WO2018176978A1 - 集成式显示面板及制作方法、显示装置 - Google Patents

集成式显示面板及制作方法、显示装置 Download PDF

Info

Publication number
WO2018176978A1
WO2018176978A1 PCT/CN2018/071485 CN2018071485W WO2018176978A1 WO 2018176978 A1 WO2018176978 A1 WO 2018176978A1 CN 2018071485 W CN2018071485 W CN 2018071485W WO 2018176978 A1 WO2018176978 A1 WO 2018176978A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
color
layer
light
photodiode
Prior art date
Application number
PCT/CN2018/071485
Other languages
English (en)
French (fr)
Inventor
冯翔
杨照坤
张强
刘莎
孙晓
杨瑞智
邱云
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/073,044 priority Critical patent/US11233100B2/en
Publication of WO2018176978A1 publication Critical patent/WO2018176978A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]

Definitions

  • Embodiments of the present disclosure relate to an integrated display panel, a method of fabricating the same, and a display device.
  • the front camera includes a photosensitive unit and a driving circuit for driving the photosensitive unit, wherein the photosensitive unit includes a lens and a photodiode.
  • the front camera when the front camera is manufactured, the parts in the front camera are usually combined and mounted as a single member in the display device. In this way, the thickness of the display device is inevitably increased, which is not conducive to the development of the display device to ultra-thin.
  • At least one embodiment of the present disclosure provides an integrated display panel including a first substrate and a second substrate, the first substrate being disposed opposite to the second substrate, a pixel unit is disposed on the first substrate, the pixel unit includes a plurality of sub-pixel units having different colors; the integrated display panel further includes an image acquisition module, and the image acquisition module includes a photosensitive unit in the sub-pixel unit, the photosensitive unit including a photodiode, the photodiode being located in a non-display area of the sub-pixel unit, configured to photoelectrically convert the light to obtain an image representing an image of the target area signal.
  • At least one embodiment of the present disclosure provides a method of fabricating an integrated display panel, comprising: providing a first substrate; forming a plurality of sub-pixel units having different colors on the first substrate; Forming a second substrate by a plurality of sub-pixel units away from a surface of the first substrate; the method further comprising forming a photosensitive unit in each of the plurality of sub-pixel units, the photosensitive unit A photodiode is included that forms the photodiode in a non-display area of the sub-pixel unit, the photodiode being configured to photoelectrically convert the light to generate an electrical signal representative of an image of the target area.
  • At least one embodiment of the present disclosure provides a display device including an integrated display panel according to an embodiment of the present disclosure, and a driving circuit that drives the integrated display panel.
  • a plurality of sub-pixel units corresponding to the image acquisition module are disposed, and each of the sub-pixel units includes a photodiode in at least one photosensitive unit, based on
  • the integrated display panel can photoelectrically convert light of a target region acquired by the lens by using a photodiode, thereby obtaining an electrical signal for generating an image of the target region, thereby generating an image of the target region. It can be seen that the integrated display panel integrates the photodiode in the internal sub-pixel unit, and can overcome the inventor's prior art that the front camera is installed as a separate component in the display device, resulting in an increase in the display device. The problem of thickness. Therefore, with the integrated display panel according to an embodiment of the present disclosure, the thickness of the entire device of the display device can be reduced, which is advantageous for the development of the display device to be ultra-thin.
  • FIG. 1 to 8 are respectively a structural schematic diagram 1 to a structural schematic diagram 8 of an integrated display panel according to a first embodiment of the present disclosure
  • FIG. 9 is a schematic flow chart of a method of fabricating an integrated display panel according to a second embodiment of the present disclosure.
  • an embodiment of the present disclosure provides an integrated display panel including a first substrate substrate 1 and a second substrate substrate 2 , wherein the first substrate substrate 1 and The second base substrate 2 is oppositely disposed, and the first base substrate 1 is provided with a pixel unit including a plurality of sub-pixel units having different colors.
  • the integrated display panel further includes an image acquisition module, and the image acquisition module includes a photosensitive unit 3 disposed in each sub-pixel unit, and the photosensitive unit 3 includes a photoelectric device disposed in a non-display area of the sub-pixel unit.
  • Diode 4 The photodiode 4 is configured to photoelectrically convert light from a target region to obtain an electrical signal representative of an image of the target region.
  • the photosensitive unit 3 further includes a lens 5 configured to acquire light from a target area and increase a luminous flux entering the photodiode 4.
  • a plurality of sub-pixel units having different colors are provided, and a photodiode 4 is formed in each of the sub-pixel units.
  • the photodiode 4 photoelectrically converts light of a target region acquired by the lens 5, generates an electric signal indicating an image of the target region, and further generates an image of the target region.
  • the photosensitive unit 3 further includes a lens 5
  • the lens 5 is configured to acquire light of a target area and increase a luminous flux entering the photodiode 4.
  • the photodiode 4 is integrated inside the sub-pixel unit of the integrated display panel, and the front camera is mounted as a separate component on the display device in the technique known to the inventors.
  • This causes a problem that the thickness of the entire device of the display device is increased. Therefore, with the integrated display panel according to the present embodiment, the thickness of the entire device of the display device can be reduced, which is advantageous for the development of the display device to be ultra-thin.
  • the integrated display panel since the photodiode 4 is integrated in the integrated display panel, the integrated display panel not only has a display function but also has a camera function. Compared with the display panel known to the inventors, the integrated display panel according to the present embodiment has a better integration degree and has higher use value.
  • first base substrate 1 and the second base substrate 2 in this embodiment may be common glass substrates, and may of course be other transparent substrates that can be applied in the display field.
  • the integrated display panel can be packaged in a glass powder package to ensure the sealing performance of the integrated display panel.
  • the lens 5 configured to increase the luminous flux into the photodiode 4 can also be integrated into an integrated display panel.
  • the lens 5 may be formed on the surface of the second base substrate 2 facing away from the first base substrate 1 by nanoimprinting, and in order to ensure that the light of the target region acquired by the lens 5 is transmitted to the same In the photodiode 4, the orthographic projection of the lens 5 on the first substrate 1 needs to cover the orthographic projection of the corresponding photodiode 4 on the first substrate 1.
  • the lens 5 structure in the prior art front camera is also integrated in the integrated display panel, so that the whole device of the display device can be further reduced. thickness.
  • each of the sub-pixel units includes a thin film transistor 6, a light-emitting element 7, a planarization layer 8, and a light transmissive layer 9, and the light-emitting element 7 includes an anode 71 and an organic light-emitting layer 72, and the organic light-emitting layer 72 is made of organic light.
  • the planarization layer 8 covers the first base substrate 1 and the thin film transistor 6 and the photodiode 4 located in the sub-pixel unit.
  • the light transmissive layer 9 is formed in a non-display area of the sub-pixel unit, the light transmissive layer 9 is located between the planarization layer 8 and the second substrate 2, and the light transmissive layer 9 is on the first substrate.
  • the orthographic projection on the substrate 1 covers the orthographic projection of the photodiode 4 in the sub-pixel unit in the first substrate substrate 1.
  • the light transmissive layer 9 may be a photoresist layer or a film layer structure made of other light transmissive materials.
  • the thin film transistor 6 and the photodiode 4 in the same sub-pixel unit are connected to the same data line, which can reduce wiring in the driving circuit, simplify the structure of the driving circuit, and reduce the complexity of the driving circuit. .
  • the integrated display panel when the integrated display panel performs display, light emitted from the light-emitting element 7 is emitted from the upper surface of the second substrate 2, and the light-emitting mode of the integrated display panel can be set to Non-microcavity optical structures and microcavity optical structures.
  • the light-emitting element 7 in the sub-pixel unit is an RGB color independent light-emitting OLED that emits single-color light, that is, the organic light-emitting layer 72 in the light-emitting element 7.
  • the luminescent material is a luminescent organic luminescent material that emits light of one of RGB, such as R light, G light, or B light.
  • color image display can be realized by relying on the color light emitted by the RGB color independent light-emitting OLED, without RGB color independent light-emitting OLED and the second base substrate 2 An additional color film layer is formed for filtering.
  • the integrated display panel realizes its imaging function, in order to realize color image imaging, it is necessary to convert the light of the target area acquired by the lens 5 into colored light.
  • the light of the target area acquired by the lens 5 can be converted into colored light in the following three ways:
  • the color of the light-transmitting layer 9 is the same as the color of the RGB color independent light-emitting OLED in the sub-pixel unit, so that when the light of the target area is transmitted through the lens to the light-transmitting layer 9,
  • the colored light-transmissive layer 9 can be converted into colored light, and the converted colored light passes through the planarization layer 8 and propagates into the photodiode 4.
  • the light transmissive layer 9 may be formed of a resin having the same color as the color photo organic light-emitting material of the light-emitting element 7 in the sub-pixel unit.
  • the color of the planarization layer 8 is the same as the color of the RGB color independent illumination OLED in the sub-pixel unit, so that when the light of the target area passes through the lens through the transparent layer 9,
  • the layer 8 can be converted into color light by the colored planarization layer 8, and the converted color light is further propagated into the photodiode 4.
  • the canonization layer 8 may be formed of a resin having the same color as the color light organic light-emitting material of the light-emitting element 7 in the sub-pixel unit.
  • the color of the light transmissive layer 9 and the planarization layer 8 are the same as the color of the RGB color independent light emitting OLED in the sub-pixel unit, so that the light of the target area is transmitted to the light transmissive layer 9 and the planarization layer.
  • the colored light-transmissive layer 9 and the planarization layer 8 can be converted into color light, and the converted color light is further propagated into the photodiode.
  • the light transmissive layer 9 and the planarization layer 8 may each be formed of a resin having the same color as the color photo organic light-emitting material of the light-emitting element 7 in the sub-pixel unit.
  • the light transmissive layer 9 and/or the planarization layer 8 serve as a color film layer.
  • a color film layer may be disposed between the light transmissive layer 9 and the second base substrate 2, and the color film layer is in the first lining.
  • the orthographic projection on the base substrate 1 is required to cover the orthographic projection of the photodiode 4 on the first substrate 1 .
  • the orthographic projection of the color film layer on the second substrate 2 needs to cover the corresponding lens 5.
  • the corresponding lens 5 refers to a lens that increases the luminous flux entering the photodiode 4 in the sub-pixel unit corresponding to the color film layer.
  • the light transmissive layer 9 and/or the planarization layer 8 need not convert the light of the target region acquired by the lens 5 into color light, and the light transmissive layer 9 and the planarization layer 8 may be made of a transparent resin.
  • the light transmissive layer 9 and/or the planarization layer 8 serving as a color film layer are disposed between the lens 5 and the photodiode 4. Therefore, when the color of the light transmissive layer 9 is the same as the color of the RGB color independent light emitting OLED in the sub-pixel unit, the lens 5 is formed between the light transmissive layer 9 and the second base substrate 2 in the corresponding sub-pixel unit. For example, formed on the surface of the light transmissive layer 9 facing the second substrate 2, as shown in FIG.
  • the lens 5 is formed between the planarization layer 8 and the second substrate 2 in the corresponding sub-pixel unit, for example Formed on the surface of the second base substrate 2 facing the planarization layer 8, as shown in FIG. 3, or formed on the surface of the planarization layer 8 facing the second substrate 2, and the lens 5 is on the first substrate
  • the orthographic projection on 1 covers the corresponding photodiode 4.
  • FIG. 4 is a schematic view showing the structure of the integrated display panel when the light-emitting element 7 is a white light source.
  • the light-emitting element 7 in the sub-pixel unit is a white light OLED that emits white light, that is, the organic light-emitting material of the organic light-emitting layer 72 in the light-emitting element 7 is a white light organic light-emitting material.
  • the white light OLED can only emit white light and cannot emit color light
  • the integrated display panel realizes its display function, it is required to provide a white light between the white light OLED and the second base substrate 2.
  • a color film layer that performs color conversion of white light emitted by an OLED.
  • the color film layer may be disposed on the surface of the second base substrate 2 facing the white light OLED, as shown in FIG. 4, or the color film layer may be disposed on the surface of the organic light emitting layer of the white light OLED toward the surface of the second substrate 2. .
  • the color film layer 10 when the color film layer 10 is disposed on the surface of the second substrate 2 facing the white light OLED, and the orthographic projection of the color film layer 10 on the second substrate 2 covers only the organic of the corresponding white OLED.
  • the color film layer 10 can color-convert the white light emitted by the white light OLED only when the integrated display panel realizes its display function, thereby realizing color image display.
  • the integrated display panel realizes its imaging function, based on the position of the color film layer 10, the color film layer 10 cannot convert the light of the target area acquired by the lens 5 into color light and transmit it to the photodiode 4.
  • the color of the light-transmitting layer 9 can be the same as the color of the color film layer 10 in the sub-pixel unit, as shown in FIG. 4; and/or
  • the color of the planarization layer 8 is the same as the color of the color film layer 10 in the sub-pixel unit in which it is located, as shown in FIG.
  • the light-emitting element 7 in the sub-pixel unit is a white light OLED emitting white light.
  • the lens 5 is disposed on the light-transmitting layer.
  • 9 is a schematic structural view of the surface facing the second substrate 2.
  • the light-emitting element 7 in the sub-pixel unit is a white light OLED emitting white light.
  • the lens 5 can also be disposed on the second substrate 2 facing the lens. On the surface of layer 9.
  • the light-emitting element 7 in the sub-pixel unit is a white light OLED emitting white light.
  • the lens 5 is disposed on the second substrate. 2 is a schematic view of the structure on the surface facing the planarization layer 8.
  • the light-emitting element 7 in the sub-pixel unit is a white light OLED emitting white light.
  • the lens 5 may also be disposed on the planarization layer 8 One side of the second substrate 2.
  • the light transmissive layer 9 and/or the planarization layer 8 may be the target area acquired by the lens 5 The light is converted into colored light and then transmitted to the photodiode 4, which serves as a color film layer.
  • the light-transmissive layer 9 and/or the flattening layer are realized in order to realize color imaging of the integrated display panel during imaging.
  • the color of the layer 8 may be the same as the color of the color film layer in the sub-pixel unit in which it is used to convert the light of the target area acquired by the lens 5 into colored light.
  • the lens 5 may be disposed on the side of the second base substrate 2 facing the light transmissive layer 9, or the lens 5 may be disposed on the side of the light transmissive layer 9 facing the second substrate 2.
  • the light transmissive layer 9 and/or the planarization layer 8 may be colored by the sub-pixel unit
  • the film layer 10 is formed of a resin of the same color.
  • a color film layer for color conversion may be disposed between the light transmissive layer 9 and the second base substrate 2, and is set.
  • the orthographic projection of the color film layer on the first substrate 1 needs to cover the orthographic projection of the photodiode 4 on the first substrate 1, as shown in FIG. 6, the color film layer 10 is disposed on the second substrate.
  • its orthographic projection on the first substrate 1 not only covers the projection of the organic light-emitting layer 72 on the first substrate, but also covers the photodiode 4 on the first substrate 1. Orthographic projection.
  • the orthographic projection of the disposed color film layer on the second base substrate 2 is required to cover the lens 5.
  • the light transmissive layer 9 and/or the planarization layer 8 need not convert the light of the target region acquired by the lens 5 into colored light, and the light transmissive layer 9 and/or the planarization layer 8 may be made of a transparent resin.
  • the integrated display panel, the light transmissive layer 9 and/or the planarization layer 8 serving as a color film layer are disposed between the lens 5 and the photodiode 4, and thus, when the light transmissive layer 9 is When the color is the same as the color of the color filter layer 10 in the sub-pixel unit, the lens 5 may be formed between the light-transmitting layer 9 and the second substrate 2 in the corresponding sub-pixel unit, for example, formed on the light-transmitting layer.
  • 9 faces the surface of the second base substrate 2 or the second base substrate 2 faces the surface of the light-transmitting layer 9, and the orthographic projection of the lens 5 on the first base substrate 1 needs to cover the corresponding photodiode 4.
  • a schematic view of the lens 5 formed on the surface of the light transmissive layer 9 facing the second base substrate 2 is as shown in FIG.
  • the lens 5 may be formed between the planarization layer 8 and the second base substrate 2 in the corresponding sub-pixel unit, for example Formed on the surface of the planarization layer 8 facing the second substrate 2 or the surface of the second substrate 2 facing the planarization layer 8, and the orthographic projection of the lens 5 on the first substrate 1 covers the corresponding photoelectric Diode 4.
  • the formed lens 5 is the microlens 5.
  • a schematic view in which the lens 5 is formed on the surface of the second base substrate 2 facing the planarization layer 8 is as shown in FIG. 5.
  • the color film layer 10 when the color film layer 10 is disposed on the surface of the second substrate 2 facing the white light OLED, and the orthographic projection of the color film layer 10 on the second substrate 2 covers the corresponding organic light of the white light OLED.
  • the lens 5 can be formed on the surface of the second substrate 2 facing away from the first substrate 1 by nanoimprinting, and the orthographic projection of the lens 5 on the first substrate 1 is required. Cover the corresponding photodiode 4.
  • the color film layer 10 can not only convert the white light emitted by the white light OLED into color display when the integrated display panel realizes its display function, but also realize the color image display, and can also use the lens 5 when the integrated display panel realizes its imaging function.
  • the acquired light of the target area is converted into color light and transmitted to the photodiode 4 to realize color image imaging.
  • the colors of the light transmissive layer 9 and the planarization layer 8 may be formed of a transparent resin.
  • the color film layer 10 when the color film layer 10 is formed on the surface of the white light-emitting OLED facing the second substrate 2, the surface of the light-transmitting layer 9 facing the second substrate 2 is also formed.
  • the lens 5 can be formed on the surface of the second base substrate 2 facing away from the first base substrate 1 by nanoimprinting, and the orthographic projection of the lens 5 on the first base substrate 1 needs to cover the corresponding photoelectric Diode 4.
  • the orthographic projection of the color film layer 10 on the first substrate 1 covers the corresponding organic light-emitting layer 72 of the white light OLED and the photodiode 4.
  • the color film layer 10 can be used for an integrated display panel to realize its display. Color image imaging is performed when the color image display is performed and the image capturing function is realized, and at this time, the colors of the light transmitting layer 9 and the planarizing layer 8 may be formed of a transparent resin.
  • the orthographic projection of the color film layer on the second substrate 2 also needs to cover the corresponding lens 5.
  • the length of the color film layer 10 in the direction parallel to the second substrate 2 is related to the pixel density of the display device.
  • the display device has a high pixel density
  • the number of sub-pixel units per unit area is large, that is, the space occupied by each sub-pixel unit is small, and thus, the color film layer 10 is parallel to the first
  • the length in the direction of the two base substrates 2 needs to be shorter, for example, the orthographic projection of the color film layer on the first base substrate 1 can cover only the organic light-emitting layer 72 of the white light OLED.
  • the display device When the display device has a lower pixel density, the number of sub-pixel units per unit area is small, that is, the space occupied by each sub-pixel unit is relatively large, and thus, the color film layer 10 is parallel to the second lining.
  • the length in the direction of the base substrate 2 may be longer, for example, the orthographic projection of the color film layer on the first base substrate 1 may cover the organic light-emitting layer 72 of the white light OLED and the photodiode 4.
  • an RGB color independent light-emitting OLED can be prepared by using a mask, and the organic light-emitting layer 72 of the RGB color independent light-emitting OLED is formed in the sub-pixel unit.
  • the display area as shown in Figure 2.
  • the colorization mode is white light plus color film
  • the organic light emitting layer 72 is formed in the sub pixel unit by using a mask.
  • the display area that is, between the light transmissive layers 9 in the adjacent two sub-pixel units, as shown in FIG.
  • the other is to cover the surface of the light-transmitting layer 9 toward the second substrate 2 with a full layer of material without using a mask, as shown in FIG.
  • a white OLED when a white OLED is formed in a form covered by a monolithic material, only the other components of the white OLED, such as electrodes, are formed in the region A, so that the region A can emit light. In the region B, other components of the white light OLED are not formed, and no light is emitted in the B region.
  • the nature of the second white OLED fabrication method is similar to that of the first white OLED fabrication method.
  • the white light OLED is formed by covering the transparent layer 9 toward the surface of the second substrate 2 with the entire layer of material, in order to realize the display and camera functions of the integrated display panel, please refer to FIG. 8 again to make the color film
  • the layer 10 is disposed on the surface of the second substrate 2 facing the white light OLED, and the orthographic projection of the color film layer 10 on the second substrate 2 covers the display area in the sub-pixel unit and the photodiode 4 in the non-display area
  • the lens 5 can also be formed on the surface of the second base substrate 2 facing away from the first base substrate 1 by nanoimprinting, and the orthographic projection of the lens 5 on the first base substrate 1 needs to be covered.
  • At least one embodiment of the present disclosure provides a method of fabricating an integrated display panel, the method of fabricating the integrated display panel being opposed to the integrated display panel provided in the first embodiment.
  • the manufacturing method of the integrated display panel provided by this embodiment includes:
  • a pixel unit having a plurality of sub-pixel units of different colors on the first base substrate wherein a photodiode is formed in a non-display area of each of the plurality of sub-pixel units, the photodiode Configuring to photoelectrically convert light from the target area to generate an electrical signal representative of the image of the target area;
  • a second base substrate is formed on a surface of the plurality of sub-pixel units away from the first base substrate.
  • the integrated display panel produced by the manufacturing method of the integrated display panel provided by the embodiment integrates the photodiode structure in the front camera in the technology known to the inventors, and thus can overcome the inventors' known
  • the technique of mounting a front camera as a separate component in a display device results in a problem of increasing the overall thickness of the display device.
  • the integrated display panel produced by the method for manufacturing the integrated display panel provided by the embodiment not only has the display function of the usual display panel, but also has the function of imaging, and thus has higher Use value.
  • the method further includes: forming a lens on the surface of the second substrate back away from the first substrate by nanoimprinting, wherein The orthographic projection of the lens on the first substrate substrate and the orthographic projection of the photodiode on the first substrate.
  • the lens on the second substrate that is, the lens structure in the front camera of the applicant's known technology is also integrated in the integrated display panel, thus, the display device can be further reduced.
  • the thickness of the whole machine is also integrated in the integrated display panel.
  • Forming a plurality of sub-pixel units having different colors on the first base substrate may include: forming a thin film transistor and a photodiode in each of the sub-pixel units, the thin film transistor and the photodiode being directly or indirectly formed on the first base substrate Wherein the thin film transistor and the photodiode are connected to the same data line.
  • the wiring in the driving circuit can be reduced, the structure of the driving circuit can be simplified, and the complexity of the driving circuit can be reduced.
  • forming a plurality of sub-pixel units having different colors on the first base substrate further includes:
  • the light transmissive layer may be a photoresist layer or a film layer structure made of other light transmissive materials.
  • the light emitting element is a monochrome OLED.
  • forming the light emitting element on the surface of the planarization layer facing away from the first base substrate may include: forming the surface by using the color organic light emitting material on the surface of the planarization layer facing away from the first base substrate Organic light-emitting layer.
  • the light-emitting element can independently emit colored light
  • the integrated display panel realizes its display function
  • a color image can be realized without forming a color film layer between the light-emitting element and the second base substrate. display.
  • the integrated display panel realizes its imaging function
  • the same, and/or, the color of the planarization layer is the same as the color of the monochromatic OLED, at which time the light transmissive layer and/or the planarization layer acts as a color film layer.
  • the lens is disposed above the light transmissive layer.
  • the planarization layer functions as a color film layer
  • the lens is disposed over the planarization layer.
  • forming the light transmissive layer on the surface of the planarization layer facing away from the first base substrate may include: the planarization layer
  • the light-transmissive layer is formed by a resin facing away from the surface of the first base substrate in the same color as the color light-emitting organic light-emitting material in the light-emitting element in the sub-pixel unit.
  • a planarization layer is formed on the surface of the first substrate, the surface of the thin film transistor, and the surface of the photodiode.
  • the method includes forming a planarization layer on a surface of the first base substrate, a surface of the thin film transistor, and a surface of the photodiode by using a resin having the same color as the color organic light-emitting material in the light-emitting element.
  • a lens is formed over the photodiode.
  • a color film layer may be disposed between the light transmissive layer and the second substrate, and the color film layer disposed on the first substrate is disposed on the first substrate.
  • the orthographic projection covers the orthographic projection of the photodiode on the first substrate.
  • the orthographic projection of the disposed color film layer on the second substrate substrate needs to cover the orthographic projection of the lens on the second substrate.
  • the light transmissive layer and the planarization layer may be made of a transparent resin.
  • the integrated display panel needs to be disposed between the lens and the photodiode as a light transmissive layer and/or a planarization layer of the color film layer. Therefore, when the light transmissive layer is used and described
  • the light transmissive layer may further include: the surface of the light transmissive layer facing the second substrate A lens made of a photosensitive resin is formed.
  • the method further includes: The planarization layer forms a lens made of a photosensitive resin toward a surface of the second base substrate.
  • the light emitting element is a white light OLED emitting white light.
  • forming the light emitting element on the surface of the planarization layer facing away from the first base substrate may include: forming the surface by using the white organic light emitting material on the surface of the planarization layer facing away from the first base substrate Organic light-emitting layer.
  • the method further includes: forming a color film layer between the second base substrate and the light emitting element.
  • a color film layer may be formed on the surface of the second substrate to the light-emitting element, or a color film layer may be formed on the surface of the light-emitting element toward the second substrate.
  • the color film layer can only perform color conversion of white light emitted by the white light OLED when the integrated display panel realizes its display function, thereby realizing color image display.
  • the color film layer cannot convert the light of the target area acquired by the lens into color light and transmit it to the photodiode. Therefore, in order to convert the light of the target area into color light, the color of the light transmissive layer may be the same as the color of the color film layer; and/or the color of the planarization layer is the same as the color of the color film layer.
  • the color of the light transmitting layer and the color of the color film layer may be The same; and/or, the color of the planarization layer is the same as the color of the color film layer.
  • the light transmissive layer may include: A light transmissive layer is formed on the surface of the first base substrate by using a resin of the same color as the color filter layer.
  • planarization layer is the same as the color of the color filter layer, correspondingly, forming a planarization layer on the surface of the first substrate, the surface of the thin film transistor, and the surface of the photodiode may include A planarization layer is formed on the surface of the first base substrate, the surface of the thin film transistor, and the surface of the photodiode by using a resin of the same color as the color filter layer in the light-emitting element.
  • the integrated display panel needs to be disposed between the lens and the photodiode as a light transmissive layer and/or a planarization layer of the color film layer. Therefore, when the light transmissive layer is used and described
  • the transparent layer may further include: the surface of the light-transmitting layer facing the second substrate A lens made of a photosensitive resin is formed.
  • the method further includes: The planarization layer forms a lens made of a photosensitive resin toward a surface of the second base substrate.
  • the orthographic projection of the formed color film layer on the first substrate may cover not only the organic light emitting layer of the white light OLED in the first liner
  • the orthographic projection on the base substrate may also cover the orthographic projection of the photodiode on the first substrate, the color film layer not only can perform white light emitted by the white light OLED when the integrated display panel realizes its display function
  • Color conversion enables color image display, and when the integrated display panel realizes its imaging function, the light of the target area acquired by the lens is converted into color light and transmitted to the photodiode to realize color image imaging.
  • the color of the light transmissive layer and the planarization layer may be formed of a transparent resin.
  • the color film layer is formed on the surface of the light-emitting element facing the second substrate, the color film layer is formed on the second substrate while the light-transmitting layer faces the surface of the second substrate. Projecting covers the organic light-emitting layer and the photodiode of the white light OLED. At this time, the color of the light transmissive layer and the planarization layer may be formed of a transparent resin.
  • At least one embodiment of the present disclosure provides a display device including the integrated display panel described above and a driving circuit that drives the integrated display panel.
  • the display device includes not only a drive circuit for driving the display panel but also a drive circuit for driving the front camera, and the two drive circuits are independent of each other.
  • the photodiode is integrated in the integrated display panel according to the embodiment of the present disclosure, which is equivalent to integrating the partial structure of the front camera of the display panel known to the inventors, therefore, in the embodiment according to the present disclosure
  • the integrated display panel can be driven by only one driving circuit, which can perform the display function and the imaging function. Therefore, in the display device according to the embodiment of the present disclosure, it is not necessary to separately provide a driving circuit for driving the front camera, thereby reducing the overall thickness of the display device, as compared with the technique known to the inventors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种集成式显示面板及其制备方法,集成式显示面板包括第一衬底基板(1)和第二衬底基板(2),第一衬底基板(1)与第二衬底基板(2)相对设置,第一衬底基板(1)上设有像素单元,该像素单元包括具有不同颜色的多个子像素单元;该集成式显示面板还包括图像采集模组,该图像采集模组包括设置在各个子像素单元中的感光单元(3),感光单元(3)包括位于子像素单元的非显示区域内的光电二极管(4),光电二极管(4)配置对来自目标区域的光进行光电转换,得到表示该目标区域的图像的电信号。

Description

集成式显示面板及制作方法、显示装置 技术领域
本公开的实施例涉及一种集成式显示面板及制作方法、显示装置。
背景技术
随着科技的发展,显示装置广泛地应用在人们的日常生活中。为了使显示装置的外观更加美观时尚,显示装置越来越趋向于超薄化发展。
目前,大多数显示装置上都安装有前置摄像头,且显示装置的整机厚度很大程度上取决于前置摄像头的厚度。前置摄像头包括感光单元和用于驱动感光单元的驱动电路,其中,感光单元中包括有透镜和光电二极管。在发明人已知的技术中,在制作前置摄像头时,通常是将前置摄像头中的各部分组合在一起,作为一个单独的构件安装在显示装置中。而采用这种方式势必会增加显示装置的整机厚度,并不利于显示装置向超薄化发展。
发明内容
本公开的至少一个实施例提供了一种集成式显示面板,其包括第一衬底基板和第二衬底基板,所述第一衬底基板与所述第二衬底基板相对设置,所述第一衬底基板上设有像素单元,所述像素单元包括具有不同颜色的多个子像素单元;所述集成式显示面板还包括图像采集模组,所述图像采集模组包括设置在所述各个子像素单元中的感光单元,所述感光单元包括光电二极管所述光电二极管位于所述子像素单元的非显示区域内,配置对所述光进行光电转换,得到表示所述目标区域的图像的电信号。
本公开的至少一个实施例提供了一种制作集成式显示面板的方法,包括:提供第一衬底基板;在所述第一衬底基板形成具有不同颜色的多个子像素单元;以及在所述多个子像素单元远离所述第一衬底基板的表面形成第二衬底基板;所述方法还包括,在所述多个子像素单元中的每一个子像素单元中形成感光单元,所述感光单元包括光电二极管,在所述子像素单元的非显示区域中形成所述光电二极管,所述光电二极管配置为对所述光线进行光电转换, 以生成表示所述目标区域的图像的电信号。
本公开的至少一个实施例提供了一种显示装置,包括根据本公开实施例的集成式显示面板,以及驱动所述集成式显示面板的驱动电路。
在根据本公开的实施例所提供的集成式显示面板中,设有多个与图像采集模组对应的子像素单元,且在每个子像素单元中包括有至少一个感光单元中的光电二极管,基于上述结构,该集成式显示面板可利用光电二极管将透镜所获取的目标区域的光进行光电转换,得到用于生成目标区域图像的电信号,进而生成目标区域的图像。可见,该集成式显示面板将光电二极管集成在了内部的子像素单元中,能够克服发明人已知技术中将前置摄像头作为一个单独构件安装在显示装置中所导致增大显示装置的整机厚度的问题。因此,采用根据本公开实施例的集成式显示面板,可减薄显示装置的整机厚度,有利于显示装置向超薄化发展。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1至图8分别为根据本公开第一实施例的集成式显示面板的结构示意图一至结构示意图八;以及
图9为根据本公开第二实施例的集成式显示面板的制作方法的流程示意图。
附图标记说明:
1-第一衬底基板;        2-第二衬底基板;
3-感光单元;            4-光电二极管;
5-透镜;                6-薄膜晶体管;
7-发光元件;            8-平坦化层;
9-透光层;              10-彩膜层;
71-阳极;               72-有机发光层。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
需要说明的是,以下实施例结合的附图中所示出的子像素单元、每个子像素单元中包括的发光二极管的数量仅为示意性的,并不表示其实际数量。
实施例一
如图1所示,本公开的一个实施例提供了一种集成式显示面板,该集成式显示面板包括第一衬底基板1和第二衬底基板2,其中,第一衬底基板1与第二衬底基板2相对设置,所述第一衬底基板1上设有像素单元,所述像素单元包括具有不同颜色的多个子像素单元。所述集成式显示面板还包括图像采集模组,所述图像采集模组包括设置在各个子像素单元中的感光单元3,所述感光单元3包括设置于子像素单元的非显示区域内的光电二极管4所述光电二极管4配置为对来自目标区域的光进行光电转换,以得到表示所述目标区域的图像的电信号。所述感光单元3还包括透镜5,所述透镜5配置为获取来自目标区域的光,增大进入所述光电二极管4的光通量。
在根据该实施例的集成式显示面板中,设有多个具有不同颜色的子像素单元,且每个子像素单元中形成有光电二极管4,基于上述结构,在实施该集成式显示面板时,利用光电二极管4将透镜5所获取的目标区域的光进行光电转换,产生表示目标区域图像的电信号,进而生成目标区域的图像。在所述感光单元3还包括透镜5的情况下,所述透镜5配置为获取目标区域的光,增大进入所述光电二极管4的光通量。通过该集成式显示面板的实施过程可知,在该集成式显示面板的子像素单元的内部集成了光电二极管4,克服了发明人已知的技术中将前置摄像头作为一个单独构件安装在显示装置中导致显示装置的整机厚度增大的问题。因此,采用根据本实施例的集成式显示面板,可减薄显示装置的整机厚度,有利于显示装置向超薄化发展。
此外,由于将光电二极管4集成在了该集成式显示面板中,因此,该集成式显示面板不仅具有显示功能,还兼具有摄像功能。与发明人已知的显示面板相比,根据本实施例集成式显示面板具有更好的集成度,具有更高的使 用价值。
需要说明的是,本实施例中的第一衬底基板1和第二衬底基板2可以为常见的玻璃基板,当然也可以是其他可应用在显示领域的透光基板。另外,还可以对集成式显示面板采用玻璃粉封装的方式进行封装,以保证集成式显示面板的密封性能。
请再次参见图1,配置为增大进入光电二极管4光通量的透镜5同样可集成在集成式显示面板中。例如,可通过纳米压印的方式将透镜5形成在第二衬底基板2背离所述第一衬底基板1的表面,并且,为了保证将透镜5所获取的目标区域的光传输至与其对应的光电二极管4中,透镜5在第一衬底基板1的正投影需覆盖对应的光电二极管4在第一衬底基板1上的正投影。
通过将透镜5形成在第二衬底基板2上,即,将现有技术中前置摄像头中的透镜5结构也集成在集成式显示面板中了,这样,可进一步减小显示装置的整机厚度。
请再次参见图1,每个子像素单元包括薄膜晶体管6、发光元件7、平坦化层8和透光层9,发光元件7包括阳极71和有机发光层72,所述有机发光层72由有机发光材料制成。所述平坦化层8覆盖第一衬底基板1以及位于所述子像素单元中的薄膜晶体管6和光电二极管4。所述透光层9形成于子像素单元的非显示区域内,所述透光层9位于所述平坦化层8与第二衬底基板2之间,且透光层9在第一衬底基板1上的正投影覆盖所在子像素单元中的光电二极管4在第一衬底基板1上的正投影。所述透光层9可为光刻胶层,也可以是其他可透光材料制成的膜层结构。
在本公开的一个实施例中,同一子像素单元中的薄膜晶体管6与光电二极管4连接至同一根数据线,这样可减少驱动电路中的布线,简化驱动电路的结构,降低驱动电路的复杂度。
基于该集成式显示面板的结构可知,在该集成式显示面板进行显示时,发光元件7发出的光从第二衬底基板2的上表面发射出去,可将集成式显示面板的出光方式设置为非微腔光学结构和微腔光学结构。
下面根据发光元件7的彩色化方式,对根据本实施例的集成式显示面板中子像素单元的结构进行描述。
如图2所示,当发光元件7的彩色化方式为独立发光时,子像素单元中 的发光元件7为发出单色彩光的RGB彩色独立发光OLED,即发光元件7中有机发光层72的有机发光材料为彩光有机发光材料,其可以发出RGB中的一种颜色的光,例如,R光、G光或者B光。
在这种情况下,当集成式显示面板在实现其显示功能时,依赖RGB彩色独立发光OLED发出的彩光即可实现彩色图像显示,无需在RGB彩色独立发光OLED与第二衬底基板2之间额外形成彩膜层进行滤光。而当集成式显示面板在实现其摄像功能时,为实现彩色图像成像,需要将透镜5所获取的目标区域的光转换为彩色光。例如,可通过以下三种方式将透镜5所获取的目标区域的光转换为彩色光:
第一种方式:请再次参见图2,使透光层9的颜色与所在子像素单元中RGB彩色独立发光OLED的颜色相同,这样,当目标区域的光通过透镜传输至透光层9时,可通过带颜色的透光层9转换为彩光,转换后的彩光再穿过平坦化层8,传播至光电二极管4中。例如,透光层9可采用与所在子像素单元中的发光元件7的彩光有机发光材料相同颜色的树脂形成。
第二种方式:如图3所示,使平坦化层8的颜色与所在子像素单元中RGB彩色独立发光OLED的颜色相同,这样,当目标区域的光通过透镜穿过透光层9传输至平坦化层8时,可通过带颜色的平坦化层8转换为彩光,转换后的彩光进而传播至光电二极管4中。例如,坦化层8可采用与所在子像素单元中的发光元件7的彩光有机发光材料相同颜色的树脂形成。
第三种方式:使透光层9和平坦化层8的颜色均与所在子像素单元中RGB彩色独立发光OLED的颜色相同,这样,当目标区域的光传输至透光层9和平坦化层8时,可通过带颜色的透光层9和平坦化层8转换为彩光,转换后的彩光进而传播至光电二极管中。例如,透光层9和平坦化层8均可采用与所在子像素单元中的发光元件7的彩光有机发光材料相同颜色的树脂形成。
当透光层9和/或平坦化层8的颜色与所在子像素单元中RGB彩色独立发光OLED的颜色相同时,透光层9和/或平坦化层8即充当了彩膜层。
当然,为将透镜5所获取的目标区域的光转换为彩色光,也可在透光层9与第二衬底基板2之间设置一彩膜层,且所述彩膜层在第一衬底基板1上的正投影需覆盖光电二极管4在第一衬底基板1上的正投影。当透镜5形成 在第二衬底基板2上时,所述彩膜层在第二衬底基板2上的正投影需覆盖对应的透镜5。所述对应的透镜5是指,增大进入与彩膜层所对应的子像素单元中的光电二极管4的光通量的透镜。此时,透光层9和/或平坦化层8无需将透镜5所获取的目标区域的光转换为彩色光,透光层9和平坦化层8可由透明树脂制成。
可以理解的是,为了实现彩色图像成像,在集成式显示面板中,充当彩膜层的透光层9和/或平坦化层8需设于透镜5与光电二极管4之间。因此,当透光层9的颜色与所在子像素单元中RGB彩色独立发光OLED的颜色相同时,透镜5形成在所对应的子像素单元中的透光层9与第二衬底基板2之间,例如形成在透光层9朝向第二衬底基板2的表面,如图2所示,或形成在第二衬底基板2朝向透光层9的表面,并且,透镜5在第一衬底基板1上的正投影需覆盖所对应的光电二极管4。当平坦化层8的颜色与所在子像素单元中RGB彩色独立发光OLED的颜色相同时,透镜5形成在所对应的子像素单元中的平坦化层8与第二衬底基板2之间,例如,形成在第二衬底基板2朝向平坦化层8的表面,如图3所示,或者形成在平坦化层8朝向第二衬底基板2的表面,并且,透镜5在第一衬底基板1上的正投影覆盖所对应的光电二极管4。
图4示出了发光元件7为白光光源时,该集成式显示面板的结构示意图。如图4所示,子像素单元中的发光元件7为发出白光的白光OLED,即发光元件7中有机发光层72的有机发光材料为白光有机发光材料。
在这种情况下,由于白光OLED只能发出白光,无法发出彩光,因此,在集成式显示面板实现其显示功能时,需要在白光OLED与第二衬底基板2之间设置用于对白光OLED发出的白光进行彩色转换的彩膜层。
例如,可将彩膜层设于第二衬底基板2朝向白光OLED的表面,如图4所示,或者,将彩膜层设于白光OLED的有机发光层朝向第二衬底基板2的表面。
请再次参见图4,当彩膜层10设于第二衬底基板2朝向白光OLED的表面,且彩膜层10在第二衬底基板2上的正投影仅覆盖所对应的白光OLED的有机发光层72在第二衬底基板2上的正投影时,该彩膜层10仅能在集成式显示面板实现其显示功能时,将白光OLED发出的白光进行彩色转换,实 现彩色图像显示。而在集成式显示面板实现其摄像功能时,基于该彩膜层10的设置位置,该彩膜层10无法将透镜5所获取的目标区域的光转换为彩光传输至光电二极管4中。因此,为将透镜5所获取的目标区域的光进行彩色转换,可使透光层9的颜色与所在子像素单元中彩膜层10的颜色相同,如图4所示;和/或,使平坦化层8的颜色与所在子像素单元中彩膜层10的颜色相同,如图5所示。
在图4中示出了子像素单元中的发光元件7为发出白光的白光OLED,透光层9的颜色与所在子像素单元中彩膜层10的颜色相同时,透镜5设置在透光层9面向第二基板2的表面的结构示意图。当然,子像素单元中的发光元件7为发出白光的白光OLED,透光层9的颜色与所在子像素单元中彩膜层10的颜色相同时,透镜5还可以设置在第二基板2面向透镜层9的表面上。
在图5中示出了子像素单元中的发光元件7为发出白光的白光OLED,平坦化层8的颜色与所在子像素单元中彩膜层10的颜色相同时,透镜5设置在第二基板2的面向平坦化层8的表面上的结构示意图。当然,子像素单元中的发光元件7为发出白光的白光OLED,平坦化层8的颜色与所在子像素单元中的彩膜层10的颜色相同时,透镜5还可以设置在平坦化层8面向第二基板2的一侧。
当透光层9和/或平坦化层8的颜色与所在子像素单元中彩膜层10的颜色相同时,透光层9和/或平坦化层8可将透镜5所获取的目标区域的光转换为彩色光后再传输至光电二极管4中,即充当了彩膜层。
同理,当彩膜层设于白光OLED的有机发光层72朝向第二衬底基板2的表面时,为使集成式显示面板在摄像过程中实现彩色成像,透光层9和/或平坦化层8的颜色可与所在子像素单元中彩膜层的颜色相同,用于将透镜5所获取的目标区域的光转换为彩色光。在这样的构造中,可以将透镜5设置在第二衬底基板2面向透光层9的一侧,或者可以将透镜5设置在透光层9面向第二基板2的一侧。
例如,为使透光层9和/或平坦化层8的颜色与所在子像素单元中彩膜层10的颜色相同,透光层9和/或平坦化层8可由与所在子像素单元中彩膜层10相同颜色的树脂形成。
当然,在将透镜5所获取的目标区域的光转换为彩色光时,也可在透光 层9与第二衬底基板2之间设置一层用于彩色转换的彩膜层,且所设置的彩膜层在第一衬底基板1上的正投影需覆盖光电二极管4在第一衬底基板1上的正投影,如图6所示,设置的彩膜层10位于第二衬底基板2和有机发光层72之间,其在第一衬底基板1上的正投影不仅覆盖有机发光层72在第一衬底基板上的投影,还覆盖光电二极管4在第一衬底基板1上的正投影。当透镜5形成在第二衬底基板2上时,所设置的彩膜层在第二衬底基板2上的正投影需覆盖透镜5。此时,透光层9和/或平坦化层8无需将透镜5所获取的目标区域的光转换为彩色光,透光层9和/或平坦化层8可由透明树脂制成。
可以理解的是,集成式显示面板为了实现彩色图像成像,充当彩膜层的透光层9和/或平坦化层8需设于透镜5与光电二极管4之间,因此,当透光层9的颜色与所在子像素单元中彩膜层10的颜色相同时,透镜5可形成在所对应的子像素单元中的透光层9与第二衬底基板2之间,例如形成在透光层9朝向第二衬底基板2的表面或第二衬底基板2朝向透光层9的表面,并且,透镜5在第一衬底基板1上的正投影需覆盖所对应的光电二极管4。其中,透镜5形成在透光层9朝向第二衬底基板2的表面的示意图如图4所示。当平坦化层8的颜色与所在子像素单元中彩膜层10的颜色相同时,透镜5可形成在所对应的子像素单元中的平坦化层8与第二衬底基板2之间,例如形成在平坦化层8朝向第二衬底基板2的表面或第二衬底基板2朝向平坦化层8的表面,并且,透镜5在第一衬底基板1上的正投影覆盖所对应的光电二极管4。此时,形成的透镜5为微透镜5。其中,透镜5形成在第二衬底基板2朝向平坦化层8的表面的示意图如图5所示。
如图6所示,当彩膜层10设于第二衬底基板2朝向白光OLED的表面,且彩膜层10在第二衬底基板2上的正投影覆盖所对应的白光OLED的有机发光层72和光电二极管4时,透镜5可通过纳米压印的方式形成在第二衬底基板2背向第一衬底基板1的表面,且透镜5在第一衬底基板1的正投影需覆盖对应的光电二极管4。该彩膜层10不仅能在集成式显示面板实现其显示功能时,将白光OLED发出的白光进行彩色转换,实现彩色图像显示,还能在集成式显示面板实现其摄像功能时,将透镜5所获取的目标区域的光转换为彩色光传输至光电二极管4中,实现彩色图像成像。这时,透光层9和平坦化层8的颜色可由透明树脂形成。
同理,如图7所示,当彩膜层10形成在白光OLED的有机发光层朝向第二衬底基板2的表面的同时,还形成在透光层9朝向第二衬底基板2的表面时,透镜5可通过纳米压印的方式形成在第二衬底基板2背向所述第一衬底基板1的表面,且透镜5在第一衬底基板1的正投影需覆盖对应的光电二极管4。该彩膜层10在第一衬底基板1上的正投影覆盖所对应的白光OLED的有机发光层72和光电二极管4,这时,该彩膜层10可用于集成式显示面板在实现其显示功能时进行彩色图像显示和实现其摄像功能时进行彩色图像成像,此时,透光层9和平坦化层8的颜色可由透明树脂形成。
可以理解的是,当透镜5形成在第二衬底基板2上时,该彩膜层在第二衬底基板2上的正投影还需覆盖所对应的透镜5。
需要说明的是,当发光元件7的彩色化方式为白光加彩膜时,彩膜层10在平行于第二衬底基板2的方向上的长度,与显示装置的像素密度的大小有关。
例如,在显示装置具有较高的像素密度时,单位面积内所具有的子像素单元的个数就很多,即每个子像素单元占用的空间就较小,因而,彩膜层10在平行于第二衬底基板2的方向上的长度就需要短一些,例如,可使彩膜层在第一衬底基板1上的正投影仅覆盖白光OLED的有机发光层72。
在显示装置具有较低的像素密度时,单位面积内所具有的子像素单元的个数就少,即每个子像素单元占用的空间相对较大,因而,彩膜层10在平行于第二衬底基板2的方向上的长度就可以长一些,例如,可使彩膜层在第一衬底基板1上的正投影覆盖白光OLED的有机发光层72和光电二极管4。
需要说明的是,在实际制备工艺中,当彩色化方式为独立发光时,可利用掩膜版制备RGB彩色独立发光OLED,将RGB彩色独立发光OLED的有机发光层72形成在子像素单元中的显示区域内,如图2所示。当彩色化方式为白光加彩膜时,有两种方式可形成白光OLED:一种是与制作RGB彩色独立发光OLED的原理相同,利用掩膜版,将有机发光层72形成在子像素单元中的显示区域内,即相邻两个子像素单元中的透光层9之间,如图4所示。另一种是无需利用掩膜版,采用整层材料覆盖在透光层9朝向第二衬底基板2的表面,如图8所示。
但需要说明的是,当采用整层材料覆盖的形式形成白光OLED时,只有 在区域A形成有白光OLED的其他组成部分,例如电极等,使A区域可以发光。而在区域B中不形成白光OLED的其他组成部分,在B区域不发光。第二种白光OLED制备方式的本质与第一种白光OLED制备方式的本质是类似的。
当采用整层材料覆盖在透光层9朝向第二衬底基板2的表面的方式形成白光OLED时,为使集成式显示面板实现其显示和摄像功能,请再次参见图8,可使彩膜层10设于第二衬底基板2朝向白光OLED的表面,且彩膜层10在第二衬底基板2上的正投影覆盖子像素单元中的显示区域和非显示区域中的光电二极管4,此外,还可使透镜5可通过纳米压印的方式形成在第二衬底基板2背向所述第一衬底基板1的表面,且透镜5在第一衬底基板1的正投影需覆盖光电二极管4在第一衬底基板1的正投影。
本公开的至少一个实施例提供了一种集成式显示面板的制作方法,该集成式显示面板的制作方法与实施例一所提供的集成式显示面板相对于。
如图9所示,本实施例所提供的集成式显示面板的制作方法包括:
提供第一衬底基板;
在所述第一衬底基板形成具有不同颜色的多个子像素单元的像素单元,其中,在所述多个子像素单元中的每一个子像素单元的非显示区域中形成光电二极管,所述光电二极管配置为对来自目标区域的光线进行光电转换,以生成表示所述目标区域的图像的电信号;以及
在多个子像素单元远离第一衬底基板的表面形成第二衬底基板。
采用本实施例所提供的集成式显示面板的制作方法所制作出的集成式显示面板,集成有发明人已知的技术中前置摄像头中的光电二极管结构,因此,能够克服发明人已知的技术中将前置摄像头作为一个单独构件安装在显示装置中所导致增大显示装置的整机厚度的问题。
此外,采用本实施例所提供的集成式显示面板的制作方法所制作出的集成式显示面板,不仅具有通常的显示面板所具有的显示的功能,还兼具有摄像的功能,因而具有更高的使用价值。
在多个子像素单元远离第一衬底基板的表面形成第二衬底基板后可还包括:通过纳米压印的方式在第二衬底基板背向第一衬底基板的表面形成透镜,其中,所述透镜在第一衬底基板上的正投影覆盖与光电二极管在第一衬底基 板上的正投影。
采用上述方法,通过将透镜形成在第二衬底基板上,即,将申请人已知技术中前置摄像头中的透镜结构也集成在集成式显示面板中了,这样,可进一步减小显示装置的整机厚度。
在所述第一衬底基板形成具有不同颜色的多个子像素单元可包括:在每一个子像素单元中形成薄膜晶体管和光电二极管,薄膜晶体管和光电二极管直接或间接形成在第一衬底基板上,其中,所述薄膜晶体管与所述光电二极管连接至同一根数据线。通过将所述薄膜晶体管与所述光电二极管连接至同一根数据线,可减少驱动电路中的布线,简化驱动电路的结构,降低驱动电路的复杂度。
此外,在所述第一衬底基板形成具有不同颜色的多个子像素单元还包括:
在第一衬底基板的表面、所述薄膜晶体管的表面和光电二极管的表面形成平坦化层;在平坦化层背向第一衬底基板的表面上形成发光元件和透光层;其中,所述透光层在第一衬底基板上的正投影覆盖所述光电二极管在第一衬底基板上的正投影。在实际应用中,透光层可为光刻胶层,也可以是其他可透光材料制成的膜层结构。
当发光元件的彩色化方式为独立发光时,所述发光元件为单色OLED。与之对应的,在所述平坦化层背向第一衬底基板的表面形成发光元件可包括:在所述平坦化层背向第一衬底基板的表面,采用彩色有机发光材料形成所述有机发光层。
在这种情况下,由于发光元件可独立发出彩色光,因此,在集成式显示面板实现其显示功能时,无需在发光元件与第二衬底基板之间形成彩膜层,即可实现彩色图像显示。而在集成式显示面板实现其摄像功能时,为实现彩色图像成像,需要将透镜所获取的目标区域的光转换为彩色光,因此,可使透光层的颜色与所述单色OLED的颜色相同,和/或,使平坦化层的颜色与所述单色OLED的颜色相同,此时,透光层和/或平坦化层充当彩膜层。在所述透光层充当彩膜层时,所述透镜设置在所述透光层之上。当所述平坦化层充当彩膜层时,所述透镜设置在所述平坦化层之上。
当使透光层的颜色与所述单色OLED的颜色相同时,与之对应的,在所述平坦化层背向第一衬底基板的表面形成透光层可包括:所述平坦化层背向 第一衬底基板的表面,采用与所在子像素单元中的发光元件中彩光有机发光材料相同颜色的树脂形成透光层。
当使平坦化层的颜色与所述单色OLED的颜色相同时,与之对应的,在第一衬底基板的表面、所述薄膜晶体管的表面和所述光电二极管的表面形成平坦化层可包括:在第一衬底基板的表面、所述薄膜晶体管的表面和光电二极管的表面,采用与所述发光元件中彩光有机发光材料相同颜色的树脂形成平坦化层。
为了增大进入所述光电二极管的光通量,在所述光电二极管上方形成透镜。为将透镜所获取的目标区域的光转换为彩色光,可在透光层与第二衬底基板之间设置一层彩膜层,且所设置的彩膜层在第一衬底基板上的正投影覆盖光电二极管在第一衬底基板上的正投影。当透镜形成在第二衬底基板上时,所设置的彩膜层在第二衬底基板上的正投影需覆盖所述透镜在第二衬底基板上的正投影。此时,透光层和平坦化层可由透明树脂制成。
可以理解的是,集成式显示面板为了实现彩色图像成像时,充当彩膜层的透光层和/或平坦化层需设于透镜与光电二极管之间,因此,当透光层采用与所述单色OLED相同颜色的树脂形成时,在所述平坦化层背向第一衬底基板的表面形成透光层后还可包括:在所述透光层朝向所述第二衬底基板的表面形成由感光树脂制成的透镜。当平坦化层的采用与所述单色OLED相同颜色的树脂形成时,在第一衬底基板的表面、所述薄膜晶体管的表面和所述光电二极管的表面形成平坦化层后还包括:在平坦化层朝向第二衬底基板的表面形成由感光树脂制成的透镜。
当发光元件的彩色化方式为白光加彩膜时,所述发光元件为发出白光的白光OLED。与之对应的,在所述平坦化层背向第一衬底基板的表面形成发光元件可包括:在所述平坦化层背向第一衬底基板的表面,采用白光有机发光材料形成所述有机发光层。
在这种情况下,由于发光元件只能发出白光,无法发出彩光,因此,在集成式显示面板实现显示功能时,需要在发光元件与第二衬底基板之间形成彩膜层,对白光OLED发出的白光进行彩色转换。因此,在第一衬底基板形成具有不同颜色的多个子像素单元的像素单元后还包括:在第二衬底基板和发光元件之间形成彩膜层。例如,可以在第二衬底基板朝向所述发光元件的 表面上形成彩膜层,或者,在所述发光元件朝向第二衬底基板的表面上形成彩膜层。
当在第二衬底基板朝向白光OLED的表面形成有彩膜层,且所形成的彩膜层在第一衬底上的正投影仅覆盖所述白光OLED的有机发光层在第一衬底上的正投影时,该彩膜层仅能在集成式显示面板实现其显示功能时,将白光OLED发出的白光进行彩色转换,实现彩色图像显示。而在集成式显示面板实现其摄像功能时,该彩膜层无法将透镜所获取的目标区域的光转换为彩光传输至光电二极管中。因此,为实现将目标区域的光转换为彩光,可使透光层的颜色与所述彩膜层的颜色相同;和/或,平坦化层的颜色与所述彩膜层的颜色相同。
同理,当彩膜层设于白光OLED朝向第二衬底基板的表面时,为使集成式显示面板在摄像过程中实现彩色成像,可使透光层的颜色与所述彩膜层的颜色相同;和/或,平坦化层的颜色与所述彩膜层的颜色相同。
当透光层的颜色与所述彩膜层的颜色相同时,与之对应的,所述平坦化层背向第一衬底基板的表面形成透光层可包括:在所述平坦化层背向第一衬底基板的表面,采用与所述彩膜层相同颜色的树脂形成透光层。
当平坦化层的颜色与所述彩膜层的颜色相同时,与之对应的,在第一衬底基板的表面、所述薄膜晶体管的表面和所述光电二极管的表面形成平坦化层可包括:在第一衬底基板的表面、所述薄膜晶体管的表面和所述光电二极管的表面,采用与所述发光元件中的彩膜层相同颜色的树脂形成平坦化层。
可以理解的是,集成式显示面板为了实现彩色图像成像时,充当彩膜层的透光层和/或平坦化层需设于透镜与光电二极管之间,因此,当透光层采用与所述彩膜层相同颜色的树脂形成时,在所述平坦化层背向第一衬底基板的表面形成透光层后还可包括:在所述透光层朝向所述第二衬底基板的表面形成由感光树脂制成的透镜。当平坦化层的采用与所述彩膜层相同颜色的树脂形成时,在第一衬底基板的表面、所述薄膜晶体管的表面和所述光电二极管的表面形成平坦化层后还包括:在平坦化层朝向第二衬底基板的表面形成由感光树脂制成的透镜。
当在所述发光元件朝向第二衬底基板的表面形成彩膜层,所形成的彩膜层在第一衬底基板上的正投影不仅可以覆盖所述白光OLED的有机发光层在 第一衬底基板上的正投影,还可覆盖所述光电二极管在第一衬底基板上的正投影时,该彩膜层不仅能在集成式显示面板实现其显示功能时,将白光OLED发出的白光进行彩色转换,实现彩色图像显示,还能在集成式显示面板实现其摄像功能时,将透镜所获取的目标区域的光转换为彩色光传输至光电二极管中,实现彩色图像成像。此时,透光层和平坦化层的颜色可由透明树脂形成。
同理,当彩膜层形成在发光元件朝向第二衬底基板的表面的同时,还形成在透光层朝向第二衬底基板的表面时,彩膜层在第二衬底基板上的正投影覆盖所述白光OLED的有机发光层和光电二极。此时,透光层和平坦化层的颜色可由透明树脂形成。
本公开的至少一个实施例提供了一种显示装置,该显示装置包括上文所述的集成式显示面板和驱动该集成式显示面板的驱动电路。
在发明人已知的技术中,显示装置中不仅包括驱动显示面板的驱动电路,还包括驱动前置摄像头的驱动电路,两个驱动电路是相互独立存在的。而由于根据本公开的实施例的集成式显示面板中集成有光电二极管,相当于将发明人已知的显示面板的前置摄像头的部分结构集成在一起了,因此,在根据本公开的实施例显示装置中,可仅用一个驱动电路对集成式显示面板进行驱动,既可使其完成显示功能和摄像功能。因此,与发明人已知的技术相比,在根据本公开实施例的显示装置中,无需单独设置用于驱动前置摄像头的驱动电路,从而降低了显示装置的整机厚度。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。
本申请要求于2017年3月31日递交的中国专利申请第201710209046.8号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (20)

  1. 一种集成式显示面板,包括第一衬底基板和第二衬底基板,所述第一衬底基板与所述第二衬底基板相对设置,所述第一衬底基板上设有像素单元,所述像素单元包括具有不同颜色的多个子像素单元;
    所述集成式显示面板还包括图像采集模组,所述图像采集模组包括设置在所述各个子像素单元中的感光单元,所述感光单元包括位于所述子像素单元的非显示区域内的光电二极管,所述光电二极管配置对来自目标区域的光进行光电转换,得到表示所述目标区域的图像的电信号。
  2. 根据权利要求1所述的集成式显示面板,其中,所述感光单元还包括透镜,所述透镜设置在所述光电二极管上方,配置为增大进入所述光电二极管的光通量。
  3. 根据权利要求2所述的集成式显示面板,其中,所述透镜形成于所述第二衬底基板,所述透镜在所述第一衬底基板上的正投影覆盖所述光电二极管在所述第一衬底基板上的正投影。
  4. 根据权利要求1至3中任何一项所述的集成式显示面板,其中,所述多个子像素单元中的每一个均包括薄膜晶体管,所述薄膜晶体管与位于所述子像素单元中的所述光电二极管连接至同一数据线;
    所述多个子像素单元均还包括发光元件、平坦化层和透光层;
    其中,所述平坦化层覆盖所述第一衬底基板、以及所述薄膜晶体管和所述光电二极管;
    所述透光层所述透光层在所述第一衬底基板上的正投影覆盖所述光电二极管在所述第一衬底基板上的正投影,所述透光层位于所述子像素单元的非显示区域内并位于所述平坦化层与所述第二衬底基板之间。
  5. 根据权利要求1至4中任何一项所述的集成式显示面板,其中,所述发光元件为单色OLED;
    所述透光层的颜色与所述子像素单元中单色OLED的颜色相同;和/或,所述平坦化层的颜色与所述子像素单元中单色OLED的颜色相同。
  6. 根据权利要求5所述的集成式显示面板,其中,
    当所述透光层的颜色与所述子像素单元中单色OLED的颜色相同时,所 述透镜形成在所述透光层与所述第二衬底基板之间,其中,所述透镜在所述第一衬底基板上的正投影覆盖所述光电二极管在所述第一衬底基板上的正投影;
    当所述平坦化层的颜色与所述子像素单元中单色OLED的颜色相同时,所述透镜形成在所述平坦化层与所述第二衬底基板之间,其中,所述透镜在所述第一衬底基板上的正投影覆盖所述光电二极管在所述第一衬底基板上的正投影。
  7. 根据权利要求1至4中任何一项所述的集成式显示面板,其中,所述发光元件为白光OLED;
    所述第二衬底基板朝向所述白光OLED的表面形成有彩膜层,所述彩膜层的颜色与所述子像素单元的颜色相同,所述彩膜层在所述第一衬底基板上的正投影仅覆盖所述白光OLED的有机发光层在所述第一衬底基板上的正投影或覆盖所述白光OLED的有机发光层和光电二极管在所述第一衬底基板上的正投影;
    所述彩膜层在所述第一衬底基板上的正投影仅覆盖所述白光OLED的有机发光层时,所述透光层的颜色与所述彩膜层的颜色相同,和/或,所述平坦化层的颜色与所述彩膜层的颜色相同。
  8. 根据权利要求1至4中任何一项所述的集成式显示面板,其中,所述发光元件为白光OLED,所述白光OLED朝向所述第二衬底基板的表面形成有彩膜层,所述彩膜层的颜色与所述子像素单元的颜色相同;
    所述透光层的颜色与所述彩膜层的颜色相同;
    和/或,所述平坦化层的颜色与所述彩膜层的颜色相同;
    和/或,所述彩膜层还形成于所述透光层朝向所述第二衬底基板的表面,所述彩膜层在所述第一衬底基板上的正投影还覆盖所述光电二极管在所述第一衬底基板上的正投影。
  9. 根据权利要求7或8所述的集成式显示面板,其中,
    当所述透光层的颜色与所述彩膜层的颜色相同时,所述透镜形成在所述透光层与所述第二衬底基板之间,其中,所述透镜在所述第一衬底基板上的正投影覆盖所述光电二极管在所述第一衬底基板上的正投影;
    当所述平坦化层的颜色与所述彩膜层的颜色相同时,所述透镜形成在所 述子像素单元中的平坦化层与所述第二衬底基板之间,其中,所述透镜在所述第一衬底基板上的正投影覆盖所述光电二极管在所述第一衬底基板上的正投影。
  10. 一种制作根据权利要求1所述的集成式显示面板的方法,包括:
    提供第一衬底基板;
    在所述第一衬底基板形成具有不同颜色的多个子像素单元的像素单元,其中,在所述多个子像素单元中的每一个子像素单元的非显示区域内形成光电二极管,所述光电二极管配置为对来自目标区域的光线进行光电转换,以生成表示所述目标区域的图像的电信号;以及
    在所述像素单元远离所述第一衬底基板的表面形成第二衬底基板。
  11. 根据权利要求10所述的集成式显示面板的制作方法,其中,
    在所述像素单元远离所述第一衬底基板的表面形成第二衬底基板后还包括:通过纳米压印的方式在所述第二衬底基板背向所述第一衬底基板的表面形成透镜,其中,所述透镜在所述第一衬底基板上的正投影覆盖与所述光电二极管在所述第一衬底基板上的正投影。
  12. 根据权利要求9所述的集成式显示面板的制作方法,其中,在所述第一衬底基板形成具有多个不同颜色的子像素单元的像素单元包括:
    在所述子像素单元中形成薄膜晶体管和所述光电二极管,所述薄膜晶体管和所述光电二极管位于所述第一衬底基板,其中,所述薄膜晶体管与所述光电二极管连接至同一数据线;
    在所述第一衬底基板的表面、所述薄膜晶体管的表面和所述光电二极管的表面形成平坦化层;
    在所述平坦化层背向所述第一衬底基板的表面形成发光元件和透光层;其中,所述透光层在所述第一衬底基板上的正投影覆盖所述光电二极管在所述第一衬底基板上的正投影。
  13. 根据权利要求12所述的集成式显示面板的制作方法,其中,
    在所述平坦化层背向所述第一衬底基板的表面形成发光元件包括:在所述平坦化层背向所述第一衬底基板的表面,采用彩色有机发光材料形成发光元件的有机发光层;
    在所述平坦化层背向所述第一衬底基板的表面形成透光层包括:在所述 平坦化层背向所述第一衬底基板的表面,采用与所述发光元件的彩光有机发光材料相同颜色的树脂形成透光层;
    和/或,在所述第一衬底基板的表面、所述子像素单元中的薄膜晶体管的表面和光电二极管的表面形成平坦化层包括:在所述第一衬底基板的表面、所述薄膜晶体管的表面和所述光电二极管的表面,采用与所述发光元件的彩光有机发光材料相同颜色的树脂形成平坦化层。
  14. 根据权利要求13所述的方法,其还包括,在所述透光层由与所述发光元件的彩光有机发光材料相同颜色的树脂形成时,在所述透光层上形成透镜,所述透镜在所述第一衬底基板上的正投影覆盖所述光电二极管在所述第一衬底基板上的正投影。
  15. 根据权利要求13所述的方法,其还包括,在所述平坦层由与所述发光元件的彩光有机发光材料相同颜色的树脂形成时,在所述平坦层上形成透镜,所述透镜在所述第一衬底基板上的正投影覆盖所述光电二极管在所述第一衬底基板上的正投影。
  16. 根据权利要求12所述的集成式显示面板的制作方法,其中,
    在所述平坦化层背向所述第一衬底基板的表面形成发光元件包括:在所述平坦化层背向所述第一衬底基板的表面,采用白光有机发光材料形成发光元件的有机发光层;
    在所述第一衬底基板形成具有多个不同颜色的子像素单元的像素单元后还包括:在所述第二衬底基板朝向所述发光元件的表面形成彩膜层,所述彩膜层在所述第一衬底基板上的正投影仅覆盖所述发光元件的有机发光层在所述第一衬底基板上的正投影或覆盖所述发光元件的有机发光层和所述光电二极管在所述第一衬底基板上的正投影;
    当所述彩膜层在所述第一衬底的正投影覆盖所述发光元件的有机发光层在所述第一衬底基板上的正投影时,
    在所述子平坦化层背向所述第一衬底基板的表面形成透光层包括:在所述平坦化层背向所述第一衬底基板的表面,采用与所述彩膜层相同颜色的树脂形成透光层;
    和/或,在所述第一衬底基板的表面、所述薄膜晶体管的表面和所述光电二极管的表面形成平坦化层包括:在所述第一衬底基板的表面、所述薄膜晶 体管的表面和所述光电二极管的表面,采用与所述彩膜层相同颜色的树脂形成平坦化层。
  17. 根据权利要求12所述的集成式显示面板的制作方法,其中,
    在所述平坦化层背向所述第一衬底基板的表面形成发光元件包括:在所述平坦化层背向所述第一衬底基板的表面,采用白光有机发光材料形成发光元件的有机发光层;
    在所述第一衬底基板形成具有多个不同颜色的子像素单元的像素单元后还包括:在所述发光元件朝向所述第二衬底基板的表面形成彩膜层;
    在所述平坦化层背向所述第一衬底基板的表面形成透光层包括:在所述平坦化层背向所述第一衬底基板的表面,采用与所述彩膜层相同颜色的树脂形成透光层;
    和/或,在所述第一衬底基板的表面、所述薄膜晶体管的表面和所述光电二极管的表面形成平坦化层包括:在所述第一衬底基板的表面、所述薄膜晶体管的表面和所述光电二极管的表面,采用与所述彩膜层相同颜色的树脂形成平坦化层。
  18. 根据权利要求16或17所述的集成式显示面板的制作方法,其中,当所述透光层由与所述彩膜层相同颜色的树脂形成时,在所述透光层和所述第二衬底基板之间形成透镜,所述透镜在第一衬底基板上的投影覆盖所述光电二极管在所述第一衬底基板上的投影。
  19. 根据权利要求16或17所述的集成式显示面板的制作方法,其中,当所述平坦化层由与所述彩膜层相同颜色的树脂形成时,在所述平坦化层和所述第二衬底基板之间形成透镜,所述透镜在第一衬底基板上的投影覆盖所述光电二极管在所述第一衬底基板上的投影。
  20. 一种显示装置,包括权利要求1至9中任何一项所述的集成式显示面板和驱动所述集成式显示面板的驱动电路。
PCT/CN2018/071485 2017-03-31 2018-01-05 集成式显示面板及制作方法、显示装置 WO2018176978A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/073,044 US11233100B2 (en) 2017-03-31 2018-01-05 Integrated display panel including photodiode, manufacturing method thereof and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710209046.8 2017-03-31
CN201710209046.8A CN107068716B (zh) 2017-03-31 2017-03-31 一种集成式显示面板及制作方法、显示装置

Publications (1)

Publication Number Publication Date
WO2018176978A1 true WO2018176978A1 (zh) 2018-10-04

Family

ID=59601846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071485 WO2018176978A1 (zh) 2017-03-31 2018-01-05 集成式显示面板及制作方法、显示装置

Country Status (3)

Country Link
US (1) US11233100B2 (zh)
CN (1) CN107068716B (zh)
WO (1) WO2018176978A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4012777A4 (en) * 2020-02-13 2023-02-22 BOE Technology Group Co., Ltd. DISPLAY PANEL AND DISPLAY DEVICE

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108665862B (zh) * 2017-03-31 2020-05-15 京东方科技集团股份有限公司 一种显示面板及其驱动方法和制作方法、显示装置
CN107068716B (zh) 2017-03-31 2020-04-07 京东方科技集团股份有限公司 一种集成式显示面板及制作方法、显示装置
WO2019061183A1 (zh) * 2017-09-28 2019-04-04 深圳传音通讯有限公司 显示面板组件、移动终端、图像的生成方法和存储介质
CN107592444B (zh) * 2017-10-30 2019-10-25 北京京东方显示技术有限公司 一种显示面板和显示装置
JP7088596B2 (ja) * 2017-12-15 2022-06-21 京東方科技集團股▲ふん▼有限公司 画像スキャン機能を有するamoledディスプレイパネル
CN110391256B (zh) * 2018-04-16 2021-07-16 宁波飞芯电子科技有限公司 Tof传感器低漏电型高效二级转移存储节点及实现方法
CN109216423B (zh) * 2018-09-12 2020-09-08 武汉华星光电半导体显示技术有限公司 显示面板
US10903288B2 (en) 2018-09-12 2021-01-26 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Display panel
CN118647237A (zh) * 2018-09-14 2024-09-13 株式会社半导体能源研究所 显示装置、显示模块及电子设备
CN116723738A (zh) * 2018-10-03 2023-09-08 群创光电股份有限公司 显示装置
CN109786473B (zh) * 2019-01-25 2021-09-21 京东方科技集团股份有限公司 一种封装盖板及其制作方法、显示装置
CN111698350A (zh) * 2019-03-14 2020-09-22 昆山工研院新型平板显示技术中心有限公司 显示装置及终端设备
CN109887980B (zh) * 2019-03-19 2021-01-29 京东方科技集团股份有限公司 显示面板及其驱动方法、显示装置
CN110010061A (zh) * 2019-03-27 2019-07-12 武汉华星光电半导体显示技术有限公司 显示装置及其制造方法
CN109962091B (zh) * 2019-03-29 2021-01-26 京东方科技集团股份有限公司 一种电致发光显示面板及显示装置
US11527582B1 (en) * 2019-09-24 2022-12-13 Apple Inc. Display stack with integrated photodetectors
CN114361230A (zh) * 2019-09-30 2022-04-15 武汉天马微电子有限公司 一种显示面板、制备方法及显示装置
CN112736111A (zh) 2019-10-29 2021-04-30 北京小米移动软件有限公司 屏幕模组及电子设备
CN111025717A (zh) * 2019-12-12 2020-04-17 武汉华星光电技术有限公司 液晶显示面板及电子设备
CN113362726A (zh) * 2020-02-19 2021-09-07 群创光电股份有限公司 显示面板与拼接显示装置
JP7525512B2 (ja) 2020-03-27 2024-07-30 京東方科技集團股▲ふん▼有限公司 表示基板及びその製造方法、表示装置
CN111929935A (zh) * 2020-08-14 2020-11-13 Oppo广东移动通信有限公司 显示组件及电子设备
CN114125413A (zh) * 2021-12-09 2022-03-01 维沃移动通信有限公司 像素组件、图像传感器组件和电子设备
KR20230124807A (ko) 2022-02-18 2023-08-28 삼성디스플레이 주식회사 전자 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100722111B1 (ko) * 2006-05-09 2007-05-25 삼성에스디아이 주식회사 포토 다이오드를 구비하는 유기 발광 표시장치
CN1971357A (zh) * 2005-11-25 2007-05-30 三星电子株式会社 显示设备
KR100769432B1 (ko) * 2006-07-04 2007-10-22 삼성에스디아이 주식회사 유기전계발광 소자 및 그의 제조 방법
CN101339953A (zh) * 2007-07-04 2009-01-07 三星Sdi株式会社 有机发光元件及其制造方法
CN102037395A (zh) * 2008-05-29 2011-04-27 索尼公司 显示装置
CN107068716A (zh) * 2017-03-31 2017-08-18 京东方科技集团股份有限公司 一种集成式显示面板及制作方法、显示装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6767774B2 (en) * 1999-12-28 2004-07-27 Intel Corporation Producing multi-color stable light emitting organic displays
JP3977038B2 (ja) * 2001-08-27 2007-09-19 株式会社半導体エネルギー研究所 レーザ照射装置およびレーザ照射方法
JP2007148347A (ja) 2005-11-25 2007-06-14 Samsung Electronics Co Ltd 液晶表示装置及びこれを利用した端末機
CN203707136U (zh) * 2014-02-12 2014-07-09 京东方科技集团股份有限公司 一种三维显示面板及三维显示装置
CN103824876A (zh) * 2014-02-12 2014-05-28 京东方科技集团股份有限公司 一种三维显示面板、其制作方法及三维显示装置
US10181070B2 (en) * 2015-02-02 2019-01-15 Synaptics Incorporated Low profile illumination in an optical fingerprint sensor
WO2016144108A1 (ko) * 2015-03-10 2016-09-15 크루셜텍 (주) 이미지 스캔 가능한 디스플레이 장치
US10176355B2 (en) * 2015-12-03 2019-01-08 Synaptics Incorporated Optical sensor for integration in a display
US10559596B2 (en) * 2018-03-23 2020-02-11 Innolux Corporation Display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1971357A (zh) * 2005-11-25 2007-05-30 三星电子株式会社 显示设备
KR100722111B1 (ko) * 2006-05-09 2007-05-25 삼성에스디아이 주식회사 포토 다이오드를 구비하는 유기 발광 표시장치
KR100769432B1 (ko) * 2006-07-04 2007-10-22 삼성에스디아이 주식회사 유기전계발광 소자 및 그의 제조 방법
CN101339953A (zh) * 2007-07-04 2009-01-07 三星Sdi株式会社 有机发光元件及其制造方法
CN102037395A (zh) * 2008-05-29 2011-04-27 索尼公司 显示装置
CN107068716A (zh) * 2017-03-31 2017-08-18 京东方科技集团股份有限公司 一种集成式显示面板及制作方法、显示装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4012777A4 (en) * 2020-02-13 2023-02-22 BOE Technology Group Co., Ltd. DISPLAY PANEL AND DISPLAY DEVICE
JP2023523481A (ja) * 2020-02-13 2023-06-06 京東方科技集團股▲ふん▼有限公司 表示パネル及び表示装置
US12035603B2 (en) 2020-02-13 2024-07-09 Boe Technology Group Co., Ltd. Display panel and display device

Also Published As

Publication number Publication date
US20210202620A1 (en) 2021-07-01
CN107068716A (zh) 2017-08-18
CN107068716B (zh) 2020-04-07
US11233100B2 (en) 2022-01-25

Similar Documents

Publication Publication Date Title
WO2018176978A1 (zh) 集成式显示面板及制作方法、显示装置
CN110858599B (zh) 像素阵列封装结构及显示面板
JP7353834B2 (ja) 表示装置および表示システム
CN108666342B (zh) 一种显示面板及制作方法、显示装置
WO2020233684A1 (zh) 一种显示屏及电子设备
JP5720887B2 (ja) 表示装置および電子機器
JP5139915B2 (ja) 発光装置
TWI424251B (zh) 發光單元陣列、用以製造其之方法及成像裝置
TW201442226A (zh) 顯示裝置及其製造方法、以及電子機器
CN109713018A (zh) 一种显示装置及其制作方法
WO2017071344A1 (zh) 彩膜基板、显示面板及显示装置
US12001039B2 (en) Display apparatus and imaging apparatus
TWI450021B (zh) 可提高發光效率之影像產生裝置
US11300862B2 (en) Wavelength conversion device and projection device
TWI538196B (zh) 全彩有機發光二極體結構及其製作方法
WO2019127794A1 (zh) 镜面显示装置及其制作方法
TW202010118A (zh) 透明顯示面板
CN112382733A (zh) 一种柔性显示面板、柔性显示装置以及制作方法
KR20220056788A (ko) 발광장치, 표시장치, 촬상장치, 및 전자기기
JP2021152599A (ja) 表示装置および電子装置
TW202119383A (zh) 顯示系統
TWI770968B (zh) 背光模組以及顯示裝置
US11756508B2 (en) Electronic device having improved display efficiency on some areas
WO2018120020A1 (zh) 发光二极管微型阵列闪光灯
JP2005130001A (ja) 撮像装置付き表示システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18774389

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18774389

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.03.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18774389

Country of ref document: EP

Kind code of ref document: A1