WO2018181398A1 - 帯状板体の溶接判定装置および溶接判定方法 - Google Patents

帯状板体の溶接判定装置および溶接判定方法 Download PDF

Info

Publication number
WO2018181398A1
WO2018181398A1 PCT/JP2018/012580 JP2018012580W WO2018181398A1 WO 2018181398 A1 WO2018181398 A1 WO 2018181398A1 JP 2018012580 W JP2018012580 W JP 2018012580W WO 2018181398 A1 WO2018181398 A1 WO 2018181398A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
welding
joint
dust
measurement
Prior art date
Application number
PCT/JP2018/012580
Other languages
English (en)
French (fr)
Inventor
沖 祐一郎
大朗 作本
隆文 中谷
良祐 光岡
達輝 三皷
Original Assignee
Jfeスチール株式会社
Primetals Technologies Japan株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社, Primetals Technologies Japan株式会社 filed Critical Jfeスチール株式会社
Priority to US16/496,809 priority Critical patent/US20200023457A1/en
Priority to CN201880021082.4A priority patent/CN110494249A/zh
Priority to EP18775106.0A priority patent/EP3603867A4/en
Priority to KR1020197028011A priority patent/KR20190122742A/ko
Priority to JP2018545239A priority patent/JP6483933B2/ja
Publication of WO2018181398A1 publication Critical patent/WO2018181398A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/06Resistance welding; Severing by resistance heating using roller electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/06Resistance welding; Severing by resistance heating using roller electrodes
    • B23K11/061Resistance welding; Severing by resistance heating using roller electrodes for welding rectilinear seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/002Resistance welding; Severing by resistance heating specially adapted for particular articles or work
    • B23K11/0026Welding of thin articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • B23K11/25Monitoring devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/12Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to investigating the properties, e.g. the weldability, of materials
    • B23K31/125Weld quality monitoring

Definitions

  • the present disclosure relates to a welding determination device and a welding determination method for a belt-like plate body at a joint portion of the belt-like plate members joined by seam welding.
  • a strip-shaped plate body such as a steel strip
  • a strip-shaped plate body is manufactured by hot or cold rolling a steel ingot or the like.
  • pretreatment such as pickling or application of rust-preventing oil
  • each treatment is performed on each strip plate body, resulting in poor production efficiency and practical use. Not right. For this reason, the method of performing these processes continuously by welding the edge part of the longitudinal direction of each strip
  • seam welding which is a kind of lap resistance welding, is used as a method for welding the strip-shaped plate body.
  • the belt-like plate body is continuously welded by energizing the joint portion where the end portions of the belt-like plate body are overlapped with each other while rotating the pair of electrode wheels.
  • joint failure may occur at the joint, and the joint may break in the production line due to the joint failure, and the production line may stop. If the production line stops due to the rupture of the belt-shaped plate, in addition to reducing the production line's operating rate, it takes a long time to restore the production line and increases repair costs associated with repairs. .
  • Patent Document 1 as a welding determination method for a steel strip that is a strip-shaped plate body, the temperature of a welded portion immediately after welding is measured, and a threshold value corresponding to the measured temperature and the thickness of the steel strip is measured. Therefore, a method for determining a bonding failure is disclosed.
  • the present invention has been made paying attention to the above-described problem, and an object thereof is to provide a belt-like plate welding determination apparatus and welding determination method capable of accurately determining the occurrence of dust in seam welding. It is said.
  • the average temperature and temperature difference in the joint part When the calculated average temperature is equal to or greater than a first threshold value set according to the thickness of the strip-shaped plate body, and the temperature difference is equal to or less than a second threshold value, dust is generated at the joint.
  • a welding determination device for a strip-shaped plate body comprising a determination unit for determining whether or not the above has been performed.
  • the average temperature and temperature difference in the joint portion A calculation step of calculating the above, and when the average temperature is equal to or higher than a first threshold value set according to the plate thickness of the strip-shaped plate body and the temperature difference is equal to or lower than a second threshold value, And a determination step for determining that dust is generated.
  • a method for determining the welding of a strip-shaped plate body is provided.
  • the welding determination apparatus 1 in this embodiment is an apparatus which determines the joining defect in the junction part of the steel strip 2 which is a strip
  • the steel strip 2 is introduced after the preceding material 21 and the preceding material 21 which is a steel strip previously introduced into a production line such as a pickling line. It consists of the following material 22 which is a steel strip.
  • leading end 21 and the trailing member 22 are continuously connected by welding and joining the tail end of the leading member 21 and the leading end of the trailing member 22 by the seam welding machine 3.
  • One steel strip 2 is formed and subjected to treatment according to the purpose such as pickling.
  • the seam welder 3 includes a frame 31, a pair of electrode wheels 32 a and 32 b, a pair of swaging rolls 33 a and 33 b, two pressure cylinders 34 and 35, and a plurality of wheels 36.
  • the frame body 31 has a U-shaped shape with a right angle in the front view shown in FIG. 1, and the U-shaped groove is in the x-axis direction (the horizontal direction with respect to the paper surface of FIG. Direction).
  • the pair of electrode wheels 32a and 32b are roll-shaped electrodes, and are arranged inside the U-shaped groove of the frame 31 in the z-axis direction (vertical direction with respect to the paper surface of FIG. ).
  • the pair of electrode wheels 32a and 32b are respectively connected to a drive motor (not shown), and are configured to be rotatable in the roll-shaped circumferential direction on the xz plane in response to the drive force of the drive motor.
  • the pair of electrode wheels 32a and 32b are connected to a power supply device (not shown).
  • the electrode ring 32 a is disposed on the negative z-axis direction side and is fixed to the frame body 31.
  • the electrode wheel 32 b is disposed on the z-axis positive direction side and is fixed to the frame body 31 via the pressure cylinder 34.
  • the electrode wheel 32b is configured to be movable in the z-axis direction by the pressure cylinder 34.
  • the pair of swaging rolls 33a and 33b is a reduction roll, and faces the z-axis direction inside the U-shaped groove of the frame body 31 on the negative side of the x-axis of the pair of electrode wheels 32a and 32b.
  • the pair of swaging rolls 33a and 33b are arranged so as to be inclined with respect to the x-axis and the y-axis (the direction perpendicular to the x-axis direction and the y-axis direction) and cross each other when viewed from the z-axis positive direction side.
  • the pair of swaging rolls 33a and 33b are respectively connected to a drive motor (not shown), and are configured to be rotatable in the circumferential direction of the roll shape by receiving the drive force of the drive motor.
  • the swaging roll 33 a is disposed on the negative z-axis direction side and is fixed to the frame body 31.
  • the swaging roll 33 b is arranged on the z-axis positive direction side and is fixed to the frame body 31 via the pressure cylinder 35. Further, the swaging roll 33b is configured to be movable in the z-axis direction by the pressure cylinder 35.
  • the plurality of wheels 36 are provided on the bottom surface of the frame body 31 on the negative z-axis direction side by side in the x-axis direction and the y-axis direction so that the frame body 31 can move in the x-axis direction.
  • the seam welder 3 has a traveling motor (not shown), and the frame 31 is configured to be movable in the x-axis direction by receiving the driving force of the traveling motor.
  • the steel strip 2 is welded by the following operation.
  • the tail end portion of the leading member 21 and the tip end portion of the following member 22 are made by a side guide (not shown) for adjusting the position in the width direction of the steel strip 2 or a clamp device (not shown) for holding the steel strip 2.
  • the position is adjusted to be the joining position.
  • the joining position means that the center positions of the leading material 21 and the trailing material 22 in the width direction (x-axis direction) are combined, and the tail end of the leading material 21 and the leading end of the trailing material 22 are combined.
  • a predetermined overlap allowance for example, a length of about 1.6 mm to 3.8 mm in the y-axis direction).
  • tip part of the succeeding material 22 were piled up is pressed down and welded by a pair of electrode ring 32a, 32b.
  • the leading material 21 and the following material 22 are joined.
  • the joining portion of the steel strip 2 is sandwiched between the pair of electrode wheels 32a and 32b and the joining portion of the steel strip 2 is paired with the pair of electrode wheels 32a, 32b.
  • the joint is heated and crushed by the resistance heating of the steel strip 2.
  • the entire width of the steel strip 2 in the x-axis direction is achieved.
  • the joining portion is continuously joined.
  • welding by the pair of electrode wheels 32a and 32b is performed at a constant current value set in advance depending on the material and thickness of the steel strip 2.
  • the current value of the reduction force and the welding current by the pair of electrode wheels 32a and 32b is higher than that of general seam welding.
  • the steel strip 2 is a medium carbon steel having a plate thickness of 2 mm and a C content of about 0.30 mass% to 0.45 mass%
  • a rolling force of about 20.6 kN While welding is performed with a current value of about 17.5 kA, in this embodiment, welding is performed with a rolling force of about 30.0 kN and a current value of about 40.0 kA.
  • the joint portion where the welding by the pair of electrode wheels 32a and 32b is performed is reduced by the pair of swaging rolls 33a and 33b.
  • the joint immediately after welding moves to the position of the pair of swaging rolls 33a and 33b by the travel of the frame 31, and is reduced by the pair of swaging rolls 33a and 33b.
  • pressure and pressure are contacted.
  • the pair of swaging rolls 33a and 33b are arranged so as to cross each other, the joined portion after the reduction is in a substantially flat state.
  • the reduction by the pair of swaging rolls 33a and 33b is continuously performed over the entire width of the steel strip 2 in the x-axis direction, similarly to the reduction by the pair of electrode wheels 32a and 32b.
  • the joint portion of the steel strip 2 is pressed and welded by the pair of electrode wheels 32a and 32b, so that the joint portion is joined and the level difference of the joint portion is lower than before the reduction. Get smaller. And after joining by a pair of electrode wheel 32a, 32b, the shape of a junction part is planarized because a junction part of steel strip 2 is crushed by a pair of swaging rolls 33a, 33b.
  • the welding determination device 1 includes a measurement unit 11, a storage unit 12, and a determination unit 13.
  • the measuring unit 11 is a temperature measuring device such as a radiation thermometer, and measures the temperature of the joint of the steel strip 2 immediately after welding.
  • the measurement unit 11 is fixed to the frame of the seam welding machine 3 and is disposed at a position where the surface temperature of the joint immediately after welding by the pair of electrode wheels 32a and 32b can be measured.
  • the measuring unit 11 is provided inside a U-shaped groove of the frame body 31 between the electrode wheel 32 a and the swaging roll 33 a.
  • the measurement unit 11 continuously measures the surface temperature of the joint immediately after welding by the pair of electrode wheels 32a and 32b while seam welding is performed, and outputs the measurement result to the storage unit 12 together with the measurement time. .
  • the storage unit 12 stores the measurement result acquired from the measurement unit 11 as measurement data together with the measurement time, and outputs the measurement data to the determination unit 13.
  • the determination unit 13 determines whether or not dust has occurred at the joint of the steel strip 2 based on the measurement data acquired from the storage unit 12. Details of the welding determination method by the determination unit 13 will be described later.
  • the storage unit 12 and the determination unit 13 are computers including an input device, an output device, a central processing unit (CPU), a main storage device (internal storage device), an auxiliary storage device (external storage device), and the like.
  • the device functions as the storage unit 12 and the central processing unit functions as the determination unit 13.
  • the measurement part 11 measures the surface temperature of the junction part of the steel strip 2 (S100).
  • the measurement of the surface temperature in step S100 is performed in parallel with welding and reduction of the joint by the pair of electrode wheels 32a and 32b and the pair of swaging rolls 33a and 33b.
  • the measurement part 11 measures the surface temperature of the junction part immediately after welding by a pair of electrode wheel 32a, 32b and before reduction by a pair of swaging rolls 33a, 33b.
  • the temperature measurement result by the measurement unit 11 is output to the storage unit 12 and stored in the storage unit 12 as measurement data.
  • the determination unit 13 calculates the average temperature T ave and the temperature difference ⁇ T in the welded part based on the measurement data stored in the storage unit 12 (S102).
  • the measurement data is temperature data corresponding to the measurement time, and is shown as a temperature chart as shown in FIG.
  • the measurement data of the determination range is extracted from the acquired measurement data prior to the calculation of the average temperature T ave and the temperature difference ⁇ T.
  • the determination range is a measurement time corresponding to the plate width of the steel strip 2, and is a time during which a joint portion of the welded steel strip 2 is measured.
  • the time from the start of energization of the pair of electrode wheels 32a and 32b to the timing when the welded portion moves in the width direction from the end of energization to the timing when the welded portion moves in the width direction from the end of energization is determined. It becomes a range.
  • the constant distance is a distance from the contact point of the pair of electrode wheels 32a and 32b to the measurement point of the measurement unit 11.
  • the determination unit 13 calculates the average temperature T ave and the temperature difference ⁇ T from the measurement data in the determination range.
  • the average temperature T ave is an average value of a plurality of temperature data in the measurement data in the determination range
  • the temperature difference ⁇ T is a difference between the maximum value and the minimum value of the plurality of temperature data in the measurement data in the determination range.
  • the determination unit 13 determines whether the average temperature T ave calculated in step S102 is greater than or equal to the first threshold and the temperature difference ⁇ T is greater than or equal to the second threshold (S104).
  • the first threshold is a value that can detect the temperature rise of the joint when dust is generated at the joint, and the first threshold increases as the thickness increases according to the thickness of the steel strip 2. It sets suitably so that. When dust is generated, the molten base material is exposed on the surface of the joint, and the high temperature molten base material exposed by the measurement unit 11 is measured. Therefore, the temperature chart hunts as shown in FIG. Measurement points with a higher surface temperature than in the case of normal welding occur.
  • the average temperature T ave is higher than when welding is performed normally.
  • the average temperature T ave increases as the plate thickness increases.
  • the first threshold value is set according to the thicker plate thickness of the preceding material 21 and the succeeding material 22.
  • the second threshold value is set according to the material of the steel strip 2, the current value, etc. as a value capable of detecting the temperature hunting in the temperature chart that occurs when dust is generated at the joint.
  • the temperature chart shown in FIG. 4 hunts as described above. For this reason, when dust occurs, the temperature difference ⁇ T in the determination range becomes larger than when welding is performed normally.
  • step S104 when the average temperature T ave is equal to or higher than the first threshold and the temperature difference ⁇ T is equal to or higher than the second threshold, the determination unit 13 determines that dust has occurred in the welded portion of the steel strip 2 ( S106). After step S106, the determination unit 13 outputs a determination result to a control unit (not shown) that controls the production line provided with the seam welder 3, and stops the production line (S108). As a result, it is possible to prevent breakage of the joint portion that has become defective due to generation of dust, and it is possible to suppress a reduction in operating rate and cost for recovery compared to when the production line is stopped due to breakage.
  • step S110 when the average temperature T ave is less than the first threshold value or the temperature difference ⁇ T is less than the second threshold value in step S104, the determination unit 13 does not generate dust in the welded portion of the steel strip 2. (S110).
  • step S110 the production line is not stopped by the control unit, and the production line is continuously operated.
  • the method is applied when welding the steel strip 2 in the pickling line, but the present invention is not limited to such an example.
  • the present invention can be applied to a production line for a strip-shaped plate body made of not only a steel strip but also other metals.
  • the belt-like plate body is the steel strip 2
  • it can be applied not only to the pickling line but also to the steel strip 2 line where other treatments such as cold rolling and rust prevention are performed.
  • the 1st threshold value was set according to the thicker plate
  • this invention is not limited to this example.
  • the first threshold value may be set according to the plate thickness in which the preceding material 21 and the following material 22 are overlapped.
  • the first threshold value may be a value in consideration of other conditions such as the material of the steel strip 2 and the current value during welding in addition to the plate thickness.
  • production of dust was determined in the determination range corresponding to the plate width of the steel strip 2
  • this invention is not limited to this example. For example, a plurality of ranges obtained by further dividing the determination range corresponding to the plate width shown in FIG.
  • the strip plate body welding determination apparatus 1 includes a measurement unit 11 that measures the temperature of a joint portion of a strip plate body (for example, a steel strip 2) joined by seam welding, and a measurement. Based on the measurement result of the part 11, the average temperature T ave and the temperature difference ⁇ T in the joint are calculated, and the average temperature T ave is equal to or higher than the first threshold value set according to the plate thickness of the strip-shaped plate body, and the temperature When the difference ⁇ T is equal to or smaller than the second threshold, the determination unit 13 determines that dust has occurred at the joint.
  • a measurement unit 11 that measures the temperature of a joint portion of a strip plate body (for example, a steel strip 2) joined by seam welding, and a measurement. Based on the measurement result of the part 11, the average temperature T ave and the temperature difference ⁇ T in the joint are calculated, and the average temperature T ave is equal to or higher than the first threshold value set according to the plate thickness of the strip-shaped plate body, and the temperature When the difference ⁇ T is
  • the method for determining welding of a strip plate includes a measurement step (step S100) for measuring the temperature of the joint of a strip plate (for example, steel strip 2) joined by seam welding.
  • the calculation step (step S102) for calculating the average temperature T ave and the temperature difference ⁇ T in the joint based on the measurement result in the measurement step, and the average temperature T ave are set according to the plate thickness of the strip-shaped plate body.
  • the present inventors will be described.
  • the presence / absence of dust in the joints joined by welding is confirmed, and the relationship between the occurrence of dust and the temperature of the joints.
  • the first threshold value for the average temperature T ave is 865 ° C.
  • the thicker plate thickness when the thicker plate thickness is 1.5 mm or less, and the thicker plate thickness is more than 1.5 mm and 1.8 mm or less. 938 ° C., the thicker plate thickness is over 1.8 mm, 2.1 mm or less, 886 ° C., the thicker plate thickness is over 2.1 mm, 2.5 mm or less, 954 ° C. If the thicker plate thickness is more than 2.5 mm and less than 3.8 mm, the temperature is 1000 ° C., and if the thicker plate thickness is more than 3.8 mm and less than 6.5 mm, the plate thickness is 1000 ° C. It was confirmed that all occurrences of dust can be detected in the steel strip 2 of 1 mm or more and 6.5 mm or less.
  • the temperature difference ⁇ T tends to increase when dust occurs. Unlike the case of the average temperature T ave , this tendency was not different due to the plate thickness. However, even under conditions where no dust is generated, it has been confirmed that there are conditions within the variation that are comparable to the temperature difference ⁇ T when dust is generated. In the example, it was confirmed that all occurrences of dust can be detected under all conditions by setting the second threshold value for the temperature difference ⁇ T to 110 ° C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Quality & Reliability (AREA)
  • Radiation Pyrometers (AREA)
  • Metal Rolling (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Arc Welding In General (AREA)

Abstract

シーム溶接においてチリの発生を精度よく判定すること。シーム溶接により接合される帯状板体(例えば、鋼帯(2))の接合部の温度を測定する測定部(11)と、測定部(11)の測定結果に基づいて、接合部における平均温度Tave及び温度差ΔTを算出し、平均温度Taveが帯状板体の板厚に応じて設定される第1の閾値以上で、且つ温度差ΔTが第2の閾値以下である場合に、接合部にてチリが発生したことを判定する判定部(13)とを備える。

Description

帯状板体の溶接判定装置および溶接判定方法
 本開示は、シーム溶接によって接合される帯状板体の接合部における、帯状板体の溶接判定装置および溶接判定方法に関する。
 鋼帯などの帯状板体を製造・処理する生産ラインでは、鋼塊などを熱間または冷間圧延することで、帯状板体が製造される。このような生産ラインでは、帯状板体に対して酸洗などの前処理や防錆油の塗布などを施す際に、個々の帯状板体に各処理を施すのでは、生産効率が悪く、実用的ではない。このため、個々の帯状板体の長手方向の端部を互いに溶接して連接することで、これらの処理を連続的に行う方法が用いられている。
 帯状板体の溶接方法としては、一般的に、重ね抵抗溶接の一種であるシーム溶接が用いられる。シーム溶接では、帯状板体の端部同士を重ね合せた接合部を、1対の電極輪を回転させながら通電することで、帯状板体を連続的に溶接する。このようなシーム溶接では、接合部で接合不良が発生する可能性があり、接合不良によって生産ライン内で接合部が破断し、生産ラインが停止することがあった。帯状板体の破断により生産ラインが停止してしまうと、生産ラインの稼動率が低下することに加え、生産ラインの復旧に多大な時間が掛かるとともに修理に伴う修繕コストが増加するといった影響がある。
 これに対して、例えば、特許文献1には、帯状板体である鋼帯の溶接判定方法として、溶接直後の溶接部の温度を測定し、測定した温度と鋼帯の重ね厚に応じた閾値とから、接合不良を判定する方法が開示されている。
特開昭63-203285号公報
 ところで、シーム溶接による溶接では、接合不良の一因として、母材が溶融して飛び散る現象であるチリ(散り)が発生することがある。チリが発生した場合、溶接直後の接合部の温度が高くなる。しかし、特許文献1のように接合部の温度に対して、所定の温度域にあるか否かを判断することでチリの発生を判定しようとした場合、精度良く判定することが困難であった。
 そこで、本発明は、上記の課題に着目してなされたものであり、シーム溶接においてチリの発生を精度よく判定することができる帯状板体の溶接判定装置および溶接判定方法を提供することを目的としている。
 本発明の一態様によれば、シーム溶接により接合される帯状板体の接合部の温度を測定する測定部と、上記測定部の測定結果に基づいて、上記接合部における平均温度及び温度差を算出し、上記平均温度が上記帯状板体の板厚に応じて設定される第1の閾値以上で、且つ上記温度差が第2の閾値以下である場合に、上記接合部にてチリが発生したことを判定する判定部とを備えることを特徴とする帯状板体の溶接判定装置が提供される。
 本発明の一態様によれば、シーム溶接により接合される帯状板体の接合部の温度を測定する測定ステップと、上記測定ステップでの測定結果に基づいて、上記接合部における平均温度及び温度差を算出する算出ステップと、上記平均温度が上記帯状板体の板厚に応じて設定される第1の閾値以上で、且つ上記温度差が第2の閾値以下である場合に、上記接合部にてチリが発生したことを判定する判定ステップとを備えることを特徴とする帯状板体の溶接判定方法が提供される。
 本発明の一態様によれば、シーム溶接においてチリの発生を精度よく判定することができる。
本発明の一実施形態に係る帯状板体の溶接判定装置を示す説明図である。 シーム溶接による鋼帯の溶接方法を示す説明図である。 本発明の一実施形態に係る帯状板体の溶接判定方法を示すフローチャートである。 チリが発生した際の、接合部の温度の測定結果を示すグラフである。
 以下の詳細な説明では、本発明の実施形態の完全な理解を提供するように多くの特定の細部について記載される。しかしながら、かかる特定の細部がなくても1つ以上の実施態様が実施できることは明らかであろう。他にも、図面を簡潔にするために、周知の構造及び装置が略図で示されている。
 <装置構成>
 はじめに、図1及び図2を参照して、本発明の一実施形態に係る溶接判定装置1の構成について説明する。本実施形態における溶接判定装置1は、帯状板体である鋼帯2の接合部における接合不良を判定する装置である。本実施形態では、鋼帯2は、図1及び図2に示すように、酸洗ラインなどの生産ラインに先に投入された鋼帯である先行材21と、先行材21の後に投入された鋼帯である後行材22とからなる。このような生産ラインでは、先行材21の尾端部と、後行材22の先端部とがシーム溶接機3によって溶接され、接合されることで、先行材21と後行材22とが連続した1つの鋼帯2となり、酸洗などの目的に応じた処理が施される。
 シーム溶接機3は、枠体31と、1対の電極輪32a,32bと、1対のスウェージングロール33a,33bと、2つの加圧シリンダー34,35と、複数の車輪36とを備える。
 枠体31は、図1に示す正面視において角が直角なU字状の形状を有し、U字状の溝がx軸方向(図1の紙面に対する左右方向であり、地面に平行な水平方向)に平行に延在して配される。
 1対の電極輪32a,32bは、ロール状の電極であり、枠体31のU字状の溝の内側に、z軸方向(図1の紙面に対する上下方向であり、地面に垂直な鉛直方向)に対向して設けられる。1対の電極輪32a,32bは、不図示の駆動モータにそれぞれ接続され、駆動モータの駆動力を受けて、x-z平面においてロール形状の周方向に回転可能に構成される。また、1対の電極輪32a,32bは、不図示の電源装置に接続される。電極輪32aは、z軸負方向側に配され、枠体31に固定される。電極輪32bは、z軸正方向側に配され、加圧シリンダー34を介して、枠体31に固定される。また、電極輪32bは、加圧シリンダー34によって、z軸方向に移動可能に構成される。
 1対のスウェージングロール33a,33bは、圧下ロールであり、1対の電極輪32a,32bのx軸負方向側となる枠体31のU字状の溝の内側に、z軸方向に対向して設けられる。1対のスウェージングロール33a,33bは、z軸正方向側からみて、x軸及びy軸(x軸方向及びy軸方向に垂直な方向)に対して傾いて、互いに交差するように配される。また、1対のスウェージングロール33a,33bは、不図示の駆動モータにそれぞれ接続され、駆動モータの駆動力を受けて、ロール形状の周方向に回転可能に構成される。スウェージングロール33aは、z軸負方向側に配され、枠体31に固定される。スウェージングロール33bは、z軸正方向側に配され、加圧シリンダー35を介して、枠体31に固定される。さらに、スウェージングロール33bは、加圧シリンダー35によって、z軸方向に移動可能に構成される。
 複数の車輪36は、枠体31にz軸負方向側の底面に、枠体31がx軸方向に移動可能なように、x軸方向及びy軸方向に並んで設けられる。
 また、シーム溶接機3は、不図示の走行用モータを有し、この走行用モータの駆動力を受けて、枠体31がx軸方向に移動可能に構成される。
 上記構成のシーム溶接機3によるシーム溶接では、以下の動作によって鋼帯2の溶接が行われる。
 まず、鋼帯2の幅方向の位置を調整するサイドガイド(不図示)や鋼帯2を保持するクランプ装置(不図示)などによって、先行材21の尾端部及び後行材22の先端部の位置が接合位置となるように調整される。接合位置とは、図1及び図2に示すように、先行材21及び後行材22の幅方向(x軸方向)の中心位置が合わさり、先行材21の尾端と後行材22の先端とが所定の重ね代(例えば、y軸方向に1.6mm~3.8mm程度の長さ)で重ね合わされた状態となる位置である。
 そして、先行材21の尾端部と後行材22の先端部とが重ね合わさった箇所となる鋼帯2の接合部が、1対の電極輪32a,32bによって、圧下及び溶接されることで、先行材21と後行材22とが接合される。1対の電極輪32a,32bによる接合では、1対の電極輪32a,32bの間に鋼帯2の接合部が挟持された状態で、鋼帯2の接合部を1対の電極輪32a,32bで加圧及び通電することで、鋼帯2の抵抗発熱により接合部を加熱し、押しつぶす。さらに、この1対の電極輪32a,32bによる接合を、枠体31を幅方向に走行させ、一対の電極輪32a,32bを回転させながら行うことで、鋼帯2のx軸方向の全幅にわたって、接合部の接合が連続的に行われる。なお、1対の電極輪32a,32bによる溶接は、鋼帯2の材質や板厚などによって予め設定された一定の電流値で行われる。なお、本実施形態では、一対の電極輪32a,32bによる圧下力及び溶接電流の電流値は、一般的なシーム溶接に比べて、いずれも高い条件となる。例えば、鋼帯2が、2mmの板厚、0.30mass%~0.45mass%程度のC含有量となる中炭素鋼である場合、一般的なシーム溶接では、20.6kN程度の圧下力、17.5kA程度の電流値で溶接が行われるのに対して、本実施形態では、30.0kN程度の圧下力、40.0kA程度の電流値で溶接が行われる。
 また、シーム溶接機3によるシーム溶接では、一対の電極輪32a,32bによる溶接が行われた接合部は、一対のスウェージングロール33a,33bによって圧下される。一対のスウェージングロール33a,33bによる圧下では、溶接直後の接合部が、枠体31の走行によって一対のスウェージングロール33a,33bの位置まで移動し、一対のスウェージングロール33a,33bによって圧下されることで、加圧及び圧接される。この際、一対のスウェージングロール33a,33bは、互いに交差して配されるため、圧下後の接合部がほぼ平坦な状態となる。一対のスウェージングロール33a,33bによる圧下も、一対の電極輪32a,32bによる圧下と同様に、鋼帯2のx軸方向の全幅にわたって、連続して行われる。
 シーム溶接機3によるシーム溶接では、一対の電極輪32a,32bによって、鋼帯2の接合部が圧下及び溶接されることで、接合部が接合し、また接合部の段差が圧下前に比べて小さくなる。そして、一対の電極輪32a,32bによる接合の後、一対のスウェージングロール33a,33bによって、鋼帯2の接合部が圧下されることで、接合部の形状が平坦化される。
 溶接判定装置1は、図1に示すように、測定部11と、記憶部12と、判定部13とを備える。
 測定部11は、放射温度計などの測温装置であり、溶接直後の鋼帯2の接合部の温度を測定する。測定部11は、シーム溶接機3の枠体に固定され、一対の電極輪32a,32bによる溶接直後の接合部の表面温度が測定可能な位置に配される。本実施形態では、測定部11は、図1に示すように、電極輪32aとスウェージングロール33aとの間となる、枠体31のU字状の溝の内側に設けられる。測定部11は、一対の電極輪32a,32bによる溶接直後の接合部の表面温度を、シーム溶接が行われている間、連続的に測定し、測定結果を測定時間とともに記憶部12に出力する。
 記憶部12は、測定部11から取得した測定結果を測定時間とともに測定データとして記憶し、測定データを判定部13に出力する。
 判定部13は、記憶部12から取得した測定データに基づいて、鋼帯2の接合部にてチリが発生したか否かを判定する。判定部13による、溶接判定方法についての詳細は、後述する。
 記憶部12及び判定部13は、入力装置、出力装置、中央処理装置(CPU)、主記憶装置(内部記憶装置)、補助記憶装置(外部記憶装置)などから構成されるコンピュータであり、主記憶装置が記憶部12、中央処理装置が判定部13として機能する。
 <溶接判定方法>
 次に、図3及び図5を参照して本実施形態に係る帯状板体の溶接判定方法について説明する。図3に示すように、まず、測定部11は、鋼帯2の接合部の表面温度を測定する(S100)。ステップS100における表面温度の測定は、一対の電極輪32a,32b及び一対のスウェージングロール33a,33bによる、接合部の溶接及び圧下と並行して行われる。また、測定部11は、一対の電極輪32a,32bによって溶接された直後、且つ一対のスウェージングロール33a,33bによる圧下前の接合部の表面温度を測定する。測定部11による温度の測定結果は、記憶部12へと出力され、測定データとして記憶部12に記憶される。
 次いで、測定部11による温度の測定が終了した後、判定部13は、記憶部12に記憶された測定データに基づいて、溶接部における平均温度Tave及び温度差ΔTを算出する(S102)。測定データは、測定時間に応じた温度のデータであり、図4のような温度チャートとして示される。ステップS102では、平均温度Tave及び温度差ΔTの算出に先立ち、取得された測定データから判定範囲の測定データの抽出が行われる。判定範囲は、鋼帯2の板幅に対応した測定時間であり、溶接された鋼帯2の接合部を測定している時間である。具体的には、一対の電極輪32a,32bの通電開始から一定距離だけ溶接部が幅方向に動いたタイミングから、通電終了から一定距離だけ溶接部が幅方向に動いたタイミングまでの時間が判定範囲となる。なお、一定距離とは、一対の電極輪32a,32bの接触点から、測定部11の測定点までの距離である。判定範囲の抽出が行われた後、判定部13は、判定範囲における測定データから、平均温度Tave及び温度差ΔTを算出する。なお、平均温度Taveは判定範囲の測定データにおける複数の温度データの平均値であり、温度差ΔTは判定範囲の測定データにおける複数の温度データの最大値と最小値との差である。
 ステップS102の後、判定部13は、ステップS102で算出された平均温度Taveが第1の閾値以上、且つ温度差ΔTが第2の閾値以上であるか否かを判断する(S104)。
 第1の閾値は、接合部でチリが発生した際における、接合部の温度上昇を検知可能な値として、鋼帯2の板厚に応じて、板厚が厚くなるに従い第1の閾値も高くなるように適宜設定される。チリが発生した場合、溶融した母材が接合部の表面に露出した状態となり、測定部11によって露出した高温の溶融母材が測定されるため、図4に示すように温度チャートがハンチングし、正常に溶接が行われた場合に比べ表面温度が高い測定箇所が発生する。このため、チリが発生した場合には、平均温度Taveは、正常に溶接が行われた場合に比べ高くなる。また、平均温度Taveは、板厚が厚い程、高くなる。本実施形態では、第1の閾値は、先行材21及び後行材22のうち厚い方の板厚に応じて設定される。
 第2の閾値は、接合部でチリが発生した際に生じる、温度チャートにおける温度のハンチングを検知可能な値として、鋼帯2の材質や電流値などに応じて設定される。チリが発生した場合、上述のように、図4に示す温度チャートがハンチングする。このため、チリが発生した場合、判定範囲における温度差ΔTが、溶接が正常に行われた場合に比べ大きくなる。
 ステップS104において、平均温度Taveが第1の閾値以上、且つ温度差ΔTが第2の閾値以上である場合、判定部13は、鋼帯2の溶接部において、チリが発生したと判定する(S106)。
 そして、ステップS106の後、判定部13は、シーム溶接機3が設けられた生産ラインを制御する不図示の制御部に判定結果を出力し、生産ラインを停止させる(S108)。これにより、チリの発生によって接合不良となった接合部の破断を防止することができ、破断によって生産ラインが停止した場合に比べ稼動率の低下や復旧に掛かるコストを抑制することができる。
 一方、ステップS104において、平均温度Taveが第1の閾値未満、または温度差ΔTが第2の閾値未満である場合、判定部13は、鋼帯2の溶接部において、チリが発生していないと判定する(S110)。ステップS110の場合、制御部による生産ラインの停止動作は行われず、生産ラインは継続して稼動することとなる。
 以上の、ステップS100~S110の工程を経ることで、本実施形態における溶接部の判定が終了する。
 <変形例>
 以上で、特定の実施形態を参照して本発明を説明したが、これら説明によって発明を限定することを意図するものではない。本発明の説明を参照することにより、当業者には、開示された実施形態の種々の変形例とともに本発明の別の実施形態も明らかである。従って、特許請求の範囲は、本発明の範囲及び要旨に含まれるこれらの変形例または実施形態も網羅すると解すべきである。
 例えば、上記実施形態では、酸洗ラインにおける鋼帯2の溶接時に適用する方法としたが、本発明はかかる例に限定されない。例えば、本発明は、鋼帯だけでなく他の金属などからなる帯状板体の生産ラインに適用することができる。また、帯状板体が鋼帯2の場合においても、酸洗ラインだけでなく、冷間圧延や防錆といった他の処理を施す鋼帯2のラインにおいても適用することができる。
 また、上記実施形態では、第1の閾値は、厚い方の板厚に応じて設定されるとしたが、本発明はかかる例に限定されない。第1の閾値は、先行材21と後行材22とを重ね合せた板厚に応じて設定されてもよい。さらに、第1の閾値は、板厚に加え、鋼帯2の材質や溶接時の電流値などの他の条件が考慮された値であってもよい。
 さらに、上記実施形態では、鋼帯2の板幅に対応した判定範囲で、チリの発生を判定するとしたが、本発明はかかる例に限定されない。例えば、図4に示す板幅に対応した判定範囲をさらに分割した複数の範囲を判定範囲として、複数の範囲毎にステップS102以降の処理を行ってもよい。
<実施形態の効果>
 (1)本発明の一態様に係る帯状板体の溶接判定装置1は、シーム溶接により接合される帯状板体(例えば、鋼帯2)の接合部の温度を測定する測定部11と、測定部11の測定結果に基づいて、接合部における平均温度Tave及び温度差ΔTを算出し、平均温度Taveが帯状板体の板厚に応じて設定される第1の閾値以上で、且つ温度差ΔTが第2の閾値以下である場合に、接合部にてチリが発生したことを判定する判定部13とを備える。
 (2)本発明の一態様に係る帯状板体の溶接判定方法は、シーム溶接により接合される帯状板体(例えば、鋼帯2)の接合部の温度を測定する測定ステップ(ステップS100)と、測定ステップでの測定結果に基づいて、接合部における平均温度Tave及び温度差ΔTを算出する算出ステップ(ステップS102)と、平均温度Taveが帯状板体の板厚に応じて設定される第1の閾値以上で、且つ温度差ΔTが第2の閾値以下である場合に、接合部にてチリが発生したことを判定する判定ステップ(ステップS104)とを備える。
 上記(1),(2)の構成によれば、接合部の表面に露出した溶融母材の温度を測定することによる平均温度Taveの上昇及び温度差ΔTの増大を検知するため、2つの条件を用いることで、接合部におけるチリの発生を精度良く判定することができる。
 ここで、平均温度Tave及び温度差ΔTのいずれか一方の条件のみでチリの発生を判定する場合、条件によってはチリが発生していない場合にも同様な値となることがあり、精度よくチリの発生を判定することが難しい。一方、上記(1),(2)の構成によれば、平均温度Tave及び温度差ΔTの2つの条件に合致した場合に、チリが発生したと判定するため、精度よく判定することができる。
 また、上記(1),(2)の構成によれば、第1の閾値を板厚に応じて設定することで、様々な板厚に対応することができる。
 次に、本発明者らが行った実施例について説明する。実施例では、上記実施形態と同様に、様々な板厚の鋼帯2に対して、溶接により接合された接合部のチリの発生有無を確認し、チリの発生と接合部の温度との関係について調査した。
 実施例の結果、チリが発生した場合、正常な場合に比べ、接合部の平均温度Taveが上昇する傾向があることを確認した。しかし、同じ板厚のチリが発生していない条件であっても、条件によってはバラツキの中で、チリが発生した場合の平均温度Taveのうち低い温度と同程度となることがあることを確認した。なお、実施例では、平均温度Taveに対する第1の閾値を、厚い方の板厚が1.5mm以下の場合には865℃、厚い方の板厚が1.5mm超、1.8mm以下の場合には938℃、厚い方の板厚が1.8mm超、2.1mm以下の場合には886℃、厚い方の板厚が2.1mm超、2.5mm以下の場合には954℃、厚い方の板厚が2.5mm超、3.8mm以下の場合には1000℃、厚い方の板厚が3.8mm超6.5mm以下の場合には1000℃とすることで、板厚が1mm以上6.5mm以下の鋼帯2においてチリの発生を全て検知できることを確認した。
 また、実施例では、チリが発生した場合、温度差ΔTが高くなる傾向があることを確認した。この傾向は、平均温度Taveの場合と異なり、板厚による差がなかった。しかし、チリが発生していない条件であっても、バラツキの中で、チリが発生した場合の温度差ΔTと同程度となる条件があることを確認した。なお、実施例では、温度差ΔTに対する第2の閾値を110℃とすることで、全ての条件において、チリの発生を全て検知できることを確認した。
 さらに、平均温度Taveと温度差ΔTとの条件を組合せ、第1の閾値及び第2の閾値を上記の条件にすることで、チリが発生した条件のみを検出することができることを確認した。つまり、上記実施形態のように、接合部の平均温度Taveと、温度差ΔTとの2つの条件に基づいて判定することで、精度よくチリの発生を検知することができることが確認された。また、特許文献1では、重ね厚が1.5mm以上の領域では、接合部の高温による接合不良を検知することができなかった。しかし、上記実施例によれば、特許文献1よりも板厚が厚い領域においても、接合部の高温、つまりチリによる接合不良を検知することができることが確認された。
 1 溶接判定装置
 11 測定部
 12 記憶部
 13 判定部
 2 鋼帯
 21 先行材
 22 後行材
 3 シーム溶接機
 31 枠体
 32a,32b 電極輪
 33a,33b スウェージングロール
 34,35 加圧シリンダー
 36 車輪

Claims (2)

  1.  シーム溶接により接合される帯状板体の接合部の温度を測定する測定部と、
     前記測定部の測定結果に基づいて、前記接合部における平均温度及び温度差を算出し、前記平均温度が前記帯状板体の板厚に応じて設定される第1の閾値以上で、且つ前記温度差が第2の閾値以下である場合に、前記接合部にてチリが発生したことを判定する判定部と
     を備えることを特徴とする帯状板体の溶接判定装置。
  2.  シーム溶接により接合される帯状板体の接合部の温度を測定する測定ステップと、
     前記測定ステップでの測定結果に基づいて、前記接合部における平均温度及び温度差を算出する算出ステップと、
     前記平均温度が前記帯状板体の板厚に応じて設定される第1の閾値以上で、且つ前記温度差が第2の閾値以下である場合に、前記接合部にてチリが発生したことを判定する判定ステップと
     を備えることを特徴とする帯状板体の溶接判定方法。
PCT/JP2018/012580 2017-03-31 2018-03-27 帯状板体の溶接判定装置および溶接判定方法 WO2018181398A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/496,809 US20200023457A1 (en) 2017-03-31 2018-03-27 Welding determination device for strip-shaped sheets, and welding determination method
CN201880021082.4A CN110494249A (zh) 2017-03-31 2018-03-27 带状板体的焊接判定装置及焊接判定方法
EP18775106.0A EP3603867A4 (en) 2017-03-31 2018-03-27 WELDING DETERMINATION DEVICE FOR TAPE SHEETS AND WELDING DETERMINATION METHOD
KR1020197028011A KR20190122742A (ko) 2017-03-31 2018-03-27 띠 형상 판체의 용접 판정 장치 및 용접 판정 방법
JP2018545239A JP6483933B2 (ja) 2017-03-31 2018-03-27 帯状板体の溶接判定装置および溶接判定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017070539 2017-03-31
JP2017-070539 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018181398A1 true WO2018181398A1 (ja) 2018-10-04

Family

ID=63676330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012580 WO2018181398A1 (ja) 2017-03-31 2018-03-27 帯状板体の溶接判定装置および溶接判定方法

Country Status (6)

Country Link
US (1) US20200023457A1 (ja)
EP (1) EP3603867A4 (ja)
JP (1) JP6483933B2 (ja)
KR (1) KR20190122742A (ja)
CN (1) CN110494249A (ja)
WO (1) WO2018181398A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111318796A (zh) * 2018-12-13 2020-06-23 本田技研工业株式会社 电阻焊评价装置和电阻焊评价方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230036983A (ko) * 2021-09-08 2023-03-15 고오슈우하네쓰렌 가부시기가이샤 강재접합체 및 그 제조 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63203285A (ja) 1987-02-17 1988-08-23 Nippon Steel Corp プロセスラインの鋼帯接続溶接部の溶接判定方法
JPH0424546A (ja) * 1990-05-21 1992-01-28 Nittetsu Drum Kk ドラム缶胴部溶接部の検査方法
JPH06294706A (ja) * 1993-04-12 1994-10-21 Nkk Corp ラップシーム溶接機診断装置および溶接良否判定装置
JP2008006485A (ja) * 2006-06-30 2008-01-17 Jfe Steel Kk 溶接合否判定装置及び溶接合否判定方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2576326B2 (ja) * 1991-10-25 1997-01-29 住友金属工業株式会社 ストリップ溶接部の良否判定装置
JP2518120B2 (ja) * 1991-10-25 1996-07-24 住友金属工業株式会社 ストリップ溶接部の再溶接方法および装置
JP3211586B2 (ja) * 1994-10-17 2001-09-25 松下電器産業株式会社 溶接品質監視装置
JPH09267182A (ja) * 1996-03-29 1997-10-14 Nkk Corp ラップシーム溶接部の溶接良否判定方法
JP3221356B2 (ja) * 1997-05-14 2001-10-22 松下電器産業株式会社 抵抗溶接部の品質評価方法および装置
JP4998709B2 (ja) * 2007-03-05 2012-08-15 Jfeスチール株式会社 溶接合否判定装置及び溶接合否判定方法
CN105149762A (zh) * 2014-12-27 2015-12-16 东北大学 电阻点焊质量评判装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63203285A (ja) 1987-02-17 1988-08-23 Nippon Steel Corp プロセスラインの鋼帯接続溶接部の溶接判定方法
JPH0424546A (ja) * 1990-05-21 1992-01-28 Nittetsu Drum Kk ドラム缶胴部溶接部の検査方法
JPH06294706A (ja) * 1993-04-12 1994-10-21 Nkk Corp ラップシーム溶接機診断装置および溶接良否判定装置
JP2008006485A (ja) * 2006-06-30 2008-01-17 Jfe Steel Kk 溶接合否判定装置及び溶接合否判定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3603867A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111318796A (zh) * 2018-12-13 2020-06-23 本田技研工业株式会社 电阻焊评价装置和电阻焊评价方法

Also Published As

Publication number Publication date
EP3603867A1 (en) 2020-02-05
JP6483933B2 (ja) 2019-03-13
EP3603867A4 (en) 2020-06-17
JPWO2018181398A1 (ja) 2019-04-04
CN110494249A (zh) 2019-11-22
US20200023457A1 (en) 2020-01-23
KR20190122742A (ko) 2019-10-30

Similar Documents

Publication Publication Date Title
JP6483932B2 (ja) 帯状板体の溶接判定装置および溶接判定方法
JP4500884B2 (ja) 金属板の接合方法及び接合装置
EP2551048B1 (en) Operation management device, operation management method, and operation management program for high-frequency resistance welding and induction welding
WO2010004656A1 (ja) マッシュシーム溶接方法及び装置
JP6483933B2 (ja) 帯状板体の溶接判定装置および溶接判定方法
CN204818438U (zh) 带焊缝检测的激光焊接机构
JP5569663B1 (ja) 連続仮付溶接機におけるオフセット修正制御装置及びオフセット修正制御方法
JP6269582B2 (ja) 継目溶接部異常判定方法
JP6079715B2 (ja) 電縫鋼管のシーム接合方法
JP2576326B2 (ja) ストリップ溶接部の良否判定装置
JP4325460B2 (ja) サブマージアーク溶接方法
JP2018164928A (ja) ラップシーム溶接の溶接良否判定方法および装置
JPH067845A (ja) 連続熱間圧延における溶接接合部の検出方法
JP2013022597A (ja) ラップシーム溶接部の溶接良否判定方法および溶接良否判定装置
JP7173077B2 (ja) マッシュシーム溶接機の設計方法、マッシュシーム溶接機、マッシュシーム溶接方法、及び熱延鋼板の製造方法
JP2023080401A (ja) 鋼板の重ね合わせ溶接方法および溶接装置
JP2831141B2 (ja) 圧延材の給電クランプ装置
JP2013022598A (ja) ラップシーム溶接機の異常診断方法および異常診断装置
JP2004025213A (ja) ラップシーム溶接機の電極輪の焼付き検出方法及び検出装置
KR20160130030A (ko) 강관 용접 장치
JPH07195179A (ja) 連続ストリップ処理ラインの溶接良否判定方法
JP2006281275A (ja) フラッシュバット溶接による接合部のレベル違い判定方法
JP3575287B2 (ja) 溶接温度監視機能を有する溶接装置の溶接条件の設定方法及び溶接方法
Tominaga et al. Development of new mash seam welder (cross seam welder, CSW) compatible with continuous rolling of steel sheets at thicknesses up to 6 mm
JPH11285840A (ja) 溶接状況診断機構を有する抵抗溶接機

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018545239

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775106

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197028011

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018775106

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018775106

Country of ref document: EP

Effective date: 20191031