolinate or a salt thereof.
  • the anticancer agent converted into platin, fluorouracil or levofolinate is also a target of the anticancer agent sensitivity determination marker of the present invention. Specifically, since tegafur and capecitabine are metabolized in the body and converted to fluorouracil, tegafur and capecitabine are also used in the present invention for determining sensitivity to anticancer agents.
  • an anticancer agent containing oxaliplatin or a salt thereof, tegafur or a salt thereof and levophorinate or a salt thereof an anti-cancer agent containing oxaliplatin or a salt thereof, capecitabine or a salt thereof and a levofolinate or a salt thereof.
  • the cancer drug is a target of the anticancer drug sensitivity determination marker of the present invention.
  • a cyclophosphamide cyclophosphamide
  • ifosfamide ifosfamide, thiotepa, melphalan
  • busulfan busulfan
  • nimustine ranimustine
  • dacarbazine procarbazine (procarbazine) (Carboplatin)
  • nedaplatin nedaplatin atine
  • methotrexate pemetrexed, tegafur / uracil, doxyfluridine, tegafur / gimeracil / teteracine
  • Enocitabine gemcitabine, 6-mercaptopurine, fludarabine, pentostatin, cladribine, hydroxyurey a)
  • 2DG6P, 2MSE, CSSG, DOPM, GSSG, I4A, P2CB in a biological sample (specimen) derived from a cancer patient Measuring the amount of one or more molecules selected from 1-methyl-2-pyrrolidone, ASP, benzamide, glucoric acid, GL6P, Gly-Gly, HYPT and HYPX; Concentration, concentration range in responder, cut-off value in responder (hereinafter, cut-off value means relative concentration when the concentration of LC / MS internal standard solution is 1) (5.34 ⁇ 10 in the case of 2DG6P) -4 a ⁇ , a 1.404 ⁇ 10 -3 ⁇ when the 2MSE, C A 2.223 ⁇ 10 -2 ⁇ when the SG, a 1.153 ⁇ 10 -3 ⁇ when the DOPM, a 1.061 ⁇ 10 -3 ⁇ when the
  • the amount of 2DG6P, CSSG, HYPT, I4A and P2CB in a biological sample (specimen) derived from a cancer patient (2) the amount of 2DG6P, 2MSE, ASP, CSSG, DOPM, GL6P and HYPT, or ( 3) Measure the amount of CSSG, DOPM and HYPT, and more specifically, the measurement result is the cut-off value of the responder of each substance (5.34 ⁇ 10 ⁇ 4 for 2DG6P, 1 for 2MSE .404 ⁇ 10 ⁇ 3 , 2.223 ⁇ 10 ⁇ 2 for CSSG, 1.153 ⁇ 10 ⁇ 3 for DOPM, and 3.316 ⁇ 10 ⁇ 3 for I4A , in the case of P2CB was 5.952 ⁇ 10 -4, a 3.401 ⁇ 10 -2 in the case of ASP, is 8.167 ⁇ 10 -4 in the case of GL6P, HY Quantified as compared to 1.837 ⁇ 10 -2)
  • T the amount of
  • the cancer patient includes a subject having cancer or a subject having cancer.
  • the biological sample include blood, serum, plasma, cancer tissue biopsy specimen, cancer excision surgical specimen, stool, urine, ascites, pleural effusion, cerebrospinal fluid, sputum and the like, and serum is particularly preferable.
  • lip, oral and pharyngeal cancer typified by pharyngeal cancer
  • digestive organ cancer typified by esophageal cancer
  • stomach cancer colon / rectal cancer
  • lung cancer Respiratory and intrathoracic organ cancer, bone and joint cartilage cancer, cutaneous malignant melanoma, squamous cell carcinoma and other skin cancers, mesothelioma and mesothelioma Tissue cancer, breast cancer, uterine cancer, female genital cancer represented by ovarian cancer, male genital cancer represented by prostate cancer, urinary tract cancer represented by bladder cancer, brain tumor Representative eye, brain and central nervous system cancer, thyroid and other endocrine adenocarcinoma, non-Hodgkin lymphoma, lymphoid leukemia, lymphoid tissue, hematopoietic tissue and related tissue cancer, and these as the primary focus
  • cancer of metastatic tissue and for colon and rectal cancer (colorect
  • the measurement means of the molecule selected from Cys, glycerol-3-phosphate, quinic acid, glycocholic acid and lactic acid may be appropriately determined depending on the substance to be measured, for example, CE-Q-TOF MS, CE-TOF MS, Various mass spectrometers such as Gas chromatography-mass spectrometry (GC-MS), HPLC, immunological Conventional method, can be measured by biochemical assay, and the like.
  • the amount for example, the concentration of one or more molecules selected from 2DG6P, 2MSE, CSSG, DOPM, GSSG, I4A and P2CB in a biological sample derived from a cancer patient may be measured.
  • concentration is determined to be higher than a predetermined control level, it can be determined that the cancer is sensitive to the target anticancer agent. It can be used as a marker for actively continuing treatment for patients who can expect a therapeutic effect.
  • the anticancer drug sensitivity determination marker in the present invention can be used as a marker for actively continuing treatment for a patient who can expect a therapeutic effect, and in addition, an anticancer drug whose drug effect cannot be expected. It can also be used as a marker for avoiding the progression of cancer and the increase in side effects associated with continuous administration.
  • a cut-off value may be mentioned, and the cut-off value may be 5.304 ⁇ 10 ⁇ 4 ⁇ 2DG6P, 1.404 ⁇ 10 ⁇ 3 ⁇ 2MSE, and CSSG. 2.223 ⁇ 10 -2 ⁇ , 1.153 ⁇ 10 -3 ⁇ when the DOPM, 1.061 ⁇ 10 -3 ⁇ when the GSSG, 3.316 ⁇ 10 -3 ⁇ when the I4A, the P2CB In this case, 5.952 ⁇ 10 ⁇ 4 ⁇ may be mentioned.
  • a target anticancer agent with one or more molecules selected from 1-methyl-2-pyrrolidone, ASP, benzamide, glucoside, GL6P, Gly-Gly, HYPT and HYPX
  • What is necessary is just to measure the quantity of the molecule
  • the anticancer drug sensitivity determination marker in the present invention can be used as a marker for actively continuing treatment for a patient who can expect a therapeutic effect, and in addition, an anticancer drug whose drug effect cannot be expected.
  • the control level for example, include a cut-off value, the cut as the off value, 1-methyl-2-pyrrolidone ⁇ when the 8.422 ⁇ 10 -2, ⁇ when the ASP 3.401 ⁇ 10 - 2, ⁇ 9.859 ⁇ 10 -2 in the case of benzamide, glucaric ⁇ 1.058 ⁇ 10 -3 in the case of acid, ⁇ when the to ⁇ 8.167 ⁇ 10 -4, Gly- Gly for GL6P 5 349 ⁇ 10 ⁇ 3 , ⁇ 1.837 ⁇ 10 ⁇ 2 for HYPT, and ⁇ 1.050 ⁇ 10 ⁇ 1 for HYPX.
  • 2DG6P, CSSG, HYPT, I4A and P2CB before or after the administration of the anticancer agent, 2DG6P, CSSG, The amount of HYPT, I4A, and P2CB, for example, the concentration is measured.
  • 1 is measured when the measurement result of each molecule is equal to or greater than the cut-off value of each molecule.
  • HYPT 0 may be substituted into the expression (1), and 1 may be substituted into the expression (1) when the measurement result is equal to or less than the cut-off value.
  • 2DG6P, CSSG, I4A and P2CB indicate 1 when the measurement result of each molecule is greater than or equal to the cut-off value of each molecule, and 0 when less than the cut-off value, and HYPT is measured. (If the result is less than or equal to the cut-off value, 1 is indicated. If the result exceeds the cut-off value, 0 is indicated.)
  • the cutoff value of each substance is as follows. 5.304 ⁇ 10 ⁇ 4 for 2DG6P, 2.223 ⁇ 10 ⁇ 2 for CSSG, 1.837 ⁇ 10 ⁇ 2 for HYPT, 3.316 ⁇ for I4A 10 is -3, 5.952 ⁇ 10 -4 in the case of P2CB.
  • P calculated by the formula (1) indicates a probability that the target cancer patient is a responder. If p is 0.5 or more, the cancer of the cancer patient is sensitive to the target anticancer agent, that is, the cancer patient can be determined to be a responder.
  • the drug sensitivity determination marker can be used as a marker for actively continuing treatment for a patient who can expect a therapeutic effect. On the other hand, if p is less than 0.5, it can be determined that the cancer of the cancer patient is not sensitive to the target anticancer agent, that is, the cancer patient is non-responder. If you are not sensitive to the target anticancer drug, you cannot expect its efficacy, and if you continue to take or continue anticancer drugs that cannot be expected There is concern about the progression of cancer and increased side effects.
  • the anticancer drug sensitivity determination marker in the present invention can be used as a marker for actively continuing treatment for a patient who can expect a therapeutic effect, and in addition, an anticancer drug whose drug effect cannot be expected. It can also be used as a marker for avoiding the progression of cancer and the increase in side effects associated with continuous administration.
  • 2DG6P, 2MSE, ASP, CSSG, DOPM, GL6P and HYPT can be used to determine the sensitivity to the target anticancer drug, before or after administration of the anticancer drug.
  • the amount, for example, the concentration of 2DG6P, 2MSE, ASP, CSSG, DOPM, GL6P, and HYPT may be measured and substituted into equation (2) as follows. (In the formula, 2DG6P indicates 10.2190 when the measurement result of 2DG6P is greater than or equal to the cutoff value, and ⁇ 10.2190 when the measurement result is less than the cutoff value.
  • 2MSE indicates that the measurement result of 2MSE is When the cutoff value is equal to or higher than the cutoff value, 1.4778 is indicated, and when the cutoff value is lower than the cutoff value, -1.4778 is indicated.
  • 4976 is 1.4976 when the cut-off value is less than the cut-off value
  • CSSG is 2.0937 when the CSSG measurement result is equal to or greater than the cut-off value
  • DOPM indicates 2.2258 when the DOPM measurement result is equal to or greater than the cutoff value, and ⁇ 2.2258 when the DOPM measurement value is less than the cutoff value.
  • GL P indicates ⁇ 1.6623 when the measurement result of GL6P is equal to or greater than the cutoff value, and 1.6623 when the measurement result is less than the cutoff value.
  • HYPT indicates that the measurement result of HYPT is equal to or greater than the cutoff value. Is -2.3200, and is less than the cutoff value is 2.3200.)
  • the cutoff value of each substance is as follows.
  • P calculated by the equation (2) indicates a probability that the target cancer patient is a responder. If p is 0.5 or more, the cancer of the cancer patient is sensitive to the target anticancer agent, that is, the cancer patient can be determined to be a responder.
  • the drug sensitivity determination marker can be used as a marker for actively continuing treatment for a patient who can expect a therapeutic effect.
  • the anticancer drug sensitivity determination marker in the present invention can be used as a marker for actively continuing treatment for a patient who can expect a therapeutic effect, and in addition, an anticancer drug whose drug effect cannot be expected. It can also be used as a marker for avoiding the progression of cancer and the increase in side effects associated with continuous administration.
  • the amount of CSSG, DOPM and HYPT in a biological sample derived from a cancer patient before or after administration of the anticancer agent may be measured and substituted into equation (3) as follows. (Where CSSG indicates 1.8701 when the CSSG measurement result is greater than or equal to the cutoff value, and ⁇ 1.8701 when the CSSG measurement value is less than the cutoff value, and DOPM indicates that the DOPM measurement result is When the cutoff value is greater than or equal to the cutoff value, 1.4081 is indicated, and when the cutoff value is less than the cutoff value, -1.4081 is indicated.
  • HYPT indicates that the measured value of HYPT is greater than or equal to the cutoff value. If 0869 is less than the cutoff value, 1.0869 is indicated.)
  • the cutoff value of each substance is as follows. 2.223 ⁇ 10 ⁇ 2 for CSSG, 1.153 ⁇ 10 ⁇ 3 for DOPM, and 1.837 ⁇ 10 ⁇ 2 for HYPT.
  • P calculated by Equation (3) indicates the probability that the target cancer patient is a responder. If p is 0.5 or more, the cancer of the cancer patient is sensitive to the target anticancer agent, that is, the cancer patient can be determined to be a responder.
  • the drug sensitivity determination marker can be used as a marker for actively continuing treatment for a patient who can expect a therapeutic effect.
  • the anticancer drug sensitivity determination marker in the present invention can be used as a marker for actively continuing treatment for a patient who can expect a therapeutic effect, and in addition, an anticancer drug whose drug effect cannot be expected. It can also be used as a marker for avoiding the progression of cancer and the increase in side effects associated with continuous administration.
  • formula (2) is preferable from the viewpoint of sensitivity.
  • ASP and / or CSSG in a biological sample derived from the cancer patient before administration of the anticancer agent.
  • concentration for example, the concentration may be measured, and each measurement result may be substituted into Equation (4) or Equation (5).
  • an anti-cancer agent comprising oxaliplatin or a salt thereof, fluorouracil or a salt thereof and levophorinate or a salt thereof and bevacizumab
  • the concentration of one or more molecules selected from ASP, CSSG, and HYPX is determined to be low if the concentration is determined to be higher than a predetermined control level. It can be predicted that the prognosis is better than when the concentration is determined.
  • the concentration is determined to be high.
  • Prognosis prediction can be expressed in terms of length, such as progression-free survival (PFS), overall survival (OS), disease-free survival (DFS), etc., but is preferably expressed in PFS and / or OS, and expressed in OS Is particularly preferred.
  • PFS progression-free survival
  • OS overall survival
  • DFS disease-free survival
  • OS disease-free survival
  • OS OS
  • OS OS
  • OS disease-free survival
  • OS OS
  • OS disease-free survival
  • OS Is particularly preferred As the control level, for example, a cut-off value can be mentioned, and in the case of CSSG and HYPX, there are 2.223 ⁇ 10 ⁇ 2 ⁇ and ⁇ 1.050 ⁇ 10 ⁇ 1 which are the same as the responder threshold values, respectively.
  • 2DG6P, 2MSE, CSSG, DOPM, GSSG, I4A, P2CB, 1-methyl-2-pyrrolidone, ASP, benzamide in a sample It is preferable to use a kit including a protocol for measuring one or more molecules selected from glucolic acid, GL6P, Gly-Gly, HYPT, and HYPX.
  • kits that includes a protocol for measuring one or more selected molecules.
  • the kit includes a measurement reagent for these metabolites and a protocol (a method for using the measurement reagent, a standard for determining the presence or absence of sensitivity to an anticancer agent, etc.).
  • These standards include standard concentrations of these metabolites, concentrations judged to be high, concentrations judged to be low, factors affecting the measurement results, and the degree of their effects, etc. It can be set for each anticancer drug. Using this criterion, it can be determined or predicted as described above.
  • 2DG6P, 2MSE, CSSG, DOPM, GSSG, I4A, P2CB, 1-methyl-2-pyrrolidone, ASP, benzamide in a biological sample derived from a cancer cell line or a tumor-bearing animal, Glucaric acid, GL6P, Gly-Gly, HYPT, HYPX, 2-aminobutyric acid, gamma-Glu-Cys, glycerol-3-phosphate, quinic acid, glycocholic acid, and lactic acid
  • an anticancer agent 2DG6P, 2MSE, CSSG, DOPM, GSSG, I4A, P2CB, 1-methyl-2-pyrrolidone, ASP, benzamide
  • an anticancer agent and a test substance are added or administered to a cancer cell line or a cancer-bearing animal, and 2DG6P, 2MSE, CSSG, DOPM, GSSG, I4A in a biological sample derived from the cancer cell line or the cancer-bearing animal, P2CB, 1-methyl-2-pyrrolidone, ASP, benzamide, glucaric acid, GL6P, Gly-Gly, HYPT, HYPX, 2-aminobutyric acid, gamma-Glu-Cyclide, glycerolid-3, glycerolid-3 a test substance that enhances the sensitivity of the cancer cell line or cancer-bearing animal to the anticancer agent based on a step of measuring the concentration of one or more molecules selected from lactic acid, and fluctuations in the concentration; By performing-option to process, can be screened sensitivity-enhancing agent for said anti-cancer agent.
  • the expression fluctuation includes the presence or absence of expression of the molecule
  • one or more molecules selected from 2DG6P, 2MSE, CSSG, DOPM, GSSG, I4A, P2CB, 2-aminobutyric acid, gamma-Glu-Cys, glycerol-3-phosphate, and quinic acid are present in the presence of an anticancer drug.
  • Anti-cancer drug sensitivity-enhancing agents can be screened using changes in the expression of these metabolites, specifically the increase in concentration as an index. That is, substances that increase the concentration of these metabolites in vitro or in vivo enhance anticancer drug sensitivity.
  • substances that increase the concentration of these metabolites in various cancer cell lines in the presence of anticancer drugs are substances that enhance the sensitivity of the cancer cell lines to the anticancer drugs (anti-antigens).
  • Cancer drug sensitivity enhancer are substances that increase the concentration of these metabolites before and after administration of anticancer drugs in cancer-bearing animals.
  • substances that increase the concentration of these metabolites before and after administration of anticancer drugs in cancer-bearing animals are substances that enhance the sensitivity of the cancer-bearing animals to the anticancer drugs (anticancer drug sensitivity). Enhancer).
  • Anticancer drug sensitivity-enhancing agents can be screened using changes in the expression of these metabolites, specifically, a decrease in concentration as an index. That is, substances that reduce the concentration of these metabolites in vitro or in vivo enhance the sensitivity to anticancer agents.
  • substances that reduce the concentration of these metabolites in the presence of anticancer drugs in various cancer cell lines are substances that increase the sensitivity of the cancer cell lines to the anticancer drugs (anti-antigens).
  • Cancer drug sensitivity enhancer In vivo, a substance that decreases the concentration of these metabolites before and after administration of an anticancer drug in a cancer-bearing animal is a substance that enhances the anticancer drug sensitivity of the cancer-bearing animal (anticancer drug sensitivity). Enhancer).
  • the combined form of the anticancer agent sensitivity-enhancing agent and the anticancer agent targeted for sensitivity enhancement may be a single composition containing both of these components. There may be. In addition, these components may be different administration routes.
  • the anticancer agent to be used here is an anticancer agent containing oxaliplatin or a salt thereof and fluorouracil or a salt thereof and levofolinate or a salt thereof, and other anticancer agents used in combination with the anticancer agent.
  • cyclophosphamide cyclophosphamide
  • ifosfamide ifosfamide
  • thiotepa thiotepa
  • busulfan busulfan
  • nimustine neimustine
  • ranimustine ra
  • dacarbazine procarbazine
  • procarbazine procarbazine
  • temozolomide temozolomide
  • cisplatin carboplatin Carboplatin
  • nedaplatin methotrexate, pemetrexed, tegafur / uracil, toxifurec, tefliline
  • Cytarabine enocitabine
  • gemcitabine 6-mercaptopurine
  • fludarabine pentostatin
  • cladobin dribine hydroxyurea
  • doxorubicin epirubicin
  • daunorubicin idarubicin
  • ISC1 includes 10 mM L-methionine sulfone (manufactured by Human Metabolome Technologies) in an aqueous solution
  • ISC2 includes 10 mM L-Arginine- 13C 6 hydrochloride (Sigma-Aldrich-Nigrich- 15 , manufactured by Sigma-Aldrich-Nigrich- 15 ). (manufactured by Cambridge Isotope Laboratories) 2 monohydrate, including ⁇ -Alanine- 13 C 3, 15 N ( manufactured by Sigma-Aldrich) and Tubercidin (manufactured by Sigma-Aldrich).
  • ISA1 contains 10 mM D-camphor-10-sulphonic acid sodium salt (manufactured by Human Metatechnologies) in an aqueous solution
  • ISA2 contains 10 mM chloranilic acid (manufactured by Tokyo Chemical Industry) in an aqueous solution.
  • ISC1 and ISA1 were also used to calculate the relative concentration of each metabolite obtained.
  • B-2 Patient treatment All patients received bevacizumab (BV) 5 mg / kg intravenously over 30-90 minutes as primary chemotherapy, followed by oxaliplatin (L-OHP) 85 mg / m 2 and levofolinate (L-LV) 200 mg / m 2 was administered intravenously over 120 minutes. Thereafter, 5-FU 400 mg / m 2 was administered bolus intravenously, followed by continuous infusion of 5-FU 2400 mg / m 2 intravenously over 46 hours (mFOLFOX6 therapy). This treatment was repeated every 2 weeks. Even after the L-OHP treatment was discontinued, a simplified combination of l-LV and 5-FU (sLV5FU2), with or without BV treatment if necessary, was accepted as a study treatment. Continue treatment for up to 24 cycles as long as there is no disease progression, the appearance of adverse events that require further study treatment discontinuation, physician judgment, refusal to continue treatment with the patient, or transition to curative tumor resection did.
  • L-OHP oxaliplatin
  • Capillaries include Human Metabolome Technologies, Inc. A fused silica capillary (inner diameter 50 ⁇ m, total length 80 cm) of (HMT) catalog number (Cat. No.) H3305-2002 was used.
  • the buffer includes HMT Cat. No. A buffer of 3301-1001 was used.
  • the applied voltage was measured at +27 kv and the capillary temperature at 20 ° C. The sample was injected for 10 seconds at 50 mbar using the pressure method.
  • the buffer includes HMT Cat. No. A buffer of H3302-1021 was used.
  • the applied voltage was 30 kv, and the sample was injected using a pressure method at 50 mBar for 25 seconds.
  • C-3 Data processing
  • the peak raw data found by CE-Q-TOF MS or CE-TOF MS to obtain peak information including m / z, migration time (MT) and peak region is It was processed by Master Hands automatic integration software version 2.0 (manufactured by Keio University).
  • the software found all peaks, removed noise, and generated a data matrix containing metabolite annotations and relative peak areas.
  • the peaks were annotated with metabolite names estimated from the HMT metabolite database based on m / z obtained from CE and MT obtained from TOF MS.
  • the conditions for MT, m / z, minimum S / N ratio annotating the anion peak were set to 1.5 min, 50 ppm, 20 respectively, and that of the cation was 0.5 min, 50 ppm, 20 min, respectively.
  • the relative concentration of each metabolite annotated was calculated by dividing the area of each metabolite peak by the area of ISC1 (cation) or ISA1 (anion).
  • ISC1 cation
  • ISA1 anion
  • Responder A patient whose complete effect or partial response showed the maximum effect during the test treatment period as a result of image diagnosis by a radiologist according to the Recist criteria.
  • Non-responder A patient whose stable effect or progressive disease has the greatest effect during the study treatment period as a result of image diagnosis by a radiologist according to the Recist criteria.
  • a chi-square test was used to confirm differences in patient background.
  • a t-test (Welch) was used to examine the difference between the N—R and R groups of each metabolite. As a result, those that became significant were used as candidates for anticancer drug sensitivity determination markers. Pearson correlation coefficient was used to confirm the relationship between each candidate substance and the association with patient background.
  • Multivariate nominal logistic regression analysis using univariate and variable increase / decrease methods was performed to establish anticancer drug susceptibility models.
  • Receiver operating characteristics (ROC) were used to evaluate the predictive power of candidate substances.
  • the p-value adjusted for multiplicity was calculated by Benjamini and Hochberg's false discovery rate method (BH-FDR) so as to control the false discovery rate (Journal of the Royal Statistical, Series B, 57, 289-300). Survival curves and treatment periods were estimated using the Kaplan-Meier method, and the difference between the curves used the log rank test. Evaluation of prognostic prediction of metabolites as candidate substances was investigated by univariate and multivariate analysis using the Cox proportional hazard model.
  • ROC curves of these metabolites and the sensitivity, specificity and accuracy of the AUC and metabolites alone were determined by the same method as in (d-1).
  • a cut-off value is obtained from the ROC curve for each metabolite that has become univariate and significant. Priced.
  • variables were selected by the variable increment method using the Bayesian information criterion (BIC) as an index by STEP WISE method. Multivariate nominal logistic regression analysis was performed using the selected variables.
  • Receiver operating characteristics (ROC) were used to evaluate the predictive power of the effects of candidate substances for anticancer drug sensitivity determination markers.
  • R group showed significantly lower values than the NR group were aspartate (ASP), hypotaurine (HYPT), and hypoxanthine (HYPX).
  • ASP aspartate
  • HYPT hypotaurine
  • HYPX hypoxanthine
  • the respective p values were 0.0487, 0.0310, and 0.0328.
  • 2DG6P, GSSG, I4A and P2CB were detected only in R group patients.
  • 2DG6P (5.304 ⁇ 10 ⁇ 4 ⁇ ); ASP ( ⁇ 3.401 ⁇ 10 ⁇ 2 ); CSSG (2.223 ⁇ 10 ⁇ 2 ⁇ ); GSSG (1.061 ⁇ 10 ⁇ 3 ⁇ ); HYPT ( ⁇ 1.837 ⁇ 10 ⁇ 2 ); HYPX ( ⁇ 1.050 ⁇ 10 ⁇ 1 ); I4A (3.316 ⁇ 10 ⁇ 3 ⁇ ); P2CB (5.952 ⁇ 10 ⁇ 4 ⁇ ).
  • the p-value was less than 0.01.
  • ASP and CSSG showed especially good AUC (0.7 ⁇ ).
  • the specificity and positive predictive value of 2DG6P, GSSG, I4A, and P2CB were 1.000 each. CSSG showed the lowest p-value and maximum AUC, and HYPX showed the highest sensitivity and negative predictive value.
  • the anticancer drug sensitivity determination model was calculated from the multivariate nominal logistic model using the variable increase / decrease method. As a result, as shown in Table 3, 2DG6P, CSSG, HYPT, I4A, and P2CB remain, and the respective FDR p values were 0.00082, 0.00996, 0.00222, 0.01163, and 0.01163, respectively. .
  • the anticancer drug sensitivity determination model is as shown in the following formula (1).
  • 2DG6P, CSSG, I4A and P2CB indicate 1 when the measurement result of each molecule is greater than or equal to the cut-off value of each molecule, and 0 when less than the cut-off value, and HYPT is measured.
  • the model is an expression for determining whether a patient is a responder.
  • the p value represents the probability that the patient is a responder. When the p value is 0.5 or more, it is determined as a responder.
  • the ROC curve AUC of this anticancer drug sensitivity determination model was 0.9107, and the cut-off value was ⁇ 2.640 or less (FIG. 3).
  • the sensitivity, specificity, positive predictive value, and negative predictive value were 0.6923, 1.0000, 1.0000, and 0.7073, respectively.
  • the anticancer drug sensitivity determination models (7 metabolite model and 3 metabolite model) are as shown in the following formulas (2) and (3), respectively.
  • 2DG6P indicates 10.2190 when the measurement result of 2DG6P is greater than or equal to the cutoff value, and ⁇ 10.2190 when the measurement result is less than the cutoff value.
  • 2MSE indicates that the measurement result of 2MSE is When the cutoff value is equal to or higher than the cutoff value, 1.4778 is indicated, and when the cutoff value is lower than the cutoff value, -1.4778 is indicated.
  • 4976 is 1.4976 when the cut-off value is less than the cut-off value
  • CSSG is 2.0937 when the CSSG measurement result is equal to or greater than the cut-off value
  • DOPM indicates 2.2258 when the DOPM measurement result is equal to or greater than the cutoff value, and ⁇ 2.2258 when the DOPM measurement value is less than the cutoff value.
  • GL P indicates ⁇ 1.6623 when the measurement result of GL6P is equal to or greater than the cutoff value, and 1.6623 when the measurement result is less than the cutoff value.
  • HYPT indicates that the measurement result of HYPT is equal to or greater than the cutoff value.
  • CSSG indicates 1.8701 when the CSSG measurement result is greater than or equal to the cutoff value, and ⁇ 1.8701 when the CSSG measurement value is less than the cutoff value
  • DOPM indicates that the DOPM measurement result is
  • the cutoff value is greater than or equal to the cutoff value
  • 1.4081 is indicated
  • HYPT indicates that the measured value of HYPT is greater than or equal to the cutoff value.
  • 0869 is 1.0869 if it is less than the cutoff value, which is 2.223 ⁇ 10 ⁇ 2 for CSSG and 1.153 ⁇ 10 ⁇ 3 for DOPM. Yes, in the case of HYPT, it is 1.837 ⁇ 10 ⁇ 2 .
  • the 7 metabolite model and the 3 metabolite model are expressions for determining whether or not the patient is a responder.
  • the p value represents the probability that the patient is a responder. When the p value is 0.5 or more, it is determined as a responder.
  • the AUC of the ROC curve of the 7 metabolite model was 0.97 (FIG. 7a).
  • the sensitivity, specificity, positive predictive value, and negative predictive value were 0.949, 0.862, 0.902, and 0.912, respectively.
  • the AUC of the ROC curve of the three metabolite model was 0.88 (FIG. 7b).
  • the sensitivity, specificity, positive predictive value, and negative predictive value were 0.769, 0.828, 0.857, and 0.794, respectively.
  • the formula (2) shows a high AUC compared to the formulas (1) and (3), and the sensitivity is high, so the responder is mistakenly determined as a non-responder. This is the most useful anticancer drug sensitivity determination model formula.
  • FIG. 9 shows the hazard ratio of metabolites that became significant as a result of analysis by the COX proportional hazard model and its 95% confidence interval.
  • 2-aminobutyric acid, CSSG, gamma-Glu-Cys, glycerol-3-phosphate and quinic acid have a longer survival period at higher concentrations in blood, and ASP, glycocolic acid, HYPX and lactic acid are in blood It was found that the higher the concentration, the shorter the survival time.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Electrochemistry (AREA)
  • Toxicology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Mycology (AREA)
  • Oncology (AREA)
  • Hospice & Palliative Care (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Biophysics (AREA)

Abstract

新たな抗がん剤感受性判定マーカーの提供。2DG6P、2MSE、CSSG、DOPM、GSSG、I4A、P2CB、1-methyl-2-pyrrolidone、ASP、benzamide、glucaric acid、GL6P、Gly-Gly、HYPT及びHYPXから選ばれる1以上の分子からなる、オキサリプラチン又はその塩とフルオロウラシル又はその塩とレボホリナート又はその塩を含む抗がん剤の感受性判定マーカー。

Description

併用抗がん剤の感受性の判定マーカー
 本発明は、対象となる患者のがんが、使用しようとする抗がん剤に治療反応性を有するか否かを判定するために用いる抗がん剤感受性判定マーカー及びその利用に関する。
 抗がん剤には、アルキル化剤、白金製剤、代謝拮抗剤、抗がん性抗生物質、抗がん性植物アルカロイド等の種類がある。そしてこれらの抗がん剤には、がんの種類によって効果を示す場合と効果を示さない場合がある。しかし、有効であると認められている種類のがんであっても、個々の患者によって効果を示す場合と効果を示さない場合があることが知られている。このような個々の患者のがんに対して抗がん剤が効果を示すか否かを抗がん剤感受性という。
 オキサリプラチン(SP-4-2)-[(1R,2R)-cyclohexane-1,2-diamine-κN,κN’][ethanedioato(2-)-κO,κO]platinum(IUPAC)は第三世代白金錯体系抗悪性腫瘍薬である。作用機序は先行薬剤であるシスプラチン(CDDP)やカルボプラチン(CBDCA)と同様、DNA塩基との架橋形成によるDNA合成阻害、蛋白合成阻害と考えられているが、CDDPやCBDCAが無効な大腸癌に対してもオキサリプラチン(L-OHP)は抗腫瘍効果を示し、従来の白金錯体系抗悪性腫瘍薬とは異なる抗腫瘍スペクトルを示す。アメリカでは2004年1月にフルオロウラシル(5-FU)/レボホリナート(LV)との併用で転移性結腸・直腸癌のファーストライン治療として承認されており、日本においても2005年4月、「治癒切除不能な進行・再発の結腸・直腸癌」に対して他の抗悪性腫瘍剤との併用(本剤はレボホリナート及びフルオロウラシルの静脈内持続投与法等との併用の場合に有用性が認められている)にて薬価収載された。進行再発大腸癌の治療は、1990年代前半まで行われていた5-FU/LV療法での生存率は10~12ヶ月であったのに対し、オキサリプラチンを加えたFOLFOX療法での生存期間は19.5ヶ月とほぼ2倍にまで到達している。さらに2009年8月には、同じくレボホリナート及びフルオロウラシルの静脈内持続投与法との併用による「結腸癌における術後補助化学療法」が効能・効果として追加され、大腸癌患者での使用拡大と有益性が期待できる薬剤である。大腸癌以外でも、2009年8月には治癒切除不能な膵癌で、2015年3月には胃癌で、いずれも他の化学療法剤との併用で効能・効果が追加されている。
 しかし、それでもなお進行再発大腸癌に対するFOLFOX療法の奏効率は50%程度であり、換言すれば治療を受けた患者の半数は効果が得られていないことを意味する。また、オキサリプラチンの使用により好中球減少症のほか高頻度の末梢神経障害を呈し、これは致死的副作用ではないものの治療継続を困難にする因子ともなっている。したがって、治療開始前に効果の期待できる患者(レスポンダー)と、効果の期待できない患者(ノンレスポンダー)を予測し、治療反応性を早期に診断できるバイオマーカーにより、有効性と安全性の高い化学療法が実現する。
 さらに、一般にがん化学療法の治療スケジュールは長期に渡るため、治療継続中における抗がん剤に対する感受性の経時的モニターは治療継続の可否の判定を可能とし、患者負担や副作用軽減につながるのみならず医療経済の観点からも有用であると考えられる。個々の患者における治療反応性を予測、そして早期に診断して適切な薬剤や治療レジメンを選択する「個別化治療」実現のためには、オキサリプラチン等の抗がん剤の効果予測もしくは治療応答性の早期診断を可能とするバイオマーカーの確立は急務である。
 かかる観点から本発明者らは、薬剤感受性の異なる複数のヒトがん細胞株あるいは当該細胞株を移植した担癌マウスに薬剤を曝露し、薬剤曝露後の細胞内代謝変動についてキャピラリー電気泳動-飛行時間型質量分析計(CE-TOF MS)を用いて網羅的に解析し、薬剤感受性と比較解析することにより、抗がん剤感受性判定マーカーの探索を行い、いくつかのマーカーを報告した(特許文献1~4)。しかしながら、これらのマーカーは、いまだ実用化には至っていない。また、近年では、FOLFOX療法にベバシズマブ、セツキシマブやパニツムマブ等の抗体医薬を加えた併用療法も確立されていることから、FOLFOX療法の効果予測もしくは治療応答性の早期診断を可能とするバイオマーカーの重要性は益々増大している。
国際公開第2009/096189号 国際公開第2011/052750号 国際公開第2012/127984号 国際公開第2013/125675号
 本発明の課題は、個々の患者の治療反応性を判別できる抗がん剤感受性判定マーカー及びそれを利用する新たながん治療手段を提供することにある。
 そこで本発明者らは、結腸・直腸がん患者の血液検体を対象とし、ベバシズマブ併用mFOLFOX6療法開始前の血中代謝物をCE-Q-TOF MS及びCE-TOF MSを用いて網羅的に解析した結果、ベバシズマブ併用mFOLFOX6療法に対する治療反応性の高いレスポンダー群の患者で、2-deoxyglucose 6-phosphate(2DG6P)、2-methylserine(2MSE)、cysteine-glutathione disulphide(CSSG)、dopamine(DOPM)、oxidized glutathione(GSSG)、imidazole-4-acetate(I4A)及びpyridine-2-carboxylic acid butyl ester(P2CB)の濃度が、治療反応性の低いノンレスポンダー群の患者に比して高いことを見出した。また、レスポンダー群の患者で、1-methyl-2-pyrrolidone、aspartate(ASP)、benzamide、glucaric acid、glucose 6-phosphate(GL6P)、glycylglycin(Gly-Gly)、hypotaurine(HYPT)及びhypoxanthine(HYPX)の濃度が、ノンレスポンダー群の患者に比して低いことを見出した。
 かかる知見に基づき、さらに検討した結果、がん患者由来の生体試料中の2DG6P、2MSE、CSSG、DOPM、GSSG、I4A、P2CB、1-methyl-2-pyrrolidone、ASP、benzamide、glucaric acid、GL6P、Gly-Gly、HYPT及びHYPXから選ばれる1以上の分子の濃度を測定すれば、当該がん患者のがんが抗がん剤に対する感受性を有するか否かを判定できることを見出した。また、がん患者由来の生体試料中の(1)2DG6P、CSSG、HYPT、I4A及びP2CBの濃度、(2)2DG6P、2MSE、ASP、CSSG、DOPM、GL6P及びHYPTの濃度、又は(3)CSSG、DOPM及びHYPTの濃度を測定し、当該濃度がレスポンダーのカットオフ値以上(あるいは、以下)であったか否かを数値化して特定の算出式に代入すれば、当該がん患者のがんが抗がん剤に対する感受性を有するか否か、具体的には当該がん患者がレスポンダーであるか否かを判定できることを見出した。また、がん患者由来の生体試料中のASP及びCSSGから選ばれる1以上の分子の濃度を測定すれば、治療開始前の腫瘍の大きさを予測できることを見出した。また、がん患者由来の生体試料中の2-aminobutyric acid、CSSG、gamma-glutamylcysteine(gamma-Glu-Cys)、glycerol-3-phosphate、quinic acid、ASP、glycocholic acid、HYPX及びlactic acidから選ばれる1以上の分子の濃度を測定すれば、抗がん剤治療時の予後予測ができることを見出した。
 さらに、がん患者由来の生体試料中の2DG6P、2MSE、CSSG、DOPM、GSSG、I4A、P2CB、1-methyl-2-pyrrolidone、ASP、benzamide、glucaric acid、GL6P、Gly-Gly、HYPT、HYPX、2-aminobutyric acid、gamma-Glu-Cys、glycerol-3-phosphate、quinic acid、glycocholic acid及びlactic acidから選ばれる1以上の分子の発現変動を指標とすれば抗がん剤感受性亢進剤のスクリーニングが可能になること、さらに当該抗がん剤感受性亢進剤と感受性亢進の対象となる抗がん剤を併用すれば、当該抗がん剤の治療効果が飛躍的に向上することを見出し、本発明を完成した。
 すなわち、本発明は、次の〔1〕~〔22〕の発明を提供するものである。
〔1〕2DG6P、2MSE、CSSG、DOPM、GSSG、I4A、P2CB、1-methyl-2-pyrrolidone、ASP、benzamide、glucaric acid、GL6P、Gly-Gly、HYPT及びHYPXから選ばれる1以上の分子からなる、オキサリプラチン又はその塩とフルオロウラシル又はその塩とレボホリナート又はその塩を含む抗がん剤の感受性判定マーカー。
〔2〕抗がん剤が、さらにベバシズマブを含む〔1〕記載の抗がん剤感受性判定マーカー。
〔3〕がん患者由来の生体試料中の2DG6P、2MSE、CSSG、DOPM、GSSG、I4A、P2CB、1-methyl-2-pyrrolidone、ASP、benzamide、glucaric acid、GL6P、Gly-Gly、HYPT及びHYPXから選ばれる1以上の分子の量を測定する工程を含む、オキサリプラチン又はその塩とフルオロウラシル又はその塩とレボホリナート又はその塩を含む抗がん剤の感受性判定方法。
〔4〕さらに、前記測定結果を対照レベルと比較することにより、当該がん患者の抗がん剤に対する感受性を判定する工程を含む〔3〕記載の判定方法。
〔5〕前記対照レベルがレスポンダーのカットオフ値であって、該カットオフ値が2DG6Pの場合に5.304×10-4≦であり、2MSEの場合に1.404×10-3≦であり、CSSGの場合に2.223×10-2≦であり、DOPMの場合に1.153×10-3≦であり、GSSGの場合に1.061×10-3≦であり、I4Aの場合に3.316×10-3≦であり、P2CBの場合に5.952×10-4≦であり、1-methyl-2-pyrrolidoneの場合に≦8.422×10-2であり、ASPの場合に≦3.401×10-2であり、benzamideの場合に≦9.859×10-2であり、glucaric acidの場合に≦1.058×10-3であり、GL6Pの場合に≦8.167×10-4であり、Gly-Glyの場合に≦5.349×10-3であり、HYPTの場合に≦1.837×10-2であり、HYPXの場合に≦1.050×10-1である〔4〕記載の判定方法。
〔6〕さらに、次式(1)により、レスポンダーである確率(p)を算出し、当該がん患者がレスポンダーであるか否かを判定する工程を含む〔3〕記載の判定方法。
Figure JPOXMLDOC01-appb-M000004
(式中、2DG6P、CSSG、I4A及びP2CBは、各分子の測定結果が各分子のカットオフ値以上であった場合に1を、カットオフ値未満であった場合に0を示し、HYPTは測定結果がカットオフ値以下であった場合に1を、カットオフ値を超えた場合に0を示し、該カットオフ値は、2DG6Pの場合に5.304×10-4であり、CSSGの場合に2.223×10-2であり、I4Aの場合に3.316×10-3であり、P2CBの場合に5.952×10-4であり、HYPTの場合に1.837×10-2である。)
〔7〕さらに、次式(2)により、レスポンダーである確率(p)を算出し、当該がん患者がレスポンダーであるか否かを判定する工程を含む〔3〕記載の判定方法。
Figure JPOXMLDOC01-appb-M000005
(式中、2DG6Pは、2DG6Pの測定結果がカットオフ値以上であった場合に10.2190を、カットオフ値未満であった場合に-10.2190を示し、2MSEは、2MSEの測定結果がカットオフ値以上であった場合に1.4778を、カットオフ値未満であった場合に-1.4778を示し、ASPは、ASPの測定結果がカットオフ値以上であった場合に-1.4976を、カットオフ値未満であった場合に1.4976を示し、CSSGは、CSSGの測定結果がカットオフ値以上であった場合に2.0937を、カットオフ値未満であった場合に-2.0937を示し、DOPMは、DOPMの測定結果がカットオフ値以上であった場合に2.2258を、カットオフ値未満であった場合に-2.2258を示し、GL6Pは、GL6Pの測定結果がカットオフ値以上であった場合に-1.6623を、カットオフ値未満であった場合に1.6623を示し、HYPTは、HYPTの測定結果がカットオフ値以上であった場合に-2.3200を、カットオフ値未満であった場合に2.3200を示し、該カットオフ値は、2DG6Pの場合に5.304×10-4であり、2MSEの場合に1.404×10-3であり、ASPの場合に3.401×10-2であり、CSSGの場合に2.223×10-2であり、DOPMの場合に1.153×10-3であり、GL6Pの場合に8.167×10-4であり、HYPTの場合に1.837×10-2である。)
〔8〕さらに、次式(3)により、レスポンダーである確率(p)を算出し、当該がん患者がレスポンダーであるか否かを判定する工程を含む〔3〕記載の判定方法。
Figure JPOXMLDOC01-appb-M000006
(式中、CSSGは、CSSGの測定結果がカットオフ値以上であった場合に1.8701を、カットオフ値未満であった場合に-1.8701を示し、DOPMは、DOPMの測定結果がカットオフ値以上であった場合に1.4081を、カットオフ値未満であった場合に-1.4081を示し、HYPTは、HYPTの測定結果がカットオフ値以上であった場合に-1.0869を、カットオフ値未満であった場合に1.0869を示し、該カットオフ値は、CSSGの場合に2.223×10-2であり、DOPMの場合に1.153×10-3であり、HYPTの場合に1.837×10-2である。)
〔9〕生体試料が、抗がん剤を投与されたがん患者由来の生体試料である〔3〕~〔8〕のいずれかに記載の判定方法。
〔10〕抗がん剤が、さらにベバシズマブを含む〔3〕~〔9〕のいずれかに記載の判定方法。
〔11〕がん患者由来の生体試料中のASP及びCSSGから選ばれる1以上の分子の量を測定する工程を含む、当該がん患者の腫瘍径の和の判定方法。
〔12〕2-aminobutyric acid、CSSG、gamma-Glu-Cys、glycerol-3-phosphate、quinic acid、ASP、glycocholic acid、HYPX及びlactic acidから選ばれる1以上の分子からなる、オキサリプラチン又はその塩とフルオロウラシル又はその塩とレボホリナート又はその塩を含む抗がん剤治療時の予後予測マーカー。
〔13〕抗がん剤が、さらにベバシズマブを含む〔12〕記載の予後予測マーカー。
〔14〕がん患者由来の生体試料中の2-aminobutyric acid、CSSG、gamma-Glu-Cys、glycerol-3-phosphate、quinic acid、ASP、glycocholic acid、HYPX及びlactic acidから選ばれる1以上の分子の量を測定する工程を含む、オキサリプラチン又はその塩とフルオロウラシル又はその塩とレボホリナート又はその塩を含む抗がん剤治療時の予後予測方法。
〔15〕抗がん剤が、さらにベバシズマブを含む〔14〕記載の予後予測方法。
〔16〕がん患者由来の生体試料中の2DG6P、2MSE、CSSG、DOPM、GSSG、I4A、P2CB、1-methyl-2-pyrrolidone、ASP、benzamide、glucaric acid、GL6P、Gly-Gly、HYPT及びHYPXから選ばれる1以上の分子の量を測定するためのプロトコールを含むことを特徴とする〔3〕~〔11〕のいずれかに記載の判定方法を実施するためのキット。
〔17〕がん患者由来の生体試料中の2-aminobutyric acid、CSSG、gamma-Glu-Cys、glycerol-3-phosphate、quinic acid、ASP、glycocholic acid、HYPX及びlactic acidから選ばれる1以上の分子の量を測定するためのプロトコールを含むことを特徴とする〔14〕又は〔15〕記載の予後予測方法を実施するためのキット。
〔18〕オキサリプラチン又はその塩とフルオロウラシル又はその塩とレボホリナート又はその塩を含む抗がん剤の存在下、がん細胞株又は担癌動物由来の生体試料中の2DG6P、2MSE、CSSG、DOPM、GSSG、I4A、P2CB、1-methyl-2-pyrrolidone、ASP、benzamide、glucaric acid、GL6P、Gly-Gly、HYPT、HYPX、2-aminobutyric acid、gamma-Glu-Cys、glycerol-3-phosphate、quinic acid、glycocholic acid及びlactic acidから選ばれる1以上の分子の発現変動を指標とする抗がん剤感受性亢進剤のスクリーニング方法。
〔19〕抗がん剤が、さらにベバシズマブを含む〔18〕記載のスクリーニング方法。
〔20〕〔18〕又は〔19〕記載の方法により得られたオキサリプラチン又はその塩とフルオロウラシル又はその塩とレボホリナート又はその塩を含む抗がん剤に対する感受性亢進剤。
〔21〕〔20〕記載の感受性亢進剤とオキサリプラチン又はその塩とフルオロウラシル又はその塩とレボホリナート又はその塩を含む抗がん剤とを組み合わせてなるがん治療用組成物。
〔22〕抗がん剤が、さらにベバシズマブを含む〔21〕記載のがん治療用組成物。
 本発明の抗がん剤感受性判定マーカーを用いれば、個々の患者の抗がん剤感受性、予後又は腫瘍の抗がん剤耐性を治療開始前もしくは治療開始後早期に適確に判定できる結果、治療効果の高い抗がん剤の選択が可能となる。さらに効果が得られない抗がん剤の使用を回避できるため不必要な副作用を回避できる。また、抗がん剤を用いた治療スケジュールは長期に及ぶため、治療継続中においても治療サイクルごとに抗がん剤感受性を判定することにより、そのがんに対する抗がん剤の感受性の経時的評価が可能となり、治療を継続すべきか否かの判定ができる。その結果、治療効果の得られない抗がん剤の継続投与に伴うがんの進行、副作用の増大を防止でき、患者の負担軽減、医療費の削減にもつながる。
 さらに、また、このマーカーを用いれば、抗がん剤感受性を亢進させる薬剤がスクリーニングでき、その対象となった抗がん剤と抗がん剤感受性亢進剤とを併用すれば、がん治療効果が飛躍的に向上する。本発明の抗がん剤感受性判定マーカーの測定試薬は、抗がん剤感受性判定試薬として有用である。
解析方法1において、ベバシズマブ併用mFOLFOX6療法に対する治療反応性の異なるレスポンダー(R)群とノンレスポンダー(N-R)群で濃度に有意差が見られた物質を示す図である。 治療開始前の腫瘍径の和とASP又はCSSGの濃度との相関関係を示す図である。 式(1)の抗がん剤感受性判定モデルのROC曲線を示す図である。 CSSGの濃度が高値のグループ(CSSG High)と低値のグループ(CSSG Low)の無増悪生存期間(PFS、図4A)及び全生存期間(OS、図4B)を示す図である。 解析方法2において有意となった15の代謝物のうち9代謝物の、ベバシズマブ併用mFOLFOX6療法に対する治療反応性の異なるR群とN-R群の分布図である。 解析方法2において有意となった15の代謝物のうち6代謝物の、ベバシズマブ併用mFOLFOX6療法に対する治療反応性の異なるR群とN-R群の分布図である。 (a)式(2)(7代謝物モデル)の抗がん剤感受性判定モデルのROC曲線を示す図である。(b)式(3)(3代謝物モデル)の抗がん剤感受性判定モデルのROC曲線を示す図である。 (a)式(2)(7代謝物モデル)により治療開始前の代謝物を元にR群とN-R群に分けた上で、カプラン・マイアー曲線を描いた図である。(b)式(3)(3代謝物モデル)により治療開始前の代謝物を元にR群とN-R群に分けた上で、カプラン・マイアー曲線を描いた図である。 治療開始前の代謝物濃度とOSの関係をCOXの比例ハザードモデルで解析した際に有意差を示した代謝物のハザード比とその95%信頼区間の図である。 治療開始前の代謝物濃度とOSの関係をCOXの比例ハザードモデルで解析した際に、95%信頼区間の上限が1未満であった代謝物についてカットオフ値で群別した場合のカプラン・マイアー曲線とログランク検定の結果の図である。 治療開始前の代謝物濃度とOSの関係をCOXの比例ハザードモデルで解析した際に、95%信頼区間の上限が1を超えた代謝物についてカットオフ値で群別した場合のカプラン・マイアー曲線とログランク検定の結果の図である。
 本発明における抗がん剤感受性判定マーカーは、2-deoxyglucose 6-phosphate(2DG6P)、2-methylserine(2MSE)、cysteine-glutathione disulphide(CSSG)、dopamine(DOPM)、oxidized glutathione(GSSG)、imidazole-4-acetate(I4A)、pyridine-2-carboxylic acid butyl ester(P2CB)、1-methyl-2-pyrrolidone、aspartate(ASP)、benzamide、glucaric acid、glucose 6-phosphate(GL6P)、glycylglycin(Gly-Gly)、hypotaurine(HYPT)及びhypoxanthine(HYPX)の15種の代謝物質である。これらの物質のうち、2DG6P、2MSE、CSSG、DOPM、GSSG、I4A及びP2CBについては、後記実施例に示すように、結腸・直腸がん患者由来の血液検体を対象とし、ベバシズマブ併用mFOLFOX6療法開始前の血中代謝物の量をCE-Q-TOF MS及びCE-TOF MSを用いて網羅的に解析した結果、ベバシズマブ併用mFOLFOX6療法に対する治療反応性の高いレスポンダー群の患者で、治療反応性の低いノンレスポンダー群の患者に比して高いことが判明した。また、1-methyl-2-pyrrolidone、ASP、benzamide、glucaric acid、GL6P、Gly-Gly、HYPT及びHYPXについては、後記実施例に示すように、レスポンダー群の患者で、ノンレスポンダー群の患者に比して低いことが判明した。したがって、これら15物質は、オキサリプラチン又はその塩とフルオロウラシル又はその塩とレボホリナート又はその塩を含む抗がん剤に対する感受性判定マーカー、特にオキサリプラチン又はその塩とフルオロウラシル又はその塩とレボホリナート又はその塩とベバシズマブを含む抗がん剤に対する抗がん剤感受性判定マーカーとして有用である。中でも、(1)2DG6P、CSSG、HYPT、I4A及びP2CBの5物質の組み合わせ、(2)2DG6P、2MSE、ASP、CSSG、DOPM、GL6P及びHYPTの7物質の組み合わせ、又は(3)CSSG、DOPM及びHYPTの3物質の組み合わせは特に有用であり、これらを用いることで対象とするがん患者がレスポンダーであるか否かを判定することが可能となる。
 また、後記実施例に示すように、ASPはがん患者の治療開始前の腫瘍径の和と正の相関を、CSSGは負の相関を示すことが判明した。したがって、ASP及びCSSGは、がん患者の腫瘍径の和の判定マーカーとして有用である。
 また、後記実施例に示すように、CSSGのレベルに応じて無増悪生存期間(PFS)及び全生存期間(OS)の解析を行ったところ、CSSG高値のグループはCSSG低値のグループよりもPFS及びOSが有意に長いことが判明した。したがって、CSSGは単独で、オキサリプラチン又はその塩とフルオロウラシル又はその塩とレボホリナート又はその塩を含む抗がん剤、特にオキサリプラチン又はその塩とフルオロウラシル又はその塩とレボホリナート又はその塩とベバシズマブを含む抗がん剤による治療時の予後予測マーカー、特に、PFSの長短の予測のみならず、二次治療以降も含めたOSの長短の予測マーカーとして有用である。
 さらに、後記実施例に示すように、COXの比例ハザードモデルで解析した結果、2-aminobutyric acid、CSSG、gamma-glutamylcysteine(gamma-Glu-Cys)、glycerol-3-phosphate及びquinic acidは、血中の濃度が高いほど生存期間が長いこと、また、ASP、glycocholic acid、HYPX及びlactic acidは血中濃度が高いほど生存期間が短いことが判明した。したがって、これら9物質は、単独で、オキサリプラチン又はその塩とフルオロウラシル又はその塩とレボホリナート又はその塩を含む抗がん剤、特にオキサリプラチン又はその塩とフルオロウラシル又はその塩とレボホリナート又はその塩とベバシズマブを含む抗がん剤による治療時の予後予測マーカー、特に、二次治療以降も含めたOSの長短の予測マーカーとして有用である。
 2DG6Pは、glucoseの2位のOH基がHになった2-deoxy-D-glucoseが細胞内に取り込まれた後に、グルコースヘキソキナーゼにより生成されるものであり、非臨床試験では2DG6Pが解糖系による代謝を受けないため細胞内に蓄積するのみならず、ヘキソキナーゼをフィードバック阻害するためglucoseの代謝も阻害し、がん細胞の成長を抑制することが知られている。しかし、がん患者を対象とした臨床試験でがん患者の血清中の2DG6Pを検討した報告はなく、2DG6Pがオキサリプラチン又はその塩とフルオロウラシル又はその塩とレボホリナート又はその塩を含む抗がん剤の感受性判定マーカーとして使用できること、濃度が高いときにレスポンダーと判定できることは全く知られていない。
 2MSEは、保湿成分として化粧品等にも配合される物質であるが、2MSEがオキサリプラチン又はその塩とフルオロウラシル又はその塩とレボホリナート又はその塩を含む抗がん剤の感受性判定マーカーとして使用できること、濃度が高いときにレスポンダーと判定できることは全く知られていない。
 CSSGとGSSGは共に、薬物の解毒化に関与する物質として知られるGSHの代謝物である。CSSGは、GSHとCysが結合したものであり、GSSGはGSHが酸化されることにより形成されるGSHの2量体である。血中のGSHは採血後速やかに酸化されGSSGになること、GSHは採血後速やかに血中にGSHより豊富に存在するCysとより多くが結合し数分でCSSGを形成する等の知見が知られているが、薬効とCSSG、GSSGに注目した報告は、がんと関連した報告も含めてなく、CSSG又はGSSGがオキサリプラチン又はその塩とフルオロウラシル又はその塩とレボホリナート又はその塩を含む抗がん剤の感受性判定マーカーとして使用できること、濃度が高いときにレスポンダーと判定できることは全く知られていない。また、CSSGが、オキサリプラチン又はその塩とフルオロウラシル又はその塩とレボホリナート又はその塩を含む抗がん剤治療による予後の予測マーカー、特に、PFSおよびOSの予測マーカーとなることや濃度が高いときに生存期間が長いことは全く知られていない。加えて、CSSGが、体内の腫瘍径の和を予測するマーカーとなることも全く知られていない。
 DOPMは、中枢神経系に存在する神経伝達物質で、運動調節、ホルモン調節、感情、意欲、学習などに関与する物質であるが、DOPMがオキサリプラチン又はその塩とフルオロウラシル又はその塩とレボホリナート又はその塩を含む抗がん剤の感受性判定マーカーとして使用できること、濃度が高いときにレスポンダーと判定できることは全く知られていない。
 I4Aは、肥満細胞や好塩基球やマクロファージにより産生される起炎物質であるHistamineの代謝経路上の物質であるが、I4Aがオキサリプラチン又はその塩とフルオロウラシル又はその塩とレボホリナート又はその塩を含む抗がん剤の感受性判定マーカーとして使用できること、濃度が高いときにレスポンダーと判定できることは全く知られていない。
 P2CBは、pyridine-2-carboxylic acidのbutylエステル体である。pyridine-2-carboxylic acidは、tryptophan代謝経路上の物質で、キレート作用があり、グルコースデヒドロゲナーゼの活性化阻害剤としての働きや、ピコリン酸処理により細胞のタンパク合成が約50%阻害されることが知られているが、P2CBがオキサリプラチン又はその塩とフルオロウラシル又はその塩とレボホリナート又はその塩を含む抗がん剤の感受性判定マーカーとして使用できること、濃度が高いときにレスポンダーと判定できることは全く知られていない。
 1-methyl-2-pyrrolidoneは、医薬品等の中間体や合成試薬として使用されることで知られているが、1-methyl-2-pyrrolidoneがオキサリプラチン又はその塩とフルオロウラシル又はその塩とレボホリナート又はその塩を含む抗がん剤の感受性判定マーカーとして使用できること、濃度が高いときにノンレスポンダーと判定できることは全く知られていない。
 ASPは、アミノ酸の一つであり、一般的には生体内の窒素処理で中心的な役割を持つことが知られている。すでに、ASPがオキサリプラチン又はその塩とフルオロウラシル又はその塩を含む抗がん剤の感受性判定マーカーとして使用でき、オキサリプラチン高感受性の細胞株で低感受性の細胞株と比較して高濃度となることが知られている(国際公開第2013/125675号)が、レボホリナート又はその塩も含む3剤併用抗がん剤の感受性判定マーカーとして使用できること、濃度が高いときにノンレスポンダーと判定できることは全く知られていない。また、ASPがオキサリプラチン又はその塩とフルオロウラシル又はその塩とレボホリナート又はその塩を含む抗がん剤による治療時の予後予測マーカーとして使用できること、濃度が高いときに生存期間が短いことは全く知られていない。
 benzamideは、安息香酸アミドとも呼ばれ、その誘導体は鎮静剤や抗精神病薬として用いられているが、benzamideがオキサリプラチン又はその塩とフルオロウラシル又はその塩とレボホリナート又はその塩を含む抗がん剤の感受性判定マーカーとして使用できること、濃度が高いときにノンレスポンダーと判定できることは全く知られていない。
 glucaric acidは、代表的な糖酸の一つで、その誘導体が溶剤等に使用できることから原料としての需要が高まっており、いくつかの製造方法が知られている(国際公開第2013/125509号)が、glucaric acidがオキサリプラチン又はその塩とフルオロウラシル又はその塩とレボホリナート又はその塩を含む抗がん剤の感受性判定マーカーとして使用できること、濃度が高いときにノンレスポンダーと判定できることは全く知られていない。
 GL6Pは、ペントースリン酸経路や解糖系等により代謝される物質であるが、GL6Pがオキサリプラチン又はその塩とフルオロウラシル又はその塩とレボホリナート又はその塩を含む抗がん剤の感受性判定マーカーとして使用できること、濃度が高いときにノンレスポンダーと判定できることは全く知られていない。
 Gly-Glyは、生物学実験のバッファーやより複雑なペプチドの合成原料として用いられているが、Gly-Glyがオキサリプラチン又はその塩とフルオロウラシル又はその塩とレボホリナート又はその塩を含む抗がん剤の感受性判定マーカーとして使用できること、濃度が高いときにノンレスポンダーと判定できることは全く知られていない。
 HYPTは、システインからタウリンの生合成における中間産物であり、3-sulfino-L-alanineやcysteamineの酸化により合成される。HYPTは、抗炎症作用(特開2017-7980号公報)や抗酸化作用(特開2017-14167号公報)が知られているが、HYPTがオキサリプラチン又はその塩とフルオロウラシル又はその塩とレボホリナート又はその塩を含む抗がん剤の感受性判定マーカーとして使用できること、濃度が高いときにノンレスポンダーと判定できることは全く知られていない。
 HYPXは、プリン代謝経路上の代謝物であり、イノシンや、キサンチンからhydrogen peroxidaseによりO から生じたHを用いて合成される。HYPXは、変形性関節症や前立腺癌の診断バイオマーカーとなり得ること(特表2006-504093号公報及び特開2016-153808号公報)が知られているが、HYPXがオキサリプラチン又はその塩とフルオロウラシル又はその塩とレボホリナート又はその塩を含む抗がん剤の感受性判定マーカーとして使用できること、濃度が高いときにノンレスポンダーと判定できることは全く知られていない。また、HYPXがオキサリプラチン又はその塩とフルオロウラシル又はその塩とレボホリナート又はその塩を含む抗がん剤による治療時の予後予測マーカーとして使用できること、濃度が高いときに生存期間が短いことは全く知られていない。
 2-aminobutyric acidは、システイン・メチオニン代謝経路上の代謝物であるが、2-aminobutyric acidがオキサリプラチン又はその塩とフルオロウラシル又はその塩とレボホリナート又はその塩を含む抗がん剤による治療時の予後予測マーカーとして使用できること、濃度が高いときに生存期間が長いことは全く知られていない。
 gamma-Glu-Cysは、グルタチオン代謝経路上の代謝物である。しかしながら、gamma-Glu-Cysがオキサリプラチン又はその塩とフルオロウラシル又はその塩とレボホリナート又はその塩を含む抗がん剤による治療時の予後予測マーカーとして使用できること、濃度が高いときに生存期間が長いことは全く知られていない。
 glycerol-3-phosphateは、グリセロ脂質やグリセロリン酸代謝経路やがんにおけるコリン代謝経路上の代謝物である。しかしながら、glycerol-3-phosphateがオキサリプラチン又はその塩とフルオロウラシル又はその塩とレボホリナート又はその塩を含む抗がん剤による治療時の予後予測マーカーとして使用できること、濃度が高いときに生存期間が長いことは全く知られていない。
 quinic acidは、フェニルアラニン・チロシン・トリプトファン合成経路上の代謝物である。しかしながら、quinic acidがオキサリプラチン又はその塩とフルオロウラシル又はその塩とレボホリナート又はその塩を含む抗がん剤による治療時の予後予測マーカーとして使用できること、濃度が高いときに生存期間が長いことは全く知られていない。
 glycocholic acidは、胆汁酸合成系やコレステロール代謝経路上の代謝物である。しかしながら、glycocholic acidがオキサリプラチン又はその塩とフルオロウラシル又はその塩とレボホリナート又はその塩を含む抗がん剤による治療時の予後予測マーカーとして使用できること、濃度が高いときに生存期間が短いことは全く知られていない。
 lactic acidは、解糖や糖新生に関連する物質として様々な経路に関与している。しかしながら、lactic acidがオキサリプラチン又はその塩とフルオロウラシル又はその塩とレボホリナート又はその塩を含む抗がん剤による治療時の予後予測マーカーとして使用できること、濃度が高いときに生存期間が短いことは全く知られていない。
 ここで、レスポンダーとは、Recist基準(J Natl Cancer Inst.2000 Feb 2;92(3):205-16)に従い放射線診断医による画像診断の結果、試験治療期間中の最大の効果がcomplete responseあるいはpartial responseを示した患者のことをさし、ノンレスポンダー(N-R)とは、Recist基準に従い放射線診断医による画像診断の結果、試験治療期間中の最大の効果がstable diseaseあるいはprogressive diseaseの患者をさす。
 本発明の抗がん剤感受性判定マーカーの対象となる抗がん剤はオキサリプラチン又はその塩とフルオロウラシル又はその塩とレボホリナート又はその塩を含む抗がん剤であるが、体内で代謝されてオキサリプラチン、フルオロウラシル又はレボホリナートに変換される抗がん剤も、同様に本発明の抗がん剤感受性判定マーカーの対象となる。具体的に、テガフール(tegaful)やカペシタビン(capecitabine)は体内で代謝されてフルオロウラシルに変換されることが明らかになっているため、フルオロウラシルに代えてテガフールやカペシタビンも本発明の抗がん剤感受性判定マーカーの対象となり、その場合は、オキサリプラチン又はその塩とテガフール又はその塩とレボホリナート又はその塩を含む抗がん剤、オキサリプラチン又はその塩とカペシタビン又はその塩とレボホリナート又はその塩を含む抗がん剤が、本発明の抗がん剤感受性判定マーカーの対象となる。
 オキサリプラチン又はその塩とフルオロウラシル又はその塩とレボホリナート又はその塩を含む抗がん剤と組み合わせて使用する他の抗がん剤としては特に限定されないが、例えばシクロフォスファミド(cyclophosphamide)、イフォスファミド(ifosfamide)、チオテパ(thiotepa)、メルファラン(melphalan)、ブスルファン(busulfan)、ニムスチン(nimustine)、ラニムスチン(ranimustine)、ダカルバジン(dacarbazine)、プロカルバジン(procarbazine)、テモゾロミド(temozolomide)、シスプラチン(cisplatin)、カルボプラチン(carboplatin)、ネダプラチン(nedaplatin)、メトトレキサート(methotrexate)、ペメトレキセド(pemetrexed)、テガフール/ウラシル(tegaful・uracil)、ドキシフルリジン(doxifluridine)、テガフール/ギメラシル/オテラシル(tegaful・gimeracil・oteracil)、カペシタビン(capecitabine)、シタラビン(cytarabine)、エノシタビン(enocitabine)、ゲムシタビン(gemcitabine)、6-メルカプトプリン(6-mercaptopurine)、フルダラビン(fuludarabin)、ペントスタチン(pentostatin)、クラドリビン(cladribine)、ヒドロキシウレア(hydroxyurea)、ドキソルビシン(doxorubicin)、エピルビシン(epirubicin)、ダウノルビシン(daunorubicin)、イダルビシン(idarubicine)、ピラルビシン(pirarubicin)、ミトキサントロン(mitoxantrone)、アムルビシン(amurubicin)、アクチノマイシンD(actinomycin D)、ブレオマイシン(bleomycine)、ペプレオマイシン(pepleomycin)、マイトマイシンC(mytomycin C)、アクラルビシン(aclarubicin)、ジノスタチン(zinostatin)、ビンクリスチン(vincristine)、ビンデシン(vindesine)、ビンブラスチン(vinblastine)、ビノレルビン(vinorelbine)、パクリタキセル(paclitaxel)、ドセタキセル(docetaxel)、イリノテカン(irinotecan)、イリノテカン活性代謝物(SN-38)、ノギテカン(nogitecan、topotecan)、エトポシド(etoposide)、プレドニゾロン(prednisolone)、デキサメタゾン(dexamethasone)、タモキシフェン(tamoxifen)、トレミフェン(toremifene)、メドロキシプロゲステロン(medroxyprogesterone)、アナストロゾール(anastrozole)、エキセメスタン(exemestane)、レトロゾール(letrozole)、リツキシマブ(rituximab)、イマチニブ(imatinib)、ゲフィチニブ(gefitinib)、ゲムツズマブ・オゾガマイシン(gemtuzumab ozogamicin)、ボルテゾミブ(bortezomib)、エルロチニブ(erlotinib)、セツキシマブ(cetuximab)、ベバシズマブ(bevacizumab)、スニチニブ(sunitinib)、ソラフェニブ(sorafenib)、ダサチニブ(dasatinib)、パニツムマブ(panitumumab)、アスパラギナーゼ(asparaginase)、トレチノイン(tretinoin)、三酸化ヒ素(arsenic trioxide)、又はそれらの塩、又はそれらの活性代謝物等が挙げられる。このうち、イリノテカン、SN-38若しくはそれらの塩又はベバシズマブが好ましく、特にベバシズマブが好ましい。
 本発明の抗がん剤感受性判定マーカーを用いて抗がん剤感受性を判定するには、がん患者由来の生体試料(検体)中の2DG6P、2MSE、CSSG、DOPM、GSSG、I4A、P2CB、1-methyl-2-pyrrolidone、ASP、benzamide、glucaric acid、GL6P、Gly-Gly、HYPT及びHYPXから選ばれる1以上の分子の量を測定すること、詳細にはさらに当該測定結果を対照レベル(標準濃度、レスポンダーにおける濃度範囲、レスポンダーにおけるカットオフ値(以下、カットオフ値はLC/MS用内部標準溶液の濃度を1とした場合の相対濃度を意味する)(2DG6Pの場合に5.304×10-4≦であり、2MSEの場合に1.404×10-3≦であり、CSSGの場合に2.223×10-2≦であり、DOPMの場合に1.153×10-3≦であり、GSSGの場合に1.061×10-3≦であり、I4Aの場合に3.316×10-3≦であり、P2CBの場合に5.952×10-4≦であり、1-methyl-2-pyrrolidoneの場合に≦8.422×10-2であり、ASPの場合に≦3.401×10-2であり、benzamideの場合に≦9.859×10-2であり、glucaric acidの場合に≦1.058×10-3であり、GL6Pの場合に≦8.167×10-4であり、Gly-Glyの場合に≦5.349×10-3であり、HYPTの場合に≦1.837×10-2であり、HYPXの場合に≦1.050×10-1である)、抗がん剤投与前の本発明の抗がん剤感受性判定マーカーの濃度等)と比較することにより行うことができる。あるいは、がん患者由来の生体試料(検体)中の(1)2DG6P、CSSG、HYPT、I4A及びP2CBの量、(2)2DG6P、2MSE、ASP、CSSG、DOPM、GL6P及びHYPTの量、又は(3)CSSG、DOPM及びHYPTの量を測定すること、詳細にはさらに当該測定結果を各物質のレスポンダーのカットオフ値(2DG6Pの場合に5.304×10-4であり、2MSEの場合に1.404×10-3であり、CSSGの場合に2.223×10-2であり、DOPMの場合に1.153×10-3であり、I4Aの場合に3.316×10-3であり、P2CBの場合に5.952×10-4であり、ASPの場合に3.401×10-2であり、GL6Pの場合に8.167×10-4であり、HYPTの場合に1.837×10-2である)と比較して数値化し、特定の算出式に代入することにより行うことができる。
 ここで、がん患者としては、がんを有する被験者又はがんを有していた被験者が包含される。生体試料としては、例えば血液、血清、血漿、がん組織生検検体、がん摘出手術標本、便、尿、腹水、胸水、脳脊髄液、喀痰等が挙げられるが、血清が特に好ましい。
 また、本発明の対象となるがんとしては、咽頭がんを代表とする口唇、口腔及び咽頭がん、食道がん、胃がん、結腸・直腸がんなどを代表とする消化器がん、肺がんを代表とする呼吸器及び胸腔内臓器がん、骨及び関節軟骨がん、皮膚の悪性黒色腫、有棘細胞がん及びその他の皮膚のがん、中皮腫を代表とする中皮及び軟部組織がん、乳房がん、子宮がん、卵巣がんを代表とする女性性器がん、前立腺がんを代表とする男性性器がん、膀胱がんを代表とする尿路がん、脳腫瘍を代表とする眼、脳及び中枢神経系がん、甲状腺及びその他の内分泌腺がん、非ホジキンリンパ腫やリンパ性白血病を代表とするリンパ組織、造血組織及び関連組織がん、及びこれらを原発巣とする転移組織のがん等が挙げられ、結腸・直腸がん(大腸がん)に対して好適に利用できるが、化学療法未治療がんが特に好ましい。
 検体中の2DG6P、2MSE、CSSG、DOPM、GSSG、I4A、P2CB、1-methyl-2-pyrrolidone、ASP、benzamide、glucaric acid、GL6P、Gly-Gly、HYPT、HYPX、2-aminobutyric acid、gamma-Glu-Cys、glycerol-3-phosphate、quinic acid、glycocholic acid及びlactic acidから選ばれる分子の測定手段は、被測定対象物質により適宜決定すればよく、例えばCE-Q-TOF MS、CE-TOF MS、Gas chromatography-mass spectrometry(GC-MS)等の各種質量分析装置、HPLC、免疫学的測定法、生化学的測定法等により測定可能である。
 2DG6P、2MSE、CSSG、DOPM、GSSG、I4A及びP2CBから選ばれる1以上の分子により、対象とする抗がん剤に対する感受性を判定するには、抗がん剤投与前又は投与後早期の段階において、がん患者由来の生体試料中の2DG6P、2MSE、CSSG、DOPM、GSSG、I4A及びP2CBから選ばれる1以上の分子の量、例えば濃度を測定すればよい。濃度が所定の対照レベルより高いと判断される濃度を有する場合は、そのがんは対象とする抗がん剤に対して感受性であると判定できるため、これら抗がん剤感受性判定マーカーは、治療効果を期待出来る患者に対して積極的に治療を継続するためのマーカーとして使用できる。一方、濃度が所定の対照レベルより低いと判断される濃度を有する場合は、そのがんは対象とする抗がん剤に対して感受性ではないと判定できる。対象とする抗がん剤に対して感受性を有さない場合は、その薬効を期待することができず、このような薬効の期待できない抗がん剤の投与が行われたり、続けられた場合、がんの進行、副作用の増大が危惧される。このように、本発明における抗がん剤感受性判定マーカーは、治療効果を期待出来る患者に対して積極的に治療を継続するためのマーカーとして使用できるのに加え、薬効の期待できない抗がん剤の継続投与に伴うがんの進行や副作用の増大を回避するためのマーカーとしても使用できる。
 対照レベルとしては、例えば、カットオフ値が挙げられ、カットオフ値としては、2DG6Pの場合に5.304×10-4≦、2MSEの場合に1.404×10-3≦、CSSGの場合に2.223×10-2≦、DOPMの場合に1.153×10-3≦、GSSGの場合に1.061×10-3≦、I4Aの場合に3.316×10-3≦、P2CBの場合に5.952×10-4≦が挙げられる。
 1-methyl-2-pyrrolidone、ASP、benzamide、glucaric acid、GL6P、Gly-Gly、HYPT及びHYPXから選ばれる1以上の分子により、対象とする抗がん剤に対する感受性を判定するには、抗がん剤投与前又は投与後早期の段階において、がん患者由来の生体試料中の1-methyl-2-pyrrolidone、ASP、benzamide、glucaric acid、GL6P、Gly-Gly、HYPT及びHYPXから選ばれる1以上の分子の量、例えば濃度を測定すればよい。濃度が所定の対照レベルより低いと判断される濃度を有する場合は、そのがんは対象とする抗がん剤に対して感受性であると判定できるため、これら抗がん剤感受性判定マーカーは、治療効果を期待出来る患者に対して積極的に治療を継続するためのマーカーとして使用できる。一方、濃度が所定の対照レベルより高いと判断される濃度を有する場合は、そのがんは対象とする抗がん剤に対して感受性ではないと判定できる。対象とする抗がん剤に対して感受性を有さない場合は、その薬効を期待することができず、このような薬効の期待できない抗がん剤の投与が行なわれたり、続けられた場合、がんの進行、副作用の増大が危惧される。このように、本発明における抗がん剤感受性判定マーカーは、治療効果を期待出来る患者に対して積極的に治療を継続するためのマーカーとして使用できるのに加え、薬効の期待できない抗がん剤の継続投与に伴うがんの進行や副作用の増大を回避するためのマーカーとしても使用できる。
 対照レベルとしては、例えば、カットオフ値が挙げられ、カットオフ値としては、1-methyl-2-pyrrolidoneの場合に≦8.422×10-2、ASPの場合に≦3.401×10-2、benzamideの場合に≦9.859×10-2、glucaric acidの場合に≦1.058×10-3、GL6Pの場合に≦8.167×10-4、Gly-Glyの場合に≦5.349×10-3、HYPTの場合に≦1.837×10-2、HYPXの場合に≦1.050×10-1が挙げられる。
 2DG6P、CSSG、HYPT、I4A及びP2CBにより、対象とする抗がん剤に対する感受性を判定するには、抗がん剤投与前又は投与後において、がん患者由来の生体試料中の2DG6P、CSSG、HYPT、I4A及びP2CBの量、例えば濃度を測定し、2DG6P、CSSG、I4A及びP2CBについては、各分子の測定結果が各分子のカットオフ値以上であった場合に1を、カットオフ値未満であった場合に0を、HYPTについては測定結果がカットオフ値以下であった場合に1を、カットオフ値を超えた場合に0を、式(1)に代入すればよい。
Figure JPOXMLDOC01-appb-M000007
(式中、2DG6P、CSSG、I4A及びP2CBは、各分子の測定結果が各分子のカットオフ値以上であった場合に1を、カットオフ値未満であった場合に0を示し、HYPTは測定結果がカットオフ値以下であった場合に1を、カットオフ値を超えた場合に0を示す。)
 各物質のカットオフ値は、以下の通りである。2DG6Pの場合に5.304×10-4であり、CSSGの場合に2.223×10-2であり、HYPTの場合に1.837×10-2であり、I4Aの場合に3.316×10-3であり、P2CBの場合に5.952×10-4
 式(1)により算出されるpは、対象とするがん患者がレスポンダーである確率を示す。pが0.5以上であれば、該がん患者のがんは対象とする抗がん剤に対して感受性である、すなわち該がん患者はレスポンダーであると判定できるため、これら抗がん剤感受性判定マーカーは、治療効果を期待出来る患者に対して積極的に治療を継続するためのマーカーとして使用できる。一方、pが0.5未満であれば、該がん患者のがんは対象とする抗がん剤に対して感受性ではない、すなわち該がん患者はノンレスポンダーであると判定できる。対象とする抗がん剤に対して感受性を有さない場合は、その薬効を期待することができず、このような薬効の期待できない抗がん剤の投与が行われたり、続けられた場合、がんの進行、副作用の増大が危惧される。このように、本発明における抗がん剤感受性判定マーカーは、治療効果を期待出来る患者に対して積極的に治療を継続するためのマーカーとして使用できるのに加え、薬効の期待できない抗がん剤の継続投与に伴うがんの進行や副作用の増大を回避するためのマーカーとしても使用できる。
 2DG6P、2MSE、ASP、CSSG、DOPM、GL6P及びHYPTにより、対象とする抗がん剤に対する感受性を判定するには、抗がん剤投与前又は投与後において、がん患者由来の生体試料中の2DG6P、2MSE、ASP、CSSG、DOPM、GL6P及びHYPTの量、例えば濃度を測定し、以下のとおり、式(2)に代入すればよい。
Figure JPOXMLDOC01-appb-M000008
(式中、2DG6Pは、2DG6Pの測定結果がカットオフ値以上であった場合に10.2190を、カットオフ値未満であった場合に-10.2190を示し、2MSEは、2MSEの測定結果がカットオフ値以上であった場合に1.4778を、カットオフ値未満であった場合に-1.4778を示し、ASPは、ASPの測定結果がカットオフ値以上であった場合に-1.4976を、カットオフ値未満であった場合に1.4976を示し、CSSGは、CSSGの測定結果がカットオフ値以上であった場合に2.0937を、カットオフ値未満であった場合に-2.0937を示し、DOPMは、DOPMの測定結果がカットオフ値以上であった場合に2.2258を、カットオフ値未満であった場合に-2.2258を示し、GL6Pは、GL6Pの測定結果がカットオフ値以上であった場合に-1.6623を、カットオフ値未満であった場合に1.6623を示し、HYPTは、HYPTの測定結果がカットオフ値以上であった場合に-2.3200を、カットオフ値未満であった場合に2.3200を示す。)
 各物質のカットオフ値は、以下の通りである。2DG6Pの場合に5.304×10-4であり、2MSEの場合に1.404×10-3であり、ASPの場合に3.401×10-2であり、CSSGの場合に2.223×10-2であり、DOPMの場合に1.153×10-3であり、GL6Pの場合に8.167×10-4であり、HYPTの場合に1.837×10-2
 式(2)により算出されるpは、対象とするがん患者がレスポンダーである確率を示す。pが0.5以上であれば、該がん患者のがんは対象とする抗がん剤に対して感受性である、すなわち該がん患者はレスポンダーであると判定できるため、これら抗がん剤感受性判定マーカーは、治療効果を期待出来る患者に対して積極的に治療を継続するためのマーカーとして使用できる。一方、pが0.5未満であれば、該がん患者のがんは対象とする抗がん剤に対して感受性ではない、すなわち該がん患者はノンレスポンダーであると判定できる。対象とする抗がん剤に対して感受性を有さない場合は、その薬効を期待することができず、このような薬効の期待できない抗がん剤の投与が行われたり、続けられた場合、がんの進行、副作用の増大が危惧される。このように、本発明における抗がん剤感受性判定マーカーは、治療効果を期待出来る患者に対して積極的に治療を継続するためのマーカーとして使用できるのに加え、薬効の期待できない抗がん剤の継続投与に伴うがんの進行や副作用の増大を回避するためのマーカーとしても使用できる。
 CSSG、DOPM及びHYPTにより、対象とする抗がん剤に対する感受性を判定するには、抗がん剤投与前又は投与後において、がん患者由来の生体試料中のCSSG、DOPM及びHYPTの量、例えば濃度を測定し、以下のとおり、式(3)に代入すればよい。
Figure JPOXMLDOC01-appb-M000009
(式中、CSSGは、CSSGの測定結果がカットオフ値以上であった場合に1.8701を、カットオフ値未満であった場合に-1.8701を示し、DOPMは、DOPMの測定結果がカットオフ値以上であった場合に1.4081を、カットオフ値未満であった場合に-1.4081を示し、HYPTは、HYPTの測定結果がカットオフ値以上であった場合に-1.0869を、カットオフ値未満であった場合に1.0869を示す。)
 各物質のカットオフ値は、以下の通りである。CSSGの場合に2.223×10-2であり、DOPMの場合に1.153×10-3であり、HYPTの場合に1.837×10-2
 式(3)により算出されるpは、対象とするがん患者がレスポンダーである確率を示す。pが0.5以上であれば、該がん患者のがんは対象とする抗がん剤に対して感受性である、すなわち該がん患者はレスポンダーであると判定できるため、これら抗がん剤感受性判定マーカーは、治療効果を期待出来る患者に対して積極的に治療を継続するためのマーカーとして使用できる。一方、pが0.5未満であれば、該がん患者のがんは対象とする抗がん剤に対して感受性ではない、すなわち該がん患者はノンレスポンダーであると判定できる。対象とする抗がん剤に対して感受性を有さない場合は、その薬効を期待することができず、このような薬効の期待できない抗がん剤の投与が行われたり、続けられた場合、がんの進行、副作用の増大が危惧される。このように、本発明における抗がん剤感受性判定マーカーは、治療効果を期待出来る患者に対して積極的に治療を継続するためのマーカーとして使用できるのに加え、薬効の期待できない抗がん剤の継続投与に伴うがんの進行や副作用の増大を回避するためのマーカーとしても使用できる。
 なお、対象とするがん患者がレスポンダーである確率(p)を示す上記の式(1)~(3)うち、感度の観点から、式(2)が好ましい。
 ASP及び/又はCSSGにより、対象とするがん患者の治療開始前の腫瘍径の和を予測するには、抗がん剤投与前において、がん患者由来の生体試料中のASP及び/又はCSSGの量、例えば濃度を測定し、各測定結果を式(4)又は式(5)に代入すればよい。
腫瘍径の和(mm)= 39.5+585.5×ASP・・・・・(4)
(式中、ASPは相対濃度(LC/MS用内部標準溶液の濃度を1とした場合の相対濃度)を示す。)
腫瘍径の和(mm)=171.1-3540.6×CSSG・・・・・(5)
(式中、CSSGは相対濃度(LC/MS用内部標準溶液の濃度を1とした場合の相対濃度)を示す。)
 2-aminobutyric acid、CSSG、gamma-Glu-Cys、glycerol-3-phosphate、quinic acid、ASP、glycocholic acid、HYPX及びlactic acidから選ばれる1以上の分子により、オキサリプラチン又はその塩とフルオロウラシル又はその塩とレボホリナート又はその塩を含む抗がん剤、特にオキサリプラチン又はその塩とフルオロウラシル又はその塩とレボホリナート又はその塩とベバシズマブを含む抗がん剤による治療時の予後を予測するには、抗がん剤投与前又は投与後において、がん患者由来の生体試料中の2-aminobutyric acid、CSSG、gamma-Glu-Cys、glycerol-3-phosphate、quinic acid、ASP、glycocholic acid、HYPX及びlactic acidから選ばれる1以上の分子の量、例えば濃度を測定すればよい。これらのうち、ASP、CSSG及びHYPXから選ばれる1以上の分子の量、例えば濃度を測定することが好ましい。2-aminobutyric acid、CSSG、gamma-Glu-Cys、glycerol-3-phosphate及びquinic acidから選ばれる1以上の分子について、濃度が所定の対照レベルより高いと判断される濃度を有する場合は、低いと判断される濃度を有する場合と比較して、予後がよいと予測できる。一方、ASP、glycocholic acid、HYPX及びlactic acidから選ばれる1以上の分子の場合には、濃度が所定の対照レベルより低いと判断される濃度を有する場合は、高いと判断される濃度を有する場合と比較して、予後がよいと予測できる。予後予測は、無増悪生存期間(PFS)、全生存期間(OS)、無病生存期間(DFS)等の長短で表すことができるが、PFS及び/又はOSで表すことが好ましく、OSで表すことが特に好ましい。対照レベルとしては、例えば、カットオフ値を挙げることができ、CSSGおよびHYPXの場合には各々レスポンダーの閾値と同じ2.223×10-2≦、≦1.050×10-1が挙げられ、それ以外は2-aminobutyric acidの場合に0.2301≦、ASPの場合に<2.336×10-2、gamma-Glu-Cysの場合に6.910×10-3≦、glycerol-3-phosphateの場合に5.207×10-2≦、glycocholic acidの場合に3.538×10-2≦、lactic acidの場合に<11.8839、quinic acidの場合に1.766×10-2≦が挙げられる。
 本発明の抗がん剤感受性又は腫瘍径の和の判定方法を実施するには、検体中の2DG6P、2MSE、CSSG、DOPM、GSSG、I4A、P2CB、1-methyl-2-pyrrolidone、ASP、benzamide、glucaric acid、GL6P、Gly-Gly、HYPT及びHYPXから選ばれる1以上の分子を測定するためのプロトコールを含むキットを用いるのが好ましい。また、本発明の予後予測方法を実施するには、検体中の2-aminobutyric acid、CSSG、gamma-Glu-Cys、glycerol-3-phosphate、quinic acid、ASP、glycocholic acid、HYPX及び、lactic acidから選ばれる1以上の分子を測定するためのプロトコールを含むキットを用いるのが好ましい。当該キットには、これら代謝物質の測定試薬、及びプロトコール(測定試薬の使用方法、及び抗がん剤感受性の有無を判定するための基準等)が含まれる。当該基準には、これら代謝物質の標準濃度、高いと判断される濃度、低いと判断される濃度、測定結果に影響を与える要因とその影響の程度等が含まれ、これらの濃度は対象とする抗がん剤ごとに設定することが可能である。当該基準を用いて、前記のように判定又は予測することができる。
 また、抗がん剤の存在下、がん細胞株又は担癌動物由来の生体試料中の2DG6P、2MSE、CSSG、DOPM、GSSG、I4A、P2CB、1-methyl-2-pyrrolidone、ASP、benzamide、glucaric acid、GL6P、Gly-Gly、HYPT、HYPX、2-aminobutyric acid、gamma-Glu-Cys、glycerol-3-phosphate、quinic acid、glycocholic acid及びlactic acidから選ばれる1以上の分子の発現変動を指標とすることにより抗がん剤感受性亢進剤のスクリーニングが可能となる。
 すなわち、がん細胞株又は担癌動物に抗がん剤及び試験物質を添加又は投与し、がん細胞株又は担癌動物由来の生体試料中の2DG6P、2MSE、CSSG、DOPM、GSSG、I4A、P2CB、1-methyl-2-pyrrolidone、ASP、benzamide、glucaric acid、GL6P、Gly-Gly、HYPT、HYPX、2-aminobutyric acid、gamma-Glu-Cys、glycerol-3-phosphate、quinic acid、glycocholic acid及びlactic acidから選ばれる1以上の分子の濃度を測定する工程、及び当該濃度の変動に基づいて、前記がん細胞株又は担癌動物の前記抗がん剤に対する感受性を亢進する試験物質を選択する工程を行うことにより、前記抗がん剤に対する感受性亢進剤をスクリーニングすることができる。なお、発現変動には、上記分子の発現の有無及び/又は上記分子の発現量の増減(変動)を含む。
 例えば、2DG6P、2MSE、CSSG、DOPM、GSSG、I4A、P2CB、2-aminobutyric acid、gamma-Glu-Cys、glycerol-3-phosphate及びquinic acidから選ばれる1以上の分子について、抗がん剤存在下、これらの代謝物質の発現変動、具体的には濃度の上昇を指標とすれば、抗がん剤感受性亢進剤がスクリーニングできる。すなわち、in vitro又はin vivoにおいてこれらの代謝物質の濃度を上昇させる物質は、抗がん剤感受性を亢進する。例えば、in vitroでは、各種がん細胞株において抗がん剤の存在下でこれらの代謝物質の濃度を上昇させる物質は、当該がん細胞株の当該抗がん剤感受性を亢進する物質(抗がん剤感受性亢進剤)である。またin vivoでは、担癌動物における抗がん剤投与前後において、これらの代謝物質の濃度を上昇させる物質は、当該担癌動物の当該抗がん剤感受性を亢進する物質(抗がん剤感受性亢進剤)である。
 また、例えば、1-methyl-2-pyrrolidone、ASP、benzamide、glucaric acid、GL6P、Gly-Gly、HYPT、HYPX、glycocholic acid及びlactic acidから選ばれる1以上の分子について、抗がん剤存在下、これらの代謝物質の発現変動、具体的には濃度の低下を指標とすれば、抗がん剤感受性亢進剤がスクリーニングできる。すなわち、in vitro又はin vivoにおいてこれらの代謝物質の濃度を低下させる物質は、抗がん剤感受性を亢進する。例えば、in vitroでは、各種がん細胞株において抗がん剤の存在下でこれらの代謝物質の濃度を低下させる物質は、当該がん細胞株の当該抗がん剤感受性を亢進する物質(抗がん剤感受性亢進剤)である。またin vivoでは、担癌動物における抗がん剤投与前後において、これらの代謝物質の濃度を低下させる物質は、当該担癌動物の当該抗がん剤感受性を亢進する物質(抗がん剤感受性亢進剤)である。
 かくして得られた抗がん剤感受性亢進剤と感受性亢進の対象となる抗がん剤とを併用すれば、当該抗がん剤の治療効果が飛躍的に向上する。抗がん剤感受性亢進剤と感受性亢進の対象となる抗がん剤とを組み合せた形態としては、それらの成分の両方を含む一の組成物であってもよく、それぞれ別個の製剤の組み合せであってもよい。また、それらの成分はそれぞれ別の投与経路であってもよい。ここで用いられる対象となる抗がん剤は、オキサリプラチン又はその塩とフルオロウラシル又はその塩とレボホリナート又はその塩を含む抗がん剤であり、この抗がん剤と組み合わせて使用する他の抗がん剤としては特に限定されないが、例えばシクロフォスファミド(cyclophosphamide)、イフォスファミド(ifosfamide)、チオテパ(thiotepa)、メルファラン(melphalan)、ブスルファン(busulfan)、ニムスチン(nimustine)、ラニムスチン(ranimustine)、ダカルバジン(dacarbazine)、プロカルバジン(procarbazine)、テモゾロミド(temozolomide)、シスプラチン(cisplatin)、カルボプラチン(carboplatin)、ネダプラチン(nedaplatin)、メトトレキサート(methotrexate)、ペメトレキセド(pemetrexed)、テガフール/ウラシル(tegaful・uracil)、ドキシフルリジン(doxifluridine)、テガフール/ギメラシル/オテラシル(tegaful・gimeracil・oteracil)、カペシタビン(capecitabine)、シタラビン(cytarabine)、エノシタビン(enocitabine)、ゲムシタビン(gemcitabine)、6-メルカプトプリン(6-mercaptopurine)、フルダラビン(fuludarabin)、ペントスタチン(pentostatin)、クラドリビン(cladribine)、ヒドロキシウレア(hydroxyurea)、ドキソルビシン(doxorubicin)、エピルビシン(epirubicin)、ダウノルビシン(daunorubicin)、イダルビシン(idarubicine)、ピラルビシン(pirarubicin)、ミトキサントロン(mitoxantrone)、アムルビシン(amurubicin)、アクチノマイシンD(actinomycin D)、ブレオマイシン(bleomycine)、ペプレオマイシン(pepleomycin)、マイトマイシンC(mytomycin C)、アクラルビシン(aclarubicin)、ジノスタチン(zinostatin)、ビンクリスチン(vincristine)、ビンデシン(vindesine)、ビンブラスチン(vinblastine)、ビノレルビン(vinorelbine)、パクリタキセル(paclitaxel)、ドセタキセル(docetaxel)、イリノテカン(irinotecan)、イリノテカン活性代謝物(SN-38)、ノギテカン(nogitecan、topotecan)、エトポシド(etoposide)、プレドニゾロン(prednisolone)、デキサメタゾン(dexamethasone)、タモキシフェン(tamoxifen)、トレミフェン(toremifene)、メドロキシプロゲステロン(medroxyprogesterone)、アナストロゾール(anastrozole)、エキセメスタン(exemestane)、レトロゾール(letrozole)、リツキシマブ(rituximab)、イマチニブ(imatinib)、ゲフィチニブ(gefitinib)、ゲムツズマブ・オゾガマイシン(gemtuzumab ozogamicin)、ボルテゾミブ(bortezomib)、エルロチニブ(erlotinib)、セツキシマブ(cetuximab)、ベバシズマブ(bevacizumab)、スニチニブ(sunitinib)、ソラフェニブ(sorafenib)、ダサチニブ(dasatinib)、パニツムマブ(panitumumab)、アスパラギナーゼ(asparaginase)、トレチノイン(tretinoin)、三酸化ヒ素(arsenic trioxide)、又はそれらの塩、又はそれらの活性代謝物等が挙げられる。このうち、イリノテカン、SN-38若しくはそれらの塩又はベバシズマブが好ましく、特にベバシズマブが好ましい。
 次に実施例を挙げて本発明をさらに詳細に説明するが、本発明は何らこれらに限定されるものではない。
(1)方法
(a)試薬
 LC/MS用メタノール(和光純薬工業製)、HPLC用クロロホルム(和光純薬工業製)、逆浸透水(Direct-Q UV、Millipore製)を溶解およびサンプル調製に用いた。
 LC/MS用内部標準溶液(カチオン)として、Internal Standard Solution Compound C1(ISC1)およびInternal Standard Solution Compound C2(ISC2)を使用した。ISC1は、水溶液中に10mMのL-methionine sulfone(Human Metabolome Technologies製)を含み、ISC2は、水溶液中に10mMのL-Arginine-13 hydrochloride(Sigma-Aldrich製)、L-Asparagine-15 monohydrate(Cambridge Isotope Laboratories製)、β-Alanine-1315N(Sigma-Aldrich製)とTubercidin(Sigma-Aldrich製)を含む。
 LC/MS用内部標準溶液(アニオン)として、Internal Standard Solution Compound A1(ISA1)およびInternal Standard Solution compound A2(ISA2)を使用した。ISA1は、水溶液中に10mMのD-camphor-10-sulfonic acid sodium salt(Human Metabolome Technologies製)を含み、ISA2は、水溶液中に10mMのchloranilic acid(東京化成工業製)を含む。
 これらの内部標準溶液は、信号強度を標準化し、遊走時間を調整するのに用いた。また、ISC1およびISA1は得られた各代謝物の相対的な濃度を算出するためにも用いた。
(b)臨床サンプル
(b-1)患者背景
 組織学的に確認された進行結腸・直腸癌(ACRC)患者で、標準的な化学療法の一次治療を行う対象として適格な合計68名の患者から、前向きに血清サンプルを採取した。本研究の登録基準(適格性)は以下の通りである。
・登録時の年齢が20歳以上
・Eastern Corporative Oncology Group(ECOG)のPerformance status(PS)が0あるいは1
・結腸・直腸癌であることが組織病理学的に確認されている
・治癒切除不能で化学療法未治療の進行性あるいは再発性疾患(ただし、5-FU系薬剤による術後補助化学療法に限り、再発確認日から6ヶ月前に終了していれば登録可能とする)
・予測生存期間が3ヵ月以上
・主要臓器に重大な機能障害がない
・本試験登録前に、遺伝子多型検査やプロテオーム・メタボローム分析を含む試験の参加について、患者本人による署名、日付が記載された同意書が得られている。
(b-2)患者への治療
 全ての患者は一次化学療法として、bevacizumab(BV) 5mg/kgを30~90分にわたって静脈内に投与され、引き続きoxaliplatin(L-OHP) 85mg/mとlevofolinate(l-LV) 200mg/mを120分で静脈内に投与された。その後、5-FU 400mg/mを静脈内にbolus投与され、引き続き5-FU 2400mg/mを46時間で静脈内に持続点滴投与された(mFOLFOX6療法)。この治療は、2週ごとに繰り返された。
 L-OHPの治療が中断された後でも、必要な場合BV処置の有無にかかわらず簡略化されたl-LVと5-FUの併用投与(sLV5FU2)は試験治療と認められた。
 疾患進行、更なる試験治療を中止しなければならない有害事象の出現、医師の判断、患者からの試験治療継続の拒否、腫瘍の治癒切除手術に移行などがない限り、試験治療として最長24サイクル継続した。
(b-3)抗腫瘍効果の評価
 抗腫瘍効果は、独立外部レビュー・ボードによってthe Response Evaluation Criteria in Solid Tumors Guideline 1.0(RECIST)に基づき評価した。
 治療前の腫瘍径の総和は、登録前1ヵ月以内のコンピューター断層装置または磁気共鳴画像によって撮影された画像を用いて計測した、そして、治療開始後は治療前と同様の方法で8週ごと繰り返し撮影された画像を用いて計測した。
(b-4)サンプルの採取
 血液サンプルは、化学療法開始前2週間以内と化学療法開始後からoxaliplatinによる治療が中止されるまでの間、各治療サイクルの化学療法実施後2週後に採取した。
 採取した血液検体は、室温で15分の間放置し凝固させた後、4℃で30分間、3000rpmで遠心した。その後、血清は4つのポリプロピレン管に等しい量ずつ移し、液体窒素で直ちに凍結した。全てのこれらの手順は、採血から1時間以内で終了した。血清サンプルは、分析までの間-80℃で保管した。
(b-5)サンプルの調製
 サンプル調製は、既報告の方法(J Proteome Res.2003 Sep-Oct;2(5):488-94,Metabolomics.2010 Mar;6(1):78-95,Metabolomics.2013 Apr;9(2):444-453)に準じて行った。血清サンプルは氷上で解凍し、1800μLのメタノールを入れた遠沈管に200μLの血清と内部標準(ISA1あるいはISC1 10μM)とクロロホルム2000μLおよび逆浸透水800μLを入れ混合した。vortexingしたあと、混合物は4℃、5分間、4600gで遠心分離した。その後、上層の1500μLをタンパク質の除去のため5kDaフィルタ(Millipore製)に移し、4℃、9100gで2~4時間遠心ろ過した。濾過液は、減圧遠心分離機によって乾燥した。CE-TOF MS分析の直前に、乾燥した濾過液は氷の上でISC2あるいはISA2を終濃度0.1mMで含む逆浸透水50μLに溶解し、分析バイアルに入れ4℃、10分間、1000gで遠心し、分析に供した。
(c)CE-TOF MSによるサンプル中の代謝物質測定
 全てのサンプルは、duplicateで測定した。CE-Q-TOF MSを用いて陽イオン測定条件で、また、CE-TOF MSを用いて陰イオン測定条件で、質量数1000以下の代謝物質を網羅的に測定した。
(c-1)カチオン性代謝物質測定条件
1)測定機器
 カチオン性代謝物質の測定には、Agilent 7100 CE systemを装備したAgilent 6530 Accurate-Mass Q-TOF MS system(Agilent Technologies製)を使用した。キャピラリーには、Human Metabolome Technologies,Inc.(HMT)のcatalogue number(Cat.No.)H3305-2002のフュ-ズドシリカキャピラリー(内径50μm、全長80cm)を用いた。緩衝液には、HMTのCat.No.3301-1001の緩衝液を用いた。印加電圧は+27kv、キャピラリー温度は20℃で測定した。試料は加圧法を用いて50mbarで10秒間注入した。
2)飛行時間型質量分析計(Q-TOF MS)の分析条件
 カチオンモードを用い、イオン化電圧は4kv、フラグメンター電圧は80v、スキマー電圧は50v、octRFV電圧は650vに設定した。乾燥ガスには窒素を使用し、温度300℃、圧力5psigに設定した。シース液はHMTのCat.No.H3301-1020のシース液を使用した。reference massはm/z 65.059706およびm/z 622.08963に設定した。
(c-2)アニオン性代謝物質測定条件
1)測定機器
 アニオン性代謝物質の測定には、Agilent 1600 CE systemを装備したAgilent 6210 TOF system(Agilent Technologies製)を使用し、キャピラリーおよびその温度はアニオンと同じ設定のものを使用した。緩衝液には、HMTのCat.No.H3302-1021の緩衝液を用いた。印加電圧は30kv、試料は加圧法を用いて50mBarで25秒間で注入した。
2)飛行時間型質量分析計(TOF MS)の分析条件
 ニューアニオンモードを用い、イオン化電圧は3.5kv、フラグメンター電圧は125v、スキマー電圧は50v、octRFV電圧は175vに設定した。乾燥ガス及びシース液は、陽イオンと同じものを同じ条件で使用した。reference massはm/z 51.013854およびm/z 680.035541に設定した。
(c-3)データ処理
 m/z、遊走時間(MT)とピークの領域を含むピークの情報を得るために、CE-Q-TOF MS あるいはCE-TOF MSによって見つけられたピークの生データはMaster Hands自動統合ソフトウェア version 2.0(慶應義塾大学製)によって処理した。当該ソフトウェアにより、全てのピークを見つけ、ノイズを除去し、代謝物の注釈と相対的なピーク面積を含むデータマトリクスを生成した。ピークは、CEから得られるm/zとTOF MSから得られるMTを元に、HMTのメタボライト・データベースから推定される代謝物名を注釈としてつけた。アニオンのピークに注釈をつけるMT、m/z、最小限のS/N比の条件は各々1.5分、50ppm、20に設定した、そして、カチオンのそれは各々0.5分、50ppm、20に設定した。
 注釈がつけられた各代謝物の相対濃度は、ISC1(カチオン)あるいはISA1(アニオン)の面積で、各々の代謝物のピークの面積を除することで算出した。
 CE-Q-TOF MS およびCE-TOF MS分析において、個々の患者の抗腫瘍効果は、分析者にマスキングした。
 処理されたピークのリストは、更なる統計解析のために外部に出力された。統計解析では、duplicateで測定したアノテートされた各代謝物の相対濃度の平均をとった。
(d)統計解析
(d-1)解析方法1
 臨床およびメタボロミクス・データ処理と統計解析は、Microsoft Windows 7上でJMP 64ビット版バージョン12(SAS Institute製)を用いた。
 本試験では、68例の患者で本試験治療開始前の68の血清サンプルが得られた。治療効果予測因子の検討のために、本試験治療開始前の68の血清サンプルから得られた代謝物のデータを使用した。
 本試験では、試験治療期間中の最大の抗腫瘍効果を把握し、治療反応群(レスポンダー)と治療無反応群(ノンレスポンダー)を以下のように定義した。
・レスポンダー(R):Recist基準に従い放射線診断医による画像診断の結果、試験治療期間中の最大の効果がcomplete responseあるいはpartial responseを示した患者。
・ノンレスポンダー(N-R):Recist基準に従い放射線診断医による画像診断の結果、試験治療期間中の最大の効果がstable diseaseあるいはprogressive diseaseの患者。
 患者背景の違いを確認するのにχ二乗テストを用いた。各代謝物のN-R群とR群の差異を検討するために、t検定(ウェルチ)を用いた。この結果、有意となったものを抗がん剤感受性判定マーカーの候補物質とした。各候補物質間の関係および患者背景との関連を確認するためにピアソン相関係数を用いた。抗がん剤感受性判定モデルを確立するために、一変量および変数増減法を用いた多変量の名義ロジスティック回帰分析を実行した。候補物質の予測力を評価するために受信者動作特性(ROC)を用いた。多変量のロジスティック回帰分析においてはfalse discovery rateを制御するようにBenjaminiとHochbergの偽発見率法(BH-FDR)により多重性の調整を行ったp値を算出した(Journal of the Royal Statistical Society,Series B,57,289-300)。生存曲線と治療期間はカプラン・マイアー法を用いて推定し、その曲線の違いはログランク検定を使用した。候補物質となった代謝物の予後予測に対する評価を、コックス比例ハザードモデルを使用し一変量および多変量分析で調べた。
 加えて、ハザード解析で有意になった代謝物について、レスポンダーの閾値などを元に2群にわけ、カプラン・マイアー曲線を描出し、ログランク検定を行った。
 p値<0.05を、いずれの解析においても統計的に有意とした。
(d-2)解析方法2
 臨床およびメタボロミクス・データ処理と統計解析は、Microsoft Windows 7上でJMP 64ビット版バージョン12(SAS Institute製)を用いた。
 本試験では、68例の患者で本試験治療開始前の68の血清サンプルが得られた。治療効果予測因子の検討のために、本試験治療開始前の68の血清サンプルから得られた代謝物のデータを使用した。
 レスポンダー(R)とノンレスポンダー(N-R)は、(d-1)と同様に定義した。
 各代謝物のN-R群とR群の差異を検討するために、測定した代謝物について網羅的に名義ロジスティック解析を行い、モデル全体で有意となったものを抗がん剤感受性判定マーカーの候補物質とした。(d-1)と同様の方法で、これらの代謝物のROC曲線およびそのAUCや代謝物単独での感度、特異度、精度を求めた。
 次に、抗がん剤感受性判定マーカーの候補物質を基に効果予測モデルを確立するため、単変量で有意になった各代謝物についてROC曲線からカットオフ値を求め、その値を元に二値化した。その二値化した値を用いてSTEP WISE法でベイズ情報量基準(BIC)を指標にして変数増加法にて変数を選択した。そこで選択された変数を用い、多変量名義ロジスティック回帰分析を行った。抗がん剤感受性判定マーカーの候補物質の効果の予測力を評価するために受信者動作特性(ROC)を用いた。
 実際の臨床効果と予測モデルに基づく効果予測の性能を評価するため、Confusion matrixを作成し、レスポンダーの予測性能を感度、特異度、精度から評価した。
 効果予測モデルの予後予測の性能を検討する目的で、全生存期間をカプラン・マイアー法を用いて推定し、レスポンダーとノンレスポンダーの差異をログランク検定を用いて検討した。
 さらに、治療開始前の血中代謝物の濃度と各患者の全生存期間から、予後を予測する代謝物をCOXの比例ハザードモデルで解析した。以上の統計解析については、p値<0.05を有意とした。なお、検討は75%以上の患者で検出された代謝物で行った。
(2)結果
(2-1)解析方法1における結果
(a)R群とN-R群で有意差が見られた物質
 表1に示すように、29人の患者はN-Rと定義され、39人の患者はRと定義された。R群とN-R群の間で患者背景に差は見られなかった。
Figure JPOXMLDOC01-appb-T000010
 本試験治療の前に得られた血清サンプルで発現が見られた380の代謝物について網羅的にt検定(ウェルチ)を行ったところ、図1に示すように、R群がN-R群より統計学的に有意に高値を示した代謝物として、2-deoxyglucose 6-phosphate(2DG6P)、cysteine-glutathione disulphide(CSSG)、oxidized glutathione(GSSG)、imidazole-4-acetate(I4A)及びpyridine-2-carboxylic acid butyl ester(P2CB)が見出された。それぞれのp値は0.0246、0.0121、0.0005、0.0416、0.0082であった。一方、R群がN-R群より有意に低値を示したものは、aspartate(ASP)、hypotaurine(HYPT)及びhypoxanthine(HYPX)であった。それぞれのp値は、0.0487、0.0310、0.0328であった。特に、2DG6P、GSSG、I4AとP2CBはR群患者だけに検出された。
(b)試験治療開始前の腫瘍径の和と各物質の相関
 ASP及びCSSGは、図2に示したように、試験治療開始前の腫瘍径の和と有意な相関が見られ、各々の回帰式、相関係数(r)およびp値は以下のようであった。回帰式:ASP:39.5+585.5×ASP、CSSG:171.1-3540.6×CSSG、相関係数およびp値:ASP:r=0.41(p=0.0006)、CSSG:r=-0.48(p<0.0001)。
(c)抗がん剤感受性判定モデルの算出
 (a)に示した8つの抗がん剤感受性判定マーカー候補物質で、レスポンダーかノンレスポンダーであるかを目的変数として単変量名義ロジスティック解析を行い、各物質のカットオフ値、確率値、ROC曲線下面積を求めた。それぞれの結果を表2に示した。各物質のレスポンダーのカットオフ値は、以下の通りであった。2DG6P(5.304×10-4≦);ASP(≦3.401×10-2);CSSG(2.223×10-2≦);GSSG(1.061×10-3≦);HYPT(≦1.837×10-2);HYPX(≦1.050×10-1);I4A(3.316×10-3≦);P2CB(5.952×10-4≦)。ほとんどの候補物質において、p値は0.01未満であった。そして、ASPとCSSGは特に良好なAUC(0.7<)を示した。さらに、2DG6P、GSSG、I4AとP2CBの特異性と陽性的中率は、各単独で1.0000であった。CSSGは最も小さいp値と最大のAUCを示し、HYPXは最高の感度と陰性的中率を示した。
Figure JPOXMLDOC01-appb-T000011
 抗がん剤感受性判定モデルを、変数増減法を使って多変量名義ロジスティックモデルから算出した。その結果は表3に示すように、2DG6P、CSSG、HYPT、I4A、P2CBが残り、各々のFDR p値は0.00082、0.00996、0.00222、0.01163、0.01163となった。
Figure JPOXMLDOC01-appb-T000012
 抗がん剤感受性判定モデルは、下記式(1)に示す通りである。
Figure JPOXMLDOC01-appb-M000013
(式中、2DG6P、CSSG、I4A及びP2CBは、各分子の測定結果が各分子のカットオフ値以上であった場合に1を、カットオフ値未満であった場合に0を示し、HYPTは測定結果がカットオフ値以下であった場合に1を、カットオフ値を超えた場合に0を示す。)
 上記モデルは、患者がレスポンダーであるか否かを判定する式である。p値は患者がレスポンダーである確率を表し、p値が0.5以上の場合にレスポンダーと判断する。
 この抗がん剤感受性判定モデルのROC曲線のAUCは0.9107で、そのカットオフ値は-2.640以下であった(図3)。その感度、特異度、陽性的中率および陰性的中率は、各々0.6923、1.0000、1.0000、0.7073であった。
(d)CSSGの濃度によるPFS及びOSの解析
 CSSGの濃度(上記(c)記載のカットオフ値以上をCSSG Highとし、カットオフ値未満をCSSG Lowとする)に応じて無増悪生存期間(PFS)、全生存期間(OS)の解析を行ったところ、CSSG HighのグループはCSSG Lowのグループよりも有意に長いPFS(p=0.0331)とOS(p=0.0025)を示していた(図4A,4B)。
 CSSG High群のPFSの中央値は425日で、Low群は363日であった。CSSG High群の1年生存率および2年生存率は各々90.5%及び76.2%であったが、CSSG Low群の1年および2年生存率は各々80.9%、53.2%であった。
(2-2)解析方法2における結果
(a)R群とN-R群でロジスティック解析で差が見られた物質
 表1に示したように、R群とN-R群の間で患者背景に差は見られなかった。
 本試験治療の前に得られた血清サンプルで発現が見られた480の代謝物について網羅的に治療への反応(レスポンダーかノンレスポンダーか)を目的変数とする名義ロジスティック解析を行った。その結果、表4に示す15の代謝物が有意となった。各代謝物のレスポンダーとノンレスポンダーの分布を図5及び図6に示した。
Figure JPOXMLDOC01-appb-T000014
 また、ROC曲線から求めたCut-offを元に2値化し、2値化した場合のp値、感度、精度、レスポンダー的中率、ノンレスポンダー的中率を求めた。それぞれの結果を表5に示した。各物質のカットオフ値は、以下の通りであった。1-methyl-2-pyrrolidone(≦8.422×10-2);2DG6P(5.304×10-4≦);2MSE(1.404×10-3≦);ASP(≦3.401×10-2);benzamide(≦9.859×10-2);CSSG(2.223×10-2≦);DOPM(1.153×10-3≦);glucaric acid(≦1.058×10-3);GL6P(≦8.167×10-4);GSSG(1.061×10-3≦);Gly-Gly(≦5.349×10-3);HYPT(≦1.837×10-2);HYPX(≦1.050×10-1);I4A(3.316×10-3≦);P2CB(5.952×10-4≦)。そして、ASPとCSSGは特に良好なAUC(0.7≦)を示した。さらに、2DG6P、GSSG、I4AとP2CBの特異性と陽性的中率は、各単独で1.0000であった。
Figure JPOXMLDOC01-appb-T000015
(b)抗がん剤感受性判定モデルの算出
 抗がん剤感受性判定モデルを、変数増減法を使って多変量名義ロジスティックモデルから算出した。その結果は表6に示すように、7代謝物モデルが算出された。このモデルでは、2DG6P、2MSE、ASP、CSSG、DOPM、GL6P、HYPTが選択され、各々のFDR p値は0.02161、0.02851、0.00679、0.00023、0.00023、0.03439、0.00023となった。また、単変量解析でパラメータも有意であった代謝物から3代謝物モデルが算出され、この3代謝物モデルでは、CGGS、DOPM、HYPTが選択され、各々のFDR p値は0.00001、0.00032、0.00281となった。
Figure JPOXMLDOC01-appb-T000016
 抗がん剤感受性判定モデル(7代謝物モデル及び3代謝物モデル)は、それぞれ下記式(2)および(3)に示す通りである。
Figure JPOXMLDOC01-appb-M000017
(式中、2DG6Pは、2DG6Pの測定結果がカットオフ値以上であった場合に10.2190を、カットオフ値未満であった場合に-10.2190を示し、2MSEは、2MSEの測定結果がカットオフ値以上であった場合に1.4778を、カットオフ値未満であった場合に-1.4778を示し、ASPは、ASPの測定結果がカットオフ値以上であった場合に-1.4976を、カットオフ値未満であった場合に1.4976を示し、CSSGは、CSSGの測定結果がカットオフ値以上であった場合に2.0937を、カットオフ値未満であった場合に-2.0937を示し、DOPMは、DOPMの測定結果がカットオフ値以上であった場合に2.2258を、カットオフ値未満であった場合に-2.2258を示し、GL6Pは、GL6Pの測定結果がカットオフ値以上であった場合に-1.6623を、カットオフ値未満であった場合に1.6623を示し、HYPTは、HYPTの測定結果がカットオフ値以上であった場合に-2.3200を、カットオフ値未満であった場合に2.3200を示し、該カットオフ値は、2DG6Pの場合に5.304×10-4であり、2MSEの場合に1.404×10-3であり、ASPの場合に3.401×10-2であり、CSSGの場合に2.223×10-2であり、DOPMの場合に1.153×10-3であり、GL6Pの場合に8.167×10-4であり、HYPTの場合に1.837×10-2である。)
Figure JPOXMLDOC01-appb-M000018
(式中、CSSGは、CSSGの測定結果がカットオフ値以上であった場合に1.8701を、カットオフ値未満であった場合に-1.8701を示し、DOPMは、DOPMの測定結果がカットオフ値以上であった場合に1.4081を、カットオフ値未満であった場合に-1.4081を示し、HYPTは、HYPTの測定結果がカットオフ値以上であった場合に-1.0869を、カットオフ値未満であった場合に1.0869を示し、該カットオフ値は、CSSGの場合に2.223×10-2であり、DOPMの場合に1.153×10-3であり、HYPTの場合に1.837×10-2である。)
 上記7代謝物モデル及び3代謝物モデルは、患者がレスポンダーであるか否かを判定する式である。p値は患者がレスポンダーである確率を表し、p値が0.5以上の場合にレスポンダーと判断する。
 7代謝物モデルのROC曲線のAUCは0.97であった(図7a)。その感度、特異度、陽性的中率および陰性的中率は、各々0.949、0.862、0.902、0.912であった。
 また、3代謝物モデルのROC曲線のAUCは0.88であった(図7b)。その感度、特異度、陽性的中率および陰性的中率は、各々0.769、0.828、0.857、0.794であった。
 式(1)~(3)のうち、特に式(2)は、式(1)及び(3)と比較して高いAUCを示し、感度が高いことから、レスポンダーを誤ってノンレスポンダーとして判定する確率が低く、最も有用な抗がん剤感受性判定モデル式と言える。
(c)7代謝物モデル及び3代謝物モデルにおけるOSの予測性能
 上記7代謝物モデル及び3代謝物モデルがOSについて予測可能性を検証するために、上記モデルにより治療開始前の代謝物を元にレスポンダーと判断された群(R群)とノンレスポンダーと判断された群(N-R群)に分けた上で、カプラン・マイアー曲線を描き、R群とN-R群でOSに差が出るか確認した。R群とN-R群のOSは、ログランク検定で比較した。
 その結果、7代謝物モデル及び3代謝物モデルの両方において、R群はN-R群に比べ有意にOSが長く(それぞれ、p=0.0002、p=0.0056)、本代謝物モデルの有用性を示す結果となった(図8a及び図8b)。
(d)代謝物のCOX比例ハザードモデルによるOSの解析
 COXの比例ハザードモデルで解析した結果、有意となった代謝物のハザード比とその95%信頼区間を図9に示した。2-aminobutyric acid、CSSG、gamma-Glu-Cys、glycerol-3-phosphate及びquinic acidは、血中の濃度が高いほど生存期間が長いこと、また、ASP、glycocholic acid、HYPX及びlactic acidは血中濃度が高いほど生存期間が短いことが見出された。
 これらの生存期間予測代謝物と(2-2)(a)に記載の抗がん剤感受性予測代謝物では、ASP、CSSG及びHYPXが重複しており、表7に示したとおり、挙動が一致しているため、これら代謝物は特に有用であることが示された。
Figure JPOXMLDOC01-appb-T000019
(e)COX比例ハザードモデルで有意になった代謝物の閾値別のカプラン・マイアー曲線とログランク検定結果
 COXの比例ハザードモデルで解析した結果有意となった代謝物について、各代謝物ごとに適宜カットオフ値を用いて群分けし、カプラン・マイアー曲線の描出とログランク検定を行った。中でもCSSG,HYPXはレスポンダーとノンレスポンダーのカットオフ値と同じ値で群分けされた。結果をハザード比が1未満のものについて図10に、1を超えたものについて図11に示した。すべての代謝物でカットオフ値以上と未満でOSに有意差が得られ、これら代謝物の有用性がさらに示された。
 

Claims (22)

  1.  2DG6P、2MSE、CSSG、DOPM、GSSG、I4A、P2CB、1-methyl-2-pyrrolidone、ASP、benzamide、glucaric acid、GL6P、Gly-Gly、HYPT及びHYPXから選ばれる1以上の分子からなる、オキサリプラチン又はその塩とフルオロウラシル又はその塩とレボホリナート又はその塩を含む抗がん剤の感受性判定マーカー。
  2.  抗がん剤が、さらにベバシズマブを含む請求項1記載の抗がん剤感受性判定マーカー。
  3.  がん患者由来の生体試料中の2DG6P、2MSE、CSSG、DOPM、GSSG、I4A、P2CB、1-methyl-2-pyrrolidone、ASP、benzamide、glucaric acid、GL6P、Gly-Gly、HYPT及びHYPXから選ばれる1以上の分子の量を測定する工程を含む、オキサリプラチン又はその塩とフルオロウラシル又はその塩とレボホリナート又はその塩を含む抗がん剤の感受性判定方法。
  4.  さらに、前記測定結果を対照レベルと比較することにより、当該がん患者の抗がん剤に対する感受性を判定する工程を含む請求項3記載の判定方法。
  5.  前記対照レベルがレスポンダーのカットオフ値であって、該カットオフ値が2DG6Pの場合に5.304×10-4≦であり、2MSEの場合に1.404×10-3≦であり、CSSGの場合に2.223×10-2≦であり、DOPMの場合に1.153×10-3≦であり、GSSGの場合に1.061×10-3≦であり、I4Aの場合に3.316×10-3≦であり、P2CBの場合に5.952×10-4≦であり、1-methyl-2-pyrrolidoneの場合に≦8.422×10-2であり、ASPの場合に≦3.401×10-2であり、benzamideの場合に≦9.859×10-2であり、glucaric acidの場合に≦1.058×10-3であり、GL6Pの場合に≦8.167×10-4であり、Gly-Glyの場合に≦5.349×10-3であり、HYPTの場合に≦1.837×10-2であり、HYPXの場合に≦1.050×10-1である請求項4記載の判定方法。
  6.  さらに、次式(1)により、レスポンダーである確率(p)を算出し、当該がん患者がレスポンダーであるか否かを判定する工程を含む請求項3記載の判定方法。
    Figure JPOXMLDOC01-appb-M000001
    (式中、2DG6P、CSSG、I4A及びP2CBは、各分子の測定結果が各分子のカットオフ値以上であった場合に1を、カットオフ値未満であった場合に0を示し、HYPTは測定結果がカットオフ値以下であった場合に1を、カットオフ値を超えた場合に0を示し、該カットオフ値は、2DG6Pの場合に5.304×10-4であり、CSSGの場合に2.223×10-2であり、I4Aの場合に3.316×10-3であり、P2CBの場合に5.952×10-4であり、HYPTの場合に1.837×10-2である。)
  7.  さらに、次式(2)により、レスポンダーである確率(p)を算出し、当該がん患者がレスポンダーであるか否かを判定する工程を含む請求項3記載の判定方法。
    Figure JPOXMLDOC01-appb-M000002
    (式中、2DG6Pは、2DG6Pの測定結果がカットオフ値以上であった場合に10.2190を、カットオフ値未満であった場合に-10.2190を示し、2MSEは、2MSEの測定結果がカットオフ値以上であった場合に1.4778を、カットオフ値未満であった場合に-1.4778を示し、ASPは、ASPの測定結果がカットオフ値以上であった場合に-1.4976を、カットオフ値未満であった場合に1.4976を示し、CSSGは、CSSGの測定結果がカットオフ値以上であった場合に2.0937を、カットオフ値未満であった場合に-2.0937を示し、DOPMは、DOPMの測定結果がカットオフ値以上であった場合に2.2258を、カットオフ値未満であった場合に-2.2258を示し、GL6Pは、GL6Pの測定結果がカットオフ値以上であった場合に-1.6623を、カットオフ値未満であった場合に1.6623を示し、HYPTは、HYPTの測定結果がカットオフ値以上であった場合に-2.3200を、カットオフ値未満であった場合に2.3200を示し、該カットオフ値は、2DG6Pの場合に5.304×10-4であり、2MSEの場合に1.404×10-3であり、ASPの場合に3.401×10-2であり、CSSGの場合に2.223×10-2であり、DOPMの場合に1.153×10-3であり、GL6Pの場合に8.167×10-4であり、HYPTの場合に1.837×10-2である。)
  8.  さらに、次式(3)により、レスポンダーである確率(p)を算出し、当該がん患者がレスポンダーであるか否かを判定する工程を含む請求項3記載の判定方法。
    Figure JPOXMLDOC01-appb-M000003
    (式中、CSSGは、CSSGの測定結果がカットオフ値以上であった場合に1.8701を、カットオフ値未満であった場合に-1.8701を示し、DOPMは、DOPMの測定結果がカットオフ値以上であった場合に1.4081を、カットオフ値未満であった場合に-1.4081を示し、HYPTは、HYPTの測定結果がカットオフ値以上であった場合に-1.0869を、カットオフ値未満であった場合に1.0869を示し、該カットオフ値は、CSSGの場合に2.223×10-2であり、DOPMの場合に1.153×10-3であり、HYPTの場合に1.837×10-2である。)
  9.  生体試料が、抗がん剤を投与されたがん患者由来の生体試料である請求項3~8のいずれか1項に記載の判定方法。
  10.  抗がん剤が、さらにベバシズマブを含む請求項3~9のいずれか1項に記載の判定方法。
  11.  がん患者由来の生体試料中のASP及びCSSGから選ばれる1以上の分子の量を測定する工程を含む、当該がん患者の腫瘍径の和の判定方法。
  12.  2-aminobutyric acid、CSSG、gamma-Glu-Cys、glycerol-3-phosphate、quinic acid、ASP、glycocholic acid、HYPX及びlactic acidから選ばれる1以上の分子からなる、オキサリプラチン又はその塩とフルオロウラシル又はその塩とレボホリナート又はその塩を含む抗がん剤治療時の予後予測マーカー。
  13.  抗がん剤が、さらにベバシズマブを含む請求項12記載の予後予測マーカー。
  14.  がん患者由来の生体試料中の2-aminobutyric acid、CSSG、gamma-Glu-Cys、glycerol-3-phosphate、quinic acid、ASP、glycocholic acid、HYPX及びlactic acidから選ばれる1以上の分子の量を測定する工程を含む、オキサリプラチン又はその塩とフルオロウラシル又はその塩とレボホリナート又はその塩を含む抗がん剤治療時の予後予測方法。
  15.  抗がん剤が、さらにベバシズマブを含む請求項14記載の予後予測方法。
  16.  がん患者由来の生体試料中の2DG6P、2MSE、CSSG、DOPM、GSSG、I4A、P2CB、1-methyl-2-pyrrolidone、ASP、benzamide、glucaric acid、GL6P、Gly-Gly、HYPT及びHYPXから選ばれる1以上の分子の量を測定するためのプロトコールを含むことを特徴とする請求項3~11のいずれか1項に記載の判定方法を実施するためのキット。
  17.  がん患者由来の生体試料中の2-aminobutyric acid、CSSG、gamma-Glu-Cys、glycerol-3-phosphate、quinic acid、ASP、glycocholic acid、HYPX及びlactic acidから選ばれる1以上の分子の量を測定するためのプロトコールを含むことを特徴とする請求項14又は15記載の予後予測方法を実施するためのキット。
  18.  オキサリプラチン又はその塩とフルオロウラシル又はその塩とレボホリナート又はその塩を含む抗がん剤の存在下、がん細胞株又は担癌動物由来の生体試料中の2DG6P、2MSE、CSSG、DOPM、GSSG、I4A、P2CB、1-methyl-2-pyrrolidone、ASP、benzamide、glucaric acid、GL6P、Gly-Gly、HYPT、HYPX、2-aminobutyric acid、gamma-Glu-Cys、glycerol-3-phosphate、quinic acid、glycocholic acid及びlactic acidから選ばれる1以上の分子の発現変動を指標とする抗がん剤感受性亢進剤のスクリーニング方法。
  19.  抗がん剤が、さらにベバシズマブを含む請求項18記載のスクリーニング方法。
  20.  請求項18又は19記載の方法により得られたオキサリプラチン又はその塩とフルオロウラシル又はその塩とレボホリナート又はその塩を含む抗がん剤に対する感受性亢進剤。
  21.  請求項20記載の感受性亢進剤とオキサリプラチン又はその塩とフルオロウラシル又はその塩とレボホリナート又はその塩を含む抗がん剤とを組み合わせてなるがん治療用組成物。
  22.  抗がん剤が、さらにベバシズマブを含む請求項21記載のがん治療用組成物。
     
PCT/JP2018/013340 2017-03-31 2018-03-29 併用抗がん剤の感受性の判定マーカー WO2018181759A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP18777198.5A EP3605103A4 (en) 2017-03-31 2018-03-29 COMBINED ANTI-CANCER AGENT SENSITIVITY MARKER
JP2019510147A JP7054095B2 (ja) 2017-03-31 2018-03-29 併用抗がん剤の感受性の判定マーカー
CN202310317463.XA CN116148481A (zh) 2017-03-31 2018-03-29 并用抗癌剂的感受性判定标记
US16/498,940 US20200191772A1 (en) 2017-03-31 2018-03-29 Combined anticancer agent sensitivity determination marker
CN201880023085.1A CN110476066A (zh) 2017-03-31 2018-03-29 并用抗癌剂的感受性判定标记
JP2022041257A JP7308497B2 (ja) 2017-03-31 2022-03-16 併用抗がん剤の感受性の判定マーカー

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-070541 2017-03-31
JP2017070541 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018181759A1 true WO2018181759A1 (ja) 2018-10-04

Family

ID=63676202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013340 WO2018181759A1 (ja) 2017-03-31 2018-03-29 併用抗がん剤の感受性の判定マーカー

Country Status (5)

Country Link
US (1) US20200191772A1 (ja)
EP (1) EP3605103A4 (ja)
JP (2) JP7054095B2 (ja)
CN (2) CN110476066A (ja)
WO (1) WO2018181759A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020067228A1 (ja) * 2018-09-28 2020-04-02 学校法人慶應義塾 併用抗がん剤の感受性の判定マーカー

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006504093A (ja) 2002-10-25 2006-02-02 ネーデルランドセ オルガニサティエ フォール トエゲパストナトールヴェテンシャッペリク オンデルゾエク ティエヌオー 疾病の早期検出のためのシステム、及び疾病特異的なバイオマーカーの開発
WO2009096189A1 (ja) 2008-01-31 2009-08-06 Keio University 抗がん剤感受性判定マーカー
WO2011052750A1 (ja) 2009-10-30 2011-05-05 学校法人慶應義塾 抗がん剤の感受性判定マーカー
WO2012127984A1 (ja) 2011-03-24 2012-09-27 学校法人慶應義塾 抗がん剤感受性の判定マーカー
WO2013125675A1 (ja) 2012-02-23 2013-08-29 学校法人慶應義塾 併用抗がん剤の感受性判定マーカー
WO2013125509A1 (ja) 2012-02-24 2013-08-29 旭化成ケミカルズ株式会社 グルカル酸の製造方法
JP2016153808A (ja) 2009-06-04 2016-08-25 メタノミクス ヘルス ゲーエムベーハー 前立腺癌を診断する手段と方法
JP2017007980A (ja) 2015-06-23 2017-01-12 ポーラ化成工業株式会社 液晶化粧料
JP2017014167A (ja) 2015-07-03 2017-01-19 株式会社Agt&T 化粧用組成物

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052749A1 (ja) * 2009-10-30 2011-05-05 学校法人慶應義塾 抗がん剤の感受性の判定方法
BR112013013656B1 (pt) * 2010-12-03 2021-01-26 Kabushiki Kaisha Yakult Honsha processo para determinação da sensibilidade de um indivíduo a um agente anticâncer, kit para realização do dito processo bem como processo de triagem para um agente de aperfeiçoamento de sensibilidade a um agente anticâncer
CN106546721B (zh) * 2016-11-25 2019-01-04 武汉迈特维尔生物科技有限公司 腺性膀胱炎和膀胱癌诊断区分标志物、诊断试剂或试剂盒

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006504093A (ja) 2002-10-25 2006-02-02 ネーデルランドセ オルガニサティエ フォール トエゲパストナトールヴェテンシャッペリク オンデルゾエク ティエヌオー 疾病の早期検出のためのシステム、及び疾病特異的なバイオマーカーの開発
WO2009096189A1 (ja) 2008-01-31 2009-08-06 Keio University 抗がん剤感受性判定マーカー
JP2016153808A (ja) 2009-06-04 2016-08-25 メタノミクス ヘルス ゲーエムベーハー 前立腺癌を診断する手段と方法
WO2011052750A1 (ja) 2009-10-30 2011-05-05 学校法人慶應義塾 抗がん剤の感受性判定マーカー
WO2012127984A1 (ja) 2011-03-24 2012-09-27 学校法人慶應義塾 抗がん剤感受性の判定マーカー
WO2013125675A1 (ja) 2012-02-23 2013-08-29 学校法人慶應義塾 併用抗がん剤の感受性判定マーカー
WO2013125509A1 (ja) 2012-02-24 2013-08-29 旭化成ケミカルズ株式会社 グルカル酸の製造方法
JP2017007980A (ja) 2015-06-23 2017-01-12 ポーラ化成工業株式会社 液晶化粧料
JP2017014167A (ja) 2015-07-03 2017-01-19 株式会社Agt&T 化粧用組成物

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
BENJAMINIHOCHBERG: "BH-FDR) to control false discovery rate", JOURNAL OF THE ROYAL STATISTICAL SOCIETY, vol. 57, pages 289 - 300
J NATL CANCER INST., vol. 92, no. 3, 2 February 2000 (2000-02-02), pages 205 - 16
J PROTEOME RES., vol. 2, no. 5, September 2003 (2003-09-01), pages 488 - 94
KUMAMOTO, KENSUKE ET AL.: "Search for predictive factors of therapeutic effect in FOLFOX treatment", NIPPON RINSHO - JAPANESE JOURNAL OF CLINICAL MEDICINE, vol. 73, no. 4, 20 April 2015 (2015-04-20), pages 530 - 537, XP009516901, ISSN: 0047-1852 *
METABOLOMICS, vol. 6, no. 1, March 2010 (2010-03-01), pages 78 - 95
METABOLOMICS, vol. 9, no. 2, April 2013 (2013-04-01), pages 444 - 453
NAGAI, SHINICHIRO ET AL.: "Predictive biomarkers of mFOLFOX6 efficacy in colorectal cancer", JOURNAL OF JAPAN SURGICAL SOCIETY, vol. 112, 2011, pages 666, XP009517515, ISSN: 0301-4894 *
YOSHIMURA, MAIKO ET AL.: "Prediction of effect on FOLFOX treatment for colorectal cancer by OCT2/TS double immunostaining", TRANSACTIONES SOCIETATIS PATHOLOGICAE JAPONICAE, vol. 105, no. 1, 12 April 2016 (2016-04-12), pages 487, XP009517780 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020067228A1 (ja) * 2018-09-28 2020-04-02 学校法人慶應義塾 併用抗がん剤の感受性の判定マーカー
CN112770741A (zh) * 2018-09-28 2021-05-07 学校法人庆应义塾 并用抗癌剂的感受性的判定标记
EP3858344A4 (en) * 2018-09-28 2022-07-06 Keio University MARKER TO EVALUATE SENSITIVITY TO A COMBINATION OF ANTICANCER DRUGS

Also Published As

Publication number Publication date
CN116148481A (zh) 2023-05-23
JP7308497B2 (ja) 2023-07-14
CN110476066A (zh) 2019-11-19
JP7054095B2 (ja) 2022-04-13
EP3605103A1 (en) 2020-02-05
EP3605103A4 (en) 2021-04-14
JPWO2018181759A1 (ja) 2020-02-13
US20200191772A1 (en) 2020-06-18
JP2022091828A (ja) 2022-06-21

Similar Documents

Publication Publication Date Title
JP5461201B2 (ja) 抗がん剤感受性の判定方法
JP6527994B2 (ja) 併用抗がん剤の感受性判定マーカー
JP5548694B2 (ja) 抗がん剤の感受性の判定方法
JP5548695B2 (ja) 抗がん剤の感受性判定マーカー
JP7308497B2 (ja) 併用抗がん剤の感受性の判定マーカー
JP7203391B2 (ja) イリノテカンを含む抗がん剤療法の感受性判定マーカー
Morizane et al. Serum C-reactive protein level is a significant prognostic indicator in patients with advanced urothelial cancer treated with gemcitabine-cisplatin or carboplatin–preliminary results
WO2020067228A1 (ja) 併用抗がん剤の感受性の判定マーカー
Zhao et al. PI3K/mTOR inhibitor VS-5584 combined with PLK1 inhibitor exhibits synergistic anti-cancer effects on non-small cell lung cancer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777198

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019510147

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018777198

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018777198

Country of ref document: EP

Effective date: 20191031