WO2018174396A1 - 이관능성 하이드록시메틸기를 가지는 퓨란 모노머 및 이의 제조 방법 - Google Patents

이관능성 하이드록시메틸기를 가지는 퓨란 모노머 및 이의 제조 방법 Download PDF

Info

Publication number
WO2018174396A1
WO2018174396A1 PCT/KR2018/000865 KR2018000865W WO2018174396A1 WO 2018174396 A1 WO2018174396 A1 WO 2018174396A1 KR 2018000865 W KR2018000865 W KR 2018000865W WO 2018174396 A1 WO2018174396 A1 WO 2018174396A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
bhmf
furan
molecular weight
low molecular
Prior art date
Application number
PCT/KR2018/000865
Other languages
English (en)
French (fr)
Inventor
이신엽
박찬호
Original Assignee
국도화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국도화학 주식회사 filed Critical 국도화학 주식회사
Priority to US16/492,552 priority Critical patent/US11578045B2/en
Priority to EP18770224.6A priority patent/EP3604290B1/en
Priority to CN201880019541.5A priority patent/CN110461825B/zh
Priority to JP2019566551A priority patent/JP7040875B2/ja
Publication of WO2018174396A1 publication Critical patent/WO2018174396A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/42Singly bound oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/42Singly bound oxygen atoms
    • C07D307/44Furfuryl alcohol

Definitions

  • the present invention relates to a furan monomer having a bifunctional hydroxymethyl group and a method for producing the same. More specifically, the present invention relates to a furan monomer having a bifunctional hydroxymethyl group which can be utilized as a polymer raw material and other furan monomer precursors from biomass-derived furfuryl alcohol, and a method for producing the same.
  • furan polymer is excellent in heat resistance, acid resistance and adhesion, and is used as a thermosetting and acid curing resin in the casting industry or in the adhesion field.
  • the furan structure is produced when acid and heat are applied to pentose or hexasaccharides. It is known that pentose is converted to furfual and hexasaccharide is converted to hydromethylmethyl furfural (HMF).
  • the furan materials currently used industrially are mostly limited to polymers, and the representative reason is that the high reactivity of the furan monomers makes it difficult to manufacture them in the form of monomers due to high polymerization.
  • high-molecular weight furan polymer synthesis method has been intensively studied because a high crosslinking density and a high polymerized furan material are required.
  • the development of the low molecular weight furan monomer has not received commercial attention.
  • Biomass-derived furan compounds provide a variety of properties and physical properties that are differentiated from existing petroleum-derived aromatic compounds, and can be synthesized a variety of standardized furan polymers through the production of purified furan monomers.
  • BHMF 2,5-Bis (hydroxymethyl) furan
  • BHMF BHMF monomers
  • HMF hexasaccharides
  • humin humin
  • the boiling point at normal pressure is 291 °C to 292 °C high disadvantages such as high concentration / mass production can be easily transformed during distillation. Therefore, the present BHMF production method of separating hexasaccharide-based HMF with high purity and then reducing it again is disadvantageous in terms of efficiency and economic efficiency.
  • the biphasic reaction system has been devised (Nature, 2007, 447: 982).
  • due to the lowered yield, limited use of catalyst, and complexity of the process there are many limitations in commercialization. have.
  • Furan monomer having a bifunctional hydroxymethyl group (2,5-Bis (hydroxymethyl) furan, BHMF) according to various embodiments of the present invention to synthesize a low molecular weight furan mixture using furfuryl alcohol (Furfuryl alcohol) step; And extracting and purifying a furan monomer having a bifunctional hydroxymethyl group from the low molecular weight furan mixture.
  • a furan monomer having a bifunctional hydroxymethyl group such as BHMF may be easily synthesized using a biomass-derived pentose-based perfuryl alcohol.
  • the BHMF manufacturing method according to various embodiments of the present invention has a high industrial value since BHMF can be efficiently produced using industrially accessible raw materials, and thereafter plays a decisive role in the commercialization of various derivative furan products using BHMF as a raw material. can do. In terms of the production of non-edible biomass or waste biomass-based BHMF, the environmental impact of petroleum reduction can be expected.
  • FIG. 1 is a flowchart of a BHMF manufacturing method according to various embodiments of the present disclosure.
  • FIG. 2 is a detailed flowchart of a step of synthesizing a low molecular weight furan mixture in the BHMF manufacturing method according to various embodiments of the present invention.
  • FIG. 3 is a detailed flowchart of steps of extracting and purifying BHMF in the BHMF manufacturing method according to various embodiments of the present disclosure.
  • Example 5 is GPC data of a low molecular weight furan mixture prepared according to Example 1 of the present invention.
  • 11 is a graph showing the amount of by-products produced by reaction temperature.
  • Furan monomer having a bifunctional hydroxymethyl group (2,5-Bis (hydroxymethyl) furan, BHMF) according to various embodiments of the present invention to synthesize a low molecular weight furan mixture using furfuryl alcohol (Furfuryl alcohol) step; And extracting and purifying a furan monomer having a bifunctional hydroxymethyl group from the low molecular weight furan mixture.
  • FIG. 1 is a flowchart of a BHMF manufacturing method according to various embodiments of the present disclosure.
  • the BHMF manufacturing method may include synthesizing a low molecular weight furan mixture (S100) and extracting and purifying BHMF (S200).
  • a low molecular weight furan mixture may be synthesized using furfuryl alcohol.
  • Perfuryl alcohol which is a raw material precursor, can generally be obtained by reducing furfural.
  • HMF which is a raw material of the conventional BHMF manufacturing method
  • perfural and perfuryl alcohol raw material precursors of the present invention, are produced at low cost on an industrial scale (1,000 $ / ton to 1,500 $ / ton).
  • Perfural is a substance produced by acid hydrolysis of Lignocellulosic biomass, mainly through the dehydration reaction of pentose aldopentose, such as xylose. Is generated.
  • the final BHMF can be referred to as a biomass-based furan monomer, and in this way bio-derived polymers can be produced.
  • Perfuryl alcohol as its main ingredient and perfural as its precursor are commercialized products (400,000 tonnes annually worldwide) and the raw material biomass for producing them is agricultural by-products such as corncob or sugarcane bagasse.
  • HMF which is a main raw material of the conventional method of producing BHMF
  • the technology for producing furan monomer using non-edible biomass as a starting material as in the present invention may be referred to as an environmentally friendly technology.
  • perfuryl alcohol at the present level is limited to polymeric furan resins.
  • Furan resin is used in various forms such as perfuryl alcohol / urea-formaldehyde resin, perfuryl alcohol / formaldehyde resin, perfuryl alcohol / phenol / formaldehyde resin, and used alone or together with filler / reinforcement. It is used.
  • the conventional furan resin since the main purpose was to provide corrosion resistance, chemical resistance, and heat resistance, a high molecular weight furan polymer synthesis method has been intensively developed.
  • BHMF as an economical and efficient method for synthesizing BHMF monomers, may produce BHMF as a precursor from non-edible biomass or waste biomass-derived furfuryl alcohol instead of conventional HMF.
  • FIG. 2 is a detailed flowchart of a step of synthesizing a low molecular weight furan mixture in the BHMF manufacturing method according to various embodiments of the present invention.
  • the step of synthesizing the low molecular weight furan mixture in the BHMF manufacturing method is a step of hydroxymethylation (Hydroxymethylation) of perfuryl alcohol (S110) and recovering unreacted perfuryl alcohol (S120) It may include.
  • Synthesis of the low molecular weight furan mixture involves three side reactions: i) Formation of levulinic acid, ii) Diels-Alder reaction, and iii) Self condensation. Can be controlled. That is, the step (S100) of synthesizing the low molecular weight furan mixture may maximize the BHMF content while minimizing three side reactions.
  • step (S100) of synthesizing the low molecular weight furan mixture i) minimizing the water content in the reactor to suppress levulinic acid production, ii) adjusting the reaction temperature range to minimize the Diels-Alder reaction, and iii) Acid catalyst screening and raw material blending ratio control to minimize autopolymerization maximize BHMF content while minimizing side reactions. It will be described in detail as follows.
  • a solid formaldehyde, and an acid catalyst may be mixed.
  • the solid formaldehyde may be, for example, paraformaldehyde.
  • monomoleformaldehyde generated by pyrolysis of paraformaldehyde may be combined with perfuryl alcohol.
  • paraformaldehyde as the hydroxymethylated raw material, it is possible to minimize the water content in the reactor and to suppress levulinic acid production. Therefore, it is possible to improve the yield of BHMF, it is possible to increase the separation efficiency of the furan monomer in the subsequent process.
  • the hydroxymethylation reaction uses formaldehyde in the form of an aqueous solution called formalin as a raw material.
  • formalin is mainly composed of an aqueous solution in which 30% to 35% by weight of low molecular weight formaldehyde is dissolved.
  • the use of formalin has advantages in raw material control and dosing, but the increased water content in the reactor produces a significant amount of levulinic acid as a by-product in the hydroxymethylation reaction, leading to a decrease in reaction yield and furan monomer separation efficiency.
  • paraformaldehyde is introduced into a solid polymerized formaldehyde as a raw material and the reaction temperature is controlled to produce the monomer formaldehyde by the pyrolysis of paraformaldehyde and hydroxymethylation of perfuryl alcohol almost simultaneously.
  • the moisture content can be minimized.
  • Hydroxymethylating the perfuryl alcohol (S110) may be performed at a temperature of 100 °C to 150 °C. More preferably, it may be carried out at a temperature of 100 °C to 120 °C. This can minimize the Diels-Alder reaction and improve the yield of BHMF. Specifically, when the process temperature exceeds 150 °C, the Diels-Alder reaction occurs rapidly when synthesizing BHMF using perfuryl alcohol, which may cause gelation in water depending on the application conditions of the catalyst, which may prevent further reaction and recovery. .
  • Perfuryl alcohol has a Diels-Alder reaction at high temperature, which is further promoted under an acid catalyst.
  • the acid catalyst which is a raw material, is an organic acid having pKa 3.0 to 6.4.
  • Formic acid Fumaric acid, Galactaric acid, Galactonic acid, Glucaric acid, Gluconic acid, Glutaric acid, Glyceric acid, Glyceric acid 2-phosphate, Glycolic acid, Glyoxylic acid, Hydroxybutyric acid, Isobutyric acid, Isophthalic acid, Itaconic acid, Lactic Acid, Levulinic acid, Malic acid, Methyl malonic acid, Pimelic acid, Succinic acid, Suberic acid, Tartaric acid, Terephthalic acid, Monosodium succinate and Disodium citrate may be used alone or in combination.
  • the acid catalyst may use an acid having a pKa of 3.5 to 4.5.
  • succinic acid can be used as the acid catalyst.
  • the pKa of the acid catalyst by limiting the pKa of the acid catalyst to 3.0 to 6.4, it is possible to provide sufficient acidity to perform hydroxymethylation while suppressing unnecessary autopolymerization. Because of the reaction mechanism, both the hydroxymethylation reaction and the autopolymerization reaction are activated by the acid catalyst, so that complete exclusion of autopolymerization (complete elimination of side reactions) is impossible.
  • the hydroxymethylation reaction can be controlled to have a relative advantage over autopolymerization by maintaining an appropriate acidity of the acid catalyst.
  • an acid catalyst having a pKa value of 2.0 or lower may not be suitable for producing low molecular weight furan monomers because autopolymerization and Diels-Alder reactions occur so rapidly that most of the composites are polymerized.
  • an acid having a pKa higher than 6.4 the acidity is insufficient to carry out hydroxymethylation, thereby lowering the reaction efficiency, and the amount of BHMF generated may be very small compared to the input raw materials and by-products.
  • the acid catalyst having a pKa 3.0 to 6.4 may be included from 0.05 phr to 0.3 phr compared to perfuryl alcohol.
  • the acid catalyst having a pKa 3.0 to 6.4 is included in less than 0.05 phr compared to the perfuryl alcohol, the hydroxymethylation reaction may be too slow when preparing a low molecular weight furan mixture.
  • an acid catalyst having a pKa 3.0 to 6.4 is included in excess of 0.3 phr compared to perfuryl alcohol, the by-product content may increase.
  • the perfuryl alcohol may be mixed in a molar ratio of 2 to 30 times compared to formaldehyde.
  • the furfuryl alcohol may be mixed in a molar ratio of 6 to 15 times the formaldehyde.
  • Hydroxymethylation of the furfuryl alcohol (S110) may be performed for 2 hours to 8 hours, for example, under the above process conditions. If the process time is less than 2 hours, the hydroxymethylation of the perfuryl alcohol is not sufficiently carried out, there is a significant amount of remaining formaldehyde and the BHMF yield may be lowered. If the process time exceeds 8 hours, levulinic acid production due to side reactions, gelation due to Diels-Alder reaction, or side reactions due to unnecessary autopolymerization may increase.
  • Hydroxymethylating the perfuryl alcohol (S110) may include a neutralization process. After an appropriate process time, for example, 2 hours to 8 hours, a neutralization process may be performed to neutralize the acid catalyst.
  • a neutralization process may be performed to neutralize the acid catalyst.
  • the neutralizing material for the neutralization process for example, NaOH may be used.
  • the neutralizing material may be added in different amounts depending on the amount of acid catalyst.
  • the step (S120) of recovering the unreacted perfuryl alcohol may be performed by distilling under reduced pressure at a temperature of 100 ° C. to 150 ° C. after dehydration by cooling the reaction solution after the neutralization process.
  • the step (S120) of recovering the unreacted perfuryl alcohol may be performed by distilling under reduced pressure at a temperature of 100 ° C. to 150 ° C. after dehydration by cooling the reaction solution after the neutralization process.
  • the low molecular weight furan mixture synthesized through the step of synthesizing the low molecular weight furan mixture (S100) may be 50% or more of the furan polymer having a Furan ring repeating unit of 5 or less, including BHMF.
  • the BHMF synthesized through the step of extracting and purifying BHMF (S200) may have a furan ring repeating unit of 2 or less, and a furan polymer having a hydroxymethyl group at both terminals may be 50% or more.
  • FIG. 3 is a detailed flowchart of steps of extracting and purifying BHMF in the BHMF manufacturing method according to various embodiments of the present disclosure.
  • a high purity furan monomer may be separated from the low molecular weight furan mixture obtained in the step (S100) of synthesizing a low molecular weight furan mixture.
  • the content of such impurities is present in a variety of 10% to 50%, and the total content of impurities and their respective abundances can be adjusted according to the reaction conditions.
  • the impurities may be removed and the BHMF may be highly purified.
  • the step of extracting and purifying BHMF (S200), the step of recovering BHMF dissolved in an aqueous solution by separating the low molecular weight furan mixture (S210), by adding an organic solvent to remove the insoluble salt component
  • At least one of the step (S220) and the step of dissolving in the organic solvent to cool the crystallization (S230).
  • the three stages described above can have a significant effect even when used alone, and when two or more stages are used together, the high purity efficiency can be further increased.
  • the three steps described may be applied sequentially, but the embodiment is not limited thereto.
  • step (S210) of recovering BHMF dissolved in an aqueous solution by separating a low molecular weight furan mixture from water a reverse separation method using water may be applied to remove a water-insoluble portion having a relatively high molecular weight in the furan oligomer.
  • this method is applied, most of the BHMF and the low molecular weight furan oligomer are dissolved and separated in water and placed at the top, and the polymer part is separated at the bottom in the form of a resin.
  • the BHMF and the low molecular weight furan oligomer dissolved in water can be recovered through the dehydration process of the aqueous solution layer, and the water recovered in the dehydration process can be reused.
  • the amount of water to be added is preferably 1 to 10 times more preferably 2 to 5 times the weight part of the low molecular weight furan mixture obtained from the step of synthesizing the low molecular weight furan mixture (S100). If less than 1 times of water is added to the low molecular weight furan mixture, the extraction and separability of BHMF may be deteriorated and the reverse aliquot may not provide a significant result. If water is added more than 10 times compared to the low molecular weight furan mixture, the separation efficiency of the low molecular weight portion may be increased, but the volume increase of the liquid separation tank is inevitable, and it is difficult to see commercial significance because a lot of energy and time are consumed in the dehydration process.
  • step S220 of removing the insoluble salt component by adding an organic solvent selective dissolution and filtration using a difference in solubility may be applied to remove the catalytic acid and the levulinate salt.
  • BHMF and furan oligomers are highly soluble in polar organic solvents, while catalytic and levulinate salts are very low in solubility and are present in the solid phase.
  • the mixture can be dissolved in an organic solvent and then filtered to effectively separate the salt portion present in the solid phase.
  • the BHMF and furan oligomer dissolved in the organic solvent can be recovered by removing the organic solvent through a reduced pressure distillation process of the aqueous layer, and the distilled organic solvent can be reused.
  • the organic solvent used is a polar solvent, selected from a low molecular weight alcohol solvent group consisting of methanol, ethanol, propanol, isopropanol and butanol or a low molecular weight ketone solvent group consisting of acetone, butanone, pentanone and methyl isobutyl ketone. It is preferable to use one or more solvents alone or in combination.
  • a crystallization process for improving BHMF purity may be applied. It is possible to produce BHMF monomers having a purity of 80% or more by applying the high purity processes of the two steps (S210 and S220) described above, and since 20% or less of impurities are in the form of furan oligomers having hydroxymethyl groups, polymers such as epoxy It can be used as a raw material. However, if it is necessary to produce a high purity BHMF monomer having a purity of 90% or more, the crystallization process can be additionally applied.
  • the BHMF and the organic solvent may be present in the form of a liquid mixture when heated to 76 ° C. or higher, which is the melting point of the BHMF. After cooling the saturated solution or liquid mixture to obtain the crystals of the BHMF monomer and their purity is increased compared to before the crystallization.
  • the organic solvent to be used is preferably one or more solvents or mixed solvents selected from the group consisting of methanol, ethanol, propanol, isopropanol, butanol, acetone, butanone, pentanone, and methyl isobutyl ketone, more preferably propanol ,
  • solvents or mixed solvents selected from the group consisting of methanol, ethanol, propanol, isopropanol, butanol, acetone, butanone, pentanone, and methyl isobutyl ketone, more preferably propanol
  • One or more solvents selected from the group consisting of isopropanol, butanol, acetone, butanone or mixed may be used.
  • the amount of the solvent added to the solid phase increases, the BHMF purity increases after crystallization, but the recovery rate decreases. If the solvent input is reduced, the opposite effect can be expected.
  • Example 1 Raw materials-relative weight ratio Furfuryl alcohol- 100Formalin (37%)-165 Succinic acid- 0.5 Furfuryl alcohol-100 Paraformaldehyde (91%)-3.5 Succinic acid-0.2 Reaction condition 80 o C, 1bar, 4hr 120 o C, 1bar, 4hr Catalytic neutralization O O Dehydration Process O O Furfuryl alcohol recovery X O Content in the reactants (GPC area%) BHMF 16.6% Levulinic acid 40.4% Furfuryl alcohol 36.7% The others 6.3% BHMF 51.0% Levulinic acid 5.1% Furfuryl alcohol 11.5% The others 32.4% BHMF / Levulinic acid Ratio 0.41 10
  • Impurities present in the low molecular weight furan mixture synthesized in Example 1 were removed by the following method.
  • Dehydration of the recovered BHMF aqueous solution was then performed. Dehydration was performed at 60 ° C. and 100 torr under stirring of BHMF aqueous solution in the reactor, and a small amount of water was removed by applying 80 ° C. and 30 torr for a short time within 30 minutes in the latter half of dehydration.
  • the BHMF monomer recovered after dehydration gradually crystallized as it cooled below the melting point of 76 ° C. and remained in a solid phase at room temperature.
  • the BHMF monomer was dissolved in 3 weight percent acetone to completely remove traces of catalytic and levulinate present. After stirring for 30 minutes at lukewarm temperature of about 30 °C, all of the BHMF monomer was dissolved, the catalytic acid and levulinate salts were suspended. The filter paper was placed on a Buchner funnel, filtered under reduced pressure to remove the suspended solids, and the BHMF monomer portion dissolved in acetone was recovered. The recovered solution was completely dried by distillation of acetone and finally recovered the light yellow solid BHMF monomer.
  • Example 6 is GPC data of BHMF prepared according to Example 2 of the present invention.
  • BHMF recovered according to Example 2 was dissolved in THF at 2.5 wt% and analyzed by GPC instrument (Shimadzu, Gel Permeation Chromatography Systems; Shodex, KF-801, 802, 803, 805 Columns). Analytical temperature was 40 °C and the mobile phase flowed Tetrahydrofuran (HPLC grade) at 1 ml / min.
  • BHMF purity was further improved through crystallization of the BHMF monomer obtained in Example 2.
  • Acetone was added at a weight ratio of 0.5 to BHMF monomer, and stirred at 55 ° C. for 30 minutes. After stirring, a liquid BHMF-acetone solution was recovered, and the solution was stirred and cooled for 25 hours while maintaining the temperature and stirring for 6 hours. As the solution cooled, high-purity BHMF in the form of a powder precipitated and the amount of production increased as the stirring continued. Thereafter, the filter paper was placed on a Buchner funnel and filtered under reduced pressure to recover the powdery high purity BHMF, and the acetone solution passed through the filter paper was separated separately for reuse.
  • the first wash was performed by applying a small amount of acetone in a reduced pressure filtration state of the BHMF powder to expose a short time. Subsequently, the surface was washed with hexane (n-hexane) to remove the acetone solution on the surface of the BHMF powder to obtain a final off-white high-purity BHMF powder, which was dried in an oven at 60 ° C. for 1 hour and analyzed by the instrument.
  • hexane n-hexane
  • Example 7 is GPC data of high purity BHMF prepared according to Example 3 of the present invention.
  • the high purity BHMF recovered according to Example 3 was dissolved in THF at 2.5 wt% and analyzed by GPC (Shimadzu, Gel Permeation Chromatography Systems; Shodex, KF-801, 802, 803, 805 Columns). Analytical temperature was 40 °C and the mobile phase flowed Tetrahydrofuran (HPLC grade) at 1 ml / min.
  • Example 10 is GC-MS data of high purity BHMF prepared according to Example 3 of the present invention.
  • High purity BHMF recovered according to Example 3 was dissolved in THF at 0.2 wt% and analyzed by GC-MS instrument (Shimadzu, GCMS-QP5050; SGE Analytical Science, BP5 Column).
  • the step (S110) of hydroxymethylating the perfuryl alcohol may be performed at a temperature of 100 ° C. to 150 ° C., confirming the stability of the raw material furfuryl alcohol according to the temperature, and effectively controlling the amount of by-products produced.
  • the hydroxymethylation reaction of perfuryl alcohol requires a temperature of 100 ° C. or higher, thus accompanied by the production of by-products such as some high molecular weight furan polymers.
  • Perfuryl alcohol and 3 phr (part per hundred resin) of succinic acid were added all at once in the reactor, followed by stirring to raise the temperature in the reactor at a rate of 20 ° C./hr. As the temperature increased, the polymerization reaction occurred by autopolymerization, and the color of perfuryl alcohol gradually became dark.
  • FIG. 11 is a graph showing the amount of by-products produced by reaction temperature. That is, FIG. 11 shows the effect of the reaction temperature on the stability of the furfuryl alcohol.
  • the material according to Example 4 was sampled at intervals of 10 ° C. at a temperature range of 80 ° C. to 160 ° C., and GPC analysis of each sample was performed to determine the amount of byproducts. GPC analysis was performed at 2.5 wt% in THF and analyzed by GPC instrumentation (Shimadzu, Gel Permeation Chromatography Systems; Shodex, KF-801, 802, 803, 805 Columns). Analytical temperature was 40 °C and the mobile phase flowed Tetrahydrofuran (HPLC grade) at 1 ml / min.
  • Example 5 confirms the stability of the raw material furfuryl alcohol according to the acid catalyst, shows the pKa range of the catalyst that can effectively control the amount of by-products produced.
  • Furfuryl alcohol (hereinafter referred to as “FA” in Table 2) and 3 phr of an acid catalyst of the material according to Table 2 were collectively added to a glass container, and then sealed and exposed to a 90 ° C. oven for 90 minutes. Upon exposure to the acid catalyst, a polymerization reaction occurred and the perfuryl alcohol color was gradually darkened, and some gelled to become a solid.
  • Example 5 described above was tested by adding an acid catalyst of 3 phr, which is a larger amount than the acid catalyst in Example 1 to confirm the by-product generation and stability according to the pKa of the acid catalyst, the actual low-molecular weight furan mixture as described above As such, an acid catalyst of 0.05 phr to 0.3 phr may be added to the perfuryl alcohol.
  • Acid catalyst (pKa) Oxalic acid (1.25) Phosphoric acid (2.15) Citric acid (3.13) Succinic acid (4.21) Monosodium succinate (5.41) Disodium citrate (6.40) Raw materials-relative weight ratio FA-100 Acid Catalyst-3 FA-100 Acid Catalyst-3 FA-100 Acid Catalyst-3 FA-100 Acid Catalyst-3 FA-100 Acid Catalyst-3 FA-100 Acid Catalyst-3 Reaction condition 90 o C, 1bar, 1.5hr 90 o C, 1bar, 1.5hr 90 o C, 1bar, 1.5hr 90 o C, 1bar, 1.5hr 90 o C, 1bar, 1.5hr 90 o C, 1bar, 1.5hr 90 o C, 1bar, 1.5hr 90 o C, 1bar, 1.5hr Byproduct Content ⁇ 100% ⁇ 100% 26.8% 6.9% 1.8% 0.5% Constellation Gel Gel Liquid Liquid Liquid Liquid Liquid Liquid Li
  • a furan monomer having a bifunctional hydroxymethyl group such as BHMF may be easily synthesized using a biomass-derived pentose-based perfuryl alcohol.
  • the BHMF manufacturing method according to various embodiments of the present invention has a high industrial value since BHMF can be efficiently produced using industrially accessible raw materials, and thereafter plays a decisive role in the commercialization of various derivative furan products using BHMF as a raw material. can do. In terms of the production of non-edible biomass or waste biomass-based BHMF, the environmental impact of petroleum reduction can be expected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Furan Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Polyethers (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

본 발명의 다양한 실시예에 따른 이관능성 하이드록시메틸기를 가지는 퓨란 모노머 (2,5-Bis(hydroxymethyl) furan, BHMF) 제조 방법은 퍼퓨릴 알코올 (Furfuryl alcohol)을 이용하여 저분자량 퓨란 혼합물을 합성하는 단계; 및 상기 저분자량 퓨란 혼합물로부터 이관능성 하이드록시메틸기 (bifunctional hydroxymethyl group)를 가지는 퓨란 모노머를 추출 및 고순도화하는 단계를 포함할 수 있다.

Description

이관능성 하이드록시메틸기를 가지는 퓨란 모노머 및 이의 제조 방법
본 발명은 이관능성 하이드록시메틸기 (bifunctional hydroxymethyl group)를 가지는 퓨란 모노머 및 이의 제조 방법에 관한 것이다. 구체적으로, 바이오매스 유래 퍼퓨릴 알코올 (Furfuryl alcohol)로부터 고분자 원료 및 기타 퓨란 모노머 전구체로 활용 가능한 이관능성 하이드록시메틸기를 가지는 퓨란 모노머 및 이의 제조 방법에 관한 것이다.
석유자원의 유한함이 명백해지고, 이를 사용하는 과정에서 파생되는 환경문제가 심화됨에 따라 바이오매스 자원의 지속가능성과 친환경적인 장점이 더욱 부각되고 있다. 이러한 관점에서 바이오매스 기반 모노머 및 폴리머 생산기술 개발은 학계와 산업계 모두에서 중요한 문제로 다루어지고 있다.
다양한 바이오유래 소재 중에서 퓨란 고분자는 내열성, 내산성 및 접착성 부문에서 우수한 소재로서 주물산업이나 접착분야에서 열경화 및 산경화성 수지로 사용되고 있다. 퓨란 구조는 5탄당 또는 6탄당에 산과 열을 가할때 생성되는 구조로, 5탄당은 Furfual로 전환되고, 6탄당은 Hydroxymethyl furfural (HMF)로 전환되는 것으로 알려져 있다.
현재 산업적으로 활용되고 있는 퓨란 소재는 대부분 고분자에 국한되어 있는데 그 대표적인 이유는 퓨란 모노머의 높은 반응성으로 인해 고분자화를 일으켜 (Resinification) 모노머의 형태로 제조하기가 용이하지 않기 때문이다. 또한 그 활용적 측면에 있어서, 주 사용처인 주물산업의 내열성 바인더 소재에 적용하기 위해서는 가교밀도가 높고, 고분자화가 진행된 퓨란소재가 필요하기 때문에 고분자량의 퓨란 폴리머 합성법 연구가 집중적으로 수행되었다. 이에 반해 저분자 형태의 퓨란 모노머의 개발은 상업적 관심을 받지 못했다.
최근, 모노머 수준의 퓨란 모노머의 중요성이 재조명되어 미국, 유럽 등 선진국을 중심으로 연구가 진행되고 있다. 바이오매스 유래 퓨란 화합물은 기존 석유 유래 방향족 화합물과 차별화되는 다양한 특성과 물성을 제공하며, 정제된 형태의 퓨란 모노머의 생산을 통해 규격화된 다양한 퓨란 폴리머를 합성할 수 있다.
대표적인 연구는 네덜란드 아반티움 (Avantium)사의 2,5-Furandicarboxylic acid (FDCA) 모노머 개발이 있다. 동사는 기존의 Polyethylene terephthalate (PET) 소재의 대체를 목표로 FDCA기반 폴리에스터인 Polyethylene furanoate (PEF)를 개발했다. PEF 소재는 PET에 비해 기체 차단성이 6 배까지 높은 것으로 알려져 있다.
한편, 에폭시 등의 고분자 원료로 적용이 가능한 이관능성 하이드록시메틸기 (Bifunctional hydroxymethyl group)를 가지는 2,5-Bis(hydroxymethyl) furan (BHMF) 모노머의 생산기술도 연구되고 있다. 그러나, BHMF는 생산단가가 높아 상업적으로 적용이 불가능한 수준이며, 현재는 시약수준에서 고가에 판매되고 있다 (> 10 $/g).
현재 BHMF의 생산 단가가 높은 이유는 하기와 같다. 기존 BHMF모노머는 글루코스, 프럭토스 등의 6탄당에서 유래한 HMF를 전구체로 하여 이를 환원시킴으로써 획득할 수 있었다. 그러나 HMF는 수용액 상에서 열적 및 화학적 안정성이 낮아 레불린산 (levulinic acid), 휴민 (humin) 등의 부산물로 쉽게 전환되는 등 저장성이 불량하다. 또한 상압에서 끓는점이 섭씨 291 ℃ 내지 292 ℃로 높아 증류시 쉽게 변형이 일어날 수 있는 등 고농도/대량 생산에 불리하다. 따라서, 6탄당 기반의 HMF를 고순도로 분리한 뒤, 이를 다시 환원하는 방식의 현재의 BHMF 생산법은 효율성, 경제성 측면에서 불리하다. 이러한 부반응물 생성 문제를 극복하기 위해 이상성 반응계 (biphasic reaction system) 등의 방법이 고안되었으나 (Nature, 2007, 447: 982) 수율 저하, 촉매사용의 제한성, 공정의 복잡성 등으로 인해 상업화에 많은 제약이 있다.
상기와 같은 문제점을 해결하기 위하여, 본 발명자들은 경제적, 효율적인 BHMF 모노머 합성 방법에 대하여 지속적으로 연구 노력한 결과, 기존의 HMF가 아닌 퍼퓨릴 알코올 (Furfuryl alcohol)을 전구체로 BHMF를 생산할 수 있다는 사실을 착안하여, 퍼퓨릴 알코올의 하이드록시메틸화 (Hydroxymethylation) 공정과 BHMF의 고순도화 공정으로 구성된 제조 방법을 완성하였다.
본 발명의 다양한 실시예에 따른 이관능성 하이드록시메틸기를 가지는 퓨란 모노머 (2,5-Bis(hydroxymethyl) furan, BHMF) 제조 방법은 퍼퓨릴 알코올 (Furfuryl alcohol)을 이용하여 저분자량 퓨란 혼합물을 합성하는 단계; 및 상기 저분자량 퓨란 혼합물로부터 이관능성 하이드록시메틸기 (bifunctional hydroxymethyl group)를 가지는 퓨란 모노머를 추출 및 고순도화하는 단계를 포함할 수 있다.
본 발명의 다양한 실시예에 의해 바이오매스 유래 5탄당 기반의 퍼퓨릴 알코올을 이용하여 BHMF와 같은 이관능성 하이드록시메틸기를 가지는 퓨란 모노머를 매우 용이하게 합성할 수 있다. 본 발명의 다양한 실시예에 따른 BHMF 제조 방법은 산업적으로 접근성이 높은 원료를 이용하여 BHMF를 효율적으로 생산할 수 있으므로 산업적 가치가 매우 높으며, 이후 BHMF를 원료로 이용하는 다양한 파생 퓨란 제품의 상용화에 결정적인 역할을 할 수 있다. 비식용 바이오매스 또는 폐바이오매스 기반의 BHMF 생산법이라는 점에서 석유 사용량을 감축하는 환경적인 효과도 기대할 수 있다.
도 1은 본 발명의 다양한 실시예에 따른 BHMF 제조 방법의 흐름도이다.
도 2는 본 발명의 다양한 실시예에 따른 BHMF 제조 방법에서 저분자량 퓨란 혼합물을 합성하는 단계의 상세 흐름도이다.
도 3은 본 발명의 다양한 실시예에 따른 BHMF 제조 방법에서 BHMF를 추출 및 고순도화하는 단계의 상세 흐름도이다.
도 4는 본 발명의 비교예 1에 따라 제조된 저분자량 퓨란 혼합물의 GPC data이다.
도 5는 본 발명의 실시예 1에 따라 제조된 저분자량 퓨란 혼합물의 GPC data이다.
도 6은 본 발명의 실시예 2에 따라 제조된 BHMF의 GPC data이다.
도 7은 본 발명의 실시예 3에 따라 제조된 고순도 BHMF의 GPC data이다.
도 8은 본 발명의 실시예 3에 따라 제조된 고순도 BHMF의 FT-IR data이다.
도 9는 본 발명의 실시예 3에 따라 제조된 고순도 BHMF의 1H NMR data이다.
도 10은 본 발명의 실시예 3에 따라 제조된 고순도 BHMF의 GC-MS data이다.
도 11는 반응 온도에 따른 부산물 생성량을 나타내는 그래프이다.
본 발명의 다양한 실시예에 따른 이관능성 하이드록시메틸기를 가지는 퓨란 모노머 (2,5-Bis(hydroxymethyl) furan, BHMF) 제조 방법은 퍼퓨릴 알코올 (Furfuryl alcohol)을 이용하여 저분자량 퓨란 혼합물을 합성하는 단계; 및 상기 저분자량 퓨란 혼합물로부터 이관능성 하이드록시메틸기 (bifunctional hydroxymethyl group)를 가지는 퓨란 모노머를 추출 및 고순도화하는 단계를 포함할 수 있다.
이하, 본 발명에 따른 BHMF 제조 방법을 하기 구체적인 예들을 참조하여 상세히 설명한다. 이때, 이하 내용은 본 발명의 특정한 실시 예들의 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 또한, 상세한 설명에서 사용되는 다양한 구성요소들은 기재된 용어들에 의해 한정되어서는 안 된다. 아울러, 상세한 설명에서 사용되는 용어들은 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다.
이하, 첨부한 도면을 참조하여 본 발명의 실시예를 상세하게 설명하면 다음과 같다.
도 1은 본 발명의 다양한 실시예에 따른 BHMF 제조 방법의 흐름도이다.
도 1을 참조하면, 본 발명의 다양한 실시예에 따른 BHMF 제조 방법은 저분자량 퓨란 혼합물을 합성하는 단계 (S100) 및 BHMF를 추출 및 고순도화하는 단계 (S200)을 포함할 수 있다.
저분자량 퓨란 혼합물을 합성하는 단계 (S100)에서는, 퍼퓨릴 알코올 (Furfuryl alcohol)을 이용하여 저분자량 퓨란 혼합물을 합성할 수 있다. 원료 전구체인 퍼퓨릴 알코올은 통상적으로 퍼퓨랄 (Furfural)을 환원하여 얻을 수 있다. 기존의 BHMF 제조방법의 원료인 고가의 HMF와 달리, 본 발명의 원료 전구체인 퍼퓨랄 및 퍼퓨릴 알코올은 산업적 규모로 저가에 생산되고 있다 (1,000 $/ton ~ 1,500 $/ton).
퍼퓨랄은 리그노셀룰로식 바이오매스 (Lignocellulosic biomass)를 산가수분해 할 때 생성되는 물질로서, 주로 자일로스 (Xylose)와 같은 5탄당 알도펜토스 (Aldopentose)의 탈수반응 (Dehydration reaction)을 통해 생성된다. 이러한 측면에서 최종적으로 제조되는 BHMF는 바이오매스 기반의 퓨란 모노머라 할 수 있으며, 이와 같은 방법으로 바이오 유래 고분자를 생산할 수 있다.
바이오매스 → 퍼퓨랄 → 퍼퓨릴 알코올 → BHMF → 고분자
주원료인 퍼퓨릴 알코올 및 그의 전구체인 퍼퓨랄은 상용화된 제품으로서 (전세계 연간 40 만톤 생산) 이들을 생산하기 위한 원료 바이오매스는 옥수수속대 (Corncob)나 사탕수수 찌꺼기 (Sugarcane bagasse)와 같은 농업부산물이다. 이는 기존의 BHMF의 제조 방법의 주원료인 HMF는 주로 식용 작물 (옥수수, 감자 등)에서 생산된다는 점과 차별화되는 측면이다. 이러한 측면에서 본 발명과 같이 비식용 바이오매스를 출발 원료로 사용하여 퓨란 모노머를 생산하는 기술은 환경친화적인 기술이라 할 수 있다.
현 수준에서 퍼퓨릴 알코올의 상업적 활용은 고분자 퓨란 수지에 국한되어 있다. 퓨란 수지는 퍼퓨릴 알코올/우레아-포름알데하이드 수지, 퍼퓨릴 알코올/포름알데하이드 수지, 퍼퓨릴 알코올/페놀/포름알데하이드 수지 등 다양한 형태로 활용되고 있으며, 용도에 따라 단독으로 사용되거나 충진재/보강재와 함께 사용되고 있다. 종래의 퓨란 수지는 내식성, 내화학성, 내열성의 부여가 주 목적이었기 때문에, 고분자량의 퓨란 폴리머 합성법이 집중적으로 개발되어 왔다. 일부 저분자량 함량이 높은 퓨란 수지 개발 예가 존재하나, 고분자량 퓨란 수지에 용해성을 부여하여 다른 수지들과의 상용성을 제공하기 위한 용도에 국한되어 있으며 본 발명과 같이 퍼퓨릴 알코올 유래 BHMF 모노머만을 생산/정제한 예는 없다.
본 발명의 다양한 실시예는, 경제적, 효율적인 BHMF 모노머 합성 방법으로써, 기존의 HMF가 아닌 비식용 바이오매스 혹은 폐바이오매스 유래 퍼퓨릴 알코올 (Furfuryl alcohol)을 전구체로 BHMF를 생산할 수 있다.
도 2는 본 발명의 다양한 실시예에 따른 BHMF 제조 방법에서 저분자량 퓨란 혼합물을 합성하는 단계의 상세 흐름도이다.
도 2를 참조하면, BHMF 제조 방법에서 저분자량 퓨란 혼합물을 합성하는 단계 (S100)는 퍼퓨릴 알코올을 하이드록시메틸화 (Hydroxymethylation) 하는 단계 (S110) 및 미반응 퍼퓨릴 알코올을 회수하는 단계 (S120)를 포함할 수 있다.
저분자량 퓨란 혼합물을 합성하는 단계 (S100)에서는 i) 레불린 산 생성 (Formation of levulinic acid) ii) 딜스-알더 반응 (Diels-Alder reaction) 및 iii) 자가중합 (Self condensation)의 3 가지 부반응을 제어할 수 있다. 즉, 저분자량 퓨란 혼합물을 합성하는 단계 (S100)는 3 가지 부반응을 최소화하면서 BHMF 함량을 최대화할 수 있다. 구체적으로, 저분자량 퓨란 혼합물을 합성하는 단계 (S100)에서는 i) 레불린 산 생성을 억제하기 위해 반응기 내 수분함량의 최소화, ii) 딜스-알더 반응을 최소화하기 위한 반응 온도 범위 조절, 및 iii) 자가중합을 최소화하기 위한 산촉매 선별 및 원료 배합비 제어를 통해 부반응을 최소화하면서 BHMF 함량을 최대화할 수 있다. 상세하게 설명하면 다음과 같다.
퍼퓨릴 알코올을 하이드록시메틸화 하는 단계 (S110)에서는, 원료 물질인 퍼퓨릴 알코올, 고상의 포름알데하이드 (formaldehyde) 및 산촉매를 혼합할 수 있다. 고상의 포름알데하이드는, 예를 들면, 파라포름알데하이드 (paraformaldehyde)일 수 있다. 퍼퓨릴 알코올을 하이드록시메틸화 하는 단계(S110)에서는, 파라포름알데하이드의 열분해에 의해 생성된 단분자 포름알데하이드가 퍼퓨릴 알코올과 결합할 수 있다. 본 발명의 다양한 실시예에서는, 하이드록시메틸화 원료로써 파라포름알데하이드를 사용함으로써 반응기 내 수분 함량을 최소화할 수 있고, 레불린 산 생성을 억제할 수 있다. 따라서, BHMF의 수율을 향상할 수 있고, 이후 공정에서 퓨란 모노머의 분리 효율성을 높일 수 있다.
통상적으로 하이드록시메틸화 반응은 포르말린 (formalin)이라는 수용액상태의 포름알데하이드를 원료로 사용한다. 상용화된 포르말린은 30 % 내지 35 % 중량부의 저분자 포름알데하이드가 용해된 수용액을 주 구성물로 한다. 포르말린의 사용은 원료 제어 및 투입에 있어서는 장점을 가지지만 반응기 내에 수분 함량이 높아져 하이드록시메틸화 반응시 상당량의 레불린 산을 부산물로 생성하게 되며 반응 수율 및 퓨란 모노머 분리 효율성의 저하를 야기한다.
본 발명에서는 파라포름알데하이드라는 고형의 고분자화된 포름알데하이드를 원료로 투입하고 반응온도 조절을 통해 파라포름알데하이드의 열분해에 의한 모노머 포름알데하이드의 생성과 퍼퓨릴 알코올의 하이드록시메틸화가 거의 동시에 일어나게 함으로써 반응기 내 수분 함량을 최소화 할 수 있다.
퍼퓨릴 알코올을 하이드록시메틸화하는 단계 (S110)는 100 ℃ 내지 150 ℃의 온도에서 수행될 수 있다. 더욱 바람직하게는 100 ℃ 내지 120 ℃의 온도에서 수행될 수 있다. 이를 통해 딜스-알더 반응을 최소화할 수고, BHMF의 수율을 향상할 수 있다. 구체적으로, 공정 온도가 150 ℃를 초과하는 경우, 퍼퓨릴 알코올을 이용한 BHMF 합성시 딜스-알더 반응이 급격히 일어나 촉매 적용 조건에 따라서 수분 내에 겔화 (Gelation) 현상이 나타나 추가적인 반응 및 회수가 불가능할 수 있다. 퍼퓨릴 알코올은 고온에서 딜스-알더 반응이 일어나며, 산촉매 하에서 이 반응이 더욱 촉진된다. 또한, 퍼퓨릴 알코올의 자가 중합반응과 딜스-알더 반응이 동시에 일어나는 경우 급속한 겔화와 함께 발열이 일어나 정상적인 BHMF 제조가 불가능하다. 반면, 공정 온도가 100 ℃ 미만일 경우, 파라포름알데하이드의 열분해 및 하이드록시메틸화 반응이 저해되어 생산효율성이 매우 저감될 수 있다.
퍼퓨릴 알코올을 하이드록시메틸화하는 단계 (S110)에서 원료 물질인 산촉매는 pKa 3.0 내지 6.4를 가지는 유기산으로서, Acetic acid, Acetoacetic acid, Adipic acid, Azelaic acid, Benzoic acid, Citric acid, Cyclohexanecarboxylic acid, Enolpyruvic acid, Formic acid, Fumaric acid, Galactaric acid, Galactonic acid, Glucaric acid, Gluconic acid, Glutaric acid, Glyceric acid, Glyceric acid 2-phosphate, Glycolic acid, Glyoxylic acid, Hydroxybutyric acid, Isobutyric acid, Isophthalic acid, Itaconic acid, Lactic acid, Levulinic acid, Malic acid, Methyl malonic acid, Pimelic acid, Succinic acid, Suberic acid, Tartaric acid, Terephthalic acid, Monosodium succinate 및 Disodium citrate 으로 구성된 군으로부터 선택된 1종 이상을 단독 또는 혼합하여 사용할 수 있다. 더욱 바람직하게는 산촉매는 pKa 3.5 내지 4.5를 가지는 산을 사용할 수 있다. 예를 들면, 산촉매로써 숙신산을 사용할 수 있다. 본 발명의 다양한 실시예에 따르면, 산촉매의 pKa를 3.0 내지 6.4로 제한함으로써, 하이드록시메틸화를 수행할 수 있는 충분한 산도를 제공하면서 동시에 불필요한 자가중합을 억제할 수 있다. 반응 메커니즘상 하이드록시메틸화 반응과 자가중합 반응이 모두 산촉매에 의해 활성화되므로 자가중합의 완전한 배제 (부반응의 완전 제거)는 불가능하다. 본 발명의 다양한 실시 예에서는 산촉매의 적정한 수준의 산도를 유지하여 하이드록시메틸화 반응이 자가중합에 비해 상대적인 우위를 갖도록 조절할 수 있다.
구체적으로, 2.0 또는 그보다 낮은 pKa값의 산촉매의 경우 자가중합 및 딜스-알더 반응이 매우 빠르게 일어나 합성물의 대부분이 고분자화 되기 때문에 저분자량의 퓨란 모노머 생산에는 적합하지 않을 수 있다. 반면, pKa가 6.4보다 높은 산의 경우 하이드록시메틸화를 수행하기에 충분하지 않은 산도를 제공하여 반응 효율성이 저하되고, 투입된 원료 및 부산물 대비 생성된 BHMF양이 매우 적어질 수 있다.
한편, pKa 3.0 내지 6.4를 가지는 산촉매는 퍼퓨릴 알코올 대비 0.05 phr 내지 0.3 phr 포함될 수 있다. pKa 3.0 내지 6.4를 가지는 산촉매가 퍼퓨릴 알코올 대비 0.05 phr 미만으로 포함될 경우, 저분자량 퓨란 혼합물의 제조시 하이드록시메틸화 반응이 너무 느려질 수 있다. 또한, pKa 3.0 내지 6.4를 가지는 산촉매가 퍼퓨릴 알코올 대비 0.3 phr을 초과하여 포함될 경우, 부산물 함량이 증가할 수 있다.
퍼퓨릴 알코올을 하이드록시메틸화하는 단계 (S110)에서 퍼퓨릴 알코올은 포름알데하이드 대비 2 배 내지 30 배의 몰비로 혼합될 수 있다. 바람직하게는, 퍼퓨릴 알코올은 포름알데하이드 대비 6 배 내지 15 배의 몰비로 혼합될 수 있다. 이를 통해 퓨란 고분자부 대비 BHMF 생성량을 극대화할 수 있는 환경을 조성할 수 있다. 본 발명의 다양한 실시예에서는 반응 온도와 촉매의 산도 측면에서 하이드록시메틸화 반응이 수행될 수 있는 최소수준을 적용함으로써 고분자부의 생성량을 최소화 할 수 있다. 한편, 반응 시간이 지나치게 길어질 경우, 부반응물도 상당량 생성되며, 반응기 내에 이미 생성된 BHMF마저 추가적인 고분자화에 참여하여 모노머로 존재하지 않게 된다. 이러한 문제를 해결하기 위해서 본 발명의 다양한 실시예에서는, 포름알데하이드 대비 퍼퓨릴 알코올을 과량 투입함으로써, 최대한 짧은 반응 시간내에 BHMF가 생성되고 그에 따른 부반응물 생성량을 줄일 수 있다. 또한, 반응에 참여하지 않은 퍼퓨릴 알코올은 감압증류를 통해서 간단히 회수가 가능하며 재사용이 가능하다.
구체적으로, 퍼퓨릴 알코올이 2 몰비 미만으로 투입될 경우 반응 시간 내에 하이드록시메틸화가 충분히 이루어지 지지 않아 잔존 포름알데하이드가 상당량 존재하여 수율 저하 문제가 나타나고, 이 포름알데이드가 모두 반응에 참여하기 위해 가혹한 반응조건을 적용할 경우 고분자부의 증가가 불가피할 수 있다. 퍼퓨릴 알코올이 30 몰비를 초과하여 투입될 경우, BHMF 생산 효율성은 증가될 수 있으나 생산물 대비 반응기의 부피증가가 불가피하며 미반응 퍼퓨릴 알코올의 회수공정에 많은 에너지와 시간이 소모되어 상업적으로 유의미하다고 보기 어렵다.
퍼퓨릴 알코올을 하이드록시메틸화하는 단계 (S110)는 예를 들면, 상기와 같은 공정 조건으로 2 시간 내지 8 시간 동안 진행될 수 있다. 공정 시간이 2 시간 미만일 경우, 퍼퓨릴 알코올의 하이드록시메틸화가 충분히 이루어지지 않아 잔존 포름알데하이드가 상당량 존재하고 BHMF 수율이 저하될 수 있다. 공정 시간이 8 시간을 초과할 경우, 부반응으로 인한 레불린 산 생성, 딜스-알더 반응으로 인한 겔화 현상 또는 불필요한 자가중합으로 인한 부반응물 등이 증가할 수 있다.
퍼퓨릴 알코올을 하이드록시메틸화하는 단계 (S110)는 중화 공정을 포함할 수 있다. 적정한 공정 시간, 예를 들면 2 시간 내지 8 시간의 공정 시간이 지난 후, 산촉매를 중화하기 위한 중화 공정을 진행할 수 있다. 중화 공정을 위한 중화 물질로는 예를 들면, NaOH 등을 사용할 수 있다. 중화 물질은 산촉매의 투입량에 따라 다른 양으로 투입될 수 있다.
미반응 퍼퓨릴 알코올을 회수하는 단계(S120)에서는, 퍼퓨릴 알코올을 하이드록시메틸화하는 단계 (S110) 이후 반응에 참여하지 않은 퍼퓨릴 알코올을 회수할 수 있다. 예를 들면, 미반응 퍼퓨릴 알코올을 회수하는 단계 (S120)는 중화 공정 이후의 반응액을 냉각하여 탈수를 수행한 후, 100 ℃ 내지 150 ℃의 온도에서 감압증류하여 진행될 수 있다. 본 발명의 다양한 실시예에 따르면, 부반응물 생성량을 줄임으로써, 반응에 참여하지 않은 퍼퓨릴 알코올을 감압증류를 통해서 간단히 회수할 수 있으며 재사용이 가능하다.
저분자량 퓨란 혼합물을 합성하는 단계 (S100)를 통해 합성된 저분자량 퓨란 혼합물은 BHMF를 포함하여 5 이하의 퓨란링 (Furan ring) 반복단위를 가지는 퓨란 중합체가 50 % 이상일 수 있다. 또한, BHMF를 추출 및 고순도화하는 단계 (S200)를 통해 합성된 BHMF는 2 이하의 퓨란링 반복단위를 가지며, 양 말단에 하이드록시메틸기를 가지는 퓨란 중합체가 50 % 이상일 수 있다.
도 3은 본 발명의 다양한 실시예에 따른 BHMF 제조 방법에서 BHMF를 추출 및 고순도화하는 단계의 상세 흐름도이다.
BHMF를 추출 및 고순도화하는 단계 (S200)에서는, 저분자량 퓨란 혼합물을 합성하는 단계 (S100)에서 얻어진 저분자량 퓨란 혼합물로부터 고순도의 퓨란 모노머를 분리할 수 있다. 저분자량 퓨란 혼합물을 합성하는 단계 (S100)에서 얻어진 저분자량 퓨란 혼합물에는 목표 물질인 BHMF 외에도 산촉매의 중화 후 잔존하는 촉매산염, 레불린산염 및 미량의 잔존 퍼퓨릴 알코올, 상당량의 퓨란 올리고머 (n=1,2,3…)가 공존한다. 대개의 경우 이러한 불순물의 함량이 10 % 내지 50 %로 다양하게 존재하며 반응 조건에 따라 불순물의 총 함량 및 각각의 존재비를 조절할 수 있다. BHMF를 추출 및 고순도화하는 단계 (S200)에서 이러한 불순물을 제거하고 BHMF를 고순도화할 수 있다.
도 3을 참조하면, BHMF를 추출 및 고순도화하는 단계 (S200)는, 저분자량 퓨란 혼합물을 물 분액하여 수용액에 용해된 BHMF를 회수하는 단계 (S210), 유기용매를 추가하여 불용성 염성분을 제거하는 단계 (S220) 및 유기용매에 용해한 후 냉각하여 결정화하는 단계 (S230) 중 적어도 어느 하나를 포함할 수 있다. 기술한 세 가지 단계가 단독적으로 활용되어도 유의미한 효과를 나타낼 수 있으며, 두 단계 이상을 함께 적용할 경우 고순도화 효율이 더욱 증대될 수 있다. 또한, 기술한 세 가지 단계가 순차적으로 적용될 수도 있으나, 실시예가 이에 한정되는 것은 아니다.
저분자량 퓨란 혼합물을 물 분액하여 수용액에 용해된 BHMF를 회수하는 단계 (S210)에서는, 퓨란 올리고머 중 상대적으로 높은 분자량을 가지는 비수용성부를 제거하기 위해서 물을 이용한 역분액법을 적용할 수 있다. 이 방법을 적용하면 BHMF 및 저분자량의 퓨란 올리고머의 대부분이 물에 용해 및 분액되어 상단에 위치하고, 고분자부는 레진의 형태로 하단에 분액된다. 물에 용해된 BHMF 및 저분자량의 퓨란 올리고머는 수용액층의 탈수공정을 통해 회수가 가능하며, 탈수공정에서 회수된 물은 재사용이 가능하다. 이때 투입되는 물의 양은 저분자량 퓨란 혼합물을 합성하는 단계 (S100)로부터 수득한 저분자량 퓨란 혼합물의 중량부 대비 1 배 내지 10 배가 바람직하며, 더욱 바람직하게는 2 배 내지 5 배를 투입할 수 있다. 저분자량 퓨란 혼합물 대비 물을 1 배 미만으로 투입할 경우, BHMF의 추출 및 분액성의 저하가 나타나 역분액이 유의미한 성과를 제공하지 못할 수 있다. 저분자량 퓨란 혼합물 대비 물을 10 배 초과하여 투입할 경우, 저분자부의 분리 효율은 증가될 수 있으나 분액조의 부피증가가 불가피하며 탈수공정에 많은 에너지와 시간이 소모되어 상업적으로 유의미하다고 보기 어렵다.
유기용매를 추가하여 불용성 염성분을 제거하는 단계(S220)에서는, 촉매산염 및 레불린산염의 제거를 위해 용해도의 차이를 이용한 선택적 용해 및 여과법을 적용할 수 있다. BHMF 및 퓨란 올리고머는 극성의 유기용매에 용해도가 높은 반면, 촉매산염 및 레불린산염은 용해도가 매우 낮아 고상으로 존재한다. 따라서 혼합물을 유기용매에 용해한 뒤 여과법을 이용하여 고상으로 존재하는 염 (salt)부의 효과적인 분리를 할 수 있다. 유기용매에 용해된 BHMF 및 퓨란 올리고머는 수용액층의 감압증류공정을 통해 유기용매를 제거함으로써 회수가 가능하며, 증류된 유기용매는 재사용이 가능하다. 이때 사용되는 유기용매는 극성 용매로서 메탄올, 에탄올, 프로판올, 이소프로판올 및 부탄올로 이루어진 저분자량 알코올계 용매군 또는 아세톤, 부탄온, 펜탄온 및 메틸아이소부틸케톤으로 이루어진 저분자량 케톤계 용매군에서 선택된 1종 이상의 용매를 단독 또는 혼합 사용하는 것이 바람직하다.
유기용매에 용해한 후 냉각하여 결정화하는 단계 (S230)에서는, BHMF 순도 향상을 위한 결정화 공정을 적용할 수 있다. 앞서 설명한 두 단계 (S210 및 S220)의 고순도화 공정을 적용하여 80 %이상의 순도를 가지는 BHMF 모노머 생산이 가능하며, 20 % 이하의 불순물도 하이드록시메틸기를 가지는 퓨란 올리고머의 형태이기 때문에 에폭시 등의 고분자 원료로 사용이 가능하다. 그러나 필요에 의해 90%이상의 순도를 가지는 고순도 BHMF 모노머를 생산해야 할 경우, 결정화 공정을 추가적으로 적용할 수 있다.
BHMF와 퓨란 올리고머는 반복단위의 수만 다를 뿐 퓨란 링과 하이드록시메틸기를 주요 구조로 하기 때문에 BHMF만을 선택적으로 결정화하기는 쉽지 않다. 따라서, 결정화의 기본 원리인 용해 선택도에 있어서 BHMF에는 용해도가 낮고, 퓨란 올리고머에는 용해도가 높은 적절한 용매를 선택하는 것이 결정화 효율에 결정적인 영향을 미친다. 본 발명자들은 상업적으로 접근 가능한 다양한 용매에 대한 검토를 하였으며 케톤계 및 알코올계 용매 중 일부가 이러한 용해 선택도에서 강점을 가짐을 확인하였다. 상기 유기 용매에 BHMF와 퓨란올리고머의 혼합물을 투입한 후, 40 ℃ 이상의 중온 조건에서 BHMF 포화용액을 생성한다. 용매의 종류에 따라서 BHMF의 융점인 76 ℃ 이상으로 가열시 BHMF와 유기용매가 액상의 혼합액의 상태로 존재할 수 있다. 이후 포화용액 또는 액상 혼합액을 냉각하면 BHMF 모노머의 결정을 얻을 수 있으며 이들의 순도는 결정화 이전에 비해 상승한다. 이때 사용하는 유기용매는 메탄올, 에탄올, 프로판올, 이소프로판올, 부탄올, 아세톤, 부탄온, 펜탄온, 메틸아이소부틸케톤로 이루어진 군에서 선택된 1종 이상 단독 또는 혼합한 용매가 바람직하며, 더욱 바람직하게는 프로판올, 이소프로판올, 부탄올, 아세톤, 부탄온으로 이루어진 군에서 선택된 1종 이상 단독 또는 혼합한 용매를 사용할 수 있다. 통상적으로 고상분 대비 용매의 투입량이 증가할수록 결정화 후 BHMF 순도는 증가하나 회수율은 감소한다. 용매의 투입량이 감소하면 그 반대의 효과를 기대할 수 있다.
이하, 하기 비교예 및 실시예들을 참조하여 본 발명의 BHMF 제조 방법을 보다 상세히 설명한다.
비교예 1
하기 표 1에 나타낸 투입원료의 상대중량비에 따라, 반응기 내에 퍼퓨릴 알코올, 포르말린, 숙신산을 일괄 투입한 후, 온도를 80 ℃로 유지하며 상압 하에 4시간 동안 반응하였다. 이후, 숙신산 투입량 대비 2 몰비의 액상 NaOH를 투입하여 반응액을 중화했다. 반응액을 냉각한 후 60 ℃를 유지하며 100 torr로 감압하여 탈수를 수행하였다.
실시예 1 (저분자량 퓨란 혼합물 합성)
하기 표 1에 나타낸 투입원료의 상대중량비에 따라, 반응기 내에 퍼퓨릴 알코올, 파라포름알데하이드, 숙신산을 일괄 투입한 후, 온도를 120 ℃로 유지하며 상압 하에 4 시간 동안 반응하였다. 이후, 숙신산 투입량 대비 2 몰비의 액상 NaOH를 투입하여 반응액을 중화했다. 반응액을 냉각한 후 60 ℃를 유지하며 100 torr로 감압하여 탈수를 수행하였다. 반응 종결 후 미반응 퍼퓨릴 알코올의 회수를 위해 120 ℃를 유지하며 100 torr로 감압하여 퍼퓨릴 알코올의 회수를 수행하였다. 최종적으로 적갈색의 점성 액상부를 회수하였다. 본래 BHMF는 상온에서 고상으로 존재하지만, 퓨란 구조 기반의 액상 불순물들이 BHMF 용해성을 가지기 때문에 저분자량 퓨란 혼합물이 액상으로 회수되었다.
비교예 1 실시예 1
투입원료- 상대 중량비 Furfuryl alcohol- 100Formalin (37%)- 165Succinic acid- 0.5 Furfuryl alcohol- 100Paraformaldehyde (91%)- 3.5Succinic acid- 0.2
반응조건 80oC, 1bar, 4hr 120oC, 1bar, 4hr
촉매중화 O O
탈수공정 O O
Furfuryl alcohol 회수 X O
반응물 내 함량(GPC area%) BHMF 16.6%Levulinic acid 40.4%Furfuryl alcohol 36.7%The others 6.3% BHMF 51.0%Levulinic acid 5.1%Furfuryl alcohol 11.5%The others 32.4%
BHMF/Levulinic acid Ratio 0.41 10
도 4는 본 발명의 비교예 1에 따라 제조된 저분자량 퓨란 혼합물의 GPC data이다. 도 5는 본 발명의 실시예 1에 따라 제조된 저분자량 퓨란 혼합물의 GPC data이다. 비교예 1 및 실시예 1에 따른 반응 생성물을 샘플링하고 2.5 wt%로 THF에 녹여 GPC 기기분석 (Shimadzu, Gel Permeation Chromatography Systems; Shodex, KF-801, 802, 803, 805 Columns) 하였다. 분석 온도는 40 ℃이며 이동상은 Tetrahydrofuran (HPLC grade)을 1 ml/min으로 흘려주었다.
도 4 및 상기 표 1을 참조하면, 비교예 1에 따라 제조된 저분자량 퓨란 혼합물의 분석 결과, 샘플 내에 레불린 산의 농도가 상당히 높으며 (RT=39.5 min, 40.4 area%), 목표 물질인 BHMF 함량은 상대적으로 소량임을 확인할 수 있었다 (RT=38.9 min, 16.6 area%). 이는 포르말린을 원료로 사용할 경우, 물과의 접촉으로 인해 목표한 하이드록시메틸화 반응보다 퍼퓨릴 알코올의 레불린산화 반응이 더 우세함을 알 수 있다. 비교예 1에서는 미반응 퍼퓨릴 알코올의 회수를 하지 않았기 때문에 잔존 퍼퓨릴 알코올도 상당량 검출되었다 (RT= 40.4 min, 36.7 area%).
한편, 도 5 및 상기 표 1을 참조하면, 실시예 1에 따라 제조된 저분자량 퓨란 혼합물의 분석 결과, 샘플 내에 목표 물질인 BHMF 함량이 과반임을 확인할 수 있었다 (RT=39.1 min, 51.0 area%). 비교예 1에서 상당량 검출되었던 레불린산의 함량이 본 실시예에서는 대폭 감소하였다 (RT=39.8 min, 5.1%). 이는 파라포름알데하이드를 원료로 사용할 경우, 물과의 접촉이 최소화 되어 목표한 하이드록시메틸화 반응이 퍼퓨릴 알코올의 레불린산화 반응보다 더 우세함을 알 수 있다. 본 실시예에서는 미반응 퍼퓨릴 알코올의 회수를 수행하였으므로 잔존 퍼퓨릴 알코올의 함량이 감소하였다 (RT= 40.6 min, 11.5 area%).
실시예 2 (저분자량 퓨란 혼합물 내 불순물 제거)
상기 실시예 1에 의해 합성된 저분자량 퓨란 혼합물 내에 존재하는 불순물을 하기의 방법으로 제거하였다. 먼저 높은 분자량을 가지는 비수용성부를 제거하기 위해서 물을 이용한 역분액법을 적용하였다. 상기 혼합물의 중량부 대비 4 배의 물을 일괄 투입한 후 상온에서 15 분간 교반하여 혼합물 내의 BHMF가 물에 녹을 수 있는 환경을 조성하였다. 이후 상기 혼합액을 분액깔때기에 일괄 투입한 후, 30분간 정치하여 분액을 수행했다. 분액깔때기의 상부에는 노란색의 BHMF 수용액이, 하부에는 적갈색의 비수용성 고분자 퓨란혼합액이 존재하였다. 상부와 하부를 따로 분리한 뒤, 상부 BHMF 수용액 층만을 이후 공정에 사용하였다.
이어서 상기 회수된 BHMF 수용액의 탈수를 수행하였다. 반응기 내 BHMF 수용액을 교반하며 60 ℃, 100 torr 조건에서 탈수공정을 수행하였고 탈수 후반부에서 30분 이내의 짧은 시간 동안 80 ℃, 30 torr 조건을 적용하여 미량의 수분을 최대한 제거했다. 탈수 후 회수한 BHMF 모노머는 융점인 76 ℃ 이하로 냉각됨에 따라 점차 결정화 되어 상온에서 고상으로 존재하였다.
추가적으로, 미량 존재하는 촉매산염 및 레불린산염을 완전히 제거하기 위해 상기 BHMF 모노머를 3 중량비의 아세톤에 용해하였다. 30 ℃ 정도의 미온에서 30 분간 교반하자 BHMF 모노머는 모두 용해되었으며 촉매산염 및 레불린산염은 부유물로 존재하였다. 뷰흐너깔때기 (Buchner funnel)에 여과지를 올리고 감압여과하여 상기 부유물을 제거하였고 아세톤에 용해된 BHMF 모노머부를 회수하였다. 회수된 용액은 아세톤의 증류를 통해 완전히 건조되었으며 최종적으로 밝은 노랑색 고상의 BHMF 모노머를 회수하였다.
도 6은 본 발명의 실시예 2에 따라 제조된 BHMF의 GPC data이다. 실시예 2에 따라 회수된 BHMF를 2.5 wt%로 THF에 녹여 GPC 기기분석 (Shimadzu, Gel Permeation Chromatography Systems; Shodex, KF-801, 802, 803, 805 Columns) 하였다. 분석 온도는 40 ℃이며 이동상은 Tetrahydrofuran (HPLC grade)을 1 ml/min으로 흘려주었다.
도 6을 참조하면, 실시예 2에 따라 회수된 BHMF 분석 결과, 샘플 내에 목표 물질인 BHMF 함량이 대다수임을 확인할 수 있었다 (RT=39.2 min, 82.4 area%). 거의 모든 고분자부는 제거되었으며, 저분자량 퓨란 혼합물에 잔존하였던 미반응 퍼퓨릴 알코올도 분액 및 탈수과정에서 함께 제거되어 1% 미만으로 존재함을 확인하였다.
실시예 3 (BHMF 결정화)
상기 실시예 2에 의해 수득된 BHMF 모노머의 결정화를 통해 BHMF 순도를 더욱 향상시켰다. BHMF 모노머 대비 0.5 중량비의 아세톤을 투입한 후, 55 ℃에서 30분간 교반하였다. 교반후 액상의 BHMF-아세톤 용액이 회수되었으며 이 용액을 교반하며 25 ℃까지 냉각 후 온도를 유지하며 6시간동안 교반하였다. 용액이 냉각됨에 따라 분말형태의 고순도 BHMF가 석출되었으며 교반이 지속됨에 따라 그 생성량이 증가하였다. 이후, 뷰흐너깔때기 (Buchner funnel)에 여과지를 올리고 감압여과하여 상기 분말형 고순도 BHMF를 회수하였고 여과지를 통과한 아세톤 용액은 재사용 목적으로 따로 분리하였다. 상기 BHMF 분말의 감압여과 상태에서 소량의 아세톤을 도포하여 짧은시간 노출시킴으로서 1차 세척을 수행했다. 이어서 BHMF 분말 표면의 아세톤 용액을 제거하기 위해 헥산 (n-hexane)으로 표면 세척하여 최종 미색 (off-white)의 고순도 BHMF 분말을 수득하였으며 60 ℃ 오븐에서 1 시간 건조한 뒤 기기 분석 하였다.
도 7은 본 발명의 실시예 3에 따라 제조된 고순도 BHMF의 GPC data이다. 실시예 3에 따라 회수된 고순도 BHMF를 2.5 wt%로 THF에 녹여 GPC 기기분석 (Shimadzu, Gel Permeation Chromatography Systems; Shodex, KF-801, 802, 803, 805 Columns) 하였다. 분석 온도는 40 ℃이며 이동상은 Tetrahydrofuran (HPLC grade)을 1 ml/min으로 흘려주었다.
도 7을 참조하면, 실시예 3에 따라 제조된 고순도 BHMF 분석 결과, BHMF가 고순도화 되었음을 확인할 수 있었다 (RT=39.2 min, 99.7 area%).
도 8은 본 발명의 실시예 3에 따라 제조된 고순도 BHMF의 FT-IR data이다.
도 8을 참조하면, 고순도 BHMF의 FT-IR 기기 분석 (Jasco, FT/IR-4100)을 실시한 결과는 아래와 같다.
FT-IR (equipped with ATR accessory): 3318, 3224, 2943, 1561, 1453, 1398 cm-1
도 9는 본 발명의 실시예 3에 따라 제조된 고순도 BHMF의 1H NMR 데이터이다.
도 9를 참조하면, 고순도 BHMF의 1H NMR 기기 분석을 실시한 결과는 아래와 같다.
1H NMR (400MHz, D2O): δ 6.31 (s, 2H), 4.51 (s, 4H);
도 10은 본 발명의 실시예 3에 따라 제조된 고순도 BHMF의 GC-MS data이다. 실시예 3에 따라 회수된 고순도 BHMF를 0.2 wt%로 THF에 녹여 GC-MS 기기분석 (Shimadzu, GCMS-QP5050; SGE Analytical Science, BP5 Column) 하였다.
도 10을 참조하면, 고순도 BHMF의 GC/MS 기기 분석 결과 실시예 3에 따라 제조한 고순도 BHMF의 분자량이 문헌으로 알려진 값과 같은 128임을 확인할 수 있다.
한편, 상기 실시예 1의 저분자량 퓨란 혼합물 합성에 있어 반응 온도 범위 설정의 중요성을 보이기 위한 실시예를 수행했다. 즉, 상술한 바와 같이 퍼퓨릴 알코올을 하이드록시메틸화하는 단계 (S110)는 100 ℃ 내지 150 ℃의 온도에서 수행될 수 있는데, 온도에 따른 원료 퍼퓨릴 알코올의 안정성을 확인하고, 부산물 생성량을 효과적으로 제어할 수 있는 온도 범위를 검증하기 위한 실험을 수행하였다. 퍼퓨릴 알코올을 하이드록시메틸화 반응은 100 ℃ 이상의 온도를 필요로 하므로, 다소간의 고분자량 퓨란 폴리머 등의 부산물 생성을 수반한다.
실시예 4 (반응 온도에 따른 부산물 생성)
반응기 내에 퍼퓨릴 알코올 및 숙신산 3 phr (part per hundred resin)을 일괄 투입한 후, 교반하며 반응기 내 온도를 20 ℃/hr의 속도로 승온시켰다. 승온됨에 따라 자가중합에 의한 고분자화 반응이 일어나며 퍼퓨릴 알코올 색상이 점차 어두워지는 것이 확인되었다.
도 11는 반응 온도에 따른 부산물 생성량을 나타내는 그래프이다. 즉, 도 11은 반응 온도가 퍼퓨릴 알코올의 안정성에 미치는 영향을 나타낸다. 실시예 4에 따른 물질을 80 ℃부터 160 ℃까지의 온도 구간에서 10 ℃ 간격으로 샘플링하여 각 샘플에 대한 GPC 분석하여 부산물 생성량을 측정하였다. GPC 분석은 2.5wt%로 THF에 녹여 GPC 기기분석 (Shimadzu, Gel Permeation Chromatography Systems; Shodex, KF-801, 802, 803, 805 Columns) 하였다. 분석 온도는 40 ℃이며 이동상은 Tetrahydrofuran (HPLC grade)을 1 ml/min으로 흘려주었다.
도 11을 참조하면, 100 ℃ 내지 150 ℃의 온도에서는 부산물 생성량이 투입한 퍼퓨릴 알코올 대비 20 % 이내로 확인되어 부산물 생성량을 효과적으로 제어할 수 있는 온도 범위임을 확인하였다. 특히, 100 ℃ 내지 120 ℃의 구간에서는 부산물 생성량이 투입한 퍼퓨릴 알코올 대비 5% 이내인 것으로 확인되어 부산물 생성량이 매우 효과적으로 제어됨을 확인하였다. 그러나, 160 ℃부터 부산물 생성량이 20 %를 초과하는 것으로 확인되었다. 즉, 150 ℃를 초과하는 온도에서 통상적인 퍼퓨릴 알코올의 하이드록시메틸화 반응 시간에 해당하는 2 시간 이상 유지될 경우 점도 및 온도의 급격한 상승과 함께 겔화(Gelation)이 되어 회수 불가능한 고상으로 변형되었다.
한편, 상기 실시예 1의 저분자량 퓨란 혼합물 합성에 있어 선별되는 산촉매의 pKa 범위 설정의 중요성을 보이기 위한 실시예를 수행했다. 상술한 바와 같이 퍼퓨릴 알코올의 하이드록시메틸화 반응은 산촉매를 필요로 하므로, 다소간의 고분자량 퓨란 폴리머 등의 부산물 생성을 수반한다. 하기 실시예 5는 산촉매에 따른 원료 퍼퓨릴 알코올의 안정성을 확인한 것으로, 부산물 생성량을 효과적으로 제어할 수 있는 촉매의 pKa 범위를 보여준다.
실시예 5 (산촉매에 따른 부산물 생성량 측정)
유리 용기에 퍼퓨릴 알코올 (Furfuryl alcohol, 이하 표 2에서 “FA”라 한다.) 및 하기 표 2에 따른 물질의 산촉매 3 phr를 일괄 투입한 후, 밀봉하여 90 ℃ 오븐에 90 분간 노출시켰다. 산 촉매에 노출됨에 따라 고분자화 반응이 일어나며 퍼퓨릴 알코올 색상이 점차 어두워지는 것이 확인되고 일부는 겔화되어 고체가 되었다.
샘플을 상온까지 냉각시킨 뒤, 각 샘플에 대한 GPC 분석하여 부산물 생성량을 측정하였다. GPC 분석은 2.5 wt%로 THF에 녹여 GPC 기기분석 (Shimadzu, Gel Permeation Chromatography Systems; Shodex, KF-801, 802, 803, 805 Columns) 하였다. 분석 온도는 40 ℃이며 이동상은 Tetrahydrofuran (HPLC grade)을 1 ml/min으로 흘려주었다.
한편, 상술한 실시예 5는 산촉매의 pKa에 따른 부산물 생성량 및 안정성을 확인 위해 실시예 1에서의 산촉매보다 많은 양인 3 phr의 산촉매를 투입하여 실험하였으나, 실제 저분자량 퓨란 혼합물 제조 시에는 상술한 바와 같이 퍼퓨릴 알코올 대비 0.05 phr 내지 0.3 phr의 산촉매가 투입될 수 있다.
하기 표 2를 참조하면, pKa 4.0 이상의 산촉매에서는 부산물 생성량이 투입한 퍼퓨릴 알코올 대비 10 % 이내로 미비하였다. 또한, pKa 3.13의 시트르산 3 phr 적용 샘플에서 부산물 생성량이 증가하였으나, 본 발명에 따른 저분자량 퓨란 혼합물 제조 시, 산촉매는 퍼퓨릴 알코올 대비 0.05 phr 내지 0.3 phr 포함되므로, 26.8 %의 부산물 함량보다는 적을 것이 당연하다. 따라서, 시트르산도 본 발명에 따른 산촉매로 사용될 수 있음을 확인할 수 있다. 한편, 그 이하의 pKa를 가지는 인산 및 수산 촉매 적용 시 완전히 겔화되어 회수 및 GPC 분석이 불가능하였다 (부산물 함량~100%).
산촉매 (pKa) Oxalic acid(1.25) Phosphoric acid(2.15) Citric acid(3.13) Succinic acid(4.21) Monosodium succinate (5.41) Disodium citrate(6.40)
투입원료- 상대중량비 FA- 100산촉매- 3 FA- 100산촉매- 3 FA- 100산촉매- 3 FA- 100산촉매- 3 FA- 100산촉매- 3 FA- 100산촉매- 3
반응조건 90oC, 1bar, 1.5hr 90oC, 1bar, 1.5hr 90oC, 1bar, 1.5hr 90oC, 1bar, 1.5hr 90oC, 1bar, 1.5hr 90oC, 1bar, 1.5hr
부산물 함량 ~100% ~100% 26.8% 6.9% 1.8% 0.5%
성상 Gel Gel Liquid Liquid Liquid Liquid
상술한 실시예에 설명된 특징, 구조, 효과 등은 본 발명의 적어도 하나의 실시예에 포함되며, 반드시 하나의 실시예에만 한정되는 것은 아니다. 나아가, 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의하여 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
또한, 이상에서 실시예들을 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예들에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부한 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
본 발명의 다양한 실시예에 의해 바이오매스 유래 5탄당 기반의 퍼퓨릴 알코올을 이용하여 BHMF와 같은 이관능성 하이드록시메틸기를 가지는 퓨란 모노머를 매우 용이하게 합성할 수 있다. 본 발명의 다양한 실시예에 따른 BHMF 제조 방법은 산업적으로 접근성이 높은 원료를 이용하여 BHMF를 효율적으로 생산할 수 있으므로 산업적 가치가 매우 높으며, 이후 BHMF를 원료로 이용하는 다양한 파생 퓨란 제품의 상용화에 결정적인 역할을 할 수 있다. 비식용 바이오매스 또는 폐바이오매스 기반의 BHMF 생산법이라는 점에서 석유 사용량을 감축하는 환경적인 효과도 기대할 수 있다.

Claims (13)

  1. 이관능성 하이드록시메틸기를 가지는 퓨란 모노머 (2,5-Bis(hydroxymethyl) furan, BHMF) 제조 방법으로써,
    퍼퓨릴 알코올(Furfuryl alcohol)을 이용하여 저분자량 퓨란 혼합물을 합성하는 단계; 및
    상기 저분자량 퓨란 혼합물로부터 이관능성 하이드록시메틸기 (bifunctional hydroxymethyl group)를 가지는 BHMF를 추출 및 고순도화하는 단계를 포함하는 이관능성 하이드록시메틸기를 가지는 퓨란 모노머 (2,5-Bis(hydroxymethyl) furan, BHMF) 제조 방법.
  2. 제1항에 있어서,
    상기 저분자량 퓨란 혼합물을 합성하는 단계는,
    상기 퍼퓨릴 알코올, 고상의 포름알데하이드 (formaldehyde) 및 산촉매를 혼합하여, 상기 퍼퓨릴 알코올을 하이드록시메틸화 (Hydroxymethylation) 하는 단계를 포함하는 것을 특징으로 하는 BHMF 제조 방법.
  3. 제2항에 있어서,
    상기 고상의 포름알데하이드는 파라포름알데하이드 (paraformaldehyde)를 포함하는 것을 특징으로 하는 BHMF 제조 방법.
  4. 제3항에 있어서,
    상기 퍼퓨릴 알코올을 하이드록시메틸화하는 단계에서는,
    상기 파라포름알데하이드의 열분해에 의해 생성된 단분자 포름알데하이드가 상기 퍼퓨릴 알코올과 결합하는 것을 특징으로 하는 BHMF 제조 방법.
  5. 제2항에 있어서,
    상기 퍼퓨릴 알코올을 하이드록시메틸화하는 단계는 100 ℃ 내지 150 ℃의 온도에서 수행되는 것을 특징으로 하는 BHMF 제조 방법.
  6. 제2항에 있어서,
    상기 퍼퓨릴 알코올은 상기 포름알데하이드 대비 2 배 내지 30 배의 몰비로 혼합되는 것을 특징으로 하는 BHMF 제조 방법.
  7. 제2항에 있어서,
    상기 산촉매는 상기 퍼퓨릴 알코올 대비 0.05 phr 내지 0.3phr로 혼합되는 것을 특징으로 하는 BHMF 제조 방법.
  8. 제2항에 있어서,
    상기 산촉매는 pKa 3.0 내지 6.4를 가지는 유기산으로서, Acetic acid, Acetoacetic acid, Adipic acid, Azelaic acid, Benzoic acid, Citric acid, Cyclohexanecarboxylic acid, Enolpyruvic acid, Formic acid, Fumaric acid, Galactaric acid, Galactonic acid, Glucaric acid, Gluconic acid, Glutaric acid, Glyceric acid, Glyceric acid 2-phosphate, Glycolic acid, Glyoxylic acid, Hydroxybutyric acid, Isobutyric acid, Isophthalic acid, Itaconic acid, Lactic acid, Levulinic acid, Malic acid, Methyl malonic acid, Pimelic acid, Succinic acid, Suberic acid, Tartaric acid, Terephthalic acid, Monosodium succinate 및 Disodium citrate으로 구성된 군으로부터 선택된 1종 이상을 단독 또는 혼합하여 사용하는 것을 특징으로 하는 BHMF 제조 방법.
  9. 제2항에 있어서,
    상기 하이드록시메틸화가 진행되지 않은 미반응 퍼퓨릴 알코올을 회수하는 단계를 더 포함하는 것을 특징으로 하는 BHMF 제조 방법.
  10. 제1항에 있어서,
    상기 저분자량 퓨란 혼합물을 합성하는 단계에서는 전체 혼합물 대비 51 wt % 이상의 BHMF를 포함하는 저분자량 퓨란 혼합물을 합성하는 BHMF 제조 방법.
  11. 제1항에 있어서,
    상기 추출 및 고순도화하는 단계는,
    상기 저분자량 퓨란 혼합물을 물 분액하여 수용액에 용해된 BHMF를 회수하는 단계;
    상기 저분자량 퓨란 혼합물에 유기용매를 추가하여 불용성 염성분을 제거하는 단계; 및
    상기 저분자량 퓨란 혼합물을 유기용매에 용해한 후 냉각하여 결정화하는 단계 중 적어도 어느 하나의 단계를 포함하는 것을 특징으로 하는 BHMF 제조 방법.
  12. 제11항에 있어서,
    상기 물 분액은 저분자량 퓨란 혼합물에 1 내지 10 중량비의 물을 투입한 뒤 상층부에 형성된 BHMF 수용액층을 회수하는 것을 특징으로 하는 BHMF 제조 방법.
  13. 제11항에 있어서,
    상기 유기용매는 BHMF를 선택적으로 용해할 수 있는 극성 용매로서 메탄올, 에탄올, 프로판올, 이소프로판올 및 부탄올로 이루어진 저분자량 알코올계 용매군 또는 아세톤, 부탄온, 펜탄온 및 메틸아이소부틸케톤으로 이루어진 저분자량 케톤계 용매군에서 선택된 1종 이상의 용매를 단독 또는 혼합 사용하는 것을 특징으로 하는 BHMF 제조 방법.
PCT/KR2018/000865 2017-03-20 2018-01-18 이관능성 하이드록시메틸기를 가지는 퓨란 모노머 및 이의 제조 방법 WO2018174396A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/492,552 US11578045B2 (en) 2017-03-20 2018-01-18 Furan monomer having bifunctional hydroxymethyl group and preparation method therefor
EP18770224.6A EP3604290B1 (en) 2017-03-20 2018-01-18 Furan monomer having bifunctional hydroxymethyl group and preparation method therefor
CN201880019541.5A CN110461825B (zh) 2017-03-20 2018-01-18 具有双官能羟甲基的呋喃单体及其制备方法
JP2019566551A JP7040875B2 (ja) 2017-03-20 2018-01-18 二官能性ヒドロキシメチル基を有するフランモノマー及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170034795A KR101791852B1 (ko) 2017-03-20 2017-03-20 이관능성 하이드록시메틸기를 가지는 퓨란 모노머 및 이의 제조 방법
KR10-2017-0034795 2017-03-20

Publications (1)

Publication Number Publication Date
WO2018174396A1 true WO2018174396A1 (ko) 2018-09-27

Family

ID=60382972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/000865 WO2018174396A1 (ko) 2017-03-20 2018-01-18 이관능성 하이드록시메틸기를 가지는 퓨란 모노머 및 이의 제조 방법

Country Status (6)

Country Link
US (1) US11578045B2 (ko)
EP (1) EP3604290B1 (ko)
JP (1) JP7040875B2 (ko)
KR (1) KR101791852B1 (ko)
CN (1) CN110461825B (ko)
WO (1) WO2018174396A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115322975A (zh) * 2022-06-16 2022-11-11 扬州大学 路德维希肠杆菌氧化还原酶的突变体及其应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101791852B1 (ko) * 2017-03-20 2017-11-01 국도화학 주식회사 이관능성 하이드록시메틸기를 가지는 퓨란 모노머 및 이의 제조 방법
KR101966878B1 (ko) * 2018-06-22 2019-04-08 국도화학 주식회사 퍼퓨릴 알코올 유래 2 관능성 퓨란 에폭시 및 이의 제조방법
CN113563289B (zh) * 2021-08-05 2023-04-28 华东师范大学 一种从糠醛制备2,5-呋喃二甲酸的方法
WO2023112605A1 (ja) * 2021-12-14 2023-06-22 本州化学工業株式会社 イソマンニド-ビス(トリメリテートアンハイドライド)の結晶及びその製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4634723A (en) * 1984-03-31 1987-01-06 Rutgerswerke Aktiengesellschaft Furfuryl alcohol binders, methods for their production and use
JP2000246391A (ja) * 1999-03-03 2000-09-12 Kao Corp 鋳型用酸硬化性粘結剤の製法
JP2002080408A (ja) * 2000-09-06 2002-03-19 Tokuyama Corp 有機化合物の分離方法
US20100062276A1 (en) * 2006-06-21 2010-03-11 Transfurans Chemicals Method for modifying wood and wood thereby obtained
JP2013095859A (ja) * 2011-11-01 2013-05-20 Sekisui Chem Co Ltd フルフリルアルコール−ホルムアルデヒド共重合体組成物及びその製造方法
KR101791852B1 (ko) * 2017-03-20 2017-11-01 국도화학 주식회사 이관능성 하이드록시메틸기를 가지는 퓨란 모노머 및 이의 제조 방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA934492A (en) * 1969-03-05 1973-09-25 L. Guyer Vernon Furan prepolymers
US5534612A (en) * 1992-05-19 1996-07-09 Schuller International, Inc. Glass fiber binding compositions, process of making glass fiber binding compositions, process of binding glass fibers, and glass fiber compositions
IL108362A (en) 1993-02-02 1998-12-27 Qo Chemicals Inc Liquid resin bonding agents of porphoril alcohol and formaldehyde and their preparation
US20080207796A1 (en) * 2006-09-29 2008-08-28 Clingerman Michael C Furanic resin aggregate binders and method
JP6087579B2 (ja) * 2012-05-23 2017-03-01 積水化学工業株式会社 フルフリルアルコール−ホルムアルデヒド共重合体の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4634723A (en) * 1984-03-31 1987-01-06 Rutgerswerke Aktiengesellschaft Furfuryl alcohol binders, methods for their production and use
JP2000246391A (ja) * 1999-03-03 2000-09-12 Kao Corp 鋳型用酸硬化性粘結剤の製法
JP2002080408A (ja) * 2000-09-06 2002-03-19 Tokuyama Corp 有機化合物の分離方法
US20100062276A1 (en) * 2006-06-21 2010-03-11 Transfurans Chemicals Method for modifying wood and wood thereby obtained
JP2013095859A (ja) * 2011-11-01 2013-05-20 Sekisui Chem Co Ltd フルフリルアルコール−ホルムアルデヒド共重合体組成物及びその製造方法
KR101791852B1 (ko) * 2017-03-20 2017-11-01 국도화학 주식회사 이관능성 하이드록시메틸기를 가지는 퓨란 모노머 및 이의 제조 방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NATURE, vol. 447, 2007, pages 982
See also references of EP3604290A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115322975A (zh) * 2022-06-16 2022-11-11 扬州大学 路德维希肠杆菌氧化还原酶的突变体及其应用

Also Published As

Publication number Publication date
EP3604290A4 (en) 2020-09-02
US20210139443A1 (en) 2021-05-13
EP3604290B1 (en) 2022-05-25
JP2020507633A (ja) 2020-03-12
KR101791852B1 (ko) 2017-11-01
US11578045B2 (en) 2023-02-14
CN110461825B (zh) 2023-05-05
CN110461825A (zh) 2019-11-15
JP7040875B2 (ja) 2022-03-23
EP3604290A1 (en) 2020-02-05

Similar Documents

Publication Publication Date Title
WO2018174396A1 (ko) 이관능성 하이드록시메틸기를 가지는 퓨란 모노머 및 이의 제조 방법
EP2246340B1 (en) Preparation of 2,5-furandialdehyde from 2,5-(hydroxymethyl)furanaldehyde in the presence of 2,2,6,6-tetramethyl-i-piperidinyloxyl
US7678945B2 (en) Derivatized polyhydroxystyrenes with a novolak type structure and processes for preparing the same
US9186660B2 (en) Solid acid catalyst and method for preparing and using the same
JP2007514047A (ja) リグノセルロース材料の液状化方法
WO2013133131A1 (ja) 鋳型造型用粘結剤組成物及び鋳型の製造方法
WO2019245169A1 (ko) 퍼퓨릴 알코올 유래 2 관능성 퓨란 에폭시 및 이의 제조방법
JPS62241919A (ja) 酸素脱着によるポリエステルの色改善法
JP2644330B2 (ja) 2,2,4‐トリメチル‐1,2‐ジヒドロキノリンオリゴマーの製造方法
US6630595B2 (en) Method for producing maleimides
JP2627645B2 (ja) アミノフェノール類のトリグリシジル誘導体の製造法
WO2016105107A2 (ko) 무수당 알코올의 효과적인 생산 및 정제 방법
WO2015030505A1 (ko) 바이오매스 유래 에틸렌 글리콜계 화합물 용매 하의 산 촉매를 이용한 5-히드록시메틸-2-푸르푸랄의 제조방법
WO2015030509A1 (ko) 바이오매스 유래 에틸렌 글리콜계 화합물 용매 하의 고체 산 촉매를 이용한 레블리닉산의 제조방법
CN111377892A (zh) 苯并呋喃酮的制备方法
CN113292391B (zh) 2-溴碘苯的制备方法
WO2017134609A1 (en) A process for preparation of an aromatic n-glycidylamine
KR101094135B1 (ko) 개환중합된 테트라시클로도데센 유도체의 수소화 방법
DE2023148A1 (de) Verfahren zur Herstellung von Glycidylestern aus Polycarbonsaeureanhydriden
SU482996A1 (ru) Способ получени термореактивных олигомеров
KR101953108B1 (ko) 개질된 레졸형 페놀 수지, 이의 제조방법 및 열경화성 조성물
KR0139273B1 (ko) 고순도 노보락 에폭시 수지의 제조방법
EP3564205A1 (en) Diels-alder ring-opening process
KR101320532B1 (ko) 이성분계 반응시스템을 활용한 메틸에틸케톤의 합성방법
CN116655560A (zh) 一种利用糠醇制备2,5-呋喃二甲醇的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18770224

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019566551

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018770224

Country of ref document: EP

Effective date: 20191021