WO2018179410A1 - 電動機制御装置、圧縮機及び電動機制御方法 - Google Patents

電動機制御装置、圧縮機及び電動機制御方法 Download PDF

Info

Publication number
WO2018179410A1
WO2018179410A1 PCT/JP2017/013801 JP2017013801W WO2018179410A1 WO 2018179410 A1 WO2018179410 A1 WO 2018179410A1 JP 2017013801 W JP2017013801 W JP 2017013801W WO 2018179410 A1 WO2018179410 A1 WO 2018179410A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
amplitude
electric motor
phase
value
Prior art date
Application number
PCT/JP2017/013801
Other languages
English (en)
French (fr)
Inventor
浩史 木野村
Original Assignee
株式会社安川電機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社安川電機 filed Critical 株式会社安川電機
Priority to JP2017538258A priority Critical patent/JP6222417B1/ja
Priority to PCT/JP2017/013801 priority patent/WO2018179410A1/ja
Priority to CN201780089149.3A priority patent/CN110463017B/zh
Priority to EP17903113.3A priority patent/EP3605829B1/en
Publication of WO2018179410A1 publication Critical patent/WO2018179410A1/ja
Priority to US16/587,075 priority patent/US11424699B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/40Regulating or controlling the amount of current drawn or delivered by the motor for controlling the mechanical load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/50Reduction of harmonics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors
    • H02P21/26Rotor flux based control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2205/00Indexing scheme relating to controlling arrangements characterised by the control loops
    • H02P2205/05Torque loop, i.e. comparison of the motor torque with a torque reference
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2205/00Indexing scheme relating to controlling arrangements characterised by the control loops
    • H02P2205/07Speed loop, i.e. comparison of the motor speed with a speed reference

Definitions

  • the present invention relates to an electric motor control device, a compressor, and an electric motor control method.
  • an electric motor control device such as an inverter
  • the electric motor is used for a purpose such as a compressor where the load fluctuates periodically, the speed of the electric motor periodically Fluctuations occur, causing vibration and noise.
  • Patent Document 1 a compensation voltage pattern in accordance with a change in load torque is obtained in advance for each predetermined rotation angle of the electric motor, stored in the internal memory of the control means, and an addition read from the internal memory for each predetermined rotation angle.
  • An electric motor control method is described in which a value obtained by adding data to a reference voltage is used as an applied voltage of an electric motor so that the output torque of the electric motor is changed to suppress fluctuations in rotational speed during one rotation.
  • a torque correction angle is generated by using a phase lock loop PLL system based on a target speed and a feedback speed, a torque correction width value is generated based on an additional torque reference value, a target speed, a torque correction angle, An automatic torque correction method for a compressor that generates a feedforward torque correction value based on a torque correction width value is described.
  • the object of the present invention is to suppress fluctuations in the speed of the motor without the need to measure the machine angle of the motor and, of course, without requiring a map of the correction amount according to the machine angle.
  • An electric motor control device includes a speed ripple component extraction unit that extracts a speed ripple component from a difference between a command angular frequency and a speed feedback angular frequency, and a phase of the speed ripple component from the speed ripple component.
  • a current control unit for controlling a current output to the motor based on a post-compensation torque command obtained by adding the torque compensation value to the torque command value. And having.
  • the phase synchronization circuit may calculate the phase using dq conversion from the velocity ripple component and a component obtained by shifting the phase of the velocity ripple component by 90 °. May be generated.
  • the phase synchronization circuit may further generate the phase based on a given offset value.
  • the motor control device may include an amplitude changing unit that changes the given amplitude.
  • the amplitude changing unit may gradually increase the amplitude after at least stabilization of the speed of the motor.
  • the amplitude changing unit may determine the amplitude according to the amplitude of the speed feedback.
  • the amplitude changing unit may gradually decrease the amplitude when the motor speed is changed.
  • a compressor according to another aspect of the present invention includes the motor control device according to any one of the above and an electric motor controlled by the motor control device.
  • An electric motor control method extracts a speed ripple component from a difference between a command angular frequency and a speed feedback angular frequency, generates a phase of the speed ripple component from the speed ripple component, A torque compensation value is generated by multiplying a value corresponding to the phase of the function by a given amplitude, a torque command value is calculated from a difference between the command angular frequency and the speed feedback angular frequency, and the torque command The compensated torque command is obtained by adding the torque compensation value to the value, and the current output to the motor is controlled based on the compensated torque command.
  • FIG. 1 is a block diagram showing a configuration of an electric motor control device 1 according to an embodiment of the present invention.
  • the electric motor control device 1 is a device that supplies electric power so that the electric motor 2 rotates at a desired speed based on an input frequency command f ref .
  • the motor control device 1 is a so-called inverter control device (also simply referred to as an inverter), but is not necessarily limited thereto, and may be a control device such as a servo control device or a cycloconverter.
  • the electric motor 2 is an AC electric motor, but the form thereof is not particularly limited, and may be various induction machines or synchronous machines.
  • the motor 2 is a three-phase permanent magnet synchronous motor as an example.
  • An arbitrary load (not shown) is connected to the electric motor 2.
  • the load is not particularly limited, but here, a compressor is exemplified as a mechanism having a large torque fluctuation during one rotation of the electric motor 2.
  • the motor control device 1 includes a soft starter 10, a speed control unit 11, a current control unit 12, a voltage command calculation unit 13, an inverter circuit 14, a motor observer 15, and a current detector as basic configurations. 16 and a vibration suppression unit 17.
  • the soft starter 10 gradually increases the command angular frequency ⁇ com when starting up the motor 2 so that the motor 2 smoothly accelerates to a predetermined speed while avoiding overload. After a sufficient time has elapsed, ⁇ com matches 2 ⁇ f ref .
  • the so-called speed feedback is configured by subtracting the speed feedback angular frequency ⁇ FB from the command angular frequency ⁇ com , and the differential angular frequency ⁇ is input to the speed control unit 11.
  • the speed controller 11 is also referred to as a speed controller, and outputs a command torque T com from the differential angular frequency ⁇ .
  • a torque compensation value Tc is added to the command torque Tcom to suppress vibration, and a post-compensation command torque T (corresponding to a post-compensation torque command) is input to the current control unit 12.
  • the current control unit 12 is also called a current controller, and outputs a command value to the inverter circuit 14 so that the motor 2 outputs a desired torque based on the compensated command torque T.
  • the inverter circuit Since 14 is a voltage type, it outputs a voltage command V dq on the dq plane.
  • the voltage command V dq is further subjected to, for example, PWM modulation by the voltage command calculation unit 13 and applied to the inverter circuit 14.
  • the output from the current control unit 12 may be a current command. In that case, a current command calculation unit may be provided instead of the voltage command calculation unit 13. .
  • the motor observer 15 determines the estimated machine position ⁇ of the motor. Obs and a speed feedback angular frequency ⁇ FB which is an estimated angular frequency of the electric motor are obtained.
  • the estimated machine position ⁇ obs is used by the current detector 16 in order to obtain a current value I dq-obs that is a current value on the dq plane.
  • the current value I dq-obs need only be obtained depending on the type of the electric motor 2.
  • the vibration suppressing unit 17 outputs a torque compensation value Tc to be added to the command torque Tcom in order to suppress vibration of the electric motor. Since the vibration suppression unit 17 uses the difference between the command angular frequency ⁇ com and the speed feedback angular frequency ⁇ FB , the command angular frequency ⁇ com and the speed feedback angular frequency ⁇ FB are input here, but are output values. There is no direct relationship between the magnitude (amplitude) of the torque compensation value Tc and the magnitude of the difference between the command angular frequency ⁇ com and the speed feedback angular frequency ⁇ FB , and the vibration suppression unit 17 is a so-called feedback loop. Is not configured. For this reason, the addition of the torque compensation value Tc to the command torque Tcom can be considered as feedforward compensation.
  • the motor observer 15 and the current detector 16 may have any configuration here as long as the speed feedback angular frequency ⁇ FB can be obtained, and the configuration is changed to the configuration using the motor observer 15 and the current detector 16.
  • a sensor that continuously detects the mechanical position of the electric motor 2 such as a rotary encoder or a resolver may be provided, or a sensor that partially detects the mechanical position of the Hall element or the like may be provided in the electric motor 2.
  • a known configuration for estimating the machine position may be provided. However, as shown in FIG. 1, if the configuration includes the motor observer 15 and the current detector 16, it is not necessary to provide a special sensor in the motor 2, and the cost of the control system for the motor 2 including the motor control device 1 is low. Downsizing and downsizing.
  • FIG. 2 is a diagram showing a more detailed configuration of the current control unit 12.
  • the current control unit 12 includes, as an example, a torque limit circuit 120, an Iq command calculation circuit 121, an Id command calculation circuit 122, an output voltage limit control circuit 123, a non-interference control circuit 124, and a current control circuit. 125.
  • the configuration of the current control unit 12 is a known one and is not special.
  • the upper limit of the post-compensation command torque T input to the current control unit 12 is limited by the torque limiting circuit 120 so that it is not an excessive torque command.
  • the d component of Idq can be limited.
  • the inverter circuit 14 since the inverter circuit 14 is of a voltage type, the current value I dq is converted into a voltage value by the current control circuit 125, and non-interference is made by the non-interference control circuit 124, so that the voltage command V dq is obtained. It is done.
  • the torque limiting circuit 120, the output voltage limiting control circuit 123, and the non-interference control circuit 124 are not essential and are arbitrary configurations.
  • FIG. 3 is a diagram showing a more detailed configuration of the vibration suppressing unit 17.
  • the vibration suppression unit 17 includes a high-pass filter 170, a phase synchronization circuit 171, and a torque compensation value generation unit 179 including a periodic function calculation unit 177 and an amplitude change unit 178.
  • the vibration suppressing unit 17 removes the direct current component by the high-pass filter 170 from the difference between the speed feedback angular frequency ⁇ FB and the command angular frequency ⁇ com and extracts a speed ripple component ⁇ r that is an alternating current component.
  • the high-pass filter 170 has a configuration as an example of a speed ripple component extraction unit that extracts a speed ripple component from a difference between the speed feedback angular frequency ⁇ FB and the command angular frequency ⁇ com .
  • the specific configuration of the speed ripple component extraction unit is not limited to the high-pass filter 170 raised here.
  • an average value of the input signal may be measured online, and the measured value may be subtracted from the input signal. In this case, it is considered that the average value of the input signal measured online corresponds to the DC component.
  • the input signal may be subjected to frequency conversion such as FFT (Fast Fourier Transform) to remove a low frequency component (which is considered to correspond to a direct current component), and then reversely converted. Further, other configurations may be used.
  • FFT Fast Fourier Transform
  • the phase synchronization circuit 171 synchronizes the phase ⁇ of the velocity ripple component [Delta] [omega r, extracted.
  • the configuration of the phase synchronization circuit 171 is not necessarily limited, and a known one may be appropriately adopted. However, in this example, first, the velocity ripple component ⁇ r or itself is passed through the ⁇ -phase, all-pass filter 172. Using the phase shifted by 90 degrees as the ⁇ phase, the amplitude of the velocity ripple component ⁇ r is obtained from the ⁇ phase and the ⁇ phase by the amplitude calculation 173, and the coordinate conversion is performed by the dq conversion 174 to obtain the ⁇ - ⁇ plane. To coordinate transformation of velocity ripple component ⁇ r from dq plane to dq plane.
  • the all-pass filter 172 may be compensated by the prewarping 175 in order to compensate for the phase shift caused by the discretization calculation.
  • the amplitude obtained by the amplitude calculation 173 may remove noise caused by the discretization calculation or the like by the low-pass filter 176.
  • PI control is performed by inputting 0 as the target command value d * of the d-axis component.
  • the phase difference ⁇ of the speed ripple component obtained as a result is added to the phase difference ⁇ at the next calculation via the delay element Z ⁇ 1 to perform an integration calculation, and a pre- offset phase ⁇ pre is obtained.
  • the pre- offset phase ⁇ pre is input to the dq conversion 174 and used during the dq conversion.
  • This configuration means that the pre- offset phase ⁇ pre is obtained so that the d-axis component obtained by the dq conversion 174 becomes zero.
  • the pre- offset phase ⁇ pre is obtained by constraining the d-axis component to 0.
  • the pre- offset phase ⁇ pre generally indicates the phase of the velocity ripple component ⁇ r .
  • the pre- offset phase ⁇ pre can be obtained without detecting the machine position of the electric motor 2.
  • the offset value ⁇ offs is added to obtain a phase ⁇ suitable for torque compensation.
  • the offset value ⁇ offs is approximately 90 degrees because it is a torque phase difference with respect to the speed. However, since it varies slightly depending on the inertial mass and load of the electric motor 2, it is given in advance as a given designated value.
  • the obtained phase ⁇ is converted into a value corresponding to the phase of a given function by the periodic function calculation unit 177.
  • the periodic function calculation unit 177 uses an arbitrary function f ( ⁇ ) with a period of 2 ⁇ as a given function, but prepares an arbitrary periodic function according to the waveform of the speed vibration generated in the electric motor 2. Good.
  • the periodic function calculation unit 177 uses a sine wave function.
  • the periodic function calculation unit 177 is given an amplitude A (corresponding to a given amplitude) from the amplitude changing unit 178 and multiplied.
  • Af ( ⁇ ) obtained in this way becomes the torque compensation value T c and is added to the command torque T com to calculate a post-compensation command torque T. Therefore, the torque compensation value that generates the torque compensation value Tc by multiplying the value f ( ⁇ ) corresponding to the phase ⁇ of the periodic function f by the given amplitude A by the periodic function calculation unit 177 and the amplitude changing unit 178.
  • a generation unit 179 is configured.
  • the amplitude A output from the amplitude changing unit 178 may be given as a fixed value, but may be changed according to various conditions. Hereinafter, control of the amplitude A output from the amplitude changing unit 178 will be described.
  • FIG. 4 is a waveform diagram for explaining the vibration suppression operation by the vibration suppression unit 17.
  • the horizontal axis represents time, and from the upper stage, velocity ripple component ⁇ r , phase ⁇ , amplitude of velocity ripple component obtained by amplitude calculation 173, amplitude A output from amplitude changing unit 178, and torque compensation, respectively.
  • the value Tc is shown.
  • the section from time t 0 to t 1 shows the time from when the electric motor 2 is started until the speed is stabilized. Then, even if compensation for vibration suppression is performed until the speed of the electric motor 2 is stabilized, a speed deviation occurs. Therefore, the vibration is not necessarily suppressed, and in some cases, the vibration is amplified. Since there is a possibility, vibration suppression is not performed in the first place. In this example, the operation of the vibration suppressing unit 17 itself is stopped and no section is performed.
  • the time time t init until the electric motor 2 started at time t 0 is stabilized at time t 1 may be determined as appropriate. Although depending on the size of the load, t 1 is about several seconds to several tens of seconds, and may be about several minutes particularly in the case of a large machine.
  • a section between times t 1 and t 2 indicates a period from when the vibration suppressing unit 17 itself is activated until the phase synchronization circuit is stabilized.
  • the value of ⁇ and the amplitude of the velocity ripple component are unstable as shown in FIG. 4 until the value of ⁇ obtained by the dq conversion 174 shown in FIG. 3 is stabilized.
  • the amplitude changing unit 178 sets the amplitude A to 0 or a sufficiently low value in this section and keeps the torque compensation value Tc at 0 or almost 0 so that vibration is not substantially suppressed.
  • the time t st from the time t 1 to t 2 may also be determined as appropriate and is about 1 to several seconds.
  • the section from time t 2 to t 3 is a section where vibration suppression by the vibration suppression unit 17 is being performed.
  • the phase synchronization circuit is stable and the amplitude ⁇ is correctly obtained.
  • the amplitude changing unit 178 gradually increases the value of the amplitude A.
  • the amplitude of the torque compensation value Tc gradually increases. This is for the purpose of avoiding a mechanical shock by giving a gradual change to the behavior of the electric motor 2 without giving a sudden change.
  • the maximum value A max of the value of the amplitude A may be given in advance.
  • the change time t tr of the amplitude A is also arbitrary. Generally, it may be several seconds to several tens of seconds. Further, in the present example, the pattern of increasing the amplitude A is linearly increased as shown in the figure, but it may be increased along an arbitrary curve.
  • the time t 3 after the interval is an interval in which the vibration suppression by the vibration suppression section 17 is stably performed.
  • the elements shown in the figure do not change greatly in time, and both the speed ripple component ⁇ r and the amplitude of the speed ripple component obtained by the amplitude calculation 173 are suppressed to be small, and the vibration of the motor 2 is suppressed.
  • FIG. 5 is a waveform diagram for explaining the vibration suppression operation by the amplitude changing unit 178 when the frequency command f ref is used as the speed of the electric motor 2.
  • the frequency command f ref is used as the speed of the electric motor 2.
  • the command angular frequency ⁇ com may be used.
  • the frequency command f ref changes during the operation.
  • the frequency instruction f ref is kept at a relatively high value, the amplitude A becomes the maximum value A max.
  • the amplitude changing unit 178 gradually decreases the amplitude A.
  • the speed of the electric motor 2 exceeds a certain range from the detected stable value, it is detected that there is a change. More specifically, at time t 4 when the frequency command f ref deviates from the range of ⁇ d from the stable value shown in FIG. 5, it is detected that there is a speed change, and the amplitude A is gradually decreased.
  • the amplitude changing unit 178 increases the amplitude A gradually.
  • the value of the frequency command f ref is not changed at time t 5 and is stable.
  • the time t st in the section from time t 1 to time t 2 in FIG. 4 is used as the fixed time. This is the time until the value of ⁇ obtained by the dq conversion 174 is stabilized as described above, and is necessary for stable vibration suppression.
  • the amplitude change unit 178, from the time t6 has elapsed the time t st, and gradually increasing the amplitude A.
  • the operation of the amplitude changing section 178 basically does not necessarily suppress the vibration when the speed of the electric motor 2 is changing. Therefore, the speed of the electric motor 2 is stably changed without suppressing the vibration. If not, vibration is suppressed. Then, instead of abruptly switching between vibration suppression and non-vibration, the amplitude A is gradually changed to gently turn vibration suppression on and off to avoid mechanical shock.
  • the amplitude changing unit 178 may determine the amplitude A according to the amplitude of the speed feedback.
  • the maximum value A max of the amplitude A may be given in advance.
  • the determination of A max at the time of manufacture of a user or a device using the electric motor 2 requires adjustment by trial operation and measurement, and if there is load fluctuation or secular change, A given value of A max is not always optimal. If the value of A max is insufficient, vibrations cannot be sufficiently suppressed. If the value of A max is excessive, vibrations are not only suppressed, but reverse vibrations are promoted. End up.
  • the amplitude changing unit 178 compares the amplitude of the speed feedback with a predetermined threshold th, and stops the increase in the amplitude A when it is determined that the amplitude of the speed feedback is less than the threshold th and the vibration is sufficiently suppressed.
  • this value may be used as the value of the amplitude A.
  • the amplitude of the speed ripple component obtained by the amplitude calculation 173 can be used as the amplitude of the speed feedback, and when the value falls below the threshold value th shown as a reference, the amplitude regardless of A max.
  • the increase of the value of A may be stopped and the value of the amplitude A may be determined. By doing so, it is possible to reduce time and effort for predetermining the value of Amax , and it is possible to automatically obtain an appropriate value of amplitude A even when there is a load variation or secular change.
  • FIG. 6 is a flowchart showing the operation of the vibration suppressing unit 17.
  • the vibration suppression unit 17 is not activated in the initial state, and it is determined whether time t init has elapsed since the activation of the electric motor 2 (step ST1). If it has not elapsed (ST1: N), it waits until the time t init has elapsed until the speed of the electric motor 2 is stabilized, and if it has elapsed (ST1: Y), the vibration suppressing unit 17 is activated (step ST2).
  • the vibration suppression unit 17 When activated, the vibration suppression unit 17 extracts the speed ripple component ⁇ from the difference between the command angular frequency ⁇ com and the speed feedback angular frequency ⁇ FB (step ST3). Further, the phase ⁇ is generated from the speed ripple component ⁇ by the phase synchronization circuit 171 (step ST4). At this time, as already described, the phase ⁇ is generated from the velocity ripple component ⁇ and the component obtained by shifting the phase of the velocity ripple component ⁇ by 90 degrees using dq conversion.
  • the vibration suppression unit 17 determines whether or not the motor speed is continuously stable during the time t st (step ST5). This determination may be made based on whether the motor speed deviates from a predetermined range ( ⁇ d) from the stable motor speed. As the motor speed, any one of the frequency command f ref , the speed feedback angular frequency ⁇ FB , and the command angular frequency ⁇ com may be used.
  • step ST5 When the motor speed is continuously stable for the time t st (step ST5: Y), the amplitude of the speed feedback is below the threshold th and the vibration is already sufficiently suppressed, or the amplitude A is It is determined whether or not the maximum value Amax has been reached (step ST6).
  • the amplitude changing unit 178 When the amplitude of the speed feedback does not fall below the threshold th and the amplitude A has not reached its maximum value A max (step ST6: N), the amplitude changing unit 178 gradually increases the value of the amplitude A. (Step ST7). Then, using the obtained amplitude A, the torque compensation value Tc is obtained as Af ( ⁇ ) using the periodic function f ( ⁇ ), and torque compensation is performed to suppress vibration (step ST8).
  • step ST6 If the amplitude of the speed feedback is below the threshold th or if the amplitude A has reached its maximum value A max (step ST6: Y), it is not necessary to increase the amplitude A, so the value of the amplitude A Without changing, the process proceeds to step ST8 where vibration suppression is performed.
  • step ST5 N
  • the motor speed is not continuously stable during the time t st (step ST5: N)
  • the motor speed has changed or the time t st has not elapsed since the motor speed has stabilized.
  • the amplitude A is already 0 or has reached the minimum value Amin of the amplitude A (step ST9).
  • the minimum value Amin of the amplitude A is not necessarily set, and may be 0.
  • step ST9: N When the amplitude A is not 0 and does not reach the minimum value Amin of the amplitude A (step ST9: N), the amplitude changing unit 178 gradually decreases the amplitude A (step ST10). Then, it progresses to step ST8 and vibration suppression is performed.
  • step ST9: Y When the amplitude A is 0 or has reached the minimum value Amin of the amplitude A (step ST9: Y), the process immediately proceeds to step ST8, and vibration suppression is performed without changing the amplitude A. At this time, if the amplitude A is 0, vibration suppression is not performed at all.
  • step ST8 When vibration suppression is performed (step ST8), the process returns to step ST3 again, and vibration suppression is performed while the electric motor 2 is rotating. And according to the flow shown in FIG. 6, even when the speed of the point synchronization 2 changes during the operation, the vibration is not suppressed during the speed change, and the vibration can be suppressed while the speed is stable, In addition, the shock to the mechanism can be reduced by making the change between the two gentle.
  • the value of the amplitude A is automatically adjusted to a value that can sufficiently suppress vibration.
  • the command angular frequency ⁇ com and the speed feedback angular frequency ⁇ FB are independently input to the vibration suppressing unit 17 and subtracted in the vibration suppressing unit 17 to obtain the speed ripple component ⁇ r .
  • the speed ripple component ⁇ r may be directly input to the vibration suppressing unit 17.
  • obtained by inverting the sign of the difference angular frequency [Delta] [omega is equal to the velocity ripple component [Delta] [omega r, and inputs the one obtained by inverting the difference angular frequency [Delta] [omega or code to the vibration suppressing portion 17 directly You may do it.
  • a speed ripple component ⁇ r may be used as a configuration of the motor control device 1.
  • This may be directly input to the vibration suppressing unit 17.
  • the phase ⁇ of the speed ripple component ⁇ r is generated by the phase synchronization circuit 171, and the phase A torque compensation value Tc can be generated from ⁇ to compensate the torque command Tcom . Therefore, the speed fluctuation can be suppressed in accordance with the phase of the actual speed fluctuation generated in the electric motor 2. Therefore, it is not necessary to measure the mechanical angle of the electric motor 2 and, naturally, it is possible to suppress the speed fluctuation of the electric motor 2 without requiring a correction amount map corresponding to the mechanical angle.
  • the phase synchronization circuit 171 the speed ripple component [Delta] [omega r, from and its phase 90 ° shifted allowed components, and generates a phase ⁇ by d-q conversion. Therefore, even in the generation of the phase ⁇ , it is not necessary to measure the mechanical angle, and processing that causes a delay such as a low-pass filter in the calculation can be minimized. Further, since the phase ⁇ is generated by dq conversion without using the input frequency command f ref in the generation of the phase ⁇ , the torque compensation value T c is independently obtained even when the command torque T com is not stable. Can be calculated.
  • the phase ⁇ can be generated in the phase synchronization circuit 171 in consideration of a predetermined offset value ⁇ off . Therefore, for example, by setting in advance the inertia mass, load, delay of the PI loop, low-pass filter 176, etc. as the offset value ⁇ off in advance, the effect of suppressing the speed fluctuation can be applied quickly and reliably. is there.
  • the amplitude A of the torque compensation value Tc by the periodic function calculating unit 177 is set by the amplitude changing unit 178, so that the machine specifications such as the motor 2 and the parameters associated therewith are changed. There is no need to set in advance.
  • the amplitude changing unit 178 can suppress the speed variation without changing the speed A by changing the amplitude A.
  • the amplitude change unit 178 can gradually increase the amplitude A after the speed of the electric motor 2 is stabilized, suppression of the speed fluctuation is started during the speed change such as when the electric motor 2 is accelerated. It is possible to suppress speed fluctuations while preventing malfunctions due to the occurrence of such a problem, for example, problems such as a speed change being amplified.
  • the amplitude changing unit 178 can determine the amplitude A according to the amplitude of the speed feedback. In this case, the amplitude A is automatically set according to the magnitude of the speed fluctuation (such as the magnitude of vibration). By generating, it is also possible to suppress the speed fluctuation more effectively. Further, the amplitude changing unit 178 can also gradually reduce the amplitude A when the speed of the electric motor 2 is changed. In this case, when the speed fluctuation suppressing function is turned off, the speed is rapidly changed. Can be prevented from changing.
  • the motor control device includes a general-purpose or dedicated computer, and the computer can execute at least a part of the above-described series of processing by executing a program.
  • FIG. 7 is a block diagram showing an example of the hardware configuration of such a computer 100.
  • the computer includes a CPU 101 (Central Processing Unit), a recording device 102 such as a HDD (Hard Disk Drive), ROM (Read Only Memory), RAM (Random Access Memory), and a LAN (Local Area Network).
  • a connected communication device 103 an input device 104 such as a mouse / keyboard; a magnetic disk such as a flexible disk; and various optical disks such as a CD (Compact Disc), an MO (Magneto Optical) disk and a DVD (Digital Versatile Disc);
  • a drive 105 for reading and writing a removable storage medium such as a semiconductor memory, a monitor, etc.
  • An output device 106 such as such as an audio output device such as shown device speaker or headphones, may have.
  • the devices constituting the computer 100 may be connected by a data bus 107 and integrated so as to be able to communicate with each other.
  • the computer 100 may include an FPGA (Field Programmable Gate Array) or an ASIC (Application Specific Integrated Circuit) in addition to or instead of the CPU 101.
  • the computer 100 may execute at least a part of the series of processes by executing a program recorded in the recording device 102 / removable storage medium or a program acquired via a network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

指令角周波数と、速度フィードバック角周波数の差から、速度リップル成分を抽出する速度リップル成分抽出部と、前記速度リップル成分から前記速度リップル成分の位相を生成する位相同期回路(171)と、周期関数の前記位相に応じた値と、所与の振幅を乗算してトルク補償値を生成するトルク補償値生成部(179)と、前記指令角周波数と、前記速度フィードバック角周波数の差から、トルク指令値を演算する速度制御部(11)と、前記トルク指令値に、前記トルク補償値を加算して得られる補償後トルク指令に基いて、電動機に出力する電流を制御する電流制御部(12)と、を有する電動機制御装置(1)。

Description

電動機制御装置、圧縮機及び電動機制御方法
 本発明は、電動機制御装置、圧縮機及び電動機制御方法に関する。
 電動機をインバータなどの電動機制御装置を用いて速度制御する際に、電動機が圧縮機など、周期的に負荷が変動する用途に用いられていると、かかる負荷変動に伴い、周期的に電動機の速度変動が生じ、振動や騒音の原因となる。
 特許文献1には、負荷トルクの変動に合わせた補償電圧パターンを予め電動機の所定回転角度毎に求めて当該制御手段の内部メモリに記憶して、その所定回転角度毎に内部メモリから読み出した加算データを基準電圧に加算した値を電動機の印可電圧にすることにより、その電動機の出力トルクを変化させて1回転中の回転速度の変動を抑制する電動機の制御方法が記載されている。
 特許文献2には、目標速度およびフィードバック速度によって、位相ロックループPLLの方式を利用してトルク補正角度を生成し、付加トルク参考値によってトルク補正幅値を生成し、目標速度、トルク補正角度とトルク補正幅値によってフィードフォワードトルク補正値を生成する圧縮機のトルクの自動補正方法が記載されている。
特開2002-247878号公報 特許第5914777号公報
 本発明は、電動機の機械角度を測定する必要がなく、当然に機械角度に応じた補正量のマップをも必要とせずに、電動機の速度変動を抑制することをその課題とする。
 本発明の一の側面による電動機制御装置は、指令角周波数と、速度フィードバック角周波数の差から、速度リップル成分を抽出する速度リップル成分抽出部と、前記速度リップル成分から前記速度リップル成分の位相を生成する位相同期回路と、周期関数の前記位相に応じた値と、所与の振幅を乗算してトルク補償値を生成するトルク補償値生成部と、前記指令角周波数と、前記速度フィードバック角周波数の差から、トルク指令値を演算する速度制御部と、前記トルク指令値に、前記トルク補償値を加算して得られる補償後トルク指令に基いて、電動機に出力する電流を制御する電流制御部と、を有する。
 また、本発明の一の側面による電動機制御装置では、前記位相同期回路は、前記速度リップル成分と、前記速度リップル成分の位相を90°ずらせた成分から、d-q変換を用いて前記位相を生成してよい。
 また、本発明の一の側面による電動機制御装置では、前記位相同期回路は、更に所与のオフセット値に基いて前記位相を生成してよい。
 また、本発明の一の側面による電動機制御装置は、前記所与の振幅を変化させる振幅変化部を有してよい。
 また、本発明の一の側面による電動機制御装置では、前記振幅変化部は、少なくとも、前記電動機の速度の安定後、前記振幅を徐々に増加させてよい。
 また、本発明の一の側面による電動機制御装置では、前記振幅変化部は、速度フィードバックの振幅に応じて、前記振幅を決定してよい。
 また、本発明の一の側面による電動機制御装置では、前記振幅変化部は、電動機速度に変化があった場合、前記振幅を徐々に減少させてよい。
 本発明の別の一側面による圧縮機は、上述のいずれかに記載の電動機制御装置と、前記電動機制御装置により制御される電動機と、を有する。
 本発明の別の一側面による電動機制御方法は、指令角周波数と、速度フィードバック角周波数の差から、速度リップル成分を抽出し、前記速度リップル成分から、前記速度リップル成分の位相を生成し、周期関数の前記位相に応じた値と、所与の振幅を乗算してトルク補償値を生成し、前記指令角周波数と、前記速度フィードバック角周波数の差から、トルク指令値を演算し、前記トルク指令値に、前記トルク補償値を加算して補償後トルク指令を得、前記補償後トルク指令に基いて、電動機に出力する電流を制御する。
本発明の一実施形態に係る電動機制御装置の構成を示すブロック図である。 電流制御部のより詳細な構成を示す図である。 振動抑制部のより詳細な構成を示す図である。 振動抑制部による振動抑制の動作を説明する波形図である。 電動機の速度として周波数指令を用いた時の振幅変化部による振動抑制の動作を説明する波形図である。 振動抑制部の動作を示すフロー図である。 電動機制御装置としての一連の処理をソフトウェアで行うコンピュータのハードウェア構成の一例を示すブロック図である。
 図1は、本発明の一実施形態に係る電動機制御装置1の構成を示すブロック図である。
 電動機制御装置1は、入力された周波数指令frefに基づき、電動機2が所望の速度で回転するよう電力を供給する装置である。ここでは、電動機制御装置1は、いわゆるインバータ制御装置(単にインバータともいう。)であるが、必ずしもこれに限定されず、例えば、サーボ制御装置やサイクロコンバータなどの制御装置であってもよい。電動機2は、交流電動機であるが、その形式は特に限定されず、各種の誘導機であっても、同期機であってもよい。ここでは、電動機2は一例として、3相永久磁石同期電動機である。電動機2には、図示しない任意の負荷が接続されている。この負荷は、特に限定はされないが、ここでは、電動機2の一回転中にトルク変動の大きい機構として、圧縮機を例示する。
 <電動機制御装置>
 図2に示すように、電動機制御装置1は、基本的な構成として、ソフトスタータ10、速度制御部11、電流制御部12、電圧指令演算部13、インバータ回路14、モータオブザーバ15、電流検出器16及び、振動抑制部17を有している。ソフトスタータ10は、電動機2の起動時に、過負荷を避けスムースに電動機2が所定の速度まで加速するよう、指令角周波数ωcomを徐々に増加させる。十分な時間の経過後は、ωcomは2πfrefに一致する。指令角周波数ωcomからは速度フィードバック角周波数ωFBが減算されていわゆる速度フィードバックが構成され、差分角周波数Δωが速度制御部11に入力される。
 速度制御部11は、速度制御器とも言い、差分角周波数Δωから、指令トルクTcomを出力する。指令トルクTcomには、トルク補償値Tが加算されて振動抑制が行われ、補償後指令トルクT(補償後トルク指令に相当)が電流制御部12に入力される。
 電流制御部12は、電流制御器とも言い、補償後指令トルクTに基いて、所望のトルクを電動機2が出力するようインバータ回路14への指令値を出力するものであり、ここでは、インバータ回路14は電圧型であるので、d-q平面上の電圧指令Vdqを出力している。電圧指令Vdqはさらに、電圧指令演算部13により例えばPWM変調されてインバータ回路14に印加される。なお、インバータ回路14が電流型である場合には、電流制御部12からの出力は電流指令であってよく、その場合は電圧指令演算部13に変えて電流指令演算部を設けるようにしてよい。
 電流制御部12からの電圧指令Vdqと、インバータ回路14と電動機16間に設けられた電流検出器16から検出された電流値Idq-obsから、モータオブザーバ15は、電動機の推定機械位置θobsと、電動機の推定角周波数である速度フィードバック角周波数ωFBを求める。推定機械位置θobsは、d-q平面上での電流値である電流値Idq-obsを得るため、電流検出器16で使用されるが、これは必ずしも必須ではなく、電流検出器16や電動機2の形式により、電流値Idq-obsが得られればよい。
 振動抑制部17は、電動機の振動を抑制するため、指令トルクTcomに加算するべきトルク補償値Tを出力する。振動抑制部17は、指令角周波数ωcomと、速度フィードバック角周波数ωFBの差を用いるため、ここでは指令角周波数ωcomと速度フィードバック角周波数ωFBが入力されているが、出力値であるトルク補償値Tの値の大きさ(振幅)と指令角周波数ωcomと速度フィードバック角周波数ωFBの差の値の大きさとの間に直接の関係はなく、振動抑制部17はいわゆるフィードバックループを構成しない。このため、指令トルクTcomへのトルク補償値Tの加算は、フィードフォワード補償と考えることができる。
 なお、以上説明した電動機制御装置1の構成において、電流制御部12と振動抑制部17については、その詳細を後ほど説明する。その他の構成、すなわち、ソフトスタータ10、速度制御部11、電圧指令演算部13、モータオブザーバ15及び電流検出器16は、任意の公知の構造を採用してよく、その詳細は本発明の技術的主題でないため、その詳細の説明は割愛する。
 さらに、モータオブザーバ15及び電流検出器16は、ここでは、速度フィードバック角周波数ωFBが得られるものであればどのような構成であってもよく、モータオブザーバ15及び電流検出器16による構成に変えて、ロータリエンコーダ又はレゾルバのような、電動機2の機械位置を連続的に検出するセンサを設けるようにしてもよいし、電動機2にホール素子等の機械位置を部分的に検出するセンサを設けて、機械位置を推定する公知の構成を設けるようにしてもよい。ただし、図1に示したように、モータオブザーバ15及び電流検出器16による構成であれば、電動機2に特別のセンサを設ける必要がなく、電動機制御装置1を含む電動機2の制御システムの低コスト化・小型化を図ることができる。
 <電流制御部>
 図2は、電流制御部12のより詳細な構成を示す図である。図2に示すように、電流制御部12は、一例として、トルク制限回路120、Iq指令演算回路121、Id指令演算回路122、出力電圧制限制御回路123、非干渉制御回路124及び、電流制御回路125を有している。電流制御部12の構成は公知のものであり、特殊なものではない。
 電流制御部12に入力された補償後指令トルクTは、トルク制限回路120により過大なトルク指令とならないよう、その上限が制限され、そののちIq指令演算回路121及びId指令演算回路122によりd-q平面上の電流値Idqへと変換される。なお、インバータ回路14で出力できる電圧には限界があるため、本例では、必要に応じて、出力電圧制限制御回路123をトルク制限回路120と切り替えてId指令演算回路122と接続し、電流値Idqのd成分を制限できるようになっている。
 本例ではインバータ回路14は電圧型であるため、電流値Idqは、電流制御回路125により電圧値に変換され、また、非干渉制御回路124により非干渉化がなされ、電圧指令Vdqがえられる。ここで、トルク制限回路120、出力電圧制限制御回路123、非干渉制御回路124はいずれも必須のものではなく、任意構成である。また、電流制御部12を構成する各機能は、公知の構成を適宜採用すればよいため、それぞれの詳細の説明は割愛する。
 <振幅抑制部>
 図3は、振動抑制部17のより詳細な構成を示す図である。図3に示すように、振動抑制部17は、ハイパスフィルター170、位相同期回路171、並びに、周期関数演算部177及び振幅変化部178を含むトルク補償値生成部179を有している。
 振動抑制部17は、速度フィードバック角周波数ωFBと指令角周波数ωcomとの差から、ハイパスフィルター170により直流成分を除去して交流成分である速度リップル成分Δωを抽出する。なお、ハイパスフィルター170は、速度フィードバック角周波数ωFBと指令角周波数ωcomとの差から、速度リップル成分を抽出する速度リップル成分抽出部の一例としての構成である。
 なお、速度リップル成分抽出部の具体的構成は、ここで上げたハイパスフィルター170に限定されない。例えば、入力信号の平均値をオンラインで計測し、その計測値を入力信号から差し引く構成であってもよい。この場合、オンライン計測された入力信号の平均値が直流成分に該当すると考えられる。あるいは、入力信号をFFT(Fast Fourier Transform)等の周波数変換をし、低周波成分(これが直流成分に該当すると考えられる)を除去したのち、逆変換する構成であってもよい。さらにその他の構成であっても差し支えない。
 振動抑制部17は、この速度リップル成分Δωから、位相同期回路171により、速度リップル成分Δωの位相θを同期させ、抽出する。位相同期回路171の構成は必ずしも限定されず、公知のものを適宜採用しても差し支えないが、本例では、まず、速度リップル成分Δωかそれ自体をα相、オールパスフィルタ172を通過させて位相を90度ずらしたものをβ相として、α相とβ相から振幅演算173にて速度リップル成分Δωの振幅を得るとともに、d-q変換174にて座標変換を行い、α-β平面からd-q平面への速度リップル成分Δωの座標変換を行う。
 オールパスフィルタ172にて位相を90度ずらすのは、この後d-q変換を行って、位相θを同期させるためである。この同期演算については後述する。また、オールパスフィルタ172には、離散化演算による位相ずれを補償するため、プリワーピング175より補償を行ってよい。また、振幅演算173で得られた振幅は、ローパスフィルタ176により離散化演算等に起因するノイズを除去してよい。
 ここで、d-q変換174により得られたd軸成分に対し、d軸成分の目標指令値dとして、0を入力してPI制御を行っている。その結果得られる速度リップル成分の位相差分Δθが遅延素子Z-1を介して、次回演算時の位相差分Δθに加算されることで、積分演算が行われ、オフセット前位相θpreが得られる。同時に、オフセット前位相θpreは、d-q変換174に入力され、d-q変換時に用いられる。この構成は、すなわち、d-q変換174により得られたd軸成分が0となるようにオフセット前位相θpreを求めるということである。換言するならば、d-q変換の際に、d軸成分を0に拘束してオフセット前位相θpreを求めていることになる。
 そして、このオフセット前位相θpreが速度リップル成分Δωの位相をおおむね示している。このように、速度リップル成分Δωと(α相)、速度リップル成分Δωの位相を90°ずらせた成分から(β相)、d-q変換を用いてオフセット前位相θpreを求めることで、電動機2の機械位置を検出せずとも、速度リップル成分Δωの位相を求めることができる。
 得られたオフセット前位相θpreは、速度リップル成分Δωの速度自体に対する位相であるから、オフセット値θoffsを加算してトルク補償に適した位相θを得る。オフセット値θoffsは速度に対するトルクの位相差であるからおおむね90度であるが、電動機2の慣性質量や負荷により若干の変動があるため、所与の指定値としてあらかじめ与えておく。
 得られた位相θは、周期関数演算部177により、所与の関数の位相に応じた値に変換される。ここで、周期関数演算部177は、所与の関数として、周期2πの任意の関数f(θ)を使用するが、電動機2に生じる速度振動の波形に応じた任意の周期関数を用意してよい。本例では、電動機2に使用する速度振動は、ほぼ正弦波関数にて近似できるため、周期関数演算部177は、正弦波関数を使用する。
 また、周期関数演算部177には、振幅変化部178より振幅A(所与の振幅に相当)が与えられ、乗算される。こうして得られたAf(θ)がトルク補償値Tとなり、指令トルクTcomに加算され、補償後指令トルクTが算出される。従って、周期関数演算部177と振幅変化部178により、周期関数fの位相θに応じた値f(θ)と、所与の振幅Aを乗算してトルク補償値Tを生成するトルク補償値生成部179が構成される。
 ここで、振幅変化部178より出力する振幅Aは、一定の固定値として与えてもよいが、種々の条件により変化させてもよい。以下、振幅変化部178が出力する振幅Aの制御について説明する。
 <振動抑制の動作>
 図4は、振動抑制部17による振動抑制の動作を説明する波形図である。同図は、横軸を時間に取り、上段からそれぞれ、速度リップル成分Δω、位相θ、振幅演算173により得られた速度リップル成分の振幅、振幅変化部178から出力される振幅A、トルク補償値Tを示している。
 まず、時刻t~tの区間は、電動機2を起動してから速度が安定するまでを示している。そして、電動機2の速度が安定するまでは、振動抑制のための補償を行ったとしても、速度のずれが生じるため、必ずしも振動の抑制ができるとは限らず、場合によってはかえって振動を増幅させる可能性もあるため、そもそも振動抑制を行わない。本例では、振動抑制部17自体の動作を止め、何もしない区間となっている。時刻tに起動された電動機2が時刻tに安定するまでの時間時刻tinitは、適宜定めておいてよい。負荷の大きさにもよるが、tは数秒から数十秒程度であり、特に大型の機械の場合には、数分程度としてよい。
 続いて、時刻t~tの区間は、振動抑制部17自体を起動してから、位相同期回路が安定するまでを示している。この区間では、図3に示したd-q変換174により求められるΔθの値が安定するまで、図4に示すように、θの値及び、速度リップル成分の振幅の値は不安定である。この区間で振動抑制のための補償を行ったとしても、θの値が必ずしも正確でないため、振動抑制が十分でないか、または増幅する恐れがある。そこで、振幅変化部178は、この区間においては振幅Aを0または十分に低い値として、トルク補償値Tを0又はほぼ0に保ち、実質的に振動抑制を行わないようにしている。時刻t~tまでの時間tstもまた適宜定めてよく、1~数秒程度である。
 さらに、時刻t~tの区間は、振動抑制部17による振動抑制が行われつつある区間である。この区間では、位相同期回路は安定しており、振幅θが正しく得られている。この時、振幅変化部178は、振幅Aの値を徐々に増加させていく。これに伴い、トルク補償値Tの振幅も徐々に増加していく。これは、電動機2の挙動に対して急減な変化を与えず、徐々に変化を与えることで、機構的なショックを避ける目的である。振幅Aの値の最大値Amaxは、あらかじめ与えておいてよい。また、振幅Aの変化時間ttrも任意である。おおむね、数秒~数十秒程度としてよい。さらに、振幅Aを増加させていくパターンは、本例では図示のように直線状に増加させているが、これを任意の曲線に沿って増加させるものとしても差し支えない。
 最後に、時刻t以降の区間は、振動抑制部17による振動抑制が安定して行われている区間である。この区間では、同図に示した要素に大きな時間的変化はなく、速度リップル成分Δω、振幅演算173により得られた速度リップル成分の振幅がともに小さく抑えられており、電動機2の振動が抑制されていることがわかる。
 <振幅変化時の振動抑制動作>
 さらに、振幅変化部178は、電動機2の速度に応じて振幅Aを変化させてよい。図5は、電動機2の速度として周波数指令frefを用いた時の振幅変化部178による振動抑制の動作を説明する波形図である。なお、ここでは電動機2の速度は速やかに周波数指令frefに追従するものとして、周波数指令frefを用いているが、これに変えて速度フィードバック角周波数ωFBを用いても同様である。あるいは、指令角周波数ωcomを用いてもよい。
 図5に示した例では、周波数指令frefが運転の途中で変化する場合が示されている。同図に示した最初の状態(時刻tより前)では、周波数指令frefは比較的高い値に保たれており、振幅Aも最大値Amaxとなっている。その後、周波数指令frefが低下し始め、電動機2の速度の変化が検出されると、振幅変化部178は、振幅Aを徐々に減少させる。この検出は、電動機2の速度が、その検出された安定値からある一定の範囲を超えた場合に変化ありと検出するようにしている。より具体的には、図5に示した、周波数指令frefがその安定値から±dの範囲を逸脱した時刻tにおいて、速度変化ありと検出され、振幅Aを徐々に減少させる。
 一方で、一定の時間の間、電動機2の速度に変化がない場合には、電動機2の速度が安定したものと検出される。その場合には、今度は振幅変化部178は、振幅Aを徐々に増加させる。図5では、時刻tにて、周波数指令frefの値の変化がなくなり安定している。本例では、一定の時間として、図4の時刻t~tの区間の時間tstを用いている。これは、先に説明したようにd-q変換174により求められるΔθの値が安定するまでの時間であり、安定した振動抑制のために必要なためである。そして、振幅変化部178は、この時間tstが経過した時刻t6より、振幅Aを徐々に増加させている。
 周波数指令frefの値が増加する場合にも同様である。時刻tで電動機2の速度変化が検出され、やはり振幅Aは減少させられる。時刻tで周波数指令frefの値の変化が止まり、この時間tst経過後の時刻t10から時刻t11まで、振幅Aは再び増加され、振動抑制が行われる。
 この振幅変化部178の動作は、基本的に、電動機2の速度が変化している場合には、振動抑制が必ずしも効果的でないため、振動抑制を行わず、電動機2の速度が安定して変化していない場合に振動抑制を行うものである。そして、振動抑制を行うか、行わないかを急激に切り替えるのでなく、振幅Aを徐々に変化させることでなだらかに振動抑制の入切を行って、機構的なショックを避けるようにしている。
 さらに、振幅変化部178は、速度フィードバックの振幅に応じて、振幅Aを決定するようにしてもよい。図4に戻り、上の説明では、振幅Aの最大値Amaxはあらかじめ与えておいてよいものとして説明した。しかしながら、Amaxをユーザ、あるいは電動機2を用いた機器(例えば圧縮機)の製造時で定めるのは、試運転と計測による調整が必要であり、また、負荷変動や経年変化があると、最初に与えたAmaxの値が常に最適であるとは限らない。そして、Amaxの値に不足があると、振動抑制が十分にできず、また、Amaxの値が過大であると、振動を抑制するばかりか、かえって逆向きの振動を助長することとなってしまう。
 そこで、振幅変化部178は、速度フィードバックの振幅と所定の閾値thとを比較し、速度フィードバックの振幅が閾値thを下回り、十分に振動が抑制されたと判断した時点で振幅Aの増加を止めるようにして、かかる値を振幅Aの値として用いてもよい。図4では、速度フィードバックの振幅として、振幅演算173により得られた速度リップル成分の振幅を用いることができ、参考として示した閾値thをこの値が下回って時点で、Amaxに関わらず、振幅Aの値の増加を止め、振幅Aの値として決定してよい。このようにすることで、Amaxの値をあらかじめ決める手間を軽減し、負荷の変動や経年変化があった場合にも、適切な振幅Aの値を自動的に得ることができる。
 <動作フロー>
 図6は、振動抑制部17の動作を示すフロー図である。まず、振動抑制部17は初期状態では起動されておらず、電動機2の起動から時間tinit経過したかを判断する(ステップST1)。経過していなければ(ST1:N)、時間tinit経過して電動機2の速度が安定するまで待ち、経過していれば(ST1:Y)、振動抑制部17を起動する(ステップST2)。
 振動抑制部17は、起動されると、指令角周波数ωcomと、速度フィードバック角周波数ωFBの差から速度リップル成分Δωを抽出する(ステップST3)。また、さらに、速度リップル成分Δωから位相同期回路171により、位相θを生成する(ステップST4)。このとき、すでに説明したとおり、速度リップル成分Δωと、速度リップル成分Δωの位相を90度ずらした成分からd-q変換を用いて位相θを生成している。
 つづけて、振動抑制部17は、電動機速度が時間tstの間継続的に安定しているか否かを判断する(ステップST5)。この判断は、安定した電動機速度から所定の範囲(±d)を電動機速度が逸脱するか否かにより判断してよい。また、電動機速度としては、周波数指令fref、速度フィードバック角周波数ωFB、指令角周波数ωcomのいずれを用いてもよい。
 電動機速度が時間tstの間継続的に安定している場合(ステップST5:Y)、速度フィードバックの振幅が閾値thを下回っており、すでに十分に振動抑制が行われているか、又は振幅Aがその最大値Amaxに到達しているかを判断する(ステップST6)。速度フィードバックの振幅が閾値thを下回っておらず、かつ振幅Aがその最大値Amaxに到達していない場合(ステップST6:N)、振幅変化部178は、振幅Aの値を徐々に増加する(ステップST7)。そして、得られた振幅Aを用いて、トルク補償値Tは、周期関数f(θ)を用いてAf(θ)として求められ、トルク補償がなされて振動抑制が行われる(ステップST8)。
 速度フィードバックの振幅が閾値thを下回っているか、又は振幅Aがその最大値Amaxに到達している場合には(ステップST6:Y)、振幅Aを増加させる必要はないので、振幅Aの値は変化させることなく、ステップST8へと進み振動抑制が行われる。
 一方で、電動機速度が時間tstの間継続的に安定していない場合(ステップST5:N)、すなわち、電動機速度が変化しているか、電動機速度が安定してから時間tst経過していない場合には、振幅Aがすでに0であるか、あるいは、振幅Aの最小値Aminに到達しているかを判断する(ステップST9)。なお、ここで振幅Aの最小値Aminは必ずしも設定しなくともよく、0としてもよい。
 振幅Aが0でなく、振幅Aの最小値Aminにも到達していない場合(ステップST9:N)は、振幅変化部178は、振幅Aを徐々に減少させる(ステップST10)。その後、ステップST8へと進み振動抑制が行われる。振幅Aが0であるか、又は振幅Aの最小値Aminに到達している場合(ステップST9:Y)は、ただちにステップST8へと進み、振幅Aを変化させることなく振動抑制が行われる。この時、振幅Aが0であると、振動抑制は全く行われないことになる。
 振動抑制が行われると(ステップST8)、再度ステップST3へと戻り、電動機2が回転している間は、振動抑制が行われる。そして、図6に示したフローによれば、点同期2の速度が運転途中で変化した場合にも、速度変化中は振動抑制を行わず、速度が安定している間は振動抑制を行え、かつ、両者間の変化をなだらかなものとして機構へのショック等を軽減できる。また、振幅Aの値は振動抑制が十分になしうる値へと自動調整される。
 なお、以上の説明では、振動抑制部17に、指令角周波数ωcomと、速度フィードバック角周波数ωFBがそれぞれ独立に入力され、これを振動抑制部17内で差し引くことにより速度リップル成分Δωを求めていたが、電動機制御装置1の構成によっては、速度リップル成分Δωを直接振動抑制部17に入力するようにしてもよい。図1に示した例では、差分角周波数Δωの符号を反転させたものは速度リップル成分Δωに等しいから、振動抑制部17に差分角周波数Δωまたはその符号を反転させたものを直接入力するようにしてもよい。あるいは、電動機制御装置1の構成として、例えばロバスト性を付与する目的で速度補償器や、位相補償器を備えたものである場合に、速度リップル成分Δωを使用している場合があるため、これを直接振動抑制部17に入力するようにしてもよい。
 <効果の例>
 以上説明したように、本実施形態に係る電動機制御装置1によれば、速度リップル成分Δωを抽出した後、位相同期回路171により、その速度リップル成分Δωの位相θを生成し、その位相θからトルク補償値Tを生成して、トルク指令Tcomを補償することができる。したがって、電動機2で生じる実際の速度変動の位相にあわせて、その速度変動を抑制することが可能である。したがって、電動機2の機械角度を測定する必要がなく、当然に機械角度に応じた補正量のマップをも必要とせずに、電動機2の速度変動を抑制することができる。更に、一旦速度リップル成分Δωの位相θを生成後に、トルク補償値Tを生成することで、トルク補償値Tの演算遅れを抑えることができるため、速度変動の抑制効果を高めることができる。更に、トルク補償値Tの演算を、速度制御部11とは独立して行い、トルク補償値Tをフィードフォワードすることが可能であるため、速度制御部11の出力であるトルク指令Tcomが急変した場合であっても、トルク補償値Tの演算が影響されずに済み、速度変動の抑制を継続する事が可能である。
 また、電動機制御装置1によれば、位相同期回路171が、速度リップル成分Δωと、その位相を90°ずらせた成分とから、d-q変換により位相θを生成する。したがって、この位相θの生成においても、機械角度を測定する必要がなく、かつ、演算におけるローパスフィルターなどの遅延が生じる処理を最小限に抑えることができる。また、位相θの生成において、入力された周波数指令frefを用いずにd-q変換により位相θを生成ので、指令トルクTcomが安定していない場合でも、独立してトルク補償値Tを算出できる。
 また、電動機制御装置1によれば、位相同期回路171において、予め定められたオフセット値θoffを考慮して、位相θを生成することができる。したがって、例えば、予め慣性質量や負荷、PIループやローパスフィルタ176等の遅れを、予めオフセット値θoffとして設定しておくことで、速度変動の抑制効果を迅速かつ確実に効かせることが可能である。
 更に、電動機制御装置1によれば、周期関数演算部177によるトルク補償値Tの振幅Aは、振幅変化部178により、設定されるため、電動機2などの機械諸元やそれに伴うパラメータ等を事前に設定する必要がない。また、振幅変化部178は、振幅Aを変化させることにより、急激な速度の変化を伴わずに速度変動を抑制することができる。
 この際、振幅変化部178により、電動機2の速度が安定した後に、振幅Aを徐々に増加させることができるため、電動機2の加速時などの速度変化中に、速度変動の抑制を開始してしまうことによる誤動作、例えば、かえって速度変化が増幅してしまうなどの不具合を防止しつつ、速度変動を抑制することができる。
 また、振幅変化部178は、速度フィードバックの振幅に応じて、振幅Aを決定することも可能であり、この場合、速度変動の大きさ(振動の大きさなど)に応じて、振幅Aを自動生成することにより、速度変動をより効果的に抑制することも可能である。更に、振幅変化部178は、電動機2の速度に変化があった場合に、振幅Aを徐々に減少させることもでき、この場合、速度変動の抑制機能をオフするなどの際に、急激に速度が変化することを抑制することができる。
 以上説明した実施形態の構成は具体例として示したものであり、本明細書にて開示される発明をこれら具体例の構成そのものに限定することは意図されていない。当業者はこれら開示された実施形態に種々の変形を加えてもよく、また、フロー図に示した制御は、同等の機能を奏する他の制御に置き換えてもよい。本明細書にて開示される発明の技術的範囲は、そのようになされた変形をも含むものと理解すべきである。
 また、上記実施形態で説明した一連の処理の少なくとも一部は、専用のハードウエアにより実行させてもよいが、ソフトウエアにより実行させてもよい。一連の処理をソフトウエアにより行う場合、電動機制御装置には汎用又は専用のコンピュータが含まれ、当該コンピュータがプログラムを実行させることにより、上記の一連の処理の少なくとも一部を実現することができる。
 図7は、そのようなコンピュータ100のハードウェア構成の一例を示すブロック図である。コンピュータは、CPU101(Central Processing Unit)と、HDD(Hard Disk Drive)・ROM(Read Only Memory)・RAM(Random Access Memory)等の記録装置102と、LAN(Local Area Network)・インターネット等のネットワークに接続された通信装置103と、マウス・キーボード等の入力装置104と、フレキシブルディスク等の磁気ディスク、各種のCD(Compact Disc)・MO(Magneto Optical)ディスク・DVD(Digital Versatile Disc)等の光ディスク、半導体メモリ等のリムーバブル記憶媒体等を読み書きするドライブ105と、モニタなどの表示装置・スピーカやヘッドホンなどの音声出力装置などの出力装置106等と、を有してもよい。これらコンピュータ100を構成する機器は、データバス107により接続され、互いに情報通信可能に統合されてよい。また、このコンピュータ100は、CPU101に加えて又は換えて、FPGA(Field Programmable Gate Array)又はASIC(Application Specific Integrated Circuit)を有してもよい。そして、このコンピュータ100は、記録装置102・リムーバブル記憶媒体に記録されたプログラム、又はネットワークを介して取得したプログラムを実行することにより、上記一連の処理の少なくとも一部を実行してもよい。

Claims (9)

  1.  指令角周波数と、速度フィードバック角周波数の差から、速度リップル成分を抽出する速度リップル成分抽出部と、
     前記速度リップル成分から前記速度リップル成分の位相を生成する位相同期回路と、
     周期関数の前記位相に応じた値と、所与の振幅を乗算してトルク補償値を生成するトルク補償値生成部と、
     前記指令角周波数と、前記速度フィードバック角周波数の差から、トルク指令値を演算する速度制御部と、
     前記トルク指令値に、前記トルク補償値を加算して得られる補償後トルク指令に基いて、電動機に出力する電流を制御する電流制御部と、
    を有する電動機制御装置。
  2.  前記位相同期回路は、前記速度リップル成分と、前記速度リップル成分の位相を90°ずらせた成分から、d-q変換を用いて前記位相を生成する
    請求項1に記載の電動機制御装置。
  3.  前記位相同期回路は、更に所与のオフセット値に基いて前記位相を生成する、
    請求項2に記載の電動機制御装置。
  4.  前記所与の振幅を変化させる振幅変化部を有する
    請求項1~3のいずれか1項に記載の電動機制御装置。
  5.  前記振幅変化部は、少なくとも、前記電動機の速度の安定後、前記振幅を徐々に増加させる、
    請求項1~4のいずれか1項に記載の電動機制御装置。
  6.  前記振幅変化部は、速度フィードバックの振幅に応じて、前記振幅を決定する、
    請求項5に記載の電動機制御装置。
  7.  前記振幅変化部は、電動機速度に変化があった場合、前記振幅を徐々に減少させる、
    請求項5又は6に記載の電動機制御装置。
  8.  請求項1~7のいずれかに記載の電動機制御装置と、
     前記電動機制御装置により制御される電動機と、
    を有する圧縮機。
  9.  指令角周波数と、速度フィードバック角周波数の差から、速度リップル成分を抽出し、
     前記速度リップル成分から、前記速度リップル成分の位相を生成し、
     周期関数の前記位相に応じた値と、所与の振幅を乗算してトルク補償値を生成し、
     前記指令角周波数と、前記速度フィードバック角周波数の差から、トルク指令値を演算し、
     前記トルク指令値に、前記トルク補償値を加算して補償後トルク指令を得、
     前記補償後トルク指令に基いて、電動機に出力する電流を制御する、
    電動機制御方法。
PCT/JP2017/013801 2017-03-31 2017-03-31 電動機制御装置、圧縮機及び電動機制御方法 WO2018179410A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017538258A JP6222417B1 (ja) 2017-03-31 2017-03-31 電動機制御装置、圧縮機及び電動機制御方法
PCT/JP2017/013801 WO2018179410A1 (ja) 2017-03-31 2017-03-31 電動機制御装置、圧縮機及び電動機制御方法
CN201780089149.3A CN110463017B (zh) 2017-03-31 2017-03-31 电动机控制装置、压缩机和电动机控制方法
EP17903113.3A EP3605829B1 (en) 2017-03-31 2017-03-31 Electric motor control device, compressor, and electric motor control method
US16/587,075 US11424699B2 (en) 2017-03-31 2019-09-30 Electric motor control device, compressor, and electric motor control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/013801 WO2018179410A1 (ja) 2017-03-31 2017-03-31 電動機制御装置、圧縮機及び電動機制御方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/587,075 Continuation US11424699B2 (en) 2017-03-31 2019-09-30 Electric motor control device, compressor, and electric motor control method

Publications (1)

Publication Number Publication Date
WO2018179410A1 true WO2018179410A1 (ja) 2018-10-04

Family

ID=60213951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013801 WO2018179410A1 (ja) 2017-03-31 2017-03-31 電動機制御装置、圧縮機及び電動機制御方法

Country Status (5)

Country Link
US (1) US11424699B2 (ja)
EP (1) EP3605829B1 (ja)
JP (1) JP6222417B1 (ja)
CN (1) CN110463017B (ja)
WO (1) WO2018179410A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109724336A (zh) * 2018-12-13 2019-05-07 青岛海尔空调器有限总公司 空调压缩机转速控制方法和装置
CN109724321A (zh) * 2018-12-13 2019-05-07 青岛海尔空调器有限总公司 空调压缩机转速控制方法
CN109724322A (zh) * 2018-12-13 2019-05-07 青岛海尔空调器有限总公司 一种空调压缩机转速控制方法和装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109237848B (zh) * 2018-08-14 2020-09-04 四川虹美智能科技有限公司 基于变频空调低频振动的控制补偿角度确定方法及装置
GB2596246B (en) * 2019-03-22 2023-03-08 Mitsubishi Electric Corp Speed estimating device for AC motor, driving device for AC motor, refrigerant compressor, and refrigeration cycle apparatus
CN114185370A (zh) * 2020-08-24 2022-03-15 广东博智林机器人有限公司 一种伺服系统及其转速补偿方法
CN113572394A (zh) * 2021-07-20 2021-10-29 华南理工大学 一种在线标定和补偿同步电机伺服系统转矩波动的方法
CN118044110A (zh) * 2022-03-03 2024-05-14 海信空调有限公司 空调器及其控制方法
CN114517937B (zh) * 2022-03-03 2023-08-01 海信空调有限公司 空调器和抑制压缩机低频振动的方法
DE102022205454A1 (de) * 2022-05-31 2023-11-30 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zu einem geräuscharmen Betrieb einer Elektromotorvorrichtung, eine Elektromotorvorrichtung und eine Kraftwärmemaschine
CN117375480B (zh) * 2023-12-07 2024-04-02 深圳威洛博机器人有限公司 一种机器人传动时电机速度波动的同步控制系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5914777B2 (ja) 1976-09-27 1984-04-06 株式会社日立製作所 システム構成方式
US4622500A (en) * 1985-07-11 1986-11-11 The Machlett Laboratories, Inc. Electric motor controller
JP2002247878A (ja) 2001-02-16 2002-08-30 Fujitsu General Ltd 電動機の制御方法
CN101686020A (zh) * 2009-02-25 2010-03-31 西南交通大学 开关电源多频率控制方法及其装置
JP2010288440A (ja) * 2009-05-13 2010-12-24 Yaskawa Electric Corp 電動機の制御装置及びその制御方法
JP2012100510A (ja) * 2010-10-31 2012-05-24 Shinji Aranaka 同期電動機の駆動制御装置
JP2012110111A (ja) * 2010-11-17 2012-06-07 Toyo Electric Mfg Co Ltd 電動機の制御装置
CN102821505A (zh) * 2011-06-07 2012-12-12 英飞特电子(杭州)股份有限公司 一种负载驱动电路及负载驱动方法
JP2014150604A (ja) * 2013-01-31 2014-08-21 Ntn Corp 電気自動車用同期モータの制御装置
US20140265962A1 (en) * 2013-03-14 2014-09-18 Steering Solutions Ip Holding Corporation Motor control system having bandwith compensation

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002039576A1 (fr) * 2000-11-09 2002-05-16 Daikin Industries, Ltd. Procede et dispositif de commande de moteur synchrone
KR100608656B1 (ko) * 2003-09-20 2006-08-04 엘지전자 주식회사 모터의 속도제어장치
JP2008301678A (ja) * 2007-06-04 2008-12-11 Ntn Corp 多相モータの駆動制御回路およびこれを用いたスピンドル装置
JP5413400B2 (ja) * 2011-04-20 2014-02-12 株式会社安川電機 交流電動機の制御装置
JP5914777B2 (ja) 2013-12-26 2016-05-11 グアンドン メイジ コムプレッサ カンパニー リミテッド 圧縮機のトルクの自動補正方法、その装置及び圧縮機並びにその制御方法
JP6173520B1 (ja) * 2016-04-19 2017-08-02 三菱電機株式会社 回転電機の制御装置
CN106026818B (zh) * 2016-07-04 2019-01-18 广东美的制冷设备有限公司 压缩机转矩补偿方法、装置及空调

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5914777B2 (ja) 1976-09-27 1984-04-06 株式会社日立製作所 システム構成方式
US4622500A (en) * 1985-07-11 1986-11-11 The Machlett Laboratories, Inc. Electric motor controller
JP2002247878A (ja) 2001-02-16 2002-08-30 Fujitsu General Ltd 電動機の制御方法
CN101686020A (zh) * 2009-02-25 2010-03-31 西南交通大学 开关电源多频率控制方法及其装置
JP2010288440A (ja) * 2009-05-13 2010-12-24 Yaskawa Electric Corp 電動機の制御装置及びその制御方法
JP2012100510A (ja) * 2010-10-31 2012-05-24 Shinji Aranaka 同期電動機の駆動制御装置
JP2012110111A (ja) * 2010-11-17 2012-06-07 Toyo Electric Mfg Co Ltd 電動機の制御装置
CN102821505A (zh) * 2011-06-07 2012-12-12 英飞特电子(杭州)股份有限公司 一种负载驱动电路及负载驱动方法
JP2014150604A (ja) * 2013-01-31 2014-08-21 Ntn Corp 電気自動車用同期モータの制御装置
US20140265962A1 (en) * 2013-03-14 2014-09-18 Steering Solutions Ip Holding Corporation Motor control system having bandwith compensation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3605829A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109724336A (zh) * 2018-12-13 2019-05-07 青岛海尔空调器有限总公司 空调压缩机转速控制方法和装置
CN109724321A (zh) * 2018-12-13 2019-05-07 青岛海尔空调器有限总公司 空调压缩机转速控制方法
CN109724322A (zh) * 2018-12-13 2019-05-07 青岛海尔空调器有限总公司 一种空调压缩机转速控制方法和装置
CN109724321B (zh) * 2018-12-13 2021-06-01 青岛海尔空调器有限总公司 空调压缩机转速控制方法
CN109724336B (zh) * 2018-12-13 2021-06-04 青岛海尔空调器有限总公司 空调压缩机转速控制方法和装置
CN109724322B (zh) * 2018-12-13 2021-06-22 青岛海尔空调器有限总公司 一种空调压缩机转速控制方法和装置

Also Published As

Publication number Publication date
US11424699B2 (en) 2022-08-23
EP3605829A4 (en) 2020-03-04
JPWO2018179410A1 (ja) 2019-04-04
JP6222417B1 (ja) 2017-11-01
EP3605829B1 (en) 2021-09-08
EP3605829A1 (en) 2020-02-05
US20200028454A1 (en) 2020-01-23
CN110463017B (zh) 2023-05-05
CN110463017A (zh) 2019-11-15

Similar Documents

Publication Publication Date Title
JP6222417B1 (ja) 電動機制御装置、圧縮機及び電動機制御方法
JP4721801B2 (ja) 同期電動機の制御装置
JP5326429B2 (ja) 電動機の脈動抑制装置
JP5098439B2 (ja) 永久磁石同期電動機のセンサレス制御装置
JP5877733B2 (ja) 電動モータの制御装置
JP5510842B2 (ja) 3相モータ制御装置、3相モータシステム、3相モータ制御方法及びプログラム
US10951145B2 (en) Motor control method and device
JP2008000503A (ja) 洗濯機
WO2016000215A1 (zh) 速度波动的抑制方法、控制装置和压缩机控制系统
JP5412820B2 (ja) 交流電動機の制御装置及び制御方法
JPH11150998A (ja) インバータ装置
JP5361452B2 (ja) 同期電動機のセンサレス制御装置
JP5392532B2 (ja) 誘導電動機の制御装置
JP4667741B2 (ja) 誘導電動機の制御装置
JP6769050B2 (ja) モータ制御装置
JP6261889B2 (ja) 回転センサレス制御装置、回転センサレス制御装置の制御方法及び制御プログラム
JP2016171707A (ja) モータ駆動制御装置及びモータ制御システム
JP5851662B1 (ja) 交流回転機の制御装置
JP7152132B2 (ja) モータの制御方法、及び、モータ制御装置
JP2019205238A (ja) インバータ
JP5862691B2 (ja) 電動機駆動装置の制御装置および電動機駆動システム
JP2012175776A (ja) モータ制御装置及びモータ駆動システム
WO2022091208A1 (ja) 電動機速度制御装置及び電動機速度制御方法
JP2023051558A (ja) モータ制御装置
JP2023051559A (ja) モータ制御装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017538258

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17903113

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017903113

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017903113

Country of ref document: EP

Effective date: 20191031