WO2018177420A1 - 一种生物膜包载药物纳米晶体的制备方法及其用途 - Google Patents

一种生物膜包载药物纳米晶体的制备方法及其用途 Download PDF

Info

Publication number
WO2018177420A1
WO2018177420A1 PCT/CN2018/081364 CN2018081364W WO2018177420A1 WO 2018177420 A1 WO2018177420 A1 WO 2018177420A1 CN 2018081364 W CN2018081364 W CN 2018081364W WO 2018177420 A1 WO2018177420 A1 WO 2018177420A1
Authority
WO
WIPO (PCT)
Prior art keywords
drug
delivery system
nano
nanocrystals
biofilm
Prior art date
Application number
PCT/CN2018/081364
Other languages
English (en)
French (fr)
Inventor
陆伟跃
柴芝兰
胡雪峰
谢操
侯惠民
王浩
Original Assignee
复旦大学
上海现代药物制剂工程研究中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 复旦大学, 上海现代药物制剂工程研究中心有限公司 filed Critical 复旦大学
Priority to JP2020502758A priority Critical patent/JP7014886B2/ja
Priority to US16/499,330 priority patent/US11260032B2/en
Priority to EP18776272.9A priority patent/EP3603625A4/en
Publication of WO2018177420A1 publication Critical patent/WO2018177420A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5176Compounds of unknown constitution, e.g. material from plants or animals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/437Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a five-membered ring having nitrogen as a ring hetero atom, e.g. indolizine, beta-carboline
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4738Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4745Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems condensed with ring systems having nitrogen as a ring hetero atom, e.g. phenantrolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/46Ingredients of undetermined constitution or reaction products thereof, e.g. skin, bone, milk, cotton fibre, eggshell, oxgall or plant extracts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6901Conjugates being cells, cell fragments, viruses, ghosts, red blood cells or viral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0063Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres
    • A61K49/0069Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form
    • A61K49/0076Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form dispersion, suspension, e.g. particles in a liquid, colloid, emulsion
    • A61K49/0084Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form dispersion, suspension, e.g. particles in a liquid, colloid, emulsion liposome, i.e. bilayered vesicular structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0063Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres
    • A61K49/0069Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form
    • A61K49/0089Particulate, powder, adsorbate, bead, sphere
    • A61K49/0091Microparticle, microcapsule, microbubble, microsphere, microbead, i.e. having a size or diameter higher or equal to 1 micrometer
    • A61K49/0093Nanoparticle, nanocapsule, nanobubble, nanosphere, nanobead, i.e. having a size or diameter smaller than 1 micrometer, e.g. polymeric nanoparticle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1806Suspensions, emulsions, colloids, dispersions
    • A61K49/1812Suspensions, emulsions, colloids, dispersions liposomes, polymersomes, e.g. immunoliposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1896Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes not provided for elsewhere, e.g. cells, viruses, ghosts, red blood cells, virus capsides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5192Processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less

Definitions

  • the invention belongs to the field of pharmacy, relates to a preparation method of biofilm-coated drug nanocrystals, and the application of the method in biofilm-coated nanocrystals to construct a nano drug delivery system. Specifically, the invention relates to a method for preparing a nano drug delivery system of a biofilm coated drug nanocrystal by coating a nanocrystal of a drug directly as a rigid support skeleton, and coating the nano film of the biofilm coated nanocrystal. Application in the delivery system.
  • the biofilm-coated nano-delivery system is a drug delivery system formed by coating a biofilm on a rigidly supported nanoparticle, and the supported nanoparticle is usually formed of an organic polymer material or an inorganic material.
  • biofilm-coated nano-delivery systems have the following advantages: 1) good biocompatibility and high safety; 2) systemic circulation time Long; 3) Compared with the traditional long-circulating nano-formulation, it has no PEGylation modification and low immunogenicity.
  • biofilm-coated nano-drug delivery systems may also have targeted functions through homologous tropism or modification of surface target molecules.
  • the biofilm-coated nano-drug delivery system can be carried by adsorbing a drug onto a biofilm or encapsulating it in a support matrix.
  • the drug-loading method adsorbed on the membrane is generally used for substances which have specific adsorption to the biofilm, such as the natural adsorption of the erythrocyte membrane by the bacterial toxin, and the erythrocyte membrane coated with the nanoparticle to adsorb the toxin for immunoprevention and treatment, However, this method does not apply to most drugs.
  • the method of loading the drug on the support skeleton is to first package the drug in the nanoparticle formed by the organic polymer carrier (commonly used PLGA) or the inorganic carrier (mesoporous material), and then packaged by extrusion or ultrasonic method. Covering the biofilm to form a drug-loaded biofilm-coated nano-drug delivery system.
  • PLGA nanoparticles are often due to poor compatibility of drug molecules with carriers, resulting in low drug loading; drug loading by inorganic mesoporous materials, although with high drug-loading capacity, is not biodegradable due to inorganic carriers, biological phase Poor tolerance, so limited in practical applications.
  • Drug nanocrystals refer to the formation of nanometer-scale and rigid drug crystals during the crystallization of drug molecules. As a drug intermediate for improving drug dissolution and improving drug bioavailability, it has been widely used in the research and development of oral preparations. In addition, the drug exists in the form of nanocrystals, which have a sustained release function.
  • the invention provides a method for preparing a biofilm-coated nano drug delivery system using rigid drug nanocrystals as a support skeleton.
  • the method replaces the commonly used PLGA or inorganic mesoporous materials in the biofilm-coated nano-delivery system with the nanocrystal of the drug, and provides the support structure required for the biofilm-coated nano drug delivery system, and also realizes Drug loading.
  • the nano-delivery system of biofilm coated drug nanocrystals constructed by the method has many advantages: 1) large drug loading amount, which can meet the dosage requirements of clinical drugs; 2) avoiding the use of carrier materials and improving the delivery system Biocompatibility and safety; 3) Reduce the specific surface energy of the drug nanocrystals and increase the stability of the drug nanocrystals; 4) Both the sustained release properties of the drug nanocrystals and the biofilm coated nano drug delivery The advantage of long circulation in the system. Therefore, this method has great potential application value.
  • the invention provides a preparation method of biofilm coated drug nanocrystals.
  • RGD refers to a polypeptide having a high binding activity to integrin.
  • VAP refers to a polypeptide having a high binding activity to the glucose regulator protein GRP78.
  • WVAP refers to a polypeptide that has high binding activity to both the quorum sensing receptor and the glucose regulator protein GRP78.
  • A7R refers to a polypeptide which has high binding activity to both vascular endothelial growth factor receptor 2 and neuropilin-1.
  • CDX refers to a polypeptide having a high binding activity to an acetylcholine receptor.
  • U87 cell refers to: human malignant glioma U87 cells.
  • PLGA means: a polylactic acid-glycolic acid copolymer.
  • F127 means: poloxamer, a polyoxyethylene polyoxypropylene ether block copolymer.
  • PEG polyethylene glycol
  • DSPE refers to: distearoylphosphatidylethanolamine.
  • PBS refers to a phosphate buffered saline solution.
  • FBS means: fetal bovine serum
  • a first aspect of the present invention provides a nano drug delivery system comprising: a drug nanocrystal coated with a biofilm, wherein the drug directly acts as a rigid support skeleton in a physical form of nanocrystals, Filled in biofilm.
  • the nano drug delivery system according to the first aspect of the present invention wherein the drug nanocrystal is both a skeleton material and a drug reservoir.
  • nano drug delivery system according to the first aspect of the present invention, wherein the drug nanocrystal is a nanoscale crystal formed by treatment of a drug by physical or chemical means.
  • the nano drug delivery system according to the first aspect of the present invention wherein the drug nanocrystal has a particle diameter of 10 nm to 1000 nm, preferably 10 nm to 200 nm.
  • nano drug delivery system according to the first aspect of the invention, wherein the drug is a therapeutic drug and/or a diagnostic drug.
  • the therapeutic drug is selected from one or more of the following: an antitumor drug, an anti-infective drug, an anti-cardiovascular disease drug, an anti-lymphatic disease drug, and an anti-infective drug which can be prepared into a nanocrystal by physical or chemical methods.
  • an antitumor drug an anti-infective drug, an anti-cardiovascular disease drug, an anti-lymphatic disease drug, and an anti-infective drug which can be prepared into a nanocrystal by physical or chemical methods.
  • an antitumor drug an anti-infective drug, an anti-cardiovascular disease drug, an anti-lymphatic disease drug, and an anti-infective drug which can be prepared into a nanocrystal by physical or chemical methods.
  • Immune system disease drugs analgesic drugs;
  • the anti-tumor drug is selected from the group consisting of: taxanes such as paclitaxel, anthracyclines such as doxorubicin, camptothecins, vincristines, zidomines such as bortezomib, and cis.
  • a platinum-based drug such as platinum, irinotecan and/or parthenolide
  • the anti-infective drug is selected from the group consisting of: ceftriaxone, cefoxitin, aztreonam, streptomycin, amphotericin B, and vancomycin , tigecycline, teicoplanin, morpholinium, adenosine and acyclic glucoside
  • the anti-cardiovascular disease drug is selected from the group consisting of: ganglioside, ferulic acid, ligustrazine And troxerutin and sodium ozagrel
  • the anti-lymphatic system disease drug is pabisstat
  • the anti-immune system disease drug is selected from the group consisting of: methylprednisolone and cyclosporine
  • the analgesic drug is selected from the group consisting of: Morphine and methadone
  • the drug is irinotecan or docetaxel or cabazitaxel.
  • the diagnostic drug is selected from one or more of the following: a fluorescent substance, a near-infrared dye, a magnetic resonance imaging agent which can be prepared into a nanocrystal by physical or chemical means.
  • biofilm is a membrane structure having a lipid bilayer
  • the biofilm is selected from a natural cell membrane or an artificial biofilm
  • the natural cell membrane is selected from one or more of the following: an erythrocyte membrane, a platelet membrane, a macrophage membrane, a leukocyte membrane, a tumor cell membrane, and the artificial biofilm is a liposome membrane;
  • the biofilm is selected from one or more of the following: an erythrocyte membrane, a platelet membrane, a tumor cell membrane.
  • nano drug delivery system according to the first aspect of the present invention, wherein the nano drug delivery system surface is further modified by a targeting molecule to construct the nano drug delivery system as a biofilm coating having an active targeting function Nano-delivery system for nanocrystals;
  • the targeting molecule is selected from a polypeptide target molecule
  • polypeptide target molecule is selected from one or more of the group consisting of RGD, VAP, WVAP, A7R, CDX.
  • a second aspect of the present invention provides a method for preparing a nano drug delivery system according to the first aspect of the present invention, wherein the method comprises: filling a drug into a biofilm directly in a physical form of the nanocrystal as a rigid support skeleton.
  • a third aspect of the invention provides the use of the nano-delivery system of the first aspect of the invention for the preparation of an in vivo therapeutic and/or diagnostic product for use in a medicament.
  • a fourth aspect of the invention provides a method of treating and/or diagnosing a disease in vivo, wherein a nano-drug delivery system according to the first aspect of the invention is administered to a subject in need thereof.
  • the present invention provides the use of the inventive method in the preparation of nanofilm delivery systems for biofilm coated nanocrystals.
  • the method for preparing a biofilm-coated drug nanocrystal is to prepare a nanometer of a biofilm-coated drug nanocrystal by constructing a drug into a nanocrystal and then directly coating the biofilm as a rigid support skeleton. Delivery system.
  • the nanocrystals of the drug can be obtained by physical or chemical treatment, and the obtained nanocrystal particle diameter is controlled to be 10 nm to 1000 nm, preferably 10 nm to 200 nm.
  • Drug nanocrystals are composed of therapeutic drugs or diagnostic drugs.
  • the therapeutic drug is an antitumor drug which can be prepared into nanocrystals by physical or chemical methods (such as taxanes such as paclitaxel, anthracyclines such as doxorubicin, camptothecins, vincristine, and bortezole).
  • taxanes such as paclitaxel
  • anthracyclines such as doxorubicin, camptothecins, vincristine, and bortezole.
  • Sami drugs such as rice, platinum drugs such as cisplatin, irinotecan, parthenolide, etc.), anti-infective drugs (such as ceftriaxone, cefoxitin, aztreonam, streptomycin, amphiphilic B, vancomycin, tigecycline, teicoplanin, morpholinium, adenosine, acyclic glycosides, etc.), anti-cardiovascular disease drugs (such as gangliosides, awei Acid, ligustrazine, troxerutin, sodium ozagrel, etc.), anti-lymphatic diseases drugs (such as pabisstat, etc.), anti-immune system diseases (such as methylprednisolone, cyclosporine, etc.), town Pain medications (such as morphine, methadone, etc.).
  • anti-infective drugs such as ceftriaxone, cefoxitin, aztreonam, streptomycin, amphi
  • Diagnostic drugs are fluorescent substances (such as Fluorescein, Rhodamine, etc.) that can be prepared into nanocrystals by physical or chemical methods, near-infrared dyes (such as cy5.5, IR820, DiR, etc.), and magnetic resonance imaging agents (such as Gd agents, iron oxides). Wait).
  • the selected biofilm is a membrane structure with a lipid bilayer, which may be a natural cell membrane such as an erythrocyte membrane, a platelet membrane, a macrophage membrane, a leukocyte membrane, a tumor cell membrane, or an artificial biofilm, such as a liposome membrane. Wait.
  • the nano-delivery system of erythrocyte membrane, platelet membrane coated irinotecan nanocrystal, erythrocyte membrane coated docetaxel nanocrystal nano-drug system, RGD modified erythrocyte membrane coated Dorsey was constructed by the method provided by the invention. He competes in the nano-delivery system of nanocrystals.
  • the erythrocyte membrane of the invention and the nano-delivery system of the RGD-modified red blood cell membrane coated with docetaxel nanocrystals can be used for tumor-targeted delivery in vivo for anti-tumor treatment.
  • the invention provides a preparation method of a biofilm-coated drug nanocrystal, and the application of the method in constructing a biofilm-coated nanocrystal nano-drug system, and the erythrocyte membrane and the RGD modified erythrocyte membrane package constructed by the method
  • the nano-delivery system of docetaxel nanocrystals serves as the basis for tumor therapy.
  • the test results of the present invention indicate that the nano drug delivery system of the biofilm coated drug nanocrystal prepared by the method of the invention has a clear nuclear-membrane structure by TEM, and the stability of the drug nanocrystal is significantly improved.
  • Nanocrystals were successfully coated by biofilm; in vitro release showed that the nano-delivery system coated with biofilm coated drug nanocrystals had obvious drug release properties; in vivo pharmacokinetics showed that biofilm-coated nanocrystals of drug nanocrystals have The advantage of long circulation significantly prolongs the circulation time of the drug in vivo; biofilm coating and targeted molecular modification biofilm coated nanocrystal delivery system of drug nanocrystals can be enriched in tumor tissue by passive or active targeting, Stronger inhibition of tumor growth. In addition, nano-drug delivery systems coated with biofilms of biofilms are safer than commercially available formulations and drug nanocrystals.
  • the preparation method of the biofilm-coated drug nanocrystal provided by the invention can be used for preparing the nano drug delivery system of the biofilm coated drug nanocrystal, and compared with the existing nanofilm delivery system for constructing the biofilm coating.
  • the drug-loading method has greater advantages, so its application prospect is good.
  • Modification of RGD or VAP or WVAP or A7R or CDX by first modifying streptavidin by lipid insertion into the surface of a nanocarrier system coated with erythrocyte membrane coated docetaxel nanocrystals, followed by biotinylation Incubation of RGD or biotinylated VAP or biotinylated WVAP or biotinylated A7R or biotinylated CDX to obtain nanoparticles of RGD or VAP or WVAP or A7R or CDX modified erythrocyte membrane coated docetaxel nanocrystals Delivery system.
  • the in vitro release of the drug was determined by the dialysis bag method.
  • ICR mice were given a commercial docetaxel injection, docetaxel nanocrystals, a red cell membrane coated docetaxel nanocrystal nano-delivery system, and an RGD-modified red blood cell membrane coated with docetaxel nanocrystals.
  • the nano drug delivery system takes blood at a certain time, and the concentration of the drug in the blood is determined by HPLC method, and the pharmacokinetic curve is plotted.
  • U87 subcutaneous xenograft model or U87 intracerebral in situ tumor model nude mice were given a commercial docetaxel injection, erythrocyte membrane coated docetaxel nanocrystal nano-drug system and RGD modified erythrocyte membrane coating
  • the nano-drug system of the Sithasai nanocrystals takes tissue organs and whole blood at a certain time, and the tissue and blood drug concentrations are determined by HPLC.
  • U87 subcutaneous xenograft model nude mice were injected with normal saline, commercially available docetaxel injection, docetaxel nanocrystals, erythrocyte membrane coated docetaxel nanocrystal nano-delivery system and RGD modified erythrocyte membrane.
  • the nano-drug system coated with docetaxel nanocrystals was used to evaluate the anti-tumor effect in vivo by using tumor volume and survival time as indicators.
  • the U8 brain in situ tumor model was injected into the tail vein of nude mice with physiological saline, commercial docetaxel injection, erythrocyte membrane coated docetaxel nanocrystal nano-drug system and RGD modified erythrocyte membrane coated docetaxel.
  • the nano-delivery system of Nanocrystals evaluated the anti-tumor effect in vivo based on the survival time.
  • mice Normal nude mouse tail vein injection of normal saline, commercial docetaxel injection, erythrocyte membrane coated docetaxel nanocrystal nano-delivery system and RGD modified erythrocyte membrane coated docetaxel nanocrystal nano-drug In vivo, the safety of the body was evaluated by the leukocyte level of whole blood and the creatinine clearance rate of mice.
  • Figure 1 shows an electron micrograph of a nano-delivery system of erythrocyte membrane and platelet membrane coated irinotecan nanocrystals:
  • the irinotecan nanocrystal (A) is rod-shaped; the erythrocyte membrane (B) and the platelet membrane (C) coated with irinotecan nanocrystals have a spherical nanoparticle delivery system with a particle size of about 40 nm.
  • Figure 2 shows an electron micrograph of a nano-delivery system of erythrocyte membrane coated docetaxel nanocrystals:
  • the docetaxel nanocrystal (A) is spherical and has a particle size of about 30 nm;
  • the nano drug delivery system (B) coated with docetaxel nanocrystals in the erythrocyte membrane is spherical and has a distinct nuclear-membrane.
  • the structure has a particle size of about 70 nm.
  • Figure 3 shows the in vitro release profile of the nanocarrier system of erythrocyte membrane and RGD modified erythrocyte membrane coated docetaxel nanocrystals:
  • the picture shows docetaxel nanocrystals (DTX NCs), erythrocyte membrane coated docetaxel nanocrystal nano-delivery system (RBC/DTX NCs) and RGD modified erythrocyte membrane coated docetaxel nanocrystals. Release of the drug system (RGD-RBC/DTX NCs) in PBS (pH 7.4) solution.
  • DTX NCs docetaxel nanocrystals
  • RGD-RBC/DTX NCs erythrocyte membrane coated docetaxel nanocrystal nano-delivery system
  • RGD-RBC/DTX NCs RGD modified erythrocyte membrane coated docetaxel nanocrystals
  • Figure 4 shows the in vivo pharmacokinetic profile and parameter table of the nano drug delivery system of erythrocyte membrane and RGD modified erythrocyte membrane coated docetaxel nanocrystals:
  • FIG. 5 is a bar graph showing the tissue distribution of the erythrocyte membrane and the RGD-modified erythrocyte membrane-coated docetaxel nanocrystal nano-delivery system in a U87 subcutaneous xenograft model mouse:
  • the nano-delivery system (RBC/DTX NCs) coated with docetaxel nanocrystals in erythrocyte membranes, regardless of whether or not there is RGD modification, is distributed in the liver of mice compared with the commercially available docetaxel injection (DTX).
  • DTX docetaxel injection
  • Figure 6 is a bar graph showing the tissue distribution of erythrocyte membrane and RGD-modified red blood cell membrane coated docetaxel nanocrystal nano-delivery system in mice bearing U87 brain in situ tumor model:
  • the nano-delivery system (RBC/DTX NCs) coated with docetaxel nanocrystals in red blood cell membranes is distributed in the liver of mice regardless of RGD modification.
  • RGD modification Reduced, increased blood distribution, and targeted molecular modification can carry the nano-delivery system across the blood-brain tumor barrier and significantly increase the accumulation of drugs in the brain tumor site.
  • Figure 7 shows the in vitro anti-U87 cell activity curve of the nanocarrier system of erythrocyte membrane and RGD modified erythrocyte membrane coated with docetaxel nanocrystals:
  • U87 cells are separately marketed with docetaxel injection (DTX), docetaxel nanocrystals (DTX NCs), and erythrocyte membrane coated docetaxel nanocrystal nanodispensing system (RBC/DTX NCs).
  • DTX docetaxel injection
  • DTX NCs docetaxel nanocrystals
  • RGD/DTX NCs erythrocyte membrane coated docetaxel nanocrystal nanodispensing system
  • Figure 8 shows the evaluation of the anti-U87 subcutaneous tumor of the nano drug delivery system coated with erythrocyte membrane and RGD modified erythrocyte membrane coated with docetaxel nanocrystals:
  • Figure A is a graph showing the tumor volume of U87 subcutaneously transplanted nude mice with time;
  • Figure B is the survival curve of U87 subcutaneous transplanted nude mice;
  • Figure C is the comparison of tumor inhibition rates of each group on the 28th day after administration;
  • D is a comparison of the tumor inhibition rates at the median survival of each group after administration.
  • DTX NCs docetaxel nanocrystals
  • RBC/DTX NCs erythrocyte membrane coating
  • PBS normal saline
  • the nanocarrier delivery system (RBC/DTX NCs) of erythrocyte membrane coated docetaxel nanocrystals was significantly higher.
  • the survival time of the model nude mice was prolonged (median survival time 42 days), and the survival time of the RGD-modified erythrocyte membrane coated docetaxel nanocrystal nano-delivery system (RGD-RBC/DTX NCs) group was the most significant ( The median survival time is 47 days).
  • the tumor inhibition rates of the groups were 89.18 ⁇ 6.75% in the RBC/DTX NCs group and 97.28 ⁇ 2.46% in the RGD-RBC/DTX NCs group, which were significantly higher than those in the DTX group (53.28 ⁇ 19.79). %).
  • the tumor inhibition rates of the groups after the median survival were 33.76% ⁇ 6.37% in the RBC/DTX NCs group and 77.24% ⁇ 6.58% in the RGD-RBC/DTX NCs group, which were also significantly higher than the DTX group. Tumor inhibition rate (4.93% ⁇ 2.52%). The results indicated that RGD-RBC/DTX NCs had the best antitumor effect in vivo.
  • Figure 9 shows the evaluation of anti-U87 in situ tumors of the nano-delivery system of erythrocyte membrane and RGD-modified red blood cell membrane coated with docetaxel nanocrystals:
  • Figure U87 Survival curves of nude mice in situ in the brain. The results showed that compared with and with saline (PBS) (median survival 32 days), commercial docetaxel injection (DTX) (median survival 32.5 days) and erythrocyte membrane coated docetaxel nanoparticles Crystals (RBC/DTX NCs) (median survival 34.5 days), RGD modified erythrocyte membrane coated docetaxel nanocrystal nano-delivery system (RGD-RBC/DTX NCs) significantly prolonged mouse survival time (median) The survival period is 62 days).
  • PBS saline
  • DTX commercial docetaxel injection
  • RRC/DTX NCs erythrocyte membrane coated docetaxel nanoparticles Crystals
  • RGD-RBC/DTX NCs RGD modified erythrocyte membrane coated docetaxel nanocrystal nano-delivery system
  • Figure 10 shows the in vivo safety evaluation of the nano drug delivery system of erythrocyte membrane and RGD modified erythrocyte membrane coated docetaxel nanocrystals:
  • Figure A shows the change in the number of white blood cells in whole blood within 12 days after administration in normal nude mice.
  • the results show that the commercially available docetaxel injection (DTX) significantly reduces the level of leukocytes in mice, reaching a minimum value 5 days after administration.
  • erythrocyte membrane coated docetaxel nanocrystal nano-delivery system RBC/DTX NCs
  • RGD modified erythrocyte membrane coated docetaxel nanocrystal nano-drug system
  • Figure B shows the creatinine clearance after 12 days of normal nude mice administration.
  • the results showed that DTX significantly reduced creatinine clearance in mice, with nephrotoxicity, RBC/DTX NCs, There was no significant difference in creatinine clearance between RGD-RBC/DTX NCs and saline groups.
  • Example 1 Erythrocyte membrane, platelet membrane, tumor cell membrane coated with irinotecan, cabazitaxel Preparation and characterization of nano-delivery system for race nanocrystals
  • Tumor cells (U87) were transferred to buffer (20.5 g mannitol, 13 g sucrose dissolved in 500 mL Tris buffer, pH 7.5), centrifuged at 800 g/min for 5 minutes, and the supernatant was discarded.
  • the preparation method is the same as the erythrocyte membrane, the platelet membrane, and the tumor cell membrane coated with the nano delivery system of irinotecan nanocrystals.
  • Example 2 Erythrocyte membrane and RGD, VAP, WVAP, A7R, CDX modified red Preparation and characterization of nano drug delivery system coated with docetaxel nanocrystals
  • the basic preparation process is the same as the erythrocyte membrane coated docetaxel nanocrystal nano-delivery system, the RGD modification method is: 40 ⁇ L streptavidin-PEG 3400- DSPE in PBS solution (5mg/mL) and from 100 ⁇ L The erythrocyte membrane vesicles obtained in the blood were incubated in a 37 ° C water bath for 30 minutes to obtain streptavidin-erythrocyte membrane vesicles.
  • streptavidin-erythrocyte membrane vesicles were mixed with docetaxel nanocrystals and ultrasonicated to obtain a nano-delivery system of surface-modified streptavidin-coated erythrocyte membrane-coated nanocrystals, and then 100 ⁇ L of biotin was added.
  • PEG 3500- RGD in PBS (0.1 mg/mL) was incubated in a 37 ° C water bath for 10 minutes to obtain a nano-delivery system of RGD-modified red blood cell membrane coated docetaxel nanocrystals.
  • the preparation method is the same as the nano drug delivery system of RGD modified red blood cell membrane coated with docetaxel nanocrystals.
  • Example 3 Erythrocyte membrane and RGD modified erythrocyte membrane coated docetaxel nanocrystal delivery In vitro release test of drug system
  • the in vitro release was determined by the dialysis bag method. 0.3 mL of docetaxel nanocrystals (DTX NCs), erythrocyte membrane coated docetaxel nanocrystal nanodispensing system (RBC/DTX NCs) and RGD modified erythrocyte membrane coated with docetaxel nanocrystals
  • the nano drug delivery system (RGD-RBC/DTX NCs) was sealed in a dialysis bag (molecular weight cutoff 7kDa) and placed in 6mL PBS solution (containing 1% sodium dodecyl sulfate) in pH 7.4, shaken at 37 ° C , at 15 and 30 min, 1, 1.5, 2, 4, 8, 24, 48, and 72 h, respectively, take 0.2 mL of the release medium, and add the same volume of fresh medium, the diluted solution is appropriately diluted, and the determination of docetaxel by HPLC The concentration of the game was plotted and the release curve was plotted. The results are shown in Figure 3.
  • Example 4 Erythrocyte membrane and RGD modified erythrocyte membrane coated with docetaxel nanocrystals In vivo pharmacokinetic test of nano drug delivery system
  • ICR mice were injected with 150 ⁇ L of commercial docetaxel injection (DTX), docetaxel nanocrystals (DTX NCs), and erythrocyte membrane coated docetaxel nanocrystal nano-drug system (RBC/DTX).
  • NCs docetaxel injection
  • DTX NCs docetaxel nanocrystals
  • RGD-RBC/DTX NCs RGD modified erythrocyte membrane coated docetaxel nanocrystal nano-delivery systems
  • Example 5 Erythrocyte membrane and RGD modified erythrocyte membrane coated with docetaxel nanocrystals Tissue distribution test in nano drug delivery system
  • U87 subcutaneous tumor or orthotopic tumor model was constructed, and 150 ⁇ L of commercial docetaxel injection (DTX), erythrocyte membrane coated docetaxel nanocrystal nano drug delivery system (RBC/DTX NCs) and RGD were respectively injected into the tail vein.
  • the nano-drug system (RGD-RBC/DTX NCs) modified with erythrocyte membrane coated with docetaxel nanocrystals was taken.
  • the tissues and whole blood were taken at 2h and 24h respectively.
  • the homogenate was treated with diethyl ether/tetrahydrofuran (1:4) solution.
  • the mixture was extracted twice, evaporated, and reconstituted with acetonitrile, followed by HPLC analysis. The results are shown in Figures 5 and 6.
  • Example 6 Erythrocyte membrane and RGD modified erythrocyte membrane coated with docetaxel nanocrystals In vitro pharmacodynamic test of nano drug delivery system
  • Example 7 Erythrocyte membrane and RGD modified erythrocyte membrane coated with docetaxel nanocrystals In vivo pharmacodynamic evaluation of nano drug delivery system
  • the U87 subcutaneous tumor animal model was constructed, and the tumor size was observed regularly. When the tumor size was 150 mm 3 , the test was performed in groups. Intravenous injection of PBS (pH 7.4), commercial docetaxel injection (DTX), docetaxel nanocrystals (DTX NCs), erythrocyte membrane coated docetaxel nanocrystal nano-drug system (RBC) /DTX NCs) and RGD modified erythrocyte membrane coated docetaxel nanocrystal nanodispensing systems (RGD-RBC/DTX NCs). Docetaxel is administered at a total dose of 25 mg/kg in a single dose. The survival time of nude mice was recorded (Fig.
  • V tumor volume 0.5 (a ⁇ b 2 )
  • Tumor inhibition rate (%) (1-V experimental group tumor volume / V control tumor volume ) ⁇ 100
  • U8 in situ tumor model was constructed. After 10 days of tumor implantation, PBS (pH 7.4), commercial docetaxel injection (DTX), docetaxel nanocrystals (DTX NCs), and erythrocyte membrane coating were injected into the tail vein. Nano-delivery systems (RBC/DTX NCs) and RGD-modified red blood cell membrane coated docetaxel nanocrystal nanodispensing systems (RGD-RBC/DTX NCs). Docetaxel is administered at a total dose of 25 mg/kg in a single dose. The survival time of nude mice was recorded (Fig. 9).
  • Example 8 Erythrocyte membrane and RGD modified erythrocyte membrane coated with docetaxel nanocrystals Nano drug delivery system safety evaluation
  • mice Normal nude mice were injected with normal saline, commercial docetaxel injection (DTX), erythrocyte membrane coated docetaxel nanocrystal nano-delivery system (RBC/DTX NCs) and RGD modified erythrocyte membrane coating. Nano-delivery systems for the West Indiana nanocrystals (RGD-RBC/DTX NCs). Docetaxel is administered at a total dose of 25 mg/kg in a single dose. Whole blood was measured for white blood cell counts on days 1, 3, 5, 7, 9, and 11 after administration (Fig. 10A), and serum was taken on day 12 after administration to determine creatinine clearance (Fig. 10B).
  • DTX erythrocyte membrane coated docetaxel nanocrystal nano-delivery system
  • RGD-RBC/DTX NCs Nano-delivery systems for the West Indiana nanocrystals

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)
  • Botany (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Zoology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Hematology (AREA)
  • Virology (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Cell Biology (AREA)
  • Immunology (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

一种纳米递药系统,包括由生物膜包覆的药物纳米晶体,所述药物以纳米晶体的物理形态直接作为刚性支撑骨架,填充于生物膜中。该纳米递药系统具有载药量高、生物相容性好、体循环时间长和药物缓释的特点。

Description

一种生物膜包载药物纳米晶体的制备方法及其用途 技术领域
本发明属于药学领域,涉及生物膜包覆药物纳米晶体的制备方法,以及该方法在生物膜包覆纳米晶体构建纳米递药系统中的应用。具体涉及将药物的纳米晶体直接作为刚性支撑骨架,包覆于生物膜中制备生物膜包覆药物纳米晶体的纳米递药系统的一种方法,以及该方法在制备生物膜包覆纳米晶体的纳米递药系统中的应用。
背景技术
生物膜包覆的纳米递药系统是在刚性支撑的纳米粒上包覆一层生物膜形成的递药系统,提供支撑的纳米粒通常由有机高分子材料或无机材料形成。与传统的脂质体、聚合物胶束及纳米粒等递药系统相比,生物膜包覆的纳米递药系统具有以下优势:1)生物相容性好,安全性高;2)体循环时间长;3)与传统的长循环纳米制剂相比,无PEG化修饰,免疫原性低。此外,通过同源趋向性或表面靶分子的修饰,生物膜包覆的纳米递药系统亦可具有靶向性功能。
生物膜包覆的纳米递药系统载药可通过将药物吸附于生物膜上或包载于支撑骨架中实现。吸附于膜上的载药方式一般用于对生物膜具有特异性吸附的物质,如利用细菌毒素对红细胞膜的天然吸附作用,使红细胞膜包覆纳米粒吸附毒素后用于免疫预防与治疗,但这种方式载药对大多数药物不适用。将药物包载于支撑骨架的载药方式是先将药物包载于有机高分子载体(常用PLGA)或无机载体(介孔材料)形成的纳米粒中,再通过挤压法或超声法等包覆于生物膜中,形成载药的生物膜包覆的纳米递药系统。然而,借助PLGA纳米粒载药往往由于药物分子与载体的相容性差,导致载药量低;借助无机介孔材料载药尽管具有较高的载药能力,但因无机载体不可降解,生物相容性差,因而实际应用中受限。
药物纳米晶体,是指药物分子结晶过程中形成具有纳米尺度且刚性的药物晶体,其作为一种改善药物溶出度,提高药物生物利用度的药物中间体,已广泛用于口服制剂的研究开发。此外,药物以纳米晶体的形式存在,使其自身具有缓释功能。
本发明提供了一种以刚性的药物纳米晶体作为支撑骨架,制备生物膜包覆的纳米递药系统的方法。该法以药物的纳米晶体替代以往制备生物膜包覆纳米递药系统中常用的PLGA或无机介孔材料,既提供了生物膜包覆的纳米递药系统所需的支撑结构,同时也实现了载药。该方法构建的生物膜包覆药物纳米晶体的纳米递药系统具有诸多优点:1)载药量大,可满足临床用药的剂量要求;2)避免了载体材料的使用,提高了递药系统的生物相容性和安全性;3)降低了药物纳米晶体的比表面能,增加了药物纳米晶体的稳定性;4)兼具了药物纳米晶体的缓释性能与生物膜包覆的纳米递药系统体内长循环的优点。因而,该方法具有巨大的潜在应用价值。
发明内容
本发明提供了一种生物膜包覆药物纳米晶体的制备方法。
在阐述本发明内容之前,定义本文中所使用的术语如下:
术语“RGD”是指:与整合素具有高度结合活性的多肽。
术语“VAP”是指:与葡萄糖调节蛋白GRP78具有高度结合活性的多肽。
术语“WVAP”是指:同时与群体感应受体和葡萄糖调节蛋白GRP78具有高度结合活性的多肽。
术语“A7R”是指:同时与血管内皮生长因子受体2和神经纤毛蛋白-1具有高度结合活性的多肽。
术语“CDX”是指:与乙酰胆碱受体具有高度结合活性的多肽。
术语“U87细胞”是指:人恶性胶质瘤U87细胞。
术语“PLGA”是指:聚乳酸-羟基乙酸共聚物。
术语“F127”是指:泊洛沙姆,聚氧乙烯聚氧丙烯醚嵌段共聚 物。
术语“PEG”是指:聚乙二醇。
术语“DSPE”是指:二硬脂酰基磷脂酰乙醇胺。
术语“PBS”是指:磷酸缓冲盐溶液。
术语“FBS”是指:胎牛血清。
本发明的第一方面提供了一种纳米递药系统,所述纳米递药系统包括:由生物膜包覆的药物纳米晶体,其中,所述药物以纳米晶体的物理形态直接作为刚性支撑骨架,填充于生物膜中。
根据本发明第一方面所述的纳米递药系统,其中,所述药物纳米晶体既是骨架材料,又是药物贮体。
根据本发明第一方面所述的纳米递药系统,其中,所述的药物纳米晶体是由药物通过物理或化学方法处理而形成的纳米尺度结晶。
根据本发明第一方面所述的纳米递药系统,其中,所述的药物纳米晶体粒径为10nm~1000nm,优选为10nm~200nm。
根据本发明第一方面所述的纳米递药系统,其中,所述药物为治疗药物和/或诊断药物。
优选地,所述治疗药物选自以下一种或多种:可通过物理或化学方法制备成纳米晶体的抗肿瘤药物、抗感染药物、抗心脑血管系统疾病药物、抗淋巴系统疾病药物、抗免疫系统疾病药物、镇痛药物;
优选地:所述抗肿瘤药物选自:紫杉醇等紫杉烷类药物、阿霉素等蒽环类药物、喜树碱类药物、长春新碱类药物、硼替佐米等佐米类药物、顺铂等铂类药物、伊利替康和/或小白菊内酯类药物;所述抗感染药物选自:头孢曲松、头孢西丁、氨曲南、链霉素、两性霉素B、万古霉素、替加环素、替考拉宁、吗啉呱、阿糖腺苷和无环茑苷;所述抗心脑血管系统疾病药物选自:神经节苷脂、阿魏酸、川穹嗪、曲克芦丁和奥扎格雷钠;所述抗淋巴系统疾病药物为帕比司他;所述抗免疫系统疾病药物选自:甲泼尼龙和环孢素;所述镇痛药物选自:吗啡和美沙酮等;
最优选地,所述药物为伊立替康或多西他赛或卡巴他赛。
优选地,所述诊断药物选自以下一种或多种:可通过物理或化学 方法制备成纳米晶体的荧光物质、近红外染料、磁共振影像剂。
根据本发明第一方面所述的纳米递药系统,其中,所述的生物膜是具有脂质双层的膜结构;
优选地,所述生物膜选自天然的细胞膜或人工生物膜;
更优选地,所述天然的细胞膜选自以下一种或多种:红细胞膜、血小板膜、巨噬细胞膜、白细胞膜、肿瘤细胞膜,所述人工生物膜为脂质体膜;
进一步优选地,所述生物膜选自以下一种或多种:红细胞膜、血小板膜、肿瘤细胞膜。
根据本发明第一方面所述的纳米递药系统,其中,所述纳米递药系统表面进一步被靶向分子修饰,从而将所述纳米递药系统构建为具有主动寻靶功能的生物膜包覆纳米晶体的纳米递药系统;
优选地,所述靶向分子选自多肽靶分子;
更优选地,所述多肽靶分子选自以下一种或多种:RGD、VAP、WVAP、A7R、CDX。
本发明第二方面提供了本发明第一方面所述的纳米递药系统的制备方法,其中,所述方法包括:将药物以纳米晶体的物理形态直接作为刚性支撑骨架,填充于生物膜中。
本发明第三方面提供了本发明第一方面所述的纳米递药系统在制备用于药物的体内治疗和/或诊断产品中的应用。
本发明第四方面提供了一种药物体内治疗和/或诊断疾病的方法,向有需要的受试者给予根据本发明第一方面所述的纳米递药系统。
根据本发明第三方面所述的应用或根据本发明第四方面所述的方法,其中,所述药物体内治疗和/或诊断为药物的体内靶向治疗和/或药物的体内靶向诊断。
本发明提供了发明的方法在制备生物膜包覆纳米晶体的纳米递药系统中的应用。
具体的,本发明提供的生物膜包覆药物纳米晶体的制备方法,是通过将药物构建成纳米晶体,然后直接作为刚性支撑骨架包覆于生物 膜中制得生物膜包覆药物纳米晶体的纳米递药系统。药物的纳米晶体可以通过物理或化学处理制得,所得的纳米晶体粒径控制在10nm~1000nm,优选为10nm~200nm。药物纳米晶体是由治疗药物或诊断药物构成。治疗药物是可通过物理或化学方法制备成纳米晶体的抗肿瘤药物(如紫杉醇等紫杉烷类药物、阿霉素等蒽环类药物、喜树碱类药物、长春新碱类药物、硼替佐米等佐米类药物、顺铂等铂类药物、伊利替康、小白菊内酯类药物等)、抗感染药物(如头孢曲松、头孢西丁、氨曲南、链霉素、两性霉素B、万古霉素、替加环素、替考拉宁、吗啉呱、阿糖腺苷、无环茑苷等等)、抗心脑血管系统疾病药物(如神经节苷脂、阿魏酸、川穹嗪、曲克芦丁、奥扎格雷钠等)、抗淋巴系统疾病药物(如帕比司他等)、抗免疫系统疾病药物(如甲泼尼龙、环孢素等)、镇痛药物(如吗啡、美沙酮等)。诊断药物是可通过物理或化学方法制备成纳米晶体的荧光物质(如Fluorescein、Rhodamine等),近红外染料(如cy5.5、IR820、DiR等),磁共振影像剂(如Gd剂、氧化铁等)。选用的生物膜是具有脂质双层的膜结构,可以是天然的细胞膜,如红细胞膜、血小板膜、巨噬细胞膜、白细胞膜及肿瘤细胞膜等,也可为人工生物膜,如脂质体膜等。
利用本发明提供的方法构建了红细胞膜、血小板膜包覆伊立替康纳米晶体的纳米递药系统,红细胞膜包覆多西他赛纳米晶体的纳米递药系统,RGD修饰红细胞膜包覆多西他赛纳米晶体的纳米递药系统。
本发明的红细胞膜及RGD修饰红细胞膜包覆多西他赛纳米晶体的纳米递药系统可进行体内的肿瘤靶向递药,用于抗肿瘤治疗。
本发明提供了一种生物膜包覆药物纳米晶体的制备方法,及该方法在构建生物膜包覆纳米晶体的纳米递药系统中的应用,以及该方法构建的红细胞膜及RGD修饰红细胞膜包覆多西他赛纳米晶体的纳米递药系统作为肿瘤治疗的基础。本发明的试验结果表明:通过本发明方法制备的生物膜包覆药物纳米晶体的纳米递药系统,透射电镜表征显示有明显的核-膜结构,同时药物纳米晶体的稳定性显著提高,说明药物纳米晶体被生物膜成功包覆;体外释放显示生物膜包覆药物纳米晶体的纳米递药系统具有明显的药物缓释性能;体内药动学表明生物膜包覆药物纳米晶体的纳米递药系统具有长循环的优势,显著延长 药物在体内的循环时间;生物膜包覆及靶向分子修饰生物膜包覆药物纳米晶体的纳米递药系统可通过被动或主动靶向作用富集于肿瘤组织,具有更强的抑制肿瘤生长作用。此外,生物膜包覆药物纳米晶体的纳米递药系统与药物市售制剂及药物纳米晶体相比,其安全性更高。以上结果表明,本发明提供的生物膜包覆药物纳米晶体的制备方法可用于制备生物膜包覆药物纳米晶体的纳米递药系统,且较当前已有的构建生物膜包覆的纳米递药系统及其载药方法具有更大的优越性,故其应用前景良好。
1.红细胞膜、血小板膜、肿瘤细胞膜包覆伊立替康、卡巴他赛纳米晶体的纳米递药系统制备与表征
取活体动物目标细胞(红细胞或血小板)或肿瘤细胞提取细胞膜,制得细胞膜悬液;伊立替康或卡巴他赛加入适量表面活性剂,成膜水化后得药物纳米晶体悬液;将细胞膜悬液与药物纳米晶体悬液混合超声,得生物膜包覆伊立替康纳米晶体的纳米递药系统。透射电镜表征其形貌。
2.红细胞膜及RGD、VAP、WVAP、A7R、CDX修饰红细胞膜包覆多西他赛纳米晶体的纳米递药系统制备与表征
同上法制备与表征红细胞膜包覆多西他赛纳米晶体的纳米递药系统。
RGD或VAP或WVAP或A7R或CDX的修饰是通过先将链霉亲和素以脂质插入法修饰到红细胞膜包覆多西他赛纳米晶体的纳米递药系统表面,然后与生物素化的RGD或生物素化的VAP或生物素化的WVAP或生物素化的A7R或生物素化的CDX孵育,得到RGD或VAP或WVAP或A7R或CDX修饰红细胞膜包覆多西他赛纳米晶体的纳米递药系统。透析袋法测定药物的体外释放。
3.红细胞膜与RGD修饰红细胞膜包覆多西他赛纳米晶体的纳米递药系统体内药动学考察
ICR小鼠尾静脉给予市售多西他赛注射剂、多西他赛纳米晶体、红细胞膜包覆多西他赛纳米晶体的纳米递药系统和RGD修饰红细胞膜包覆多西他赛纳米晶体的纳米递药系统,于一定时间取血,HPLC法测定血中药物浓度,绘制药动学曲线。
4.红细胞膜与RGD修饰红细胞膜包覆多西他赛纳米晶体的纳米递药系统体内组织分布考察
荷U87皮下移植瘤模型或U87脑内原位瘤模型裸鼠尾静脉给予市售多西他赛注射剂、红细胞膜包覆多西他赛纳米晶体的纳米递药系统和RGD修饰红细胞膜包覆多西他赛纳米晶体的纳米递药系统,于一定时间取组织脏器及全血,HPLC法测定组织及血中药物浓度。
5.红细胞膜与RGD修饰红细胞膜包覆多西他赛纳米晶体的纳米递药系统体外药效学评价
MTT法考察市售多西他赛注射剂、多西他赛纳米晶体、红细胞膜包覆多西他赛纳米晶体的纳米递药系统和RGD修饰红细胞膜包覆多西他赛纳米晶体的纳米递药系统对脑胶质瘤细胞U87的体外生长抑制作用。
6.红细胞膜与RGD修饰红细胞膜包覆多西他赛纳米晶体的纳米递药系统体内药效学评价
荷U87皮下移植瘤模型裸鼠尾静脉分别注射生理盐水、市售多西他赛注射剂、多西他赛纳米晶体、红细胞膜包覆多西他赛纳米晶体的纳米递药系统和RGD修饰红细胞膜包覆多西他赛纳米晶体的纳米递药系统,以瘤体积、生存时间为指标评价体内抗肿瘤效果。
荷U87脑内原位瘤模型裸鼠尾静脉分别注射生理盐水、市售多西他赛注射剂、红细胞膜包覆多西他赛纳米晶体的纳米递药系统和RGD修饰红细胞膜包覆多西他赛纳米晶体的纳米递药系统,以生存时间为指标评价体内抗肿瘤效果。
7.红细胞膜与RGD修饰红细胞膜包覆多西他赛纳米晶体的纳米递药系统安全性评价
正常裸鼠尾静脉分别注射生理盐水、市售多西他赛注射剂、红细胞膜包覆多西他赛纳米晶体的纳米递药系统和RGD修饰红细胞膜包覆多西他赛纳米晶体的纳米递药系统,以全血的白细胞水平及小鼠肌酐清除率为指标评价体内安全性。
附图的简要说明
图1示出了红细胞膜、血小板膜包覆伊立替康纳米晶体的纳米递药系统电镜照片:
由图可见,伊立替康纳米晶体(A)呈棒状;红细胞膜(B)及血小板膜(C)包覆伊立替康纳米晶体的纳米递药系统呈球形,粒径在40nm左右。
图2示出了红细胞膜包覆多西他赛纳米晶体的纳米递药系统电镜照片:
由图可见,多西他赛康纳米晶体(A)呈球形,粒径在30nm左右;红细胞膜包覆多西他赛纳米晶体的纳米递药系统(B)呈球形,具有明显的核-膜结构,粒径在70nm左右。
图3示出了红细胞膜及RGD修饰红细胞膜包覆多西他赛纳米晶体的纳米递药系统体外释放曲线:
图为多西他赛纳米晶体(DTX NCs)、红细胞膜包覆多西他赛纳米晶体的纳米递药系统(RBC/DTX NCs)和RGD修饰红细胞膜包覆多西他赛纳米晶体的纳米递药系统(RGD-RBC/DTX NCs)在PBS(pH7.4)溶液中的释放。结果表明,经红细胞膜包覆后多西他赛具有良好的缓释效果,且靶向分子的修饰对释放无影响。
图4示出了红细胞膜及RGD修饰红细胞膜包覆多西他赛纳米晶体的纳米递药系统体内药动学曲线与参数表:
由图和表可见,红细胞膜包覆多西他赛纳米晶体的纳米递药系统(RBC/DTX NCs)无论是否有RGD修饰,与多西他赛纳米晶体(DTX NCs)及市售多西他赛注射剂(DTX)相比,在小鼠体内均具有更长的循环时间,且靶向分子修饰对其小鼠体内药动学行为无明显影响。图5示出了红细胞膜及RGD修饰红细胞膜包覆多西他赛纳米晶体的纳米递药系统在荷U87皮下移植瘤模型小鼠体内组织分布柱状图:
由图可见,红细胞膜包覆多西他赛纳米晶体的纳米递药系统(RBC/DTX NCs)无论是否有RGD修饰,与市售多西他赛注射剂(DTX)相比,在小鼠肝脏分布减少,血及肿瘤中分布提高,且靶向分子修饰能显著增加药物在肿瘤部位的蓄积量。
图6示出了红细胞膜及RGD修饰红细胞膜包覆多西他赛纳米晶体的纳米递药系统在荷U87脑内原位瘤模型小鼠体内组织分布柱状图:
由图可见,与市售多西他赛注射剂(DTX)相比,红细胞膜包覆多西他赛纳米晶体的纳米递药系统(RBC/DTX NCs)无论是否有RGD修饰,在小鼠肝脏分布减少,血中分布提高,而靶向分子修饰能携带纳米递药系统跨越血-脑肿瘤屏障并显著增加药物在脑肿瘤部位的蓄积量。
图7示出了红细胞膜及RGD修饰红细胞膜包覆多西他赛纳米晶体的纳米递药系统体外抗U87细胞活性曲线:
由图可见,U87细胞分别与市售多西他赛注射剂(DTX)、多西他赛纳米晶体(DTX NCs)、红细胞膜包覆多西他赛纳米晶体的纳米递药系统(RBC/DTX NCs)、RGD修饰红细胞膜包覆多西他赛纳米晶体的纳米递药系统(RGD-RBC/DTX NCs)孵育48小时后,其IC 50分别为41.6、49.7、233.8和13.8nM。结果说明,有无RGD修饰的RBC/DTX NCs均能抑制U87细胞的体外生长,RGD修饰的RBC/DTX NCs体外抗肿瘤活性远优于无靶组。
图8示出了红细胞膜及RGD修饰红细胞膜包覆多西他赛纳米晶体的纳米递药系统抗U87皮下瘤评价:
图A为U87皮下移植瘤裸小鼠瘤体积随时间的变化曲线;图B为U87皮下移植瘤裸小鼠的生存曲线;图C为给药后第28天各组的抑瘤率比较;图D为给药后各组达到中位生存期时的抑瘤率比较。结果显示,多西他赛纳米晶体(DTX NCs)给药后迅速导致模型裸小鼠死亡,而红细胞膜包覆后(RBC/DTX NCs)克服了其毒性,且与生理盐水(PBS)(中位生存期27.5天)和市售多西他赛注射剂(DTX)(中位生存期38天)相比,红细胞膜包覆多西他赛纳米晶体的纳米递药系统(RBC/DTX NCs)明显延长了模型裸小鼠的生存时间(中位生存期42天),RGD修饰红细胞膜包覆多西他赛纳米晶体的纳米递药系统(RGD-RBC/DTX NCs)组生存时间延长最显著(中位生存期47天)。给药后第28天各组的抑瘤率分别为:RBC/DTX NCs组89.18±6.75%、RGD-RBC/DTX NCs组97.28±2.46%,均显著高于DTX组抑瘤率(53.28±19.79%)。给药后均达中位生存期后各组的抑瘤率分别为:RBC/DTX NCs组33.76%±6.37%、RGD-RBC/DTX NCs组77.24%±6.58%,也均显著高于DTX组抑瘤率(4.93%±2.52%)。结果 说明,RGD-RBC/DTX NCs的体内抑瘤药效最优。
图9示出了红细胞膜及RGD修饰红细胞膜包覆多西他赛纳米晶体的纳米递药系统抗U87原位瘤评价:
图U87脑内原位瘤裸小鼠的生存曲线。结果显示,相较于且与生理盐水(PBS)(中位生存期32天)、市售多西他赛注射剂(DTX)(中位生存期32.5天)和红细胞膜包覆多西他赛纳米晶(RBC/DTX NCs)(中位生存期34.5天),RGD修饰红细胞膜包覆多西他赛纳米晶体的纳米递药系统(RGD-RBC/DTX NCs)显著延长小鼠生存时间(中位生存期62天)。
图10示出了红细胞膜及RGD修饰红细胞膜包覆多西他赛纳米晶体的纳米递药系统体内安全性评价:
图A为正常裸鼠给药后12天内全血中白细胞数变化,结果表明,市售多西他赛注射剂(DTX)显著降低小鼠体内白细胞水平,在给药后5天达到最低值,给药后10天恢复至正常水平,红细胞膜包覆多西他赛纳米晶体的纳米递药系统(RBC/DTX NCs)和RGD修饰红细胞膜包覆多西他赛纳米晶体的纳米递药系统(RGD-RBC/DTX NCs)可明显减缓其白细胞数下降;图B为正常裸鼠给药12天后的肌酐清除率,结果表明,DTX显著降低小鼠肌酐清除率,具有肾毒性,RBC/DTX NCs、RGD-RBC/DTX NCs和生理盐水组小鼠的肌酐清除率无明显区别。
实施发明的最佳方式
通过下述实施例将有助于进一步理解本发明,但本发明不局限于如下描述范围。
实施例1:红细胞膜、血小板膜、肿瘤细胞膜包覆伊立替康、卡巴他 赛纳米晶体的纳米递药系统制备与表征
1、红细胞膜包覆伊立替康纳米晶体的纳米递药系统制备与表征
取雄性ICR小鼠全血,1000g/分钟4℃离心5分钟,弃去上层血清与白细胞层,用1×PBS洗涤下层红细胞后在0.25×PBS中4℃重悬30分钟,15000g/分钟4℃离心7分钟去除血红蛋白,所得到的浅红 色红细胞膜重悬并保存于双蒸水中,以BCA试剂盒检测其膜蛋白浓度;称取4mg的伊立替康及适量的表面活性剂F127于25mL茄型瓶中,加入适量甲醇溶解成膜水化,制备得到分散性良好的伊立替康纳米晶体;将红细胞膜混悬液100W超声3分钟,得到红细胞膜囊泡,再将4mg/mL伊立替康纳米晶体溶液与红细胞膜囊泡(2:1,w/w)混合后超声,得到红细胞膜包覆伊立替康纳米晶体的纳米递药系统。醋酸铀负染色电镜法观察形态,结果见附图1。
2、血小板膜包覆伊立替康纳米晶体的纳米递药系统制备与表征
取雄性ICR小鼠全血,300g/分钟4℃离心5分钟,取上清,2000g/分钟离心5分钟,弃上清,用双蒸水洗涤下层血小板后反复冻融3次,20000g/分钟离心7分钟,所得到的白色血小板膜重悬并保存于双蒸水中,以BCA试剂盒检测其膜蛋白浓度;将血小板膜悬液与伊立替康纳米晶体溶液同上操作,得到血小板膜包覆伊立替康纳米晶体的纳米递药系统。醋酸铀负染色电镜法观察形态,结果见附图1。
3、肿瘤细胞膜包覆伊立替康纳米晶体的纳米递药系统制备
肿瘤细胞(U87)转移至缓冲液(20.5g甘露醇,13g蔗糖溶于500mL盐酸三羟甲基氨基甲烷(Tris)缓冲液,pH 7.5),800g/分钟离心5分钟,弃上清,残留物中加入上述缓冲液并添加乙二胺四乙酸及蛋白酶抑制剂,超声均质,均质液800g/分钟离心5分钟,取上清,8000g/分钟-20℃离心25分钟,取上清,30000g/分钟-20℃离心35分钟,弃上清得肿瘤细胞膜,肿瘤细胞膜重悬并保存于0.2mM乙二胺四乙酸溶液中,以BCA试剂盒检测其膜蛋白浓度;将肿瘤细胞膜悬液与伊立替康纳米晶体溶液同上操作,得到肿瘤细胞膜包覆伊立替康纳米晶体的纳米递药系统。
4、红细胞膜、血小板膜、肿瘤细胞膜包覆卡巴他赛纳米晶体的纳米递药系统制备
制备方法同红细胞膜、血小板膜、肿瘤细胞膜包覆伊立替康纳米晶体的纳米递药系统。
实施例2:红细胞膜及RGD、VAP、WVAP、A7R、CDX修饰红细 胞膜包覆多西他赛纳米晶体的纳米递药系统制备与表征
1、红细胞膜包覆多西他赛纳米晶体的纳米递药系统制备与表征
制备与表征的方法同红细胞膜包覆伊立替康纳米晶体的纳米递药系统。结果见附图2。
2、RGD修饰红细胞膜包覆多西他赛纳米晶体的纳米递药系统制备
基本制备过程同红细胞膜包覆多西他赛纳米晶体的纳米递药系统,RGD修饰的方法为:将40μL链霉亲和素-PEG 3400-DSPE的PBS溶液(5mg/mL)与从100μL全血中取得的红细胞膜囊泡在37℃水浴中孵育30分钟,得到链霉亲和素-红细胞膜囊泡。将所得链霉亲和素-红细胞膜囊泡与多西他赛纳米晶体混合后超声,得到表面修饰链霉亲和素的红细胞膜包覆纳米晶体的纳米递药系统,然后加入100μL生物素-PEG 3500-RGD的PBS溶液(0.1mg/mL),37℃水浴中孵育10分钟,得到RGD修饰红细胞膜包覆多西他赛纳米晶体的纳米递药系统。
3、VAP、WVAP、A7R、CDX修饰红细胞膜包覆多西他赛纳米晶体的纳米递药系统制备
制备方法同RGD修饰红细胞膜包覆多西他赛纳米晶体的纳米递药系统。
实施例3:红细胞膜及RGD修饰红细胞膜包覆多西他赛纳米晶体递 药系统的体外释放试验
透析袋法测定体外释放。分别将0.3mL多西他赛纳米晶体(DTX NCs)、红细胞膜包覆多西他赛纳米晶体的纳米递药系统(RBC/DTX NCs)和RGD修饰红细胞膜包覆多西他赛纳米晶体的纳米递药系统(RGD-RBC/DTX NCs)装入透析袋(截留分子量7kDa)密封,置于6mL pH7.4的PBS溶液(含1%十二烷基磺酸钠)中,37℃振摇,于15和30min,1、1.5、2、4、8、24、48和72h分别取0.2mL释放介质,并补加相同体积的新鲜介质,将取出的溶液适当稀释,HPLC法测定多西他赛浓度,绘制释放曲线,结果见附图3。
实施例4:红细胞膜及RGD修饰红细胞膜包覆多西他赛纳米晶体的 纳米递药系统的体内药动学试验
将ICR小鼠分别尾静脉注射150μL市售多西他赛注射剂(DTX)、 多西他赛纳米晶体(DTX NCs)、红细胞膜包覆多西他赛纳米晶体的纳米递药系统(RBC/DTX NCs)和RGD修饰红细胞膜包覆多西他赛纳米晶体的纳米递药系统(RGD-RBC/DTX NCs),于5、15和30min,1、2、4、8、24、48和72h分别取全血50μL,以乙醚/四氢呋喃(1:4)溶液萃取两次,挥干,乙腈复溶后进行HPLC分析,结果见附图4。
实施例5:红细胞膜及RGD修饰红细胞膜包覆多西他赛纳米晶体的 纳米递药系统体内组织分布试验
构建U87皮下瘤或原位瘤动物模型,分别尾静脉注射150μL市售多西他赛注射剂(DTX)、红细胞膜包覆多西他赛纳米晶体的纳米递药系统(RBC/DTX NCs)和RGD修饰红细胞膜包覆多西他赛纳米晶体的纳米递药系统(RGD-RBC/DTX NCs),于2h及24h分别取组织及全血,组织匀浆后以乙醚/四氢呋喃(1:4)溶液萃取两次,挥干,乙腈复溶后进行HPLC分析,结果见附图5,6。
实施例6:红细胞膜及RGD修饰红细胞膜包覆多西他赛纳米晶体的 纳米递药系统体外药效学试验
采用MTT法测定市售多西他赛注射剂(DTX)、多西他赛纳米晶体(DTX NCs)、红细胞膜包覆多西他赛纳米晶体的纳米递药系统(RBC/DTX NCs)和RGD修饰红细胞膜包覆多西他赛纳米晶体的纳米递药系统(RGD-RBC/DTX NCs)对U87肿瘤细胞的体外生长抑制作用。取对数生长期的U87细胞,用0.25%胰蛋白酶消化并吹打成单个细胞,细胞悬浮于含10%FBS的DMEM培养液中,以每孔3000个细胞的密度接种于96孔细胞培养板中,每孔体积0.2mL,留出三孔加不含细胞的培养液作为空白孔,二氧化碳培养箱内培养24小时。用细胞培养液将各组药物依次六倍稀释。吸去96孔板内细胞培液,各孔加入200μL系列浓度的药液。每个浓度均设三复孔,留出三个仅加入培养液的孔作为对照孔。培养48小时后在实验孔、对照孔和空白孔中加入MTT试剂(5mg/mL)20μL孵育4小时,弃去孔内培养液,每孔加入二甲亚砜150μL,振荡使生成的蓝紫色结晶充分溶解后,用酶标仪测定各孔在490nm处的吸光度(A),按照以下公式计 算细胞存活率:
存活率=(A 490实验孔-A 490空白孔)/(A 490对照孔-A 490空白孔)×100%
用GraphPad Prism软件将存活率对药物浓度对数值做图(附图7),计算半数抑制浓度(IC 50)。
实施例7:红细胞膜及RGD修饰红细胞膜包覆多西他赛纳米晶体的 纳米递药系统体内药效学评价
构建U87皮下瘤动物模型,定期观察肿瘤大小,待肿瘤大小为150mm 3时,分组进行试验。分别尾静脉注射PBS(pH7.4)、市售多西他赛注射剂(DTX)、多西他赛纳米晶体(DTX NCs)、红细胞膜包覆多西他赛纳米晶体的纳米递药系统(RBC/DTX NCs)和RGD修饰红细胞膜包覆多西他赛纳米晶体的纳米递药系统(RGD-RBC/DTX NCs)。多西他赛总给药剂量为25mg/kg,单次给药。记录裸鼠生存时间(附图8A),同时隔天测量肿瘤的长径(a)及短径(b)。根据公式计算各组裸鼠肿瘤体积,绘制肿瘤体积随时间的变化曲线(附图8B)并计算抑瘤率(附图8C,D)。肿瘤体积计算公式:
V 瘤体积=0.5(a×b 2)
抑瘤率计算公式:
Tumor inhibition rate(%)=(1-V 实验组瘤体积/V 对照组瘤体积)×100
构建U87原位瘤动物模型,种瘤10天后分别尾静脉注射PBS(pH7.4)、市售多西他赛注射剂(DTX)、多西他赛纳米晶体(DTX NCs)、红细胞膜包覆多西他赛纳米晶体的纳米递药系统(RBC/DTX NCs)和RGD修饰红细胞膜包覆多西他赛纳米晶体的纳米递药系统(RGD-RBC/DTX NCs)。多西他赛总给药剂量为25mg/kg,单次给药。记录裸鼠生存时间(附图9)。
实施例8:红细胞膜与RGD修饰红细胞膜包覆多西他赛纳米晶体的 纳米递药系统安全性评价
正常裸鼠分别尾静脉注射生理盐水、市售多西他赛注射剂(DTX)、红细胞膜包覆多西他赛纳米晶体的纳米递药系统 (RBC/DTX NCs)和RGD修饰红细胞膜包覆多西他赛纳米晶体的纳米递药系统(RGD-RBC/DTX NCs)。多西他赛总给药剂量为25mg/kg,单次给药。在给药后第1、3、5、7、9和11天分别取全血测定白细胞数(附图10A),给药后第12天取血清测定肌酐清除率(附图10B)。

Claims (13)

  1. 一种纳米递药系统,其特征在于,所述纳米递药系统包括:由生物膜包覆的药物纳米晶体,其中,所述药物以纳米晶体的物理形态直接作为刚性支撑骨架,填充于生物膜中。
  2. 根据权利要求1所述的纳米递药系统,其特征在于,所述药物纳米晶体既是骨架材料,又是药物贮体。
  3. 根据权利要求1或2所述的纳米递药系统,其特征在于,所述的药物纳米晶体是由药物通过物理或化学方法处理而形成的纳米尺度结晶。
  4. 根据权利要求1至3任一项所述的纳米递药系统,其特征在于,所述的药物纳米晶体粒径为10nm~1000nm,优选为10nm~200nm。
  5. 根据权利要求1至3任一项所述的纳米递药系统,其特征在于,所述药物为治疗药物和/或诊断药物。
  6. 根据权利要求5所述的纳米递药系统,其特征在于,所述治疗药物选自以下一种或多种:可通过物理或化学方法制备成纳米晶体的抗肿瘤药物、抗感染药物、抗心脑血管系统疾病药物、抗淋巴系统疾病药物、抗免疫系统疾病药物、镇痛药物;
    优选地:所述抗肿瘤药物选自:紫杉醇等紫杉烷类药物、阿霉素等蒽环类药物、喜树碱类药物、长春新碱类药物、硼替佐米等佐米类药物、顺铂等铂类药物、伊利替康和/或小白菊内酯类药物;所述抗感染药物选自:头孢曲松、头孢西丁、氨曲南、链霉素、两性霉素B、万古霉素、替加环素、替考拉宁、吗啉呱、阿糖腺苷和无环茑苷;所述抗心脑血管系统疾病药物选自:神经节苷脂、阿魏酸、川穹嗪、曲克芦丁和奥扎格雷钠;所述抗淋巴系统疾病药物为帕比司他;所述抗免疫系统疾病药物选自:甲泼尼龙和环孢素;所述镇痛药物选自:吗啡和美沙酮等;
    最优选地,所述药物为伊立替康或多西他赛或卡巴他赛。
  7. 根据权利要求5所述的纳米递药系统,其特征在于,所述诊断药物选自以下一种或多种:可通过物理或化学方法制备成纳米晶体 的荧光物质、近红外染料、磁共振影像剂。
  8. 根据权利要求1-7任一项所述的纳米递药系统,其特征在于,所述的生物膜是具有脂质双层的膜结构;
    优选地,所述生物膜选自天然的细胞膜或人工生物膜;
    更优选地,所述天然的细胞膜选自以下一种或多种:红细胞膜、血小板膜、巨噬细胞膜、白细胞膜、肿瘤细胞膜,所述人工生物膜为脂质体膜;
    进一步优选地,所述生物膜选自以下一种或多种:红细胞膜、血小板膜、肿瘤细胞膜。
  9. 根据权利要求1-8任一项所述的纳米递药系统,其特征在于,所述纳米递药系统表面进一步被靶向分子修饰,从而将所述纳米递药系统构建为具有主动寻靶功能的生物膜包覆纳米晶体的纳米递药系统;
    优选地,所述靶向分子选自多肽靶分子;
    更优选地,所述多肽靶分子选自以下一种或多种:RGD、VAP、WVAP、A7R、CDX。
  10. 根据权利要求1-9任一项所述的纳米递药系统的制备方法,其特征在于,所述方法包括:将药物以纳米晶体的物理形态直接作为刚性支撑骨架,填充于生物膜中。
  11. 根据权利要求1-9任一项所述的纳米递药系统在制备用于药物的体内治疗和/或诊断产品中的应用。
  12. 一种药物体内治疗和/或诊断疾病的方法,其特征在于,向有需要的受试者给予根据权利要求1-8任一项所述的纳米递药系统。
  13. 根据权利要求11所述的应用或根据权利要求12所述的方法,其特征在于,所述药物体内治疗和/或诊断为药物的体内靶向治疗和/或药物的体内靶向诊断。
PCT/CN2018/081364 2017-03-31 2018-03-30 一种生物膜包载药物纳米晶体的制备方法及其用途 WO2018177420A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020502758A JP7014886B2 (ja) 2017-03-31 2018-03-30 バイオフィルム被覆薬物のナノ結晶の調製方法およびその用途
US16/499,330 US11260032B2 (en) 2017-03-31 2018-03-30 Method for preparing biofilm-coated drug nanocrystal and application thereof
EP18776272.9A EP3603625A4 (en) 2017-03-31 2018-03-30 METHOD FOR MANUFACTURING A BIOFILM-COATED ACTIVE INGREDIENT NANOCRYSTAL AND USE THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710207275.6A CN108653236A (zh) 2017-03-31 2017-03-31 一种生物膜包载药物纳米晶体的制备方法及其用途
CN201710207275.6 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018177420A1 true WO2018177420A1 (zh) 2018-10-04

Family

ID=63674282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/081364 WO2018177420A1 (zh) 2017-03-31 2018-03-30 一种生物膜包载药物纳米晶体的制备方法及其用途

Country Status (5)

Country Link
US (1) US11260032B2 (zh)
EP (1) EP3603625A4 (zh)
JP (1) JP7014886B2 (zh)
CN (1) CN108653236A (zh)
WO (1) WO2018177420A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109453137A (zh) * 2018-12-07 2019-03-12 上海交通大学 一种活红细胞载倍他米松磷酸钠的缓释制剂及其制备方法与应用
CN111617047A (zh) * 2019-02-27 2020-09-04 广州喜鹊医药有限公司 一种含tbn或其盐或其水合物的药物组合物及其制备方法
WO2021068879A1 (zh) * 2019-10-10 2021-04-15 复旦大学 一种靶向功能分子修饰的抗体复合物、组合物及其用途
WO2021147917A1 (zh) * 2020-01-23 2021-07-29 复旦大学 一种全过程靶向分子及其药物复合物在构建递药系统中的应用
CN115920081A (zh) * 2022-11-02 2023-04-07 重庆大学 红细胞膜自发定向包被ros响应的纳米前药及其应用

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109771391A (zh) * 2019-03-19 2019-05-21 沈阳药科大学 血小板膜包被的阿霉素-吲哚菁绿仿生纳米颗粒及其用途
CN110269847A (zh) * 2019-06-21 2019-09-24 温州医科大学 一种用于中和细菌毒素的仿生纳米材料及其制备方法与应用
CN111647952B (zh) * 2020-06-24 2023-03-07 苏州大学 细胞膜包覆纳米拓扑结构阵列的制备方法及应用
CN112402617B (zh) * 2020-11-20 2023-06-09 汕头大学 血影紫杉醇及其制备方法与应用
CN112603998B (zh) * 2020-12-22 2022-02-11 黑龙江迪龙制药有限公司 一种用于治疗血栓的含有曲克芦丁的复方制剂及其制备方法
CN113520992A (zh) * 2021-07-27 2021-10-22 陈芹 一种川芎嗪纳米晶体、川芎嗪纳米晶体温敏性水凝胶、制备方法及其应用
CN114668772A (zh) * 2022-03-15 2022-06-28 温州医科大学附属第二医院(温州医科大学附属育英儿童医院) 负载两性霉素b仿生纳米系统的组合物、制备方法及应用
CN114949213A (zh) * 2022-05-25 2022-08-30 浙江大学 一种胶原酶功能化的仿生载药金纳米笼及其制备方法和应用
CN115486539A (zh) * 2022-09-14 2022-12-20 厦门遇见今生生物科技有限公司 具有抗衰老及端粒延长的草药提取物仿生膜及其制备方法
CN115624538B (zh) * 2022-10-25 2023-11-21 上海交通大学医学院附属瑞金医院 仿生型巨噬细胞膜包覆纳米配位聚合物及制备方法与其在肝脏缺血再灌注损伤中的应用
CN115737591A (zh) * 2022-11-24 2023-03-07 东南大学 血小板载体、血小板包载硼替佐米的方法及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103857387A (zh) * 2011-06-02 2014-06-11 加利福尼亚大学董事会 膜包封的纳米颗粒及使用方法
CN105456228A (zh) * 2014-12-24 2016-04-06 辅仁药业集团有限公司 一种包载阿瑞吡坦纳米晶体脂质微囊及其制备方法
CN106456551A (zh) * 2014-04-08 2017-02-22 阿拉迪姆公司 冻融后形成药物纳米晶体的脂质体

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101461787B (zh) * 2008-05-07 2011-04-06 郑州大学 一种羟基喜树碱纳米晶体冻干粉针制剂的制备方法
US8236768B2 (en) * 2008-10-03 2012-08-07 3B Pharmaceuticals, Inc. Topical antiviral formulations
CN103054794B (zh) * 2013-01-10 2016-05-25 北京大学 难溶性药物凝胶组合物及其制备方法
CN103768046B (zh) * 2014-02-21 2018-06-05 中国人民解放军军事医学科学院毒物药物研究所 一种注射用紫杉醇纳米晶体及其制备方法
CN103877021B (zh) * 2014-02-25 2016-04-13 澳门科技大学 水飞蓟宾纳米晶自稳定Pickering乳液及其制备方法
CN104548125B (zh) * 2014-12-30 2017-12-12 北京大学 一种聚乙二醇化紫杉醇纳米晶体的制备及其应用
US10434070B2 (en) * 2015-01-02 2019-10-08 Cellics Therapeutics, Inc. Use of nanoparticles coated with red blood cell membranes to enable blood transfusion
CN105497912A (zh) * 2016-01-21 2016-04-20 华东师范大学 红细胞膜包裹的酸敏感高分子前药纳米递药系统的制备方法及用途
CN105903037A (zh) * 2016-02-01 2016-08-31 刘威 一种靶向药物载体及其制法与应用
CN106466296B (zh) * 2016-04-01 2019-09-24 中国医学科学院药用植物研究所 一种喜树碱类药物的纳米晶及其制备方法
CN106267199B (zh) * 2016-08-25 2019-04-16 郑州大学 一种超声调控型抗肿瘤药物递送系统的制备方法及应用
CN106362148B (zh) * 2016-09-12 2019-08-27 中南大学 一种普鲁士蓝纳米介晶细胞膜包覆修饰方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103857387A (zh) * 2011-06-02 2014-06-11 加利福尼亚大学董事会 膜包封的纳米颗粒及使用方法
CN106456551A (zh) * 2014-04-08 2017-02-22 阿拉迪姆公司 冻融后形成药物纳米晶体的脂质体
CN105456228A (zh) * 2014-12-24 2016-04-06 辅仁药业集团有限公司 一种包载阿瑞吡坦纳米晶体脂质微囊及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RAO LANG ET AL: "Red Blood Cell Membrane as a Biomimetic Nanocoating for Prolonged Circulation Time and Reduced Accelerated Blood Clearance", SMALL, vol. 46, no. 11, 31 December 2016 (2016-12-31), pages 6225 - 6236, XP055638215, ISSN: 1613-6810, DOI: 10.1002/smll.201502388 *
See also references of EP3603625A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109453137A (zh) * 2018-12-07 2019-03-12 上海交通大学 一种活红细胞载倍他米松磷酸钠的缓释制剂及其制备方法与应用
CN111617047A (zh) * 2019-02-27 2020-09-04 广州喜鹊医药有限公司 一种含tbn或其盐或其水合物的药物组合物及其制备方法
CN111617047B (zh) * 2019-02-27 2021-06-22 广州喜鹊医药有限公司 一种含tbn或其盐或其水合物的药物组合物及其制备方法
WO2021068879A1 (zh) * 2019-10-10 2021-04-15 复旦大学 一种靶向功能分子修饰的抗体复合物、组合物及其用途
WO2021147917A1 (zh) * 2020-01-23 2021-07-29 复旦大学 一种全过程靶向分子及其药物复合物在构建递药系统中的应用
CN115920081A (zh) * 2022-11-02 2023-04-07 重庆大学 红细胞膜自发定向包被ros响应的纳米前药及其应用

Also Published As

Publication number Publication date
JP2020515642A (ja) 2020-05-28
US11260032B2 (en) 2022-03-01
EP3603625A4 (en) 2020-12-16
EP3603625A1 (en) 2020-02-05
JP7014886B2 (ja) 2022-02-01
US20200069601A1 (en) 2020-03-05
CN108653236A (zh) 2018-10-16

Similar Documents

Publication Publication Date Title
WO2018177420A1 (zh) 一种生物膜包载药物纳米晶体的制备方法及其用途
Ding et al. Overcoming blood–brain barrier transport: Advances in nanoparticle-based drug delivery strategies
Dal Magro et al. ApoE-modified solid lipid nanoparticles: A feasible strategy to cross the blood-brain barrier
Yang et al. Dual-targeting liposome modified by glutamic hexapeptide and folic acid for bone metastatic breast cancer
US8652526B2 (en) Drug carrier and drug carrier kit for inhibiting fibrosis
CN112516109B (zh) 一种基于间充质干细胞的融合癌细胞膜仿生纳米粒及其制备方法
US20160184225A1 (en) Pharmaceutical composition, preparation and uses thereof
CN111479593B (zh) 奎尼酸-修饰的纳米粒子及其用途
CN112716915A (zh) 仿生纳米载体及其在制备脑胶质瘤治疗药物的应用
Li et al. In situ apolipoprotein E-enriched corona guides dihydroartemisinin-decorating nanoparticles towards LDLr-mediated tumor-homing chemotherapy
EP3138557A1 (en) Liposome composition and method for producing same
US11179335B1 (en) ROS-responsive liposomes for specific targeting
CN107854431B (zh) 一种靶向至肝星状细胞的透明质酸纳米胶束及其制备方法和应用
Xu et al. Progress and perspectives on nanoplatforms for drug delivery to the brain
CN105496959B (zh) 具有大鼠肺主动靶向性的甲强龙免疫纳米脂质体及其制备方法
Zhang et al. Real-time in vivo imaging reveals specific nanoparticle target binding in a syngeneic glioma mouse model
Famta et al. Nanocarrier-based drug delivery via cell-hitchhiking: emphasizing pharmacokinetic perspective towards taming the “big-old” tumors
Burkhart et al. Accessing targeted nanoparticles to the brain: The vascular route
Ulku et al. The importance of nanotechnology and drug carrier systems in pharmacology
Hu et al. Anticancer effect of folic acid modified tumor-targeting quercetin lipid nanoparticle
CN111557911B (zh) 一种天赐霉素脂质体及其制备方法和应用
C Ligade et al. Brain drug delivery system: an overview
CN110759974B (zh) 一种磷脂-聚乙二醇-狂犬病毒衍生肽聚合物,其制备方法及应用
Lenders et al. Modulation of engineered nanomaterial interactions with organ barriers for enhanced drug transport
Tian et al. Hybrid gastric cancer exosome as potential drug carrier for targeted gastric cancer therapy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776272

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020502758

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018776272

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018776272

Country of ref document: EP

Effective date: 20191031