WO2010004656A1 - マッシュシーム溶接方法及び装置 - Google Patents

マッシュシーム溶接方法及び装置 Download PDF

Info

Publication number
WO2010004656A1
WO2010004656A1 PCT/JP2008/062633 JP2008062633W WO2010004656A1 WO 2010004656 A1 WO2010004656 A1 WO 2010004656A1 JP 2008062633 W JP2008062633 W JP 2008062633W WO 2010004656 A1 WO2010004656 A1 WO 2010004656A1
Authority
WO
WIPO (PCT)
Prior art keywords
pair
joint
seam welding
mash seam
metal plates
Prior art date
Application number
PCT/JP2008/062633
Other languages
English (en)
French (fr)
Inventor
慎一 加賀
憲明 富永
斎藤 武彦
満 小野瀬
泰嗣 芳村
田方 浩智
渡部 裕二郎
哲 銭谷
若元 郁夫
Original Assignee
三菱日立製鉄機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立製鉄機械株式会社 filed Critical 三菱日立製鉄機械株式会社
Priority to CN200880130284.9A priority Critical patent/CN102089111B/zh
Priority to KR1020117000401A priority patent/KR101235953B1/ko
Priority to BRPI0822917-1A priority patent/BRPI0822917A2/pt
Priority to PCT/JP2008/062633 priority patent/WO2010004656A1/ja
Priority to US13/002,660 priority patent/US20110120979A1/en
Priority to JP2009503359A priority patent/JP4500883B2/ja
Priority to EP08791114.5A priority patent/EP2322308A4/en
Publication of WO2010004656A1 publication Critical patent/WO2010004656A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/06Resistance welding; Severing by resistance heating using roller electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/06Resistance welding; Severing by resistance heating using roller electrodes
    • B23K11/061Resistance welding; Severing by resistance heating using roller electrodes for welding rectilinear seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D1/00Straightening, restoring form or removing local distortions of sheet metal or specific articles made therefrom; Stretching sheet metal combined with rolling
    • B21D1/02Straightening, restoring form or removing local distortions of sheet metal or specific articles made therefrom; Stretching sheet metal combined with rolling by rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/36Auxiliary equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/08Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for flash removal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels
    • B23K2101/185Tailored blanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Definitions

  • the present invention is a mash for joining two metal plates by overlapping the end portions of two metal plates, pressurizing the overlapped portions with a pair of upper and lower electrode wheels, continuously welding while passing a welding current.
  • the present invention relates to a seam welding method and apparatus.
  • the mash seam welder overlaps the ends of two metal plates, presses the overlapped part with a pair of electrode wheels, welds continuously while passing a welding current, and at the same time heats to a high temperature and softens
  • This is a welding method that reduces the thickness of the joint by rolling the joint with an electrode wheel.
  • the joint cannot be rolled to the base metal thickness, and the joint thickness increases from 120 to 160% of the thickness of the base material (metal plate). Has a problem that a step is generated.
  • a pair of upper and lower pressure rollers are installed on one side adjacent to a pair of upper and lower electrode wheels, and a frame for supporting these electrode wheels and pressure rollers before mash seam welding. Is moved in the direction in which the pressure roller leads, and the overlapping portion of the metal plate is rolled with the pressure roller, and after the rolling is completed, the overlapped metal plates are separated by a minute amount, and the joint thickness is reduced, By moving the base frame in the opposite direction and pressurizing the overlapped part with a pair of electrode wheels, continuously mash seam welding while flowing a welding current, and further rolling the joint with a pressure roller A method for reducing the thickness of the joint has been proposed (Patent Documents 1 and 2).
  • a pair of upper and lower first and second pressure rollers are installed on both sides adjacent to the pair of upper and lower electrode wheels,
  • the base frame that supports the electrode wheel and the pressure roller is moved in one direction led by the first pressure roller, and the overlapping portion of the metal plate is rolled by the pair of first pressure rollers, and then the pressure is applied.
  • the rolled part is pressed with a pair of electrode wheels following the roller, mash seam welding is performed continuously while passing a welding current, and the joining is performed with a second pressure roller following the electrode wheel.
  • Patent Documents 1 and 2 A method and an apparatus for reducing the joint thickness by rolling the part have been proposed (Patent Documents 1 and 2).
  • a melt-solidified portion called a nugget is generated at the center of the metal plate thickness held by a pair of electrode wheels.
  • the bonding interface is separated from the central portion of the overlapped metal plate thickness, so that there is a problem that the bonding interface is detached from the nugget and the bonding strength is lowered. For this reason, the subject which had to restrict
  • Patent Document 3 In order to relax the restriction on the thickness ratio of the metal plates to be joined, the contact area between the electrode ring and the material is set so that the thickness of each metal plate after mash seam welding is almost equal, and the nugget is joined Means for generating the interface at the interface and expanding the allowable joining plate thickness ratio has been proposed (Patent Document 3).
  • the mash seam welder overlaps the ends of two metal plates, presses the overlapped part with a pair of electrode wheels, welds continuously while passing a welding current, and at the same time heats to a high temperature and softens Since the welded portion reduces the thickness of the joined portion by rolling the joined portion with the electrode wheel, rolling by the electrode wheel is responsible for most of the plastic working work that reduces the thickness of the joined material.
  • the plastic flow of the joint to be reduced is mainly in the rolling direction of the electrode wheel, but the joint has a continuous relationship with the base metal of the adjacent metal plate, and the plastic flow in the rolling direction is constrained by the base metal. Receive.
  • the joint cannot be rolled to the base metal thickness, and the joint thickness of the mash seam welding method increases from 120 to 160% of the base metal (metal plate) thickness. Due to the difference in thickness, a step having a high stress concentration factor is generated at the joint. When stress acts on the joint, there is a problem that the strength is remarkably reduced, and there is a problem that the application range of mash seam welding is limited due to this restriction. In addition, there has been a problem that the work rolls are damaged in the steel plate processing line due to a steep step or that productivity and yield are reduced.
  • Patent Documents 1 and 2 pressure rollers are installed on both sides of the electrode wheel, and rolling before welding, welding, and rolling after welding are continuously performed by moving in one direction of the frame.
  • the method there is a problem that the thickness of the joint cannot be sufficiently reduced. That is, the metal plate is gripped by a clamping device so that the overlapping amount at the time of mash seam welding does not shift and is restrained in the direction perpendicular to the welding line by the clamping device.
  • the amount of plastic flow in the direction perpendicular to the weld line is limited, and it is mainly that the metal is plastically flowed in the roller traveling direction.
  • the plastic flow of the rolled part by the pressure roller is constrained by the base material, and the extension is remarkably limited, so it cannot be reduced to the base material thickness. It was. Further, in the rolling process using the pressure roller, the volume of the joint portion reduced by rolling is plastically flowed in the longitudinal direction of the joint portion, and is absorbed as the joint portion lengthens. Therefore, there is a problem in that an extension difference occurs between the joint portion extended by the pressure roller and the base material, and the joint portion is deformed into a curve or a wave shape.
  • mash seam welding a nugget is generated at the center in the thickness direction of two metal plates pressed by a pair of electrode wheels.
  • the difference between the thicknesses of the two metal plates is large, there is a problem that the nugget generation site is out of the bonding interface and the bonding strength is lowered, and the thickness ratio of the two metal plates to be bonded is 1: 1.5.
  • the actual situation is that mash seam welding is not applied to plate thickness ratios higher than this limit.
  • Patent Document 3 the contact area on the thick metal plate side of a pair of electrode wheels rotatably provided around a biaxial core parallel to each other is disclosed.
  • the overlapping portion of the metal plates must be disposed at the end of the electrode ring. For example, in the joining of 2 mm and 3 mm metal plates, the overlapping amount of the metal plates is approximately equivalent to the plate thickness, so the contact width between the electrode wheel and the material is about 2 mm to 3 mm.
  • the first object of the present invention is to provide a mash seam welding method and apparatus that can reduce the step gradient at the joint between two metal plates and ensure high joint strength.
  • the second object of the present invention is to form a nugget produced by mash seam welding at the joining interface with a relatively simple and inexpensive structure when joining metal plates having different thicknesses, and to improve the joining strength. It is an object of the present invention to provide a mash seam welding method and apparatus capable of improving and enlarging the allowable joint thickness difference.
  • ⁇ First invention> 1st invention which solves the subject mentioned above piles up the edge part of two metal plates, presses the overlapping part with a pair of upper and lower electrode wheels, welds continuously while flowing welding current,
  • the shaft cores of the pair of electrode wheels are opposite to each other with respect to a straight line perpendicular to a weld line formed on the overlapping portion of the two metal plates.
  • the two metal plates are joined while being inclined in a horizontal plane in a direction and actively driving the pair of electrode wheels.
  • the amount of increase in the thickness of the joint can be further reduced, and the step gradient can be greatly reduced. Further, since the step gradient is reduced, the stress concentration factor is reduced, and high bonding strength can be ensured.
  • the thickness of each metal plate in the overlapped portion can be reduced by adjusting the tilt angle of the axis of the electrode ring according to the thickness of the metal plate. Since the adjustment is performed, the nugget is bonded so as not to come off the bonding interface. Therefore, in addition to reducing the stress concentration factor by reducing the step gradient, the joint strength of the joint is dramatically improved by generating nuggets at the joint interface, the allowable joint thickness is increased, and the freedom of operation is increased. Can be improved. In addition, since the configuration is such that the pair of electrode wheels are inclined and actively driven, it can be realized with a relatively simple and inexpensive configuration.
  • the traveling direction portion of the pair of electrode wheels is in a horizontal plane, and the presence of the metal plate that the electrode wheels first contact is present.
  • the axial centers of the pair of electrode wheels are inclined with respect to a straight line perpendicular to the welding line so as to face the direction in which the two metal plates are joined.
  • the two metal plates are different in thickness, and the two metal plates are thicker.
  • the tilt angle of the axis of the electrode ring is made larger than the tilt angle of the axis of the electrode ring on the thin side.
  • a fourth invention for solving the above-mentioned problem, in the mash seam welding method according to any one of the first to third inventions, at least one step before the welding start and after the welding end of the overlapped portion, The first setting for contacting the electrode wheels and the second setting for contacting the pair of electrode wheels with a light load compared to the pressing force at the time of welding, The pair of electrode wheels are not driven, and in the second setting, the pair of electrode wheels are driven.
  • a pair of pressure rollers Inclining in the horizontal plane with respect to a straight line orthogonal to the welding line, and actively driving the pair of pressure rollers to roll the step of the joint in the direction of travel of the pressure roller is characterized by.
  • a sixth invention for solving the above-described problem is a mash seam welding method according to the fifth invention, wherein the traveling direction portions of the pair of pressure rollers are in a horizontal plane, and the metal material with which the pressure rollers first contact is provided.
  • the axis of the pair of pressure rollers is inclined with respect to a straight line orthogonal to the welding line so that the metal plate is directed in the direction opposite to the direction in which the metal plate is present, and the step of the joint is in the traveling direction. It is characterized in that it is rolled.
  • the seventh invention for solving the above-described problem is to overlap the end portions of two metal plates, press the overlapping portions with a pair of upper and lower electrode wheels, and continuously weld them while flowing a welding current.
  • the pair of electrode wheels may be mutually connected with respect to an axis perpendicular to a weld line formed on an overlapping portion of the two metal plates. It is installed so as to incline in the opposite direction within a horizontal plane.
  • An eighth invention for solving the above-described problem is a mash seam welding apparatus according to the seventh invention, wherein the axis of the pair of electrode wheels is independently in a horizontal plane with respect to an axis perpendicular to the welding line. It has a mechanism for inclining.
  • the thickness of the joint is reduced by shear deformation in the direction perpendicular to the weld line both during mash seam welding using the electrode wheel and during rolling using the pressure roller.
  • the joining portion of the metal plate can smooth the step or greatly reduce the step gradient, and more reliably reduce the stress concentration factor and provide a production facility that ensures high joining strength.
  • the shaft cores of the pair of upper and lower electrode wheels are inclined, and the two metal plates are joined while actively driving the pair of electrode wheels. Therefore, it is possible to remarkably reduce the thickness of the joint by shear deformation in the direction perpendicular to the weld line and greatly reduce the step gradient, thereby reducing the stress concentration factor and ensuring high joint strength. I can do it.
  • the nugget is generated at the bonding interface by adjusting the inclination angle of the axis of the electrode ring according to the thickness of the metal plate. This can also improve the joint strength, increase the allowable joint thickness, and improve the degree of freedom of operation. Moreover, it can be realized with a relatively simple and inexpensive configuration in which the pair of electrode wheels are inclined and actively driven.
  • the stress concentration factor of the joint can be reduced and the high joint strength can be ensured by reducing the step gradient of the joint of the metal plate or smoothing the step of the joint.
  • the step gradient of the joint portion of mash seam welding can be reduced or the step difference of the joint portion can be smoothed, the stress concentration factor of the joint portion can be reduced, and high joint strength can be ensured.
  • damage to the work roll during cold rolling in the next step and the tensile strength performance are improved, so mash seam welding can be applied to the cold rolling process that has not been conventionally applied. .
  • the contact angle (stress concentration factor) between the work roll and the joint of the skin pass rolling mill can be reduced, and as a result, the contact between the work roll and the material It is possible to reduce the surface pressure, prevent the work roll from being damaged and transfer the joint mark without lowering the line speed, and improve the productivity and the yield.
  • the shearing force acting on the joining portion cancels the force toward the clamping device when joining by the electrode wheel, This can prevent the buckling of the metal plate portion between the clamp device and the joint when joining the thin metal plate without arranging the clamp device in the immediate vicinity of the joint.
  • a relatively wide space can be secured between the clamp device and the joint, and restrictions on the arrangement of the electrode wheel, the pressure roller, and the equipment associated therewith can be relaxed.
  • FIG. 1 It is a figure which shows the metal flow in the contact length in the case of inclining the axial center of an electrode ring, and joining an overlap part, and is a figure which shows the case of the upper electrode ring 1 as an example.
  • the part located on the side of the direction of travel of the electrode ring is in a horizontal plane with respect to the straight line perpendicular to the welding line with the axis of the pair of electrode wheels, and the direction opposite to the direction in which the metal plate with which the electrode wheel first contacts is present
  • FIG. 1 It is the figure which looked at the junction part cross section and electrode wheel at the time of welding when it inclines each so that it may face from the electrode wheel back to the electrode wheel advancing direction.
  • FIG. 7 is a view of the upper electrode wheel viewed from vertically above in order to clarify the direction in which the upper electrode wheel is inclined in the welding state of FIG. 6.
  • FIG. 7 is a view of the lower electrode wheel viewed from vertically above in order to clarify the direction in which the lower electrode wheel is inclined in the welding state of FIG. 6.
  • the part located on the side of the traveling direction of the electrode wheel is in a horizontal plane with respect to the straight line perpendicular to the welding line with the axis of the pair of electrode wheels facing the direction in which the metal plate that the electrode wheel first contacts is present
  • FIG. 4 is a view of a cross section of a joint portion and an electrode ring at the time of welding when tilted, as viewed from the rear side of the electrode wheel in the direction of travel of the electrode wheel.
  • FIG. 9 is a view of the upper electrode wheel viewed from vertically above in order to clarify the direction in which the upper electrode wheel is inclined in the welding state of FIG. 8.
  • FIG. 9 is a view of the lower electrode wheel viewed from vertically above in order to clarify the direction in which the lower electrode wheel is inclined in the welding state of FIG. 8. It is a figure which shows the nugget production
  • FIG. 12 is a view of the upper electrode wheel viewed from vertically above in order to clarify the direction in which the upper electrode wheel is inclined in the welding state of FIG. 11.
  • FIG. 12 is a view of the lower electrode wheel viewed from vertically above in order to clarify the direction in which the lower electrode wheel is inclined in the welding state of FIG. 11. It is the same figure as FIG.
  • FIG. 20A shows the pressure roller rolling initial state in the case of inclining and rolling each with respect to the straight line orthogonal to a line. It is a figure which shows the press roller rolling completion state at the time of rolling like FIG. 20A.
  • FIG. 20A shows when the pressure roller is inclined in the opposite direction, that is, there is a metal plate related to the metal material with which the pressure roller first contacts in a traveling plane portion of the pair of pressure rollers in a horizontal plane.
  • FIG. 21A shows The correlation between material temperature and deformation resistance when the metal plate is plain steel is shown.
  • Electrode wheel 1A Electrode wheel traveling direction portion 2: Lower electrode wheel 2A: Electrode wheel traveling direction portion 3: Upper pressure roller 4: Lower pressure roller 5: Metal plate 5A: End portion 6: Metal plate 6A: End 7: Incoming clamping device 8: Outgoing clamping device 9: Carriage frame 10: Electrode wheel pressing device 11: Pressure roller pressing device 13: Shear force 14: Thrust force 15: Upper pressure roller shaft core 16: Lower Pressure roller shaft core 17: Upper electrode wheel shaft core 18: Lower electrode wheel shaft core 22: Upper work roll 23: Lower work roll 27: Electrode wheel tilt mechanism 28: Upper electrode wheel speed vector 29: Lower electrode wheel speed vector 30: Relative Sliding speed 45: Pressure roller axis perpendicular direction straight line 46: Contact lengthened portion 51, 52: Mounting block 54: Support roller 55: Base plate 57: Cylinder device 61, 62 for driving the carriage frame: Electric motor 63, 64 : Motion motors 67, 68: Chain and sprocket mechanism 71: High-order control device 72: Carriage
  • the metal plate in the present embodiment will be described by taking a cold rolled steel plate in an iron making line as an example.
  • FIG. 1 is a schematic view of a mash seam welding apparatus according to an embodiment of the present invention.
  • a mash seam welding apparatus includes a pair of upper and lower electrode wheels 1 and 2, a pair of upper and lower pressure rollers 3 and 4, inlet and outlet clamping devices 7 and 8, a carriage frame 9, An electrode wheel pressing device 10 and a pressure roller pressing device 11 are provided.
  • the electrode wheel pressing device 10 and the pressure roller pressing device 11 are, for example, hydraulic cylinders.
  • the upper electrode wheel 1 and the upper pressure roller 3 are supported by the upper horizontal frame 9a of the carriage frame 9 via the electrode wheel pressing device 10 and the pressure roller pressing device 11, respectively.
  • the lower electrode wheel 2 and the lower pressure roller 4 are The carriage frame 9 is supported by a lower horizontal frame 9b via mounting blocks 51 and 52, respectively.
  • the pair of upper and lower pressure rollers 3 and 4 are disposed in the carriage frame 9 adjacent to the pair of upper and lower electrode wheels 1 and 2.
  • the carriage frame 9 includes a support roller 54 at the bottom, and is movable in a direction (welding direction) perpendicular to the two metal plates 5 and 6 joined on the base plate 55 via the support roller 54.
  • the inlet side and outlet side clamping devices 7 and 8 have a pair of upper and lower clamping members 7a and 7b; 8a and 8b, upper and lower pressing cylinder devices 7c and 7d; 8c and 8d, and a support frame 7e and 8e, respectively.
  • the clamp members 7a, 7b; 8a, 8b are supported in the support frame 7e; 8e via the upper and lower pressing cylinder devices 7c, 7d; 8c, 8d, and the support frame 7e; 8e is supported on the base plate 55. Yes.
  • the mash seam welding apparatus also includes a pair of upper and lower electrode wheel rotation driving electric motors 61 and 62.
  • the upper and lower pair of electrode wheel rotation driving electric motors 61 and 62 are respectively connected to the electrode wheel pressing device 10 and the attachment. It is attached to the side surface of the block 51 and is connected to the rotation shafts of the electrode wheels 1 and 2 by, for example, a chain and sprocket mechanism 67, and the rotational power of the electric motors 61 and 62 is transmitted to the electrode wheels 1 and 2.
  • the electrode wheel pressing device 10 is provided with an inclination mechanism 27 (FIG. 16) for inclining the axis of the electrode wheels 1 and 2.
  • FIG. 2 shows a state at the start of welding in which two metal plates 5 and 6 having the same thickness are overlapped and the overlapped portion is pressurized by the pair of upper and lower electrode wheels 1 and 2 of the present embodiment.
  • FIG. 3 is a diagram showing a joint shape having a step immediately after joining two metal plates 5 and 6 having the same thickness by mash seam welding using a conventional electrode ring that does not tilt the shaft core.
  • FIG. 4 is a diagram showing a joint shape having a step immediately after joining the two metal plates 5 and 6 by mash seam welding using the electrode wheels 1 and 2 according to the present embodiment.
  • the pair of upper and lower electrode wheels 1, 2 has respective axial cores 17, 18 overlapping portions L of two metal plates 5, 6 (FIG. 2). It is installed so as to be inclined in the horizontal plane in opposite directions with respect to an axis Y (see FIG. 5) perpendicular to the weld line X (see FIG. 5) formed in the hatched portion of FIG.
  • the two metal plates 5 and 6 are joined while being actively driven by the motors 61 and 62.
  • the electrode wheel pressing device 10 is provided with an inclination mechanism 27 (FIG. 16) for adjusting the inclination angle of the shaft cores 17 and 18 of the electrode wheels 1 and 2.
  • the carriage frame 9 is moved in the welding direction by a driving device such as a cylinder device 57 provided on the base plate 55, so that the pair of upper and lower electrode wheels 1 and 2 supported by the carriage frame 9 and the pair of upper and lower pressures.
  • the rollers 3 and 4 are moved relative to the metal plates 5 and 6 so that the joining and pressing are continuously performed.
  • the overlapping portion L of the metal plates 5 and 6 is sandwiched between a pair of upper and lower electrode wheels 1 and 2, and the electrode wheels 1 and 2 are pressed against the overlapping portion L of the metal plates 5 and 6 by the electrode wheel pressing device 10. While the electrode wheels 1 and 2 are actively rotated by the electric motors 61 and 62, a welding current is passed through the electrode wheels 1 and 2 to generate resistance heat, and welding (mash seam welding) is performed. Immediately after welding the overlapped portion L with the electrode wheels 1, 2, the joint (welded portion) J is sandwiched between a pair of upper and lower pressure rollers 3, 4, and the pressure roller 3 is pressed by the pressure roller pressing device 11. While pressing 4 against the joint, the joint J of the metal plates 5 and 6 is pressed and rolled.
  • the thickness of the joint J (shaded portion in FIG. 3) when mash seam welding is performed using electrode wheels 1 and 2 that do not tilt the conventional shaft core is the base material of the metal plates 5 and 6.
  • the thickness S increases from 120 to 160%, and a step S is generated between the joint and the base material (metal plates 5 and 6).
  • the electrode wheels 1 and 2 are not inclined, even if the electrode wheels 1 and 2 are pressed against the overlapped portion L of the metal plates 5 and 6 by the electrode wheel pressing device 10 and rolled while welding,
  • the plastic flow in the perpendicular direction is limited by being constrained by the coefficient of friction between the electrode wheels 1 and 2 and the material, and the plastic flow in the traveling direction of the electrode wheels 1 and 2 is constrained by the adjacent base material.
  • the joint thickness could not be reduced by the electrode wheels 1 and 2 up to the base metal thickness of the metal plate.
  • the pair of upper and lower electrode wheels 1 and 2 with respect to the straight line (the straight line in the direction perpendicular to the weld line) whose axial cores 17 and 18 are orthogonal to the weld line of the overlapping portion L.
  • they are arranged so as to incline in opposite directions, and mash seam welding is performed while the electrode wheels 1 and 2 are actively driven by the electric motors 61 and 62.
  • FIG. 5 is a diagram showing a metal flow within the contact length when the axis portions 17 and 18 of the electrode wheels 1 and 2 are inclined to join the overlapping portion L.
  • the upper electrode wheel 1 Shows the case.
  • A is an arrow indicating the traveling direction (welding direction) of the electrode wheel 1
  • X is a straight line virtually showing a welding line formed in the overlapping portion L on the welding direction A
  • Y is It is a straight line orthogonal to the weld line X.
  • Reference numeral 45 denotes a straight line (straight line perpendicular to the axial center) perpendicular to the axis 17 of the electrode wheel 1, which is a straight line passing through the central portion in the width direction of the electrode wheel 1, and ⁇ is an inclination angle of the electrode wheel 1 ( The angle between the weld line X and the straight line 45 in the direction perpendicular to the axis of the upper electrode wheel 1).
  • 46 is a contact length portion where the electrode wheel 1 contacts the overlapping portion L
  • R is a speed vector of the electrode wheel 1 in the contact length portion 46
  • R1 is a direction of the welding line X of the speed vector R.
  • R2 is a component perpendicular to the weld line X of the velocity vector R.
  • the metal flow in the direction of the velocity vector component R1 (the direction parallel to the weld line X)
  • the metal flow in the direction of the velocity vector component R2 (the direction perpendicular to the weld line X)
  • the shear force 14 causes a plastic flow in a direction perpendicular to the weld line X due to the shear deformation by 14.
  • the thickness of the overlapped portion L after joining (joined portion thickness) can be reduced by shear deformation or plastic flow in a direction perpendicular to the weld line X.
  • the shaft cores 17 and 18 of the pair of electrode wheels 1 and 2 are inclined with respect to the straight line Y orthogonal to the welding line X, and the pair of electrode wheels 1 and 2 are positively driven by the electric motors 61 and 62.
  • the shearing force 14 in the direction perpendicular to the weld line acts on the overlapping portion L, and the joint thickness of the overlapping portion L is reduced. Since the shear force 14 depends on the deformation resistance of the material, the higher the deformation resistance, the greater the thrust force 13 that acts on the electrode wheels 1 and 2 from the metal plates 5 and 6.
  • the thrust force 13 is increased in this way, there is a problem that the life of the electrode wheels 1 and 2 and their bearings is reduced, and the holding force for the thrust force 13 is set to increase the size of the entire apparatus.
  • the generation of the thrust force 13 due to the inclination of the axes 17 and 18 of the electrode wheels 1 and 2 described above is during the heat welding (mash seam welding) of the overlapped portion L.
  • the temperature in the vicinity of the joint rises to about 1000 ° C. to 1400 ° C., depending on the thickness of the metal plate. Therefore, it is presumed that the junction J has a temperature higher than this.
  • the deformation resistance of the metal plates 5 and 6 depends on the material temperature, and the deformation resistance when the temperature of the joint J is about 1000 ° C. to 1400 ° C. is extremely small (see FIG. 22), and the thrust force 13 is increased. By suppressing, the equipment can be downsized. Moreover, since it is a shear deformation at a high temperature, the joint thickness can be effectively reduced.
  • FIG. 6, FIG. 7A and FIG. 7B and FIG. 8, FIG. 9A and FIG. 9B are diagrams showing two types of setting states of the direction of the angle ⁇ for inclining the pair of upper and lower electrode wheels 1 and 2.
  • the direction of the angle ⁇ for inclining the pair of upper and lower electrode wheels 1 and 2 can be set in two types.
  • the first setting method is such that the electrode cores 1, 2 with respect to a straight line Y perpendicular to the welding line X with respect to the shaft cores 17, 18 of the pair of electrode wheels 1, 2.
  • the portions located on the side of the traveling direction A (hereinafter referred to as the traveling direction portion) 1A, 2A are in the horizontal plane and face the direction opposite to the direction in which the metal plate with which the electrode wheels 1, 2 are first contacted is present. Each of them is inclined (the traveling direction portion 1A of the upper electrode wheel 1 is inclined toward the metal plate 6 on the right side in the drawing, and the traveling direction portion 2A of the lower electrode wheel 2 is inclined toward the metal plate 5 side on the left side in the drawing).
  • a shearing force 14 corresponding to the speed vector component R2 is applied from the end portions 5A and 6A of the metal plates 5 and 6 to the metal plates 5 and 6 in the direction in which the metal plates 5 and 6 exist. It acts and performs mash seam welding while applying shear deformation in the direction perpendicular to the welding line in the same direction to reduce the joint thickness.
  • a force in a direction opposite to the shearing force 14 acts on the electrode wheels 1 and 2 from the overlapping portion L (joint portion J) as the thrust force 13.
  • the reaction force of the thrust force 13 acts on the overlapping portion L as the shearing force 14.
  • the second setting method is to incline the electrode wheels 1 and 2 in the opposite direction compared to the first setting method. That is, the axial directions 17 and 18 of the pair of electrode wheels 1 and 2 are in a horizontal plane with respect to the straight line Y orthogonal to the welding line X, and the electrode wheels 1 and 2 are in the horizontal plane.
  • each metal plate is inclined so as to face the direction in which the metal plate to be contacted first (the traveling direction portion 1A of the upper electrode wheel 1 is inclined to the metal plate 5 side on the left side of the drawing, and the traveling direction portion 2A of the lower electrode wheel 2 is Incline toward the metal plate 6 on the right side of the figure).
  • shearing corresponding to the velocity vector component R2 from the electrode wheels 1 and 2 to the metal plates 5 and 6 in the direction from the side where the metal plates 5 and 6 are present toward the ends 5A and 6A of the metal plates 5 and 6 is performed.
  • the force 14 acts and mash seam welding is performed while applying shear deformation in the direction perpendicular to the welding line in the same direction, thereby reducing the joint thickness.
  • a force in the direction opposite to the shearing force 14 acts as the thrust force 13 from the overlapping portion L (joint portion J) to the electrode wheels 1 and 2.
  • the second setting method is adopted.
  • the reason is as follows.
  • a copper-based material having high electrical conductivity is applied as the material of the electrode wheels 1 and 2.
  • the copper-based material has a problem that it is inferior in material strength as compared with the bonding material.
  • the axis of the pair of electrode wheels 1 and 2 is such that the traveling direction portions 1A and 2A of the electrode wheels 1 and 2 are in the horizontal plane and face in the direction opposite to the direction in which the metal plate with which the electrode wheels 1 and 2 contact first is present.
  • the cores 17 and 18 are respectively inclined, and a shearing force 14 is applied from the electrode wheels 1 and 2 to the metal plates 5 and 6 in the direction in which the metal plates 5 and 6 exist from the end portions 5A and 6A of the metal plates 5 and 6.
  • the electrode wheels 1 and 2 advance in the direction in which the electrode wheel surface bites into the corners of the end portions 5A and 6A of the metal plates 5 and 6, so that the electrode wheel surface is scraped off at the corner of the joining material.
  • the current density between the electrode wheels 1 and 2 and the material is locally concentrated, which causes dust and significantly decreases the life of the electrode wheel.
  • the traveling direction portions 1A and 2A of the electrode wheels 1 and 2 are in a horizontal plane, and are directed to the direction in which the metal plate with which the electrode wheels 1 and 2 contact first is present.
  • Each of the shaft cores 17 and 18 is inclined, and an upward shearing force is applied from the electrode wheels 1 and 2 to the metal plates 5 and 6 in the direction from the side where the metal plates 5 and 6 are present toward the ends 5A and 6A of the metal plates 5 and 6. 14, the electrode wheels 1 and 2 are prevented from being damaged by the biting of the corners of the end portions 1A and 2A of the metal plates 1 and 2, and the shear stress is applied to the metal plates 5 and 6 side. It becomes possible.
  • the inclination angle ⁇ of the shaft cores 17 and 18 of the electrode wheels 1 and 2 is set according to the plate thickness of the metal plates 5 and 6. Qualitatively, when the plate thickness is small, the inclination angle ⁇ is set small, and as the plate thickness increases, the inclination angle ⁇ is set large. As shown in FIG. 5, the shear deformation due to the inclination of the shaft core 17 of the upper electrode ring 1 is governed by the inclination angle ⁇ in the contact isolated portion 46 between the upper electrode ring 1 and the material. , 6 is appropriately adjusted according to the plate thickness.
  • the inclination angle ⁇ of the upper electrode ring 1 is set according to the thickness of the metal plate located above the overlapping portion L, and the lower electrode ring
  • the inclination angle ⁇ of 2 is set according to the plate thickness of the metal plate located below the overlapped portion L. That is, when joining different thickness metal plates, the upper and lower electrode wheels 1 and 2 are made to have different inclination angles ⁇ .
  • FIGS. 10A and 10B are diagrams showing nugget generation locations when two metal plates 5 and 6 are joined by mash seam welding using a conventional electrode ring that does not tilt the shaft core, and FIG. 10A shows the same thickness.
  • FIG. 10B shows the case where different thickness metal plates are joined.
  • 11, 12A and 12B show the nugget generation location and the upper and lower electrode wheels 1, 2 when the metal plates 5, 6 of different thicknesses are joined by mash seam welding using the electrode wheels 1, 2 according to the present embodiment. It is a figure which shows the difference in these inclination angles.
  • the nugget N is generated at the center of the plate thickness held by the electrode wheels 1 and 2.
  • a nugget N is generated at the central portion of the joint interface.
  • FIG. 10A shows that the nugget N is detached from the central portion of the joint interface, and due to this restriction, the thickness ratio of the joint plate thickness between the metal plate 5 and the metal plate 6 of the mash seam welding method is limited to about 1: 1.5 or less. Has been.
  • the traveling direction portions 1A and 2A of the electrode wheels 1 and 2 are oriented in the direction in which the metal plates 5 and 6 that the electrode wheels 1 and 2 first contact are present.
  • the shaft cores 17 and 18 of the electrode wheels 1 and 2 are tilted in a horizontal plane with respect to the straight line Y orthogonal to the welding line X, and are in contact with the metal plate 5 which is a thick metal plate.
  • the electrode wheels 1, 2 and the metal plates 5, 6 By applying many shear deformations (shear stresses) in the direction perpendicular to the weld line to the material of the thick metal plate 5 in addition to the pressing force between the materials, the respective metal plate portions after lap joining are applied. It becomes possible to join so that plate
  • the inclination angles ⁇ 1 and ⁇ 2 are set so as to give a shear deformation necessary for reducing the difference in thickness according to the thickness.
  • nugget N can be generated on the bonding interface, the thickness ratio can be increased without reducing the bonding strength, and the increase in the thickness of the overlapped joint J can be reduced.
  • the bonding quality at the time of different thickness bonding can be improved.
  • FIG. 13 is a view similar to FIG. 1 showing a state in which the axis of the upper and lower electrode wheels before the start of mash seam welding is inclined and the upper and lower electrode wheels are pressed and the upper and lower pressure rolls are pressed. is there.
  • FIG. 14 is a diagram showing the velocity vector and the relative sliding speed of the upper and lower electrode wheels when the upper and lower electrode wheels are pressed and driven with the axis of the upper and lower electrode wheels inclined.
  • the relative sliding speed 30 generates a thrust force in the axial direction of the upper and lower electrode wheels 1 and 2 due to the pressing force between the electrode wheels 1 and 2 and the friction coefficient. These thrust forces reduce the life of the electrode wheel bearings and generate a stick slip between the electrode wheels 1 and 2, thereby promoting abnormal vibration of the mechanical system and wear of the electrode wheels 1 and 2.
  • the first setting for bringing the upper and lower electrode wheels 1 and 2 into contact with each other in at least one step, preferably both steps before and after the welding of the overlapping portion L, and the upper and lower electrode wheels Either one of the second settings in which the first and second electrodes are not brought into contact with each other, or are brought into contact with a light load compared to the pressing force at the time of welding.
  • the electric motors 61 of the upper and lower electrode wheels 1 and 2 In the former first setting, the electric motors 61 of the upper and lower electrode wheels 1 and 2, The rotation by 62 is not driven, and in the second setting of the latter, the rotation of the upper and lower electrode wheels 1 and 2 by the electric motors 61 and 62 is driven.
  • the electric motors 61 and 62 In the first setting, after the upper and lower electrode wheels 1 and 2 reach the side end of the overlapped portion L, the electric motors 61 and 62 are immediately started to drive the upper and lower electrode wheels 1 and 2 to actively rotate. To do.
  • the drive of the electrode wheel pressing device 10 is switched to the setting at the time of welding, and the pressing force is applied to the upper and lower electrode wheels 1 and 2. Is granted. Thereby, generation of excessive thrust force can be prevented, bearing life is extended, and wear of the upper and lower electrode wheels 1 and 2 is suppressed.
  • FIG. 15 is a diagram showing an outline of a control system of the mash seam welding apparatus shown in FIG.
  • the control system of the mash seam welding apparatus includes a host control device 71, a carriage frame drive control device 72, a mash seam control device 73, and a pressure roller control device 74.
  • the host control device 71 includes a carriage frame drive control device 72, The control of the mash seam control device 73 and the pressure roller control device 74 is supervised.
  • the carriage frame drive control device 72 gives an operation command to a hydraulic circuit (not shown) of the cylinder device 57 for driving the carriage frame 9, and the cylinder
  • the drive of the device 57 is controlled
  • the mash seam control device gives an operation command to the hydraulic circuit (not shown) of the electrode wheel pressing device 10 and the electric motors 61 and 62, and controls the drive to control the pressure roller control device.
  • the upper horizontal frame 9a of the carriage frame 9 is provided with a laser distance meter 75 adjacent to the upper electrode wheel 1, and the mash seam control device 73 and the pressure roller control device 74 input detection signals of the laser distance meter 75.
  • the timing at which the end of the overlapping portion of the metal plates 5 and 6 comes directly below the laser distance meter 75 is detected.
  • the mash seam control device 73 and the pressure roller control device 74 are preliminarily input with the laser distance meter 75, the distance between the electrode wheels 1, 2 and the pressure rollers 3, 4, and the moving speed of the carriage frame 9.
  • the electrode wheels 1 and 2 and the pressure rollers 3 and 4 are connected to the metal plate 5 based on the timing when the end of the overlapping portion of the metal plates 5 and 6 comes directly below the laser distance meter 75 and the distance and moving speed thereof.
  • 6 is calculated according to the setting state (first setting or second setting) related to the contact of the upper and lower electrode wheels 1 and 2 before and after the timing.
  • the control of the pressing device 10 and the electric motors 61 and 62 and the control of the pressure roller pressing device 11 are appropriately changed.
  • the tilt angle of the axis of the electrode wheels 1 and 2 may be fixed, but preferably can be changed to an arbitrary angle.
  • FIG. 16 is a view showing a tilting mechanism of the electrode wheel in that case.
  • illustration of the electric motor which rotates an electrode wheel, a chain, and a sprocket mechanism is abbreviate
  • the electrode wheel pressing device 10 is provided with an inclination mechanism 27, and by operating the inclination mechanism 27, the inclination angle of the axis of the upper electrode wheel 1 can be set to an arbitrary angle in the horizontal plane.
  • the tilt mechanism 27 can take various methods, in the illustrated example, it is an electric drive method. That is, the tilt mechanism 27 is provided at the upper end of the electrode wheel pressing device 10, and a rotation shaft 81 that is rotatably inserted into the upper horizontal frame 9 a of the carriage frame 9, and the rotation shaft 81 via the pinions 82 and 83.
  • the electric motor 84 is rotationally driven, and the electric motor 84 is controlled by the tilt angle control device 85.
  • the tilt mechanism 27 includes a lock device for maintaining the tilt angle after setting.
  • the tilt mechanism 27 includes an angle sensor 86 for detecting the tilt angle of the upper electrode wheel 1, and the tilt angle control device 85 responds to the thickness of the metal plates 5 and 6 from the host control device 71 before the start of joining.
  • the angle information is obtained and set, and the electric motor 84 is driven and controlled using the signal of the angle sensor 86 so that the inclination angle of the electrode wheel 1 matches the set angle.
  • a control model is constructed in advance, a database is constructed in the host controller 71 from these control models, and the host controller 71 The angle to be set is given from time to time.
  • the angle sensor 86 may detect the rotation angle of the rotary shaft 81 as shown in the figure, or may be an encoder that detects the rotation angle of the electric motor 84.
  • the thickness of the metal plates 5 and 6 is measured by a detecting means such as the laser distance meter 75 described above before welding with the electrode wheels 1 and 2, and based on the setting information of the database from the measured values of the plate thickness.
  • An angle to be set may be given and the tilt angle may be controlled in real time.
  • FIG. 17 shows the stress concentration location where there is a step in the joint.
  • high stress acts on the joint in the processing step after joining. That is, as shown in FIG. 17, if there is a step S at the joint J of the metal plates 5, 6, the step becomes a stress concentration location.
  • FIG. 18A is a diagram showing the relationship between a conventional mash seam welded portion and a work roll for a rolling mill
  • FIG. 18B is a case where welding is performed by inclining the axis of the electrode wheel, and then rolling with a pressure roller. It is a figure which shows the engagement of the mash seam welding part and work roll for rolling mills when the thickness increase amount and level
  • the contact angle (stress concentration factor) between the work rolls 22 and 23 and the joint can be reduced.
  • the contact surface pressure between the work rolls 22 and 23 and the material can be reduced. Further, it is possible to prevent damage to the work rolls 22 and 23 and transfer of the joint mark without reducing the line speed, and the productivity and the yield can be improved.
  • a shearing force in a direction perpendicular to the weld line X acts on the overlapping portion L of the metal plates 5 and 6, which gives the overlapping portion L shear deformation in the same direction, and the direction of the welding line by rolling the conventional electrode ring
  • plastic flow in the direction perpendicular to the weld line X occurs, and the thickness of the overlapped portion (joint portion) J after joining is significantly reduced by the plastic flow in the direction perpendicular to the weld line X.
  • the joint J is rolled by the pressure rollers 3 and 4 to further reduce the increase in the thickness of the joint to the equivalent of the base metal thickness of the metal plate, greatly increasing the step gradient. Can be reduced. Further, since the step gradient is reduced, the stress concentration factor is reduced, and high bonding strength can be ensured.
  • the overlapping portion L can be obtained by adjusting the inclination angle of the axis of the electrode wheels 1 and 2 according to the thickness of the metal plates 5 and 6. Since the thickness reduction amount of each metal plate is adjusted, the nugget N is bonded so as not to be detached from the bonding interface. Therefore, in addition to reducing the stress concentration factor by reducing the step gradient, by generating nugget N at the joint interface, the joint strength of the joint is dramatically improved, the allowable joint thickness difference is increased, and the freedom of operation Can be improved. In addition, since the configuration is such that the pair of electrode wheels 1 and 2 are inclined and actively driven, it can be realized with a relatively simple and inexpensive configuration.
  • the stress concentration factor of the joint can be reduced and high joint strength can be secured.
  • effects such as the cold rolling process that has not been applied conventionally, the expansion of application of mash seam welding to tailored blanks, the prevention of scratches on work rolls in the steel sheet processing line, and the improvement of productivity and yield can be obtained.
  • the step gradient of the joint portion of mash seam welding can be reduced, the stress concentration factor of the joint portion can be reduced, and high joint strength can be ensured. Since the work roll is prevented from being damaged at the time of cold rolling in the next step and the tensile strength performance is improved, mash seam welding to a cold rolling process that has not been conventionally applied can be applied.
  • the contact angle (stress concentration factor) between the work roll and the joint of the skin pass rolling mill can be reduced, and as a result, the contact between the work roll and the material It is possible to reduce the surface pressure, prevent the work roll from being damaged and transfer the joint mark without lowering the line speed, and improve the productivity and the yield.
  • the inclination angle of the axis of the electrode ring on the side where the two metal plates 1 and 2 are thicker is set to the axis of the electrode ring on the side where the thickness is thin. Therefore, it is possible to increase the reduction amount of the metal plate on the thick plate side so that it substantially matches the reduction amount of the thin metal plate, so that the nugget N becomes the bonding interface. It can be generated, the joint strength is improved, and the allowable joint thickness is increased.
  • the first setting for bringing the pair of electrode wheels 1 and 2 into contact with each other Since the setting is one of the second settings for contact with light load compared to the pressure, the pair of electrode wheels 1 and 2 is not driven in the first setting, and the pair of electrode wheels 1 and 2 is driven in the second setting. Further, it is possible to prevent an excessive thrust force from acting on the upper and lower electrode wheels 1 and 2, thereby extending the life of the upper and lower electrode wheel bearings. Further, the wear of the upper and lower electrode wheels 1 and 2 is suppressed, and the running cost can be reduced.
  • the pair of electrode wheels 1 and 2 are arranged in directions opposite to each other with respect to an axis Y perpendicular to the welding line X formed on the overlapping portion L of the two metal plates 5 and 6 with the respective shaft cores 7 and 18. Since it is installed so as to be inclined in the horizontal plane, as described above, the step gradient at the joint between the two metal plates can be reduced, high joint strength can be secured, and mash seam welding can be performed with a relatively simple and inexpensive configuration. It is possible to provide a production facility for generating the nugget N to be generated at the bonding interface to improve the bonding strength and to increase the allowable bonding thickness difference.
  • the pair of upper and lower pressure rollers 3 and 4 are conventionally pressure rollers that can rotate around two biaxial cores parallel to each other, and the pressure roller is used to roll the joint after mash seam welding.
  • Rolled at 3 and 4. Even if the joint portion is rolled in this manner, by performing mash seam welding by inclining the shaft cores 17 and 18 of the pair of upper and lower electrode wheels 1 and 2, as described above, the welded portion in mash seam welding ( The thickness reduction effect of the joint portion is great, the step gradient of the joint portion J of the metal plates 5 and 6 is greatly reduced, the stress concentration coefficient of the joint portion is reduced, and high joint strength can be secured.
  • the axis of the pair of upper and lower pressure rollers is also tilted and rolled, so that the level difference is smoothed by reliably rolling to the thickness equivalent to the base metal thickness of the metal plate. It can be done.
  • FIG. 19 is a schematic view of the mash seam welding apparatus in the present embodiment.
  • the mash seam welding apparatus includes a pair of upper and lower pressure roller rotating electric motors 63 and 64, which are also used for rotating upper and lower electrode wheel pairs.
  • the electric motors 61 and 62 they are attached to the side surfaces of the pressure roller pressing device 11 and the mounting block 52, respectively, and are connected to the rotating shafts of the pressure rollers 3 and 4 by, for example, a chain and sprocket mechanism 68.
  • the rotational powers 63 and 64 are transmitted to the pressure rollers 3 and 4.
  • FIG. 20A and FIG. 20B or FIG. 21A and FIG. 21B are views showing a state where the joint after mash seam welding is rolled by a pair of upper and lower pressure rollers 3 and 4.
  • the pair of upper and lower electrode wheels 1 and 2 are welded at the overlapping portion L of the two metal plates 5 and 6, as described in the above embodiment. It is installed so as to incline in opposite directions within a horizontal plane with respect to a straight line orthogonal to, and is configured to perform mash seam welding while actively driving the electrode wheels 1 and 2 with electric motors 61 and 62. Further, as shown in FIGS. 20A and 20B or FIGS. 21A and 21B, the pair of upper and lower pressure rollers 3 and 4 also have shaft axes 15 and 16 of the joint portion J of the two metal plates 5 and 6. It is installed so as to be inclined in directions opposite to each other in a horizontal plane with respect to a straight line orthogonal to the welding line X, and is configured to roll while the pressure rollers 3 and 4 are actively driven by the electric motors 63 and 64.
  • the clamping device may be disposed in the immediate vicinity of the joint. In this case, the space between the clamping device and the joint becomes narrow, and the electrode wheel, the pressure roller, and the equipment attached thereto are provided. This causes a problem that the degree of freedom of equipment arrangement is impaired.
  • the shearing force 14 acting on the joint portion J when the electrode wheels 1 and 2 are joined is applied to the clamping device. It will disappear with the force toward 7,8.
  • the clamping devices 7 and 8 are not arranged in the vicinity of the joint portion J, buckling of the metal plate when joining the thin metal plate can be prevented.
  • the joint J can secure a relatively wide space, and the electrode wheels 1 and 2 and the pressure rollers 3 and 4 and the equipment (for example, electric motors 61 to 64, chains and sprocket mechanisms 67 and 68). , Restrictions on the arrangement of the tilting device, etc. can be relaxed.
  • the direction of the angle ⁇ for tilting the pair of upper and lower pressure rollers 3 and 4 can be set in the same manner as in the case of the electrode wheels 1 and 2.
  • the first setting method is a metal material in which the traveling direction portions 3A and 4A of the pair of pressure rollers 3 and 4 are in a horizontal plane and the pressure rollers 3 and 4 are in contact with each other first.
  • the shaft cores 15 and 16 of the pair of pressure rollers 3 and 4 are inclined with respect to the straight line Y orthogonal to the welding line X so as to face in the direction opposite to the direction in which the metal plate 5 exists.
  • the position is located on the thicker side (the material part of the joint J where the pressure rollers 3 and 4 first contact) starting from the step S of the joint J.
  • the shaft cores 15 and 16 of the pressure rollers 3 and 4 are inclined so that the shaft ends of the pressure rollers 3 and 4 to be directed face the rolling direction A of the joint J.
  • the shearing force corresponding to the speed vector component R2 in the direction in which the metal material 5 with which the pressure roller 3 or 4 first contacts from the step S of the joint J of the metal plates 5 and 6 is present. 14 acts, rolling and smoothing the stepped portion while applying shear deformation in the direction perpendicular to the welding line in the same direction.
  • a force in the direction opposite to the shearing force 14 acts as a thrust force 13 from the joint J to the pressure rollers 3 and 4.
  • the reaction force of the thrust force 13 acts on the joint J as the shear force 14.
  • the second setting method is to incline the pressure rollers 3 and 4 in the opposite direction as compared with the first setting method. That is, the pair of pressure rollers 3 and 4 are set so that the traveling direction portions 3A and 4A are in the horizontal plane and the metal material 5 with which the pressure rollers 3 and 4 first contact is located. In this case, the shaft cores 15 and 16 of the pressure rollers 3 and 4 are inclined with respect to the straight line Y orthogonal to the welding line X. In other words, among the joints (mash seam welded parts) J of the metal plates 5 and 6, the pressure roller 3 or 4 is first contacted on the thin side starting from the step S of the joint J.
  • the shaft cores 15 and 16 of the pressure rollers 3 and 4 are inclined so that the shaft ends of the pressure rollers 3 and 4 positioned in the non-material portion are oriented in the rolling direction A of the joint J.
  • the velocity vector component R2 corresponds to the direction opposite to the direction in which the metal material with which the pressure roller 3 or 4 is first contacted from the step S of the joint J of the metal plates 5 and 6 is present.
  • the applied shear force 14 acts, and the step portion is rolled and smoothed while applying shear deformation in the direction perpendicular to the weld line in the same direction. At this time, the force in the direction opposite to the shearing force 14 acts as the thrust force 13 from the joint J to the pressure rollers 3 and 4.
  • the first setting method is adopted.
  • the reason is as follows.
  • the step S can be plastically flowed by the shearing force 14 and smoothed.
  • a step of the step S is folded into the base material, and a new problem occurs in which the step S is buried in the base material in a crack shape.
  • the tip of the buried step becomes a singular stress field, which causes damage.
  • the direction in which the pressure rollers 3 and 4 are inclined is preferably set such that the traveling direction portions 3A and 4A of the pair of pressure rollers 3 and 4 are in a horizontal plane as shown in FIGS. 20A and 20B.
  • 4 are oriented in a straight line Y perpendicular to the welding line X so that the shaft cores 15 and 16 of the pair of pressure rollers 3 and 4 are directed in a direction opposite to the direction in which the metal plate 5 with which the metal material first contacts is present.
  • the directions are inclined, and in this case, as shown in FIG. 20B, the step difference can be smoothed without burying the step S in a crack in the base material, and the quality of the joint is improved. .
  • the inclination angle (corresponding to the inclination angle ⁇ in FIG. 5) of the shaft cores 15 and 16 of the pressure rolls 3 and 4 is set according to the size (step amount) of the step S of the joint.
  • step amount the size of the step S of the joint.
  • the tilt angle is set small, and as the step amount is large, the tilt angle is set larger. That is, as in the case of the electrode wheel described with reference to FIG. 5, the shear deformation due to the inclination of the axis 15 of the upper pressure roller 3 is caused by the contact length portion between the upper pressure roller 3 and the material (contact arc in FIG. 5).
  • the step amount of the mash seam weld J differs between the front and back surfaces, but is set to the inclination angle of the upper pressure roll 3 corresponding to the step amount as described above. By doing so, the step can be smoothed.
  • the rolling state of the lower pressure roller 4 provided with the inclination angle and the inclination angle of the lower pressure roller 4 is set according to the lower step amount.
  • the shaft cores 15 and 16 of the pair of pressure rollers 3 and 4 are inclined with respect to the straight line Y orthogonal to the welding line X, and the pair of pressure rollers 3 and 4 are moved by the electric motors 63 and 64.
  • a shearing force in the direction perpendicular to the weld line acts on the joint J, and the step S is smoothed. Since this shear force depends on the deformation resistance of the material, the higher the deformation resistance, the greater the thrust force 13 acting on the pressure rollers 3 and 4 from the metal plates 5 and 6.
  • the thrust force 13 increases in this way, there is a problem that the life of the pressure rollers 3 and 4 and their bearings is reduced, and the holding force for the thrust force 13 is set to increase the size of the entire apparatus.
  • FIG. 22 is a diagram showing the correlation between material temperature and deformation resistance when the metal plate is plain steel.
  • the deformation resistance of the metal plates 5 and 6 depends on the material temperature, and when the metal plates 5 and 6 are plain steel, they have the temperature characteristics shown in FIG.
  • the temperature of the joint J is preferably 300 ° C. or higher, more preferably 500 ° C. or higher, thereby reducing the deformation resistance value of the metal plates 5 and 6, and the thrust force 13 By suppressing the increase in size, the equipment can be downsized.
  • a pair of upper and lower pressure rollers 3 and 4 are disposed in the carriage frame 9 adjacent to the pair of upper and lower electrode wheels 1 and 2, and the carriage frame 9 is moved in the welding direction so as to join and apply.
  • the pressure is continuously applied. Although it depends on the plate thickness of the metal plates 5 and 6, the temperature in the vicinity of the joint rises to about 1000 ° C. to 1400 ° C. immediately after passing through the electrode wheel, and the joint J is estimated to be at a higher temperature.
  • the temperature of the joining portion J during pressurization by the pressure rollers 3 and 4 can be easily increased to 300 ° C. or more by using the residual heat of the joining portion J generated by welding.
  • the temperature can be increased to 500 ° C. or more, and the equipment can be downsized.
  • the same setting as in the case of the electrode wheel described with reference to FIG. 13 can be performed before the start of mash seam welding. That is, the first setting for bringing the upper and lower pressure rollers 3 and 4 into contact with each other in at least one step, preferably both steps, before and after the rolling of the joint J, and between the upper and lower pressure rollers 3 and 4. Is set to one of the second settings in which contact is made with a light load compared to the pressing force during rolling. In the former first setting, the upper and lower pressure rollers 3 and 4 are rotated by the electric motors 63 and 64.
  • a control system similar to that of the previous embodiment described with reference to FIG. 9 can be employed. That is, a host system, a carriage frame drive controller, a mash seam controller, a pressure roller controller, and a control system having a laser distance meter are provided, and the electrode wheels 1 and 2 and the pressure rollers 3 and 4 are metal plates.
  • the above-described setting state (first setting or second setting) regarding the contact of the upper and lower electrode wheels 1 and 2 and the contact of the upper and lower pressure rollers 3 and 4 The cylinder device 57 for driving the carriage frame 9, the electrode wheel pressing device 10, and the electric motors 61 and 62, pressurization so that the driving state differs depending on the setting state (first setting or second setting) described above.
  • the driving of the roller pressing device 11 and the electric motors 63 and 64 can be controlled.
  • the same tilting device as that of the electrode wheel described with reference to FIG. 10 can be provided for the upper and lower pressure rollers 3 and 4 in which the shaft cores 15 and 16 are tilted. Accordingly, it is possible to easily set an optimal inclination angle as appropriate and to provide a bonding apparatus having a wide range of different thicknesses of bonding materials.
  • the electrode wheel pressing device 10 having the tilting mechanism 27 and the pressure roller pressing device 11 having the tilting mechanism 27 are arranged in the same carriage frame 9, but they are arranged in separate frames.
  • the function of the present invention is not impaired.
  • the thickness of the joint J is reduced by shear deformation in the direction perpendicular to the weld line X both during mash seam welding with the electrode wheels 1 and 2 and rolling with the pressure rollers 3 and 4.
  • rolling can be reliably performed to the thickness equivalent to the base metal thickness of the metal plate and the level difference can be smoothed, and the junction of different thickness metal plates can smooth the level difference or greatly reduce the level gradient. I can do it.
  • the stress concentration factor can be more reliably reduced and high bonding strength can be ensured.
  • the stress concentration factor of the joint can be reduced and high joint strength can be ensured.
  • the effects such as the cold rolling process that has not been performed and the expansion of the application of mash seam welding to tailored blanks, the prevention of scratches on work rolls in the steel sheet processing line, and the improvement of productivity and yield are further ensured.
  • the traveling direction portions 3A and 4A of the pair of pressure rollers 3 and 4 are in the horizontal plane, and the pressure rollers 3 and 4 are directed in the opposite direction to the direction in which the metal plate 5 with which the metal material first contacts is present.
  • the shaft cores 15 and 16 of the pair of pressure rollers 3 and 4 are inclined with respect to the straight line Y orthogonal to the welding line X, and the pressure rollers 3 and 4 are stepped from the step S of the joint J of the metal plates 5 and 6. Is rolled while applying a shearing force in the direction in which the metal plate 5 with which the metal material first contacts is applied, the step portion can be prevented from being folded into the base material of the metal plates 5 and 6. A crack-like defect (unwelded defect) generated when the part is folded into the base material can be prevented, and the quality of the joint is improved.
  • a pair of upper and lower pressure rollers 3 and 4 for rolling the joint J of the two metal plates 5 and 6 joined by mash seam welding are further provided, and the pair of pressure rollers 3 and 4 are respectively connected to the respective shaft cores 15 and 15. Since 16 is installed so as to be inclined in a horizontal plane with respect to a straight line Y orthogonal to the weld line X, the step gradient of the joint between the two metal plates 5 and 6 can be reduced, and high joint strength can be ensured and compared. It is possible to provide a manufacturing facility for generating nugget N generated by mash seam welding with a simple and inexpensive configuration at the bonding interface to improve the bonding strength and to increase the allowable bonding thickness.

Abstract

  上下一対の電極輪1,2を、それらの軸芯17,18が2枚の金属板5,6の重ね合わせ部分Lに形成される溶接線Xに直交する直線Yに対して水平面内で互いに反対方向に傾斜するよう配置し、電動モータ61,62で積極的に駆動しながらマッシュシーム溶接を行う。これにより接合部の増厚量及び段差勾配を大幅に低減することができ、応力集中係数が低減し、高い接合強度を確保することが出来る。また、ナゲットNが接合界面から外れないように接合される。電極輪1,2の軸芯17,18の傾斜方向は、電極輪1,2の進行方向部分1A,2Aが水平面内で電極輪1,2が最初に接触する金属板の存在する方向を向く方向とする。これにより重ね合わせ部分Lの金属板の端部が電極輪1,2へ食い込んで電極輪に疵を付けることを防止し、溶接時にチリが発生するのを防止することが出来る。

Description

マッシュシーム溶接方法及び装置
 本発明は、2枚の金属板の端部を重ね合わせ、その重ね合わせ部分を上下一対の電極輪で加圧し、溶接電流を流しながら連続的に溶接し、2枚の金属板を接合するマッシュシーム溶接方法及び装置に関する。
 マッシュシーム溶接機は、2枚の金属板の端部を重ね合わせ、その重ね合わせた部分を一対の電極輪で加圧し、溶接電流を流しながら連続的に溶接すると同時に、高温状態に加熱され軟化した接合部を電極輪で圧延することにより、接合部厚みを低減する溶接方式である。しかし、この溶接方式では、接合部を母材厚み相当まで圧延することは出来ず、接合部厚みは母材(金属板)の厚みの120から160%程度に増加し、接合部と母材間には段差が生成する問題がある。
 該接合部厚みを低減する方法として、上下一対の電極輪に隣接してその片側に上下一対の加圧ローラを設置し、マッシュシーム溶接前に、それら電極輪及び加圧ローラを支持する台枠を加圧ローラが先導する方向に移動して金属板の重ね合わせ部を加圧ローラで圧延し、圧延完了後、重ね合わせた金属板を微小量離間させ、接合部厚みを減少させた後に、上記台枠を反対方向に移動して当該重ね合わせ部を一対の電極輪で加圧し、溶接電流を流しながら、連続的にマッシュシーム溶接し、更に当該接合部を加圧ローラで圧延することで、接合部厚みを減少させる方法が提案されている(特許文献1及び2)。
 また、マッシュシーム溶接の接合部厚みを低減し、且つタクトタイムを低減する目的で、上下一対の電極輪に隣接してその両側に上下一対の第1及び第2の加圧ローラを設置し、それら電極輪及び加圧ローラを支持する台枠を第1の加圧ローラが先導する一方向に移動して金属板の重ね合わせ部を一対の第1の加圧ローラで圧延後、該加圧ローラに後行する一対の電極輪で該圧延部を加圧し、溶接電流を流しながら、連続的にマッシュシーム溶接を行い、更に、該電極輪に後行する第2の加圧ローラで該接合部を圧延することで、接合部厚みを減少させる方法及び装置が提案されている(特許文献1及び2)。
 また、重ね合わせた2枚の金属板をマッシュシーム溶接方式で接合する場合には、一対の電極輪で把持した金属板厚みの中央部にナゲットと称する溶融凝固部が生成する。金属板の板厚差が大きいほど、接合界面は重ね合わせた金属板厚みの中央部から離れるため、接合界面がナゲットから外れ、接合強度が低下する問題がある。このため、接合する金属板の板厚比を制限しなければならない課題があった。
 接合する金属板の板厚比の制限を緩和するため、マッシュシーム溶接後の各金属板の板厚がほぼ同等となるように、電極輪と材料間の接触面積を各々設定し、ナゲットを接合界面に生成させ、許容接合板厚比を拡大する手段が提案されている(特許文献3)。
特公平2-15314号明細書 特公平2-16191号明細書 特許3350933号明細書
 マッシュシーム溶接機は、2枚の金属板の端部を重ね合わせ、その重ね合わせた部分を一対の電極輪で加圧し、溶接電流を流しながら連続的に溶接すると同時に、高温状態に加熱され軟化した接合部を電極輪で圧延することにより、接合部厚みを低減する溶接方式であるため、接合材料の厚みを減少させる塑性加工仕事の多くを電極輪による圧延が担う。減厚される接合部の塑性流動は電極輪の圧延方向が主体となるが、接合部は隣接する金属板の母材と連続体の関係にあり、圧延方向への塑性流動は母材の拘束を受ける。この結果、接合部を母材厚みまで圧延することは出来ず、マッシュシーム溶接方式の接合部厚みは母材(金属板)の厚みの120から160%程度に増加し、接合部と母材の厚みが異なることで、高い応力集中係数を有する段差が接合部に生成する。この接合部に応力が作用する場合には、著しく強度が低下する問題があり、この制約によりマッシュシーム溶接の適用範囲が限られる課題があった。また、急峻な段差による鋼板加工ラインにおける作業ロールの傷付き発生或いは生産性及び歩留まり低下の問題があった。
 例えば、マッシュシーム溶接機の接合部は母材の120から160%程度にステップ状に増厚するため、マッシュシーム溶接機をそのまま合計圧下率の大きな冷間圧延設備へ適用した場合には、接合部の段差部が母材に亀裂状に折り込まれる結果、ストリップと称される金属板の該接合部で有効断面積が低下することで、冷間圧延の際に付与される張力に対する単位張力が増加すると共に、亀裂状に折り込まれた段差の先端部が特異応力場になることで、飛躍的に破断確率が高くなる。これにより、安価で小型なマッシュシーム溶接機は合計圧下率の大きな冷間圧延設備への適用は出来ず、高価で大型のフラッシュバット溶接機もしくはレーザビーム溶接機を適用せざるを得ない課題があった。
 また、テーラードブランクでは、異なる厚み及び材料強度を有する鋼板を安価に接合出来るマッシュシーム溶接機が適用されているが、増厚した接合部の成形性に問題が生じる部位及び接合部段差に起因する応力集中の問題が生じる部位への接合には、適用することが出来ず、高価なレーザビーム溶接機を適用せざるを得なかった。
 また、製鉄業界における連続焼鈍ライン、亜鉛メッキ鋼板製造設備等の生産ラインには、歩留まり及び生産性を向上させる目的で、生産プロセスを連続化するための接合装置として、安価なマッシュシーム溶接機が適用されている。しかしながら、上述の如く、マッシュシーム溶接では接合部厚みが厚くなり、急峻な段差が形成されるため、接合部がスキンパス圧延機を通過する際には、作業ロールへの傷付き防止ならびに接合部段差の作業ロールへのマーク転写を防止する目的で、スキンパス圧延機前後のライン速度を低下させ、圧延機の作業ロールを開放乃至は圧延荷重を低下させ、作業ロールへの傷付きを防止する等の運転方法を採用し、生産性及び歩留まりが低下する課題があった。
 特許文献1及び2に記載の従来の方法のうち、圧延完了後、重ね合わせた金属板を微小量離間させ、接合部厚みを減少させた後に連続的にマッシュシーム溶接し、更に当該接合部を加圧ローラで圧延する前者の方法では、母材の110%程度の厚みまで接合部厚みを減少させることが出来る。しかしながら、金属板の端部を離間させる距離が大き過ぎた場合には、接合部近傍に、溶接前の加圧ローラの圧延による窪みが残り、離間量が不足した場合には、接合部の増厚量が増大する。このため、離間設定量の最適範囲がピンポイントにしか存在せず、ロバスト性に劣り、高い品質の接合強度を安定して確保することが困難であった。
 特許文献1及び2に記載の従来の方法のうち、電極輪の両側に加圧ローラを設置し、台枠の一方向の移動で溶接前の圧延、溶接、溶接後の圧延を連続的に行う方法では、接合部の厚みが十分に低減できない等の課題がある。すなわち、金属板はマッシュシーム溶接時の重ね合わせ量がずれないようにクランプ装置で把持され、そのクランプ装置により溶接線直角方向に拘束されているため、溶接後の加圧ローラによる圧延加工においては、溶接線直角方向の塑性流動量は限られ、該ローラ進行方向に、金属を塑性流動させることが主体となる。上述のマッシュシームの電極輪の圧延と同様にして、加圧ローラによる圧延部の塑性流動は母材の拘束を受け、延びが著しく制限されるため、母材厚みまで減厚することが出来なかった。また、加圧ローラによる圧延加工においては、圧延により減少した接合部厚みの体積は、接合部の長手方向へ塑性流動させられ、接合部長さが長くなることで、吸収される。よって、加圧ローラで延ばされた接合部と母材間で延び差が生じ、接合部が湾曲もしくは波状に変形する問題があった。
 これらにより、マッシュシーム溶接方式では、接合部の増厚を抑え、接合部と母材との間に段差を生成させることなく接合することは従来困難とされ、安定して接合部の増厚量ならびに段差勾配を低減し、かつ高い接合強度を有するマッシュシーム溶接方法が望まれて来た。
 一方、マッシュシーム溶接では一対の電極輪で加圧された2枚の金属板の板厚方向中央部にナゲットが生成する。2枚の金属板の板厚差が大きい場合には、ナゲット生成個所が接合界面を外れ、接合強度が低下する問題があり、接合する2枚の金属板の板厚比を1:1.5程度以下に制限し、これ以上の板厚比に対してはマッシュシーム溶接を適用しないのが実情であった。
 従来、その問題を解決する手法としては、特許文献3に開示されているように、互いに平行な二軸芯まわりに回転可能に設けられた一対の電極輪の内、厚い金属板側の接触面積を薄い金属板側の電極輪の接触面積より小さくすることで、マッシュシーム後の板厚を概略揃える方法が提案されている。しかしながら、2枚の金属板の板厚差を定量的に制御するためには、金属板の重ね合わせ部を電極輪端部に配置しなければならない。例えば、2mmと3mmの金属板の接合では、金属板の重ね合わせ量は概略板厚相当となるため、電極輪と材料間の接触幅は2mmから3mm程度となる。電極輪の胴端に接合部を配置し、電極輪と金属板間の面圧を必要精度維持する場合には、上下方向に動作する電極輪フレームの隙間、電極輪軸受隙間ならびに電極輪の摩耗量を0.2mmから0.3mm程度の高い水準で管理し、接合幅方向の位置決め精度を高めなければならない課題があった。また、金属板の位置を決定するクランプ装置にも高い剛性と精度が求められ、設備が大型で高価なものになる課題があった。更には、たとえナゲットを接合界面中央部に生成させることが出来たとしても、接合部厚みを母材と同程度に低減させることが出来ず、疲労強度が要求される部位への適用は限定されるという課題が残った。
 本発明の第1の目的は、2枚の金属板の接合部の段差勾配を低減し、高い接合強度を確保出来るマッシュシーム溶接方法及び装置を提供することである。
 本発明の第2の目的は、板厚の異なる金属板を接合する場合に、比較的簡単で安価な構成で、マッシュシーム溶接で生成するナゲットを接合界面に生成させることが出来、接合強度を向上させ、許容接合異厚量を拡大することが出来るマッシュシーム溶接方法及び装置を提供することである。
<第1の発明>
 上述した課題を解決する第1の発明は、2枚の金属板の端部を重ね合わせ、その重ね合わせ部分を上下一対の電極輪で加圧し、溶接電流を流しながら連続的に溶接し、前記2枚の金属板を接合するマッシュシーム溶接方法において、前記一対の電極輪の軸芯を、前記2枚の金属板の重ね合わせ部分に形成される溶接線に直交する直線に対して、互いに反対方向に水平面内で傾斜させ、前記一対の電極輪を積極的に駆動しながら前記2枚の金属板を接合することを特徴とする。
 このように上下一対の電極輪の軸芯を傾斜させ、一対の電極輪を積極的に駆動しながら2枚の金属板を接合することにより、2枚の金属板の重ね合わせ部分に溶接線に直交する方向の剪断力が作用し、これが重ね合わせ部分に同方向の剪断変形を与え、従来の電極輪の圧延による溶接線方向の塑性流動に加え、溶接線に直交する方向の塑性流動が生じ、この溶接線に直交する方向の塑性流動により接合後の重ね合わせ部分(接合部)の増厚量を著しく低減する。その結果、その直後にその接合部を加圧ローラで圧延することにより、接合部の増厚量が更に低減し、段差勾配を大幅に低減することができる。また、段差勾配が低減するため、応力集中係数が低減し、高い接合強度を確保することが出来る。
 また、2枚の金属板の板厚が異なる場合は、金属板の板厚に応じて電極輪の軸芯の傾斜角度を調整することで、重ね合わせ部分におけるそれぞれの金属板の減厚量が調整されるため、ナゲットが接合界面から外れないように接合される。したがって、段差勾配の低減による応力集中係数の低減に加え、ナゲットを接合界面に生成させることによって接合部の接合強度が飛躍的に向上し、許容接合異厚量を拡大し、操業の自由度を向上することが出来る。しかも、一対の電極輪を傾斜させ、積極駆動するだけの構成であるので、比較的簡単で安価な構成で実現することが出来る。
<第2の発明>
 上述した課題を解決する第2の発明は、第1の発明に係わるマッシュシーム溶接方法において、前記一対の電極輪の進行方向部分が水平面内で、前記電極輪が最初に接触する金属板の存在する方向を向くように、前記一対の電極輪の軸芯を前記溶接線に直交する直線に対して、各々傾斜させ、前記2枚の金属板を接合することを特徴とする。
 これにより電極輪が溶接の進行に伴い重ね合わせ部分を移動するとき、重ね合わせ部分の金属板の端部が電極輪へ食い込んで電極輪に疵を付けることを防止し、その結果、その疵が原因で溶接時にチリが発生するのを防止することが出来る。
<第3の発明>
 上述した課題を解決する第3の発明は、第1又は2の発明に係わるマッシュシーム溶接方法において、前記2枚の金属板は板厚が異なり、前記2枚の金属板の板厚が厚い側の電極輪の軸芯の傾斜角度を薄い側の電極輪の軸芯の傾斜角度より大きくしたことを特徴とする。
 このように2枚の金属板の板厚が厚い側の電極輪の軸芯の傾斜角度を大きくすることで、板厚が厚い側の金属板の減厚量を大きくし、板厚の薄い金属板の減厚量とほぼ一致させ、ナゲットが接合界面に生成するように接合し、接合強度を向上させることが出来る。
<第4の発明>
 上述した課題を解決する第4の発明は、第1~3の発明のいずれかに係わるマッシュシーム溶接方法において、前記重ね合わせ部分の溶接開始前と溶接終了後の少なくとも一方の工程では、前記一対の電極輪を接触させる第1設定と、前記一対の電極輪を接触させないか、前記溶接時の押圧力に比較し軽荷重で接触させる第2設定のいずれかの設定とし、前記第1設定では前記一対の電極輪を非駆動とし、前記第2設定では前記一対の電極輪を駆動することを特徴とする。
 これにより上下電極輪へ過大なスラスト力が作用することを防止出来、上下電極輪軸受の寿命が延び、更には、上下電極輪の摩耗が抑制され、ランニングコストを低減出来る。
<第5の発明>
 上述した課題を解決する第5の発明は、第1~4の発明のいずれかに係わるマッシュシーム溶接方法において、前記2枚の金属板を前記マッシュシーム溶接により接合した後、一対の加圧ローラの軸芯を前記溶接線に直交する直線に対して水平面内で傾斜させ、前記一対の加圧ローラを積極的に駆動して前記接合部の段差を前記加圧ローラの進行方向に圧延することを特徴とする。
 このように上下一対の加圧ローラの軸芯を傾斜させ、一対の加圧ローラを積極的に駆動しながら圧延することにより、上下一対の電極輪の軸芯を傾斜させた場合と同様、接合部に溶接線に直交する方向の剪断力が作用し、これが接合部に剪断変形を与え、この溶接線に直交する方向の剪断流動により接合部の増厚量を著しく低減する。その結果、電極輪によるマッシュシーム溶接時と加圧ローラによる圧延時の両方で、溶接線に直交する方向の剪断変形により接合部の増厚量を低減し、同厚の金属板の接合では金属板の母材厚み相当まで確実に圧延して段差を平滑化することが出来、異厚の金属板の接合部は段差を平滑化或いは段差勾配を大幅に低減することが出来る。その結果、電極輪の軸芯のみを傾斜させた場合に比べて、より確実に応力集中係数を低減し、高い接合強度を確保することが出来る。
<第6の発明>
 上述した課題を解決する第6の発明は、第5の発明に係わるマッシュシーム溶接方法において、前記一対の加圧ローラの進行方向部分が水平面内で、前記加圧ローラが最初に接触する金属材料が係わる金属板の存在する方向と反対方向を向くように、前記一対の加圧ローラの軸芯を前記溶接線に直交する直線に対して、各々傾斜させ、前記接合部の段差を前記進行方向に圧延することを特徴とする。
 これにより段差部が金属板の母材に折り込まれることを防止することが出来、段差部が母材に折り込まれた場合に生成する亀裂状欠陥(未溶着欠陥)を防止することが出来、接合部の品質が向上する。
<第7の発明>
 上述した課題を解決する第7の発明は、2枚の金属板の端部を重ね合わせ、その重ね合わせ部分を上下一対の電極輪で加圧し、溶接電流を流しながら連続的に溶接し、2枚の金属板を接合するマッシュシーム溶接装置において、前記一対の電極輪は、それぞれの軸芯が前記2枚の金属板の重ね合わせ部分に形成される溶接線に直交する軸線に対して、互いに反対方向に水平面内で傾斜するよう設置されていることを特徴とする。
 これにより第1の発明に係わるマッシュシーム溶接方法において、2枚の金属板の接合部の段差勾配を低減するため、応力集中係数が低減し、高い接合強度を確保するとともに、2枚の金属板の板厚が異なる場合は、比較的簡単で安価な構成でマッシュシーム溶接で生成するナゲットを接合界面に生成して接合強度を向上させ、許容接合異厚量を拡大する製造設備を提供出来る。
<第8の発明>
 上述した課題を解決する第8の発明は、第7の発明に係わるマッシュシーム溶接装置において、前記一対の電極輪の軸芯を前記溶接線に直交する軸線に対し、それぞれ独立して水平面内で傾斜させる機構を有することを特徴とする。
 これにより金属板の板厚に応じ、適宜最適な傾斜角を容易に設定出来るとともに、金属板の板厚の異厚範囲の広いマッシュシーム溶接装置を提供出来る。
<第9の発明>
 上述した課題を解決する第9の発明は、第7又は第8の発明に係わるマッシュシーム溶接装置において、前記マッシュシーム溶接により接合した2枚の金属板の接合部を圧延する上下一対の加圧ローラを更に備え、前記一対の加圧ローラは、それぞれの軸芯が前記接合部の溶接線に直交する直線に対して水平面内で傾斜するよう設置されていることを特徴とする。
 これにより第5の発明に係わるマッシュシーム溶接方法において、電極輪によるマッシュシーム溶接時と加圧ローラによる圧延時の両方で、溶接線に直交する方向の剪断変形により接合部の増厚量を低減し、金属板の接合部は段差を平滑化或いは段差勾配を大幅に低減することが出来、より確実に応力集中係数を低減し、高い接合強度を確保する製造設備を提供出来る。
<第10の発明>
 上述した課題を解決する第10の発明は、第9の発明に係わるマッシュシーム溶接装置において、前記一対の加圧ローラの軸芯を前記溶接線に直交する直線に対し、それぞれ独立して水平面内で傾斜させる機構を有することを特徴とする。
 これにより段差量に応じ、適宜最適な傾斜角を容易に設定出来るとともに、金属板の板厚の異厚範囲の広い接合装置を提供出来る。
 本発明によれば、マッシュシーム溶接方式で金属板を接合する場合に、上下一対の電極輪の軸芯を傾斜させ、一対の電極輪を積極的に駆動しながら2枚の金属板を接合するので、溶接線直角方向に剪断変形により接合部の増厚量を著しく低減し、段差勾配を大幅に低減することが可能となり、その結果、応力集中係数が低減し、高い接合強度を確保することが出来る。
 また、本発明によれば、2枚の金属板の板厚が異なる場合は、金属板の板厚に応じて電極輪の軸芯の傾斜角度を調整することで、ナゲットを接合界面に生成させることが出来、これによっても接合強度を向上させ、許容接合異厚量を拡大し、操業の自由度を向上することが出来る。しかも、一対の電極輪を傾斜させ、積極駆動するだけの比較的簡単で安価な構成で実現することが出来る。
 また、本発明によれば、金属板の接合部の段差勾配を低減或いは接合部の段差を平滑化することで、接合部の応力集中係数を低減し、高い接合強度を確保出来るため、下記のようにマッシュシーム溶接の適用範囲拡大、鋼板加工ラインにおける作業ロールの傷付き防止或いは生産性及び歩留まり向上等の効果が得られる。
 すなわち、本発明では、マッシュシーム溶接の接合部の段差勾配を低減、或いは接合部の段差を平滑化し、接合部の応力集中係数を低減し、高い接合強度を確保することが出来るため、製鉄用冷間圧延プロセスにおいては、次工程における冷間圧延時の作業ロールへの傷付き防止及び耐張力性能が向上するため、従来適用されなかった冷間圧延プロセスへのマッシュシーム溶接が適用可能となる。
 また、テーラードブランクにおいても、その接合部段差の応力集中により、疲労強度が必要な部位へのマッシュシーム溶接の適用が避けられて来たが、段差勾配の低減或いは段差の平滑化により応力集中が緩和され、プレス成形性も向上することで、高価なレーザビーム溶接機から安価なマッシュシーム溶接機への変更が可能となる。
 また、連続焼鈍ライン、亜鉛メッキ鋼板製造設備等の生産ラインでは、スキンパス圧延機の作業ロールと接合部の接触角度(応力集中係数)を低減させることが出来、この結果作業ロールと材料間の接触面圧を低減し、ライン速度を低下させることなく作業ロールへの傷付きならびに接合部マーク転写を防止することが出来、生産性及び歩留まりを向上することが出来る。
 更に、本発明によれば、電極輪の軸芯を水平面内で反対方向に傾斜させたため、電極輪による接合時、接合部に作用する剪断力が、クランプ装置に向かう力と打ち消し合うこととなり、これによりクランプ装置を接合部の直近に配置しなくても、板厚の薄い金属板を接合する際のクランプ装置と接合部間の金属板部分の座屈を防止することが出来、その結果、クランプ装置と接合部間に比較的広いスペースを確保することが出来、電極輪及び加圧ローラ並びにそれらに係わる設備配置の制約を緩和することが出来る。
本発明の一実施の形態に係わるマッシュシーム溶接装置の概略図である。 板厚の等しい2枚の金属板を重ね合わせ、その重ね合わせ部分を上下一つの電極輪で加圧している溶接開始時の状態を示す図である。 従来の軸芯を傾斜させない電極輪を用いて板厚の等しい2枚の金属板をマッシュシーム溶接により接合した直後の段差を有する接合部形状を示す図である。 本実施の形態による電極輪を用いて2枚の金属板をマッシュシーム溶接により接合した直後の段差を有する接合部形状を示す図である。 電極輪の軸芯を傾斜して重ね合わせ部を接合する場合の接触孤長内でのメタルフローを示す図であり、一例として、上電極輪1の場合を示す図である。 一対の電極輪の軸芯を溶接線に直交する直線に対し、電極輪の進行方向の側に位置する部分が水平面内で、電極輪が最初に接触する金属板の存在する方向と反対方向を向くように、各々傾斜させた場合の溶接時の接合部断面ならびに電極輪を、電極輪後方から電極輪進行方向に見た図である。 図6の溶接時の状態において、上電極輪を傾斜させる方向を明らかにするため、上電極輪を鉛直上方から見た図である。 図6の溶接時の状態において、下電極輪を傾斜させる方向を明らかにするため、下電極輪を鉛直上方から見た図である。 一対の電極輪の軸芯を溶接線に直交する直線に対し、電極輪の進行方向の側に位置する部分が水平面内で、電極輪が最初に接触する金属板の存在する方向を向くように、各々傾斜させた場合の溶接時の接合部断面ならびに電極輪を、電極輪後方から電極輪進行方向に見た図である。 図8の溶接時の状態において、上電極輪を傾斜させる方向を明らかにするため、上電極輪を鉛直上方から見た図である。 図8の溶接時の状態において、下電極輪を傾斜させる方向を明らかにするため、下電極輪を鉛直上方から見た図である。 従来の軸芯を傾斜させない電極輪を用いて同厚の2枚の金属板をマッシュシーム溶接により接合した場合のナゲット生成箇所を示す図である。 従来の軸芯を傾斜させない電極輪を用いて異厚の2枚の金属板をマッシュシーム溶接により接合した場合のナゲット生成箇所を示す図である。 接合後の各金属板の厚みが均等となるよう、板厚が厚い金属板側の電極輪軸芯の傾斜角度を、薄い側と比較し大きく設定し、接合する場合の溶接時の状態を示す図である。 図11の溶接時の状態において、上電極輪を傾斜させる方向を明らかにするため、上電極輪を鉛直上方から見た図である。 図11の溶接時の状態において、下電極輪を傾斜させる方向を明らかにするため、下電極輪を鉛直上方から見た図である。 マッシュシーム溶接開始前の上下電極輪の軸芯を傾斜させ、上下電極輪を押圧している状態と上下加圧ロールを押圧している状態を示す、図1と同様な図である。 上下電極輪の軸芯を傾斜した状態で上下電極輪を押圧及び駆動した際の上下電極輪の速度ベクトルならびに相対滑り速度を示す図である。 図1に示したマッシュシーム溶接装置の制御系の概略を示す図である。 電極輪の軸芯の傾斜角度を任意の角度に変更可能とする電極輪傾斜機構を示す図である。 接合部に段差のある状態の応力集中箇所を示す。 従来のマッシュシーム溶接部と圧延機用作業ロールとの取り合いを示す図である。 電極輪の軸芯を傾斜させて圧延し、接合部の段差を平滑化した場合のマッシュシーム溶接部と圧延機用作業ロールとの取り合いを示す図である。 本発明の他の実施の形態に係わるマッシュシーム溶接装置の概略図である。 一対の加圧ローラの進行方向部分が水平面内で、加圧ローラが最初に接触する金属材料が係わる金属板の存在する方向と反対方向を向くように、一対の加圧ローラの軸芯を溶接線に直交する直線に対して、各々傾斜させ、圧延する場合の加圧ローラ圧延初期状態を示す図である。 図20Aのように圧延した場合の加圧ローラ圧延終了状態を示す図である。 図20Aと比較し、加圧ローラを逆向きに傾斜させた場合、すなわち一対の加圧ローラの進行方向部分が水平面内で、加圧ローラが最初に接触する金属材料が係わる金属板の存在する方向を向くように、一対の加圧ローラの軸芯を溶接線に直交する直線に対して、各々傾斜させ、圧延する場合の加圧ローラ圧延初期状態を示す図である。 図21Aのように圧延した場合の加圧ローラ圧延終了状態を示す図である。 金属板が普通鋼の場合の材料温度と変形抵抗の相関を示す。
符号の説明
1:上電極輪
1A:電極輪進行方向部分
2:下電極輪
2A:電極輪進行方向部分
3:上加圧ローラ
4:下加圧ローラ
5:金属板
5A:端部
6:金属板
6A:端部
7:入側クランプ装置
8:出側クランプ装置
9:キャリッジフレーム
10:電極輪押圧装置
11:加圧ローラ押圧装置
13:剪断力
14:スラスト力
15:上加圧ローラ軸芯
16:下加圧ローラ軸芯
17:上電極輪軸芯
18:下電極輪軸芯
22:上作業ロール
23:下作業ロール
27:電極輪傾斜機構
28:上電極輪速度ベクトル
29:下電極輪速度ベクトル
30:相対滑り速度
45:加圧ローラ軸芯直角方向直線
46:接触孤長部分
51,52:取り付けブロック
54:支持ローラ
55:台板
57:キャリッジフレーム駆動用のシリンダ装置
61,62:電動モータ
63,64:電動モータ
67,68:チェーン及びスプロケット機構
71:上位制御装置
72:キャリッジフレーム駆動制御装置
73:マッシュシーム制御装置
74:加圧ローラ制御装置
75:レーザ距離計
81:回転軸
82,83:ピニオン
84:電動モータ
85:傾斜角度制御装置
86:角度センサ
L:重ね合わせ部分
J:接合部
S:段差
N:ナゲット
A:進行方向(圧延方向)
X:溶接線(接合線)
Y:溶接線直角方向
R:接触孤長部分における加圧ローラの速度ベクトル
R1:速度ベクトルRの溶接線Xの方向の成分
R2:速度ベクトルRの溶接線Xに直角方向の成分
α,α1,α2:傾斜角度
 次に、本発明の実施の形態について図面を参照して説明する。本実施の形態における金属板は製鉄ラインにおける冷間圧延鋼板を例に説明する。
 図1は本発明の一実施の形態に係わるマッシュシーム溶接装置の概略図である。
 図1において、本実施の形態に係わるマッシュシーム溶接装置は、上下一対の電極輪1,2、上下一対の加圧ローラ3,4、入側及び出側クランプ装置7,8、キャリッジフレーム9、電極輪押圧装置10及び加圧ローラ押圧装置11を備えている。電極輪押圧装置10及び加圧ローラ押圧装置11は例えば油圧シリンダである。上電極輪1と上加圧ローラ3はそれぞれ電極輪押圧装置10及び加圧ローラ押圧装置11を介してキャリッジフレーム9の上水平フレーム9aに支持され、下電極輪2と下加圧ローラ4はそれぞれ取り付けブロック51,52を介してキャリッジフレーム9の下水平フレーム9bに支持されている。上下一対の加圧ローラ3,4はキャリッジフレーム9内で上下一対の電極輪1,2に隣接して配置されている。
 キャリッジフレーム9は底部に支持ローラ54を備え、支持ローラ54を介して台板55上を接合する2枚の金属板5,6に直交する方向(溶接方向)に移動可能である。入側及び出側クランプ装置7,8は、それぞれ、上下一対のクランプ部材7a,7b;8a,8bと、上下の押圧シリンダ装置7c,7d;8c,8dと、支持フレーム7e;8eを有し、クランプ部材7a,7b;8a,8bは支持フレーム7e;8e内で上下の押圧シリンダ装置7c,7d;8c,8dを介して支持され、支持フレーム7e;8eは台板55上に支持されている。
 マッシュシーム溶接装置は、また、上下一対の電極輪回転駆動用の電動モータ61,62を備え、上下一対の電極輪回転駆動用の電動モータ61,62は、それぞれ、電極輪押圧装置10及び取り付けブロック51の側面に取り付けられ、例えばチェーン及びスプロケット機構67により電極輪1,2の回転軸に連結され、電動モータ61,62の回転動力が電極輪1,2に伝達される。
 また、電極輪押圧装置10には、電極輪1,2の軸芯を傾斜させるための傾斜機構27(図16)が設けられている。
 図2は、板厚の等しい2枚の金属板5,6を重ね合わせ、その重ね合わせ部分を本実施の形態の上下一対の電極輪1,2で加圧している溶接開始時の状態を示す図であり、図3は、従来の軸芯を傾斜させない電極輪を用いて板厚の等しい2枚の金属板5,6をマッシュシーム溶接により接合した直後の段差を有する接合部形状を示す図であり、図4は、本実施の形態による電極輪1,2を用いて2枚の金属板5,6をマッシュシーム溶接により接合した直後の段差を有する接合部形状を示す図である。
 本実施の形態において、上下一対の電極輪1,2は、図2及び図4に示すように、それぞれの軸芯17,18が2枚の金属板5,6の重ね合わせ部分L(図2の斜線部分)に形成される溶接線X(図5参照)に直交する軸線Y(図5参照)に対して、互いに反対方向に水平面内で傾斜するよう設置され、電極輪1,2を電動モータ61,62で積極的に駆動しながら2枚の金属板5,6を接合する構成となっている。電極輪押圧装置10には電極輪1,2の軸芯17,18の傾斜角度を調整するための傾斜機構27(図16)が設けられている。
 金属板5,6の接合に際しては、まず、金属板5,6の端部を重ね合わせ、その状態で入側及び出側クランプ装置7,8のクランプ部材7a,7b;8a,8bで金属板5,6を把持して位置を固定する。次いで、台板55上に設けたシリンダ装置57等の駆動装置によりキャリッジフレーム9を溶接方向に移動させることで、キャリッジフレーム9に支持された上下一対の電極輪1,2と上下一対の加圧ローラ3,4を金属板5,6に対して相対的に移動させ、接合と加圧を連続して実施する。このとき、金属板5,6の重ね合わせ部分Lを上下一対の電極輪1,2で挟み、電極輪押圧装置10により電極輪1,2を金属板5,6の重ね合わせ部分Lに押圧し、電動モータ61,62で電極輪1,2を積極的に回転駆動しながら、電極輪1,2に溶接電流を流して抵抗発熱させ、溶接(マッシュシーム溶接)する。また、電極輪1,2により重ね合わせ部分Lを溶接した直後、その接合部(溶接部)Jを上下一対の加圧ローラ3,4で挟み、加圧ローラ押圧装置11により加圧ローラ3,4を接合部に押圧しながら、金属板5,6の接合部Jを加圧して圧延する。
 図3に示すように、従来の軸芯を傾斜させない電極輪1,2を用いてマッシュシーム溶接した場合の接合部J(図3の斜線部分)の厚さは金属板5,6の母材の板厚の120から160%程度に増加し、接合部と母材(金属板5,6)間に段差Sが生成する。すなわち、電極輪1,2を傾斜させない従来技術では、電極輪押圧装置10により電極輪1,2を金属板5,6の重ね合わせ部分Lに押圧して溶接しながら圧延したとしても、溶接線直角方向の塑性流動は電極輪1、2と材料間の摩擦係数で拘束されることにより限定され、また、電極輪1、2の進行方向の塑性流動は隣接する母材の拘束を受けるため、金属板の母材厚みまで、電極輪1、2で接合部厚みを低減することが出来なかった。
 本実施の形態では、上述したように、上下一対の電極輪1,2を、それらの軸芯17,18が重ね合わせ部Lの溶接線に直交する直線(溶接線直角方向の直線)に対して水平面内で互いに反対方向に傾斜するよう配置し、電極輪1,2を電動モータ61,62で積極的に駆動しながらマッシュシーム溶接を行う。
 これにより圧延方向(電極輪1,2及び加圧ローラ3,4の進行方向)のみならず、溶接線(接合線)Xに直交する直線Yの方向、すなわち溶接線直角方向の剪断力14が重ね合わせ部Lに作用し、この剪断力14による剪断変形により溶接線直角方向の塑性流動が促進され、接合部厚み(接合部の増厚量)を著しく低減する。その結果、その直後にその接合部Jを加圧ローラ3,4で圧延することにより、接合部Jの増厚量を更に低減して金属板の母材厚み相当まで圧延し、段差勾配を大幅に低減することができる。また、段差勾配が低減するため、応力集中係数が低減し、高い接合強度を確保することが出来る。
 上下一対の電極輪1,2の軸芯17,18を傾斜させることにより、溶接線直角方向の塑性流動(メタルフロー)が促進される作用の詳細を図5を用いて説明する。
 図5は、電極輪1,2の軸芯17,18を傾斜して重ね合わせ部Lを接合する場合の接触孤長内でのメタルフローを示す図であり、一例として、上電極輪1の場合を示している。図中、Aは電極輪1の進行方向(溶接方向)を示す矢印であり、Xは溶接方向A上にある重ね合わせ部Lに形成される溶接線を仮想的に示す直線であり、Yは溶接線Xに直交する直線である。また、45は電極輪1の軸芯17に直交する直線(軸芯直角方向の直線)であって、電極輪1の幅方向中央部を通る直線であり、αは電極輪1の傾斜角度(溶接線Xと上電極輪1の軸芯直角方向の直線45とのなす角度)である。更に、46は電極輪1が重ね合わせ部Lに接触する接触孤長部分であり、Rは接触孤長部分46における電極輪1の速度ベクトルであり、R1は速度ベクトルRの溶接線Xの方向の成分であり、R2は速度ベクトルRの溶接線Xに直角方向の成分である。
 図5に示すように電極輪1の軸芯17を溶接線Xに直交する直線Yに対して水平面内で傾斜させて電極輪1を重ね合わせ部分Lに押し付けながら積極的に回転駆動すると、電極輪1と重ね合わせ部分L間の押圧力及び摩擦係数により、重ね合わせ部分Lとの接触孤長部分46に溶接線Xに直角方向の速度ベクトル成分R2に対応した剪断力が重ね合わせ部分Lに作用し、重ね合わせ部分Lに速度ベクトル成分R1の方向(溶接線Xに平行な方向)のメタルフローだけではなく速度ベクトル成分R2の方向(溶接線Xに直角方向)のメタルフロー、すなわち剪断力14による剪断変形による溶接線Xに直角方向の塑性流動が生じる。この溶接線Xに直角方向の剪断変形ないしは塑性流動により重ね合わせ部分Lの接合後の厚み(接合部厚み)を低減することが出来る。
 上述の如く、一対の電極輪1,2の軸芯17,18を溶接線Xに直交する直線Yに対して、各々傾斜させ、一対の電極輪1,2を電動モータ61,62で積極的に駆動しながら重ね合わせ部分Lを加圧しながら溶接することで、重ね合わせ部分Lに溶接線直角方向の剪断力14が作用し、重ね合わせ部分Lの接合部厚みを低減する。この剪断力14は材料の変形抵抗に依存するため、変形抵抗が高いほど、金属板5,6から電極輪1,2に作用するスラスト力13が増大する。このようにスラスト力13が増大した場合、電極輪1,2及びその軸受の寿命低下や、スラスト力13に対する保持力を設定することで装置全体が大型化する問題がある。
 本実施の形態では、上述した電極輪1,2の軸線17,18の傾斜によるスラスト力13の発生時は、重ね合わせ部分Lの加熱溶接(マッシュシーム溶接)時である。マッシュシーム溶接時には、金属板の板厚にもよるが、接合部近傍の温度は1000℃乃至1400℃程度まで上昇する。したがって、接合部Jはこれ以上の温度であるものと推定される。一方、金属板5,6の変形抵抗は材料温度に依存し、接合部Jの温度が1000℃乃至1400℃程度である場合の変形抵抗は極めて小さく(図22参照)、スラスト力13の増大を抑えることで、設備を小型化出来る。また、高温での剪断変形であるため、接合部厚みを効果的に低減出来る。
 図6、図7A及び図7Bと図8、図9A及び図9Bは、上下一対の電極輪1,2を傾斜させる角度αの向きの2種類の設定状態を示す図である。
 上下一対の電極輪1,2を傾斜させる角度αの向きは2種類設定可能である。
 第1の設定方法は、図6、図7A及び図7Bに示すように、一対の電極輪1,2の軸芯17,18を溶接線Xに直交する直線Yに対し、電極輪1,2の進行方向Aの側に位置する部分(以下、進行方向部分という)1A,2Aが水平面内で、電極輪1,2が最初に接触する金属板の存在する方向と反対方向を向くように、各々傾斜させる(上電極輪1の進行方向部分1Aは図示右側の金属板6側に傾斜させ、下電極輪2の進行方向部分2Aは図示左側の金属板5側に傾斜させる)ことである。この場合は、金属板5,6の端部5A,6Aから金属板5,6が存在する方向に電極輪1,2から金属板5,6に上記速度ベクトル成分R2に対応した剪断力14が作用し、同方向の溶接線直角方向に剪断変形を付与しながらマッシュシーム溶接を行い、接合部厚みを低減する。なお、このとき、重ね合わせ部分L(接合部J)から電極輪1,2に剪断力14と反対方向の力がスラスト力13として作用する。言い換えれば、重ね合わせ部分Lにスラスト力13の反力が剪断力14として作用する。
 第2の設定方法は、図8、図9A及び図9Bに示すように、第1の設定方法と比較し、電極輪1,2を逆向きに傾斜させることである。すなわち、一対の電極輪1,2の軸芯17,18を溶接線Xに直交する直線Yに対し、電極輪1,2の進行方向部分1A,2Aが水平面内で、電極輪1,2が最初に接触する金属板の存在する方向を向くように、各々傾斜させる(上電極輪1の進行方向部分1Aは図示左側の金属板5側に傾斜させ、下電極輪2の進行方向部分2Aは図示右側の金属板6側に傾斜させる)ことである。この場合は、金属板5,6が存在する側から金属板5,6の端部5A,6Aに向かう方向に電極輪1,2から金属板5,6に上記速度ベクトル成分R2に対応した剪断力14が作用し、同方向の溶接線直角方向に剪断変形を付与しながらマッシュシーム溶接を行い、接合部厚みを低減する。このときも、重ね合わせ部分L(接合部J)から電極輪1,2には剪断力14と反対方向の力がスラスト力13として作用する。
 本実施の形態では第2の設定方法を採用する。その理由は下記の通りである。
 一般に電極輪1,2の材質は電気伝導率の高い銅系材料が適用される。銅系材料は接合材料と比較し、材料強度的に劣る問題がある。電極輪1,2の進行方向部分1A,2Aが水平面内で、電極輪1,2が最初に接触する金属板の存在する方向と反対方向を向くように、一対の電極輪1,2の軸芯17,18を各々傾斜させ、金属板5,6の端部5A,6Aから金属板5,6が存在する方向に電極輪1,2から金属板5,6に剪断力14を作用させた場合は、溶接の進行に伴い電極輪表面が金属板5,6の端部5A,6Aの角部に食い込む方向に電極輪1,2が進むため、接合材料の角部で電極輪表面が削り取られる新たな課題が生じる。このような場合には、電極輪1,2と材料間の電流密度が局所的に集中し、チリの要因となると共に電極輪寿命を著しく低下させる。
 これに対し、電極輪1,2の進行方向部分1A,2Aが水平面内で、電極輪1,2が最初に接触する金属板の存在する方向を向くように、一対の電極輪1,2の軸芯17,18を各々傾斜させ、金属板5,6が存在する側から金属板5,6の端部5A,6Aに向かう方向に電極輪1,2から金属板5,6に上剪断力14を作用させた場合は、金属板1,2の端部1A,2Aの角部の食い込みによる電極輪1,2の傷付きを回避し、かつ金属板5,6側への剪断応力付与が可能になる。
 電極輪1,2の軸芯17,18の傾斜角度αは金属板5,6の板厚に応じて設定する。定性的には、板厚が小さい場合には傾斜角度αを小さく設定し、板厚が大きくなるほど傾斜角度αを大きく設定する。図5に示したように、上電極輪1の軸芯17の傾斜による剪断変形は上電極輪1と材料間の接触孤長部分46内で、傾斜角度αにより支配されるため、金属板5,6の板厚に応じて設定する傾斜角度αを適宜調整する。金属板5,6の板厚の異なる材料を接合した場合には、上電極輪1の傾斜角度αは重ね合わせ部分Lの上側に位置する金属板の板厚に応じて設定し、下電極輪2の傾斜角度αは重ね合わせ部分Lの下側に位置する金属板の板厚に応じて設定する。すなわち、異厚の金属板を接合する場合は、上下の電極輪1,2で傾斜角度αを異ならせる。
 図10A及び図10Bは、従来の軸芯を傾斜させない電極輪を用いて2枚の金属板5,6をマッシュシーム溶接により接合した場合のナゲット生成箇所を示す図であり、図10Aは同厚の金属板を接合した場合を示し、図10Bは異厚の金属板を接合した場合を示す。図11、図12A及び図12Bは、本実施の形態による電極輪1,2を用いて異厚の金属板5,6をマッシュシーム溶接により接合した場合のナゲット生成箇所及び上下電極輪1,2の傾斜角度の相違を示す図である。
 マッシュシーム溶接では、図10Aに示す通り、ナゲットNが電極輪1,2で把持した板厚中央部に生成する。金属板5と金属板6の板厚差が少ない場合には、接合界面中央部にナゲットNが生成されるが、金属板5と金属板6の板厚差が大きい場合には、図10Bに示す通り、ナゲットNが接合界面中央部から外れる問題があり、この制約により、マッシュシーム溶接方式の金属板5と金属板6の接合板厚の異厚比率は1:1.5程度以下に制限されて来た。
 本発明では、図11、図12A及び図12Bに示す通り、電極輪1,2が最初に接触する金属板5,6の存在する方向を電極輪1,2の進行方向部分1A,2Aが向くように、電極輪1,2の軸芯17,18を溶接線Xに直交する直線Yに対して水平面内で傾斜させるとともに、板厚が厚い側の金属板である金属板5と接触する上電極輪1の傾斜角度α1を板厚が薄い方の金属板である金属板6と接触する下電極輪2の傾斜角度α2よりも大きくすることで、電極輪1,2と金属板5,6の材料間の押圧力の外に、厚い側の金属板5の材料により多くの溶接線直角方向の剪断変形(剪断応力)を作用させることで、重ね合わせ接合した後のそれぞれの金属板部分の板厚が概略一致するように接合させることが可能となる。
 上記傾斜角度α1,α2は異厚量に応じ、異厚差の低減に必要な剪断変形が付与されるように設定される。これによりナゲットNを接合界面上に生成させることが出来、接合強度を低下させることなく、異厚比率を高めることが出来、かつ重ね合わせ接合部Jの増厚量を低減させ、操業上の制約を少なくさせると共に、異厚接合時の接合品質を向上させることが出来る。
 図13は、マッシュシーム溶接開始前の上下電極輪の軸芯を傾斜させ、上下電極輪を押圧している状態と上下加圧ロールを押圧している状態を示す、図1と同様な図である。
 図14は、上下電極輪の軸芯を傾斜した状態で上下電極輪を押圧及び駆動した際の上下電極輪の速度ベクトルならびに相対滑り速度を示す図である。
 従来重ね合わせ部分の端部から電極輪1,2で圧延しながら溶接を行う場合には、図13に示す通り、接合開始前の状態で電極輪1,2同士を押圧ならびに回転させ、電極輪1,2が重ね合わせ部分Lの端部に到達後、そのまま上下電極輪1,2により圧延及び溶接を開始する。上下電極輪1,2の軸芯17,18を傾斜させ、押圧ならびに転動させた場合には、図14に示す通り、上下電極輪1,2のローラ速度ベクトル28,29が一致せず、電極輪1,2の軸方向に相対滑り速度30が生成する。この相対滑り速度30は、電極輪1,2間の押圧力及び摩擦係数により、上下電極輪1,2の軸方向にスラスト力が生成する。これらのスラスト力は電極輪軸受寿命を低下させると共に、電極輪1,2間でスティックスリップを生成させ、機械系の異常振動ならびに電極輪1,2の摩耗を促進する。このため、本発明では、重ね合わせ部Lの溶接開始前と溶接終了後の少なくとも一方の工程、好ましくは両方の工程では、上下電極輪1,2同士を接触させる第1設定と、上下電極輪1,2同士を接触させない、或いは溶接時の押圧力に比較し軽荷重で接触させる第2設定のいずれかの設定とし、前者の第1設定では、上下電極輪1,2の電動モータ61,62による回転は非駆動とし、後者の第2設定では、上下電極輪1,2の電動モータ61,62による回転は駆動とする。そして、第1設定では、上下電極輪1,2が重ね合わせ部分Lの側端部に到達後、直ちに電動モータ61,62の駆動を開始し、上下電極輪1,2を積極的に回転駆動する。また、第2設定では、上下電極輪1,2が接合部Jの側端部に到達後、直ちに電極輪押圧装置10の駆動を溶接時の設定に切り換え、上下電極輪1,2に押圧力を付与する。これにより過大なスラスト力の生成を防止することが出来、軸受寿命を延長させると共に、上下電極輪1,2の摩耗を抑制する。
 図15は、図1に示したマッシュシーム溶接装置の制御系の概略を示す図である。マッシュシーム溶接装置の制御系は、上位制御装置71と、キャリッジフレーム駆動制御装置72、マッシュシーム制御装置73及び加圧ローラ制御装置74を有し、上位制御装置71はキャリッジフレーム駆動制御装置72、マッシュシーム制御装置73及び加圧ローラ制御装置74の制御を統括し、キャリッジフレーム駆動制御装置72はキャリッジフレーム9の駆動用のシリンダ装置57の油圧回路(図示せず)に作動指令を与え、シリンダ装置57の駆動を制御し、マッシュシーム制御装置は電極輪押圧装置10の油圧回路(図示せず)及び電動モータ61,62に作動指令を与え、これらの駆動を制御し、加圧ローラ制御装置は加圧ローラ押圧装置11の油圧回路(図示せず)に作動指令を与え、これらの駆動を制御する。また、キャリッジフレーム9の上水平フレーム9aには上電極輪1に隣接してレーザ距離計75が設けられ、マッシュシーム制御装置73及び加圧ローラ制御装置74はレーザ距離計75の検出信号を入力し、その信号に基づいて金属板5,6の重ね合わせ部分の端部がレーザ距離計75の真下に来たタイミングを検出する。また、マッシュシーム制御装置73及び加圧ローラ制御装置74にはレーザ距離計75と電極輪1,2及び加圧ローラ3,4間の距離と、キャリッジフレーム9の移動速度が予め入力されており、金属板5,6の重ね合わせ部分の端部がレーザ距離計75の真下に来たタイミングとそれらの距離及び移動速度に基づいて電極輪1,2及び加圧ローラ3,4が金属板5,6の重ね合わせ部分の端部を挟み込むタイミングを演算し、そのタイミングの前後で、上下電極輪1,2の接触に関する上述した設定状態(第1設定か第2設定か)に応じて電極輪押圧装置10及び電動モータ61,62の制御及び加圧ローラ押圧装置11の制御を適宜異ならせる。
 電極輪1,2の軸芯の傾斜角度は固定でもよいが、好ましくは任意の角度に変更可能とする。図16は、その場合の電極輪の傾斜機構を示す図である。なお、図示の煩雑さを避けるため、電極輪を回転駆動する電動モータ及びチェーン及びスプロケット機構の図示は省略している。
 図16において、電極輪押圧装置10には傾斜機構27が設けられ、傾斜機構27を作動させることで上電極輪1の軸芯の傾斜角度は水平面内で任意の角度に設定可能である。傾斜機構27は種々の方式を取り得るが、図示の例では、電動駆動方式である。すなわち、傾斜機構27は、電極輪押圧装置10の上端に設けられ、キャリッジフレーム9の上水平フレーム9aに回転可能に挿入された回転軸81と、この回転軸81をピニオン82,83を介して回転駆動する電動モータ84とを備え、電動モータ84は傾斜角度制御装置85により制御される。図示はしないが、傾斜機構27は設定後の傾斜角を保持するためのロック装置を備えている。
 また、傾斜機構27は、上電極輪1の傾斜角度を検知するための角度センサ86を備え、傾斜角度制御装置85は接合開始前に上位制御装置71から金属板5,6の板厚に応じて角度情報を入手して設定し、角度センサ86の信号を用いて電極輪1の傾斜角度が設定角度に一致するように電動モータ84を駆動制御する。その場合、金属板5,6の板厚と電極輪1,2との関係は、事前に制御モデルを構築しておき、これら制御モデルから上位制御装置71においてデータベースを構成し、上位制御装置71から設定すべき角度を随時与える。これにより金属板5,6の板厚に応じ、適宜最適な傾斜角を容易に設定出来るとともに、接合材の許容異厚比率を高め、かつ異厚接合部のナゲットNを確実に接合界面中央に生成させることで、高品質な接合部を安価な機器構成で実現出来る。角度センサ86は図示の如く回転軸81の回転角度を検出するものであってもよいし、電動モータ84の回転角度を検出するエンコーダであってもよい。
 なお、金属板5,6の板厚は、電極輪1,2による溶接前に例えば前述したレーザ距離計75等の検出手段で計測し、この板厚の計測値からデータベースの設定情報に基づいて設定すべき角度を与え、リアルタイムで傾斜角度を制御してもよい。
 図17は接合部に段差のある状態の応力集中箇所を示す。
 製鉄用冷間圧延及びテーラードブランクにおけるプレス成形では、接合後の加工工程において、接合部に高い応力が作用する。すなわち、図17に示すように、金属板5,6の接合部Jに段差Sがあると、当該段差部分が応力集中箇所となる。電極輪1,2の軸芯17,18を傾斜させて溶接し、その後、加圧ローラ3,4で接合部を圧延し、接合部Jの段差勾配を大幅に低減することで、応力集中係数を低減出来、接合部の耐強度が向上するため、製鉄用冷間圧延及びプレス成形での加工用途に適用出来る。
 図18Aは、従来のマッシュシーム溶接部と圧延機用作業ロールとの取り合いを示す図であり、図18Bは、電極輪の軸芯を傾斜させて溶接し、その後、加圧ローラで圧延し、接合部の増厚量及び段差勾配を大幅に低減した場合のマッシュシーム溶接部と圧延機用作業ロールとの取り合いを示す図である。
 従来、例えばスキンパス圧延工程において、圧延の上工程である接合工程で接合された接合部をスキンパス圧延機で圧延させる際には、図18Aに示すように、接合部をそのまま通過させると接合部の急峻な段差Sが上作業ロール22に当たって作業ロール22を傷付けたり、上下作業ロール22,23に接合部のマーク転写を生じたりするので、通常圧延部と比較し、圧延荷重を低下させて接合部を通過させるか、上下作業ロール22,23を開放することで、作業ロール22の傷付き及び接合部の作業ロール22,23へのマーク転写の防止を図っている。これに対し、本実施の形態では電極輪1,2の軸芯17,18を傾斜させて溶接し、その後、加圧ローラ3,4で接合部を圧延し、図18Bに示すように接合部の段差勾配を大幅に低減するので、作業ロール22,23と接合部の接触角度(応力集中係数)を低減させることが出来、この結果作業ロール22,23と材料間の接触面圧を低減し、ライン速度を低下させることなく作業ロール22,23への傷付きならびに接合部マーク転写を防止することが出来、生産性及び歩留まりを向上することが出来る。
 以上述べた実施の形態によれば以下の効果が得られる。
 1.上下一対の電極輪1,2の軸芯17,18を傾斜させ、一対の電極輪1,2を電動モータ61,62で積極的に駆動しながら金属板5,6を接合するので、2枚の金属板5,6の重ね合わせ部分Lに溶接線Xに直交する方向の剪断力が作用し、これが重ね合わせ部分Lに同方向の剪断変形を与え、従来の電極輪の圧延による溶接線方向の塑性流動に加え、溶接線Xに直交する方向の塑性流動が生じ、この溶接線Xに直交する方向の塑性流動により接合後の重ね合わせ部分(接合部)Jの増厚量を著しく低減する。その結果、その直後にその接合部Jを加圧ローラ3,4で圧延することにより、接合部の増厚量を更に低減して金属板の母材厚み相当まで圧延し、段差勾配を大幅に低減することができる。また、段差勾配が低減するため、応力集中係数が低減し、高い接合強度を確保することが出来る。
 また、2枚の金属板5,6の板厚が異なる場合は、金属板5,6の板厚に応じて電極輪1,2の軸芯の傾斜角度を調整することで、重ね合わせ部分Lにおけるそれぞれの金属板の減厚量が調整されるため、ナゲットNが接合界面から外れないように接合される。したがって、段差勾配の低減による応力集中係数の低減に加え、ナゲットNを接合界面に生成させることによって接合部の接合強度が飛躍的に向上し、許容接合異厚量を拡大し、操業の自由度を向上することが出来る。しかも、一対の電極輪1,2を傾斜させ、積極駆動するだけの構成であるので、比較的簡単で安価な構成で実現することが出来る。
 また、金属板5,6の接合部Jを金属板の母材厚み相当まで圧延して段差勾配を大幅に低減することで、接合部の応力集中係数を低減し、高い接合強度を確保出来るため、従来適用されなかった冷間圧延プロセスやテーラードブランクへのマッシュシーム溶接の適用拡大、鋼板加工ラインにおける作業ロールの傷付き防止或いは生産性及び歩留まり向上等の効果が得られる。
 すなわち、本実施の形態では、マッシュシーム溶接の接合部の段差勾配を低減し、接合部の応力集中係数を低減し、高い接合強度を確保することが出来るため、製鉄用冷間圧延プロセスにおいては、次工程における冷間圧延時の作業ロールへの傷付き防止及び耐張力性能が向上するため、従来適用されなかった冷間圧延プロセスへのマッシュシーム溶接が適用可能となる。
 また、テーラードブランクにおいても、その接合部段差の応力集中により、疲労強度が必要な部位へのマッシュシーム溶接の適用が避けられて来たが、段差勾配の低減により応力集中が緩和され、プレス成形性も向上することで、高価なレーザビーム溶接機から安価なマッシュシーム溶接機への変更が可能となる。
 また、連続焼鈍ライン、亜鉛メッキ鋼板製造設備等の生産ラインでは、スキンパス圧延機の作業ロールと接合部の接触角度(応力集中係数)を低減させることが出来、この結果作業ロールと材料間の接触面圧を低減し、ライン速度を低下させることなく作業ロールへの傷付きならびに接合部マーク転写を防止することが出来、生産性及び歩留まりを向上することが出来る。
 2.一対の電極輪1,2の進行方向部分1A,2Aが水平面内で、電極輪1,2が最初に接触する金属板の存在する方向を向くように、一対の電極輪1,2の軸芯17,18を溶接線Xに直交する直線に対して、各々傾斜させ、2枚の金属板5,6を接合するので、電極輪1,2が溶接の進行に伴い重ね合わせ部分Lを移動するとき、重ね合わせ部分Lの金属板5,6の端部5A,6Aが電極輪1,2へ食い込んで電極輪1,2に疵を付けることを防止し、その結果、その疵が原因で溶接時にチリが発生するのを防止することが出来る。
 3.2枚の金属板1,2の板厚が異なる場合に、2枚の金属板1,2の板厚が厚い側の電極輪の軸芯の傾斜角度を薄い側の電極輪の軸芯の傾斜角度より大きくするので、板厚が厚い側の金属板の減厚量を大きくし、板厚の薄い金属板の減厚量とほぼ一致させることが出来、これによりナゲットNが接合界面に生成させることが出来、接合強度が向上し、許容接合異厚量が拡大する。
 4.重ね合わせ部Lの溶接開始前と溶接終了後の少なくとも一方の工程で、一対の電極輪1,2を接触させる第1設定と、一対の電極輪1,2を接触させないか、溶接時の押圧力に比較し軽荷重で接触させる第2設定のいずれかの設定とし、第1設定では一対の電極輪1,2を非駆動とし、第2設定では一対の電極輪1,2を駆動するので、上下電極輪1,2へ過大なスラスト力が作用することを防止出来、上下電極輪軸受の寿命が延び、更には、上下電極輪1,2の摩耗が抑制され、ランニングコストを低減出来る。
 5.一対の電極輪1,2を、それぞれの軸芯7,18が2枚の金属板5,6の重ね合わせ部分Lに形成される溶接線Xに直交する軸線Yに対して、互いに反対方向に水平面内で傾斜するよう設置したので、上記のように、2枚の金属板の接合部の段差勾配を低減し、高い接合強度を確保出来るとともに、比較的簡単で安価な構成でマッシュシーム溶接で生成するナゲットNを接合界面に生成して接合強度を向上させ、許容接合異厚量を拡大する製造設備を提供出来る。
 6.一対の電極輪1,2の軸芯17,18を溶接線Xに直交する軸線Yに対し、それぞれ独立して水平面内で傾斜させる機構27を設けたので、金属板1,2の板厚に応じ、適宜最適な傾斜角を容易に設定出来るとともに、金属板1,2の板厚の異厚範囲の広いマッシュシーム溶接装置を提供出来る。
 本発明の他の実施の形態を図19~図22を用いて説明する。
 上記実施の形態では、上下一対の加圧ローラ3,4は、従来通り、互いに平行な2軸芯まわりに回転可能な加圧ローラとし、マッシュシーム溶接後の接合部の圧延をその加圧ローラ3,4で圧延した。このように接合部を圧延しても、上下1対の電極輪1,2の軸芯17,18を傾斜させてマッシュシーム溶接を行うことにより、上述したようにマッシュシーム溶接での溶接部(接合部)の減厚効果が大きく、金属板5,6の接合部Jの段差勾配を大幅に低減して接合部の応力集中係数を低減し、高い接合強度を確保出来る。本実施の形態は、上下一対の電極輪に加え、上下一対の加圧ローラの軸芯も傾斜させて圧延することにより、金属板の母材厚み相当まで確実に圧延して段差を平滑化することが出来るようにしたものである。
 図19は、本実施の形態におけるマッシュシーム溶接装置の概略図である。
 図19において、本実施の形態に係わるマッシュシーム溶接装置は、上下一対の加圧ローラ回転駆動用の電動モータ63,64を備え、この電動モータ63,64も、上下一対の電極輪回転駆動用の電動モータ61,62と同様に、それぞれ、加圧ローラ押圧装置11及び取り付けブロック52の側面に取り付けられ、例えばチェーン及びスプロケット機構68により加圧ローラ3,4の回転軸に連結され、電動モータ63,64の回転動力が加圧ローラ3,4に伝達される。
 図20A及び図20B又は図21A及び図21Bは、マッシュシーム溶接後の接合部を上下一対の加圧ローラ3,4で圧延している状態を示す図である。
 本実施の形態において、上下一対の電極輪1,2は、上記実施の形態で説明したように、それらの軸芯17,18が2枚の金属板5,6の重ね合わせ部分Lの溶接線に直交する直線に対して水平面内で互いに反対方向に傾斜するよう設置され、電極輪1,2を電動モータ61,62で積極的に駆動しながらマッシュシーム溶接を行う構成となっている。また、図20A及び図20B又は図21A及び図21Bに示すように、上下一対の加圧ローラ3,4も、それらの軸芯15,16が2枚の金属板5,6の接合部Jの溶接線Xに直交する直線に対して水平面内で互いに反対方向に傾斜するよう設置され、加圧ローラ3,4を電動モータ63,64で積極的に駆動しながら圧延する構成となっている。
 このように上下一対の電極輪1,2の軸芯17,18と上下一対の加圧ローラ3,4の軸芯15,16を傾斜させることにより、電極輪1,2によるマッシュシーム溶接とその後の加圧ローラ3,4による圧延の両方で溶接線直角方向の塑性流動を促進した減厚作用が得られ、接合部Jの段差Sを母材厚み相当までより確実に圧延し、段差Sを平滑化することが出来る。
 また、従来の軸芯を傾斜させない電極輪1,2による接合においては、溶接線直角方向の塑性流動はクランプ装置により制限され、その際に接合部からクランプ装置の把持部へと向かう力が発生するため、板厚の薄い金属板を接合する際には、接合部と把持部の金属材料部分に座屈が生じる可能性がある。この座屈を防止するためには、クランプ装置を接合部の直近に配置すればよいが、その場合はクランプ装置と接合部間のスペースが狭くなり、電極輪及び加圧ローラ並びにそれに付帯する設備の配置に制約を生じ、設備配置の自由度が損なわれるという問題を生じる。
 本実施の形態では、電極輪1,2の軸芯17,18を水平面内で反対方向に傾斜させたため、電極輪1,2による接合時、接合部Jに作用する剪断力14が、クランプ装置7,8に向かう力と消し合うこととなる。これによりクランプ装置7,8を接合部Jの直近に配置しなくても、板厚の薄い金属板を接合する際の金属板の座屈を防止することが出来、その結果、クランプ装置7,8と接合部J間に比較的広いスペースを確保することが出来、電極輪1,2及び加圧ローラ3,4並びにそれらに係わる設備(例えば電動モータ61~64、チェーン及びスプロケット機構67,68、傾斜装置等)の配置に対する制約を緩和することが出来る。
 上下一対の加圧ローラ3,4の軸芯15,16を傾斜させることにより、溶接線直角方向の塑性流動が促進される作用の詳細は、図5を用いて説明した電極輪1,2の場合と同様である。
 上下一対の加圧ローラ3,4を傾斜させる角度αの向きは、電極輪1,2の場合と同様、2種類設定可能である。
 第1の設定方法は、図20A及び図20Bに示すように、一対の加圧ローラ3,4の進行方向部分3A,4Aが水平面内で、加圧ローラ3,4が最初に接触する金属材料が係わる金属板5の存在する方向と反対方向を向くように、一対の加圧ローラ3,4の軸芯15,16を溶接線Xに直交する直線Yに対して、各々傾斜させる場合である。言い換えれば、金属板5,6の接合部Jの内、接合部Jの段差Sを起点として厚みが厚い側(接合部Jのうち加圧ローラ3,4が最初に接触する材料部分)に位置する加圧ローラ3,4の軸端が接合部Jの圧延方向Aに向くよう、加圧ローラ3,4の軸芯15,16を傾斜させる。この場合は、金属板5,6の接合部Jの段差Sから加圧ローラ3,4が最初に接触した金属材料が係わる金属板5の存在する方向に上記速度ベクトル成分R2に対応した剪断力14が作用し、同方向の溶接線直角方向に剪断変形を付与しながら段差部を圧延し平滑化する。なお、このとき、接合部Jから加圧ローラ3,4には剪断力14と反対方向の力がスラスト力13として作用する。言い換えれば、接合部Jにスラスト力13の反力が剪断力14として作用する。
 第2の設定方法は、図21A及び図21Bに示すように、第1の設定方法と比較し、加圧ローラ3、4を逆向きに傾斜させることである。すなわち、一対の加圧ローラ3,4の進行方向部分3A,4Aが水平面内で、加圧ローラ3,4が最初に接触する金属材料が係わる金属板5の存在する方向を向くように、一対の加圧ローラ3,4の軸芯15,16を溶接線Xに直交する直線Yに対して、各々傾斜させる場合である。言い換えれば、金属板5,6の接合部(マッシュシーム溶接部)Jの内、接合部Jの段差Sを起点として厚みが薄い側(接合部Jのうち加圧ローラ3,4が最初に接触しない材料部分)に位置する加圧ローラ3,4の軸端が接合部Jの圧延方向Aに向くよう、加圧ローラ3,4の軸芯15,16を傾斜させる。この場合は、金属板5,6の接合部Jの段差Sから加圧ローラ3,4が最初に接触した金属材料が係わる金属板5の存在する方向と反対方向に上記速度ベクトル成分R2に対応した剪断力14が作用し、同方向の溶接線直角方向に剪断変形を付与しながら段差部を圧延し平滑化する。このときも、接合部Jから加圧ローラ3,4には剪断力14と反対方向の力がスラスト力13として作用する。
 本実施の形態では第1の設定方法を採用する。その理由は下記の通りである。
 上下一対の加圧ローラ3,4を第2の設定方法により傾斜させても段差Sは剪断力14により塑性流動を受け、平滑化することが出来る。しかし、この場合は、図21Bに示すように段差Sの部分が母材に折り込まれ、段差Sが亀裂状に母材に埋没する新たなる課題が発生する。単に接合部Jの表面性状が平滑のものが必要であり、かつ強度を必要としない部位に適用する場合は問題ないが、応力が作用する部位に適用する場合並びにテーラードブランクのようにプレス成形されるような塑性加工用途では、埋没した段差の先端部が特異応力場となり、破損の原因になる。したがって、好適には加圧ローラ3、4を傾斜させる向きは、図20A及び図20Bに示すとおり、一対の加圧ローラ3,4の進行方向部分3A,4Aが水平面内で、加圧ローラ3,4が最初に接触する金属材料が係わる金属板5の存在する方向と反対方向を向くように、一対の加圧ローラ3,4の軸芯15,16を溶接線Xに直交する直線Yに対して、各々傾斜させる向きであり、この場合は図20Bに示すように段差Sを亀裂状に母材に埋没させることなく接合部段差を平滑化することが出来、接合部の品質が向上する。
 加圧ロール3,4の軸芯15,16の傾斜角度(図5の傾斜角度αに相当)は、接合部の段差Sの大きさ(段差量)に応じて設定する。定性的には、段差量が小さい場合には傾斜角度を小さく設定し、段差量が大きくなるほど傾斜角度を大きく設定する。すなわち、図5を用いて説明した電極輪の場合と同様、上加圧ロール3の軸芯15の傾斜による剪断変形は上加圧ローラ3と材料間の接触孤長部分(図5の接触弧長部分46に相当)内で、傾斜角度により支配されるため、平滑化すべき段差量に応じて設定する傾斜角度を適宜調整する。金属板5,6の厚みの異なる材料を接合した場合には、マッシュシーム溶接部Jの段差量は表裏面で異なるが、上述の如く段差量に見合った上加圧ロール3の傾斜角度に設定することで、段差を平滑化することが出来る。傾斜角度を付与した下加圧ローラ4による圧延状態も同様であり、下加圧ローラ4の傾斜角度を下側の段差量に応じて設定する。
 上述の如く、一対の加圧ローラ3,4の軸芯15,16を溶接線Xに直交する直線Yに対して、各々傾斜させ、一対の加圧ローラ3,4を電動モータ63,64で積極的に駆動しながら接合部Jの段差Sを圧延することで、接合部Jに溶接線直角方向の剪断力が作用し、段差Sが平滑化される。この剪断力は材料の変形抵抗に依存するため、変形抵抗が高いほど、金属板5,6から加圧ローラ3,4に作用するスラスト力13が増大する。このようにスラスト力13が増大した場合、加圧ローラ3,4及びその軸受の寿命低下や、スラスト力13に対する保持力を設定することで装置全体が大型化する問題がある。
 図22は、金属板が普通鋼の場合の材料温度と変形抵抗の相関を示す図である。金属板5,6の変形抵抗は材料温度に依存し、金属板5,6が普通鋼である場合は図22に示す温度特性を有する。スラスト力13を低下させるために、接合部Jの温度を好適には300℃以上、更に好適には500℃以上とすることで、金属板5,6の変形抵抗値を低減し、スラスト力13の増大を抑えることで、設備を小型化出来る。
 本実施の形態では、上下一対の加圧ローラ3,4をキャリッジフレーム9内で上下一対の電極輪1,2に隣接して配置し、キャリッジフレーム9を溶接方向に移動させることで接合と加圧を連続して実施する。金属板5,6の板厚にもよるが、接合部近傍の温度は電極輪通過直後に1000℃乃至1400℃程度まで上昇し、接合部Jはこれ以上の温度であるものと推定される。接合と加圧を連続して実施することにより、溶接により発生した接合部Jの残熱を利用して加圧ローラ3,4による加圧時の接合部Jの温度を容易に300℃以上或いは500℃以上にすることが出来、設備を小型化出来る。
 軸芯15,16を傾斜させた上下加圧ローラ3,4に対しては、マッシュシーム溶接開始前に図13を用いて説明した電極輪の場合と同様の設定を行うことが出来る。すなわち、接合部Jの圧延開始前と圧延終了後の少なくとも一方の工程、好ましくは両方の工程で、上下加圧ローラ3,4同士を接触させる第1設定と、上下加圧ローラ3,4同士を接触させない、或いは圧延時の押圧力に比較し軽荷重で接触させる第2設定のいずれかの設定とし、前者の第1設定では、上下加圧ローラ3,4の電動モータ63,64による回転は非駆動又は停止とし、後者の第2設定では、上下加圧ローラ3,4の電動モータ63,64による回転は駆動とする。そして、第1設定では、上下加圧ローラ3,4が接合部Jの側端部に到達後、直ちに電動モータ63,64の駆動を開始し、上下加圧ローラ3,4を積極的に回転駆動する。また、第2設定では、上下加圧ローラ3,4が接合部Jの側端部に到達後、直ちに加圧ローラ押圧装置11の駆動を加圧圧延時の設定に切り換え、上下加圧ローラ3,4に押圧力を付与する。これにより過大なスラスト力の生成を防止することが出来、軸受寿命を延長させると共に、上下加圧ローラの摩耗を抑制する。
 また、本実施の形態においても、図9を用いて説明した先の実施の形態と同様の制御系を採用することが出来る。すなわち、上位制御装置と、キャリッジフレーム駆動制御装置、マッシュシーム制御装置、加圧ローラ制御装置、及びレーザ距離計を有する制御系を設け、電極輪1,2及び加圧ローラ3,4が金属板5,6の重ね合わせ部分の端部を挟み込むタイミングの前後で、上下電極輪1,2の接触に関する上述した設定状態(第1設定か第2設定か)と上下加圧ローラ3,4の接触に関する上述した設定状態(第1設定か第2設定か)に応じて異なる駆動状態となるよう、キャリッジフレーム9の駆動用のシリンダ装置57、電極輪押圧装置10及び電動モータ61,62、加圧ローラ押圧装置11及び電動モータ63,64の駆動を制御することが出来る。
 また、軸芯15,16を傾斜させた上下加圧ローラ3,4に対しても、図10を用いて説明した電極輪の場合と同様の傾斜装置を設けることが出来、これにより段差量に応じ、適宜最適な傾斜角を容易に設定出来るとともに、接合材料の異厚範囲の広い接合装置を提供出来る。
 なお、上記実施の形態では、同一のキャリッジフレーム9内に傾斜機構27を有する電極輪押圧装置10及び傾斜機構27を有する加圧ローラ押圧装置11を配置したが、別々のフレームにそれらを配置しても本発明の機能を損なうことはない。
 以上述べた実施の形態によれば、先の実施の形態における上記1~6の効果に加え、以下の効果が得られる。
 1-A.上下一対の加圧ローラ3,4の軸芯15,16を傾斜させ、一対の加圧ローラ3,4を電動モータ63,64で積極的に駆動しながら圧延するので、上下一対の電極輪1,2の軸芯17,18を傾斜させた場合と同様、接合部Jに溶接線Xに直交する方向の剪断力が作用し、これが接合部Jに剪断変形を与え、この溶接線Xに直交する方向の剪断流動により接合部の増厚量を著しく低減する。その結果、電極輪1,2によるマッシュシーム溶接時と加圧ローラ3,4による圧延時の両方で、溶接線Xに直交する方向の剪断変形により接合部Jの増厚量を低減し、同厚の金属板の接合では金属板の母材厚み相当まで確実に圧延しかつ段差を平滑化することが出来、異厚の金属板の接合部は段差を平滑化或いは段差勾配を大幅に低減することが出来る。その結果、電極輪1,2の軸芯のみを傾斜させた場合に比べて、より確実に応力集中係数を低減し、高い接合強度を確保することが出来る。
 また、金属板5,6の接合部Jの段差勾配を低減或いは接合部Jの段差Sを平滑化することで、接合部の応力集中係数を低減し、高い接合強度を確保出来るため、従来適用されなかった冷間圧延プロセスやテーラードブランクへのマッシュシーム溶接の適用拡大、鋼板加工ラインにおける作業ロールの傷付き防止或いは生産性及び歩留まり向上等の効果がより確実となる。
 1-B.上下一対の加圧ローラ3,4の軸芯15,16を水平面内で反対方向に傾斜させたため、加圧ローラ3,4による圧延加工時に接合部Jの上面側と下面側とで剪断力14が逆方向に作用し、クランプ装置7,8に向かう力は上下で打ち消し合う。これによりクランプ装置7,8を接合部Jの直近に配置しなくても、板厚の薄い金属板を接合する際の金属板の座屈を防止することが出来、その結果、クランプ装置7,8と接合部J間に比較的広いスペースを確保することが出来、電極輪1,2及び加圧ローラ3,4並びにそれらに係わる設備(例えば電動モータ61~64、チェーン及びスプロケット機構67,68、傾斜装置27等)の配置に対する制約を緩和することが出来る。
 2.一対の加圧ローラ3,4の進行方向部分3A,4Aが水平面内で、加圧ローラ3,4が最初に接触する金属材料が係わる金属板5の存在する方向と反対方向を向くように、一対の加圧ローラ3,4の軸芯15,16を溶接線Xに直交する直線Yに対して、各々傾斜させ、金属板5,6の接合部Jの段差Sから加圧ローラ3,4が最初に接触した金属材料が係わる金属板5の存在する方向に剪断力を作用させながら圧延するので、段差部が金属板5,6の母材に折り込まれることを防止することが出来、段差部が母材に折り込まれた場合に生成する亀裂状欠陥(未溶着欠陥)を防止することが出来、接合部の品質が向上する。
 3.マッシュシーム溶接により接合した2枚の金属板5,6の接合部Jを圧延する上下一対の加圧ローラ3,4を更に設け、一対の加圧ローラ3,4を、それぞれの軸芯15,16が溶接線Xに直交する直線Yに対して水平面内で傾斜するよう設置したので、2枚の金属板5,6の接合部の段差勾配を低減し、高い接合強度を確保出来るとともに、比較的簡単で安価な構成でマッシュシーム溶接で生成するナゲットNを接合界面に生成して接合強度を向上させ、許容接合異厚量を拡大する製造設備を提供出来る。
 4.一対の加圧ローラ3,4の軸芯15,16を溶接線Xに直交する直線Yに対し、それぞれ独立して水平面内で傾斜させる機構を設けたので、段差量に応じ、適宜最適な傾斜角を容易に設定出来るとともに、金属板の板厚の異厚範囲の広い接合装置を提供出来る。

Claims (10)

  1.  2枚の金属板(5,6)の端部を重ね合わせ、その重ね合わせ部分(L)を上下一対の電極輪(1,2)で加圧し、溶接電流を流しながら連続的に溶接し、前記2枚の金属板を接合するマッシュシーム溶接方法において、
     前記一対の電極輪(1,2)の軸芯(17,18)を、前記2枚の金属板(5,6)の重ね合わせ部分(L)に形成される溶接線(X)に直交する直線(Y)に対して、互いに反対方向に水平面内で傾斜させ、前記一対の電極輪(1,2)を積極的に駆動しながら前記2枚の金属板を接合することを特徴とするマッシュシーム溶接方法。
  2.  請求項1記載のマッシュシーム溶接方法において、
     前記一対の電極輪(1,2)の進行方向部分(1A,2A)が水平面内で、前記電極輪が最初に接触する金属板(5又は6)の存在する方向を向くように、前記一対の電極輪の軸芯(17,18)を前記溶接線Xに直交する直線Yに対して、各々傾斜させ、前記2枚の金属板を接合することを特徴とするマッシュシーム溶接方法。
  3.  請求項1又は2記載のマッシュシーム溶接方法において、
     前記2枚の金属板(5,6)は板厚が異なり、
     前記2枚の金属板の板厚が厚い側の電極輪(1又は2)の軸芯(17又は18)の傾斜角度を薄い側の電極輪の軸芯の傾斜角度より大きくしたことを特徴とするマッシュシーム溶接方法。
  4.  請求項1~3のいずれか1項記載のマッシュシーム溶接方法において、
     前記重ね合わせ部分(L)の溶接開始前と溶接終了後の少なくとも一方の工程では、前記一対の電極輪(1,2)を接触させる第1設定と、前記一対の電極輪を接触させないか、前記溶接時の押圧力に比較し軽荷重で接触させる第2設定のいずれかの設定とし、前記第1設定では前記一対の電極輪を非駆動とし、前記第2設定では前記一対の電極輪を駆動することを特徴とするマッシュシーム溶接方法。
  5.  請求項1~4のいずれか1項記載のマッシュシーム溶接方法において、
     前記2枚の金属板(5,6)を前記マッシュシーム溶接により接合した後、一対の加圧ローラ(3,4)の軸芯(15,16)を前記溶接線(X)に直交する直線(Y)に対して水平面内で傾斜させ、前記一対の加圧ローラを積極的に駆動して前記接合部の段差を前記加圧ローラの進行方向(A)に圧延することを特徴とするマッシュシーム溶接方法。
  6.  請求項5記載のマッシュシーム溶接方法において、 
     前記一対の加圧ローラ(3,4)の進行方向部分(3A,4A)が水平面内で、前記加圧ローラ(3,4)が最初に接触する金属材料が係わる金属板(5又は6)の存在する方向と反対方向を向くように、前記一対の加圧ローラ(3,4)の軸芯(15,16)を前記溶接線(X)に直交する直線(Y)に対して、各々傾斜させ、前記接合部の段差を前記進行方向(A)に圧延することを特徴とする金属板の接合方法。
  7.  2枚の金属板(5,6)の端部を重ね合わせ、その重ね合わせ部分(L)を上下一対の電極輪(1,2)で加圧し、溶接電流を流しながら連続的に溶接し、2枚の金属板を接合するマッシュシーム溶接装置において、
     前記一対の電極輪(1,2)は、それぞれの軸芯(17,18)が前記2枚の金属板(5,6)の重ね合わせ部分(L)に形成される溶接線Xに直交する軸線Yに対して、互いに反対方向に水平面内で傾斜するよう設置されていることを特徴とするマッシュシーム溶接装置。
  8.  請求項7記載のマッシュシーム溶接装置において、
     前記一対の電極輪(1,2)の軸芯(17,18)を前記溶接線Xに直交する軸線Yに対し、それぞれ独立して水平面内で傾斜させる機構(27)を有することを特徴とするマッシュシーム溶接装置。
  9.  請求項7又は8記載のマッシュシーム溶接装置において、
     前記マッシュシーム溶接により接合した2枚の金属板(5,6)の接合部(J)を圧延する上下一対の加圧ローラ(3,4)を更に備え、
     前記一対の加圧ローラ(3,4)は、それぞれの軸芯(15,16)が前記接合部(J)の溶接線(X)に直交する直線(Y)に対して水平面内で傾斜するよう設置されていることを特徴とするマッシュシーム溶接装置。
  10.  請求項9記載のマッシュシーム溶接装置において、
     前記一対の加圧ローラ(3,4)の軸芯(15,16)を前記溶接線(X)に直交する直線(Y)に対し、それぞれ独立して水平面内で傾斜させる機構(27)を有することを特徴とするマッシュシーム溶接装置。
PCT/JP2008/062633 2008-07-11 2008-07-11 マッシュシーム溶接方法及び装置 WO2010004656A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN200880130284.9A CN102089111B (zh) 2008-07-11 2008-07-11 压薄滚焊方法及装置
KR1020117000401A KR101235953B1 (ko) 2008-07-11 2008-07-11 매쉬 심 용접 방법 및 장치
BRPI0822917-1A BRPI0822917A2 (pt) 2008-07-11 2008-07-11 Método e aparelho de soldagem por costura por esmagamento
PCT/JP2008/062633 WO2010004656A1 (ja) 2008-07-11 2008-07-11 マッシュシーム溶接方法及び装置
US13/002,660 US20110120979A1 (en) 2008-07-11 2008-07-11 Mash seam welding method and apparatus
JP2009503359A JP4500883B2 (ja) 2008-07-11 2008-07-11 マッシュシーム溶接方法及び装置
EP08791114.5A EP2322308A4 (en) 2008-07-11 2008-07-11 METHOD AND EQUIPMENT FOR WELDING AND SCRATCHING

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/062633 WO2010004656A1 (ja) 2008-07-11 2008-07-11 マッシュシーム溶接方法及び装置

Publications (1)

Publication Number Publication Date
WO2010004656A1 true WO2010004656A1 (ja) 2010-01-14

Family

ID=41506787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/062633 WO2010004656A1 (ja) 2008-07-11 2008-07-11 マッシュシーム溶接方法及び装置

Country Status (7)

Country Link
US (1) US20110120979A1 (ja)
EP (1) EP2322308A4 (ja)
JP (1) JP4500883B2 (ja)
KR (1) KR101235953B1 (ja)
CN (1) CN102089111B (ja)
BR (1) BRPI0822917A2 (ja)
WO (1) WO2010004656A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103624456A (zh) * 2012-08-30 2014-03-12 安川首钢机器人有限公司 定位装置及具备该定位装置的机器人系统
US9278406B2 (en) 2010-09-24 2016-03-08 Primetals Technologies Japan, Inc. Mash seam welding method and apparatus

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5802920B2 (ja) * 2011-10-07 2015-11-04 アキム株式会社 溶接装置
JP5880032B2 (ja) * 2011-12-27 2016-03-08 トヨタ自動車株式会社 レーザー溶接方法
US9995148B2 (en) 2012-10-04 2018-06-12 General Electric Company Method and apparatus for cooling gas turbine and rotor blades
CN103008893B (zh) * 2012-12-28 2014-09-17 中国科学院半导体研究所 一种不锈钢板的激光拼焊方法及固定装置
MY181353A (en) * 2013-02-15 2020-12-21 Honda Motor Co Ltd Seam-welding method and system
CN103447679A (zh) * 2013-09-06 2013-12-18 鞍钢股份有限公司 一种搭接焊机3mm厚度钢板的焊接方法
CN105517746B (zh) * 2013-09-09 2018-02-23 本田技研工业株式会社 接缝焊接方法以及接缝焊接装置
JP6428320B2 (ja) * 2015-01-30 2018-11-28 トヨタ自動車株式会社 板材同士の接合構造
CN107234377A (zh) * 2017-07-28 2017-10-10 滨州信杰电子科技有限公司 一种平衡焊接应力筛网焊接机器人
KR101977827B1 (ko) * 2017-10-18 2019-05-13 주식회사 포스코 용접 겹침부 형성 장치
JP7027122B2 (ja) * 2017-10-27 2022-03-01 シロキ工業株式会社 車両用ドアサッシュのシーム溶接方法
CN111774437B (zh) * 2020-07-28 2022-04-08 宁波江丰电子材料股份有限公司 一种靶材焊接后的加压整形方法
KR20220069480A (ko) * 2020-11-20 2022-05-27 한국전기연구원 선단부에 커넥터 전극이 접합되는 금속섬유 발열체 전극의 제조방법 및 이에 의해 제조되는 금속섬유 발열체 전극

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0577054A (ja) * 1991-08-14 1993-03-30 Sumitomo Metal Ind Ltd シーム溶接方法
JPH09141449A (ja) * 1995-11-20 1997-06-03 Dengensha Mfg Co Ltd シーム溶接方法
JP2003071567A (ja) * 2001-08-31 2003-03-11 Nkk Corp 連続処理ラインにおける鋼帯の接合方法

Family Cites Families (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2892921A (en) * 1959-06-30 Method of and apparatus for edge welding sheet material
US1601927A (en) * 1926-10-05 Line welding
USRE16276E (en) * 1926-02-23 Method op welding
US1738465A (en) * 1922-01-19 1929-12-03 Gen Electric Line welding
US1601929A (en) * 1923-08-27 1926-10-05 Gen Electric Line welding
US1576160A (en) * 1924-04-11 1926-03-09 Gen Electric Line-welding machine
US1787039A (en) * 1928-06-28 1930-12-30 Thomson Gibb Electric Welding Seam-welding machine
US1965521A (en) * 1931-03-12 1934-07-03 Thomson Gibb Electric Welding Method of and apparatus for electric welding
US2023086A (en) * 1934-01-11 1935-12-03 Westinghouse Electric & Mfg Co Welding apparatus
US2023085A (en) * 1934-01-11 1935-12-03 Westinghouse Electric & Mfg Co Welding method
US2085049A (en) * 1936-01-17 1937-06-29 Thompson Prod Inc Machine for making flash butt welds
US2620424A (en) * 1950-12-29 1952-12-02 Fansteel Metallurgical Corp Method of resistance welding tantalum
US2684424A (en) * 1951-08-27 1954-07-20 Boeing Co Roller electrode spot welder
US2784299A (en) * 1954-04-05 1957-03-05 Prec Welder & Machine Co Method and apparatus for welding sheet metal
US2815437A (en) * 1955-10-12 1957-12-03 Armco Steel Corp Resistance welding machine
US2957071A (en) * 1958-05-02 1960-10-18 Taylor Winfield Corp Strip welder
US2957975A (en) * 1958-07-28 1960-10-25 Taylor Winfield Corp Method and apparatus for maintaining welding electrode wheels and the like
US3021416A (en) * 1959-11-06 1962-02-13 Taylor Winfield Corp Apparatus for welding strip
US3045106A (en) * 1960-12-19 1962-07-17 North American Aviation Inc Mobile welding apparatus and method
DE1237409B (de) * 1961-03-23 1967-03-23 Pullmax Ab Vorrichtung zum Schweissen, insbesondere Lichtbogenschweissen, von Traegern aus Blechen
US3159129A (en) * 1962-02-27 1964-12-01 Hedlund Brdr Ab Beam-welding machine
US3325623A (en) * 1963-11-27 1967-06-13 Thomson Corp Longitudinal strip edge butt welding
US3313911A (en) * 1964-06-09 1967-04-11 Melvin M Seelofff Method of joining metal sheet and strip
US3420976A (en) * 1964-06-19 1969-01-07 American Mach & Foundry Methods and apparatus for welding wide metal strips together
US3385948A (en) * 1965-01-13 1968-05-28 Westinghouse Electric Corp Seam welding method
US3413437A (en) * 1965-04-15 1968-11-26 Nippon Kokan Kk Apparatus for the continuous manufacture of lightweight and composite metallic i-beams
US3510625A (en) * 1966-03-03 1970-05-05 Guild Metal Joining Equipment Strip joining methods and apparatus
US3293403A (en) * 1966-04-21 1966-12-20 American Mach & Foundry Butt welding of metal members by high frequency heating current
US3564189A (en) * 1968-10-04 1971-02-16 Newcor Inc Stress relieving feature on strip welders
US3610862A (en) * 1969-01-31 1971-10-05 Continental Can Co Method and apparatus for resistance welding utilizing application of high pressure
US3596043A (en) * 1969-04-11 1971-07-27 Southern Can Co Method of seam welding overlapping workpieces
US3811028A (en) * 1969-06-24 1974-05-14 Texas Instruments Inc Thermostat metal and method of making
US3594540A (en) * 1969-07-07 1971-07-20 Edward J Weinfurt Tracking transducer for welding apparatus
US3644698A (en) * 1969-09-08 1972-02-22 Int Harvester Co Metallurgical bonding and forming processes and apparatus
GB1501622A (en) * 1972-02-16 1978-02-22 Int Harvester Co Metal shaping processes
US3823299A (en) * 1969-09-08 1974-07-09 Int Harvester Co Metallurgical bonding and forming processes and apparatus
US3591757A (en) * 1970-01-06 1971-07-06 Amf Inc Welding by high frequency current penetration
US3909578A (en) * 1970-07-22 1975-09-30 Wein United Inc Joining metal sheet or strip
US3909579A (en) * 1970-07-22 1975-09-30 Wean United Inc Joining metal sheet or strip
DE2036707A1 (de) * 1970-07-24 1972-01-27 Hoesch Ag, 4600 Dortmund Verfahren und Vorrichtung zum Richten von geschweißten Tragern
US3851138A (en) * 1972-02-16 1974-11-26 Int Harvester Co Diffusion bonding of butt joints
DE2532976B2 (de) * 1975-03-19 1978-03-23 Opprecht, Paul, Bergdietikon, Aargau (Schweiz) Vorrichtung zum halb- oder vollautomatischen elektrischen Widerstands-Längsnahtschweifien von Dosenkörpern
JPS5835082A (ja) * 1981-08-24 1983-03-01 Sumitomo Metal Ind Ltd シ−ム溶接方法
DE3605946A1 (de) * 1986-02-25 1987-08-27 Thyssen Stahl Ag Verfahren zum fuehren von auf stoss zu verschweissenden blechen und vorrichtung mit mitteln zum foerdern und fuehren von auf stoss zu verschweissenden blechen oder baendern
GB8613130D0 (en) * 1986-05-30 1986-07-02 Metal Box Plc Resistance welding of can bodies
US5077054A (en) * 1987-03-09 1991-12-31 Alza Corporation Prevention of contact allergy by coadministration of a corticosteroid with a sensitizing drug
US4714816A (en) * 1987-06-15 1987-12-22 Cefin S.P.A. Monitoring facility for electric welding equipment, in particular as used for metal box manufacture
US5042281A (en) * 1990-09-14 1991-08-27 Metcalfe Arthur G Isothermal sheet rolling mill
US5131581A (en) * 1991-02-28 1992-07-21 Newcor, Inc. Mash seam weld sheet splicer
JP2803386B2 (ja) * 1991-04-16 1998-09-24 株式会社明電舎 電縫管溶接管理方法およびその装置
ATE118391T1 (de) * 1991-08-15 1995-03-15 Elpatronic Ag Nahtschweissmaschine zum verbinden von blechzuschnitten.
US5120559A (en) * 1991-10-03 1992-06-09 Cornell Research Foundation, Inc. Extrusion processing with supercritical fluids
CH684467A5 (de) * 1991-12-16 1994-09-30 Elpatronic Ag Verfahren zur Ueberwachung der Schweissqualität beim Quetschnahtschweissen.
EP0565846B1 (de) * 1992-04-12 1996-04-24 Elpatronic Ag Verfahren und Vorrichtung zum Schweissen von Blechen zu Platinen mittels Laser
CA2070050A1 (en) * 1992-04-17 1993-10-18 John M. Hamilton, Jr. Process and apparatus for the batch composting of waste material
ES2106387T3 (es) * 1993-04-08 1997-11-01 Elpatronic Ag Procedimiento para soldar con rodillos costuras de depositos y maquina soldadora de costuras con rodillos y por resistencia para la puesta en practica del procedimiento.
US5676862A (en) * 1994-03-07 1997-10-14 Taylor Winfield Corporation Electric resistance welder having capability of consistent seam welding and heat-treating
EP0761366A4 (en) * 1995-02-22 1998-07-08 Toyota Motor Co Ltd METHOD AND APPARATUS FOR MOLD WELDING
JP3350933B2 (ja) * 1995-02-23 2002-11-25 トヨタ自動車株式会社 マッシュシーム溶接方法およびマッシュシーム溶接装置
BR9603035A (pt) * 1995-07-10 1998-05-05 Kawasaki Steel Co Método e aparelho para laminação a quente de acabamento contínua de tiras de aço
EP0761368B1 (de) * 1995-08-09 2000-02-02 Elpatronic Ag Schweissverfahren für beschichtetes Blech, insbesondere Weissblech
JPH09216073A (ja) * 1996-02-08 1997-08-19 Mitsubishi Electric Corp シーム溶接機および溶接用電極の保護方法
CA2303336C (en) * 1997-09-16 2006-11-21 Edison Welding Institute Conductive heat resistance seam welding
KR20000038755A (ko) * 1998-12-09 2000-07-05 이구택 매쉬시임 용접부 가공방법 및 장치
JP3034862B1 (ja) * 1999-02-23 2000-04-17 三菱電機株式会社 シ―ム溶接機
US6443352B1 (en) * 1999-09-27 2002-09-03 Solidica, Inc. Electrical resistance based object consolidation
JP2001150145A (ja) * 1999-12-01 2001-06-05 Mitsubishi Electric Corp ストリップ接続装置及び方法
WO2001060733A1 (fr) * 2000-02-15 2001-08-23 Tcm Corporation Vehicule de travail a systeme transversal
JP4445633B2 (ja) * 2000-02-28 2010-04-07 菊池プレス工業株式会社 シーム溶接方法及びその装置
JP3330921B2 (ja) * 2000-03-13 2002-10-07 菊池プレス工業株式会社 テーラードブランク製物品及びその製造方法
ATE348679T1 (de) * 2000-07-27 2007-01-15 Elpatronic Ag Verfahren und schweissvorrichtung zum schweissen von blechüberlappungen
JP2002035944A (ja) * 2000-07-28 2002-02-05 Mitsubishi Electric Corp シーム溶接装置とシーム溶接方法
JP3884360B2 (ja) * 2002-02-12 2007-02-21 菊池プレス工業株式会社 突き合わせ溶接装置及び突き合わせ溶接方法並びに突き合わせ溶接製品
US6988444B1 (en) * 2002-05-15 2006-01-24 Grindmaster Corporation Combination grinder and brewer
US9351495B2 (en) * 2002-07-05 2016-05-31 Turbochef Technologies, Inc. Air fryer
US7162348B2 (en) * 2002-12-11 2007-01-09 Hemisphere Gps Llc Articulated equipment position control system and method
DE10306235B4 (de) * 2003-02-14 2005-02-03 Daimlerchrysler Ag Verfahren und Anordnung zum Widerstandsnahtschweißen einer Folie und mindestens eines Folienträgers eines Brennstoffzellensystems
JP2004281336A (ja) * 2003-03-19 2004-10-07 Mitsubishi Electric Corp カラー陰極線管用色選別電極構体及びその製造方法並びに製造装置
CN100467185C (zh) * 2003-06-05 2009-03-11 菊池冲压工业株式会社 对焊装置及对焊方法
DE10337265A1 (de) * 2003-08-13 2005-03-10 Emitec Emissionstechnologie Rollnahtgeschweißter Körper zur Abgasbehandlung
US7096591B2 (en) * 2004-04-08 2006-08-29 Trimble Navigation Limited Dual axis single motor platform adjustments system
US20060081563A1 (en) * 2004-10-19 2006-04-20 Honda Motor Co., Ltd. Resistance welding electrodes, resistance welding methods and welded structures
JP4470721B2 (ja) * 2004-12-10 2010-06-02 トヨタ自動車株式会社 溶接方法及び溶接整形装置
US7748203B2 (en) * 2005-02-16 2010-07-06 The Factory Company International, Inc. Tilting implements and constructions for hillside implements such as hillside combine harvesters
US7718917B2 (en) * 2005-07-08 2010-05-18 Gm Global Technology Operations, Inc. Hybrid laser and resistance welding system and method
US8728802B2 (en) * 2006-02-15 2014-05-20 Biomass Worldwide Group Limited Angled reaction vessel
US9080720B2 (en) * 2006-04-12 2015-07-14 Flir Systems, Inc. Pan/tilt tracking mount
JP5057557B2 (ja) * 2006-08-29 2012-10-24 ダイハツ工業株式会社 シリーズスポット溶接方法及び溶接装置
CA2666183A1 (en) * 2006-10-12 2008-04-17 Maritek, Llc Continuous intermeshing agitator food cooker
JP5077054B2 (ja) * 2008-05-07 2012-11-21 トヨタ自動車株式会社 移動体用測位システム
JP5301369B2 (ja) * 2009-06-26 2013-09-25 本田技研工業株式会社 シーム溶接装置及びシーム溶接方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0577054A (ja) * 1991-08-14 1993-03-30 Sumitomo Metal Ind Ltd シーム溶接方法
JPH09141449A (ja) * 1995-11-20 1997-06-03 Dengensha Mfg Co Ltd シーム溶接方法
JP2003071567A (ja) * 2001-08-31 2003-03-11 Nkk Corp 連続処理ラインにおける鋼帯の接合方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9278406B2 (en) 2010-09-24 2016-03-08 Primetals Technologies Japan, Inc. Mash seam welding method and apparatus
CN103624456A (zh) * 2012-08-30 2014-03-12 安川首钢机器人有限公司 定位装置及具备该定位装置的机器人系统

Also Published As

Publication number Publication date
BRPI0822917A2 (pt) 2015-06-23
CN102089111A (zh) 2011-06-08
US20110120979A1 (en) 2011-05-26
EP2322308A4 (en) 2014-06-11
KR101235953B1 (ko) 2013-02-21
JP4500883B2 (ja) 2010-07-14
KR20110018418A (ko) 2011-02-23
EP2322308A1 (en) 2011-05-18
JPWO2010004656A1 (ja) 2011-12-22
CN102089111B (zh) 2014-02-12

Similar Documents

Publication Publication Date Title
JP4500883B2 (ja) マッシュシーム溶接方法及び装置
JP4500884B2 (ja) 金属板の接合方法及び接合装置
KR100486371B1 (ko) 마찰교반 용접방법 및 마찰교반 용접장치
JP5111911B2 (ja) ヘミング加工方法及びパネルアセンブリ製造方法
JP3350932B2 (ja) シーム溶接方法およびシーム溶接装置
KR101415364B1 (ko) 매쉬 시임 용접 방법 및 장치
JP3350933B2 (ja) マッシュシーム溶接方法およびマッシュシーム溶接装置
JP6483932B2 (ja) 帯状板体の溶接判定装置および溶接判定方法
JPH10305372A (ja) 溶接装置
JP6483933B2 (ja) 帯状板体の溶接判定装置および溶接判定方法
RU2466837C2 (ru) Способ и устройство для роликовой сварки с раздавливанием кромок
JP4754426B2 (ja) 重ねレーザ溶接方法および装置
JP2000301346A (ja) マッシュ・シーム溶接方法及び装置
BRPI0822917B1 (pt) Method and welding apparatus by sewing
RU2466812C2 (ru) Способ и устройство соединения металлических листов
JPH0647406A (ja) 完全連続熱間圧延のシートバーの接合方法
JP2011143466A (ja) 抵抗シーム溶接方法及び抵抗シーム溶接装置
JP2015174126A (ja) シーム溶接方法及び接合体
JP2013035023A (ja) シーム溶接用電極及びシーム溶接方法
JP2006102785A (ja) 金属薄板のレーザ突合せ溶接装置及び金属薄板のレーザ突合せ溶接方法
JPH08252608A (ja) 圧接接合設備
JP2002321061A (ja) シーム溶接装置
JPH02117781A (ja) コンタクトチップ疵の防止方法及び装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880130284.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009503359

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08791114

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 39/DELNP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20117000401

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2008791114

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13002660

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011104815

Country of ref document: RU

ENP Entry into the national phase

Ref document number: PI0822917

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110110