WO2018181602A1 - 電子回路用保護材、電子回路用保護材用封止材、封止方法及び半導体装置の製造方法 - Google Patents

電子回路用保護材、電子回路用保護材用封止材、封止方法及び半導体装置の製造方法 Download PDF

Info

Publication number
WO2018181602A1
WO2018181602A1 PCT/JP2018/013019 JP2018013019W WO2018181602A1 WO 2018181602 A1 WO2018181602 A1 WO 2018181602A1 JP 2018013019 W JP2018013019 W JP 2018013019W WO 2018181602 A1 WO2018181602 A1 WO 2018181602A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic circuit
protective material
circuit protective
viscosity
sealing
Prior art date
Application number
PCT/JP2018/013019
Other languages
English (en)
French (fr)
Inventor
浩士 堀
東哲 姜
格 山浦
健太 石橋
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017072893A external-priority patent/JP6292334B1/ja
Priority claimed from JP2017072894A external-priority patent/JP6288344B1/ja
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to CN201880022516.2A priority Critical patent/CN110476243A/zh
Priority to KR1020197028983A priority patent/KR102070113B1/ko
Priority to KR1020207000965A priority patent/KR102450897B1/ko
Publication of WO2018181602A1 publication Critical patent/WO2018181602A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/291Oxides or nitrides or carbides, e.g. ceramics, glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon

Definitions

  • the present invention relates to an electronic circuit protective material, an electronic circuit protective material sealing material, a sealing method, and a semiconductor device manufacturing method.
  • wire bonding structure As a structure in which a semiconductor chip and a substrate are electrically connected, there is a so-called wire bonding structure in which a semiconductor element and a substrate are connected via a wire.
  • a semiconductor device is formed by sealing a semiconductor chip, a substrate, and a wire electrically connecting them with a resin composition. At this time, pressure is applied to the wire due to the flow of the resin composition, and there is a problem that the position of the wire is displaced (wire flow) or the semiconductor chip is not sufficiently protected.
  • Patent Document 1 has a two-layer structure of an inner layer and an outer layer, and the fluidity is increased by setting the amount of the inorganic filler of the resin composition forming the inner layer in contact with the wire to 5 mass% to 40 mass%.
  • a sealing structure is described in which the amount of inorganic filler in the resin composition forming the outer layer is increased from 60% to 95% by mass over the inner layer while suppressing the wire flow.
  • the sealing structure described in Patent Document 1 tries to eliminate the trade-off relationship between wire flow suppression and heat dissipation improvement by using two types of resin compositions with different amounts of inorganic filler for the inner layer and outer layer. ing.
  • the amount of the inorganic filler in the inner layer is small, and there is a possibility that sufficient strength for protecting the semiconductor chip cannot be obtained.
  • an electronic circuit protective material capable of forming a sealing structure excellent in heat dissipation and electronic circuit protection performance, an electronic circuit protective material sealing material used together with the electronic circuit protective material, and these electrons It is an object of the present invention to provide a sealing method using a combination of a circuit protective material and a sealing material for an electronic circuit protective material, and a method for manufacturing a semiconductor device excellent in heat dissipation and electronic circuit protection performance.
  • an electronic circuit protective material capable of forming a good sealing structure around the electronic circuit, an electronic circuit protective material sealing material used together with the electronic circuit protective material, and these electronic circuit protective materials It is an object of the present invention to provide a sealing method using a combination of a sealing material for an electronic circuit protective material and a method for manufacturing a semiconductor device having a good sealing structure around an electronic circuit.
  • Means for solving the above problems include the following embodiments.
  • An electronic circuit protective material comprising a resin component and an inorganic filler, wherein the content of the inorganic filler is 50% by mass or more.
  • a resin component and an inorganic filler are contained, and the viscosity (Pa ⁇ s) measured at 75 ° C. and a shear rate of 5 s ⁇ 1 is defined as viscosity A, and the viscosity is 75 ° C. and the shear rate is 50 s ⁇ 1 .
  • Electronic circuit protective material having a variation index at 75 ° C.
  • ⁇ 6> The electronic circuit protective material according to any one of ⁇ 1> to ⁇ 5>, wherein the viscosity measured at 75 ° C. and a shear rate of 5 s ⁇ 1 is 3.0 Pa ⁇ s or less. ⁇ 7> 25 ° C., viscosity measured at a shear rate of 10s -1 is not more than 30 Pa ⁇ s, ⁇ 1> ⁇ electronic circuit protection material according to any one of ⁇ 6>. ⁇ 8> The electronic circuit protective material according to any one of ⁇ 1> to ⁇ 7>, wherein the resin component includes an epoxy resin.
  • the resin component is at least one selected from the group consisting of a liquid bisphenol-type epoxy resin and a liquid glycidylamine-type epoxy resin as the epoxy resin having an aromatic ring, and linear as the aliphatic epoxy resin.
  • ⁇ 12> sealing the periphery of the electronic circuit by combining the electronic circuit protective material according to any one of ⁇ 1> to ⁇ 10> and the electronic circuit protective material sealing material according to ⁇ 11>.
  • ⁇ 13> A method of manufacturing a semiconductor device, comprising a step of forming a cured product of an electronic circuit protective material by applying the electronic circuit protective material according to any one of ⁇ 1> to ⁇ 10> around an electronic circuit .
  • ⁇ 14> The method for manufacturing a semiconductor device according to ⁇ 13>, further including a step of sealing the periphery of the cured product of the electronic circuit protective material with an electronic circuit protective material sealing material.
  • ⁇ 15> The method for manufacturing a semiconductor device according to ⁇ 13> or ⁇ 14>, wherein the electronic circuit is a wire connecting a semiconductor chip and a substrate.
  • an electronic circuit protective material capable of forming a sealing structure excellent in heat dissipation and electronic circuit protection performance, an electronic circuit protective material sealing material used together with the electronic circuit protective material, these A sealing method using a combination of the electronic circuit protective material and the electronic circuit protective material sealing material, and a method for manufacturing a semiconductor device excellent in heat dissipation and electronic circuit protection performance are provided.
  • an electronic circuit protective material capable of forming a good sealing structure around the electronic circuit, an electronic circuit protective material sealing material used together with the electronic circuit protective material, and these electronic circuits
  • a sealing method in which a protective material and an electronic circuit protective material sealing material are used in combination, and a method for manufacturing a semiconductor device having a good sealing structure around an electronic circuit.
  • the term “process” includes a process that is independent of other processes and includes the process if the purpose of the process is achieved even if it cannot be clearly distinguished from the other processes.
  • numerical ranges indicated using “to” include numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical description.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
  • each component may contain a plurality of corresponding substances.
  • the content or content of each component is the total content or content of the multiple types of substances present in the composition unless otherwise specified.
  • a plurality of particles corresponding to each component may be included.
  • the particle diameter of each component means a value for a mixture of the plurality of particles present in the composition unless otherwise specified.
  • the term “layer” or “film” includes only a part of the region in addition to the case where the layer or film is formed over the entire region. The case where it is formed is also included.
  • laminate indicates that layers are stacked, and two or more layers may be combined, or two or more layers may be detachable.
  • the electronic circuit protective material of this embodiment contains a resin component and an inorganic filler, and the content of the inorganic filler is 50% by mass or more of the whole.
  • the electronic circuit protective material may contain components other than the resin component and the inorganic filler as necessary.
  • the “electronic circuit protective material” means a material for protecting the periphery of the electronic circuit in the semiconductor device, and for sealing the periphery of the wire connecting the semiconductor chip and the substrate in the wire bonding structure.
  • examples thereof include a resin material (wire coating material) to be used, a resin material (underfill material) filling between the semiconductor chip and the substrate, and the like.
  • the inorganic filler content is lowered in order to increase fluidity, while the heat dissipation and strength near the electronic circuit are low. It is thought that it has declined.
  • the electronic circuit protective material of this embodiment can form a sealing structure that is more excellent in heat dissipation and strength than in the past by setting the content of the inorganic filler to 50% by mass or more of the whole.
  • the electronic circuit protective material has a viscosity measured at 75 ° C. and a shear rate of 5 s ⁇ 1 of preferably 3.0 Pa ⁇ s or less, and more preferably 2.0 Pa ⁇ s or less.
  • the lower limit of the viscosity is not particularly limited, but is preferably 0.01 Pa ⁇ s or more from the viewpoint of maintaining the state applied around the wire.
  • the viscosity of the electronic circuit protective material measured at 25 ° C. and a shear rate of 10 s ⁇ 1 is preferably 30 Pa ⁇ s or less, and more preferably 20 Pa ⁇ s or less.
  • the lower limit of the viscosity is not particularly limited, but is preferably 0.1 Pa ⁇ s or more from the viewpoint of maintaining the state applied around the wire.
  • the viscosity at 25 ° C. of the electronic circuit protective material is a value measured using an E-type viscometer
  • the viscosity at 75 ° C. is a rheometer (for example, trade name “AR2000” from TA Instruments). ).
  • the throttling index of the electronic circuit protective material can be set according to the application (for example, used as a wire coat material or an underfill material), the state of the electronic circuit and the semiconductor device, and the like.
  • the variation index at 75 ° C. is preferably 0.1 to 2.5.
  • the electronic circuit protective material has a throttling index at 75 ° C., where the viscosity measured under the conditions of 75 ° C. and a shear rate of 5 s ⁇ 1 is viscosity A, and the viscosity measured under the conditions of 75 ° C. and a shear rate of 50 s ⁇ 1.
  • the viscosity is B
  • the viscosity A / viscosity B value is obtained.
  • the method for causing the electronic circuit protective material to satisfy the above-described viscosity condition is not particularly limited.
  • methods for reducing the viscosity of the electronic circuit protective material include a method using a low-viscosity resin component, a method of adding a solvent, and the like, and these can be used alone or in combination.
  • the electronic circuit protective material of the present embodiment contains a resin component and an inorganic filler, and the viscosity (Pa ⁇ s) measured under the conditions of 75 ° C. and a shear rate of 5 s ⁇ 1 is defined as a viscosity A of 75 ° C.
  • the viscosity (Pa ⁇ s) measured at a shear rate of 50 s ⁇ 1 is defined as viscosity B
  • the variation index at 75 ° C. obtained as the value of viscosity A / viscosity B is 0.1 to 2.5. It is.
  • the electronic circuit protective material may contain components other than the resin component and the inorganic filler as necessary.
  • the electronic circuit protective material of this embodiment can form a good sealing structure around the electronic circuit when the throttling index at 75 ° C. is 0.1 to 2.5.
  • the throttling index at 75 ° C. of the electronic circuit protective material can be set according to its use (for example, used as a wire coat material or as an underfill material), the state of the electronic circuit and the semiconductor device, and the like.
  • the throttling index at 75 ° C. is preferably 0.1 to 2.5
  • the throttling index at 75 ° C. when used as an underfill material Is preferably 0.1 to 1.0, but the present embodiment is not limited to these ranges.
  • the electronic circuit protective material has a viscosity measured at 75 ° C. and a shear rate of 5 s ⁇ 1 of preferably 3.0 Pa ⁇ s or less, and more preferably 2.0 Pa ⁇ s or less.
  • the lower limit of the viscosity is not particularly limited, but is preferably 0.01 Pa ⁇ s or more from the viewpoint of maintaining the state applied around the wire.
  • the viscosity of the electronic circuit protective material measured at 25 ° C. and a shear rate of 10 s ⁇ 1 is preferably 30 Pa ⁇ s or less, and more preferably 20 Pa ⁇ s or less.
  • the lower limit of the viscosity is not particularly limited, but is preferably 0.1 Pa ⁇ s or more from the viewpoint of maintaining the state applied around the wire.
  • the resin component contained in the electronic circuit protective material of each embodiment is not particularly limited as long as the electronic circuit protective material can satisfy the above conditions. From the viewpoint of compatibility with existing equipment, stability of characteristics as an electronic circuit protective material, etc., it is preferable to use a thermosetting resin component, and it is more preferable to use an epoxy resin. Further, it is preferable to use a resin component that is liquid (hereinafter also simply referred to as “liquid”) at room temperature (25 ° C.), and more preferably a liquid epoxy resin.
  • the resin component may be a combination of an epoxy resin and a curing agent.
  • epoxy resins examples include phenols typified by diglycidyl ether type epoxy resins such as bisphenol A, bisphenol F, bisphenol AD, bisphenol S, and hydrogenated bisphenol A, and orthocresol novolac type epoxy resins.
  • Epoxide of novolac resins of aldehydes and aldehydes (novolac type epoxy resins), glycidyl ester type epoxy resins obtained by the reaction of polybasic acids such as phthalic acid and dimer acid and epichlorohydrin, p-aminophenol, diaminodiphenylmethane, A glycidylamine type epoxy resin obtained by reaction of an amine compound such as isocyanuric acid and epichlorohydrin, a linear aliphatic epoxy resin obtained by oxidizing an olefin bond with a peracid such as peracetic acid, Such as alicyclic epoxy resins.
  • An epoxy resin may be used individually by 1 type, or may be used in combination of 2 or more type.
  • At least one selected from the group consisting of a diglycidyl ether type epoxy resin and a glycidyl amine type epoxy resin is preferable from the viewpoint of viscosity, actual use, material price, and the like.
  • a liquid bisphenol type epoxy resin is preferable from the viewpoint of fluidity
  • a liquid glycidylamine type epoxy resin is preferable from the viewpoint of heat resistance, adhesiveness, and fluidity.
  • an epoxy resin having an aromatic ring and an aliphatic epoxy resin are used as resin components.
  • a liquid bisphenol F type epoxy resin and a liquid glycidylamine type epoxy resin are used as an epoxy resin having an aromatic ring
  • a linear aliphatic epoxy resin is used as a resin component as an aliphatic epoxy resin.
  • Examples of glycidylamine type epoxy resins include p- (2,3-epoxypropoxy) -N, N-bis (2,3-epoxypropyl) aniline, diglycidylaniline, diglycidyltoluidine, diglycidylmethoxyaniline, diglycidyldimethyl. Aniline, diglycidyl trifluoromethyl aniline, etc. are mentioned.
  • linear aliphatic epoxy resins examples include 1,6-hexanediol diglycidyl ether, resorcinol diglycidyl ether, propylene glycol diglycidyl ether, 1,3-bis (3-glycidoxypropyl) tetramethylmethyldisiloxane, cyclohexane
  • the compounding ratio is not particularly limited, but for example, a liquid glycidylamine-type
  • the blending ratio may be 40% to 70% by weight of the total epoxy resin, and the total of the liquid bisphenol F type epoxy resin and the linear aliphatic epoxy resin may be 30% to 60% by weight of the total. .
  • the content of the epoxy resin exemplified above in the entire epoxy resin is preferably 20% by mass or more from the viewpoint of sufficiently exerting the performance, It is more preferably 30% by mass or more, and further preferably 50% by mass or more.
  • the upper limit of the content is not particularly limited, and can be determined within a range where desired properties and characteristics of the electronic circuit protective material can be obtained.
  • a liquid epoxy resin is preferably used, but a solid epoxy resin may be used at room temperature (25 ° C.).
  • the proportion is preferably 20% by mass or less of the entire epoxy resin.
  • the amount of chlorine ions in the electronic circuit protective material is preferably 100 ppm or less.
  • the amount of chlorine ions in the electronic circuit protective material is a value (ppm) obtained by treating with ion chromatography at 121 ° C. for 20 hours and converting to 2.5 g / 50 cc.
  • the curing agent is preferably an aromatic amine compound, more preferably a liquid aromatic amine compound, from the viewpoint of excellent temperature cycle resistance, moisture resistance, and the like and improving the reliability of the semiconductor package.
  • curing agent may be used individually by 1 type, or may be used in combination of 2 or more types.
  • Liquid aromatic amine compounds include diethyltoluenediamine, 1-methyl-3,5-diethyl-2,4-diaminobenzene, 1-methyl-3,5-diethyl-2,6-diaminobenzene, 1,3 , 5-triethyl-2,6-diaminobenzene, 3,3′-diethyl-4,4′-diaminodiphenylmethane, 3,5,3 ′, 5′-tetramethyl-4,4′-diaminodiphenylmethane, dimethylthio And toluenediamine.
  • Liquid aromatic amine compounds are also available as commercial products.
  • JER Cure W Mitsubishi Chemical Corporation, trade name
  • Kayahard AA Kayahard AB
  • Kayahard AS Nippon Kayaku Co., Ltd., trade name
  • Totoamine HM-205 Nippon Steel & Sumikin Chemical Co., Ltd.) Company, product name
  • Adeka Hardener EH-101 Adeka Co., Ltd., product name
  • Epomic Q-640, Epomic Q-643 Mitsubishii Chemicals Co., Ltd., product name
  • DETDA80 Liquid aromatic amine compounds
  • liquid aromatic amine compounds 3,3′-diethyl-4,4′-diaminodiphenylmethane, diethyltoluenediamine and dimethylthiotoluenediamine are preferable from the viewpoint of storage stability of the electronic circuit protective material, and the curing agent is It is preferable that any of these or a mixture thereof is a main component.
  • diethyltoluenediamine include 3,5-diethyltoluene-2,4-diamine and 3,5-diethyltoluene-2,6-diamine, which may be used alone or in combination.
  • the proportion of 3,5-diethyltoluene-2,4-diamine is preferably 60% by mass or more of the entire diethyltoluenediamine.
  • the amount of the curing agent in the electronic circuit protective material is not particularly limited, and can be selected in consideration of the equivalent ratio with the epoxy resin.
  • the amount of the curing agent is the number of equivalents of the functional group of the curing agent relative to the number of equivalents of the epoxy group of the epoxy resin (for example, active in the case of an amine-based curing agent
  • the ratio of the number of hydrogen equivalents is preferably in the range of 0.7 to 1.6, more preferably in the range of 0.8 to 1.4, and 0.9 to 1 More preferably, the amount is in the range of .2.
  • the kind of inorganic filler contained in the electronic circuit protective material of each embodiment is not particularly limited.
  • an inorganic filler having a flame retardant effect may be used, and examples of such an inorganic filler include aluminum hydroxide, magnesium hydroxide, zinc borate, and zinc molybdate.
  • An inorganic filler may be used individually by 1 type, or may be used in combination of 2 or more types.
  • silica is preferable from the viewpoint of easy availability, chemical stability, and material cost.
  • examples of the silica include spherical silica, crystalline silica, and the like, and spherical silica is preferable from the viewpoint of fluidity and permeability into the fine gaps of the electronic circuit protective material.
  • examples of the spherical silica include silica obtained by a deflagration method and fused silica.
  • the surface of the inorganic filler may be treated.
  • the surface treatment may be performed using a coupling agent described later.
  • the volume average particle diameter of the inorganic filler is preferably 0.1 ⁇ m to 30 ⁇ m, more preferably 0.3 ⁇ m to 5 ⁇ m, and further preferably 0.5 ⁇ m to 3 ⁇ m. Particularly in the case of spherical silica, the volume average particle diameter is preferably within the above range. When the volume average particle diameter is 0.1 ⁇ m or more, the dispersibility in the electronic circuit protective material tends to be excellent and the fluidity tends to be excellent.
  • the volume average particle diameter is 30 ⁇ m or less, the sedimentation of the inorganic filler in the electronic circuit protective material is reduced, and the permeability and fluidity of the electronic circuit protective material into the fine gaps are improved, so that voids and unfilled Generation tends to be suppressed.
  • the volume average particle diameter of the inorganic filler is the particle diameter (D50%) when the accumulation from the small diameter side is 50% in the volume-based particle size distribution obtained using a laser diffraction particle size distribution measuring apparatus. means.
  • the maximum particle size of the inorganic filler is preferably 75 ⁇ m or less, more preferably 50 ⁇ m or less, and even more preferably 20 ⁇ m or less.
  • the maximum particle diameter of the inorganic filler means a particle diameter (D99%) when the accumulation from the small diameter side becomes 99% in the volume-based particle size distribution.
  • the blending amount of the inorganic filler may be 50% by mass of the entire electronic circuit protective material. From the viewpoint of sufficiently obtaining the effect of blending the inorganic filler, the blending amount of the inorganic filler may be 60% by mass or more of the entire electronic circuit protective material, or 70% by mass or more. . From the viewpoint of suppressing the increase in the viscosity of the electronic circuit protective material, the amount of the inorganic filler is preferably 80% by mass or less of the entire electronic circuit protective material.
  • the electronic circuit protective material of each embodiment may contain a solvent. By including the solvent, the viscosity of the electronic circuit protective material can be adjusted to a desired range.
  • a solvent may be used individually by 1 type, or may use 2 or more types together.
  • the type of the solvent is not particularly limited, and can be selected from those generally used for resin compositions used in semiconductor device mounting technology.
  • alcohol solvents such as butyl carbitol acetate, methyl alcohol, ethyl alcohol, propyl alcohol, butyl alcohol, ketone solvents such as acetone, methyl ethyl ketone, ethylene glycol ethyl ether, ethylene glycol methyl ether, ethylene glycol butyl ether, Glycol ether solvents such as propylene glycol methyl ether, dipropylene glycol methyl ether, propylene glycol ethyl ether, propylene glycol methyl ether acetate, lactone solvents such as ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, dimethylacetamide, dimethyl
  • lactone solvents such as ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, dimethylace
  • a solvent having a high boiling point for example, a boiling point of 170 ° C. or higher at normal pressure.
  • the amount is not particularly limited, but is preferably 1% by mass to 70% by mass of the entire electronic circuit protective material.
  • the electronic circuit protective material of each embodiment may contain a curing accelerator that accelerates the reaction between the epoxy resin and the curing agent as necessary.
  • a hardening accelerator in particular is not restrict
  • Cycloamidine compounds such as (5,4,0) undecene-7
  • tertiary amine compounds such as triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol, and 2-methylimidazole 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-phenylimidazole, 1-benzyl-2-methylimi
  • phenylboron salts such as 2-ethyl-4-methylimidazole tetraphenylborate and N-methylmorpholine tetraphenylborate are listed.
  • a latent curing accelerator there may be mentioned core-shell particles obtained by coating a room temperature solid epoxy compound shell with a room temperature solid amino group-containing compound as a core.
  • a hardening accelerator may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the amount is not particularly limited, but is preferably 0.1 part by mass to 40 parts by mass with respect to 100 parts by mass of the epoxy resin, and 1 part by mass to 20 parts by mass. It is more preferable that
  • the electronic circuit protective material of each embodiment may contain a flexible agent as necessary from the viewpoint of improving thermal shock resistance and reducing stress on the semiconductor element.
  • the flexible agent is not particularly limited, and can be selected from those generally used for resin compositions.
  • rubber particles are preferred.
  • the rubber particles include particles of styrene-butadiene rubber (SBR), nitrile-butadiene rubber (NBR), butadiene rubber (BR), urethane rubber (UR), acrylic rubber (AR), and the like.
  • SBR styrene-butadiene rubber
  • NBR nitrile-butadiene rubber
  • BR butadiene rubber
  • UR urethane rubber
  • acrylic rubber particles are preferable from the viewpoint of heat resistance and moisture resistance
  • acrylic polymer particles having a core-shell structure that is, core-shell type acrylic rubber particles
  • Silicone rubber particles can also be used suitably.
  • silicone rubber particles include silicone rubber particles obtained by crosslinking polyorganosiloxanes such as linear polydimethylsiloxane, polymethylphenylsiloxane, and polydiphenylsiloxane, those obtained by coating the surface of silicone rubber particles with silicone resin, emulsion polymerization, etc.
  • a core-shell polymer particle comprising a core of solid silicone particles obtained by the above and a shell of an organic polymer such as an acrylic resin.
  • These silicone rubber particles may be amorphous or spherical in shape, but are preferably spherical in order to keep the viscosity of the electronic circuit protective material low.
  • These silicone rubber particles are commercially available from, for example, Toray Dow Corning Silicone Co., Ltd. and Shin-Etsu Chemical Co., Ltd.
  • the electronic circuit protective material of each embodiment may use a coupling agent for the purpose of improving the adhesiveness at the interface between the resin component and the inorganic filler, or the resin component and the wire.
  • the coupling agent may be used for the surface treatment of the inorganic filler or may be blended separately from the inorganic filler.
  • the coupling agent is not particularly limited, and known ones can be used.
  • silane compounds having an amino group primary, secondary or tertiary
  • various silane compounds such as epoxy silane, mercapto silane, alkyl silane, ureido silane, vinyl silane, titanium compounds, aluminum chelates, aluminum / zirconium compounds Etc.
  • a coupling agent may be used individually by 1 type, or may be used in combination of 2 or more types.
  • silane coupling agent examples include vinyltrichlorosilane, vinyltriethoxysilane, vinyltris ( ⁇ -methoxyethoxy) silane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxy.
  • Silane ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldimethoxysilane, vinyltriacetoxysilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropylmethyldimethoxysilane , ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropylmethyldiethoxysilane, ⁇ -anilinopropyltrimethoxysilane, ⁇ -anilinopropyltriethoxysilane, ⁇ - (N, N-dimethyl) amino Propyltrimethoxysilane, ⁇ - (N, N-diethyl) aminopropyltrimethoxysilane, ⁇ - (N, N-dibutyl) aminopropyltrimethoxysilane, ⁇ - (N-methyl)
  • titanium coupling agents include isopropyl triisostearoyl titanate, isopropyl tris (dioctyl pyrophosphate) titanate, isopropyl tri (N-aminoethyl-aminoethyl) titanate, tetraoctyl bis (ditridecyl phosphite) titanate, tetra (2,2-diallyloxymethyl-1-butyl) bis (ditridecyl) phosphite titanate, bis (dioctylpyrophosphate) oxyacetate titanate, bis (dioctylpyrophosphate) ethylene titanate, isopropyltrioctanoyl titanate, isopropyldimethacryliso Stearoyl titanate, isopropyltridodecylbenzenesulfonyl titanate, isopropylisostearoyl diacrylic Titanate,
  • the amount is not particularly limited, but is preferably 1 part by mass to 30 parts by mass with respect to 100 parts by mass of the inorganic filler.
  • the electronic circuit protective material of each embodiment may contain an ion trap agent from the viewpoint of improving the migration resistance, moisture resistance, high temperature storage characteristics, and the like of the semiconductor package.
  • An ion trap agent may be used individually by 1 type, or may be used in combination of 2 or more type.
  • ion trapping agent examples include anion exchangers represented by the following composition formulas (V) and (VI).
  • V composition formulas (V) and (VI).
  • the compound of the above formula (V) is commercially available (Kyowa Chemical Industry Co., Ltd., trade name “DHT-4A”). Moreover, the compound of the said formula (VI) is available as a commercial item (Toagosei Co., Ltd., brand name "IXE500").
  • Anion exchangers other than the above compounds can also be used as an ion trapping agent. For example, a hydrous oxide of an element selected from magnesium, aluminum, titanium, zirconium, antimony, and the like can be given.
  • the amount is not particularly limited.
  • the content is preferably 0.1% by mass to 3.0% by mass, and more preferably 0.3% by mass to 1.5% by mass with respect to the entire electronic circuit protective material.
  • the volume average particle diameter (D50%) is preferably 0.1 ⁇ m to 3.0 ⁇ m.
  • the maximum particle size is preferably 10 ⁇ m or less.
  • the electronic circuit protective material of each embodiment may contain components other than the components described above as necessary.
  • colorants such as dyes and carbon black, diluents, leveling agents, antifoaming agents, and the like can be blended as necessary.
  • the manufacturing method of the electronic circuit protective material of each embodiment is not particularly limited as long as each component of the electronic circuit protective material can be sufficiently dispersed and mixed.
  • it can be produced by mixing and kneading components of a predetermined blending amount using a rake, a mixing roll, a planetary mixer, etc., and defoaming as necessary.
  • the electronic circuit protective material of each embodiment can be used for any wire bonding type mounting technology. Specifically, for example, an electronic circuit protective material is applied around the wire that electrically connects the semiconductor element and the substrate and cured to seal the wire and prevent the wire from flowing. To fix.
  • the electronic circuit protection material may be applied to at least the periphery of the wire, and may be applied to the entire surface of the substrate or only to a part thereof.
  • a method for applying the electronic circuit protective material around the wire is not particularly limited, and a dispensing method, a casting method, a printing method, or the like can be employed.
  • the encapsulant for electronic circuit protection material according to the embodiment of each embodiment is for sealing the periphery of the cured product of the above-described electronic circuit protection material.
  • the electronic circuit protective material sealing material does not directly seal the periphery of the electronic circuit, but seals the periphery of the cured product of the electronic circuit protective material formed around the electronic circuit. For this reason, it is not necessary to consider generation
  • a preferable composition of the electronic circuit protective material sealing material includes a combination of an epoxy resin and a phenol resin as a curing agent.
  • the epoxy resin include biphenyl type epoxy resin, bisphenol type (bisphenol F type, bisphenol A type, etc.) epoxy resin, triphenylmethane type epoxy resin, orthocresol novolac type epoxy resin, naphthalene type epoxy resin and the like.
  • the phenol resin include triphenylmethane type phenol resin, phenol aralkyl type phenol resin, zyloc type phenol resin, copolymerized phenol aralkyl type phenol resin, naphthol aralkyl type phenol resin, and biphenylene aralkyl type phenol resin. Each of these may be used alone or in combination of two or more.
  • the sealing method of each embodiment seals the circumference
  • the method used for the sealing method is not particularly limited, and can be selected from those generally used in the mounting technology of semiconductor devices.
  • the manufacturing method of the semiconductor device of each embodiment includes a step of forming a cured product of the electronic circuit protection material by applying the above-described electronic circuit protection material around the electronic circuit.
  • the method for applying the electronic circuit protective material around the electronic circuit is not particularly limited, and a dispensing method, a casting method, a printing method, or the like can be employed.
  • the above method may further include a step of sealing the periphery of the cured product formed using the electronic circuit protective material using the electronic circuit sealing material described above.
  • the method for sealing the periphery of the cured electronic circuit protective material with a sealing material is not particularly limited, and a dispensing method, a casting method, a printing method, or the like can be employed.
  • the electronic circuit may be, for example, a wire connecting the semiconductor chip and the substrate.
  • the unit of the item corresponding to each material in the table is “part by mass”, and the blank represents that the corresponding material is not used.
  • the fluidity of the electronic circuit protective material is the state of wire flow when a wire bonding structure formed using a PBGA (Plastic Ball Grid Array) package is sealed using the electronic circuit protective material. It was evaluated by. Specifically, as shown in FIG. 1, the maximum displacement amount a of the wire after sealing the wire bonding structure using the electronic circuit protective material is confirmed by X-ray, and the maximum displacement amount a is determined by the loop length b. W / S (%) was calculated by multiplying the value divided by 100 by 100. When the value of W / S (%) was 3% or less, the fluidity was judged to be “good”. The results are shown in Table 1.
  • Epoxy resin 1 p- (2,3-epoxypropoxy) -N, N-bis (2,3-epoxypropyl) aniline (ADEKA Corporation, trade name “EP-3950S”, total chlorine amount is 1500 ppm or less)
  • Epoxy resin 2 p- (2,3-epoxypropoxy) -N, N-bis (2,3-epoxypropyl) aniline (ADEKA Corporation, trade name “EP-3950S”, total chlorine amount is 1500 ppm or less)
  • Epoxy resin 2 ...
  • Epoxy resin 3 Bisphenol F type epoxy resin (Nippon Steel & Sumikin Chemical Co., Ltd., trade name “YDF-8170C”) ⁇ Epoxy resin 4... 1,6-hexanediol diglycidyl ether (Sakamoto Pharmaceutical Co., Ltd., trade name “SR-16HL”) Curing agent: diethyltoluenediamine (Mitsubishi Chemical Corporation, trade name “jER Cure W”) ⁇ Ion trapping agent: Bismuth ion trapping agent (Toagosei Co., Ltd., trade name “IXE-500”) -Solvent: Butyl carbitol acetate-Inorganic filler 1: Spherical fused silica surface-treated with a silane coupling
  • the protective materials for electronic circuits produced in Examples 1 to 3 showed excellent fluidity even when the content of the inorganic filler was 50% by mass or more of the whole. Further, the protective materials for electronic circuits produced in Examples 1 to 3 had a variation index at 75 ° C. in the range of 0.1 to 2.5.
  • Example 4 As shown in the results of Table 2, the amount of chlorine ions in Example 4 using both the epoxy resin 2 and the ion trapping agent is higher than that in Example 5 using the high-purity epoxy resin 1. However, it was 43 ppm compared to 110 ppm in Reference Example 1 in which no ion trap agent was used in combination, and a sufficiently high level was achieved as a protective material for electronic circuits. In Reference Example 2 in which the amount of the inorganic filler was increased in order to reduce the amount of chlorine ions, kneading with three rolls could not be performed, so the amount of chlorine ions was not evaluated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

下記(1)又は(2)の少なくともいずれかを満たす電子回路保護材。(1)樹脂成分と、無機充填材と、を含有し、前記無機充填材の含有率が全体の50質量%以上である(2)樹脂成分と、無機充填材と、を含有し、75℃、せん断速度5s-1の条件で測定される粘度(Pa・s)を粘度Aとし、75℃、せん断速度50s-1の条件で測定される粘度(Pa・s)を粘度Bとしたとき、粘度A/粘度Bの値として得られる75℃での揺変指数が0.1~2.5である、電子回路保護材。

Description

電子回路用保護材、電子回路用保護材用封止材、封止方法及び半導体装置の製造方法
 本発明は、電子回路用保護材、電子回路用保護材用封止材、封止方法及び半導体装置の製造方法に関する。
 半導体チップと基板とが電気的に接続された構造として、半導体素子と基板とをワイヤを介して接続するワイヤボンディング構造と呼ばれるものがある。ワイヤボンディング構造においては、半導体チップと、基板と、これらを電気的に接続しているワイヤとを樹脂組成物で封止することにより、半導体装置を形成する。その際、樹脂組成物の流動によりワイヤに圧力がかかり、ワイヤの位置ずれ(ワイヤ流れ)が生じたり、半導体チップの保護が充分にされないという問題がある。
 半導体パッケージの封止に用いる樹脂組成物には通常、無機充填材が含まれているが、樹脂組成物の流動性は無機充填材の量を減らすと一般に向上する。そこで、特許文献1には内層と外層の2層構造からなり、ワイヤと接する内層を形成する樹脂組成物の無機充填材の量を5質量%~40質量%とすることで流動性を高くしてワイヤ流れを抑制する一方、外層を形成する樹脂組成物の無機充填材の量を60質量%~95質量%と内層よりも増やした封止構造が記載されている。
特開2011-35334号公報
 特許文献1に記載の封止構造では、無機充填材の量が異なる2種の樹脂組成物を内層用と外層用に使い分けることで、ワイヤ流れ抑制と放熱性向上のトレードオフ関係の解消を試みている。しかしながら、半導体装置に特に高い放熱性が求められる分野においては、封止構造の外層のみならず内層も放熱性に優れていることが望ましい。また、特許文献1記載の封止構造では、内層中の無機充填材量が少なく、半導体チップ保護のための充分な強度が得られないおそれがある。
 本発明の一実施形態では、放熱性と電子回路の保護性能に優れる封止構造を形成可能な電子回路保護材、この電子回路保護材とともに用いられる電子回路保護材用封止材、これらの電子回路保護材と電子回路保護材用封止材を組み合わせて用いる封止方法、及び放熱性と電子回路の保護性能に優れる半導体装置の製造方法を提供することを目的とする。
 さらに、ワイヤ流れを抑制するためには樹脂組成物の流動性を高めることが有効と考えられるが、単に粘度を低くするのみではワイヤの周囲に付与した状態を充分に保持できず、ワイヤの周囲に良好な封止構造が形成されないおそれがある。
 本発明の一実施形態では、電子回路の周囲に良好な封止構造を形成可能な電子回路保護材、この電子回路保護材とともに用いられる電子回路保護材用封止材、これらの電子回路保護材と電子回路保護材用封止材を組み合わせて用いる封止方法、及び電子回路の周囲に良好な封止構造を備える半導体装置の製造方法を提供することを目的とする。
 上記課題を解決するための手段には、以下の実施態様が含まれる。
<1>樹脂成分と、無機充填材と、を含有し、前記無機充填材の含有率が全体の50質量%以上である、電子回路保護材。
<2>樹脂成分と、無機充填材と、を含有し、75℃、せん断速度5s-1の条件で測定される粘度(Pa・s)を粘度Aとし、75℃、せん断速度50s-1の条件で測定される粘度(Pa・s)を粘度Bとしたとき、粘度A/粘度Bの値として得られる75℃での揺変指数が0.1~2.5である、電子回路保護材。
<3>前記樹脂成分が熱硬化性の樹脂成分である、<1>又は<2>に記載の電子回路保護材。
<4>塩素イオン量が100ppm以下である、<1>~<3>のいずれか1項に記載の電子回路保護材。
<5>前記無機充填材の最大粒子径が75μm以下である、<1>~<4>のいずれか1項に記載の電子回路保護材。
<6>75℃、せん断速度5s-1で測定される粘度が3.0Pa・s以下である、<1>~<5>のいずれか1項に記載の電子回路保護材。
<7>25℃、せん断速度10s-1で測定される粘度が30Pa・s以下である、<1>~<6>のいずれか1項に記載の電子回路保護材。
<8>前記樹脂成分がエポキシ樹脂を含む、<1>~<7>のいずれか1項に記載の電子回路保護材。
<9>前記樹脂成分が芳香環を有するエポキシ樹脂と、脂肪族エポキシ樹脂とを含む、<1>~<8>のいずれか1項に記載の電子回路保護材。
<10>前記樹脂成分が、前記芳香環を有するエポキシ樹脂として液状のビスフェノール型エポキシ樹脂及び液状のグリシジルアミン型エポキシ樹脂からなる群より選択される少なくとも1種と、前記脂肪族エポキシ樹脂として線状脂肪族エポキシ樹脂とを含む、<1>~<9>のいずれか1項に記載の電子回路保護材。
<11><1>~<10>のいずれか1項に記載の電子回路保護材の硬化物の周囲を封止するための、電子回路保護材用封止材。
<12><1>~<10>のいずれか1項に記載の電子回路保護材と、<11>に記載の電子回路保護材用封止材を組み合わせて電子回路の周囲を封止する、封止方法。
<13>電子回路の周囲に<1>~<10>のいずれか1項に記載の電子回路保護材を付与して電子回路保護材の硬化物を形成する工程を有する、半導体装置の製造方法。
<14>前記電子回路保護材の硬化物の周囲を電子回路保護材用封止材を用いて封止する工程をさらに有する、<13>に記載の半導体装置の製造方法。
<15>前記電子回路は、半導体チップと基板とを接続するワイヤである、<13>又は<14>に記載の半導体装置の製造方法。
 本発明の一実施形態によれば、放熱性と電子回路の保護性能に優れる封止構造を形成可能な電子回路保護材、この電子回路保護材とともに用いられる電子回路保護材用封止材、これらの電子回路保護材と電子回路保護材用封止材を組み合わせて用いる封止方法、及び放熱性と電子回路の保護性能に優れる半導体装置の製造方法が提供される。
 本発明の一実施形態によれば、電子回路の周囲に良好な封止構造を形成可能な電子回路保護材、この電子回路保護材とともに用いられる電子回路保護材用封止材、これらの電子回路保護材と電子回路保護材用封止材を組み合わせて用いる封止方法、及び電子回路の周囲に良好な封止構造を備える半導体装置の製造方法が提供される。
電子回路保護材の流動性の評価方法を説明する図である。
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本開示において「層」又は「膜」との語には、当該層又は膜が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
 本開示において「積層」との語は、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。
<電子回路保護材(第1実施形態)>
 本実施形態の電子回路保護材は、樹脂成分と、無機充填材と、を含有し、無機充填材の含有率が全体の50質量%以上である。電子回路保護材は、必要に応じて樹脂成分及び無機充填材以外の成分を含有してもよい。
 本開示において「電子回路保護材」とは、半導体装置において電子回路の周囲を保護するための材料を意味し、ワイヤボンディング構造において半導体チップと基板とを接続するワイヤの周囲を封止するために用いられる樹脂材料(ワイヤコート材)、半導体チップと基板の間を充填する樹脂材料(アンダーフィル材)等が挙げられる。電子回路保護材を用いて電子回路の周囲を保護することで、その外側をさらに封止材で封止する際に、封止材によってワイヤ流れ等の問題が生じるのを回避することができる。また、封止材によってワイヤ流れ等の問題が生じる可能性を考慮する必要がなくなり、封止材の選択の自由度を広げることができる。
 無機充填材の含有率が全体の40質量%以下である電子回路保護材は、流動性を高めるために無機充填材の含有率を低くしている一方で、電子回路付近の放熱性と強度が低下していると考えられる。本実施形態の電子回路保護材は、無機充填材の含有率を全体の50質量%以上とすることで、従来よりも放熱性と強度に優れた封止構造を形成することができる。
 電子回路保護材は、75℃、せん断速度5s-1で測定される粘度が3.0Pa・s以下であることが好ましく、2.0Pa・s以下であることがより好ましい。電子回路保護材の75℃、せん断速度5s-1での粘度が3.0Pa・s以下であると、電子回路保護材をワイヤの周囲に付与する際に、ワイヤ流れの発生が効果的に抑制される傾向にある。上記粘度の下限は特に制限されないが、ワイヤの周囲に付与した状態を保持する観点からは、0.01Pa・s以上であることが好ましい。
 電子回路保護材は、25℃、せん断速度10s-1で測定される粘度が30Pa・s以下であることが好ましく、20Pa・s以下であることがより好ましい。上記粘度の下限は特に制限されないが、ワイヤの周囲に付与した状態を保持する観点からは、0.1Pa・s以上であることが好ましい。
 本開示において、電子回路保護材の25℃での粘度はE型粘度計を用いて測定される値であり、75℃での粘度はレオメータ(例えば、TAインスツルメント社の商品名「AR2000」)を用いて測定される値である。
 電子回路保護材の揺変指数は、用途(例えば、ワイヤコート材として用いるかアンダーフィル材として用いるか)、電子回路及び半導体装置の状態等に応じて設定できる。例えば、75℃での揺変指数が0.1~2.5であることが好ましい。
 電子回路保護材の75℃での揺変指数は、75℃、せん断速度5s-1の条件で測定される粘度を粘度Aとし、75℃、せん断速度50s-1の条件で測定される粘度を粘度Bとしたとき、粘度A/粘度Bの値として得られる。
 電子回路保護材が上述した粘度の条件を満たすようにするための方法は、特に制限されない。例えば、電子回路保護材の粘度を下げる手法としては、低粘度の樹脂成分を用いる方法、溶剤を添加する方法等が挙げられ、これらを単独又は組み合わせて用いることができる。
<電子回路保護材(第2実施形態)>
 本実施形態の電子回路保護材は、樹脂成分と、無機充填材と、を含有し、75℃、せん断速度5s-1の条件で測定される粘度(Pa・s)を粘度Aとし、75℃、せん断速度50s-1の条件で測定される粘度(Pa・s)を粘度Bとしたとき、粘度A/粘度Bの値として得られる75℃での揺変指数が0.1~2.5である。電子回路保護材は、必要に応じて樹脂成分及び無機充填材以外の成分を含有してもよい。
 本実施形態の電子回路保護材は、75℃での揺変指数が0.1~2.5であることで、電子回路の周囲に良好な封止構造を形成することができる。
 電子回路保護材の75℃での揺変指数は、その用途(例えば、ワイヤコート材として用いるかアンダーフィル材として用いるか)、電子回路及び半導体装置の状態等に応じて設定できる。例えば、電子回路保護材をワイヤコート材として用いる場合の75℃での揺変指数は、0.1~2.5であることが好ましく、アンダーフィル材として用いる場合の75℃での揺変指数は、0.1~1.0であることが好ましいが、本実施形態はこれらの範囲に限定されるものではない。
 電子回路保護材は、75℃、せん断速度5s-1で測定される粘度が3.0Pa・s以下であることが好ましく、2.0Pa・s以下であることがより好ましい。電子回路保護材の75℃、せん断速度5s-1での粘度が3.0Pa・s以下であると、電子回路保護材をワイヤの周囲に付与する際に、ワイヤ流れの発生が効果的に抑制される傾向にある。上記粘度の下限は特に制限されないが、ワイヤの周囲に付与した状態を保持する観点からは、0.01Pa・s以上であることが好ましい。
 電子回路保護材は、25℃、せん断速度10s-1で測定される粘度が30Pa・s以下であることが好ましく、20Pa・s以下であることがより好ましい。上記粘度の下限は特に制限されないが、ワイヤの周囲に付与した状態を保持する観点からは、0.1Pa・s以上であることが好ましい。
[樹脂成分]
 各実施形態の電子回路保護材に含まれる樹脂成分は、電子回路保護材が上記条件を満たしうるものであれば特に制限されない。既存の設備との適合性、電子回路保護材としての特性の安定性等の観点からは、熱硬化性の樹脂成分を用いることが好ましく、エポキシ樹脂を用いることがより好ましい。また、常温(25℃)で液状(以下、単に「液状の」ともいう)の樹脂成分を用いることが好ましく、液状のエポキシ樹脂を用いることがより好ましい。樹脂成分は、エポキシ樹脂と硬化剤の組み合わせであってもよい。
(エポキシ樹脂)
 電子回路保護材に使用できるエポキシ樹脂としては、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールAD、ビスフェノールS、水添ビスフェノールA等のジグリシジルエーテル型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂を代表とするフェノール類とアルデヒド類のノボラック樹脂をエポキシ化したもの(ノボラック型エポキシ樹脂)、フタル酸、ダイマー酸等の多塩基酸とエピクロルヒドリンの反応により得られるグリシジルエステル型エポキシ樹脂、p-アミノフェノール、ジアミノジフェニルメタン、イソシアヌル酸等のアミン化合物とエピクロルヒドリンの反応により得られるグリシジルアミン型エポキシ樹脂、オレフィン結合を過酢酸等の過酸により酸化して得られる線状脂肪族エポキシ樹脂、脂環族エポキシ樹脂などが挙げられる。エポキシ樹脂は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
 上記のエポキシ樹脂の中でも、粘度、使用実績、材料価格等の観点から、ジグリシジルエーテル型エポキシ樹脂及びグリシジルアミン型エポキシ樹脂からなる群より選択される少なくとも1種が好ましい。中でも、流動性の観点からは液状のビスフェノール型エポキシ樹脂が好ましく、耐熱性、接着性及び流動性の観点から液状のグリシジルアミン型エポキシ樹脂が好ましい。
 電子回路保護材のある実施態様では、芳香環を有するエポキシ樹脂と、脂肪族エポキシ樹脂とを樹脂成分として用いる。例えば、芳香環を有するエポキシ樹脂として液状のビスフェノールF型エポキシ樹脂及び液状のグリシジルアミン型エポキシ樹脂と、脂肪族エポキシ樹脂として線状脂肪族エポキシ樹脂とを樹脂成分として用いる。
 グリシジルアミン型エポキシ樹脂としては、p-(2,3-エポキシプロポキシ)-N,N-ビス(2,3-エポキシプロピル)アニリン、ジグリシジルアニリン、ジグリシジルトルイジン、ジグリシジルメトキシアニリン、ジグリシジルジメチルアニリン、ジグリシジルトリフルオロメチルアニリン等が挙げられる。
 線状脂肪族エポキシ樹脂としては、1,6-ヘキサンジオールジグリシジルエーテル、レゾルシノールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、1,3-ビス(3-グリシドキシプロピル)テトラメメチルジシロキサン、シクロヘキサンジメタノールジグリシジルエーテル等が挙げられる。
 エポキシ樹脂として液状のビスフェノールF型エポキシ樹脂と、液状のグリシジルアミン型エポキシ樹脂と、線状脂肪族エポキシ樹脂とを併用する場合、これらの配合比は特に制限されないが、例えば、液状のグリシジルアミン型エポキシ樹脂が全体の40質量%~70質量%であり、液状のビスフェノールF型エポキシ樹脂と線状脂肪族エポキシ樹脂の合計が全体の30質量%~60質量%である配合比であってもよい。
 上記に例示したエポキシ樹脂のエポキシ樹脂全体に占める含有率(例示したエポキシ樹脂を2種以上用いる場合はその合計)は、その性能を充分に発揮する観点から20質量%以上であることが好ましく、30質量%以上であることがより好ましく、50質量%以上であることがさらに好ましい。当該含有率の上限値は、特に制限されず、電子回路保護材の所望の性状及び特性が得られる範囲で決めることができる。
 エポキシ樹脂としては、液状のエポキシ樹脂を用いることが好ましいが、常温(25℃)で固形のエポキシ樹脂を併用してもよい。常温で固形のエポキシ樹脂を併用する場合、その割合はエポキシ樹脂全体の20質量%以下とすることが好ましい。
 ワイヤの腐食を抑制する観点からは、電子回路保護材の塩素イオン量は少ないほど好ましい。具体的には、例えば、100ppm以下であることが好ましい。
 本開示において電子回路保護材の塩素イオン量は、イオンクロマトグラフィーにより、121℃、20hrの条件で処理し、2.5g/50ccで換算して得た値(ppm)である。
(硬化剤)
 硬化剤としては、アミン系硬化剤、フェノール硬化剤、酸無水物等のエポキシ樹脂の硬化剤として一般に使用されているものを特に制限なく用いることができる。ワイヤ流れ抑制の観点からは、液状の硬化剤を用いることが好ましい。耐温度サイクル性及び耐湿性等に優れ、半導体パッケージの信頼性を向上できるという観点からは、硬化剤は芳香族アミン化合物であることが好ましく、液状の芳香族アミン化合物であることがより好ましい。硬化剤は、1種を単独で用いても2種類以上を組み合わせて用いてもよい。
 液状の芳香族アミン化合物としては、ジエチルトルエンジアミン、1-メチル-3,5-ジエチル-2,4-ジアミノベンゼン、1-メチル-3,5-ジエチル-2,6-ジアミノベンゼン、1,3,5-トリエチル-2,6-ジアミノベンゼン、3,3’-ジエチル-4,4’-ジアミノジフェニルメタン、3,5,3’,5’-テトラメチル-4,4’-ジアミノジフェニルメタン、ジメチルチオトルエンジアミンなどが挙げられる。
 液状の芳香族アミン化合物は、市販品としても入手可能である。例えば、JERキュアW(三菱化学株式会社、商品名)、カヤハードA-A、カヤハードA-B、カヤハードA-S(日本化薬株式会社、商品名)、トートアミンHM-205(新日鉄住金化学株式会社、商品名)、アデカハードナーEH-101(株式会社アデカ、商品名)、エポミックQ-640、エポミックQ-643(三井化学株式会社、商品名)、DETDA80(Lonza社、商品名)等が入手可能である。
 液状の芳香族アミン化合物の中でも、電子回路保護材の保存安定性の観点から、3,3’-ジエチル-4,4’-ジアミノジフェニルメタン、ジエチルトルエンジアミンおよびジメチルチオトルエンジアミンが好ましく、硬化剤はこれらのいずれか又はこれらの混合物を主成分とすることが好ましい。ジエチルトルエンジアミンとしては、3,5-ジエチルトルエン-2,4-ジアミン及び3,5-ジエチルトルエン-2,6-ジアミンが挙げられ、これらを単独で用いても組み合わせて用いてもよいが、3,5-ジエチルトルエン-2,4-ジアミンの割合をジエチルトルエンジアミン全体の60質量%以上とすることが好ましい。
 電子回路保護材における硬化剤の量は特に制限されず、エポキシ樹脂との当量比等を考慮して選択できる。エポキシ樹脂又は硬化剤の未反応分を少なく抑える観点からは、硬化剤の量は、エポキシ樹脂のエポキシ基の当量数に対する硬化剤の官能基の当量数(例えば、アミン系硬化剤の場合は活性水素の当量数)の比が0.7~1.6の範囲となる量であることが好ましく、0.8~1.4の範囲となる量であることがより好ましく、0.9~1.2の範囲となる量であることがさらに好ましい。
[無機充填材]
 各実施形態の電子回路保護材に含まれる無機充填材の種類は、特に制限されない。例えば、シリカ、炭酸カルシウム、クレー、アルミナ、窒化珪素、炭化珪素、窒化ホウ素、珪酸カルシウム、チタン酸カリウム、窒化アルミ、ベリリア、ジルコニア、ジルコン、フォステライト、ステアタイト、スピネル、ムライト、チタニア等の粉体、又はこれらを球形化したビーズ、ガラス繊維などが挙げられる。さらに、難燃効果のある無機充填材を用いてもよく、このような無機充填材としては水酸化アルミニウム、水酸化マグネシウム、硼酸亜鉛、モリブデン酸亜鉛等が挙げられる。無機充填材は、1種を単独で用いても2種類以上を組み合わせて用いてもよい。
 無機充填材の中でも、入手のし易さ、化学的安定性、材料コストの観点からは、シリカが好ましい。シリカとしては球状シリカ、結晶シリカ等が挙げられ、電子回路保護材の微細間隙への流動性及び浸透性の観点からは、球状シリカが好ましい。球状シリカとしては、爆燃法によって得られるシリカ、溶融シリカ等が挙げられる。
 無機充填材は、表面が表面処理されていてもよい。例えば、後述するカップリング剤を用いて表面処理されていてもよい。
 無機充填材の体積平均粒子径は、0.1μm~30μmであることが好ましく、0.3μm~5μmであることがより好ましく、0.5μm~3μmであることがさらに好ましい。特に球形シリカの場合、体積平均粒子径が上記範囲内であることが好ましい。体積平均粒子径が0.1μm以上であると、電子回路保護材における分散性に優れ、流動性に優れる傾向にある。体積平均粒子径が30μm以下であると、電子回路保護材中での無機充填材の沈降が低減され、電子回路保護材の微細間隙への浸透性及び流動性が向上してボイド及び未充填の発生が抑制される傾向にある。
 本開示において無機充填材の体積平均粒子径は、レーザー回折式粒度分布測定装置を用いて得られる体積基準の粒度分布において小径側からの累積が50%となるときの粒子径(D50%)を意味する。
 無機充填材の最大粒子径は、75μm以下であることが好ましく、50μm以下であることがより好ましく、20μm以下であることがさらに好ましい。
 本開示において無機充填材の最大粒子径は、体積基準の粒度分布において小径側からの累積が99%となるときの粒子径(D99%)を意味する。
 無機充填材の配合量は、電子回路保護材全体の50質量%であってもよい。無機充填材を配合することの効果を充分に得る観点からは、無機充填材の配合量は、電子回路保護材全体の60質量%以上であってもよく、70質量%以上であってもよい。
 電子回路保護材の粘度上昇を抑制する観点からは、無機充填材の配合量は、電子回路保護材全体の80質量%以下であることが好ましい。
[溶剤]
 各実施形態の電子回路保護材は、溶剤を含有してもよい。溶剤を含むことで、電子回路保護材の粘度を所望の範囲に調節することができる。溶剤は、1種を単独で用いても、2種以上を併用してもよい。
 溶剤の種類は特に制限されず、半導体装置の実装技術に用いられる樹脂組成物に一般に使用されるものから選択できる。具体的には、ブチルカルビトールアセテート、メチルアルコール、エチルアルコール、プロピルアルコール、ブチルアルコール等のアルコール系溶剤、アセトン、メチルエチルケトン等のケトン系溶剤、エチレングリコールエチルエーテル、エチレングリコールメチルエーテル、エチレングリコールブチルエーテル、プロピレングリコールメチルエーテル、ジプロピレングリコールメチルエーテル、プロピレングリコールエチルエーテル、プロピレングリコールメチルエーテルアセテート等のグリコールエーテル系溶剤、γ-ブチロラクトン、δ-バレロラクトン、ε-カプロラクトン等のラクトン系溶剤、ジメチルアセトアミド、ジメチルホルムアミド等のアミド系溶剤、トルエン、キシレン等の芳香族系溶剤などが挙げられる。
 電子回路用電子回路保護材を硬化する際の急激な揮発による気泡形成を避ける観点から、沸点の高い(例えば、常圧での沸点が170℃以上である)溶剤を用いることが好ましい。
 電子回路保護材が溶剤を含む場合、その量は特に制限されないが、電子回路保護材全体の1質量%~70質量%であることが好ましい。
[硬化促進剤]
 各実施形態の電子回路保護材は、必要に応じてエポキシ樹脂と硬化剤の反応を促進する硬化促進剤を含有してもよい。
 硬化促進剤は特に制限されず、従来公知のものを用いることができる。例えば、1,8-ジアザ-ビシクロ(5,4,0)ウンデセン-7、1,5-ジアザ-ビシクロ(4,3,0)ノネン、5,6-ジブチルアミノ-1,8-ジアザ-ビシクロ(5,4,0)ウンデセン-7等のシクロアミジン化合物、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の三級アミン化合物、及び2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジルー2-フェニルイミダゾール、1-ベンジルー2-メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2,4-ジアミノ-6-(2’-メチルイミダゾリル-(1’))-エチル-s-トリアジン、2-ヘプタデシルイミダゾール等のイミダゾール化合物、トリアルキルホスフィン(トリブチルホスフィン等)、ジアルキルアリールホスフィン(ジメチルフェニルホスフィン等)、アルキルジアリールホスフィン(メチルジフェニルホスフィン等)、トリフェニルホスフィン、アルキル基置換トリフェニルホスフィンなどの有機ホスフィン化合物、及びこれらの有機リン化合物に無水マレイン酸、1,4-ベンゾキノン、2,5-トルキノン、1,4-ナフトキノン、2,3-ジメチルベンゾキノン、2,6-ジメチルベンゾキノン、2,3-ジメトキシ-5-メチル-1,4-ベンゾキノン、2,3-ジメトキシ-1,4-ベンゾキノン、フェニル-1,4-ベンゾキノン等のキノン化合物、ジアゾフェニルメタン、フェノール樹脂等のπ結合をもつ化合物を付加してなる分子内分極を有する化合物、並びにこれらの誘導体が挙げられる。さらには、2-エチル-4-メチルイミダゾールテトラフェニルボレート、N-メチルモルホリンテトラフェニルボレート等のフェニルボロン塩が挙げられる。また、潜在性を有する硬化促進剤として、常温固体のアミノ基を有する化合物をコアとして、常温固体のエポキシ化合物のシェルを被覆してなるコア-シェル粒子が挙げられる。硬化促進剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
 電子回路保護材が硬化促進剤を含む場合、その量は特に制限されないが、エポキシ樹脂100質量部に対して0.1質量部~40質量部であることが好ましく、1質量部~20質量部であることがより好ましい。
[可撓剤]
 各実施形態の電子回路保護材は、耐熱衝撃性向上、半導体素子に対する応力低減等の観点から、必要に応じて可撓剤を含有してもよい。
 可撓剤は、特に制限されず、樹脂組成物に一般的に用いられるものから選択できる。中でもゴム粒子が好ましい。ゴム粒子としては、スチレン-ブタジエンゴム(SBR)、ニトリル-ブタジエンゴム(NBR)、ブタジエンゴム(BR)、ウレタンゴム(UR)、アクリルゴム(AR)等の粒子が挙げられる。これらの中でも耐熱性及び耐湿性の観点からアクリルゴムの粒子が好ましく、コアシェル構造を有するアクリル系重合体の粒子(すなわちコアシェル型アクリルゴム粒子)がより好ましい。
 また、シリコーンゴム粒子も好適に用いることができる。シリコーンゴム粒子としては、直鎖状のポリジメチルシロキサン、ポリメチルフェニルシロキサン、ポリジフェニルシロキサン等のポリオルガノシロキサンを架橋したシリコーンゴム粒子、シリコーンゴム粒子の表面をシリコーンレジンで被覆したもの、乳化重合等で得られる固形シリコーン粒子のコアとアクリル樹脂等の有機重合体のシェルからなるコア-シェル重合体粒子などが挙げられる。これらのシリコーンゴム粒子の形状は無定形であっても球形であってもよいが、電子回路保護材の粘度を低く抑えるためには球形のものが好ましい。これらのシリコーンゴム粒子は、例えば、東レ・ダウコーニング・シリコーン株式会社、信越化学工業株式会社等から市販品が入手可能である。
(カップリング剤)
 各実施形態の電子回路保護材は、樹脂成分と無機充填材、又は樹脂成分とワイヤとの界面における接着性を高める目的でカップリング剤を用いてもよい。カップリング剤は無機充填材の表面処理に用いても、無機充填材とは別に配合してもよい。
 カップリング剤は特に制限されず、公知のものを用いることができる。例えば、アミノ基(1級、2級又は3級)を有するシラン化合物、エポキシシラン、メルカプトシラン、アルキルシラン、ウレイドシラン、ビニルシラン等の各種シラン化合物、チタン化合物、アルミニウムキレート類、アルミニウム/ジルコニウム系化合物等が挙げられる。カップリング剤は、1種を単独で用いても2種類以上を組み合わせて用いてもよい。
 シランカップリング剤として具体的には、ビニルトリクロロシラン、ビニルトリエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、γ-メタクリロキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、ビニルトリアセトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルメチルジエトキシシラン、γ-アニリノプロピルトリメトキシシラン、γ-アニリノプロピルトリエトキシシラン、γ-(N,N-ジメチル)アミノプロピルトリメトキシシラン、γ-(N,N-ジエチル)アミノプロピルトリメトキシシラン、γ-(N,N-ジブチル)アミノプロピルトリメトキシシラン、γ-(N-メチル)アニリノプロピルトリメトキシシラン、γ-(N-エチル)アニリノプロピルトリメトキシシラン、γ-(N,N-ジメチル)アミノプロピルトリエトキシシラン、γ-(N,N-ジエチル)アミノプロピルトリエトキシシラン、γ-(N,N-ジブチル)アミノプロピルトリエトキシシラン、γ-(N-メチル)アニリノプロピルトリエトキシシラン、γ-(N-エチル)アニリノプロピルトリエトキシシラン、γ-(N,N-ジメチル)アミノプロピルメチルジメトキシシラン、γ-(N,N-ジエチル)アミノプロピルメチルジメトキシシラン、γ-(N,N-ジブチル)アミノプロピルメチルジメトキシシラン、γ-(N-メチル)アニリノプロピルメチルジメトキシシラン、γ-(N-エチル)アニリノプロピルメチルジメトキシシラン、N-(トリメトキシシリルプロピル)エチレンジアミン、N-(ジメトキシメチルシリルイソプロピル)エチレンジアミン、メチルトリメトキシシラン、ジメチルジメトキシシラン、メチルトリエトキシシラン、γ-クロロプロピルトリメトキシシラン、ヘキサメチルジシラン、ビニルトリメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン等が挙げられる。
 チタンカップリング剤として具体的には、イソプロピルトリイソステアロイルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、イソプロピルトリ(N-アミノエチル-アミノエチル)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジトリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリクミルフェニルチタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート等が挙げられる。
 電子回路保護材がカップリング剤を含む場合、その量は特に制限されないが、無機充填材100質量部に対して1質量部~30質量部であることが好ましい。
[イオントラップ剤]
 各実施形態の電子回路保護材は、半導体パッケージの耐マイグレーション性、耐湿性、高温放置特性等を向上させる観点から、イオントラップ剤を含有してもよい。イオントラップ剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。 
 イオントラップ剤としては、下記組成式(V)及び(VI)で表される陰イオン交換体が挙げられる。
  Mg1-xAl(OH)(COx/2・mHO ・・・(V)
   (0<X≦0.5、mは正の数)
  BiO(OH)(NO2 ・・・(VI)
   (0.9≦x≦1.1、0.6≦y≦0.8、0.2≦z≦0.4)
 上記式(V)の化合物は、市販品(協和化学工業株式会社、商品名「DHT-4A」)として入手可能である。また、上記式(VI)の化合物は、市販品(東亞合成株式会社、商品名「IXE500」)として入手可能である。上記化合物以外の陰イオン交換体もイオントラップ剤として用いることができる。例えば、マグネシウム、アルミニウム、チタン、ジルコニウム、アンチモン等から選ばれる元素の含水酸化物等が挙げられる。
 電子回路保護材がイオントラップ剤を含む場合、その量は特に制限されない。例えば、電子回路保護材全体の0.1質量%~3.0質量%であることが好ましく、0.3質量%~1.5質量%であることがより好ましい。
 イオントラップ剤が粒子状である場合、その体積平均粒子径(D50%)は0.1μm~3.0μmであることが好ましい。また、最大粒子径は10μm以下であることが好ましい。
[その他成分]
 各実施形態の電子回路保護材は、必要に応じて上述した成分以外の成分を含有してもよい。例えば、染料、カーボンブラック等の着色剤、希釈剤、レベリング剤、消泡剤などを必要に応じて配合することができる。
[電子回路保護材の製造方法]
 各実施形態の電子回路保護材の製造方法は、電子回路保護材の各成分を充分に分散混合できるのであれば、特に制限されない。例えば、一般的な手法として、所定の配合量の成分をらいかい機、ミキシングロール、プラネタリミキサ等を用いて混合及び混練し、必要に応じて脱泡することによって製造することができる。
[電子回路保護材の使用方法]
 各実施形態の電子回路保護材は、あらゆるワイヤボンディング方式の実装技術に用いることができる。具体的には、例えば、半導体素子と基板とを電気的に接続するワイヤの周囲に電子回路保護材を付与し、硬化させて、ワイヤを封止するとともにワイヤ流れが生じないようにワイヤの位置を固定する。電子回路保護材は、少なくともワイヤの周囲に付与されるものであればよく、基板の全面に付与しても一部にのみ付与してもよい。電子回路保護材をワイヤの周囲に付与する方法は特に制限されず、ディスペンス方式、注型方式、印刷方式等を採用できる。
<電子回路保護材用封止材>
 各実施形態の実施形態の電子回路保護材用封止材は、上述した電子回路保護材の硬化物の周囲を封止するためのものである。
 電子回路保護材用封止材は、電子回路の周囲を直接封止するのではなく、電子回路の周囲に形成される電子回路保護材の硬化物の周囲を封止する。このため、電子回路保護材用封止材の流動によるワイヤ流れ等の問題の発生を考慮する必要がない。従って、電子回路保護材用封止材の種類は特に制限されず、半導体装置の実装技術に一般的に用いられるものを使用できる。
 電子回路保護材用封止材の好ましい組成としては、エポキシ樹脂と、硬化剤としてのフェノール樹脂との組み合わせが挙げられる。エポキシ樹脂としてはビフェニル型エポキシ樹脂、ビスフェノール型(ビスフェノールF型、ビスフェノールA型等)エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、オルトクレゾールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂などが挙げられる。フェノール樹脂としてはトリフェニルメタン型フェノール樹脂、フェノールアラルキル型フェノール樹脂、ザイロック型フェノール樹脂、共重合フェノールアラルキル型フェノール樹脂、ナフトールアラルキル型フェノール樹脂、ビフェニレンアラルキル型フェノール樹脂等が挙げられる。これらはそれぞれ1種を単独で用いても、2種以上を組み合わせて用いてもよい。
<封止方法>
 各実施形態の封止方法は、上述した電子回路保護材と、上述した電子回路保護材用封止材を組み合わせて電子回路の周囲を封止するものである。
 上記封止方法に用いられる手法は特に制限されず、半導体装置の実装技術に一般的に用いられるものから選択できる。
<半導体装置の製造方法>
 各実施形態の半導体装置の製造方法は、電子回路の周囲に上述した電子回路保護材を付与して電子回路保護材の硬化物を形成する工程を有する。電子回路保護材を電子回路の周囲に付与する方法は特に制限されず、ディスペンス方式、注型方式、印刷方式等を採用できる。
 上記方法はさらに、電子回路保護材を用いて形成した硬化物の周囲を上述した電子回路用封止材を用いて封止する工程を有していてもよい。電子回路保護材の硬化物の周囲を封止材を用いて封止する方法は特に制限されず、ディスペンス方式、注型方式、印刷方式等を採用できる。
 上記方法において、電子回路保護材及び電子回路用封止材の詳細は上述したとおりである。電子回路は、例えば、半導体チップと基板と接続するワイヤであってもよい。
 以下、上記実施形態を実施例により具体的に説明するが、上記実施形態はこれらの実施例に限定されるものではない。なお、表中の各材料に相当する項目の単位は「質量部」であり、空欄は該当する材料を用いないことを表す。
(1)電子回路保護材の調製
 表1に示す材料を表1に示す組成割合で配合し、三本ロール及び真空らい潰機にて混練分散して、実施例の電子回路保護材を調製した。調製した電子回路保護材の25℃、せん断速度10s-1での粘度と、75℃、せん断速度5s-1での粘度をそれぞれ測定した。また、75℃、せん断速度50s-1での粘度を測定し、75℃での揺変指数を求めた。結果を表1に示す。
(2)流動性の評価
 電子回路保護材の流動性は、PBGA(Plastic Ball Grid Array)のパッケージを用いて形成したワイヤボンディング構造を電子回路保護材を用いて封止したときのワイヤ流れの状態により評価した。
 具体的には、図1に示すように、電子回路保護材を用いてワイヤボンディング構造を封止した後のワイヤの最大変位量aをX線で確認し、最大変位量aをループ長さbで割った値に100を乗じることで、W/S(%)を求めた。W/S(%)の値が3%以下であるときに、流動性が「良好」であると判断した。結果を表1に示す。
(3)塩素イオン量の評価
 電子回路保護材の塩素イオン量(ppm)は、イオンクロマトグラフィーにより上述した条件で測定した。結果を表2に示す。
 表1及び表2に示す材料の詳細は、下記のとおりである。
・エポキシ樹脂1…p-(2,3-エポキシプロポキシ)-N,N-ビス(2,3-エポキシプロピル)アニリン(株式会社ADEKA、商品名「EP-3950S」、全塩素量が1500ppm以下)
・エポキシ樹脂2…p-(2,3-エポキシプロポキシ)-N,N-ビス(2,3-エポキシプロピル)アニリン(三菱化学株式会社、商品名「jER630」、全塩素量が5500ppm以下)
・エポキシ樹脂3…ビスフェノールF型エポキシ樹脂(新日鉄住金化学株式会社、商品名「YDF-8170C」)
・エポキシ樹脂4…1,6-ヘキサンジオールジグリシジルエーテル(阪本薬品工業株式会社、商品名「SR-16HL」)
・硬化剤…ジエチルトルエンジアミン(三菱化学株式会社、商品名「jERキュアW」)
・イオントラップ剤…ビスマス系イオントラップ剤(東亞合成株式会社、商品名「IXE-500」)
・溶剤…ブチルカルビトールアセテート
・無機充填材1…シランカップリング剤で表面処理された球状溶融シリカ(アドマテックス株式会社、商品名「SE5050-SEJ」、体積平均粒子径1.5μm 
・無機充填材2…シランカップリング剤で表面処理された球状溶融シリカ(アドマテックス株式会社、商品名「SE2050-SEJ」、体積平均粒子径0.5μm)
Figure JPOXMLDOC01-appb-T000001

 
 表1の結果に示されるように、実施例1~3で作製した電子回路用保護材は、無機充填材の含有率が全体の50質量%以上であっても優れた流動性を示した。また、実施例1~3で作製した電子回路用保護材は、75℃での揺変指数が0.1~2.5の範囲内であった。
Figure JPOXMLDOC01-appb-T000002

 
 表2の結果に示されるように、エポキシ樹脂2とイオントラップ剤とを併用した実施例4の塩素イオン量は、高純度のエポキシ樹脂1を用いた実施例5に比べると塩素イオン量が高いものの、イオントラップ剤を併用しない参考例1の110ppmに比べて43ppmであり、電子回路用保護材としては充分に高い水準を達成していた。
 塩素イオン量を低減するために無機充填材の量を増やした参考例2は、3本ロールでの混練ができなかったため塩素イオン量の評価を行わなかった。
 日本国特許出願第2017-072893号及び第2017-072894号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に援用されて取り込まれる。

Claims (15)

  1.  樹脂成分と、無機充填材と、を含有し、前記無機充填材の含有率が全体の50質量%以上である、電子回路保護材。
  2.  樹脂成分と、無機充填材と、を含有し、75℃、せん断速度5s-1の条件で測定される粘度(Pa・s)を粘度Aとし、75℃、せん断速度50s-1の条件で測定される粘度(Pa・s)を粘度Bとしたとき、粘度A/粘度Bの値として得られる75℃での揺変指数が0.1~2.5である、電子回路保護材。
  3.  前記樹脂成分が熱硬化性の樹脂成分である、請求項1又は請求項2に記載の電子回路保護材。
  4.  塩素イオン量が100ppm以下である、請求項1~請求項3のいずれか1項に記載の電子回路保護材。
  5.  前記無機充填材の最大粒子径が75μm以下である、請求項1~請求項4のいずれか1項に記載の電子回路保護材。
  6.  75℃、せん断速度5s-1で測定される粘度が3.0Pa・s以下である、請求項1~請求項5のいずれか1項に記載の電子回路保護材。
  7.  25℃、せん断速度10s-1で測定される粘度が30Pa・s以下である、請求項1~請求項6のいずれか1項に記載の電子回路保護材。
  8.  前記樹脂成分がエポキシ樹脂を含む、請求項1~請求項7のいずれか1項に記載の電子回路保護材。
  9.  前記樹脂成分が芳香環を有するエポキシ樹脂と、脂肪族エポキシ樹脂とを含む、請求項1~請求項8のいずれか1項に記載の電子回路保護材。
  10.  前記樹脂成分が、前記芳香環を有するエポキシ樹脂として液状のビスフェノール型エポキシ樹脂及び液状のグリシジルアミン型エポキシ樹脂からなる群より選択される少なくとも1種と、前記脂肪族エポキシ樹脂として線状脂肪族エポキシ樹脂とを含む、請求項1~請求項9のいずれか1項に記載の電子回路保護材。
  11.  請求項1~請求項10のいずれか1項に記載の電子回路保護材の硬化物の周囲を封止するための、電子回路保護材用封止材。
  12.  請求項1~請求項10のいずれか1項に記載の電子回路保護材と、請求項11に記載の電子回路保護材用封止材を組み合わせて電子回路の周囲を封止する、封止方法。
  13.  電子回路の周囲に請求項1~請求項10のいずれか1項に記載の電子回路保護材を付与して電子回路保護材の硬化物を形成する工程を有する、半導体装置の製造方法。
  14.  前記電子回路保護材の硬化物の周囲を電子回路保護材用封止材を用いて封止する工程をさらに有する、請求項13に記載の半導体装置の製造方法。
  15.  前記電子回路は、半導体チップと基板とを接続するワイヤである、請求項13又は請求項14に記載の半導体装置の製造方法。
PCT/JP2018/013019 2017-03-31 2018-03-28 電子回路用保護材、電子回路用保護材用封止材、封止方法及び半導体装置の製造方法 WO2018181602A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880022516.2A CN110476243A (zh) 2017-03-31 2018-03-28 电子电路用保护材料、电子电路用保护材料用密封材料、密封方法和半导体装置的制造方法
KR1020197028983A KR102070113B1 (ko) 2017-03-31 2018-03-28 전자 회로용 보호재, 전자 회로용 보호재용 밀봉재, 밀봉 방법 및 반도체 장치의 제조 방법
KR1020207000965A KR102450897B1 (ko) 2017-03-31 2018-03-28 전자 회로용 보호재, 전자 회로용 보호재용 밀봉재, 밀봉 방법 및 반도체 장치의 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-072893 2017-03-31
JP2017072893A JP6292334B1 (ja) 2017-03-31 2017-03-31 電子回路用保護材、電子回路用保護材用封止材、封止方法及び半導体装置の製造方法
JP2017-072894 2017-03-31
JP2017072894A JP6288344B1 (ja) 2017-03-31 2017-03-31 電子回路用保護材、電子回路用保護材用封止材、封止方法及び半導体装置の製造方法

Publications (1)

Publication Number Publication Date
WO2018181602A1 true WO2018181602A1 (ja) 2018-10-04

Family

ID=63676048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013019 WO2018181602A1 (ja) 2017-03-31 2018-03-28 電子回路用保護材、電子回路用保護材用封止材、封止方法及び半導体装置の製造方法

Country Status (5)

Country Link
KR (2) KR102070113B1 (ja)
CN (4) CN113388229A (ja)
MY (1) MY177304A (ja)
TW (2) TW202328334A (ja)
WO (1) WO2018181602A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114507415A (zh) * 2022-03-01 2022-05-17 郭亚莹 一种快速流动耐高温底部填充胶及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0272656A (ja) * 1988-09-07 1990-03-12 Fujikura Ltd 半導体素子の封止構造
JPH1067883A (ja) * 1996-08-29 1998-03-10 Mitsubishi Electric Corp 無機質充填剤及びエポキシ樹脂組成物並びに半導体装置
JPH10120878A (ja) * 1996-08-29 1998-05-12 Mitsubishi Electric Corp エポキシ樹脂組成物及び半導体装置
JPH10261741A (ja) * 1997-03-19 1998-09-29 Oki Electric Ind Co Ltd 半導体装置及び半導体装置の製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69722106T2 (de) * 1996-08-29 2004-04-01 Mitsubishi Denki K.K. Epoxidharzzusammensetzung und damit eingekapselte Halbleiteranordnungen
JP2000269388A (ja) * 1999-03-18 2000-09-29 Toshiba Corp 半導体封止用樹脂および樹脂封止型半導体装置
JP4103342B2 (ja) * 2001-05-22 2008-06-18 日立電線株式会社 半導体装置の製造方法
JPWO2011013326A1 (ja) * 2009-07-31 2013-01-07 住友ベークライト株式会社 液状樹脂組成物、およびそれを用いた半導体装置
JP5586185B2 (ja) 2009-08-06 2014-09-10 パナソニック株式会社 半導体装置
JP5906673B2 (ja) * 2010-11-26 2016-04-20 日立化成株式会社 封止用エポキシ樹脂成形材料、及びこの成形材料で封止した素子を備えた電子部品装置
CN104066788B (zh) * 2012-01-18 2016-11-16 三井化学株式会社 组合物、含有组合物的显示器件端面密封剂、显示器件及其制造方法
JP6013906B2 (ja) * 2012-12-27 2016-10-25 ナミックス株式会社 液状エポキシ樹脂組成物
JP5881179B2 (ja) * 2013-08-28 2016-03-09 信越化学工業株式会社 半導体封止用樹脂組成物及びその硬化物を備えた半導体装置
JP6125967B2 (ja) * 2013-09-30 2017-05-10 明和化成株式会社 エポキシ樹脂組成物、封止材、その硬化物、及びフェノール樹脂
JP6196138B2 (ja) * 2013-11-29 2017-09-13 ナミックス株式会社 半導体封止剤および半導体装置
JP6331570B2 (ja) * 2014-03-28 2018-05-30 日立化成株式会社 アンダーフィル材及び該アンダーフィル材により封止する電子部品とその製造方法
JP6415104B2 (ja) * 2014-05-16 2018-10-31 ナミックス株式会社 液状封止材、それを用いた電子部品
CN106471035B (zh) * 2014-07-02 2019-04-16 Dic株式会社 电子材料用环氧树脂组合物、其固化物及电子构件
JP2016108367A (ja) * 2014-12-02 2016-06-20 信越化学工業株式会社 半導体封止用樹脂組成物及び該樹脂組成物を用いた半導体封止方法
JP6300744B2 (ja) * 2015-02-27 2018-03-28 信越化学工業株式会社 半導体封止用樹脂組成物及び半導体装置
CN104910845B (zh) * 2015-06-12 2017-11-07 深圳先进技术研究院 底部填充胶及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0272656A (ja) * 1988-09-07 1990-03-12 Fujikura Ltd 半導体素子の封止構造
JPH1067883A (ja) * 1996-08-29 1998-03-10 Mitsubishi Electric Corp 無機質充填剤及びエポキシ樹脂組成物並びに半導体装置
JPH10120878A (ja) * 1996-08-29 1998-05-12 Mitsubishi Electric Corp エポキシ樹脂組成物及び半導体装置
JPH10261741A (ja) * 1997-03-19 1998-09-29 Oki Electric Ind Co Ltd 半導体装置及び半導体装置の製造方法

Also Published As

Publication number Publication date
CN113345813A (zh) 2021-09-03
CN113388229A (zh) 2021-09-14
MY177304A (en) 2020-09-11
KR102070113B1 (ko) 2020-01-29
CN110476243A (zh) 2019-11-19
TWI800504B (zh) 2023-05-01
KR102450897B1 (ko) 2022-10-04
CN113410182A (zh) 2021-09-17
KR20200007090A (ko) 2020-01-21
TW201842051A (zh) 2018-12-01
TW202328334A (zh) 2023-07-16
KR20190119143A (ko) 2019-10-21

Similar Documents

Publication Publication Date Title
JP6656792B2 (ja) 電子部品用液状樹脂組成物及び電子部品装置
JP6688065B2 (ja) エポキシ樹脂組成物
JP7528985B2 (ja) アンダーフィル材、電子部品装置及び電子部品装置の製造方法
JP6292334B1 (ja) 電子回路用保護材、電子回路用保護材用封止材、封止方法及び半導体装置の製造方法
JP6288344B1 (ja) 電子回路用保護材、電子回路用保護材用封止材、封止方法及び半導体装置の製造方法
JP6547819B2 (ja) 電子回路用保護材、電子回路用保護材用封止材、封止方法及び半導体装置の製造方法
JP6816426B2 (ja) アンダーフィル材及びそれを用いた電子部品装置
JP2018016796A (ja) 硬化性樹脂組成物およびその硬化物、並びにこれらを用いた半導体装置
WO2018181602A1 (ja) 電子回路用保護材、電子回路用保護材用封止材、封止方法及び半導体装置の製造方法
TWI733821B (zh) 密封組成物及半導體裝置
JP6825643B2 (ja) 電子部品用液状樹脂組成物及び電子部品装置
JPWO2018198992A1 (ja) 液状封止樹脂組成物、電子部品装置及び電子部品装置の製造方法
JP6930555B2 (ja) 電子回路用保護材、電子回路用保護材用封止材、封止方法及び半導体装置の製造方法
TWI815816B (zh) 密封用樹脂組成物、密封用樹脂組成物的製造方法、半導體裝置及半導體裝置的製造方法
WO2023047702A1 (ja) 液状コンプレッションモールド材、電子部品、半導体装置、および半導体装置の製造方法
JP6870706B2 (ja) 電子回路用保護材、電子回路用保護材用封止材、封止方法及び半導体装置の製造方法
JP6547818B2 (ja) 電子回路用保護材、電子回路用保護材用封止材、封止方法及び半導体装置の製造方法
JP6686433B2 (ja) アンダーフィル用樹脂組成物、電子部品装置及び電子部品装置の製造方法
WO2018016405A1 (ja) 硬化性樹脂組成物およびその硬化物、並びにこれらを用いた半導体装置
JP2016017121A (ja) 成形用樹脂シート及び電気・電子部品
JP2017197698A (ja) コアシェル構造を有する粒子及びその製造方法
JP6961921B2 (ja) アンダーフィル材用樹脂組成物及びこれを用いた電子部品装置とその製造方法
JP7455017B2 (ja) アンダーフィル材、電子部品装置及び電子部品装置の製造方法
KR20170089850A (ko) 구리 범프용 액상 봉지재 및 그것에 사용하는 수지 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777449

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197028983

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18777449

Country of ref document: EP

Kind code of ref document: A1