WO2018180260A1 - 太陽電池用フロントシート及びその製造方法並びに太陽電池モジュール - Google Patents

太陽電池用フロントシート及びその製造方法並びに太陽電池モジュール Download PDF

Info

Publication number
WO2018180260A1
WO2018180260A1 PCT/JP2018/008427 JP2018008427W WO2018180260A1 WO 2018180260 A1 WO2018180260 A1 WO 2018180260A1 JP 2018008427 W JP2018008427 W JP 2018008427W WO 2018180260 A1 WO2018180260 A1 WO 2018180260A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
polymer
layer
solar cell
compound
Prior art date
Application number
PCT/JP2018/008427
Other languages
English (en)
French (fr)
Inventor
大介 平木
綾菜 藤巻
佑一 早田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2018180260A1 publication Critical patent/WO2018180260A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present disclosure relates to a solar cell front sheet, a manufacturing method thereof, and a solar cell module.
  • Japanese Patent Application Laid-Open No. 2016-195165 includes a base film, a polymer A having an ultraviolet absorbing partial structure, and a binder polymer B, and the polymer A having the ultraviolet absorbing partial structure and the binder polymer B include And a first polymer layer disposed on one surface of the substrate film having the same type of structural unit.
  • Japanese Patent Application Laid-Open No. 2015-2332 describes a resin-encapsulated sheet containing 100 parts by mass of a thermoplastic resin and 0.01 parts by mass or more and 5 parts by mass or less of an ultraviolet absorber having a molecular weight of 250 or more. .
  • Japanese Patent Laid-Open No. 2012-256675 has an acrylic polymer type ultraviolet absorbing layer on one surface of a base sheet, and the acrylic polymer type ultraviolet absorbing layer has an ultraviolet absorbing unit in the molecule.
  • the back surface protection sheet for solar cell modules characterized by having a monomer unit is described.
  • JP 2010-238815 discloses a protective sheet for a solar cell module, in which an acrylic urethane resin layer is formed on one or both surfaces of a base sheet.
  • WO2013 / 1720203 is a solar cell module obtained by laminating a surface protective sheet / light-receiving side sealing sheet / solar cell element / back side sealing sheet / back surface protective sheet in this order,
  • the solar cell module in which the light-receiving side sealing sheet has a light transmittance of 50 nm or more and the back-side sealing sheet contains a reaction product of a reactive ultraviolet absorber and a resin component. are listed.
  • the solar cell front sheet is a sheet that is exposed to wind and rain and directly receives sunlight.
  • a solar cell front sheet for example, it is known to use a sheet containing an ultraviolet absorbing compound that absorbs ultraviolet rays that cause deterioration of the solar cell protective sheet itself or deterioration of a substrate or the like.
  • the solar cell transparent sheet described in Japanese Patent Application Laid-Open No. 2016-195165 has no description of problems when it is used as a solar cell front sheet.
  • a problem to be solved by an embodiment according to the present disclosure is to provide a solar cell front sheet that has excellent weather resistance even during long-term use and excellent power generation efficiency of a solar cell, and a method for manufacturing the same.
  • Another problem to be solved by another embodiment of the present disclosure is to provide a solar cell module that has excellent weather resistance even during long-term use and excellent power generation efficiency.
  • ⁇ 1> At least a binder polymer and a polymer containing a UV-absorbing compound having a molecular weight of less than 5,000 and a polymer containing a monomer unit having an UV-absorbing structure as a polymer having a UV-absorbing structure on a substrate.
  • the total content of the monomer unit derived from the olefin compound with respect to the total mass of the polymer component in the polymer layer and the structural unit containing a urethane bond with respect to the total mass of the polymer component in the polymer layer is 50% by mass or more
  • the total content of the UV-absorbing compound and the monomer unit containing the UV-absorbing structure is 0.5 g / m 2 to 25 g / m 2
  • the thickness is 2.0 ⁇ m to 50 ⁇ m.
  • the content of the monomer unit derived from the (meth) acrylic compound with respect to the total mass of the polymer component in the polymer layer is 1 Front sheet for a solar cell is the amount% or more but less than 50 wt%.
  • A1 The content of the monomer unit derived from the olefin compound with respect to the total mass of the polymer component in the polymer layer is 50% by mass or more.
  • B1 Content of the structural unit containing a urethane bond with respect to the total mass of the polymer component in the polymer layer is 50% by mass or more.
  • ⁇ 3> The solar cell front sheet according to ⁇ 2>, which satisfies the above A1.
  • the total content of monomer units including the ultraviolet absorbing compound and the ultraviolet absorbing structure contained in the polymer layer is 1% by mass or more and 50% by mass or more based on the total mass of the polymer components contained in the polymer layer.
  • the total content of monomer units including the ultraviolet absorbing compound and the ultraviolet absorbing structure contained in the polymer layer is 3% by mass or more and 19% by mass with respect to the total mass of the polymer components contained in the polymer layer.
  • ⁇ 6> The solar cell front sheet according to any one of ⁇ 1> to ⁇ 5>, which satisfies A2 or B2 below.
  • A2 The content of the monomer unit derived from the olefin compound with respect to the total mass of the polymer component in the polymer layer is 60% by mass or more.
  • B2 The content of the structural unit containing a urethane bond with respect to the total mass of the polymer component in the polymer layer is 60% by mass or more.
  • ⁇ 7> The above ⁇ 1> to ⁇ 1>, wherein the content of the monomer unit derived from the (meth) acrylic compound in the polymer layer is 20% by mass or less based on the total mass of the polymer component contained in the polymer layer.
  • ⁇ 6> The solar cell front sheet according to any one of the above.
  • ⁇ 8> The solar cell front sheet according to any one of ⁇ 1> to ⁇ 7>, wherein the ultraviolet absorbing compound includes a triazine compound, or the ultraviolet absorbing structure includes a triazine structure.
  • the polymer having the ultraviolet absorbing structure is a composite particle of an ultraviolet absorbing compound and an acrylic resin.
  • the solar cell front sheet according to any one of ⁇ 1> to ⁇ 10>, which is disposed on a side on which sunlight is incident on the element structure, and sunlight with respect to the element structure A solar cell module comprising: a solar cell backsheet disposed on the side opposite to the side on which the light is incident.
  • ⁇ 12> a step of preparing a substrate, a binder polymer, a polymer having an ultraviolet absorbing structure, a polymer having an ultraviolet absorbing structure, a polymer containing an ultraviolet absorbing compound having a molecular weight of less than 5,000, and an ultraviolet absorbing structure
  • a step of preparing a coating composition comprising at least one of the polymers containing monomer units having a thickness of 1 and a thickness after drying of the coating composition is applied on one side of the substrate.
  • the total content of the monomer units containing the UV-absorbing compound and the UV-absorbing structure is 0.5 g / m 2 to 25 g / m 2 , and all of the polymer components in the polymer layer
  • the total content of the monomer unit derived from the olefin compound relative to the mass and the structural unit containing a urethane bond relative to the total mass of the polymer component in the polymer layer is 50
  • a step of forming a polymer layer that is at least% by mass, and the content of the monomer unit derived from the (meth) acrylic compound relative to the total mass of the polymer component in the polymer layer is 1% by mass or more and 50% by mass
  • seat for solar cells which is less than.
  • the embodiment according to the present disclosure it is possible to provide a solar cell front sheet having excellent weather resistance even during long-term use and excellent in power generation efficiency of the solar cell, and a method for manufacturing the same.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the amount of each component in the composition means the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition.
  • the term “process” is included in the term as long as the intended purpose of the process is achieved, even when the process is not clearly distinguished from other processes.
  • “(meth) acryl” means at least one of acryl and methacryl
  • “(meth) acrylate” means at least one of acrylate and methacrylate.
  • the “front sheet for solar cell” refers to a sheet disposed on the side on which sunlight is incident as viewed from the solar cell element in the solar cell module.
  • the “back sheet for solar cell” refers to a sheet disposed on the side opposite to the side on which sunlight is incident as viewed from the solar cell element in the solar cell module.
  • a combination of preferred embodiments is a more preferred embodiment.
  • the front sheet for a solar cell includes a binder polymer and a polymer having an ultraviolet absorbing structure on a substrate, and an ultraviolet absorbing compound having a molecular weight of less than 5,000 (hereinafter simply referred to as “ultraviolet absorbing compound”).
  • the total content of the structural unit containing a urethane bond with respect to the total mass of the polymer component in the layer is 50% by mass or more
  • the total content of the monomer unit containing the ultraviolet absorbing compound and the ultraviolet absorbing structure is 0.5 g / m 2 to 25 g / m 2 and a polymer layer having a thickness of 2.0 ⁇ m to 50 ⁇ m
  • the content of the monomer unit derived from the (meth) acrylic compound with respect to the total mass of the mer component is 1% by mass or more and less than 50% by mass.
  • the solar cell front sheet according to the present disclosure includes other layers (for example, an undercoat layer described later, a second layer described later, a third layer described later, a fourth layer described later, and the like) as necessary. Also good.
  • the solar cell front sheet according to the present disclosure has excellent weather resistance even during long-term use, and is excellent in power generation efficiency of the solar cell. The reason why such an effect is achieved is presumed as follows. However, the solar cell front sheet according to the present disclosure is not limited for the following reasons.
  • the ultraviolet absorber In the conventional protection sheet for solar cells, it is considered that moisture is gradually increased around the ultraviolet absorber in the layer when used for a long period of time, and the frequency at which the ultraviolet absorber receives excited electrons is increased. For this reason, the ultraviolet absorber is decomposed, and it is considered that the weather resistance is deteriorated by long-term use of, for example, one year or longer, depending on the use environment. The above phenomenon is particularly noticeable when used in a wet heat environment irradiated with ultraviolet rays.
  • the solar cell front sheet according to the present disclosure includes a monomer unit derived from an olefin compound with respect to the total mass of the polymer component in the polymer layer, and a structural unit including a urethane bond with respect to the total mass of the polymer component in the polymer layer;
  • the total content of is 50% by mass or more, the polymer becomes hydrophobic as a whole, and the ultraviolet absorber contained in the polymer having the ultraviolet absorbing structure and the decomposition of the ultraviolet absorbing structure are suppressed, and as a result, It is presumed to have excellent weather resistance even in use.
  • the total content of the ultraviolet absorber contained in the polymer having an ultraviolet absorbing structure and the monomer unit containing the ultraviolet absorbing structure in the present disclosure is 0.5 g / m 2 to 25 g / m 2 , and the polymer When the layer thickness is 2.0 ⁇ m to 50 ⁇ m, the haze value can be kept low, and the power generation efficiency of the solar cell is excellent. Further, according to the above aspect, since the abundance ratio of the polymer around the monomer unit including the ultraviolet absorber or the ultraviolet absorbing structure is relatively low, the probability that these receive the excited electrons decreases, and the ultraviolet absorber.
  • the content of the monomer unit derived from the (meth) acrylic compound with respect to the total mass of the polymer component in the polymer layer is 1% by mass or more, the dispersibility of the ultraviolet absorbing compound and the ultraviolet absorbing structure can be improved. Therefore, it is presumed that a solar cell front sheet having high transparency and excellent power generation efficiency is easily obtained.
  • the solar cell front sheet and the solar cell module according to the present disclosure are not limited to the following examples.
  • FIG. 1 is a schematic cross-sectional view illustrating an example of a solar cell module including a solar cell front sheet according to the present disclosure.
  • the solar cell module shown in FIG. 1 is also an example of a solar cell module according to the present disclosure which will be described later.
  • a solar cell module 100 includes a solar cell element 32 and a sealing material 34 (for example, an ethylene-vinyl acetate copolymer (EVA)) that seals the solar cell element 32.
  • the element structure 36 including the sealing material), the solar cell front sheet 20 disposed on the side where the sunlight 50 is incident on the element structure 36, and the sunlight 50 on the element structure 36.
  • a solar cell backsheet 40 disposed on the side opposite to the incident side.
  • the solar cell front sheet 20 is an example of a solar cell front sheet according to the present disclosure.
  • the solar cell front sheet 20 is disposed on a base material represented by a polyester film (base material film 10) and one surface of the base film 10 (specifically, the surface on which sunlight 50 is incident).
  • the first layer 11 and the second layer 12 disposed on the surface of the first layer.
  • the first layer is a polymer layer in the solar cell front sheet according to the present disclosure.
  • the polymer layer used in the present disclosure is also referred to as “first layer”.
  • the second layer contains, for example, a siloxane resin.
  • the second layer 12 is not essential and may be omitted.
  • the solar cell front sheet 20 is further provided with the third layer 13 and the fourth layer 14 in this order as the back layer on the side opposite to the first layer 11 and the second layer 12 side when viewed from the base film 10.
  • the third layer 13 and the fourth layer 14 have a function of an easy adhesion layer for facilitating adhesion to the element structure portion 36.
  • the third layer 13 and the fourth layer 14 are not essential, and at least one of the third layer 13 and the fourth layer 14 may be omitted.
  • An undercoat layer may be provided on at least one of the surface on the first layer 11 side and the surface on the third layer 13 side of the base film 10. That is, the base film 10 may be a base film with an undercoat layer described later.
  • the solar cell module 100 may include other members other than the members described above.
  • the other members include an adhesive layer disposed between the members, a terminal box disposed on the side opposite to the element structure portion 36 with respect to the solar cell backsheet 40, and the like.
  • the solar cell front sheet 20 is a member into which sunlight 50 is directly incident, and is a member exposed to wind and rain. Therefore, the solar cell front sheet 20 is required to have high weather resistance (for example, durability against wet heat environment and ultraviolet irradiation).
  • the polymer layer is based on the monomer unit derived from the olefin compound relative to the total mass of the polymer component in the polymer layer, and the total mass of the polymer component in the polymer layer.
  • the total content of the structural unit containing a urethane bond is 50% by mass or more, it is considered that it has excellent weather resistance even during long-term use and excellent power generation efficiency of the solar cell.
  • the weather resistance in long-term use is also simply referred to as “long-term weather resistance”.
  • the surface on which the polymer layer (first layer) and the second layer are formed may be referred to as a “front surface”, and is opposite to the front surface.
  • the surface (the surface on the side where the third layer and the fourth layer are formed if necessary) may be referred to as a “back surface”.
  • the solar cell front sheet according to the present disclosure includes a binder polymer, a polymer containing an ultraviolet absorbing compound having a molecular weight of less than 5,000, and a monomer unit having an ultraviolet absorbing structure as a polymer having an ultraviolet absorbing structure.
  • the content is 50% by mass or more, the total content of monomer units including the ultraviolet absorbing compound and the ultraviolet absorbing structure is 0.5 g / m 2 to 25 g / m 2 , and the thickness is 2. It has a polymer layer of 0 ⁇ m to 50 ⁇ m and is derived from a (meth) acrylic compound relative to the total mass of the polymer component in the polymer layer.
  • the monomer unit content is 1% by mass or more and less than 50% by mass.
  • the polymer component refers to a concept including all polymers included in the polymer layer, and the polymer according to the present disclosure refers to a compound having a weight average molecular weight of 5,000 or more.
  • the polymer component includes a binder polymer, a polymer having an ultraviolet absorbing structure, and may further include a surfactant or the like.
  • the weight average molecular weight refers to a value measured by gel permeation chromatography (GPC).
  • HLC registered trademark
  • TSKgel registered trademark
  • Super Multipore HZ-H 4.6 mm ID ⁇ 15 cm, Tosoh Corp.
  • THF tetrahydrofuran
  • the measurement conditions are a sample concentration of 0.45 mass%, a flow rate of 0.35 mL / min, a sample injection amount of 10 ⁇ L, a measurement temperature of 40 ° C., and a differential refractive index (RI) detector. be able to.
  • the calibration curve is “Standard sample TSK standard, polystyrene” manufactured by Tosoh Corporation: “F-40”, “F-20”, “F-4”, “F-1”, “A-5000”, “ It can be prepared from 8 samples of “A-2500”, “A-1000”, and “n-propylbenzene”.
  • a monomer unit derived from an olefin compound with respect to the total mass of the polymer component in the polymer layer and a urethane bond with respect to the total mass of the polymer component in the polymer layer are provided.
  • the total content of the constituent units to be included is preferably 60% by mass or more.
  • the upper limit of the total content is 99% by mass from the viewpoint that the content of monomer units derived from the (meth) acrylic compound with respect to the total mass of the polymer components in the polymer layer is 1% by mass or more and less than 50% by mass. It is preferably 90% by mass or less, more preferably 85% by mass or less, and still more preferably 80% by mass or less.
  • the polymer layer preferably satisfies the following A1 or the following B1, and more preferably satisfies the following A1.
  • A1 The content of the monomer unit derived from the olefin compound with respect to the total mass of the polymer component in the polymer layer is 50% by mass or more.
  • B1 Content of the structural unit containing a urethane bond with respect to the total mass of the polymer component in the polymer layer is 50% by mass or more.
  • the polymer layer preferably satisfies the following A2 or B2.
  • A2 The content of the monomer unit derived from the olefin compound with respect to the total mass of the polymer component in the polymer layer is 60% by mass or more.
  • B2 The content of the structural unit containing a urethane bond with respect to the total mass of the polymer component in the polymer layer is 60% by mass or more.
  • the content of the monomer unit derived from the (meth) acrylic compound is It is 1 mass% or more and less than 50 mass% with respect to the total mass of the polymer component contained.
  • the content of the monomer unit derived from the (meth) acrylic compound with respect to the total mass of the polymer component in the polymer layer is preferably 39% by mass or less and 8% by mass or more, and 20% by mass or less and 10% by mass or more. More preferably.
  • the (meth) acrylic compound means (meth) acrylic acid or a (meth) acrylic ester compound.
  • the thickness of the polymer layer according to the present disclosure is 2.0 ⁇ m to 50 ⁇ m, preferably 7.0 ⁇ m to 50 ⁇ m, and particularly preferably 7.0 ⁇ m to 30 ⁇ m.
  • the thickness of the polymer layer can be measured by preparing a section of the solar cell front sheet and observing the cross section with a scanning electron microscope (SEM).
  • the polymer layer in the present disclosure is made up of five thin film slices divided into five at equal intervals in the thickness direction.
  • the difference between the maximum value and the minimum value is preferably 30% or less, and preferably 20% or less. It is more preferable.
  • the lower limit is not particularly limited and may be 0% or more.
  • the difference between the maximum value and the minimum value is achieved by dispersing a polymer having an ultraviolet absorbing structure in the polymer layer in a nearly uniform state. Note that the above-mentioned equal intervals do not have to be completely equal intervals, and may have errors as long as they are within an average value ⁇ 10% of the thicknesses of the five thin film sections.
  • the polymer layer contains a binder polymer.
  • the total content of the monomer unit derived from the olefin compound with respect to the total mass of the polymer component in the polymer layer and the structural unit containing a urethane bond with respect to the total mass of the polymer component in the polymer layer is 50% by mass or more. Therefore, it is preferable to contain a polymer containing a monomer unit derived from an olefin compound or polyurethane as the binder polymer.
  • aqueous solution containing a binder polymer at a solid content of 10% by mass is applied onto a polyethylene terephthalate (PET) substrate so that the mass after drying is 10 g / m 2 and dried to form a film.
  • PET polyethylene terephthalate
  • the solid content refers to all components except the solvent.
  • the olefin compound in the polymer containing a monomer unit derived from an olefin compound may be a chain olefin compound or a cyclic olefin compound, but is preferably a chain olefin and has 2 to 10 carbon atoms. Are more preferable, and ethylene or propylene is more preferable.
  • the content of the monomer unit derived from the olefin compound includes a monomer unit derived from the olefin compound relative to the total mass of the polymer component in the polymer layer and a urethane bond relative to the total mass of the polymer component in the polymer layer.
  • the total content of the units is preferably 50% by mass to 95% by mass with respect to the total mass of the polymer including the monomer units derived from the olefin compound, and 60% by mass. % To 95% by mass is more preferable.
  • the polymer containing a monomer unit derived from an olefin compound may contain another monomer unit derived from a compound other than the olefin compound.
  • examples of other monomer units include monomer units derived from unsaturated carboxylic acid anhydrides such as (meth) acrylic acid, (meth) acrylic acid ester compounds, (meth) acrylamide compounds, and maleic anhydride. It is done.
  • the content of the other monomer units is a monomer unit derived from an olefin compound with respect to the total mass of the polymer component in the polymer layer, and a structural unit containing a urethane bond with respect to the total mass of the polymer component in the polymer layer; From the standpoint of setting the total content of at least 50% by mass, the content is preferably 1% by mass to 30% by mass with respect to the total mass of the polymer containing monomer units derived from the olefin compound, and preferably 5% by mass to 20% by mass. More preferably, it is mass%.
  • the total content of monomer units derived from the (meth) acrylic acid ester compound is preferably 0% by mass to 20% by mass with respect to the total mass of the polymer containing monomer units derived from the olefin compound, and 0% by mass. % To 10% by mass is more preferable.
  • the weight average molecular weight of the polymer containing a monomer unit derived from an olefin compound is preferably 5,000 to 1,000,000, and more preferably 8,000 to 500,000.
  • olefin compound in the polymer containing monomer units derived from the olefin compound for example, commercially available polyolefins or modified polyolefins can be used.
  • Commercially available modified polyolefins include, for example, Arrow Base (registered trademark) SE-1013N, SD-1010, TC-4010, TD-4010 (both manufactured by Unitika Ltd.), Hitech S3148, S3121, S8512 (both Toho Chemical).
  • Arrowbase registered trademark
  • SE-1013N manufactured by Unitika Co., Ltd., which is a terpolymer of low-density polyethylene, an acrylic ester compound, and maleic anhydride, is preferable.
  • acid-modified polyolefins described in paragraphs 0022 to 0034 of JP-A-2014-76632 can be preferably used.
  • the polyurethane used in the present disclosure is not particularly limited, and a known polyurethane can be used.
  • a carbonate-based urethane resin is preferable.
  • the carbonate-based polyurethane can be obtained, for example, by reacting a polycarbonate polyol compound and a polyisocyanate compound.
  • a polyurethane having a curable group such as a silanol group can also be used.
  • the structural unit containing a urethane bond is the largest structural unit in the remainder excluding the structural unit formed by a polymerization reaction other than the urethane bond such as a polycarbonate structure, a polyurea structure, and a polyalkyleneoxy structure in polyurethane.
  • the content of the structural unit containing a urethane bond is calculated as a value obtained by removing the mass of a molecular chain such as a polycarbonate chain, a polyurea chain, or a polyalkyleneoxy chain from the total mass of the polyurethane. In addition, this content is the same in the structural unit containing an ester bond, its content, etc. in polyester etc.
  • the content of the structural unit containing a urethane bond is preferably 50% by mass to 95% by mass, and preferably 60% by mass to 95% by mass with respect to the total mass of the polyurethane, from the viewpoint of satisfying B1 or B2 described above. It is more preferable.
  • the weight average molecular weight of the polyurethane is preferably 5,000 to 1,000,000, and more preferably 8,000 to 500,000.
  • the binder polymer according to the present disclosure is a total content of a monomer unit derived from an olefin compound with respect to the total mass of the polymer component in the polymer layer and a structural unit including a urethane bond with respect to the total mass of the polymer component in the polymer layer.
  • another binder polymer may be used, or a polymer or polyurethane containing a monomer unit derived from the above olefin compound and another binder polymer may be used in combination.
  • Examples of other binder polymers include acrylic resins.
  • the acrylic resin refers to a polymer containing 50% by mass or more of monomer units derived from (meth) acrylic acid or a (meth) acrylic acid ester compound with respect to the total mass of the polymer.
  • an acrylic resin for example, the acrylic resin used in the composite particle of the below-mentioned ultraviolet absorber and polymer is mentioned.
  • siloxane-containing acrylic resins described in JP-A No. 2016-195165 By using a siloxane-containing acrylic resin in combination with polyolefin or polyurethane, a polar ultraviolet absorber is generally easy to disperse uniformly in the polymer layer, and the siloxane component is preferable in that it is excellent in outdoor weather resistance.
  • the content of the other binder polymer is the sum of the monomer unit derived from the olefin compound with respect to the total mass of the polymer component in the polymer layer and the structural unit containing a urethane bond with respect to the total mass of the polymer component in the polymer layer. From the viewpoint of setting the content to 50% by mass or more, the content is preferably 0.1% by mass to 50% by mass with respect to the total mass of the polymer components contained in the polymer layer, and 0.5% by mass to 20% by mass. More preferably.
  • the polymer layer in the present disclosure may contain a binder polymer alone or in combination of two or more.
  • the polymer layer in the present disclosure preferably contains the binder polymer in an amount of 10% by mass to 90% by mass, and more preferably 15% by mass to 70% by mass with respect to the total mass of the polymer layer.
  • the polymer layer in the present disclosure includes at least one of a polymer containing an ultraviolet absorbing compound and a polymer containing a monomer unit having an ultraviolet absorbing structure as a polymer having an ultraviolet absorbing structure, and the ultraviolet absorbing compound and the ultraviolet absorbing compound.
  • the total content of the monomer units including the structure is 0.5 g / m 2 to 25 g / m 2 .
  • the total content of the ultraviolet absorbing compound and the monomer unit containing the ultraviolet absorbing structure is preferably 0.6 g / m 2 to 20 g / m 2 , and 0.8 g / m 2 to 15 g / m 2. It is more preferable that
  • the form of the polymer containing the ultraviolet absorbing compound is not particularly limited as long as the ultraviolet absorbing compound is contained, but it is preferably in the form of composite particles in which the ultraviolet absorbing compound is coated with the polymer.
  • the polymer layer preferably contains at least one composite particle of an ultraviolet absorbing compound and a polymer.
  • the ultraviolet absorbing compound is a compound having an ultraviolet absorbing performance and a molecular weight of less than 5,000.
  • the said molecular weight says the weight average molecular weight measured by the above-mentioned method, when an ultraviolet-absorbing compound has molecular weight distribution. In the absence of a molecular weight distribution, the molecular weight is measured using, for example, electrospray ionization mass spectrometry (ESI-MS). Although the minimum of the said molecular weight is not specifically limited, It is preferable that it is 100 or more.
  • the ultraviolet absorbing compound a compound having a maximum absorption wavelength of 380 nm or less is preferable, and a compound having a maximum absorption wavelength of 250 nm to 380 nm (particularly preferably 270 nm to 380 nm) is more preferable.
  • the ultraviolet absorbing compound include triazine compounds, benzotriazole compounds, benzophenone compounds, salicylic acid compounds, and the like.
  • the ultraviolet absorbing compound preferably contains a triazine compound or a benzotriazole compound, and more preferably contains a triazine compound, from the viewpoint of ultraviolet absorbing performance.
  • the total content of the triazine compound and the benzotriazole compound in the ultraviolet absorbing compound is preferably 80% by mass or more based on the total amount of the ultraviolet absorbing compound.
  • the content of the triazine compound in the ultraviolet absorbing compound is preferably 80% by mass or more based on the total amount of the ultraviolet absorbing compound.
  • triazine compound examples include 2- (4-butoxy-2-hydroxyphenyl) -4,6-bis (4-butoxyphenyl) -1,3,5-triazine, 2- (4-butoxy-2-hydroxy Phenyl) -4,6-bis (2,4-dibutoxyphenyl) -1,3,5-triazine, 2,4-bis (4-butoxy-2-hydroxyphenyl) -6- (4-butoxyphenyl) -1,3,5-triazine, 2,4-bis (4-butoxy-2-hydroxyphenyl) -6- (2,4-dibutoxyphenyl) -1,3,5-triazine, 2,4,6 -Tris (2-hydroxy-4-octyloxyphenyl) -1,3,5-triazine, 2- (2-hydroxy-4-octyloxyphenyl) -4,6-bis (2,4-dimethylphenyl)- 1 3,5-triazine, 2- (2,4-dihydroxyphenyl) -4
  • benzotriazole compound examples include 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- (2′-hydroxy-5′-t-butylphenyl) benzotriazole, 2- (2′- Hydroxy-3′-t-butyl-5′-methylphenyl) -5-chlorobenzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-t-butylphenyl) -5-chlorobenzotriazole, 2- (2′-hydroxy-3′-dodecyl-5′-methylphenyl) -5-chlorobenzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-t-amylphenyl) benzotriazole, 2- (2'-hydroxy-5 '-(1,1,3,3-tetramethylbutyl) phenyl) benzotriazole, 2- (2'-hydroxy-4 -Octyloxyphenyl) benzotriazole, 2- (2'-hydroxy-3 '-(3,3
  • benzophenone compound examples include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octyloxybenzophenone, 2-hydroxy-4-decyloxybenzophenone, 2-hydroxy-4-dodecyl.
  • salicylic acid compound examples include phenyl salicylate, 4-t-butylphenyl salicylate, 4-octylphenyl salicylate, dibenzoylresorcinol, bis (4-t-butylbenzoyl) resorcinol, benzoylresorcinol, 2,4-di-t- Examples thereof include butylphenyl 3,5-di-t-butyl-4-hydroxysalicylate, hexadecyl 3,5-di-t-butyl-4-hydroxysalicylate, and the like.
  • oxalic acid diamide compound for example, 4,4′-dioctyloxyoxanilide, 2,2′-dioctyloxy-5,5′-di-t-butyloxanilide, 2,2′-didodecyloxy -5,5'-di-t-butyloxanilide, 2-ethoxy-2'-ethyloxanilide, N, N'-bis (3-dimethylaminopropyl) oxamide, 2-ethoxy-5-t- Examples include butyl-2'-ethyloxanilide, 2-ethoxy-2'-ethyl-5,4'-di-t-butyloxanilide, and the like.
  • the polymer contained in the composite particle is different from the binder polymer in the polymer layer (first layer) in that it is a component constituting the composite particle.
  • the polymer contained in the composite particles include acrylic resin, polyester, polyurethane, polyolefin, siloxane resin, and fluoropolymer, and acrylic resin is preferable.
  • the polymer having an ultraviolet absorbing structure is a composite particle of an ultraviolet absorbing compound and an acrylic resin, the long-term weather resistance and transparency of the solar cell module are further improved. The reason for this is considered that, when the polymer contained in the composite particles is an acrylic resin, the water dispersibility of the composite particles is improved, and the polymer particles are dispersed in a nearly uniform state.
  • Examples of the monomer for forming the acrylic resin include (meth) acrylic acid and (meth) acrylic acid ester compounds. More specifically, as a monomer for forming the acrylic resin, for example, (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, n-hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, acetoxyethyl (meth) acrylate, phenyl (meth) acrylate 2-methoxyethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 2- (2-methoxyethoxy) ethyl (me
  • a monomer other than the monomer for forming the acrylic resin may be used as a copolymerization component.
  • Other monomers include nitrogen-containing monomers such as (meth) acrylamide, diacetone acrylamide, N-methylol acrylamide, and (meth) acrylonitrile; monomers having a styrene skeleton such as styrene, ⁇ -methylstyrene, divinylbenzene, vinyltoluene; Monomers having a siloxane structure described later; vinyl esters such as vinyl propionate; phosphorus-containing vinyl monomers; vinyl halides such as vinyl chloride and vinylidene chloride; conjugated dienes such as butadiene;
  • the content of the ultraviolet absorbing compound in the composite particles of the ultraviolet absorbing compound and the polymer is preferably 20% by mass to 80% by mass, more preferably 30% by mass to 70% by mass, and more preferably 40% by mass with respect to the total amount of the composite particles. % To 60% by mass is particularly preferable.
  • the content of the polymer in the composite particles of the ultraviolet absorbing compound and the polymer is preferably 20% by mass to 80% by mass, more preferably 30% by mass to 70% by mass, and more preferably 40% by mass to 60% by mass with respect to the total amount of the composite particles. Mass% is particularly preferred.
  • the weight average molecular weight of the polymer (for example, acrylic resin) contained in the composite particles of the UV-absorbing compound and the polymer is preferably 5,000 to 200,000 from the viewpoint of further improving long-term weather resistance, Is more preferably 150,000 and more preferably 10,000-100,000.
  • the median diameter (D50) of the composite particles of the ultraviolet absorbing compound and the polymer is preferably less than 500 nm, more preferably less than 400 nm, and particularly preferably less than 150 nm.
  • the median diameter (D50) of the composite particles of the ultraviolet absorbing compound and the polymer is preferably less than 500 nm, more preferably less than 400 nm, and particularly preferably less than 150 nm.
  • the lower limit of the median diameter is preferably 10 nm or more, and more preferably 20 nm or more.
  • the median diameter is calculated from the particle size distribution by dynamic light scattering measurement.
  • the polymer having an ultraviolet absorbing structure may be a polymer including a monomer unit having an ultraviolet absorbing structure.
  • the monomer unit having an ultraviolet absorbing structure is preferably a monomer unit derived from a polymerizable compound containing at least a part of the structure such as the above-described triazine compound, benzotriazole compound, benzophenone compound, salicylic acid compound, and the like.
  • a monomer unit derived from a polymerizable compound containing at least a part of the structure is more preferable.
  • the polymer containing a monomer unit having an ultraviolet absorbing structure is preferably an acrylic resin, and an acrylate compound containing at least a part of the structure of the above-mentioned triazine compound, benzotriazole compound, benzophenone compound, salicylic acid compound, etc.
  • An acrylic resin containing a monomer unit derived from is more preferable, and an acrylic resin containing a monomer unit derived from an acrylate compound containing at least part of the structure of the triazine compound is more preferable.
  • the acrylic resin may be a copolymer further including a monomer unit derived from the same monomer as that for forming the acrylic resin in the composite particle.
  • the content of the monomer unit having an ultraviolet absorption structure is preferably 10% by mass to 90% by mass, and preferably 30% by mass to 70% by mass with respect to the total mass of the polymer including the monomer unit having an ultraviolet absorption structure. More preferably, it is mass%.
  • the weight average molecular weight of the polymer containing monomer units having an ultraviolet absorbing structure is preferably 5,000 to 200,000, more preferably 7,000 to 150,000, from the viewpoint of further improving long-term weather resistance. More preferably, it is 10,000 to 100,000.
  • the ratio of the content of the polymer containing monomer units having an ultraviolet absorption structure to the content of the binder polymer is based on mass. It is preferably 0.05 to 0.60. If the said ratio is 0.05 or more, it is excellent in the electric power generation efficiency of a solar cell, and if it is 0.60 or less, it is excellent in the long-term weather resistance.
  • a commercially available product may be used as the polymer having an ultraviolet absorbing structure.
  • Examples of commercially available products include Tinuvin (registered trademark) 99-DW, 400-DW, 477-DW, 479-DW (both manufactured by BASF), New Coat (registered trademark) UVA-204W, UVA-101, UVA- 102, UVA-103, UVA-104, Vanaresin (registered trademark) UVA-5080, UVA-5080 (OHV20), UVA-55T, UVA-55MHB, UVA-7075, UVA-7075 (OHV20), UVA-73T (both New Nakamura Chemical Co., Ltd.) RUVA-93 (Otsuka Chemical Co., Ltd.).
  • the total content of the UV-absorbing compound contained in the polymer layer and the monomer unit containing the UV-absorbing structure is 1% by mass or more and 50% by mass or less based on the total mass of the polymer component contained in the polymer layer. It is preferable that the content is 3% by mass or more and 19% by mass or less.
  • a preferred embodiment of the solar cell front sheet according to the present disclosure is an embodiment in which the ultraviolet absorber includes the triazine compound described above or the ultraviolet absorption structure includes the triazine structure described above.
  • the polymer having the ultraviolet absorbing structure is a composite particle of the above-described ultraviolet absorbing compound and an acrylic resin. It is more preferable that the ultraviolet absorbing compound contained in the composite particle is a triazine compound.
  • the polymer layer may include a structure derived from a crosslinking agent from the viewpoints of hardness and durability.
  • the crosslinking agent may be only one type or two or more types.
  • Examples of the crosslinking agent include an epoxy crosslinking agent, an isocyanate crosslinking agent, a melamine crosslinking agent, a carbodiimide crosslinking agent, and an oxazoline crosslinking agent.
  • a carbodiimide-based crosslinking agent, an oxazoline-based crosslinking agent, or an isocyanate-based crosslinking agent is preferable, and an oxazoline-based crosslinking agent is particularly preferable.
  • oxazoline-based crosslinking agent examples include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline, 2,2′-bis- (2-oxazoline), 2,2′-methylene-bis- (2 -Oxazoline), 2,2'-ethylene-bis- (2-oxazoline), 2,2'-trimethylene-bis- (2-oxazoline), 2,2'-tetramethylene-bis- (2-oxazoline), 2,2′-hexamethylene-bis- (2-oxazoline), 2,2′-octamethylene-bis- (2-oxazoline), 2,2′-ethylene-bis- 4,4'-dimethyl-2-oxazoline), 2,2'-p-phenylene-
  • a commercially available product of a diluted solution of an oxazoline-based crosslinking agent may be used.
  • Commercially available diluted solutions of oxazoline-based crosslinking agents include, for example, Epocross (registered trademark) K-2010E, K-2020E, K-2030E, WS-500, WS-700 [all manufactured by Nippon Shokubai Chemical Co., Ltd.] ], Etc. are mentioned.
  • the addition amount of the crosslinking agent is preferably 10 parts by mass or more and 40 parts by mass or less, more preferably 15 parts with respect to 100 parts by mass of the binder polymer contained in the polymer layer. It is not less than 35 parts by mass.
  • the addition amount of the crosslinking agent is 10 parts by mass or more, a sufficient crosslinking effect can be obtained while maintaining the hardness and adhesiveness of the polymer layer.
  • the addition amount of the crosslinking agent is 40 parts by mass or less, the storage stability of the coating solution can be kept long, and when it is 35 parts by mass or less, the coated surface state can be improved.
  • the content of the structure derived from the crosslinking agent is preferably 10 parts by mass or more and 40 parts by mass or less, more preferably 100 parts by mass with respect to 100 parts by mass of the binder polymer contained in the polymer layer. Is 15 parts by mass or more and 35 parts by mass or less.
  • the polymer layer may contain at least one crosslinking catalyst from the viewpoint of promoting a crosslinking reaction between the binder polymer and the crosslinking agent.
  • a known crosslinking catalyst can be used without any particular limitation, and examples thereof include onium compounds.
  • the polymer layer may contain at least one surfactant.
  • the surfactant include known surfactants such as an anionic surfactant and a nonionic surfactant.
  • the content of the surfactant is preferably 0.01% by mass to 1% by mass, and 0.01% by mass to 0.2% by mass with respect to the solid content of the polymer layer. Is more preferable.
  • the polymer layer may contain other components other than the components described above.
  • other components include inorganic particles and light stabilizers.
  • inorganic particles the same thing as the inorganic particle which may be contained in the below-mentioned 2nd layer is mentioned.
  • the light stabilizer include known light stabilizers such as hindered amine light stabilizers.
  • Tinuvin (registered trademark) 123-DW manufactured by BASF
  • Udouble (registered trademark) E-771SI manufactured by Nippon Shokubai Co., Ltd.
  • the method for forming the polymer layer is not particularly limited.
  • Examples of the method for forming the polymer layer include a method in which a coating solution for forming a polymer layer containing a solvent and the above-described polymer layer component (solid content) is applied to one surface of a substrate and dried.
  • the solvent may be water or an organic solvent such as toluene or methyl ethyl ketone. From the viewpoint of environmental load, water is preferable.
  • the proportion of water in the solvent is preferably 60% by mass or more, and more preferably 80% by mass or more.
  • the preferred range of the content of each component with respect to the solid content of the coating liquid for forming a polymer layer is the same as the preferred range of the content of each component with respect to the solid content of the polymer layer.
  • the coating method includes a coating method using a coating apparatus such as a gravure coater, a bar coater, a roll coater, a spin coater, or a curtain coater.
  • the drying temperature is preferably 100 ° C to 200 ° C, more preferably 140 ° C to 190 ° C.
  • the drying time is preferably 0.1 to 10 minutes, more preferably 0.2 to 5 minutes.
  • surface treatment flame treatment, corona treatment, plasma treatment, ultraviolet treatment, etc.
  • the polymer layer may be disposed on the substrate via another layer (for example, an undercoat layer described later).
  • the preferable aspect of the base material (for example, above-mentioned base film 10) in the solar cell front sheet which concerns on this indication is demonstrated.
  • a transparent material can be appropriately selected.
  • An undercoat layer to be described later may be provided on at least one surface of the substrate.
  • a film-like substrate also referred to as “substrate film”.
  • the thickness of the base film is preferably 30 ⁇ m to 500 ⁇ m, more preferably 40 ⁇ m to 450 ⁇ m, and further preferably 45 ⁇ m to 400 ⁇ m.
  • the material of the substrate is preferably a polymer.
  • the polymer include polyolefins such as polyester, polycarbonate, polypropylene, and polyethylene, or fluorine-based polymers such as polyvinyl fluoride.
  • polyester is preferable from the viewpoints of cost, mechanical strength, and transparency.
  • polyester examples include a linear saturated polyester synthesized from an aromatic dibasic acid or an ester-forming derivative thereof and a diol or an ester-forming derivative thereof.
  • linear saturated polyester examples include polyethylene terephthalate, polyethylene isophthalate, polybutylene terephthalate, poly (1,4-cyclohexylenedimethylene terephthalate), polyethylene-2,6-naphthalate, and the like.
  • polyethylene terephthalate, polyethylene-2,6-naphthalate, and poly (1,4-cyclohexylenedimethylene terephthalate) are particularly preferable from the viewpoint of the balance between mechanical properties and cost.
  • the polyester may be a homopolymer or a copolymer. Further, polyester may be blended with a small amount of other types of resins such as polyimide.
  • polyester is not limited to the above, and a known polyester may be used.
  • a known polyester you may synthesize
  • polyesters described in JP-A-2016-195165 are preferably used.
  • the method for producing the substrate is not particularly limited.
  • a method for producing a base film described in JP-A-2016-195165 can be mentioned.
  • the transparent sheet for solar cell of this indication has a 2nd layer (for example, above-mentioned 2nd layer 12) further on a polymer layer.
  • a 2nd layer is a layer (preferably outermost layer) arrange
  • a layer having a function is preferable.
  • the second layer preferably contains at least one siloxane resin including the structural unit represented by the formula S1 and the structural unit represented by the formula S2.
  • the scratch resistance of the second layer for example, scratch resistance against external forces such as scratching and scratching
  • the transparency of the second layer can be ensured by including the siloxane resin in the second layer.
  • the siloxane resin contained in the second layer is not particularly limited as long as it is a compound including a structural unit represented by the following formula S1 and a structural unit represented by the following formula S2.
  • the siloxane resin in the present disclosure does not include silica particles that are inorganic particles described later.
  • the siloxane resin contained in the second layer may be only one type or two or more types.
  • * represents a binding site with another structure. However, the Si atom in Formula S1 is not directly bonded to the O atom at the bonding site.
  • the structural unit represented by the formula S1 is preferably a structural unit derived from a trifunctional alkoxysilane contained in a trifunctional or lower functional alkoxysilane described later. That is, the structure included in * is preferably a structure derived from R s3 described later.
  • the structural unit represented by the formula S2 is preferably a structural unit derived from a tetrafunctional alkoxysilane described later.
  • the Si atom molar amount in the structural unit represented by Formula S1 in the siloxane resin is based on the molar amount of Si atoms in the structural unit represented by Formula S2. 1.0 to 7.5 times is preferable, and 1.5 times to 4.5 times is more preferable.
  • “the Si atom molar amount of the structural unit represented by Formula S1” is the total Si atoms of the structural units represented by two or more Formulas S1. Mean molar amount.
  • the Si atom molar amount of the structural unit represented by Formula S2 is the total Si atoms of the structural units represented by two or more types of Formula S2.
  • the Si atom molar amount of the structural unit represented by Formula S1 is 1.0 times or more with respect to the Si atomic mole amount of the structural unit represented by Formula S2. Toughness is improved, and a second layer that is difficult to break is obtained.
  • the Si atom molar amount of the structural unit represented by Formula S1 is 7.5 times or less with respect to the Si atomic mole amount of the structural unit represented by Formula S2.
  • the hardness of the second layer is improved, and the pencil hardness of the second layer is improved.
  • the total value of the Si atomic mole amount of the structural unit represented by Formula S1 and the Si atomic mole amount of the structural unit represented by Formula S2 with respect to the total Si atomic mole amount contained in the siloxane resin of the second layer is: It is preferably 80 mol% or more, more preferably 90 mol% or more, and particularly preferably 100 mol%.
  • the Si atom molar amount of the structural unit represented by Formula S1 and the Si atomic mole amount of the structural unit represented by Formula S2 in the siloxane resin of the second layer are obtained by sampling the siloxane resin from the second layer. It can be measured by 29 Si-NMR and measured by the peak intensity of trifunctional and tetrafunctional siloxanes. In addition, a measurement sample removes the range from the surface of a 2nd layer to 50% of film thickness, and uses 10 mg from there.
  • the siloxane resin is a polymer having a (poly) siloxane structural unit in the molecular chain, and is not particularly limited.
  • the siloxane resin contained in the second layer preferably contains a hydrolysis condensate of a trifunctional or lower functional alkoxysilane and a tetrafunctional alkoxysilane from the viewpoint that the degree of crosslinking of the siloxane resin can be more easily adjusted.
  • At least one of the siloxane resins contained in the second layer is a tetrafunctional alkoxysilane, and a trifunctional or lower alkoxysilane having a mass of 1.4 to 10 times the mass of the tetrafunctional alkoxysilane. It is more preferable to contain a hydrolyzed condensate of the above, tetrafunctional alkoxysilane, and trifunctional or lower alkoxysilane having a mass of 2.0 to 6.0 times the mass of the tetrafunctional alkoxysilane. It is further preferable to contain a hydrolysis condensate.
  • the tetrafunctional alkoxysilane and the trifunctional or lower functional alkoxysilane may be one kind or two kinds or more, respectively.
  • the “amount of tetrafunctional alkoxysilane” means the total amount of two or more tetrafunctional alkoxysilanes.
  • the “amount of trifunctional or lower alkoxysilane” means the total amount of two or more trifunctional or lower alkoxysilanes.
  • tetrafunctional alkoxysilane and trifunctional or lower alkoxysilane in an amount of X mass times to Y mass times (for example, 1.4 mass times to 10 mass times) with respect to the amount of the tetrafunctional alkoxysilane
  • the proportion of siloxane having a mass ratio [trifunctional or tetrafunctional / 4 functional] of 1.4 to 10 in all siloxane resins contained in the second layer is preferably 60% by mass or more, and 70% by mass or more. It is more preferable that it is 80 mass% or more.
  • the above-mentioned mass ratio [trifunctional or lower / 4 functional] in the siloxane having the mass ratio [trifunctional or lower / 4 functional] of 1.4 to 10 is from the viewpoint of making the second layer difficult to break and improving the pencil hardness. 2.0 to 6.0 is preferable.
  • at least one of the siloxanes contained in the second layer is a tetrafunctional alkoxysilane and all of the tetrafunctional alkoxysilane.
  • Siloxane the proportion of siloxane having a mass ratio [trifunctional or tetrafunctional / 4 functional] of all siloxanes contained in the second layer of 2.0 to 6.0 is preferably 60% by mass or more. More preferably, it is 70 mass% or more, and it is especially preferable that it is 80 mass% or more.
  • the tetrafunctional alkoxysilane means an alkoxysilane in which the number of alkoxy groups directly bonded to a silicon atom is four in one molecule.
  • the trifunctional or lower functional alkoxysilane means an alkoxysilane in which the number of alkoxy groups directly bonded to silicon atoms is 1 or more and 3 or less in one molecule.
  • alkoxysilane represented with the following general formula (a) is preferable.
  • R S1 each independently represents an alkyl group having 1 to 6 carbon atoms.
  • the four R 1 s are each independently preferably an alkyl group having 1 to 4 carbon atoms (more preferably 1 to 3, particularly preferably 1 or 2).
  • tetrafunctional alkoxysilane examples include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, methoxytriethoxysilane, ethoxytrimethoxysilane, methoxytripropoxysilane, ethoxytripropoxysilane, propoxytrimethoxysilane. , Propoxytriethoxysilane, dimethoxydiethoxysilane and the like. Of these, tetramethoxysilane or tetraethoxysilane is preferable.
  • the trifunctional or lower alkoxysilane is not particularly limited, but an alkoxysilane represented by the following general formula (b) is preferable.
  • n represents an integer of 1 to 3.
  • R S2 represents an alkyl group having 1 to 6 carbon atoms. When n is 2 or 3, the plurality of R S2 may be the same or different.
  • R S3 represents an organic group having 1 to 15 carbon atoms. When 4-n is 2 or 3, the plurality of R S3 may be the same or different.
  • R S2 in the general formula (b) is the same as the preferred embodiment of R S1 in the general formula (a).
  • N in the general formula (b) is preferably 2 or 3, and particularly preferably 3.
  • R S3 in the general formula (b) represents an organic group having 1 to 15 carbon atoms.
  • the organic group represented by R S3 may have a heteroatom such as oxygen, nitrogen, or sulfur.
  • the organic group represented by R S3 has a hetero atom, the adhesion between the second layer and the polymer layer can be further improved.
  • a substituted or unsubstituted hydrocarbon group is preferred, A substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, or a substituted or unsubstituted aryl group is more preferable.
  • the organic group represented by R S3 preferably contains an epoxy group.
  • the organic group represented by R S3 is more preferably a hydrocarbon group substituted with a substituent containing an epoxy group, and still more preferably an alkyl group substituted with a substituent containing an epoxy group.
  • the substituent containing an epoxy group include an epoxy group, a glycidyl group, a glycidoxy group, a 3,4-epoxycyclohexyl group, and the like.
  • the organic group represented by R S3 may include an alkyl group, an alkenyl group, an aryl group, an amide group, a urethane group, a urea group, an ester group, a hydroxy group, a carboxy group, a (meth) acryloyl group, and the like.
  • the organic group represented by R S3 preferably does not contain an amino group. The reason is that when the organic group represented by R S3 contains an amino group, dehydration condensation is promoted between the silanols produced by mixing and hydrolyzing a tetrafunctional alkoxysilane and a trifunctional or lower alkoxysilane. This is because the reaction solution may become unstable.
  • the trifunctional or lower functional alkoxysilane preferably contains an epoxy group as described above.
  • Specific examples of the trifunctional or lower functional alkoxysilane containing an epoxy group include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, 2- (3 , 4-epoxycyclohexyl) ethyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethylmethyldiethoxysilane, 3-glycidoxypropyltrimethoxy Silane, 3-glycidoxypropyltriethoxysilane, and the like.
  • Examples of commercially available trifunctional or lower alkoxysilanes containing epoxy groups include KBE-403 (manufactured
  • tri- or lower functional alkoxysilanes containing no epoxy group include vinyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-chloropropyltrimethoxysilane, 3- Ureidopropyltrimethoxysilane, propyltrimethoxysilane, phenyltrimethoxysilane, vinyltriethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltriethoxysilane, 3-chloropropyltriethoxysilane, 3-ureido Propyltriethoxysilane, methyltriethoxysilane, methyltrimethoxysilane, ethyltriethoxysilane, ethyltrimethoxysilane, propyltriethoxysilane, propyltrimethoxysilane , Ph
  • the content of the siloxane resin contained in the second layer is preferably 20% by mass to 80% by mass, more preferably 20% by mass to 70% by mass, and more preferably 20% by mass to 60% by mass with respect to the solid content of the second layer. % Is particularly preferred.
  • the second layer preferably contains at least one inorganic particle from the viewpoint of further improving the hardness of the second layer.
  • the inorganic particles are preferably at least one inorganic particle selected from the group consisting of metal oxide particles and inorganic nitride particles from the viewpoint of further improving the hardness of the second layer.
  • Examples of the metal oxide particles include silica particles, alumina particles, zirconia particles, and titania particles.
  • Examples of the inorganic nitride particles include boron nitride particles.
  • the inorganic particles preferably contain silica particles, and particularly preferably silica particles, from the viewpoint of crosslinking with the siloxane resin in the second layer.
  • silica particles examples include dry powdered silica produced by combustion of silicon tetrachloride; colloidal silica in which silicon dioxide or a hydrate thereof is dispersed in water; and the like. When using dry powdery silica, it can be used by dispersing in water using an ultrasonic disperser or the like.
  • Silica particles are not particularly limited, and specifically, Seahoster series such as Seahoster KE-P10 (manufactured by Nippon Shokubai Co., Ltd.), Snowtex (registered trademark) series such as Snowtex (registered trademark) OZL-35 ( Nissan Chemical Industries, Ltd.).
  • the number average particle diameter of the inorganic particles is preferably 300 nm or less, more preferably 200 nm or less, and particularly preferably 100 nm or less.
  • a second layer having a smooth surface can be obtained.
  • the number average particle diameter of the inorganic particles is preferably 5 nm or more, and more preferably 10 nm or more.
  • the number average particle diameter of the inorganic particles is 5 nm or more, the hardness of the second layer can be further improved.
  • the second layer may contain an ultraviolet absorbing compound.
  • Both organic and inorganic ultraviolet absorbing compounds can be used preferably.
  • a fine particle inorganic compound having a primary particle diameter of less than 100 nm is preferable, and fine particle titanium oxide is particularly preferable.
  • the ultraviolet absorbing compound is a concept including both the polymer having the above-described ultraviolet absorbing structure and the above-described ultraviolet absorbing compound.
  • the second layer preferably contains a metal complex as a curing agent.
  • a metal complex containing at least one metal element selected from the group consisting of aluminum, magnesium, manganese, titanium, copper, cobalt, zinc, hafnium, and zirconium is preferable.
  • a metal complex can be easily obtained by reacting a metal alkoxide with a chelating agent.
  • chelating agents that can be used include ⁇ -diketones such as acetylacetone, benzoylacetone, and dibenzoylmethane; ⁇ -ketoacid esters such as ethyl acetoacetate and ethyl benzoylacetate;
  • an aluminum chelate complex is preferable.
  • metal complexes include ethyl acetoacetate aluminum diisopropylate, aluminum tris (ethyl acetoacetate), alkyl acetoacetate aluminum diisopropylate, aluminum monoacetylacetonate bis (ethylacetoacetate), aluminum tris (acetylacetonate)
  • Aluminum chelate complexes such as; Magnesium chelate complexes such as ethyl acetoacetate magnesium monoisopropylate, magnesium bis (ethylacetoacetate), alkyl acetoacetate magnesium monoisopropylate, magnesium bis (acetylacetonate); Zirconium chelate complexes such as zirconium tetraacetylacetonate, zirconium tributoxyacetylacetonate, zirconium acetylacetonate bis (ethylacetoacetate); Manganese chelate complexes such as manganese acetylacetonate; Co
  • aluminum tris (acetylacetonate), aluminum tris (ethylacetoacetate), magnesium bis (acetylacetonate), magnesium bis (ethylacetoacetate), or zirconium tetraacetylacetonate is preferable.
  • aluminum tris (acetylacetonate), aluminum tris (ethylacetoacetate), or aluminum monoacetylacetonate bis (ethylacetoacetate) is particularly preferable.
  • Examples of commercially available metal complex solutions include aluminum chelate A (W), aluminum chelate D, and aluminum chelate M (manufactured by Kawaken Fine Chemical Co., Ltd.).
  • the content of the metal complex in the second layer is preferably 5% by mass to 50% by mass, more preferably 5% by mass to 40% by mass, and still more preferably 10% by mass to 30% by mass with respect to the total amount of the siloxane resin.
  • the reaction rate of silanol dehydration condensation can be set to an appropriate rate, and a second layer having excellent thickness uniformity and high alkali resistance can be obtained.
  • the second layer may contain other components other than the components described above.
  • the second layer may contain at least one surfactant.
  • the surfactant various surfactants such as a fluorine-based surfactant, a nonionic surfactant, a cationic surfactant, an anionic surfactant, and a silicone-based surfactant can be used.
  • the content of the surfactant is preferably 0.001% by mass to 10% by mass, more preferably 0.01% by mass to 5% by mass, and still more preferably based on the solid content of the second layer. 0.1% by mass to 1% by mass.
  • the second layer may contain a pH adjuster.
  • the pH adjuster include acids such as nitric acid, oxalic acid, acetic acid, formic acid, and hydrochloric acid, and alkalis such as ammonia, triethylamine, ethylenediamine, sodium hydroxide, and potassium hydroxide.
  • the thickness of the second layer is preferably 0.15 ⁇ m to 3 ⁇ m, more preferably 0.2 ⁇ m to 2.5 ⁇ m, and even more preferably 0.3 ⁇ m to 2 ⁇ m.
  • the thickness of the second layer is 0.15 ⁇ m or more, the effect of suppressing bleeding out of the ultraviolet absorbing compound in the polymer layer is more effectively obtained, and the long-term weather resistance of the solar cell front sheet is further improved. improves.
  • the thickness of the second layer is 3 ⁇ m or less, the transparency and handleability of the solar cell front sheet are further improved.
  • the method for forming the second layer is not particularly limited.
  • a coating solution for forming a second layer containing a solvent and a hydrolyzate of alkoxysilane is applied on the polymer layer and dried, whereby the hydrolysis condensate of alkoxysilane.
  • the method of forming the 2nd layer containing siloxane resin which is is mentioned.
  • the solvent in the coating solution for forming the second layer the coating method for the coating solution for forming the second layer, and the drying method, the solvent in the coating solution for forming the polymer layer and the coating method for the coating solution for forming the polymer layer described above. And the same application method.
  • a second product containing a hydrolyzate of alkoxysilane obtained by hydrolyzing alkoxysilane (for example, tetrafunctional alkoxysilane and trifunctional or lower functional alkoxysilane) is used.
  • alkoxysilane for example, tetrafunctional alkoxysilane and trifunctional or lower functional alkoxysilane
  • a method of obtaining a layer forming coating solution is preferred.
  • a coating solution for forming a second layer containing components other than the hydrolyzate of alkoxysilane for example, inorganic particles, metal complexes, surfactants, silicone particles (for example, silicone powder manufactured by Shin-Etsu Chemical Co., Ltd.) is prepared.
  • At least one stage preferably after the hydrolysis of alkoxysilane before hydrolysis of alkoxysilane, during hydrolysis of alkoxysilane, and after hydrolysis of alkoxysilane.
  • Components other than the alkoxysilane hydrolyzate are added.
  • the obtained coating solution for forming the second layer is applied and dried to obtain a siloxane resin (and other components as required) which is a hydrolysis condensate of alkoxysilane. ) Containing the second layer.
  • the amount of alkoxysilane used (for example, the total amount of tetrafunctional alkoxysilane and trifunctional or lower alkoxysilane) used in the preparation of the second layer forming coating solution is the solid content of the second layer forming coating solution.
  • 20% by mass to 80% by mass is preferable, 20% by mass to 70% by mass is more preferable, and 30% by mass to 70% by mass is particularly preferable.
  • the preferred range of the use amount ratio (mass ratio) of the tetrafunctional alkoxysilane and the trifunctional or lower alkoxysilane at the time of preparing the coating solution for forming the second layer is the above-mentioned siloxane resin (that is, hydrolysis condensation of alkoxysilane).
  • the content of the inorganic particles in the coating solution for forming the second layer is 5% by mass to 60% by mass with respect to the solid content of the coating solution for forming the second layer. It is preferably 10% by mass to 50% by mass, more preferably 20% by mass to 50% by mass.
  • the content of the metal complex in the coating solution for forming the second layer is 5% by mass to 50% with respect to the total amount of alkoxysilane in the coating solution for forming the second layer.
  • the reaction rate of silanol dehydration condensation can be set to an appropriate rate, and a second layer having a uniform thickness and high alkali resistance can be formed.
  • the content of the surfactant in the coating solution for forming the second layer is preferably 0.001% by mass to the solid content of the second layer. It is 10% by mass, more preferably 0.01% by mass to 5% by mass, and still more preferably 0.1% by mass to 1% by mass.
  • the solar cell front sheet according to the present disclosure may include a back layer on the side opposite to the polymer layer side of the substrate (that is, the front side of the substrate) (that is, the back side of the substrate). Good.
  • the back layer functions as, for example, a layer for adhesion to a sealing material (for example, a sealing material containing an ethylene-vinyl acetate copolymer (EVA)) in a solar cell module.
  • EVA ethylene-vinyl acetate copolymer
  • the back layer preferably contains a binder polymer.
  • the back layer may be a single layer or two or more layers.
  • the front sheet for a solar cell has a third layer (for example, the above-described third layer 13) and a fourth layer (for example, the above-described fourth layer 14) as back layers on the back side of the substrate. You can prepare in order.
  • the 3rd layer and 4th layer with which a solar cell front sheet is provided as needed are explained.
  • the third layer preferably contains a binder polymer.
  • the binder polymer that can be contained in the third layer include those similar to the binder polymer in the polymer layer.
  • the binder polymer that can be contained in the third layer is preferably an acrylic resin, and more preferably an acrylic resin containing a styrene skeleton, from the viewpoint of adhesion to a sealing material when applied to a solar cell module.
  • acrylic resin containing a styrene skeleton a structural unit derived from at least one compound selected from the group consisting of acrylic acid, methacrylic acid, acrylic ester, and methacrylic ester, and a monomer having a styrene skeleton (for example, And a polymer containing a structural unit derived from styrene, ⁇ -methylstyrene, divinylbenzene, vinyltoluene and the like.
  • acrylic resin dispersions containing a styrene skeleton include AS-563A (manufactured by Daicel Finechem Co., Ltd.).
  • the third layer may contain an ultraviolet absorbing compound.
  • Examples of the ultraviolet absorbing compound that can be contained in the third layer include the same compounds as the ultraviolet absorbing compound of the second layer.
  • the third layer can contain a structure derived from a crosslinking agent and a crosslinking catalyst.
  • the crosslinking agent and the crosslinking catalyst the same as the crosslinking agent and the crosslinking catalyst in the polymer layer may be used.
  • Other components that can be contained in the third layer include the same components as those of the polymer layer.
  • the thickness of the third layer is preferably thicker than the thickness of the fourth layer, which is an easy-adhesion layer described later, from the viewpoint of improving the adhesion with the sealing material. That is, when the thickness of the third layer is (b) and the thickness of the fourth layer is (c), the relationship of (b)> (c) is preferable, and (b) :( c) is A range of 2: 1 to 15: 1 is more preferred.
  • the thickness of the third layer is preferably 0.5 ⁇ m or more, and more preferably 0.7 ⁇ m or more.
  • the thickness of the third layer is preferably 7.0 ⁇ m or less.
  • the film characteristics of the third layer are favorably expressed, and the solar cell front sheet, the sealing material, The adhesiveness of the solar cell module and the durability of the solar cell module are further improved.
  • the method for forming the third layer is not particularly limited.
  • a method for forming the third layer for example, there is a method in which a third layer forming coating solution containing a solvent and the above-described third layer component (solid content) is applied onto the back surface of the substrate and dried. Can be mentioned.
  • the solvent and the coating method in the third layer forming coating solution are the same as the solvent and the coating method in the polymer layer forming coating solution described above.
  • the solar cell front sheet according to the present disclosure may include a fourth layer (for example, the above-described fourth layer 14) on the third layer.
  • the fourth layer is a layer that directly contacts the sealing material of the solar cell module, that is, a layer that functions as an easy adhesion layer for the sealing material of the solar cell module.
  • the fourth layer preferably contains a binder polymer.
  • the binder polymer that can be contained in the fourth layer include those similar to the binder polymer in the polymer layer.
  • the binder polymer in the fourth layer is preferably at least one polymer selected from the group consisting of polyolefins, acrylic resins, polyesters, and polyurethanes from the viewpoint of adhesion with the sealing material.
  • the binder polymer in the fourth layer preferably contains at least polyolefin, and more preferably polyolefin, from the viewpoint of adhesion with the sealing material.
  • polyolefin for example, a modified polyolefin is preferable.
  • polyolefin dispersions include, for example, Arrow Base (registered trademark) SE-1013N, SD-1010, TC-4010, TD-4010 (both manufactured by Unitika Ltd.), Hitech S3148, S3121 and S8512 (both Toho Chemical Co., Ltd.), Chemipearl (registered trademark) S-120, S-75N, V100, EV210H (both manufactured by Mitsui Chemicals), Umex 1001 (manufactured by Sanyo Chemical Industries, Ltd.), and the like.
  • Arrowbase registered trademark
  • SE-1013N manufactured by Unitika Co., Ltd., which is a terpolymer of low-density polyethylene, acrylic acid ester, and maleic anhydride, improves adhesion. preferable.
  • the fourth layer can contain a structure derived from a crosslinking agent and a crosslinking catalyst.
  • a crosslinking agent and a crosslinking catalyst the thing similar to the crosslinking agent and crosslinking catalyst in a polymer layer is mentioned.
  • examples of the component that can be contained in the fourth layer include the same components as those of the polymer layer.
  • the fourth layer may contain an antistatic agent, a preservative, and the like.
  • the antistatic agent include surfactants such as nonionic surfactants and organic conductive materials.
  • surfactants such as nonionic surfactants and organic conductive materials.
  • nonionic surfactants, anionic surfactants, and the like are preferable.
  • nonionic surfactants are preferable, and ethylene glycol chains (polyoxyethylene chains) are preferable.
  • Nonionic surfactants having — (CH 2 —CH 2 —O) n —) and having no carbon-carbon triple bond (alkyne bond) are preferred. Further, those having an ethylene glycol chain of 7 to 30 are particularly preferred.
  • hexaethylene glycol monododecyl ether, 3,6,9,12,15-pentaoxahexadecan-1-ol polyoxyethylene phenyl ether, polyoxyethylene methyl phenyl ether, polyoxyethylene naphthyl ether, Examples thereof include polyoxyethylene methyl naphthyl ether, but are not limited thereto.
  • the content of the surfactant as an antistatic agent is preferably 2.5% by mass to 40% by mass, more preferably 5.0% by mass to 35% by mass with respect to the solid content of the fourth layer. More preferably, it is 10% by mass to 30% by mass. When the content is within this range, a decrease in the partial discharge voltage is suppressed, and adhesion with the sealing material is favorably maintained.
  • organic conductive materials include cationic conductive compounds having cationic substituents such as ammonium groups, amine bases, and quaternary ammonium groups in the molecule; sulfonate groups, phosphate groups, carboxylate groups, and the like.
  • the method for forming the fourth layer is not particularly limited.
  • Examples of the method for forming the fourth layer include a method in which a fourth layer-forming coating solution containing a solvent and the above-described fourth layer component (solid content) is applied onto the third layer and dried.
  • the solvent and the coating method in the fourth layer forming coating solution are the same as the solvent and the coating method in the polymer layer forming coating solution described above.
  • an undercoat layer may be provided on at least one of the front surface (surface on which the polymer layer is formed) and the back surface (surface on which the optional back surface layer is formed) of the base material.
  • the undercoat layer preferably contains a binder polymer.
  • the binder polymer that can be contained in the undercoat layer is not particularly limited. Examples of the binder polymer that can be contained in the undercoat layer include acrylic resin, polyester, polyolefin, and siloxane resin.
  • the undercoat layer preferably contains an acrylic resin. As an acrylic resin, the thing similar to the acrylic resin which may be contained in the 3rd layer mentioned above is mentioned.
  • the acrylic resin content ratio in the binder polymer contained in the undercoat layer is more preferably 50% by mass or more. When the acrylic resin is 50% by mass or more of the binder polymer, it is easy to adjust the elastic modulus of the undercoat layer to 0.7 GPa or more, and the cohesive failure resistance in the case of a solar cell front sheet is further improved.
  • the undercoat layer may contain a structure derived from a crosslinking agent, a crosslinking catalyst, a surfactant, an antioxidant, a preservative, and the like.
  • a structure derived from the crosslinking agent and the crosslinking catalyst the description of the polymer layer can be referred to as appropriate.
  • the thickness of the undercoat layer is preferably 0.01 ⁇ m or more, more preferably 0.03 ⁇ m or more, and further preferably 0.05 ⁇ m or more. Further, the thickness of the undercoat layer is preferably 1 ⁇ m or less, more preferably 0.8 ⁇ m or less, and further preferably 0.7 ⁇ m or less.
  • the undercoat layer can be formed by applying a coating solution for forming an undercoat layer containing a solvent and a solid content of the undercoat layer on a substrate and drying it.
  • the solvent and coating method in the undercoat layer forming coating solution are the same as the solvent and coating method in the polymer layer forming coating solution described above.
  • the undercoat layer may be formed by an in-line coating method using the above undercoat layer forming coating solution.
  • the in-line coating method is a method in which a coating liquid for forming an undercoat layer is applied at a stage before winding up the manufactured base material. Differentiated.
  • an undercoat layer by an in-line coating method, a film in which an undercoat layer-forming coating solution is applied to one surface of a film stretched in the first direction, A mode in which a substrate with an undercoat layer is produced by stretching in a second direction perpendicular to the first direction along the surface is preferable (see Examples described later).
  • the solar cell front sheet according to the present disclosure may include other layers other than the layers described above. Further, the solar cell front sheet according to the present disclosure has a total light transmittance of preferably 70% or more, more preferably 75% or more, and further preferably 80% or more. The total light transmittance is measured using a haze meter (HZ-1 manufactured by Suga Test Instruments Co., Ltd.).
  • a preferred method for producing a solar cell front sheet according to the present disclosure is as follows. Preparing a substrate; As a polymer having a binder polymer, an ultraviolet absorbing structure, a polymer having an ultraviolet absorbing structure, a polymer containing an ultraviolet absorbing compound having a molecular weight of less than 5,000, and a polymer containing a monomer unit having an ultraviolet absorbing structure. And a step of preparing a coating composition comprising: The coating composition is applied onto one side of the substrate, and the thickness after drying is 2.0 ⁇ m to 50 ⁇ m.
  • the total of the monomer units including the ultraviolet absorbing compound and the ultraviolet absorbing structure A monomer unit having a content of 0.5 g / m 2 to 25 g / m 2 and derived from an olefin compound with respect to the total mass of the polymer component in the polymer layer, and a urethane bond with respect to the total mass of the polymer component in the polymer layer And a step of forming a polymer layer having a total content of 50% by mass or more, Content of the monomer unit derived from the (meth) acryl compound with respect to the total mass of the polymer component in the polymer layer is 1% by mass or more and less than 50% by mass. According to this preferable manufacturing method, it is easy to manufacture the solar cell front sheet according to the present disclosure described above.
  • the concept of “preparing” includes both simply preparing a base material and each coating solution that have been manufactured and stored in advance, and manufacturing the base material and each coating solution. Is done.
  • the step of preparing the substrate may be a step of manufacturing the substrate.
  • a preferred embodiment of the method for producing the substrate is as described above.
  • the process of manufacturing a base material may include a step of manufacturing a composition for forming an undercoat layer for forming an undercoat layer and a step of manufacturing a base film with an undercoat layer.
  • the step of preparing the polymer layer forming coating solution may be a step of preparing the polymer layer forming coating solution.
  • the preferred embodiment of the method for preparing the polymer layer forming coating solution is as described above.
  • coating the coating liquid for polymer layer formation and drying and forming a polymer layer is also as above-mentioned.
  • the preferable production method includes a step of preparing a second layer forming coating solution for forming the second layer on the polymer layer, and a step of applying the second layer forming coating solution on the surface of the polymer layer. And a step of forming the second layer by drying.
  • the step of preparing the coating solution for forming the second layer may be a step of manufacturing the coating solution for forming the second layer.
  • the preferred embodiment of the method for producing the coating solution for forming the second layer is as described above.
  • coating the coating liquid for 2nd layer formation and making it dry and forming a 2nd layer is also as above-mentioned.
  • the preferable manufacturing method includes a step of preparing a coating solution for forming a back layer for forming the above back layer (for example, at least one of the third layer and the fourth layer), and a back layer on the back surface of the substrate.
  • a step of applying a forming coating solution and drying it to form a back layer may be included.
  • the solar cell module according to the present disclosure (for example, the solar cell module 100 described above)
  • An element structure unit (for example, the above-described element structure unit 36) including a solar cell element (for example, the above-described solar cell element 32) and a sealing material (for example, the above-described sealing material 34) for sealing the solar cell element;
  • the solar cell front sheet according to the present disclosure described above (for example, the solar cell front sheet 20 described above) disposed on the side on which sunlight (for example, the above-described sunlight 50) is incident on the element structure.
  • a solar cell backsheet (for example, the solar cell backsheet 40 described above) disposed on the side opposite to the side on which sunlight is incident on the element structure, and Is provided.
  • Solar cell elements include silicon solar cell elements including single crystal silicon, polycrystalline silicon, amorphous silicon, etc .; compound semiconductors such as copper-indium-gallium-selenium, copper-indium-selenium, cadmium-tellurium, gallium-arsenide Various known solar cell elements, such as a compound semiconductor solar cell element containing, can be applied.
  • Example 1 Preparation of solar cell front sheet>
  • a solar cell front sheet having a laminated structure represented by second layer / polymer layer (first layer) / base material / undercoat layer / third layer / fourth layer was produced.
  • a base film with an undercoat layer having a structure in which an undercoat layer was provided on the back surface of the base film was produced as follows.
  • ethylene glycol was added to the resulting polymer in the polycondensation reaction tank to which the esterification reaction product had been transferred.
  • an ethylene glycol solution of cobalt acetate and manganese acetate was added to 30 ppm and 15 ppm, respectively, with respect to the resulting polymer.
  • a 2% by mass ethylene glycol solution of a titanium alkoxide compound was added to 5 ppm with respect to the resulting polymer.
  • a 10% by mass ethylene glycol solution of ethyl diethylphosphonoacetate was added so as to be 5 ppm with respect to the resulting polymer.
  • the reaction system was gradually heated from 250 ° C. to 285 ° C. and the pressure was reduced to 40 Pa. The time to reach the final temperature and final pressure was both 60 minutes.
  • the reaction system was purged with nitrogen, returned to normal pressure, and the polycondensation reaction was stopped. Then, the polymer obtained by the polycondensation reaction was discharged into cold water in a strand shape and immediately cut to produce polymer pellets (diameter: about 3 mm, length: about 7 mm). The time from the start of decompression to the arrival of the predetermined stirring torque was 3 hours.
  • polyester film The pellets after undergoing solid-phase polymerization as described above were melted at 280 ° C. and cast on a metal drum to produce an unstretched polyethylene terephthalate (PET) film having a thickness of about 3 mm. Thereafter, the unstretched PET film was stretched 3.4 times in the longitudinal direction (MD: transport direction, Machine Direction) at 90 ° C. Next, on one surface of the uniaxially stretched PET film stretched in MD, a coating solution for forming an undercoat layer having the following composition is stretched in the transverse direction (TD) so that the coating amount is 5.1 mL / m 2. : Transverse Direction) It was applied by in-line coating before stretching.
  • MD transport direction, Machine Direction
  • the PET film coated with the undercoat layer forming coating solution was TD-stretched to form an undercoat layer having a thickness of 0.1 ⁇ m and an elastic modulus of 1.5 GPa.
  • the TD stretching was performed under the conditions of a temperature of 105 ° C. and a stretching ratio of 4.5 times.
  • the PET film on which the undercoat layer is formed is heat-set at a film surface of 190 ° C. for 15 seconds, and then at 190 ° C. with an MD relaxation rate of 5% and a TD relaxation rate of 11%, MD direction and TD direction.
  • the biaxially stretched PET film (substrate film with an undercoat layer) having a thickness of 250 ⁇ m with an undercoat layer was obtained by performing a thermal relaxation treatment.
  • a third layer-forming coating solution having the following composition was applied to the surface of the undercoat layer of the base film with the undercoat layer obtained above, and then dried at 170 ° C. for 2 minutes, whereby a thickness of 4.7 ⁇ m was obtained. Three layers were formed.
  • composition of the third layer forming coating solution- ⁇ Aqueous dispersion of composite particles of UV-absorbing compound (triazine compound) and acrylic resin (Tinuvin (registered trademark) 479-DW, manufactured by BASF, solid content 40% by mass) ... 3.5 parts Aqueous dispersion of acrylic resin as binder polymer (AS-563A, manufactured by Daicel FineChem Ltd., latex having a styrene skeleton with a solid content of 28% by mass) ...
  • the 4th layer formation coating liquid of the following composition was apply
  • a base film in which an undercoat layer, a third layer, and a fourth layer are arranged in this order on the back surface that is, a laminate having a laminate structure of base film / undercoat layer / third layer / fourth layer).
  • Body substrate film was obtained.
  • the content of the triazine compound is 50% by mass with respect to the total mass of the composite particles.
  • the median diameter (D50) of the composite particles of triazine compound and acrylic resin, which is a solid content of Tinuvin (registered trademark) 479-DW, is less than 150 nm.
  • the coating liquid for forming the second layer was prepared according to the following procedure. After adding KBE-403 to an acetic acid aqueous solution and fully hydrolyzing it, KBE-04 is added and fully hydrolyzed, and a mixture containing hydrolyzate of these alkoxysilanes (KBE-403 and KBE-04) is added. A liquid was obtained. Next, this mixed solution was mixed with aluminum chelate D, Snowtex (registered trademark) OZL-35, surfactant (Lapisol (registered trademark) A-90), surfactant (Naroacty (registered trademark) CL-95), And the coating liquid for 2nd layer formation was obtained by adding water.
  • Ratio of use amount of trifunctional or lower alkoxysilane (KBE-403) to tetrafunctional alkoxysilane (KBE-04) in the preparation of the coating solution for forming the second layer was 5.
  • the second layer-forming coating solution prepared above was applied to the surface of the polymer layer and dried at 170 ° C. for 2 minutes to form a second layer having a thickness of 1 ⁇ m.
  • the hydrolyzate of alkoxysilanes KBE-403 and KBE-04
  • a solar cell front sheet having a laminated structure represented by the second layer / polymer layer (first layer) / base film / undercoat layer / third layer / fourth layer was obtained.
  • the difference (absolute value) between the maximum value and the minimum value among the five measured values obtained was determined, and the uniformity of the ultraviolet compound concentration was confirmed according to the following criteria.
  • the transmittance was measured using an ultraviolet-visible near-infrared spectral transmittance measuring device V-670 manufactured by JASCO Corporation. The results are shown in the “Uniformity” column of Table 1.
  • the b * value difference ⁇ b * of the solar cell front sheet before and after ultraviolet irradiation was less than 2.
  • D The b * value difference ⁇ b * of the solar cell front sheet before and after the ultraviolet irradiation was 7 or more and less than 10.
  • the power generation efficiency of the solar cell was evaluated based on the produced haze value.
  • the haze value was measured using a haze meter (HZ-1 manufactured by Suga Test Instruments Co., Ltd.).
  • the evaluation criteria are as follows. A: Haze value of less than 5% B: Haze value of 5% or more and less than 15% C: Haze value of 15% or more
  • Example 1 (Examples 2 to 25, Comparative Examples 1 to 6)
  • Example 1 The same operation as in Example 1 was performed except that the type and solid content of the binder polymer in the coating liquid for forming a polymer layer were changed as shown in Table 1.
  • the numerical value described in the column of solid content of the polymer having an ultraviolet absorbing structure means the total content (g / m 2 ) of the monomer unit including the ultraviolet absorbing compound and the ultraviolet absorbing structure. To do.
  • the description in the column “mass%” in the column of binder polymer means the content (mass%) of each binder polymer relative to the total solid content of the polymer layer.
  • the description in the column of “UV agent / polymer” indicates the total content of monomer units including the ultraviolet absorbing compound and the ultraviolet absorbing structure (%) with respect to the total mass of the polymer components contained in the polymer layer. ).
  • the description in the column “acryl” in the column of the content of monomer units relative to the total mass of the polymer component is (meth) acrylic acid or (meth) acrylic acid relative to the total mass of the polymer component in the polymer layer. It represents the content (mass%) of the monomer unit derived from the ester compound, and the description in the column of “olefin” represents the content (mass%) of the monomer unit derived from the olefin compound.
  • the description in the column represents the content of the structural unit having a urethane bond
  • the description in the column “Silicone” represents the content (mass%) of the monomer unit derived from the compound having a silanol group.
  • the description in the “polyester” column represents the content of structural units having an ester bond
  • the description in the “other” column represents the content of other monomer units.
  • 204W Aqueous dispersion of acrylic resin containing UV-absorbing structural unit (benzotriazole) (Newcoat (registered trademark) UVA204W, manufactured by Shin-Nakamura Chemical Co., Ltd.)
  • sunscreen registered trademark
  • UVA204W the content of the monomer unit containing a benzotriazole structure which is an ultraviolet absorbing structure is 20% by mass with respect to the total mass of the polymer having the ultraviolet absorbing structure.
  • WS5100 Polyurethane dispersion (30% by mass of polycarbonate in the polymer, Takelac WS5100, manufactured by Mitsui Chemicals, solid content 30% by mass)
  • WS4000 Polyurethane dispersion (30% by mass of polycarbonate in polymer, Takelac WS4000, manufactured by Mitsui Chemicals, solid content: 30% by mass)
  • AS-563A Acrylic resin dispersion (Aquabrid AS-563A, manufactured by Daicel Corporation)
  • A645GH polyester dispersion (30% by mass of acrylic resin in polymer, pesresin A-645GH, Takamatsu Oil Co., Ltd., solid content 30% by mass)
  • -PVA117 polyvinyl alcohol aqueous solution (Kuraraypoval PVA117, manufactured by Kuraray Co., Ltd., prepared as an aqueous solution with a solid content of 10% by
  • Table 1 shows the results of each example and each comparative example.
  • the water absorption rate of the binder polymer described in Table 1 is as follows. -SE1013N: Less than 0.1%-S3121: Less than 0.1%-WS5100: 1.0% -WS4000: 1.0% -WSA1070: less than 0.1%-AS-563A: 1.6% -A645GH: 0.7% ⁇ Epocross WS700: 1.6% -PVA117: 3.1%
  • a base material as a polymer having a binder polymer and an ultraviolet absorbing structure, a polymer containing an ultraviolet absorbing compound having a molecular weight of less than 5,000 and a monomer unit having an ultraviolet absorbing structure.
  • the total content is 50% by mass or more, the total content of monomer units including the ultraviolet absorbing compound and the ultraviolet absorbing structure is 0.5 g / m 2 to 25 g / m 2 , and the thickness is 2
  • the solar cell front sheets of Examples 1 to 24 having a content of 1% by mass or more and less than 50% by mass have excellent weather resistance even during long-term use, and are excellent in power generation efficiency of the solar cell. It was.
  • Comparative Example 1 in which the thickness (film thickness) of the polymer layer was less than 2.0 ⁇ m, the power generation efficiency was inferior.
  • This is a polymer having an ultraviolet absorbing structure when it is intended to suppress a decrease in weather resistance in long-term use by increasing the amount of the polymer having an ultraviolet absorbing structure contained per unit area in a thin film state. It is considered that the haze of the polymer layer is lowered and the power generation efficiency is lowered because the amount per volume of is increased.
  • Comparative Example 3 and Comparative Example 4 in which the thickness of the polymer layer exceeded 50 ⁇ m the long-term weather resistance was inferior. This is because when the polymer layer becomes thicker, the amount of the binder polymer present around the polymer having the UV absorbing structure increases, so that the polymer having the UV absorbing structure is likely to be decomposed, and the weather resistance during long-term use is increased. Is thought to have been reduced.
  • the total content of the monomer unit derived from the olefin compound relative to the total mass of the polymer component in the polymer layer and the structural unit containing a urethane bond relative to the total mass of the polymer component in the polymer layer is less than 50% by mass.
  • the printing durability was reduced. This is because the hydrophilicity of the binder polymer is increased, and moisture is easily absorbed in the polymer layer, so that the monomer unit containing the ultraviolet absorbing compound and the ultraviolet absorbing structure is easily decomposed and used for a long time. This is thought to be due to a decrease in printing durability.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

基材上に、バインダーポリマーと、紫外線吸収構造を有するポリマーと、を含み、ポリマー層中のオレフィン化合物に由来する単量体単位と、ウレタン結合を含む構成単位と、の合計含有量が50質量%以上であり、上記紫外線吸収性化合物及び上記紫外線吸収構造を含む単量体単位の合計含有量が0.5g/m2~25g/m2であり、厚さが2.0μm~50μmであるポリマー層を有し、上記ポリマー層中の(メタ)アクリル化合物に由来する単量体単位の含有量が1質量%以上50質量%未満である太陽電池用フロントシート、太陽電池用フロントシートの製造方法、並びに上記太陽電池用フロントシートを備える太陽電池モジュール。

Description

太陽電池用フロントシート及びその製造方法並びに太陽電池モジュール
 本開示は、太陽電池用フロントシート及びその製造方法並びに太陽電池モジュールに関する。
 従来より、太陽電池素子を含む太陽電池モジュール、及び、太陽電池モジュールの一部材である太陽電池用保護シートに関する技術が知られている。
 例えば、特開2016-195165号公報には、基材フィルムと、紫外線吸収性部分構造を有するポリマーA、及びバインダーポリマーBを含み、上記紫外線吸収性部分構造を有するポリマーA及び上記バインダーポリマーBが、同種の構造単位を有する、上記基材フィルムの一方の面上に配置された第1のポリマー層と、を有する太陽電池用透明シートが記載されている。
 特開2015-2332号公報には、熱可塑性樹脂100質量部と、分子量が250以上の紫外線吸収剤0.01質量部以上5質量部以下と、を含む、樹脂封止シートが記載されている。
 特開2012-256674号公報には、基材シートの一方の面にアクリル系高分子型紫外線吸収層を有し、上記アクリル系高分子型紫外線吸収層は、分子内に紫外線吸収性ユニットをもつ単量体単位を有することを特徴とする太陽電池モジュール用裏面保護シートが記載されている。
 特開2010-238815号公報には、基材シートの一方又は両方の面にアクリルウレタン樹脂層が形成されてなることを特徴とする太陽電池モジュール用保護シートが記載されている。
 国際公開第2013/172023号には、表面保護シート/受光側封止用シート/太陽電池素子/背面側封止用シート/裏面保護シートを、この順に積層してなる太陽電池モジュールであって、上記受光側封止用シートの波長300nmの光の透過率が50%以上であり、上記背面側封止用シートは、反応型紫外線吸収剤と樹脂成分との反応物を含む、太陽電池モジュールが記載されている。
 太陽電池用保護シートのうち、太陽電池素子から見て太陽光が入射する側に配置されるシートは、「太陽電池用フロントシート」と称されている。太陽電池用フロントシートは、風雨に曝され、かつ、太陽光が直接入射するシートである。
 太陽電池用フロントシートとして、例えば、太陽電池保護シート自体の劣化、又は、基材等の劣化の原因となる紫外線を吸収する紫外線吸収性化合物を含むシートを用いることが知られている。
 しかし、特開2016-195165号公報に記載の太陽電池用透明シートにおいては、これを太陽電池用フロントシートとして用いた場合の課題についての記載はない。
 特開2015-2332号公報に記載の樹脂シートを、太陽電池用フロントシートとして使用した場合には、樹脂シート自体の厚さが厚いため、膜のヘイズが低く、光の透過率が低いため、太陽電池の発電効率が低くなる。
 特開2012-256674号公報に記載の太陽電池モジュール用裏面保護シートを、太陽電池用フロントシートとして使用した場合には、紫外線吸収剤の分解が発生し、長期間の使用により耐候性が低下する場合がある。
 また、特開2010-238815号公報及び国際公開第2013/172023号においては、紫外線吸収剤の量について明示されておらず、長期間の使用における耐候性、及び、紫外線吸収剤の量が多くなることによる太陽電池の発電効率の低下について何ら考慮されていない。
 本開示に係る実施形態が解決する課題は、長期間の使用においても優れた耐候性を有し、太陽電池の発電効率に優れた太陽電池用フロントシート及びその製造方法を提供することである。
 また、本開示に係る別の実施形態が解決する課題は、長期間の使用においても優れた耐候性を有し、発電効率に優れた太陽電池モジュールを提供することである。
 課題を解決するための具体的手段には、以下の態様が含まれる。
  <1> 基材上に、バインダーポリマーと、紫外線吸収構造を有するポリマーとして、分子量が5,000未満である紫外線吸収性化合物を含むポリマー及び紫外線吸収構造を有する単量体単位を含むポリマーの少なくとも一方と、を含み、ポリマー層中のポリマー成分の全質量に対するオレフィン化合物に由来する単量体単位と、ポリマー層中のポリマー成分の全質量に対するウレタン結合を含む構成単位と、の合計含有量が50質量%以上であり、上記紫外線吸収性化合物及び上記紫外線吸収構造を含む単量体単位の合計含有量が0.5g/m~25g/mであり、厚さが2.0μm~50μmであるポリマー層を有し、上記ポリマー層中のポリマー成分の全質量に対する(メタ)アクリル化合物に由来する単量体単位の含有量が1質量%以上50質量%未満である太陽電池用フロントシート。
  <2> 上記ポリマー層が、下記A1又はB1を満たす、上記<1>に記載の太陽電池用フロントシート。
 A1:上記ポリマー層中のポリマー成分の全質量に対するオレフィン化合物に由来する単量体単位の含有量が50質量%以上である。
 B1:上記ポリマー層中のポリマー成分の全質量に対するウレタン結合を含む構成単位の含有量が50質量%以上である。
  <3> 上記A1を満たす、上記<2>に記載の太陽電池用フロントシート。
  <4> 上記ポリマー層に含まれる上記紫外線吸収性化合物及び上記紫外線吸収構造を含む単量体単位の合計含有量が、上記ポリマー層に含まれるポリマー成分の全質量に対し、1質量%以上50質量%以下である、上記<1>~<3>のいずれか1つに記載の太陽電池用フロントシート。
  <5> 上記ポリマー層に含まれる上記紫外線吸収性化合物及び上記紫外線吸収構造を含む単量体単位の合計含有量が、上記ポリマー層に含まれるポリマー成分の全質量に対し、3質量%以上19質量%以下である、上記<1>~<4>のいずれか1つに記載の太陽電池用フロントシート。
  <6> 下記A2又はB2を満たす、上記<1>~<5>のいずれか1つに記載の太陽電池用フロントシート。
 A2:上記ポリマー層中のポリマー成分の全質量に対するオレフィン化合物に由来する単量体単位の含有量が60質量%以上である。
 B2:上記ポリマー層中のポリマー成分の全質量に対するウレタン結合を含む構成単位の含有量が60質量%以上である。
  <7> 上記ポリマー層における(メタ)アクリル化合物に由来する単量体単位の含有量が、上記ポリマー層に含まれるポリマー成分の全質量に対し、20質量%以下である、上記<1>~<6>のいずれか1つに記載の太陽電池用フロントシート。
  <8> 上記紫外線吸収性化合物がトリアジン化合物を含むか、又は、上記紫外線吸収構造がトリアジン構造を含む、上記<1>~<7>のいずれか1つに記載の太陽電池用フロントシート。
  <9> 上記紫外線吸収構造を有するポリマーが、紫外線吸収性化合物とアクリル樹脂との複合粒子である、上記<1>~<8>のいずれか1つに記載の太陽電池用フロントシート。
  <10> 上記ポリマー層を厚さ方向に等間隔で5分割した5枚の薄膜切片を作製し、5枚の薄膜切片の各々について波長325nmでの透過率を測定した場合の5つの測定値において、最大値と最小値との差が、最大値の30%以下である
上記<1>~<9>のいずれか1つに記載の太陽電池用フロントシート。
  <11> 太陽電池素子及び上記太陽電池素子を封止する封止材を含む素子構造部と、
 上記素子構造部に対して太陽光が入射される側に配置された上記<1>~<10>のいずれか1つに記載の太陽電池用フロントシートと、上記素子構造部に対して太陽光が入射される側とは反対側に配置された太陽電池用バックシートと、を備える太陽電池モジュール。
  <12> 基材を準備する工程と、バインダーポリマーと、紫外線吸収構造を有するポリマーとして、紫外線吸収構造を有するポリマーとして、分子量が5,000未満である紫外線吸収性化合物を含むポリマー及び紫外線吸収構造を有する単量体単位を含むポリマーの少なくとも一方と、を含む塗布組成物を準備する工程と、上記基材の片方の面上に上記塗布組成物を塗布して、乾燥後の厚さが2.0μm~50μmであり、上記紫外線吸収性化合物及び上記紫外線吸収構造を含む単量体単位の合計含有量が0.5g/m~25g/mであり、ポリマー層中のポリマー成分の全質量に対するオレフィン化合物に由来する単量体単位と、ポリマー層中のポリマー成分の全質量に対するウレタン結合を含む構成単位と、の合計含有量が50質量%以上であるポリマー層を形成する工程と、を含み、上記ポリマー層中のポリマー成分の全質量に対する(メタ)アクリル化合物に由来する単量体単位の含有量が1質量%以上50質量%未満である太陽電池用フロントシートの製造方法。
 本開示に係る実施形態によれば、長期間の使用においても優れた耐候性を有し、太陽電池の発電効率に優れた太陽電池用フロントシート及びその製造方法を提供することができる。
 また、本開示に係る別の実施形態によれば、長期間の使用においても優れた耐候性を有し、発電効率に優れた太陽電池モジュールを提供することができる。
本開示に係る太陽電池用フロントシートを備える太陽電池モジュールの一例を示す概略断面図である。
 本開示において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本開示において、組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する上記複数の物質の合計量を意味する。
 本開示において、「工程」との語は、独立した工程だけでなく、他の工程と明確に区別できない場合であっても工程の所期の目的が達成されれば、本用語に含まれる。
 本開示において、「(メタ)アクリル」は、アクリル及びメタクリルの少なくとも一方を意味し、「(メタ)アクリレート」は、アクリレート及びメタクリレートの少なくとも一方を意味する。
 本開示において、「太陽電池用フロントシート」とは、太陽電池モジュールにおいて、太陽電池素子から見て、太陽光が入射する側に配置されるシートを指す。
 本開示において、「太陽電池用バックシート」とは、太陽電池モジュールにおいて、太陽電池素子から見て、太陽光が入射する側とは反対側に配置されるシートを指す。
 本開示において、好ましい態様の組み合わせは、より好ましい態様である。
(太陽電池用フロントシート)
 本開示に係る太陽電池用フロントシートは、基材上に、バインダーポリマーと、紫外線吸収構造を有するポリマーとして、分子量が5,000未満である紫外線吸収性化合物(以下、単に「紫外線吸収性化合物」ともいう。)を含むポリマー及び紫外線吸収構造を有する単量体単位を含むポリマーの少なくとも一方と、を含み、ポリマー層中のポリマー成分の全質量に対するオレフィン化合物に由来する単量体単位と、ポリマー層中のポリマー成分の全質量に対するウレタン結合を含む構成単位と、の合計含有量が50質量%以上であり、上記紫外線吸収性化合物及び上記紫外線吸収構造を含む単量体単位の合計含有量が0.5g/m~25g/mであり、厚さが2.0μm~50μmであるポリマー層を有し、上記ポリマー層中のポリマー成分の全質量に対する(メタ)アクリル化合物に由来する単量体単位の含有量が1質量%以上50質量%未満である。
 本開示に係る太陽電池用フロントシートは、必要に応じ、その他の層(例えば、後述の下塗り層、後述の第2層、後述の第3層、後述の第4層、等)を備えていてもよい。
 本開示に係る太陽電池用フロントシートによれば、長期間の使用においても優れた耐候性を有し、太陽電池の発電効率に優れる。
 かかる効果が奏される理由は以下のように推測される。但し、本開示に係る太陽電池用フロントシートは、以下の理由によって限定されることはない。
 従来の太陽電池用保護シートにおいては、長期間の使用においては徐々に層中の紫外線吸収剤の周辺に水分が増え、紫外線吸収剤が励起電子を受け取る頻度が上がると考えられる。そのため、紫外線吸収剤の分解が発生し、使用環境にもよるが例えば1年以上の長期間の使用により耐候性が低下すると考えられる。上記現象は、特に紫外線照射される湿熱環境下における使用において顕著である。
 本開示に係る太陽電池用フロントシートは、ポリマー層中のポリマー成分の全質量に対するオレフィン化合物に由来する単量体単位と、ポリマー層中のポリマー成分の全質量に対するウレタン結合を含む構成単位と、の合計含有量が50質量%以上であることにより、ポリマーが全体として疎水性となり、紫外線吸収構造を有するポリマーに含まれる紫外線吸収剤及び上記紫外線吸収構造の分解が抑制される結果、長期間の使用においても優れた耐候性を有すると推測している。
 また、本開示における紫外線吸収構造を有するポリマーに含まれる紫外線吸収剤及び上記紫外線吸収構造を含む単量体単位の合計含有量が0.5g/m~25g/mであり、かつ、ポリマー層の厚さが2.0μm~50μmであることにより、ヘイズ値が低く抑えられるため太陽電池の発電効率に優れる。また、上記態様によれば、紫外線吸収剤又は上記紫外線吸収構造を含む単量体単位の周囲のポリマーの存在比率が比較的低くなるため、これらが励起電子を受け取る確率が低下し、紫外線吸収剤又は上記紫外線吸収構造を含む単量体単位の分解が抑制されやすいため、長期間の使用においても優れた耐候性を有すると推測される。
 さらに、上記ポリマー層中のポリマー成分の全質量に対する(メタ)アクリル化合物に由来する単量体単位の含有量が50質量%未満であることで、ポリマー層の吸水性を下げることができ、紫外線吸収性化合物紫外線吸収性化合物および紫外線吸収構造の劣化速度を抑えることができると推測される。
 また、上記ポリマー層中のポリマー成分の全質量に対する(メタ)アクリル化合物に由来する単量体単位の含有量が1質量%以上であることにより、紫外線吸収性化合物及び紫外線吸収構造の分散性にも優れるため、透明度が高く、発電効率に優れた太陽電池用フロントシートが得られやすいと推測される。
 次に、本開示に係る太陽電池用フロントシートを備える太陽電池モジュールの一例について、図1を参照しながら説明する。
 但し、本開示に係る太陽電池用フロントシート及び太陽電池モジュールは、以下の一例に限定されるものではない。
 図1は、本開示に係る太陽電池用フロントシートを備える太陽電池モジュールの一例を示す概略断面図である。
 図1に示す太陽電池モジュールは、後述する本開示に係る太陽電池モジュールの一例でもある。
 図1に示されるように、この一例に係る太陽電池モジュール100は、太陽電池素子32及び太陽電池素子32を封止する封止材34(例えば、エチレン-酢酸ビニル共重合体(EVA)を含む封止材)を含む素子構造部36と、素子構造部36に対して太陽光50が入射される側に配置された太陽電池用フロントシート20と、素子構造部36に対して太陽光50が入射される側とは反対側に配置された太陽電池用バックシート40と、を備える。
 太陽電池用フロントシート20は、本開示に係る太陽電池用フロントシートの一例である。
 太陽電池用フロントシート20は、ポリエステルフィルムに代表される基材(基材フィルム10)と、基材フィルム10の片方の面(詳細には太陽光50が入射する側の面)上に配置された第1層11と、第1層の面上に配置された第2層12と、を備える。
 第1層は、本開示に係る太陽電池用フロントシートにおけるポリマー層である。以下、本開示において用いられるポリマー層を、「第1層」ともいう。
 第2層は、例えば、シロキサン樹脂を含有する。但し、第2層12は必須ではなく、省略されていてもよい。
 太陽電池用フロントシート20は、更に、基材フィルム10から見て第1層11及び第2層12側とは反対側に、裏面層として、第3層13及び第4層14をこの順序で備える。これら第3層13及び第4層14は、素子構造部36との接着を容易とするための、易接着層の機能を有している。
 但し、第3層13及び第4層14は必須ではなく、第3層13及び第4層14の少なくとも一方は省略されていてもよい。
 また、基材フィルム10の第1層11側の表面及び第3層13側の表面の少なくとも一方には、下塗り層が設けられていてもよい。即ち、基材フィルム10は、後述する下塗り層付き基材フィルムであってもよい。
 太陽電池モジュール100は、上述した各部材以外のその他の部材を備えていてもよい。
 その他の部材としては、部材間に配置される接着層、太陽電池用バックシート40に対し素子構造部36側とは反対側に配置される端子ボックス、等が挙げられる。
 太陽電池用フロントシート20は、太陽光50が直接入射する部材であり、かつ、風雨に曝される部材である。
 このため、太陽電池用フロントシート20には、高い耐候性(例えば、湿熱環境及び紫外線照射に対する耐久性)が要求される。
 この点に関し、太陽電池用フロントシート20では、上述の通り、ポリマー層がポリマー層中のポリマー成分の全質量に対するオレフィン化合物に由来する単量体単位と、ポリマー層中のポリマー成分の全質量に対するウレタン結合を含む構成単位と、の合計含有量が50質量%以上であることにより、長期間の使用においても優れた耐候性を有し、かつ、太陽電池の発電効率にも優れると考えられる。
 以下、長期間の使用における耐候性を、単に「長期間の耐候性」ともいう。
 本開示においては、基材の2つの表面のうち、ポリマー層(第1層)及び第2層が形成される側の面を「オモテ面」ということがあり、オモテ面に対して反対側の面(必要に応じ第3層及び第4層が形成される側の面)を「ウラ面」ということがある。
 以下、本開示に係る太陽電池用フロントシートの各要素について説明する。
<ポリマー層(第1層)>
 本開示に係る太陽電池用フロントシートは、バインダーポリマーと、紫外線吸収構造を有するポリマーとして、分子量が5,000未満である紫外線吸収性化合物を含むポリマー及び紫外線吸収構造を有する単量体単位を含むポリマーの少なくとも一方と、を含み、ポリマー層中のポリマー成分の全質量に対するオレフィン化合物に由来する単量体単位と、ポリマー層中のポリマー成分の全質量に対するウレタン結合を含む構成単位と、の合計含有量が50質量%以上であり、上記紫外線吸収性化合物及び上記紫外線吸収構造を含む単量体単位の合計含有量が0.5g/m~25g/mであり、厚さが2.0μm~50μmであるポリマー層を有し、上記ポリマー層中のポリマー成分の全質量に対する(メタ)アクリル化合物に由来する単量体単位の含有量が1質量%以上50質量%未満である。
 本開示において、ポリマー成分とは、ポリマー層に含まれる全てのポリマーを含む概念をいい、本開示に係るポリマーとは、重量平均分子量が5,000以上の化合物をいう。
 ポリマー成分には、バインダーポリマー、紫外線吸収構造を有するポリマーが含まれ、界面活性剤等が更に含まれる場合がある。
 本開示において、重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により測定された値を指す。
 GPCによる測定は、測定装置として、HLC(登録商標)-8020GPC(東ソー(株)製)を用い、カラムとして、TSKgel(登録商標)Super Multipore HZ-H(4.6mmID×15cm、東ソー(株)製)を3本用い、溶離液として、THF(テトラヒドロフラン)を用いる。また、測定条件としては、試料濃度を0.45質量%、流速を0.35mL/min、サンプル注入量を10μL、及び測定温度を40℃とし、示差屈折率(RI)検出器を用いて行うことができる。
 検量線は、東ソー(株)製の「標準試料TSK standard,polystyrene」:「F-40」、「F-20」、「F-4」、「F-1」、「A-5000」、「A-2500」、「A-1000」、及び「n-プロピルベンゼン」の8サンプルから作製できる。
 長期間の耐候性をより向上する観点から、本開示において、ポリマー層中のポリマー成分の全質量に対するオレフィン化合物に由来する単量体単位と、ポリマー層中のポリマー成分の全質量に対するウレタン結合を含む構成単位と、の合計含有量は、60質量%以上であることが好ましい。
 上記合計含有量の上限は、ポリマー層中のポリマー成分の全質量に対する(メタ)アクリル化合物に由来する単量体単位の含有量が1質量%以上50質量%未満とする観点から、99質量%以下であり、90質量%以下であることが好ましく、85質量%以下であることがより好ましく、80質量%以下であることが更に好ましい。
 また、長期間の耐候性をより向上する観点から、本開示において、ポリマー層は下記A1又は下記B1を満たすことが好ましく、下記A1を満たすことがより好ましい。
 A1:上記ポリマー層中のポリマー成分の全質量に対するオレフィン化合物に由来する単量体単位の含有量が50質量%以上である。
 B1:上記ポリマー層中のポリマー成分の全質量に対するウレタン結合を含む構成単位の含有量が50質量%以上である。
 また、長期間の耐候性をより向上し、太陽電池の発電効率をより向上する観点から、本開示において、ポリマー層は下記A2又はB2を満たすことが好ましい。
 A2:上記ポリマー層中のポリマー成分の全質量に対するオレフィン化合物に由来する単量体単位の含有量が60質量%以上である。
 B2:上記ポリマー層中のポリマー成分の全質量に対するウレタン結合を含む構成単位の含有量が60質量%以上である。
〔(メタ)アクリル化合物に由来する単量体単位の含有量〕
 長期間の耐候性をより向上し、太陽電池の発電効率をより向上する観点から、本開示におけるポリマー層において、(メタ)アクリル化合物に由来する単量体単位の含有量は、上記ポリマー層に含まれるポリマー成分の全質量に対し、1質量%以上50質量%未満である。ポリマー層中のポリマー成分の全質量に対する(メタ)アクリル化合物に由来する単量体単位の含有量は、39質量%以下8質量%以上であることが好ましく、20質量%以下10質量%以上であることがより好ましい。
 本開示において、(メタ)アクリル化合物とは、(メタ)アクリル酸又は(メタ)アクリル酸エステル化合物をいう。
〔ポリマー層の厚さ〕
 本開示に係るポリマー層の厚さは、2.0μm~50μmであり、7.0μm~50μmであることが好ましく、7.0μm~30μmであることが特に好ましい。
 ポリマー層の厚さが2.0μm以上であると、紫外線を吸収するに十分な紫外線吸収剤を添加することが可能となり、ポリマー層の厚さが50μm以下であると、第1層の透明性により優れる。
 ポリマー層の厚さは、太陽電池用フロントシートの切片を作製し、断面を走査型電子顕微鏡(SEM)によって観察することにより測定することが可能である。
〔紫外線吸収性能〕
 長期間の耐候性をより向上し、太陽電池の発電効率をより向上する観点から、本開示におけるポリマー層は、厚さ方向に等間隔で5分割した5枚の薄膜切片を作製し、5枚の薄膜切片の各々について波長325nmでの透過率を測定した場合の5つの測定値において、最大値と最小値との差が、最大値の30%以下であることが好ましく、20%以下であることがより好ましい。下限は特に限定されず、0%以上であればよい。
 上記最大値と最小値との差の値は、紫外線吸収構造を有するポリマーをポリマー層内に均一に近い状態で分散させることにより達成される。
 なお、上記等間隔とは、完全に等間隔でなくてもよく、5枚の薄膜切片の厚さの平均値±10%以内であれば、誤差を有していてもよい。
〔バインダーポリマー〕
 ポリマー層は、バインダーポリマーを含有する。
 ポリマー層中のポリマー成分の全質量に対するオレフィン化合物に由来する単量体単位と、ポリマー層中のポリマー成分の全質量に対するウレタン結合を含む構成単位と、の合計含有量を50質量%以上とするため、バインダーポリマーとして、オレフィン化合物に由来する単量体単位を含むポリマー、又は、ポリウレタンを含有することが好ましい。
〔吸水率〕
 バインダーポリマーとしては、下記式Aにより表される吸水率の差が3質量%未満であることが好ましく、1.5質量%未満であることがより好ましい。
 吸水率の差(質量%)=吸水率A-吸水率B   式A
 吸水率A:下記膜の製造方法により得られた膜を、40℃、相対湿度80%の環境下に24時間静置した場合の吸水率(質量%)
 吸水率B:下記膜の製造方法により得られた膜を、25℃、相対湿度30%の環境下に24時間静置した場合の吸水率(質量%)
-膜の製造方法-
 バインダーポリマーを固形分10質量%で含む水溶液を、ポリエチレンテレフタレート(PET)基材上に、乾燥後質量で10g/mとなるように塗布し、乾燥して膜を形成する。
 本開示において、固形分とは溶剤を除く全ての成分をいう。
〔オレフィン化合物に由来する単量体単位を含むポリマー〕
 オレフィン化合物に由来する単量体単位を含むポリマーにおけるオレフィン化合物としては、鎖状オレフィン化合物であっても環状オレフィン化合物であってもよいが、鎖状オレフィンであることが好ましく、炭素数2~10のモノオレフィン化合物がより好ましく、エチレン又はプロピレンがより好ましい。
 オレフィン化合物に由来する単量体単位の含有量は、ポリマー層中のポリマー成分の全質量に対するオレフィン化合物に由来する単量体単位と、ポリマー層中のポリマー成分の全質量に対するウレタン結合を含む構成単位と、の合計含有量を50質量%以上とする観点から、オレフィン化合物に由来する単量体単位を含むポリマーの全質量に対し、50質量%~95質量%であることが好ましく、60質量%~95質量%であることがより好ましい。
 オレフィン化合物に由来する単量体単位を含むポリマーは、オレフィン化合物以外の化合物に由来する他の単量体単位を含んでもよい。
 他の単量体単位としては、(メタ)アクリル酸、(メタ)アクリル酸エステル化合物、(メタ)アクリルアミド化合物、無水マレイン酸等の不飽和カルボン酸無水物等に由来する単量体単位が挙げられる。
 他の単量体単位の含有量は、ポリマー層中のポリマー成分の全質量に対するオレフィン化合物に由来する単量体単位と、ポリマー層中のポリマー成分の全質量に対するウレタン結合を含む構成単位と、の合計含有量を50質量%以上とする観点から、オレフィン化合物に由来する単量体単位を含むポリマーの全質量に対し、1質量%~30質量%であることが好ましく、5質量%~20質量%であることがより好ましい。
 また、上述の(メタ)アクリル化合物に由来する単量体単位の含有量を、上記ポリマー層に含まれるポリマー成分の全質量に対し、50質量%以下とする観点から、(メタ)アクリル酸及び(メタ)アクリル酸エステル化合物に由来する単量体単位の合計含有量は、オレフィン化合物に由来する単量体単位を含むポリマーの全質量に対し、0質量%~20質量%が好ましく、0質量%~10質量%がより好ましい。
 オレフィン化合物に由来する単量体単位を含むポリマーの重量平均分子量は、5,000~1,000,000であることが好ましく、8,000~500,000であることがより好ましい。
 オレフィン化合物に由来する単量体単位を含むポリマーにおけるオレフィン化合物としては、例えば、市販のポリオレフィン又は変性ポリオレフィンを用いることができる。
 変性ポリオレフィンの市販品としては、例えば、アローベース(登録商標)SE-1013N、SD-1010、TC-4010、TD-4010(ともにユニチカ(株)製)、ハイテックS3148、S3121、S8512(ともに東邦化学(株)製)、ケミパール(登録商標)S-120、S-75N、V100、EV210H(ともに三井化学(株)製)などを挙げることができる。その中でも、低密度ポリエチレン、アクリル酸エステル化合物、無水マレイン酸の三元共重合体である、アローベース(登録商標)SE-1013N、ユニチカ(株)製が好ましい。
 また、特開2014-76632号公報の段落0022~段落0034に記載の酸変性ポリオレフィンも好ましく用いることができる。
〔ポリウレタン〕
 本開示において用いられるポリウレタンとしては、特に制限されず、公知のポリウレタンを用いることが可能であるが、例えば、カーボネート系ウレタン樹脂が好ましい。
 カーボネート系ポリウレタンは、例えば、ポリカーボネートポリオール化合物と、ポリイソシアネート化合物とを反応することにより得られる。
 ポリウレタンとしては、例えば、シラノール基等の硬化性基を有するポリウレタンも使用可能である。
 ポリウレタンの分散液の市販品としては、例えば、スーパーフレックス(登録商標)460(第一工業製薬(株)製)、タケラックWS5100、タケラックWS4000(三井化学(株)製)を好ましく用いることができる。
-ウレタン結合を含む構成単位の含有量-
 本開示において、ウレタン結合を含む構成単位とは、ポリウレタンにおける、ポリカーボネート構造、ポリウレア構造、ポリアルキレンオキシ構造等のウレタン結合以外の重合反応により形成される構成単位を除いた残部における最大の構成単位をいう。
 ウレタン結合を含む構成単位の含有量は、ポリウレタンの全質量から、ポリカーボネート鎖、ポリウレア鎖、ポリアルキレンオキシ鎖等の分子鎖の質量を除いた値として算出される。
 なお、本内容は、ポリエステル等における、エステル結合を含む構成単位及びその含有量等において同様である。
 ウレタン結合を含む構成単位の含有量は、上述のB1又はB2を満たす観点から、ポリウレタンの全質量に対し、50質量%~95質量%であることが好ましく、60質量%~95質量%であることがより好ましい。
 ポリウレタンの重量平均分子量は、5,000~1,000,000であることが好ましく、8,000~500,000であることがより好ましい。
〔他のバインダーポリマー〕
 本開示に係るバインダーポリマーは、ポリマー層中のポリマー成分の全質量に対するオレフィン化合物に由来する単量体単位と、ポリマー層中のポリマー成分の全質量に対するウレタン結合を含む構成単位と、の合計含有量が50質量%以上とする限りにおいて、他のバインダーポリマーであってもよいし、上述のオレフィン化合物に由来する単量体単位を含むポリマー又はポリウレタンと、他のバインダーポリマーとを併用してもよい。
 他のバインダーポリマーとしては、アクリル樹脂が挙げられる。
 本開示において、アクリル樹脂とは、(メタ)アクリル酸又は(メタ)アクリル酸エステル化合物に由来する単量体単位を、ポリマーの全質量に対し、50質量%以上含有するポリマーをいう。
 アクリル樹脂としては、特に限定されないが、例えば、後述の紫外線吸収剤とポリマーとの複合粒子において用いられるアクリル樹脂が挙げられる。
 また、特開2016-195165号公報に記載のシロキサン含有アクリル樹脂も好ましい。
シロキサン含有アクリル樹脂をポリオレフィン又はポリウレタンと併用することで、一般に極性的な紫外線吸収剤がポリマー層中に均一に分散しやすくなり、かつシロキサン成分は屋外での耐候性にも優れる点で好ましい。
 また、他のバインダーポリマーとして、特開2016-195165号公報に記載のポリエステル樹脂、シロキサン樹脂、フッ素樹脂等を用いてもよい。
 他のバインダーポリマーの含有量は、ポリマー層中のポリマー成分の全質量に対するオレフィン化合物に由来する単量体単位と、ポリマー層中のポリマー成分の全質量に対するウレタン結合を含む構成単位と、の合計含有量を50質量%以上とする観点から、ポリマー層に含まれるポリマー成分の全質量に対し、0.1質量%~50質量%であることが好ましく、0.5質量%~20質量%であることがより好ましい。
〔バインダーポリマーの含有量〕
 本開示におけるポリマー層は、バインダーポリマーを1種単独で含有してもよいし、2種以上併用してもよい。
 本開示におけるポリマー層は、バインダーポリマーを、ポリマー層の全質量に対し、10質量%~90質量%含有することが好ましく、15質量%~70質量%含有することがより好ましい。
<紫外線吸収構造を有するポリマー>
 本開示におけるポリマー層は、紫外線吸収構造を有するポリマーとして、紫外線吸収性化合物を含むポリマー及び紫外線吸収構造を有する単量体単位を含むポリマーの少なくとも一方を含み、上記紫外線吸収性化合物及び上記紫外線吸収構造を含む単量体単位の合計含有量が0.5g/m~25g/mである。
 上記紫外線吸収性化合物及び上記紫外線吸収構造を含む単量体単位の合計含有量は、0.6g/m~20g/mであることが好ましく、0.8g/m~15g/mであることがより好ましい。
〔紫外線吸収性化合物を含むポリマー〕
 紫外線吸収性化合物を含むポリマーとしては、紫外線吸収性化合物が含まれていれば、特に形態は制限されないが、紫外線吸収性化合物がポリマーで被覆された複合粒子の形態であることが好ましい。言い換えれば、ポリマー層は、紫外線吸収性化合物とポリマーとの複合粒子を少なくとも1種含有することが好ましい。
-紫外線吸収性化合物-
 本開示において、紫外線吸収性化合物は、紫外線吸収性能を有する分子量が5,000未満の化合物である。上記分子量は、紫外線吸収性化合物が分子量分布を有する場合には、上述の方法により測定された重量平均分子量をいう。分子量分布を有しない場合、分子量は、例えばエレクトロスプレーイオン化質量分析(ESI-MS)を用いて測定される。上記分子量の下限は、特に限定されないが、100以上であることが好ましい。
 紫外線吸収性化合物としては、極大吸収波長を380nm以下に有する化合物が好ましく、極大吸収波長を250nm~380nm(特に好ましくは270nm~380nm)に有する化合物がより好ましい。
 紫外線吸収性化合物としては、例えば、トリアジン化合物、ベンゾトリアゾール化合物、ベンゾフェノン化合物、サリチル酸化合物などが挙げられる。
 紫外線吸収性化合物は、紫外線吸収性能の観点から、トリアジン化合物又はベンゾトリアゾール化合物を含むことが好ましく、トリアジン化合物を含むことがより好ましい。
 紫外線吸収性化合物におけるトリアジン化合物及びベンゾトリアゾール化合物の総含有量は、紫外線吸収性化合物の全量に対し、80質量%以上であることが好ましい。
 紫外線吸収性化合物におけるトリアジン化合物の含有量は、紫外線吸収性化合物の全量に対し、80質量%以上であることが好ましい。
 トリアジン化合物としては、例えば、2-(4-ブトキシ-2-ヒドロキシフェニル)-4,6-ビス(4-ブトキシフェニル)-1,3,5-トリアジン、2-(4-ブトキシ-2-ヒドロキシフェニル)-4,6-ビス(2,4-ジブトキシフェニル)-1,3,5-トリアジン、2,4-ビス(4-ブトキシ-2-ヒドロキシフェニル)-6-(4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ビス(4-ブトキシ-2-ヒドロキシフェニル)-6-(2,4-ジブトキシフェニル)-1,3,5-トリアジン、2,4,6-トリス(2-ヒドロキシ-4-オクチルオキシフェニル)-1,3,5-トリアジン、2-(2-ヒドロキシ-4-オクチルオキシフェニル)-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-(2,4-ジヒドロキシフェニル)-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2,4-ビス(2-ヒドロキシ-4-プロピルオキシフェニル)-6-(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-(2-ヒドロキシ-4-オクチルオキシフェニル)-4,6-ビス(4-メチルフェニル)-1,3,5-トリアジン、2-(2-ヒドロキシ-4-ドデシルオキシフェニル)-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-(2-ヒドロキシ-4-トリデシルオキシフェニル)-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-[2-ヒドロキシ-4-(2-ヒドロキシ-3-ブチルオキシプロポキシ)フェニル]-4,6-ビス(2,4-ジメチル)-1,3,5-トリアジン、2-[2-ヒドロキシ-4-(2-ヒドロキシ-3-オクチルオキシプロピルオキシ)フェニル]-4,6-ビス(2,4-ジメチル)-1,3,5-トリアジン、2-[4-(ドデシルオキシ/トリデシルオキシ-2-ヒドロキシプロポキシ)-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-[2-ヒドロキシ-4-(2-ヒドロキシ-3-ドデシルオキシプロポキシ)フェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-(2-ヒドロキシ-4-ヘキシルオキシ)フェニル-4,6-ジフェニル-1,3,5-トリアジン、2-(2-ヒドロキシ-4-メトキシフェニル)-4,6-ジフェニル-1,3,5-トリアジン、2,4,6-トリス(2-ヒドロキシ-4-(3-ブトキシ-2-ヒドロキシプロポキシ)フェニル)-1,3,5-トリアジン、2-(2-ヒドロキシフェニル)-4-(4-メトキシフェニル)-6-フェニル-1,3,5-トリアジン、2-{2-ヒドロキシ-4-[3-(2-エチルヘキシル-1-オキシ)-2-ヒドロキシプロピルオキシ]フェニル}-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-(2-ヒドロキシ-4-(2-エチルヘキシル)オキシ)フェニル-4,6-ビス(4-フェニル)フェニル-1,3,5-トリアジン、等が挙げられる。
 ベンゾトリアゾール化合物としては、例えば、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-t-ブチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’-t-ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)-5-クロロベンゾトリアゾール、2-(2’-ヒドロキシ-3’-ドデシル-5’-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-t-アミルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-(1,1,3,3-テトラメチルブチル)フェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-4’-オクチルオキシフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’-(3,4,5,6-テトラヒドロフタルイミジルメチル)-5’-メチルベンジル)フェニル)ベンゾトリアゾール、2-(3’-sec-ブチル-5’-t-ブチル-2’-ヒドロキシフェニル)ベンゾトリアゾール、2-(3’,5’-ビス-(α,α-ジメチルベンジル)-2’-ヒドロキシフェニル)ベンゾトリアゾール、2-(3’-t-ブチル-2’-ヒドロキシ-5’-(2-オクチルオキシカルボニルエチル)フェニル)-5-クロロ-ベンゾトリアゾール、2-(3’-t-ブチル-5’-[2-(2-エチルヘキシルオキシ)-カルボニルエチル]-2’-ヒドロキシフェニル)-5-クロロ-ベンゾトリアゾール、2-(3’-t-ブチル-2’-ヒドロキシ-5’-(2-メトキシカルボニルエチル)フェニル)-5-クロロ-ベンゾトリアゾール、2-(3’-t-ブチル-2’-ヒドロキシ-5’-(2-メトキシカルボニルエチル)フェニル)ベンゾトリアゾール、2-(3’-t-ブチル-2’-ヒドロキシ-5’-(2-オクチルオキシカルボニルエチル)フェニル)ベンゾトリアゾール、2-(3’-t-ブチル-5’-[2-(2-エチルヘキシルオキシ)カルボニルエチル]-2’-ヒドロキシフェニル)ベンゾトリアゾール、2-(3’-ドデシル-2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(3’-t-ブチル-2’-ヒドロキシ-5’-(2-イソオクチルオキシカルボニルエチル)フェニルベンゾトリアゾール、2,2’-メチレン-ビス[4-(1,1,3,3-テトラメチルブチル)-6-ベンゾトリアゾール-2-イルフェノール]、等が挙げられる。
 ベンゾフェノン化合物としては、例えば、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクチルオキシベンゾフェノン、2-ヒドロキシ-4-デシルオキシベンゾフェノン、2-ヒドロキシ-4-ドデシルオキシベンゾフェノン、2-ヒドロキシ-4-ベンジルオキシベンゾフェノン、2-ヒドロキシ-4-(2-ヒドロキシ-3-メタクリルオキシプロポキシ)ベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホベンゾフェノントリヒドレート、2-ヒドロキシ-4-メトキシ-2’-カルボキシベンゾフェノン、2-ヒドロキシ-4-オクタデシロキシベンゾフェノン、2-ヒドロキシ-4-ジエチルアミノ-2’-ヘキシルオキシカルボニルベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、1,4-ビス(4-ベンジルオキシ-3-ヒドロキシフェノキシ)ブタン、等が挙げられる。
 サリチル酸化合物としては、例えば、フェニルサリシレート、4-t-ブチルフェニルサリシレート、4-オクチルフェニルサリシレート、ジベンゾイルレゾルシノール、ビス(4-t-ブチルベンゾイル)レゾルシノール、ベンゾイルレゾルシノール、2,4-ジ-t-ブチルフェニル 3,5-ジ-t-ブチル-4-ヒドロキシサリシレート、ヘキサデシル 3,5-ジ-t-ブチル-4-ヒドロキシサリシレート、等が挙げられる。
 シュウ酸ジアミド化合物としては、例えば、4,4’-ジオクチルオキシオキサニリド、2,2’-ジオクチルオキシ-5,5’-ジ-t-ブチルオキサニリド、2,2’-ジドデシルオキシ-5,5’-ジ-t-ブチルオキサニリド、2-エトキシ-2’-エチルオキサニリド、N,N’-ビス(3-ジメチルアミノプロピル)オキサミド、2-エトキシ-5-t-ブチル-2’-エチルオキサニリド、2-エトキシ-2’-エチル-5,4’-ジ-t-ブチルオキサニリド、等が挙げられる。
-紫外線吸収性化合物とポリマーとの複合粒子-
 上記複合粒子に含まれるポリマーは、複合粒子を構成する成分である点で、ポリマー層(第1層)中のバインダーポリマーとは異なる。
 複合粒子に含まれるポリマーとしては、アクリル樹脂、ポリエステル、ポリウレタン、ポリオレフィン、シロキサン樹脂、フッ素ポリマーなどが挙げられ、アクリル樹脂が好ましい。
 紫外線吸収構造を有するポリマーが、紫外線吸収性化合物とアクリル樹脂との複合粒子であると、太陽電池モジュールの長期間の耐候性及び透明性が更に向上する。この理由は、複合粒子に含まれるポリマーがアクリル樹脂である場合には、複合粒子の水分散性が向上し、ポリマー層中に均一に近い状態で分散されるためであると考えられる。
 アクリル樹脂を形成するためのモノマーとしては、(メタ)アクリル酸及び(メタ)アクリル酸エステル化合物が挙げられる。
 アクリル樹脂を形成するためのモノマーとして、より具体的には、例えば、(メタ)アクリル酸、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、アセトキシエチル(メタ)アクリレート、フェニル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、2-(2-メトキシエトキシ)エチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、ジエチレングリコールモノメチルエーテル(メタ)アクリレート、ジエチレングリコールモノエチルエーテル(メタ)アクリレート、ジエチレングリコールモノフェニルエーテル(メタ)アクリレート、トリエチレングリコールモノメチルエーテル(メタ)アクリレート、トリエチレングリコールモノエチルエーテル(メタ)アクリレート、ジプロピレングリコールモノメチルエーテル(メタ)アクリレート、ポリエチレングリコールモノメチルエーテル(メタ)アクリレート、ポリプロピレングリコールモノメチルエーテル(メタ)アクリレート、エチレングリコールとプロピレングリコールとの共重合体のモノメチルエーテル(メタ)アクリレート、N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリレート、等が挙げられる。
 ここで、(メタ)アクリル酸は、アクリル酸又はメタクリル酸を意味し、(メタ)アクリレートは、メタクリレート又はアクリレートを意味する。
 アクリル樹脂が2種以上のモノマーの共重合体である場合、上記のアクリル樹脂を形成するためのモノマー以外のモノマー(他のモノマー)を共重合成分としてもよい。
 他のモノマーとしては、(メタ)アクリルアミド、ジアセトンアクリルアミド、N-メチロールアクリルアミド、(メタ)アクリロニトリルなどの窒素含有モノマー;スチレン、α-メチルスチレン、ジビニルベンゼン、ビニルトルエンなどのスチレン骨格を有するモノマー;後述のシロキサン構造を有するモノマー;プロピオン酸ビニルなどのビニルエステル;リン含有ビニルモノマー;塩化ビニル、塩化ビニリデンなどのハロゲン化ビニル;ブタジエンなどの共役ジエン;等が挙げられる。
 紫外線吸収性化合物とポリマーとの複合粒子における紫外線吸収性化合物の含有量は、複合粒子の全量に対し、20質量%~80質量%が好ましく、30質量%~70質量%がより好ましく、40質量%~60質量%が特に好ましい。
 紫外線吸収性化合物とポリマーとの複合粒子におけるポリマーの含有量は、複合粒子の全量に対し、20質量%~80質量%が好ましく、30質量%~70質量%がより好ましく、40質量%~60質量%が特に好ましい。
 紫外線吸収性化合物とポリマーとの複合粒子に含まれるポリマー(例えばアクリル樹脂)の重量平均分子量は、長期間の耐候性をより向上する観点から、5,000~200,000が好ましく、7,000~150,000がより好ましく、10,000~100,000が更に好ましい。
 紫外線吸収性化合物とポリマーとの複合粒子のメジアン径(D50)は、500nm未満が好ましく、400nm未満がより好ましく、150nm未満が特に好ましい。
 紫外線吸収性化合物とポリマーとの複合粒子のメジアン径(D50)は、500nm未満が好ましく、400nm未満がより好ましく、150nm未満が特に好ましい。
 メジアン径の下限は、10nm以上であることが好ましく、20nm以上であることがより好ましい。
 上記メジアン径は、動的光散乱測定による粒度分布から算出される。
〔紫外線吸収構造を有する単量体単位を含むポリマー〕
 紫外線吸収構造を有するポリマーとしては、紫外線吸収構造を有する単量体単位を含むポリマーであってもよい。
 紫外線吸収構造を有する単量体単位としては、上述のトリアジン化合物、ベンゾトリアゾール化合物、ベンゾフェノン化合物、サリチル酸化合物等の構造の少なくとも一部を含む重合性化合物に由来する単量体単位が好ましく、トリアジン化合物の構造の少なくとも一部を含む重合性化合物に由来する単量体単位がより好ましい。
 また、紫外線吸収構造を有する単量体単位を含むポリマーはアクリル樹脂であることが好ましく、上述のトリアジン化合物、ベンゾトリアゾール化合物、ベンゾフェノン化合物、サリチル酸化合物等の構造の少なくとも一部を含むアクリル酸エステル化合物に由来する単量体単位を含むアクリル樹脂であることがより好ましく、トリアジン化合物の構造の少なくとも一部を含むアクリル酸エステル化合物に由来する単量体単位を含むアクリル樹脂であることがより好ましい。
 また、上記アクリル樹脂は、上述の複合粒子におけるアクリル樹脂を形成するためのモノマーと同様のモノマーに由来する単量体単位を更に含む共重合体であってもよい。
 紫外線吸収構造を有する単量体単位の含有量は、紫外線吸収構造を有する単量体単位を含むポリマーの全質量に対し、10質量%~90質量%であることが好ましく、30質量%~70質量%であることがより好ましい。
 紫外線吸収構造を有する単量体単位を含むポリマーの重量平均分子量は、長期間の耐候性をより向上する観点から、5,000~200,000が好ましく、7,000~150,000がより好ましく、10,000~100,000が更に好ましい。
 ポリマー層における、バインダーポリマーの含有量に対する紫外線吸収構造を有する単量体単位を含むポリマーの含有量の比(バインダーポリマー:紫外線吸収構造を有する単量体単位を含むポリマー)は、質量基準で、0.05~0.60であることが好ましい。上記比が0.05以上であればより太陽電池の発電効率に優れ、0.60以下であればより長期間の耐候性に優れる。
 紫外線吸収構造を有するポリマーとしては、市販品を用いてもよい。
 市販品としては、例えば、Tinuvin(登録商標)99-DW、400-DW、477-DW、479-DW(ともにBASF社製)、ニューコート(登録商標)UVA-204W、UVA-101、UVA-102、UVA-103、UVA-104、バナレジン(登録商標)UVA-5080、UVA-5080(OHV20)、UVA-55T、UVA-55MHB、UVA-7075、UVA-7075(OHV20)、UVA-73T(ともに新中村化学工業(株)製)RUVA-93(大塚化学(株)製)などが挙げられる。
 ポリマー層に含まれる上記紫外線吸収性化合物及び上記紫外線吸収構造を含む単量体単位の合計含有量は、上記ポリマー層に含まれるポリマー成分の全質量に対し、1質量%以上50質量%以下であることが好ましく、3質量%以上19質量%以下であることがより好ましい。
 本開示に係る太陽電池用フロントシートの好ましい態様は、上記紫外線吸収剤が上述のトリアジン化合物を含むか、又は、上記紫外線吸収構造が上述のトリアジン構造を含む態様である。
 また、本開示に係る太陽電池用フロントシートの別の好ましい態様は、上記紫外線吸収構造を有するポリマーが、上述の紫外線吸収性化合物とアクリル樹脂との複合粒子である。上記複合粒子に含まれる紫外線吸収性化合物がトリアジン化合物であることがより好ましい。
<架橋剤に由来する構造>
 ポリマー層は、硬度及び耐久性の観点から、架橋剤に由来する構造を含んでもよい。
 架橋剤は1種のみであっても2種以上であってもよい。
 架橋剤としては、エポキシ系架橋剤、イソシアネート系架橋剤、メラミン系架橋剤、カルボジイミド系架橋剤、オキサゾリン系架橋剤、等が挙げられる。
 中でも、カルボジイミド系架橋剤、オキサゾリン系架橋剤、又はイソシアネート系架橋剤が好ましく、オキサゾリン系架橋剤が特に好ましい。
 オキサゾリン系架橋剤としては、例えば、2-ビニル-2-オキサゾリン、2-ビニル-4-メチル-2-オキサゾリン、2-ビニル-5-メチル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン、2-イソプロペニル-4-メチル-2-オキサゾリン、2-イソプロペニル-5-エチル-2-オキサゾリン、2,2’-ビス-(2-オキサゾリン)、2,2’-メチレン-ビス-(2-オキサゾリン)、2,2’-エチレン-ビス-(2-オキサゾリン)、2,2’-トリメチレン-ビス-(2-オキサゾリン)、2,2’-テトラメチレン-ビス-(2-オキサゾリン)、2、2’-ヘキサメチレン-ビス-(2-オキサゾリン)、2,2’-オクタメチレン-ビス-(2-オキサゾリン)、2,2’-エチレン-ビス-(4,4’-ジメチル-2-オキサゾリン)、2,2’-p-フェニレン-ビス-(2-オキサゾリン)、2,2’-m-フェニレン-ビス-(2-オキサゾリン)、2,2’-m-フェニレン-ビス-(4,4’-ジメチル-2-オキサゾリン)、ビス-(2-オキサゾリニルシクロヘキサン)スルフィド、ビス-(2-オキサゾリニルノルボルナン)スルフィド、等が挙げられる。さらに、これらの化合物の単独重合体又は共重合体も挙げられる。
 オキサゾリン系架橋剤に由来する構造を含むポリマー層を形成するにあたり、オキサゾリン系架橋剤の希釈液の市販品を用いてもよい。
 オキサゾリン系架橋剤の希釈液の市販品としては、例えば、エポクロス(登録商標)K-2010E、K-2020E、K-2030E、WS-500、WS-700〔いずれも日本触媒化学工業(株)製〕、等が挙げられる。
 架橋剤に由来する構造を含むポリマー層を形成する場合の架橋剤の添加量は、ポリマー層に含まれるバインダーポリマー100質量部に対して10質量部以上40質量部以下が好ましく、より好ましくは15質量部以上35質量部以下である。
 架橋剤の添加量が10質量部以上であると、ポリマー層の硬度及び接着性を保持しながら充分な架橋効果が得られる。
 架橋剤の添加量が40質量部以下であると、塗布液の保存安定性を長く保て、35質量部以下であると塗布面状を改良できる。
 ポリマー層が架橋剤に由来する構造を含む場合の架橋剤に由来する構造の含有量は、ポリマー層に含まれるバインダーポリマー100質量部に対して10質量部以上40質量部以下が好ましく、より好ましくは15質量部以上35質量部以下である。
<架橋触媒>
 ポリマー層は、バインダーポリマーと架橋剤との架橋反応を促進する観点から、架橋触媒を少なくとも1種含有してもよい。
 架橋触媒としては、公知の架橋触媒を特に制限なく使用することが可能であり、例えば、オニウム化合物等が挙げられる。
<界面活性剤>
 ポリマー層は、界面活性剤を少なくとも1種含有してもよい。
 界面活性剤としては、アニオン系界面活性剤、ノニオン系界面活性剤等の公知の界面活性剤が挙げられる。
 ポリマー層が界面活性剤を含有する場合、界面活性剤の含有量は、ポリマー層の固形分量に対し、0.01質量%~1質量%が好ましく、0.01質量%~0.2質量%がより好ましい。
<その他の成分>
 ポリマー層は、上述した成分以外のその他の成分を含有してもよい。
 その他の成分としては、無機粒子、光安定剤等が挙げられる。
 無機粒子としては、後述の第2層に含有され得る無機粒子と同様のものが挙げられる。
 光安定剤としては、ヒンダードアミン系光安定剤等の公知の光安定剤が挙げられる。
 光安定剤の市販品としては、Tinuvin(登録商標)123-DW(BASF社製)、ユーダブル(登録商標)E-771SI(日本触媒社製)等を用いることができる。
<ポリマー層の形成方法>
 ポリマー層の形成方法は、特に制限されない。
 ポリマー層の形成方法としては、例えば、溶媒及び上述したポリマー層の成分(固形分)を含有するポリマー層形成用塗布液を、基材の一方の面に塗布し、乾燥させる方法が挙げられる。
 ポリマー層形成用塗布液に含まれる溶媒には特に制限はない。
 溶媒は、水でもよいし、トルエン、メチルエチルケトン等の有機溶媒でもよい。環境負荷の観点から、水が好ましい。溶媒中の水の割合は60質量%以上が好ましく、80質量%以上がより好ましい。
 ポリマー層形成用塗布液の固形分量に対する各成分の含有量の好ましい範囲は、ポリマー層の固形分量に対する各成分の含有量の好ましい範囲と同様である。
 ポリマー層形成用塗布液を塗布する塗布方法には、特に制限はない。
 塗布方法としては、グラビアコーター、バーコーター、ロールコーター、スピンコーター、カーテンコーターなどの塗布装置を用いた塗布方法が挙げられる。
 ポリマー層形成用塗布液を乾燥させる乾燥方法にも特に制限はなく、公知の方法を適宜適用できる。
 乾燥温度として、好ましくは100℃~200℃であり、より好ましくは140℃~190℃である。
 乾燥時間として、好ましくは0.1分間~10分間であり、より好ましくは0.2分間~5分間である。
 また、ポリマー層の形成前に、基材に表面処理(火炎処理、コロナ処理、プラズマ処理、紫外線処理等)を実施してもよい。
 ポリマー層は、他の層(例えば、後述の下塗り層)を介して基材の上に配置されてもよい。
<基材>
 次に、本開示に係る太陽電池用フロントシートにおける基材(例えば、上述の基材フィルム10)の好ましい態様について説明する。
 基材しては、透明性を有する材質を適宜選択することができる。
 基材の少なくとも一方の面には、後述する下塗り層が設けられていてもよい。
 基材としては、フィルム状の基材(「基材フィルム」ともいう)が好ましい。
 基材フィルムの厚さは、好ましくは30μm~500μm、より好ましくは40μm~450μm、さらに好ましくは45μm~400μmである。
 基材の材質としては、ポリマーが好ましい。
 ポリマーとしては、例えば、ポリエステル、ポリカーボネート、ポリプロピレン、ポリエチレンなどのポリオレフィン、又はポリフッ化ビニルなどのフッ素系ポリマー等が挙げられる。中でも、コスト、機械強度及び透明性の点から、ポリエステルが好ましい。
〔ポリエステル〕
 ポリエステルとしては、例えば、芳香族二塩基酸又はそのエステル形成性誘導体とジオール又はそのエステル形成性誘導体とから合成される線状飽和ポリエステルが挙げられる。線状飽和ポリエステルの具体例としては、ポリエチレンテレフタレート、ポリエチレンイソフタレート、ポリブチレンテレフタレート、ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)、ポリエチレン-2,6-ナフタレートなどが挙げられる。このうち、力学的物性やコストのバランスの点で、ポリエチレンテレフタレート又はポリエチレン-2,6-ナフタレート、ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)が特に好ましい。
 ポリエステルは、単独重合体であってもよいし、共重合体であってもよい。更に、ポリエステルに他の種類の樹脂、例えばポリイミド等を少量ブレンドしたものであってもよい。
 ポリエステルの種類は、上記に限られるものではなく、公知のポリエステルを使用してもよい。公知のポリエステルとしては、ジカルボン酸成分と、ジオール成分とを用いて合成してもよいし、市販のポリエステルを用いてもよい。
 例えば、特開2016-195165号公報に記載のポリエステルが好ましく用いられる。
〔基材の製造方法の一例〕
 基材を製造する方法は特に限定されない。
 例えば、特開2016-195165号公報に記載の基材フィルムの製造方法が挙げられる。
<第2層>
 本開示の太陽電池用透明シートは、ポリマー層上に、さらに、第2層(例えば、上述の第2層12)を有することが好ましい。
 第2層は、ポリマー層(第1層)上に配置される層(好ましくは最表面層)であり、ポリマー層及び基材を保護する(例えば、第1層及び基材の傷つきを抑制する)機能を有する層(いわゆるハードコート層)であることが好ましい。
〔シロキサン樹脂〕
 第2層は、上記式S1により表される構成単位、及び、上記式S2により表される構成単位を含むシロキサン樹脂を少なくとも1種含有することが好ましい。
 第2層がシロキサン樹脂を少なくとも1種含有することにより、第2層の耐傷性(例えば、引っ掻き、擦過等の外力に対する耐傷性)が確保され得る。また、第2層がシロキサン樹脂を含有することにより、第2層の透明性も確保され得る。
 第2層に含有されるシロキサン樹脂としては、下記式S1により表される構成単位、及び、下記式S2により表される構成単位を含む化合物であれば特に制限はない。なお、本開示におけるシロキサン樹脂には、後記する無機粒子であるシリカ粒子は含まない。
 第2層に含有されるシロキサン樹脂は、1種のみであってもよいし、2種以上であってもよい。
 [*-SiO3/2] 式S1
 [SiO4/2] 式S2
 式S1中、*は他の構造との結合部位を表す。ただし、上記結合部位において、式S1中のSi原子が、O原子と直接結合することはない。
 式S1により表される構成単位は、後述する3官能以下のアルコキシシランに含まれる、3官能のアルコキシシランに由来する構成単位であることが好ましい。すなわち、*に含まれる構造は、後述するRs3に由来する構造であることが好ましい。
 式S2により表される構成単位は、後述する4官能のアルコキシシランに由来する構成単位であることが好ましい。
 第2層の鉛筆硬度が向上しやすい観点から上記シロキサン樹脂における、式S1により表される構成単位中のSi原子モル量が、式S2により表される構成単位中のSi原子のモル量に対し、1.0~7.5倍であることが好ましく、1.5倍~4.5倍であることがより好ましい。
 式S1により表される構成単位を2種以上含む場合には、「式S1により表される構成単位のSi原子モル量」は、2種以上の式S1により表される構成単位の合計Si原子モル量を意味する。
 式S2により表される構成単位を2種以上含む場合には、「式S2により表される構成単位のSi原子モル量」は、2種以上の式S2により表される構成単位の合計Si原子モル量を意味する。
 第2層のシロキサン樹脂における、式S1により表される構成単位のSi原子モル量は、式S2により表される構成単位のSi原子モル量に対し、1.0倍以上であると、シロキサン樹脂の靱性が向上し、割れにくい第2層が得られる。
 第2層のシロキサン樹脂における、式S1により表される構成単位のSi原子モル量は、式S2により表される構成単位のSi原子モル量に対し、7.5倍以下であると、シロキサン樹脂の硬さが向上し、第2層の鉛筆硬度が向上する。
 第2層のシロキサン樹脂に含まれる全Si原子モル量に対する、式S1により表される構成単位のSi原子モル量と、式S2により表される構成単位のSi原子モル量との合計値は、80モル%以上であることが好ましく、90モル%以上であることがより好ましく、100モル%であることが特に好ましい。
 第2層のシロキサン樹脂における式S1により表される構成単位のSi原子モル量、及び、式S2により表される構成単位のSi原子モル量は、第2層からシロキサン樹脂をサンプリングし、これを29Si-NMRにて分析し、三官能および四官能シロキサンのピーク強度により測定可能である。なお測定サンプルは第2層の表面から膜厚の50%までの範囲を削り取り、そこから10mgを使用する。
 シロキサン樹脂は、分子鎖中に(ポリ)シロキサン構造単位を有するポリマーであり、特に制限されるものではない。
 第2層に含有されるシロキサン樹脂は、シロキサン樹脂の架橋度合いをより調整しやすい点から、3官能以下のアルコキシシランと4官能のアルコキシシランとの加水分解縮合物を含むことが好ましい。
 第2層に含有されるシロキサン樹脂の少なくとも1種は、4官能のアルコキシシランと、この4官能のアルコキシシランの質量に対して1.4倍~10倍の質量の3官能以下のアルコキシシランと、の加水分解縮合物を含むことがより好ましく、4官能のアルコキシシランと、上記4官能のアルコキシシランの質量に対して2.0倍~6.0倍の質量の3官能以下のアルコキシシランと、の加水分解縮合物を含むことが更に好ましい。
 この態様において、4官能のアルコキシシラン及び3官能以下のアルコキシシランは、それぞれ、1種のみであっても2種以上であってもよい。
 4官能のアルコキシシランが2種以上である場合には、「4官能のアルコキシシランの量」は、2種以上の4官能のアルコキシシランの合計量を意味する。
 3官能以下のアルコキシシランが2種以上である場合には、「3官能以下のアルコキシシランの量」は、2種以上の3官能以下のアルコキシシランの合計量を意味する。
 以下、4官能のアルコキシシランと、この4官能のアルコキシシランの量に対してX質量倍~Y質量倍(例えば、1.4質量倍~10質量倍)の量の3官能以下のアルコキシシランと、の加水分解縮合物であるシロキサン樹脂を、「質量比〔3官能以下/4官能〕がX~Yであるシロキサン樹脂」(例えば、質量比〔3官能以下/4官能〕が1.4~10であるシロキサン樹脂)ともいう。
 質量比〔3官能以下/4官能〕が1.4以上であると、シロキサン樹脂の靱性が向上し、第2層が割れにくくなる。
 質量比〔3官能以下/4官能〕が10以下であると、シロキサン樹脂の硬さが向上し、第2層の鉛筆硬度がより向上する。
 第2層に含有される全てのシロキサン樹脂に占める質量比〔3官能以下/4官能〕が1.4~10であるシロキサンの割合は、60質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることが特に好ましい。
 上述した質量比〔3官能以下/4官能〕が1.4~10であるシロキサンにおける質量比〔3官能以下/4官能〕は、第2層が割れにくくなる観点及び鉛筆硬度の向上の観点から、2.0~6.0であることが好ましい。
 言い換えれば、第2層をより割れにくくし、鉛筆硬度をより向上させる観点から、第2層に含有されるシロキサンの少なくとも1種は、4官能のアルコキシシランと、この4官能のアルコキシシランの全質量に対して2.0倍~6.0倍の質量の3官能以下のアルコキシシランと、の加水分解縮合物(即ち、質量比〔3官能以下/4官能〕が2.0~6.0であるシロキサン)であることが好ましい。
 この場合、第2層に含有される全てのシロキサンに占める質量比〔3官能以下/4官能〕が2.0~6.0であるシロキサンの割合は、60質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることが特に好ましい。
 本明細書において、4官能のアルコキシシランとは、一分子中において、ケイ素原子に直接結合するアルコキシ基の数が4個であるアルコキシシランを意味する。
 本明細書において、3官能以下のアルコキシシランとは、一分子中において、ケイ素原子に直接結合するアルコキシ基の数が1個以上3個以下であるアルコキシシランを意味する。
-4官能のアルコキシシラン-
 4官能のアルコキシシランとしては特に制限はないが、下記一般式(a)で表されるアルコキシシランが好ましい。
 Si(ORS1  … 一般式(a)
 一般式(a)において、4つのRS1は、それぞれ独立に、炭素数1~6のアルキル基を表す。
 4つのRは、それぞれ独立に、炭素数1~4(より好ましくは1~3、特に好ましくは1又は2)のアルキル基が好ましい。
 4官能アルコキシシランの具体例としては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシラン、メトキシトリエトキシシラン、エトキシトリメトキシシラン、メトキシトリプロポキシシラン、エトキシトリプロポキシシラン、プロポキシトリメトキシシラン、プロポキシトリエトキシシラン、ジメトキシジエトキシシラン等が挙げられる。
 中でも、テトラメトキシシラン又はテトラエトキシシランが好ましい。
-3官能以下のアルコキシシラン-
 3官能以下のアルコキシシランとしては特に制限はないが、下記一般式(b)で表されるアルコキシシランが好ましい。
 RS3 4-nSi(ORS2  … 一般式(b)
 一般式(b)において、nは、1~3の整数を表す。
 RS2は、炭素数1~6のアルキル基を表す。
 nが2又は3である場合、複数のRS2は、同一であっても異なっていてもよい。
 RS3は、炭素数1~15の有機基を表す。
 4-nが2又は3である場合、複数のRS3は、同一であっても異なっていてもよい。
 一般式(b)中のRS2の好ましい態様は、一般式(a)中のRS1の好ましい態様と同様である。
 一般式(b)中のnは、2又は3であることが好ましく、3であることが特に好ましい。
 一般式(b)中のRS3は、炭素数1~15の有機基を表す。
 RS3の炭素数が1~15であることにより、第2層の硬度、及び、第2層とポリマー層との密着性が向上する。
 RS3で表される有機基は、酸素、窒素、硫黄などのヘテロ原子を有してもよい。RS3で表される有機基がヘテロ原子を有することにより、第2層とポリマー層との密着性をより向上させることができる。
 RS3で表される有機基としては、
置換又は無置換の炭化水素基が好ましく、
置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基、又は、置換若しくは無置換のアリール基がより好ましい。
 RS3で表される有機基は、エポキシ基を含むことが好ましい。
 RS3で表される有機基は、エポキシ基を含む置換基によって置換された炭化水素基であることがより好ましく、エポキシ基を含む置換基によって置換されたアルキル基であることが更に好ましい。
 エポキシ基を含む置換基としては、エポキシ基、グリシジル基、グリシドキシ基、3,4-エポキシシクロヘキシル基、等が挙げられる。
 RS3で表される有機基は、アルキル基、アルケニル基、アリール基、アミド基、ウレタン基、ウレア基、エステル基、ヒドロキシ基、カルボキシ基、(メタ)アクリロイル基などを含んでいてもよい。
 RS3で表される有機基は、アミノ基を含まないことが好ましい。
 その理由は、RS3で表される有機基がアミノ基を含む場合において、4官能のアルコキシシランと3官能以下のアルコキシシランとを混合して加水分解すると、生成するシラノール同士で脱水縮合が促進され、反応液が不安定となる場合があるためである。
 3官能以下のアルコキシシランは、上述のとおり、エポキシ基を含むことが好ましい。
 エポキシ基を含む3官能以下のアルコキシシランの具体例としては、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルメチルジエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、等が挙げられる。
 エポキシ基を含む3官能以下のアルコキシシランの市販品としては、KBE-403(信越化学工業(株)製)等が挙げられる。
 エポキシ基を含まない3官能以下のアルコキシシランの具体例としては、ビニルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-クロロプロピルトリメトキシシラン、3-ウレイドプロピルトリメトキシシラン、プロピルトリメトキシシラン、フェニルトリメトキシシラン、ビニルトリエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリエトキシシラン、3-クロロプロピルトリエトキシシラン、3-ウレイドプロピルトリエトキシシラン、メチルトリエトキシシラン、メチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリメトキシシラン、プロピルトリエトキシシラン、プロピルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリメトキシシラン、等が挙げられる。
 エポキシ基を含まない3官能以下のアルコキシシランの市販品としては、KBE-13(信越化学工業(株)製)等が挙げられる。
 第2層に含有されるシロキサン樹脂の含有量は、第2層の固形分量に対し、20質量%~80質量%が好ましく、20質量%~70質量%がより好ましく、20質量%~60質量%が特に好ましい。
〔無機粒子〕
 第2層は、第2層の硬度をより向上させる観点から、無機粒子を少なくとも1種含有することが好ましい。
 無機粒子としては、第2層の硬度をより向上させる観点から、金属酸化物粒子及び無機窒化物粒子よりなる群から選択される少なくとも1種の無機粒子が好ましい。
 金属酸化物粒子としては、シリカ粒子、アルミナ粒子、ジルコニア粒子、チタニア粒子等が挙げられる。
 無機窒化物粒子としては、窒化ホウ素粒子等が挙げられる。
 無機粒子は、第2層中のシロキサン樹脂との架橋の観点から、シリカ粒子を含むことが好ましく、シリカ粒子からなることが特に好ましい。
 シリカ粒子としては、四塩化ケイ素の燃焼によって製造される乾燥粉末状のシリカ;二酸化ケイ素又はその水和物が水に分散したコロイダルシリカ;等が挙げられる。
 乾燥粉末状のシリカを用いる場合は、超音波分散機等を用いて水に分散させることで用いることができる。
 シリカ粒子は特に限定されないが、具体的には、シーホスターKE-P10などのシーホスターシリーズ((株)日本触媒製)、スノーテックス(登録商標)OZL-35などのスノーテックス(登録商標)シリーズ(日産化学工業(株)製)、等が挙げられる。
 無機粒子の数平均粒径は、300nm以下であることが好ましく、200nm以下であることがより好ましく、100nm以下が特に好ましい。
 無機粒子の数平均粒径が300nm以下であると、表面が平滑な第2層が得られる。
 一方、無機粒子の数平均粒径は、5nm以上であることが好ましく、10nm以上であることがより好ましい。
 無機粒子の数平均粒径が5nm以上であると、第2層の硬度をより向上させることができる。
〔紫外線吸収性化合物〕
 第2層は紫外線吸収性化合物を含有してもよい。有機、無機いずれの紫外線吸収性化合物も好適に使用できる。ただし、発電効率の低下を抑制する観点から、1次粒子径が100nm未満である微粒子無機化合物が好ましく、微粒子酸化チタンが特に好ましい。
 本開示において、紫外線吸収性化合物とは、上述の紫外線吸収構造を有するポリマーと、上述の紫外線吸収性化合物との両方を含む概念である。
〔金属錯体〕
 第2層は、硬化剤として金属錯体を含むことが好ましい。
 金属錯体としては、アルミニウム、マグネシウム、マンガン、チタン、銅、コバルト、亜鉛、ハフニウム及びジルコニウムよりなる群から選択される少なくとも1種の金属元素を含む金属錯体が好ましい。
 金属錯体は、金属アルコキシドにキレート化剤を反応させることにより容易に得ることができる。
 キレート化剤の例としては、アセチルアセトン、ベンゾイルアセトン、ジベンゾイルメタンなどのβ-ジケトン;アセト酢酸エチル、ベンゾイル酢酸エチルなどのβ-ケト酸エステル;などを用いることができる。
 金属錯体としては、アルミニウムキレート錯体が好ましい。
 金属錯体の例としては、エチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)、アルキルアセトアセテートアルミニウムジイソプロピレート、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)、アルミニウムトリス(アセチルアセトネート)等のアルミニウムキレート錯体;
エチルアセトアセテートマグネシウムモノイソプロピレート、マグネシウムビス(エチルアセトアセテート)、アルキルアセトアセテートマグネシウムモノイソプロピレート、マグネシウムビス(アセチルアセトネート)等のマグネシウムキレート錯体;
ジルコニウムテトラアセチルアセトナート、ジルコニウムトリブトキシアセチルアセトナート、ジルコニウムアセチルアセトナートビス(エチルアセトアセテート)等のジルコニウムキレート錯体;
マンガンアセチルアセトナート等のマンガンキレート錯体;
コバルトアセチルアセトナート等のコバルトキレート錯体;
銅アセチルアセトナート等の銅キレート錯体;
チタンアセチルアセトナート、チタンオキシアセチルアセトナート等のチタンキレート錯体;
等が挙げられる。
 これらのうち、好ましくは、アルミニウムトリス(アセチルアセトネート)、アルミニウムトリス(エチルアセトアセテート)、マグネシウムビス(アセチルアセトネート)、マグネシウムビス(エチルアセトアセテート)、又はジルコニウムテトラアセチルアセトナートである。保存安定性、入手容易さを考慮すると、アルミニウムトリス(アセチルアセトネート)、アルミニウムトリス(エチルアセトアセテート)、又はアルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)が特に好ましい。
 金属錯体の溶液の市販品としては、アルミキレートA(W)、アルミキレートD、アルミキレートM(川研ファインケミカル(株)製)などが挙げられる。
 第2層中における金属錯体の含有量は、シロキサン樹脂の全量に対して5質量%~50質量%が好ましく、5質量%~40質量%がより好ましく、10質量%~30質量%がさらに好ましい。
 金属錯体を上記下限値以上用いることにより、シラノールの脱水縮合の反応速度を適切な速度とすることができ、厚さの均一性に優れ、アルカリ耐性の高い第2層とすることができる。
〔その他の成分〕
 第2層は、上述した成分以外のその他の成分を含有してもよい。
 例えば、第2層は、界面活性剤を少なくとも1種含有していてもよい。
 これにより、第2層の表面の滑り性が向上し、第2層表面の摩擦が軽減される。
 界面活性剤としては、フッ素系界面活性剤、ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、シリコーン系界面活性剤などの各種界面活性剤を使用できる。
 界面活性剤は、1種のみを用いてもよいし、2種類以上を組み合わせてもよい。
 界面活性剤の含有量は、第2層の固形分量に対して、好ましくは0.001質量%~10質量%であり、より好ましくは0.01質量%~5質量%であり、さらに好ましくは0.1質量%~1質量%である。
 第2層(又は第2層形成用塗布液)は、pH調整剤を含有していてもよい。
 pH調整剤としては、硝酸、シュウ酸、酢酸、蟻酸、塩酸などの酸、及び、アンモニア、トリエチルアミン、エチレンジアミン、水酸化ナトリウム、水酸化カリウムなどのアルカリが挙げられる。
 第2層の厚さは、0.15μm~3μmが好ましく、0.2μm~2.5μmがより好ましく、0.3μm~2μmがさらに好ましい。
 第2層の厚さが0.15μm以上であると、ポリマー層中の紫外線吸収性化合物のブリードアウト抑制の効果がより効果的に得られ、太陽電池用フロントシートの長期間の耐候性がより向上する。また、第2層表面の硬度の面でも有利である。
 第2層の厚さが3μm以下であると、太陽電池用フロントシートの透明性及び取り扱い性がより向上する。
〔第2層の形成方法〕
 第2層の形成方法は、特に制限されない。
 第2層の形成方法としては、例えば、溶媒及びアルコキシシランの加水分解物を含有する第2層形成用塗布液を、ポリマー層上に塗布し、乾燥させることにより、アルコキシシランの加水分解縮合物であるシロキサン樹脂を含有する第2層を形成する方法が挙げられる。
 第2層形成用塗布液における溶媒、並びに、第2層形成用塗布液の塗布方法及び乾燥方法については、上述したポリマー層形成用塗布液における溶媒、並びに、ポリマー層形成用塗布液の塗布方法及び塗布方法と同様である。
 第2層形成用塗布液の調製方法としては、アルコキシシラン(例えば、4官能のアルコキシシラン及び3官能以下のアルコキシシラン)を加水分解させ、得られたアルコキシシランの加水分解物を含有する第2層形成用塗布液を得る方法が好ましい。
 アルコキシシランの加水分解物以外の成分(例えば、無機粒子、金属錯体、界面活性剤、シリコーン粒子(例えば信越化学工業(株)製のシリコーンパウダー)等)を含む第2層形成用塗布液を調製する場合には、上記の調製方法において、アルコキシシランの加水分解前、アルコキシシランの加水分解中、及びアルコキシシランの加水分解後の少なくとも1つの段階(好ましくはアルコキシシランの加水分解後の段階)で、上記アルコキシシランの加水分解物以外の成分を添加する。
 この第2層の形成方法の例では、得られた第2層形成用塗布液を塗布し、乾燥させることにより、アルコキシシランの加水分解縮合物であるシロキサン樹脂(及び、必要に応じその他の成分)を含有する第2層を形成する。
 第2層形成用塗布液の調製時における、アルコキシシランの使用量(例えば、4官能のアルコキシシラン及び3官能以下のアルコキシシランの総使用量)は、第2層形成用塗布液の固形分量に対し、20質量%~80質量%が好ましく、20質量%~70質量%がより好ましく、30質量%~70質量%が特に好ましい。
 第2層形成用塗布液の調製時における、4官能のアルコキシシラン及び3官能以下のアルコキシシランの使用量比(質量比)の好ましい範囲は、上述のシロキサン樹脂(即ち、アルコキシシランの加水分解縮合物)の質量比〔3官能以下/4官能〕の好ましい範囲と同様である。
 上述の無機粒子を含有する第2層を形成する場合、第2層形成用塗布液における無機粒子の含有量は、第2層形成用塗布液の固形分量に対し、5質量%~60質量%であることが好ましく、10質量%~50質量%であることがより好ましく、20質量%~50質量%であることが特に好ましい。
 上述の金属錯体を含有する第2層を形成する場合、第2層形成用塗布液における金属錯体の含有量は、第2層形成用塗布液におけるアルコキシシランの総量に対し、5質量%~50質量%が好ましく、5質量%~40質量%がより好ましく、10質量%~30質量%がさらに好ましい。金属錯体を上記下限値以上用いることにより、シラノールの脱水縮合の反応速度を適切な速度とすることができ、厚さが均一でアルカリ耐性の高い第2層を形成することができる。
 上述の界面活性剤を含有する第2層を形成する場合、第2層形成用塗布液における界面活性剤の含有量は、第2層の固形分量に対して、好ましくは0.001質量%~10質量%であり、より好ましくは0.01質量%~5質量%であり、さらに好ましくは0.1質量%~1質量%である。
<裏面層>
 本開示に係る太陽電池用フロントシートは、基材のポリマー層側(即ち、基材のオモテ面側)とは反対側(即ち、基材のウラ面側)に、裏面層を備えていてもよい。
 裏面層は、例えば、太陽電池モジュールにおける封止材(例えば、エチレン-酢酸ビニル共重合体(EVA)を含む封止材)との密着用の層として機能する。
 裏面層は、バインダーポリマーを含有することが好ましい。
 裏面層は、1層のみであっても2層以上であってもよい。
 例えば、太陽電池用フロントシートは、基材のウラ面側に、裏面層として、第3層(例えば、上述の第3層13)及び第4層(例えば、上述の第4層14)をこの順に備えることができる。
 以下、太陽電池用フロントシートに、必要に応じて備えられる第3層及び第4層について説明する。
<第3層>
 第3層は、バインダーポリマーを含有することが好ましい。
 第3層に含有され得るバインダーポリマーとしては、ポリマー層におけるバインダーポリマーと同様のものが挙げられる。
 第3層に含有され得るバインダーポリマーとしては、太陽電池モジュールに適用した場合における封止材との密着性の観点から、アクリル樹脂が好ましく、スチレン骨格を含むアクリル樹脂がより好ましい。
 スチレン骨格を含むアクリル樹脂としては、アクリル酸、メタクリル酸、アクリル酸エステル、及びメタクリル酸エステルよりなる群から選択される少なくとも1種の化合物に由来する構造単位と、スチレン骨格を有するモノマー(例えば、スチレン、α-メチルスチレン、ジビニルベンゼン、ビニルトルエンなど)に由来する構造単位と、を含むポリマーが好ましい。
 スチレン骨格を含むアクリル樹脂の分散液の市販品としては、例えば、AS-563A(ダイセルファインケム(株)製)、等が挙げられる。
 第3層は、紫外線吸収性化合物を含有してもよい。
 第3層に含有され得る紫外線吸収性化合物としては、第2層の紫外線吸収性化合物と同様のものが挙げられる。
 第3層は、架橋剤に由来する構造、及び、架橋触媒を含有することができる。
 架橋剤及び架橋触媒についても、ポリマー層における架橋剤及び架橋触媒と同様のものが挙げられる。
 その他、第3層に含有され得る成分としては、ポリマー層の成分と同様の成分が挙げられる。
 第3層の厚さは、後述する易接着層である第4層の厚さよりも厚いことが、封止材との密着性向上の観点から好ましい。即ち、第3層の厚さを(b)、第4層の厚さを(c)とした場合に(b)>(c)の関係であることが好ましく、(b):(c)が、2:1~15:1の範囲がより好ましい。
 また、第3層の厚さは、0.5μm以上が好ましく、0.7μm以上がより好ましい。また、第3層の厚さは、7.0μm以下であることが好ましい。
 第3層の厚さ、及び第3層の厚さと第4層の厚さとの比が、上記範囲において、第3層の膜特性が良好に発現され、太陽電池用フロントシートと封止材との密着性、及び、太陽電池モジュールの耐久性がより優れたものとなる。
 第3層の形成方法は、特に制限されない。
 第3層の形成方法としては、例えば、溶媒及び上述した第3層の成分(固形分)を含有する第3層形成用塗布液を、基材のウラ面上に塗布し、乾燥させる方法が挙げられる。
 第3層形成用塗布液における溶媒及び塗布方法については、上述したポリマー層形成用塗布液における溶媒及び塗布方法と同様である。
<第4層>
 本開示に係る太陽電池用フロントシートは、上記第3層上に、第4層(例えば、上述の第4層14)を備えていてもよい。
 第4層は、太陽電池モジュールの封止材と直接接する層、即ち、太陽電池モジュールの封止材に対する易接着層として機能する層である。
 第4層は、バインダーポリマーを含有することが好ましい。
 第4層に含有され得るバインダーポリマーとしては、ポリマー層におけるバインダーポリマーと同様のものが挙げられる。
 第4層におけるバインダーポリマーとしては、封止材との密着力の観点から、ポリオレフィン、アクリル樹脂、ポリエステル、及びポリウレタンよりなる群から選択される少なくとも1種のポリマーが好ましい。
 第4層におけるバインダーポリマーは、封止材との密着力の観点から、少なくともポリオレフィンを含むことが好ましく、ポリオレフィンであることがより好ましい。
 ポリオレフィンとしては、例えば、変性ポリオレフィンが好ましい。
 ポリオレフィンを含有する第4層を形成する場合、ポリオレフィンの分散物の市販品を用いてもよい。
 ポリオレフィンの分散物の市販品としては、例えば、アローベース(登録商標)SE-1013N、SD-1010、TC-4010、TD-4010(ともにユニチカ(株)製)、ハイテックS3148、S3121、S8512(ともに東邦化学(株)製)、ケミパール(登録商標)S-120、S-75N、V100、EV210H(ともに三井化学(株)製)、ユーメックス1001(三洋化成工業(株)製)等が挙げられる。
 その中でも、低密度ポリエチレン、アクリル酸エステル、無水マレイン酸の三元共重合体である、アローベース(登録商標)SE-1013N、ユニチカ(株)製を用いることが、密着性を向上させる上で好ましい。
 第4層は、架橋剤に由来する構造、及び、架橋触媒を含有することができる。
 架橋剤及び架橋触媒については、ポリマー層における架橋剤及び架橋触媒と同様のものが挙げられる。
 その他、第4層に含有され得る成分としては、ポリマー層の成分と同様の成分が挙げられる。
 第4層は、帯電防止剤、防腐剤等を含有してもよい。
 帯電防止剤としては、ノニオン系界面活性剤等の界面活性剤、有機系導電性材料などが挙げられる。
 第4層が含み得る帯電防止剤に用いられる界面活性剤としては、ノニオン系界面活性剤、アニオン系界面活性剤などが好ましく、中でもノニオン系界面活性剤が好ましく、エチレングリコール鎖(ポリオキシエチレン鎖;-(CH-CH-O)-)を有し且つ炭素-炭素三重結合(アルキン結合)を有さないノニオン系界面活性剤が好ましく挙げられる。さらに、エチレングリコール鎖が7~30であるものが特に好ましい。
 より具体的には、ヘキサエチレングリコールモノドデシルエーテル、3,6,9,12,15-ペンタオキサヘキサデカン-1-オール、ポリオキシエチレンフェニルエーテル、ポリオキシエチレンメチルフェニルエーテル、ポリオキシエチレンナフチルエーテル、ポリオキシエチレンメチルナフチルエーテル等が挙げられるが、これらに限定されない。
 帯電防止剤としての界面活性剤の含有量は、第4層の固形分量に対し、2.5質量%~40質量%であることが好ましく、より好ましくは5.0質量%~35質量%であり、さらに好ましくは10質量%~30質量%である。
 この含有量の範囲であると、部分放電電圧の低下が抑制され、且つ、封止材との密着性が良好に維持される。
 有機系導電性材料としては、例えば、分子中にアンモニウム基、アミン塩基、四級アンモニウム基などのカチオン性の置換基を有するカチオン系導電性化合物;スルホン酸塩基、リン酸塩基、カルボン酸塩基などのアニオン性を有するアニオン系導電性化合物;アニオン性の置換基、カチオン系置換基の両方を有する両性系導電性化合物等のイオン性の導電性材料;共役したポリエン系骨格に由来するポリアセチレン、ポリパラフェニレン、ポリアニリン、ポリチオフェン、ポリパラフェニレンビニレン、ポリピロールなどの導電性高分子化合物等が挙げられる。
 第4層の形成方法は、特に制限されない。
 第4層の形成方法としては、例えば、溶媒及び上述した第4層の成分(固形分)を含有する第4層形成用塗布液を、第3層上に塗布し、乾燥させる方法が挙げられる。
 第4層形成用塗布液における溶媒及び塗布方法については、上述したポリマー層形成用塗布液における溶媒及び塗布方法と同様である。
<下塗り層>
 上述のとおり、基材のオモテ面(ポリマー層が形成される面)及びウラ面(任意の裏面層が形成される面)の少なくとも一方には、下塗り層が設けられていてもよい。
 下塗り層は、バインダーポリマーを含むことが好ましい。
 下塗り層に含有され得るバインダーポリマーは、特に限定されない。
 下塗り層に含有され得るバインダーポリマーとして、例えば、アクリル樹脂、ポリエステル、ポリオレフィン、シロキサン樹脂などが挙げられる。
 下塗り層は、アクリル樹脂を含むことが好ましい。
 アクリル樹脂としては、上述した第3層に含有され得るアクリル樹脂と同様のものが挙げられる。
 下塗り層に含まれるバインダーポリマー中に占めるアクリル樹脂含有比率が50質量%以上であることがより好ましい。
 バインダーポリマーの50質量%以上がアクリル樹脂であると、下塗り層の弾性率を0.7GPa以上に調整しやすく、太陽電池用フロントシートとした場合の凝集破壊耐性がより向上する。
 下塗り層は、架橋剤に由来する構造、架橋触媒、界面活性剤、酸化防止剤、防腐剤など含んでいてもよい。
 架橋剤に由来する構造及び架橋触媒については、ポリマー層の記載を適宜参照できる。
 下塗り層の厚さは、0.01μm以上であることが好ましく、0.03μm以上であることがより好ましく、0.05μm以上であることがさらに好ましい。
 また、下塗り層の厚さは、1μm以下であることが好ましく、0.8μm以下であることがより好ましく、0.7μm以下であることがさらに好ましい。
 下塗り層は、基材上に、溶媒及び下塗り層の固形分を含む下塗り層形成用塗布液を塗布し、乾燥させることにより形成できる。
 下塗り層形成用塗布液における溶媒及び塗布方法については、上述したポリマー層形成用塗布液における溶媒及び塗布方法と同様である。
 また、下塗り層は、上記下塗り層形成用塗布液を用い、インラインコート法により形成されてもよい。
 インラインコート法は、製造された基材を巻き取る前の段階で下塗り層形成用塗布液を塗布する方法である点で、製造された基材を巻き取ってから別途塗布を行うオフラインコート法と区別される。
 インラインコート法により下塗り層を形成する態様として、第1方向に延伸されたフィルムの一方の面に、下塗り層形成用塗布液を塗布し、下塗り層形成用塗布液が塗布されたフィルムを、フィルム表面に沿って第1方向と直交する第2方向に延伸することにより、下塗り層付き基材を製造する態様が好適である(後述の実施例参照)。
 本開示に係る太陽電池用フロントシートは、上述した層以外のその他の層を備えていてもよい。
 また、本開示に係る太陽電池用フロントシートは、全光線透過率が、70%以上であることが好ましく、75%以上であることがより好ましく、80%以上であることが更に好ましい。上記全光線透過率は、ヘイズメーター(スガ試験機株式会社製のHZ-1)を用いて測定される。
(太陽電池用フロントシートの製造方法)
 本開示に係る太陽電池用フロントシートの好ましい製造方法は、
 基材を準備する工程と、
 バインダーポリマーと、紫外線吸収構造を有するポリマーとして、紫外線吸収構造を有するポリマーとして、分子量が5,000未満である紫外線吸収性化合物を含むポリマー及び紫外線吸収構造を有する単量体単位を含むポリマーの少なくとも一方と、を含む塗布組成物を準備する工程と、
 上記基材の片方の面上に上記塗布組成物を塗布して、乾燥後の厚さが2.0μm~50μmであり、上記紫外線吸収性化合物及び上記紫外線吸収構造を含む単量体単位の合計含有量が0.5g/m~25g/mであり、ポリマー層中のポリマー成分の全質量に対するオレフィン化合物に由来する単量体単位と、ポリマー層中のポリマー成分の全質量に対するウレタン結合を含む構成単位と、の合計含有量が50質量%以上であるポリマー層を形成する工程と、を含み、
 上記ポリマー層中のポリマー成分の全質量に対する(メタ)アクリル化合物に由来する単量体単位の含有量が1質量%以上50質量%未満である。
 かかる好ましい製造方法によれば、上述した本開示に係る太陽電池用フロントシートを製造しやすい。
 上記好ましい製造方法において、「準備する」の概念には、予め製造され保管されていた基材及び各塗布液を単に準備すること、及び、基材及び各塗布液を製造することの両方が包含される。
 基材を準備する工程は、基材を製造する工程であってもよい。
 基材を製造する方法の好ましい態様は上述のとおりである。
 基材を製造する工程は、下塗り層を形成するための下塗り層形成用組成物を製造する段階、及び、下塗り層付き基材フィルムを製造する段階を含んでいてもよい。
 ポリマー層形成用塗布液を準備する工程は、ポリマー層形成用塗布液を調製する工程であってもよい。ポリマー層形成用塗布液を調製する方法の好ましい態様は上述のとおりである。
 また、ポリマー層形成用塗布液を塗布し、乾燥させてポリマー層を形成する工程の好ましい態様も上述のとおりである。
 上記好ましい製造方法は、ポリマー層上に、第2層を形成するための第2層形成用塗布液を準備する工程と、ポリマー層の面上に、上記第2層形成用塗布液を塗布し、乾燥させることにより第2層を形成する工程と、を含んでいてもよい。
 第2層形成用塗布液を準備する工程は、第2層形成用塗布液を製造する工程であってもよい。第2層形成用塗布液を製造する方法の好ましい態様は上述のとおりである。
 また、第2層形成用塗布液を塗布し、乾燥させて第2層を形成する工程の好ましい態様も上述のとおりである。
 上記好ましい製造方法は、上述の裏面層(例えば第3層及び第4層の少なくとも一方)を形成するための裏面層形成用塗布液を準備する工程、及び、基材のウラ面に、裏面層形成用塗布液を塗布し、乾燥させて裏面層を形成する工程を含んでいてもよい。
(太陽電池モジュール)
 本開示に係る太陽電池モジュール(例えば、上述の太陽電池モジュール100)は、
 太陽電池素子(例えば、上述の太陽電池素子32)及び太陽電池素子を封止する封止材(例えば、上述の封止材34)を含む素子構造部(例えば、上述の素子構造部36)と、
 素子構造部に対して太陽光(例えば、上述の太陽光50)が入射される側に配置された、上述の本開示に係る太陽電池用フロントシート(例えば、上述の太陽電池用フロントシート20)と、
 素子構造部に対して太陽光が入射される側とは反対側に配置された太陽電池用バックシート(例えば、上述の太陽電池用バックシート40)と、
を備える。
 本開示に係る太陽電池モジュールの一例(太陽電池モジュール100)については、既に、図1を参照して説明したとおりである。
 太陽電池用バックシートについては、例えば、特開2012-195583号公報、特開2015-186861号公報、特開2015-185687号公報、特開2015-146360号公報などの公知文献を適宜参照できる。
 太陽電池モジュールの各部材については、例えば、「太陽光発電システム構成材料」(杉本栄一監修、(株)工業調査会、2008年発行)も参照できる。
 太陽電池素子としては、単結晶シリコン、多結晶シリコン、アモルファスシリコンなどを含むシリコン太陽電池素子;銅-インジウム-ガリウム-セレン、銅-インジウム-セレン、カドミウム-テルル、ガリウム-砒素などの化合物半導体を含む化合物半導体太陽電池素子;など、各種公知の太陽電池素子を適用することができる。
 以下、本発明を実施例により更に具体的に説明するが、本発明はその主旨を越えない限り、以下の実施例に限定されるものではない。
 以下、特に断りのない限り、「部」は質量基準である。
(実施例1)
<太陽電池用フロントシートの作製>
 本実施例では、第2層/ポリマー層(第1層)/基材/下塗り層/第3層/第4層で表される積層構造を有する太陽電池用フロントシートを作製した。
〔下塗り層付き基材フィルムの作製〕
 以下のようにして、基材フィルムのウラ面に下塗り層が設けられた構造の下塗り層付き基材フィルムを作製した。
-ポリエステルの合成-
 高純度テレフタル酸(三井化学(株)製)100kgとエチレングリコール(日本触媒(株)製)45kgのスラリーとを、予めビス(ヒドロキシエチル)テレフタレート約123kgが仕込まれ、温度250℃、圧力1.2×10Paに保持されたエステル化反応槽に、4時間かけて順次供給し、供給終了後もさらに1時間かけてエステル化反応を行った。その後、得られたエステル化反応生成物123kgを重縮合反応槽に移送した。
 引き続いて、エステル化反応生成物が移送された重縮合反応槽に、エチレングリコールを、得られるポリマーに対して0.3質量%添加した。5分間撹拌した後、酢酸コバルト及び酢酸マンガンのエチレングリコール溶液を、得られるポリマーに対してそれぞれ30ppm、15ppmとなるように加えた。更に5分間撹拌した後、チタンアルコキシド化合物の2質量%エチレングリコール溶液を、得られるポリマーに対して5ppmとなるように添加した。その5分後、ジエチルホスホノ酢酸エチルの10質量%エチレングリコール溶液を、得られるポリマーに対して5ppmとなるように添加した。その後、低重合体を30rpmで撹拌しながら、反応系を250℃から285℃まで徐々に昇温するとともに、圧力を40Paまで下げた。最終温度、最終圧力到達までの時間はともに60分とした。所定の撹拌トルクとなった時点で反応系を窒素パージし、常圧に戻し、重縮合反応を停止した。そして、上述の重縮合反応により得られたポリマーを冷水にストランド状に吐出し、直ちにカッティングしてポリマーのペレット(直径約3mm、長さ約7mm)を作製した。なお、減圧開始から所定の撹拌トルク到達までの時間は3時間であった。
 ここで、チタンアルコキシド化合物には、特開2005-340616号公報の段落〔0083〕の実施例1で合成しているチタンアルコキシド化合物(Ti含有量=4.44質量%)を用いた。
-固相重合-
 上記で得られたペレットを、40Paに保たれた真空容器中、220℃の温度で30時間保持して、固相重合を行った。
-ポリエステルフィルムの作製-
 以上のように固相重合を経た後のペレットを、280℃で溶融して金属ドラムの上にキャストし、厚さ約3mmの未延伸のポリエチレンテレフタレート(PET)フィルムを作製した。
 その後、未延伸のPETフィルムを、90℃で縦方向(MD:搬送方向、Machine Direction)に3.4倍に延伸した。次いで、MDに延伸された1軸延伸PETフィルムの一方の面に、下記組成の下塗り層形成用塗布液を塗布量が5.1mL/mとなるように、MD延伸後、横方向(TD:Transverse Direction)延伸前にインラインコート法にて塗布を行った。
 下塗り層形成用塗布液が塗布されたPETフィルムをTD延伸し、厚さが0.1μm、弾性率が1.5GPaの下塗り層を形成した。なお、TD延伸は、温度105℃、延伸倍率4.5倍の条件で行った。
 下塗り層が形成されたPETフィルムに対し、膜面190℃で15秒間の熱固定処理を行い、次いで、190℃で、MD緩和率5%、TD緩和率11%にて、MD方向及びTD方向に熱緩和処理を行うことにより、下塗り層付きの厚さ250μmの2軸延伸PETフィルム(下塗り層付き基材フィルム)を得た。
-下塗り層形組成物の組成-
・アクリル樹脂水分散液   … 21.9部
〔AS-563A、ダイセルファインケム(株)製、固形分:28質量%のスチレン骨格を有するラテックス〕
・オキサゾリン系架橋剤の水希釈液   … 4.9部
〔エポクロス(登録商標)WS-700、日本触媒(株)製、固形分:25質量%〕
・フッ素系界面活性剤の水希釈液    … 0.1部
〔ナトリウム=ビス(3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル)=2-スルホナイトオキシスクシナート、富士フイルムファインケミカル(株)製、固形分:2質量%〕
・蒸留水  … 合計で100部となる残量
〔第3層の形成〕
 上記で得られた下塗り層付き基材フィルムの下塗り層の表面に、下記組成の第3層形成用塗布液を塗布し、次いで170℃で2分間乾燥させることにより、厚さ4.7μmの第3層を形成した。
-第3層形成用塗布液の組成-
・紫外線吸収性化合物(トリアジン化合物)とアクリル樹脂との複合粒子の水分散液(Tinuvin(登録商標)479-DW、BASF社製、固形分40質量%)
… 3.5部
・バインダーポリマーとしてのアクリル樹脂の水分散液(AS-563A、ダイセルファインケム(株)製、固形分28質量%のスチレン骨格を有するラテックス)
… 52.1部
・オレフィンポリマーの水分散液(アローベース(登録商標)SE-1013N、ユニチカ(株)製、固形分20.2質量%)
… 8.0部
・オキサゾリン系架橋剤の水希釈液(エポクロス(登録商標)WS-700、日本触媒(株)製、固形分25質量%)
… 16.2部
・架橋触媒の水希釈液(第二リン酸アンモニウム水溶液、固形分35質量%)
… 1.3部
・フッ素系界面活性剤の水希釈液
〔ナトリウム=ビス(3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル)=2-スルホナイトオキシスクシナート、富士フイルムファインケミカル(株)製、固形分:2質量%〕
… 0.5部
・水
… 合計で100部となる残量
〔第4層の形成〕
 次に、第3層の表面に、下記組成の第4層形成用塗布液を塗布し、乾燥させることにより、厚さ0.5μmの第4層を形成した。
-第4層形成用塗布液-
・ポリオレフィン樹脂水分散液(アローベース(登録商標)SE-1013N、ユニチカ(株)製、固形分20質量%)
… 17.5部
・オキサゾリン系架橋剤の水希釈液(エポクロス(登録商標)WS-700、日本触媒(株)製、固形分25質量%)
… 3.5部
・ノニオン系界面活性剤の水希釈液(EMALEX(登録商標)110、日本エマルジョン(株)製、固形分10質量%)
… 4.3部
・水
… 合計で100部となる残量
 以上により、ウラ面に、下塗り層、第3層、及び第4層がこの順に配置された基材フィルム(即ち、基材フィルム/下塗り層/第3層/第4層の積層構造を有する積層体)の基材フィルムを得た。
〔ポリマー層(第1層)の形成〕
 次に、上記基材フィルムのオモテ面に、下記組成のポリマー層形成用塗布液を、固形分の塗布量が12g/mとなるよう塗布し、170℃で2分間乾燥させることにより、厚さ12μmのポリマー層を形成した。
-ポリマー層形成用塗布液-
・紫外線吸収性化合物(トリアジン化合物)とアクリル樹脂との複合粒子の水分散液〔Tinuvin(登録商標)479-DW、BASF社製、固形分40質量%〕(表1中では、「T479DW」と略称する)
… 12.5部
・オレフィン化合物に由来する単量体単位を含むポリマーの水分散液(アローベースSE1013N、ユニチカ(株)製、固形分20質量%)(表1中では、「SE1013N」と略称する)
… 71.7部
・シロキサン含有アクリル樹脂の水分散液(セラネート(登録商標)WSA1070、DIC(株)製、固形分:38質量%)(表1中では、「WSA1070」と略称する)
… 1.75部
・フッ素系界面活性剤の水希釈液〔ナトリウム=ビス(3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル)=2-スルホナイトオキシスクシナート、富士フイルムファインケミカル(株)製、固形分:2質量%〕
… 1.1部
・水
… 合計で100部となる残量
 Tinuvin(登録商標)479-DWの固形分である、トリアジン化合物とアクリル樹脂との複合粒子において、トリアジン化合物の含有量は、複合粒子全質量に対し、50質量%である。
 Tinuvin(登録商標)479-DWの固形分である、トリアジン化合物とアクリル樹脂との複合粒子のメジアン径(D50)は、150nm未満である。
〔第2層の形成〕
 次に、下記組成の第2層形成用塗布液を調製した。
-第2層形成用塗布液の組成-
・3官能アルコキシシラン(KBE-403(3-グリシドキシプロピルトリエトキシシラン)、信越化学工業(株)製)
… 15.0部
・4官能アルコキシシラン(KBE-04(テトラエトキシシラン)、信越化学工業(株)製)
… 3.0部
・酢酸水溶液((株)ダイセル製、工業用酢酸の1質量%水溶液)
… 28.7部
・金属錯体溶液(アルミキレートD、川研ファインケミカル製、76質量%イソプロピルアルコール(IPA)溶液)
… 4.1部
・無機粒子の水分散液(スノーテックス(登録商標)OZL-35、平均粒子径100nm、日産化学工業(株)製、固形分35.5質量%)
… 39.8部
・界面活性剤の水希釈液(ラピゾール(登録商標)A-90、日油(株)製、固形分1質量%、アニオン系界面活性剤)
… 5.5部
・界面活性剤の水希釈液(ナロアクティー(登録商標)CL-95、三洋化成工業(株)製、固形分1質量%、ノニオン系界面活性剤)
… 3.7部
・水
… 合計で100部となる残量
 第2層形成用塗布液の調製は、詳細には、以下の手順で行った。
 酢酸水溶液にKBE-403を添加して十分に加水分解した後、KBE-04を添加して十分に加水分解させ、これらのアルコキシシラン(KBE-403及びKBE-04)の加水分解物を含む混合液を得た。次いで、この混合液に、アルミキレートD、スノーテックス(登録商標)OZL-35、界面活性剤(ラピゾール(登録商標)A-90)、界面活性剤(ナロアクティー(登録商標)CL-95)、及び水を添加することにより、第2層形成用塗布液を得た。
 第2層形成用塗布液の調製時における、4官能のアルコキシシラン(KBE-04)に対する3官能以下のアルコキシシラン(KBE-403)の使用量の比(質量比〔3官能以下/4官能〕)は5とした。
 次に、上記で調製した第2層形成用塗布液を、上述のポリマー層の表面に塗布し、170℃にて2分間乾燥させることにより、厚さ1μmの第2層を形成した。詳細には、上記乾燥により、アルコキシシラン(KBE-403及びKBE-04)の加水分解物を縮合させ、上記アルコキシシランの加水分解縮合物であるシロキサン樹脂を含有する第2層を形成した。
 以上により、第2層/ポリマー層(第1層)/基材フィルム/下塗り層/第3層/第4層で表される積層構造を有する太陽電池用フロントシートを得た。
<紫外線吸収構造を有するポリマーの濃度の均一性(ポリマー層の厚さ方向の均一性)>
 上記で得られた太陽電池用フロントシートにおける、紫外線性化合物濃度の均一性を確認した。ここでいう、紫外線吸収構造を有するポリマーの濃度の均一性は、ポリマー層の厚さ方向の均一性である。
 詳細な操作を以下に示す。
 ミクロトームを用い、上記太陽電池用フロントシートのポリマー層を厚さ方向に等間隔で5分割した5枚の薄膜切片を作製した。
 次に、上記5枚の薄膜切片について、それぞれ、波長325nmでの透過率を測定した。得られた5つの測定値の中での最大値と最小値との差(絶対値)を求め、下記基準に従って、紫外線性化合物濃度の均一性を確認した。
 上記透過率は日本分光(株)製 紫外可視近赤外分光透過率測定装置V-670を用いて測定した
 結果を表1の「均一性」欄に示す。
〔紫外線性化合物濃度の均一性の基準〕
A: 波長325nmでの透過率の最大値と最小値との差(絶対値)が、最大値の30%以下であり、紫外線性化合物濃度の均一性に優れていた。
B: 最波長325nmでの透過率の大値と最小値との差が、最大値の30%を超えており、紫外線性化合物濃度の均一性に劣っていた。
<評価>
 上記で得られた太陽電池用フロントシートについて、以下の評価を行った。
 結果を表1に示す。
〔太陽電池用フロントシートの耐候性〕
 上記太陽電池用フロントシートについて、
 第2層の側から、25℃50%の環境にて波長280nm~400nmの紫外線(強度1000W/m)を400時間照射した。
 次に、紫外線照射後の太陽電池用フロントシートの色度(L)を測定した。
 上述の紫外線照射前後の太陽電池用フロントシートの色度に基づき、紫外線照射前後での太陽電池用フロントシートのb値差Δbを求めた。
 得られた結果に基づき、下記評価基準に従い、太陽電池用フロントシートの耐候性を評価した。
 下記評価基準において、AA、A、B、C又はDであれば、太陽電池用フロントシートは長期間の使用においても耐候性に優れるといえる。
-耐候性の評価基準-
AA: 紫外線照射前後での太陽電池用フロントシートのb値差Δbが2未満であった。
A:  紫外線照射前後での太陽電池用フロントシートのb値差Δbが2以上3未満であった。
B:  紫外線照射前後での太陽電池用フロントシートのb値差Δbが3以上5未満であった。
C:  紫外線照射前後での太陽電池用フロントシートのb値差Δbが5以上7未満であった。
D:  紫外線照射前後での太陽電池用フロントシートのb値差Δbが7以上10未満であった。
E:  紫外線照射前後での太陽電池用フロントシートのb値差Δbが10以上であった
〔発電効率〕
 太陽電池の発電効率は、作製したヘイズ値をもとに評価した。ヘイズ値はヘイズメーター(スガ試験機株式会社製のHZ-1)を用いて測定した。
-発電効率の評価基準-
 ヘイズ値が低いほど発電効率に優れていると言える。
 評価基準は以下の通り。
 A:ヘイズ値5%未満
 B:ヘイズ値5%以上15%未満
 C:ヘイズ値15%以上
(実施例2~25、比較例1~6)
 ポリマー層形成用塗布液における紫外線吸収構造を有するポリマーの種類及び固形分量、並びに、
 ポリマー層形成用塗布液におけるバインダーポリマーの種類及び固形分量を、表1に示すように変更したこと以外は実施例1と同様の操作を行った。
 表1中、紫外線吸収構造を有するポリマーの、固形分量の欄に記載の数値は、上記紫外線吸収性化合物及び上記紫外線吸収構造を含む単量体単位の合計含有量(g/m)を意味する。
 表1中、バインダーポリマーの欄における、「質量%」の欄の記載は、ポリマー層の全固形分に対する各バインダーポリマーの含有量(質量%)を意味する。
 また、表1中、「UV剤/ポリマー」の欄の記載は、ポリマー層に含まれるポリマー成分の全質量に対する、紫外線吸収性化合物及び紫外線吸収構造を含む単量体単位の合計含有量(%)を示している。
 表1中、ポリマー成分の全質量に対する単量体単位の含有量の欄における「アクリル」の欄の記載は、ポリマー層におけるポリマー成分の全質量に対する、(メタ)アクリル酸又は(メタ)アクリル酸エステル化合物に由来する単量体単位の含有量(質量%)を表し、「オレフィン」の欄の記載は、オレフィン化合物に由来する単量体単位の含有量(質量%)を表し、「ウレタン」の欄の記載は、ウレタン結合を有する構成単位の含有量を表し、「シリコーン」の欄の記載は、シラノール基を有する化合物に由来する単量体単位の含有量(質量%)を表し、「ポリエステル」の欄の記載は、エステル結合を有する構成単位の含有量を表し、「その他」の欄の記載は、その他の単量体単位の含有量を表す。
 上述した以外の表1中の略称の意味は以下のとおりである。
・204W … 紫外線吸収性構造単位(ベンゾトリアゾール)を含むアクリル樹脂の水分散液(ニューコート(登録商標)UVA204W、新中村化学工業(株)製)
 ニューコート(登録商標)UVA204Wの固形分において、紫外線吸収構造であるベンゾトリアゾール構造を含む単量体単位の含有量は、紫外線吸収構造を有するポリマー全質量に対し、20質量%である。
・S-3121 … ポリオレフィン(PO)の分散液(ハイテックS-3121、ユニチカ(株)製、固形分20質量%)
・WS5100 … ポリウレタンの分散液(ポリマー中にポリカーボネートを30質量%含む、タケラックWS5100、三井化学(株)製、固形分30質量%)
・WS4000 … ポリウレタンの分散液(ポリマー中にポリカーボネートを30質量%含む、タケラックWS4000、三井化学(株)製、固形分30質量%)
・AS-563A … アクリル樹脂の分散液(アクアブリッドAS-563A、(株)ダイセル製)
・A645GH … ポリエステルの分散液(ポリマー中にアクリル樹脂を30質量%含む、ペスレジンA-645GH、(株)高松油脂、固形分30質量%)
・PVA117 … ポリビニルアルコール水溶液(クラレポバールPVA117、(株)クラレ製、固形分10質量%の水溶液に調製したもの)
 各実施例及び各比較例の結果を、表1に示す。
Figure JPOXMLDOC01-appb-T000001
 なお、表1中に記載のバインダーポリマーの吸水率は下記の通りである。
 ・SE1013N:0.1%未満
 ・S3121:0.1%未満
 ・WS5100:1.0%
 ・WS4000:1.0%
 ・WSA1070:0.1%未満
 ・AS-563A:1.6%
 ・A645GH:0.7%
 ・エポクロスWS700:1.6%
 ・PVA117:3.1%
 表1に示すように、基材上に、バインダーポリマーと、紫外線吸収構造を有するポリマーとして、分子量が5,000未満である紫外線吸収性化合物を含むポリマー及び紫外線吸収構造を有する単量体単位を含むポリマーの少なくとも一方と、を含み、ポリマー層中のポリマー成分の全質量に対するオレフィン化合物に由来する単量体単位と、ポリマー層中のポリマー成分の全質量に対するウレタン結合を含む構成単位と、の合計含有量が50質量%以上であり、上記紫外線吸収性化合物及び上記紫外線吸収構造を含む単量体単位の合計含有量が0.5g/m~25g/mであり、厚さが2.0μm~50μmであるポリマー層を有し、上記ポリマー層中のポリマー成分の全質量に対する(メタ)アクリル化合物に由来する単量体単位の含有量が1質量%以上50質量%未満である実施例1~24の太陽電池用フロントシートは、長期間の使用においても優れた耐候性を有し、かつ、太陽電池の発電効率に優れていた。
 これに対し、ポリマー層の厚さ(膜厚)が2.0μm未満である比較例1においては、発電効率が劣っていた。これは、膜厚が薄い状態で、単位面積あたりに含まれる紫外線吸収構造を有するポリマーの量を増やすことにより長期間の使用における耐候性の低下を抑制しようとした場合、紫外線吸収構造を有するポリマーの体積当たりの量が多くなるため、ポリマー層のヘイズが低下し、発電効率が低下したものと考えられる。
 また、(メタ)アクリル化合物に由来する単量体単位の含有量が、1質量%未満である比較例2においては、発電効率が劣っていた。これは、紫外線吸収性化合物の分散性が低下し、ポリマー層のヘイズが上昇したと考えられる。
 また、ポリマー層の厚さが50μmを超える比較例3及び比較例4においては、長期間の耐候性が劣っていた。これは、ポリマー層が厚くなった場合、紫外線吸収構造を有するポリマーの周囲に存在するバインダーポリマー量が多くなるため、紫外線吸収構造を有するポリマーの分解が起きやすくなり、長期間の使用における耐候性が低下したものと考えられる。
 ポリマー層に含まれる紫外線吸収性化合物及び上記紫外線吸収構造を含む単量体単位の合計含有量が0.5g/m未満である比較例5においては、耐候性が劣っていた。これは、紫外線吸収性化合物又は上記紫外線吸収構造を含む単量体単位の量が少ないため、紫外線吸収による耐候性が低いためであると考えられる。
 ポリマー層中のポリマー成分の全質量に対するオレフィン化合物に由来する単量体単位と、ポリマー層中のポリマー成分の全質量に対するウレタン結合を含む構成単位と、の合計含有量が50質量%未満である比較例6及び比較例7においては、耐刷性が低下していた。これは、バインダーポリマーの親水性が高くなり、ポリマー層中に水分が吸収されやすくなったため、上記紫外線吸収性化合物及び上記紫外線吸収構造を含む単量体単位が分解されやすくなり、長期間の使用における耐刷性が低下したためであると考えられる。
 2017年3月31日に出願された日本国特許出願第2017-072728号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び、技術規格は、個々の文献、特許出願、及び、技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
10 基材フィルム
11 ポリマー層(第1層)
12 第2層
13 第3層
14 第4層
20 太陽電池用フロントシート
32 太陽電池素子
34 封止材
36 素子構造部
40 太陽電池用バックシート
50 太陽光

Claims (12)

  1.  基材上に、
     バインダーポリマーと、紫外線吸収構造を有するポリマーとして、分子量が5,000未満である紫外線吸収性化合物を含むポリマー及び紫外線吸収構造を有する単量体単位を含むポリマーの少なくとも一方と、を含み、ポリマー層中のポリマー成分の全質量に対するオレフィン化合物に由来する単量体単位と、ポリマー層中のポリマー成分の全質量に対するウレタン結合を含む構成単位と、の合計含有量が50質量%以上であり、前記紫外線吸収性化合物及び前記紫外線吸収構造を含む単量体単位の合計含有量が0.5g/m~25g/mであり、厚さが2.0μm~50μmであるポリマー層を有し、
     前記ポリマー層中のポリマー成分の全質量に対する(メタ)アクリル化合物に由来する単量体単位の含有量が1質量%以上50質量%未満である
     太陽電池用フロントシート。
  2.  前記ポリマー層が、下記A1又はB1を満たす、請求項1に記載の太陽電池用フロントシート。
     A1:前記ポリマー層中のポリマー成分の全質量に対するオレフィン化合物に由来する単量体単位の含有量が50質量%以上である。
     B1:前記ポリマー層中のポリマー成分の全質量に対するウレタン結合を含む構成単位の含有量が50質量%以上である。
  3.  前記A1を満たす、請求項2に記載の太陽電池用フロントシート。
  4.  前記ポリマー層に含まれる前記紫外線吸収性化合物及び前記紫外線吸収構造を含む単量体単位の合計含有量が、前記ポリマー層に含まれるポリマー成分の全質量に対し、1質量%以上50質量%以下である、請求項1~請求項3のいずれか1項に記載の太陽電池用フロントシート。
  5.  前記ポリマー層に含まれる前記紫外線吸収性化合物及び前記紫外線吸収構造を含む単量体単位の合計含有量が、前記ポリマー層に含まれるポリマー成分の全質量に対し、3質量%以上19質量%以下である、請求項1~請求項4のいずれか1項に記載の太陽電池用フロントシート。
  6.  下記A2又はB2を満たす、請求項1~請求項5のいずれか1項に記載の太陽電池用フロントシート。
     A2:前記ポリマー層中のポリマー成分の全質量に対するオレフィン化合物に由来する単量体単位の含有量が60質量%以上である。
     B2:前記ポリマー層中のポリマー成分の全質量に対するウレタン結合を含む構成単位の含有量が60質量%以上である。
  7.  前記ポリマー層における(メタ)アクリル化合物に由来する単量体単位の含有量が、前記ポリマー層に含まれるポリマー成分の全質量に対し、20質量%以下である、請求項1~請求項6のいずれか1項に記載の太陽電池用フロントシート。
  8.  前記紫外線吸収性化合物がトリアジン化合物を含むか、又は、前記紫外線吸収構造がトリアジン構造を含む、請求項1~請求項7のいずれか1項に記載の太陽電池用フロントシート。
  9.  前記紫外線吸収構造を有するポリマーが、紫外線吸収性化合物とアクリル樹脂との複合粒子である、請求項1~請求項8のいずれか1項に記載の太陽電池用フロントシート。
  10.  前記ポリマー層を厚さ方向に等間隔で5分割した5枚の薄膜切片を作製し、5枚の薄膜切片の各々について波長325nmでの透過率を測定した場合の5つの測定値において、最大値と最小値との差が、最大値の30%以下である
    請求項1~請求項9のいずれか1項に記載の太陽電池用フロントシート。
  11.  太陽電池素子及び前記太陽電池素子を封止する封止材を含む素子構造部と、
     前記素子構造部に対して太陽光が入射される側に配置された請求項1~請求項10のいずれか1項に記載の太陽電池用フロントシートと、
     前記素子構造部に対して太陽光が入射される側とは反対側に配置された太陽電池用バックシートと、
     を備える
     太陽電池モジュール。
  12.  基材を準備する工程と、
     バインダーポリマーと、紫外線吸収構造を有するポリマーとして、紫外線吸収構造を有するポリマーとして、分子量が5,000未満である紫外線吸収性化合物を含むポリマー及び紫外線吸収構造を有する単量体単位を含むポリマーの少なくとも一方と、を含む塗布組成物を準備する工程と、
     前記基材の片方の面上に前記塗布組成物を塗布して、乾燥後の厚さが2.0μm~50μmであり、前記紫外線吸収性化合物及び前記紫外線吸収構造を含む単量体単位の合計含有量が0.5g/m~25g/mであり、ポリマー層中のポリマー成分の全質量に対するオレフィン化合物に由来する単量体単位と、ポリマー層中のポリマー成分の全質量に対するウレタン結合を含む構成単位と、の合計含有量が50質量%以上であるポリマー層を形成する工程と、を含み、
     前記ポリマー層中のポリマー成分の全質量に対する(メタ)アクリル化合物に由来する単量体単位の含有量が1質量%以上50質量%未満である
     太陽電池用フロントシートの製造方法。
PCT/JP2018/008427 2017-03-31 2018-03-05 太陽電池用フロントシート及びその製造方法並びに太陽電池モジュール WO2018180260A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017072728A JP2020095994A (ja) 2017-03-31 2017-03-31 太陽電池用フロントシート及びその製造方法並びに太陽電池モジュール
JP2017-072728 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018180260A1 true WO2018180260A1 (ja) 2018-10-04

Family

ID=63675661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008427 WO2018180260A1 (ja) 2017-03-31 2018-03-05 太陽電池用フロントシート及びその製造方法並びに太陽電池モジュール

Country Status (2)

Country Link
JP (1) JP2020095994A (ja)
WO (1) WO2018180260A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011138874A (ja) * 2009-12-28 2011-07-14 Mitsubishi Rayon Co Ltd 太陽電池モジュール用積層体および太陽電池モジュール
JP2015196761A (ja) * 2014-03-31 2015-11-09 大日本印刷株式会社 太陽電池モジュール用透明保護シート
US20150340516A1 (en) * 2011-02-10 2015-11-26 Lg Chem Ltd. Front sheet of solar cell, method of manufacturing the same and photovoltaic module comprising the same
JP2016195165A (ja) * 2015-03-31 2016-11-17 富士フイルム株式会社 太陽電池用透明シート、太陽電池用透明バックシート、及び太陽電池モジュール

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011138874A (ja) * 2009-12-28 2011-07-14 Mitsubishi Rayon Co Ltd 太陽電池モジュール用積層体および太陽電池モジュール
US20150340516A1 (en) * 2011-02-10 2015-11-26 Lg Chem Ltd. Front sheet of solar cell, method of manufacturing the same and photovoltaic module comprising the same
JP2015196761A (ja) * 2014-03-31 2015-11-09 大日本印刷株式会社 太陽電池モジュール用透明保護シート
JP2016195165A (ja) * 2015-03-31 2016-11-17 富士フイルム株式会社 太陽電池用透明シート、太陽電池用透明バックシート、及び太陽電池モジュール

Also Published As

Publication number Publication date
JP2020095994A (ja) 2020-06-18

Similar Documents

Publication Publication Date Title
JP5705643B2 (ja) 太陽電池用バックシート用ポリマーシート、及び太陽電池モジュール
JP6090157B2 (ja) 易接着性裏面保護シート及びそれを用いた太陽電池モジュール
JP5914224B2 (ja) 太陽電池用保護シートとその製造方法、太陽電池用バックシート、太陽電池モジュール
JP6235520B2 (ja) 太陽電池用透明シート、太陽電池用透明バックシート、及び太陽電池モジュール
JP5763021B2 (ja) 太陽電池用ポリマーシート及びその製造方法、並びに太陽電池モジュール
JP6790236B2 (ja) 積層体及びその製造方法、並びに、太陽電池モジュール
WO2017033872A1 (ja) 熱線反射材料、窓、及び窓の断熱方法
WO2018180260A1 (ja) 太陽電池用フロントシート及びその製造方法並びに太陽電池モジュール
WO2018061849A1 (ja) 太陽電池用フロントシート及びその製造方法並びに太陽電池モジュール
JP5833981B2 (ja) ポリマーシートとその製造方法、太陽電池用バックシートおよび太陽電池モジュール
WO2015129616A1 (ja) 水性組成物、その製造方法、ハードコートフィルム、積層フィルム、透明導電性フィルム、およびタッチパネル
JP2019067924A (ja) 太陽電池用フロントシート及び太陽電池モジュール
JP2019064110A (ja) 太陽電池用フロントシート及び太陽電池モジュール
JP2013042016A (ja) 太陽電池用ポリマーシート、太陽電池用バックシート、及び太陽電池モジュール
JP5757170B2 (ja) ガスバリア性フィルムの製造方法
WO2018221093A1 (ja) 熱線遮蔽材、遮熱ガラス、及び、合わせガラス
JP6003490B2 (ja) 易接着層組成物、及びそれを用いた白色裏面保護シート
JPWO2019167764A1 (ja) 積層体、太陽電池用保護シート、及び太陽電池モジュール
WO2019167450A1 (ja) 保護シート、及び、太陽電池モジュール
JP2013016626A (ja) 太陽電池モジュール
WO2013024884A1 (ja) 太陽電池モジュール用ポリマーシートとその製造方法、太陽電池モジュール用バックシート及び太陽電池モジュール
JP5694881B2 (ja) 太陽電池用ポリマーシート、太陽電池用バックシート、及び太陽電池モジュール
JP2013055079A (ja) 太陽電池用ポリマーシート及びその製造方法、並びに太陽電池モジュール
JP2012064926A (ja) 太陽電池用易接着性黒色ポリエステルフィルムおよびそれを用いたバックシート
WO2019167944A1 (ja) 積層体、太陽電池用保護シート、及び太陽電池モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18774559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18774559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP