WO2018173973A1 - 赤外線センサ - Google Patents

赤外線センサ Download PDF

Info

Publication number
WO2018173973A1
WO2018173973A1 PCT/JP2018/010586 JP2018010586W WO2018173973A1 WO 2018173973 A1 WO2018173973 A1 WO 2018173973A1 JP 2018010586 W JP2018010586 W JP 2018010586W WO 2018173973 A1 WO2018173973 A1 WO 2018173973A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
insulating film
infrared
thermal
infrared sensor
Prior art date
Application number
PCT/JP2018/010586
Other languages
English (en)
French (fr)
Inventor
中村 健治
田里 和義
平野 晋吾
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to KR1020197027164A priority Critical patent/KR102596590B1/ko
Priority to EP18772667.4A priority patent/EP3605040B1/en
Publication of WO2018173973A1 publication Critical patent/WO2018173973A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0252Constructional arrangements for compensating for fluctuations caused by, e.g. temperature, or using cooling or temperature stabilization of parts of the device; Controlling the atmosphere inside a photometer; Purge systems, cleaning devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0022Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation of moving bodies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0831Masks; Aperture plates; Spatial light modulators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/12Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using thermoelectric elements, e.g. thermocouples
    • G01J5/14Electrical features thereof
    • G01J5/16Arrangements with respect to the cold junction; Compensating influence of ambient temperature or other variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0022Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation of moving bodies
    • G01J2005/0033Wheel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • G01J2005/065Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity by shielding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • G01J2005/066Differential arrangement, i.e. sensitive/not sensitive

Definitions

  • the present invention relates to an infrared sensor that is suitable for measuring the temperature of a heating roller of a copying machine, a printer or the like and has excellent responsiveness.
  • an infrared sensor is disposed opposite the object to be measured and receives the radiant heat to measure the temperature. Is installed.
  • an infrared sensor in recent years, a film-type infrared sensor in which a thin film thermistor is formed on an insulating film that is excellent in flexibility and can be thinned as a whole has been developed.
  • Patent Document 1 an insulating film, a first thermal element and a second thermal element provided on one surface of the insulating film, and a first surface of the insulating film are provided on one surface of the insulating film.
  • Conductive first wiring film formed and connected to the first thermal element, and conductive second wiring film connected to the second thermal element, and insulative facing the second thermal element An infrared sensor comprising an infrared reflective film provided on the other surface of the film is described.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide an infrared sensor that can quickly converge the heat balance and improve the thermal response.
  • the infrared sensor according to the first invention includes an insulating film, a first heat-sensitive element and a second heat-sensitive element provided on one surface of the insulating film, and one end of the first heat-sensitive element. And a pair of second wires formed on one side of the insulating film with one end connected to the second heat sensitive element and a pair of first wirings formed on one side of the insulating film.
  • Wiring a light receiving region provided on the other surface of the insulating film and facing the first thermosensitive element, and formed on the other surface of the insulating film to avoid the light receiving region and at least the second An infrared reflection film covering directly above the heat sensitive element; and a heat transfer film connected to the first heat sensitive element and patterned on one surface of the insulating film, wherein the heat transfer film is the infrared reflection film.
  • the thermal coupling part thermally couples with a part of the infrared reflective film, so that the light receiving side and the compensation side
  • the temperature balance between the light receiving side and the compensation side can be quickly converged, and the thermal response can be improved. That is, since the insulating film is thin, heat on one side is quickly transferred to the infrared reflecting film on the other side via the thermal coupling portion, and particularly when the infrared reflecting film is a metal film, it has high thermal conductivity. Thus, heat can be transferred between the light receiving side and the compensating side to quickly converge the heat balance.
  • An infrared sensor is characterized in that, in the first invention, the thermal coupling portion is formed to face a part of the infrared reflection film. That is, in this infrared sensor, since the thermal coupling portion is formed to face a part of the infrared reflection film, the thermal coupling portion is closest to a part of the infrared reflection film through a thin insulating film, High thermal bondability can be obtained.
  • the thermal coupling part has a compensation side neighboring coupling part arranged in the vicinity of the second thermal element. And That is, in this infrared sensor, since the thermal coupling portion has a compensation side neighborhood coupling portion arranged in the vicinity of the second thermal element, the compensation side neighborhood coupling portion is close to the second thermal element. , The responsiveness becomes higher.
  • the infrared reflection film extends to a region near the outer edge of the insulating film
  • the thermal coupling portion is It has an outer edge vicinity joint part which adjoined to a part of said infrared reflective film of a near field. That is, in this infrared sensor, since the thermal coupling portion has the outer edge vicinity coupling portion close to a part of the infrared reflection film in the vicinity region, the outer edge vicinity coupling portion also causes the thermal film from the vicinity region of the insulating film outer edge. Can convey heat.
  • the infrared reflective film is formed so as to cover the periphery of the light receiving region. That is, in this infrared sensor, since the infrared reflecting film is formed so as to cover the periphery of the light receiving region, the change in the environmental temperature transmitted through the thermal coupling portion is also transmitted to the entire periphery of the light receiving region, and further, the heat balance is further increased. It is possible to accelerate the convergence of. Therefore, the temperature gradient due to air convection between the first thermal element side and the second thermal element side is reduced, and the response speeds of the two thermal elements can be made equal.
  • an infrared reflective film is formed only in a region facing the second heat sensitive element, when air flows from the second heat sensitive element side by convection of the surrounding air, it is located above the second heat sensitive element.
  • the infrared reflective film is cooled and the temperature of the insulating film changes locally.
  • the infrared sensor of the present invention since the infrared reflecting film is formed so as to cover the periphery of the light receiving region facing the first thermal element, the region on the second thermal element side is cooled by the air flow.
  • the temperature around the light receiving region also decreases due to the thermal conductivity of the infrared reflecting film, and the difference in temperature hardly occurs as a whole, and it is difficult to be affected by the convection of the surrounding air.
  • region above the 1st thermal element is not covered with an infrared reflective film, it does not prevent the infrared light reception from a measuring object.
  • the present invention has the following effects. That is, according to the infrared sensor of the present invention, since the heat transfer film has the thermal coupling part close to a part of the infrared reflective film, the light receiving side and the compensation side are mutually connected via the thermal coupling part. Thus, changes in the environmental temperature can be transmitted efficiently, the convergence of the heat balance between the light receiving side and the compensation side is accelerated, and the thermal response is improved. Therefore, the infrared sensor of the present invention has a high thermal response and is suitable for measuring the temperature of a heating roller such as a copying machine or a printer.
  • FIGS. 1 and 2 a first embodiment of an infrared sensor according to the present invention will be described with reference to FIGS. 1 and 2.
  • the infrared sensor 1 of this embodiment includes an insulating film 2, a pair of first terminal electrodes 4 ⁇ / b> A patterned on one surface (surface) of the insulating film 2, and One end of the pair of second terminal electrodes 4B, the first thermal element 5A and the second thermal element 5B provided on one surface of the insulating film 2, and the first thermal element 5A are connected.
  • the other end is connected to the pair of first terminal electrodes 4A, and one end is connected to the pair of first wirings 6A patterned on one surface of the insulating film 2 and the second thermal element 5B.
  • a pair of second wirings 6B having the other end connected to the pair of second terminal electrodes 4B and patterned on one surface of the insulating film 2, and the other surface of the insulating film 2 (surface on the light receiving side) , Opposite to the first thermal element 5A.
  • a light region D and comprises a, an infrared reflection film 8 that covers directly above the at least a second heat sensitive element 5B is formed on the other surface of the insulating film 2 avoiding light receiving region D.
  • the infrared sensor 1 of the present embodiment is connected to the pair of first adhesive electrodes 3A separately from the first wiring 6A, and has a higher thermal conductivity than the insulating film 2 on one surface of the insulating film 2.
  • a pair of heat transfer films 7 which are thin and patterned in the vicinity of the first adhesive electrode 3A are provided.
  • the heat transfer film 7 has a thermal coupling portion C close to a part of the infrared reflecting film 8.
  • the pair of first wirings 6A has a pair of first adhesive electrodes 3A connected to the first thermal element 5A at one end.
  • the pair of second wirings 6B has a pair of second adhesive electrodes 3B connected to the second thermal element 5B at one end.
  • the thermal coupling portion C is a portion for thermal coupling with a part of the first wiring 6A, and extends to the vicinity of the second thermal element 5B and is disposed in the vicinity of the second thermal element 5B. It has a compensation side neighboring coupling part C1.
  • the infrared reflection film 8 is formed so as to cover the periphery of the light receiving region D.
  • the pair of first wirings 6A extends from the pair of first adhesive electrodes 3A in the opposite direction to the second thermosensitive element 5B side, and corresponds to each via a plurality of distorted and meandering portions 6a. 1 terminal electrode 4A. As described above, since the first wiring 6A has the meandering portion 6a, it is possible to increase the thermal resistance to the first terminal electrode 4A.
  • the second wiring 6B extends at a shorter distance than the first wiring 6A and reaches the second terminal electrode 4B.
  • the first wiring 6A and the heat transfer film 7 are not in direct contact with each other, but are indirectly connected through the first adhesive electrode 3A.
  • the heat transfer film 7 is formed in a larger area than the first wiring 6A.
  • Each of the pair of heat transfer films 7 extends to the second heat sensitive element 5B side, and the end on the second heat sensitive element 5B side becomes a compensation side vicinity coupling part C1 reaching the vicinity of the infrared reflecting film 8. Yes.
  • the thermal resistance of the compensation side vicinity coupling portion C1 is a portion extending from the portion of the first wiring 6A disposed on the detection side end of the insulating film 2, that is, the meandering portion 6a to the first terminal electrode 4A. If it is much larger than the thermal resistance of the existing portion 6b, the flow of heat from the extending portion 6b to the first terminal electrode 4A becomes dominant, whereas the thermal resistance of the compensation side neighboring coupling portion C1 is large. If the thermal resistance of the extended portion 6b is less than or equal to twice the thermal resistance, a good heat flow from the compensation side neighboring coupling portion C1 to the infrared reflecting film 8 can be obtained, and high-speed stabilization of the heat balance is achieved. be able to.
  • connection portion of the heat transfer film 7 to the first adhesive electrode 3A and the connection portion of the first wiring 6A to the first adhesive electrode 3A are set separately.
  • the corresponding terminal electrodes of the first thermal element 5A and the second thermal element 5B are bonded to the first adhesive electrode 3A and the second adhesive electrode 3B, respectively, with a conductive adhesive such as solder.
  • the heat transfer film 7 is partially connected to the two sides via the constricted portion 7a.
  • the constricted part 7a is formed in the connection part of the heat transfer film 7 to the first terminal electrode 4A, the constricted part 7a functions as a thermal land, and heat escapes to the surroundings more than necessary during soldering. It is possible to prevent the solder from becoming melted and causing poor solder.
  • the first heat sensitive element 5A disposed immediately below the infrared light receiving surface is used as an infrared detecting element
  • the second heat sensitive element 5B disposed directly below the infrared reflecting film 8 is used as a compensating element.
  • the infrared reflective film 8 on the back surface side is shown by a broken line. 2A and 2B, each terminal electrode, each wiring, the heat transfer film 7, and the infrared reflection film 8 are hatched.
  • the insulating film 2 is formed of a polyimide resin sheet in a substantially rectangular shape, and the infrared reflecting film 8, each wiring, each terminal electrode, each adhesive electrode, and the heat transfer film 7 are formed of copper foil. That is, they are formed by a double-sided flexible substrate in which the infrared reflecting film 8, each wiring, each terminal electrode, each adhesive electrode, and the heat transfer film 7 are patterned with copper foil on both surfaces of the polyimide substrate which is the insulating film 2. It was produced.
  • the pair of first terminal electrodes 4 ⁇ / b> A and the pair of second terminal electrodes 4 ⁇ / b> B are disposed in the vicinity of the corners of the insulating film 2.
  • the infrared reflection film 8 is composed of the copper foil described above and a gold plating film laminated on the copper foil.
  • the infrared reflecting film 8 is formed of a material having an infrared reflectance higher than that of the insulating film 2 and is formed by applying a gold plating film on the copper foil as described above.
  • a mirror-deposited aluminum vapor deposition film or an aluminum foil may be used.
  • the first thermal element 5A and the second thermal element 5B are chip thermistors in which terminal electrodes (not shown) are formed at both ends.
  • this thermistor there are thermistors of NTC type, PTC type, CTR type and the like.
  • NTC type thermistors are employed as the first thermal element 5A and the second thermal element 5B.
  • This thermistor is made of a thermistor material such as a Mn—Co—Cu-based material or a Mn—Co—Fe-based material.
  • the heat transfer film 7 has the thermal coupling portion C close to a part of the infrared reflective film 8.
  • the thermal coupling between the light-receiving side and the compensation side can efficiently communicate changes in the environmental temperature between the light-receiving side and the compensation side. improves. That is, since the insulating film 2 is thin, heat on one surface is quickly transmitted to the infrared reflecting film 8 on the other surface via the thermal coupling portion C, and particularly when the infrared reflecting film 8 is a metal film, high heat conduction is achieved. Therefore, heat can be transferred between the light receiving side and the compensation side to quickly converge the heat balance.
  • the thermal coupling portion C includes the compensation side neighboring coupling portion C1 disposed in the vicinity of the second thermal element 5B, the compensation side neighboring coupling portion C1 is close to the second thermal element 5B. , The responsiveness becomes higher. Further, since the infrared reflection film 8 is formed so as to cover the periphery of the light receiving region D, the change in the environmental temperature transmitted through the thermal coupling portion C is also transmitted to the entire periphery of the light receiving region D, and the heat balance is further improved. It becomes possible to speed up convergence. Therefore, the temperature gradient due to air convection between the first thermal element 5A side and the second thermal element 5B side is reduced, and the response speeds of the two thermal elements can be made equal.
  • the difference between the second embodiment and the first embodiment is that, in the first embodiment, the compensation side vicinity coupling portion C1 of the thermal coupling portion C is in the vicinity of the infrared reflecting film 8, but is slightly separated in the plane direction.
  • the compensation side neighboring coupling portion C ⁇ b> 2 of the thermal coupling portion C is formed to face a part of the infrared reflecting film 8. Is a point. That is, in the second embodiment, the heat transfer film 27 extends to the second heat sensitive element 5B side than the first embodiment, and the end of the second heat sensitive element 5B side is directly below the infrared reflective film 8. To the compensation side neighboring coupling portion C2.
  • the compensation-side vicinity coupling portion C2 of the thermal coupling portion C is formed to face a part of the infrared reflecting film 8, so that the compensation-side vicinity coupling portion C2 is formed.
  • High thermal bondability can be obtained by being closest to a part of the infrared reflecting film 8 through the thin insulating film 2.
  • the difference between the third embodiment and the first embodiment is that, in the first embodiment, the thermal coupling portion C is only a pair of compensation-side neighboring coupling portions C1, whereas the third embodiment is different from the third embodiment.
  • the thermal coupling portion C is not only a pair of compensation side neighboring coupling portions C 1, but also a part of the infrared reflecting film 8 disposed in the region near the outer edge of the insulating film 2. It is also a point which has a pair of outer edge vicinity coupling
  • a part of the heat transfer film 37 extends to the vicinity of the pair of long sides of the insulating film 2 in the infrared reflection film 8 extending in a band shape surrounding the light receiving region D.
  • the end portion is an outer edge vicinity coupling portion C3.
  • the thermal coupling portion C has the outer edge vicinity coupling portion C3 close to a part of the infrared reflection film 8 in the vicinity region, so the outer edge vicinity coupling portion C3. Therefore, heat can also be transmitted from a region near the outer edge of the insulating film 2.
  • thermal coupling portion C includes the pair of compensation side neighboring coupling portions C1 and the pair of outer edge neighboring coupling portions C3, thermal coupling can be achieved at more locations than in the first embodiment.
  • the compensation side vicinity coupling portion C1 and the outer edge vicinity coupling portion C3 may be further extended and formed so as to face a part of the infrared reflection film 8, as in the second embodiment.
  • the first heat sensitive element detects heat conducted from the insulating film that directly absorbs infrared rays, but is directly above the first heat sensitive element and is one of the insulating films.
  • An infrared absorption film having higher infrared absorption than the insulating film may be formed on the surface. In this case, the infrared absorption effect in the first thermal element is further improved, and a better temperature difference between the first thermal element and the second thermal element can be obtained.
  • the infrared absorption film absorbs infrared rays due to radiation from the object to be measured, and the temperature of the first thermosensitive element immediately below is obtained by heat conduction through the insulating film from the infrared absorption film that absorbs infrared rays and generates heat. May be changed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

熱バランスの収束を早め、熱応答性を向上させることができる赤外線センサを提供する。本発明に係る赤外線センサは、絶縁性フィルム2と、絶縁性フィルムの一方の面に設けられた第1の感熱素子5A及び第2の感熱素子5Bと、絶縁性フィルムの一方の面に形成された一対の第1の配線6Aと、絶縁性フィルムの一方の面に形成された一対の第2の配線6Bと、絶縁性フィルムの他方の面に設けられ第1の感熱素子に対向した受光領域と、絶縁性フィルムの他方の面に形成され受光領域を避けて少なくとも第2の感熱素子の直上を覆う赤外線反射膜8と、第1の感熱素子に接続され絶縁性フィルムの一方の面にパターン形成された伝熱膜7と、を備え、伝熱膜が、赤外線反射膜の一部に近接した熱結合部Cを有している。

Description

赤外線センサ
 本発明は、複写機やプリンタ等の加熱ローラの温度を測定することに好適で応答性に優れた赤外線センサに関する。
 一般に、複写機やプリンタ等の画像形成装置に使用されている定着ローラ等の測定対象物の温度を測定するために、測定対象物に対向配置させ、その輻射熱を受けて温度を測定する赤外線センサが設置されている。
 このような赤外線センサとしては、近年、柔軟性に優れると共に全体を薄くすることができる絶縁性フィルム上に薄膜サーミスタを形成したフィルム型赤外線センサが開発されている。
 例えば、特許文献1には、絶縁性フィルムと、該絶縁性フィルムの一方の面に互いに離間させて設けられた第1の感熱素子及び第2の感熱素子と、絶縁性フィルムの一方の面に形成され第1の感熱素子に接続された導電性の第1の配線膜及び第2の感熱素子に接続された導電性の第2の配線膜と、第2の感熱素子に対向して絶縁性フィルムの他方の面に設けられた赤外線反射膜とを備えた赤外線センサが記載されている。
特開2013-160635号公報
 上記従来の技術には、以下の課題が残されている。
 すなわち、上記従来の赤外線センサの場合、環境温度に変化が生じた場合、例えば周囲空気の対流の影響を受けて受光側及び補償側の一方で温度が変化した場合、温度が変化した一方で熱が配線膜を介して端子電極に逃げ易いため、受光側と補償側との熱バランスの収束が遅くなってしまい熱応答性が低下してしまう不都合があった。
 本発明は、前述の課題に鑑みてなされたもので、熱バランスの収束を早め、熱応答性を向上させることができる赤外線センサを提供することを目的とする。
 本発明は、前記課題を解決するために以下の構成を採用した。すなわち、第1の発明に係る赤外線センサは、絶縁性フィルムと、前記絶縁性フィルムの一方の面に設けられた第1の感熱素子及び第2の感熱素子と、前記第1の感熱素子に一端が接続され前記絶縁性フィルムの一方の面に形成された一対の第1の配線と、前記第2の感熱素子に一端が接続され前記絶縁性フィルムの一方の面に形成された一対の第2の配線と、前記絶縁性フィルムの他方の面に設けられ前記第1の感熱素子に対向した受光領域と、前記絶縁性フィルムの他方の面に形成され前記受光領域を避けて少なくとも前記第2の感熱素子の直上を覆う赤外線反射膜と、前記第1の感熱素子に接続され前記絶縁性フィルムの一方の面にパターン形成された伝熱膜と、を備え、前記伝熱膜が、前記赤外線反射膜の一部に近接した熱結合部を有していることを特徴とする。
 この赤外線センサでは、伝熱膜が、赤外線反射膜の一部に近接した熱結合部を有しているので、熱結合部が赤外線反射膜の一部と熱結合することによって受光側と補償側との間で相互に環境温度の変化を効率的に伝えることができ、受光側と補償側との熱バランスの収束が早くなり、熱応答性が向上する。すなわち、絶縁性フィルムが薄いため、熱結合部を介して一方の面の熱が早く他方の面の赤外線反射膜に伝わり、特に赤外線反射膜が金属膜である場合、高い熱伝導性を有して受光側と補償側とで相互に熱を伝えて素早く熱バランスの収束を図ることができる。
 第2の発明に係る赤外線センサでは、第1の発明において、前記熱結合部が、前記赤外線反射膜の一部に対向して形成されていることを特徴とする。
 すなわち、この赤外線センサでは、熱結合部が、赤外線反射膜の一部に対向して形成されているので、熱結合部が薄い絶縁性フィルムを介して赤外線反射膜の一部に最も近接し、高い熱結合性を得ることができる。
 第3の発明に係る赤外線センサでは、第1又は第2の発明において、前記熱結合部が、前記第2の感熱素子の近傍に配された補償側近傍結合部を有していることを特徴とする。
 すなわち、この赤外線センサでは、熱結合部が、第2の感熱素子の近傍に配された補償側近傍結合部を有しているので、補償側近傍結合部が第2の感熱素子に近いことで、応答性がより高くなる。
 第4の発明に係る赤外線センサでは、第1から第3の発明のいずれかにおいて、前記赤外線反射膜が、前記絶縁性フィルムの外縁の近傍領域にまで延在し、前記熱結合部が、前記近傍領域の前記赤外線反射膜の一部に近接した外縁近傍結合部を有していることを特徴とする。
 すなわち、この赤外線センサでは、熱結合部が、前記近傍領域の赤外線反射膜の一部に近接した外縁近傍結合部を有しているので、外縁近傍結合部によって絶縁性フィルム外縁の近傍領域からも熱を伝えることができる。
 第5の発明に係る赤外線センサでは、第1から第4の発明のいずれかにおいて、前記赤外線反射膜が、前記受光領域の周囲も覆って形成されていることを特徴とする。
 すなわち、この赤外線センサでは、赤外線反射膜が、受光領域の周囲も覆って形成されているので、熱結合部を介して伝わった環境温度の変化が受光領域の周囲全体にも伝わり、さらに熱バランスの収束を早くすることが可能になる。したがって、第1の感熱素子側と第2の感熱素子側との間の空気対流による温度勾配が小さくなり、2つの感熱素子の応答速度を同等にすることが可能になる。
 例えば、第2の感熱素子に対向する領域のみに赤外線反射膜が形成されている場合、周囲空気の対流により第2の感熱素子側から空気が流れてきたとき、第2の感熱素子の上方の赤外線反射膜が冷えて絶縁性フィルムの温度が局所的に変化してしまう。これに対し、本発明の赤外線センサでは、赤外線反射膜が第1の感熱素子に対向する受光領域の周囲も覆って形成されているため、空気の流れによって第2の感熱素子側の領域が冷えても赤外線反射膜の熱伝導性によって受光領域の周囲の温度も下がり、全体的に温度の差分が生じ難くなって、周囲空気の対流による影響を受け難くなる。なお、第1の感熱素子の上方の受光領域は赤外線反射膜で覆わないため、測定対象物からの赤外線の受光を妨げない。
 本発明によれば、以下の効果を奏する。
 すなわち、本発明に係る赤外線センサによれば、伝熱膜が、赤外線反射膜の一部に近接した熱結合部を有しているので、熱結合部を介して受光側と補償側との相互で環境温度の変化を効率的に伝えることができ、受光側と補償側との熱バランスの収束が早くなり、熱応答性が向上する。
 したがって、本発明の赤外線センサによれば、熱応答性が高く、複写機やプリンタ等の加熱ローラの温度測定用として好適である。
本発明に係る赤外線センサの第1実施形態を示す平面図である。 第1実施形態において、赤外線センサを示す平面図(a)及び裏面図(b)である。 本発明に係る赤外線センサの第2実施形態において、感熱素子を外した状態の平面図である。 本発明に係る赤外線センサの第3実施形態において、感熱素子を外した状態の平面図である。
 以下、本発明に係る赤外線センサにおける第1実施形態を、図1及び図2を参照しながら説明する。
 本実施形態の赤外線センサ1は、図1及び図2に示すように、絶縁性フィルム2と、絶縁性フィルム2の一方の面(表面)にパターン形成された一対の第1の端子電極4A及び一対の第2の端子電極4Bと、絶縁性フィルム2の一方の面に設けられた第1の感熱素子5A及び第2の感熱素子5Bと、第1の感熱素子5Aに一端が接続されていると共に一対の第1の端子電極4Aに他端が接続され絶縁性フィルム2の一方の面にパターン形成された一対の第1の配線6Aと、第2の感熱素子5Bに一端が接続されていると共に一対の第2の端子電極4Bに他端が接続され絶縁性フィルム2の一方の面にパターン形成された一対の第2の配線6Bと、絶縁性フィルム2の他方の面(受光側の面、裏面)に設けられ第1の感熱素子5Aに対向した受光領域Dと、絶縁性フィルム2の他方の面に形成され受光領域Dを避けて少なくとも第2の感熱素子5Bの直上を覆う赤外線反射膜8と、を備えている。
 また、本実施形態の赤外線センサ1は、第1の配線6Aとは別に一対の第1の接着電極3Aに接続され絶縁性フィルム2の一方の面に絶縁性フィルム2よりも熱伝導率が高い薄膜で第1の接着電極3Aの近傍にパターン形成された一対の伝熱膜7を備えている。
 上記伝熱膜7は、赤外線反射膜8の一部に近接した熱結合部Cを有している。
 上記一対の第1の配線6Aは、一端に第1の感熱素子5Aに接続された一対の第1の接着電極3Aを有している。また、上記一対の第2の配線6Bは、一端に第2の感熱素子5Bに接続された一対の第2の接着電極3Bを有している。
 上記熱結合部Cは、第1の配線6Aの一部と熱結合させるための部分であり、第2の感熱素子5Bの近傍まで延在して第2の感熱素子5Bの近傍に配された補償側近傍結合部C1を有している。
 上記赤外線反射膜8は、受光領域Dの周囲も覆って形成されている。
 一対の上記第1の配線6Aは、一対の第1の接着電極3Aから第2の感熱素子5B側と逆方向に延在し、そして複数回折り返して蛇行した部分6aを介してそれぞれ対応する第1の端子電極4Aに達している。このように第1の配線6Aが蛇行した部分6aを有しているので、第1の端子電極4Aまでの熱抵抗を大きくすることが可能になる。
 なお、第2の配線6Bは、第1の配線6Aに比べて短い距離で延在し、第2の端子電極4Bに達している。
 上記第1の配線6Aと伝熱膜7とは、互いに直接的には接触しておらず、第1の接着電極3Aを介して間接的に接続されている。
 上記伝熱膜7は、第1の配線6Aよりも広い面積で形成されている。
 一対の伝熱膜7は、それぞれ第2の感熱素子5B側に延びており、第2の感熱素子5B側の端部が赤外線反射膜8の近傍まで達した補償側近傍結合部C1となっている。
 なお、補償側近傍結合部C1の熱抵抗が、第1の配線6Aのうち絶縁性フィルム2の検出側端部に配された部分、すなわち蛇行した部分6aから第1の端子電極4Aまでの延在部分6bの熱抵抗よりも非常に大きいと、延在部分6bから第1の端子電極4Aへの熱の流れが支配的になってしまうのに対し、補償側近傍結合部C1の熱抵抗が、延在部分6bの熱抵抗の2倍より小さいか同程度であると、補償側近傍結合部C1から赤外線反射膜8への良好な熱の流れが得られ、熱バランスの高速安定化を図ることができる。したがって、補償側近傍結合部C1と赤外線反射膜8との良好な熱結合を得るために、「補償側近傍結合部C1の熱抵抗≦延在部分6bの熱抵抗×2」となるように設定することが望ましい。例えば、本実施形態では、上記各部の熱伝導率、厚さ、幅及び長さから算出した熱抵抗(=伝熱経路の伝熱距離/(断面積×熱伝導率))の比として、延在部分6bが1であるのに対して補償側近傍結合部C1が約1(同程度)に設定されている。
 また、伝熱膜7の第1の接着電極3Aへの接続部と、第1の配線6Aの第1の接着電極3Aへの接続部とは、別々に設定されている。
 上記第1の接着電極3A及び第2の接着電極3Bには、それぞれ対応する第1の感熱素子5A及び第2の感熱素子5Bの端子電極が半田等の導電性接着剤で接着されている。
 正方形状とされた第1の接着電極3Aの4辺のうち、2辺にくびれ部7aを介して部分的に伝熱膜7が接続されている。
 なお、第1の端子電極4Aへの伝熱膜7の接続部分にくびれ部7aを形成しているので、くびれ部7aがサーマルランドとして機能し、ハンダ時に熱が必要以上に周囲に逃げてハンダが溶け難くなってハンダ不良となることを抑制することができる。
 本実施形態では、赤外線の受光面直下に配された第1の感熱素子5Aが赤外線の検出用素子とされ、赤外線反射膜8直下に配された第2の感熱素子5Bが補償用素子とされている。
 なお、図1において、裏面側の赤外線反射膜8を破線で図示している。また、図2の(a)(b)において、各端子電極、各配線、伝熱膜7及び赤外線反射膜8をハッチングで図示している。
 上記絶縁性フィルム2は、ポリイミド樹脂シートで略長方形状に形成され、赤外線反射膜8、各配線、各端子電極、各接着電極及び伝熱膜7が銅箔で形成されている。すなわち、これらは、絶縁性フィルム2とされるポリイミド基板の両面に、赤外線反射膜8、各配線、各端子電極、各接着電極及び伝熱膜7が銅箔でパターン形成された両面フレキシブル基板によって作製されたものである。
 上記一対の第1の端子電極4A及び一対の第2の端子電極4Bは、絶縁性フィルム2の角部近傍に配設されている。
 上記赤外線反射膜8は、上述した銅箔と、該銅箔上に積層された金メッキ膜とで構成されている。
 この赤外線反射膜8は、絶縁性フィルム2よりも高い赤外線反射率を有する材料で形成され、上述したように、銅箔上に金メッキ膜が施されて形成されている。なお、金メッキ膜の他に、例えば鏡面のアルミニウム蒸着膜やアルミニウム箔等で形成しても構わない。
 上記第1の感熱素子5A及び第2の感熱素子5Bは、両端部に端子電極(図示略)が形成されたチップサーミスタである。このサーミスタとしては、NTC型、PTC型、CTR型等のサーミスタがあるが、本実施形態では、第1の感熱素子5A及び第2の感熱素子5Bとして、例えばNTC型サーミスタを採用している。このサーミスタは、Mn-Co-Cu系材料、Mn-Co-Fe系材料等のサーミスタ材料で形成されている。
 このように本実施形態の赤外線センサ1では、伝熱膜7が、赤外線反射膜8の一部に近接した熱結合部Cを有しているので、熱結合部Cが赤外線反射膜8の一部と熱結合することによって受光側と補償側との間で相互に環境温度の変化を効率的に伝えることができ、受光側と補償側との熱バランスの収束が早くなり、熱応答性が向上する。すなわち、絶縁性フィルム2が薄いため、熱結合部Cを介して一方の面の熱が早く他方の面の赤外線反射膜8に伝わり、特に赤外線反射膜8が金属膜である場合、高い熱伝導性を有して受光側と補償側とで相互に熱を伝えて素早く熱バランスの収束を図ることができる。
 また、熱結合部Cが、第2の感熱素子5Bの近傍に配された補償側近傍結合部C1を有しているので、補償側近傍結合部C1が第2の感熱素子5Bに近いことで、応答性がより高くなる。
 さらに、赤外線反射膜8が、受光領域Dの周囲も覆って形成されているので、熱結合部Cを介して伝わった環境温度の変化が受光領域Dの周囲全体にも伝わり、さらに熱バランスの収束を早くすることが可能になる。したがって、第1の感熱素子5A側と第2の感熱素子5B側との間の空気対流による温度勾配が小さくなり、2つの感熱素子の応答速度を同等にすることが可能になる。
 次に、本発明に係る赤外線センサの第2及び第3実施形態について、図3及び図4を参照して以下に説明する。なお、以下の各実施形態の説明において、上記実施形態において説明した同一の構成要素には同一の符号を付し、その説明は省略する。また、図3及び図4では、絶縁性フィルム2の他方の面に形成した赤外線反射膜8を破線で示している。
 第2実施形態と第1実施形態との異なる点は、第1実施形態では、熱結合部Cの補償側近傍結合部C1が赤外線反射膜8の近傍にあるが、平面方向に僅かに離れているのに対し、第2実施形態の赤外線センサ21では、図3に示すように、熱結合部Cの補償側近傍結合部C2が、赤外線反射膜8の一部に対向して形成されている点である。
 すなわち、第2実施形態では、伝熱膜27が、第1実施形態よりも第2の感熱素子5B側に延びており、その第2の感熱素子5B側の端部が赤外線反射膜8の直下まで達して補償側近傍結合部C2となっている。
 このように第2実施形態の赤外線センサ21では、熱結合部Cの補償側近傍結合部C2が、赤外線反射膜8の一部に対向して形成されているので、補償側近傍結合部C2が薄い絶縁性フィルム2を介して赤外線反射膜8の一部に最も近接し、高い熱結合性を得ることができる。
 次に、第3実施形態と第1実施形態との異なる点は、第1実施形態では、熱結合部Cが、一対の補償側近傍結合部C1だけであるのに対し、第3実施形態の赤外線センサ31では、図4に示すように、熱結合部Cが、一対の補償側近傍結合部C1だけでなく、絶縁性フィルム2の外縁の近傍領域に配された赤外線反射膜8の一部に近接した一対の外縁近傍結合部C3も有している点である。
 すなわち、第3実施形態では、受光領域Dを囲んで帯状に延在した赤外線反射膜8のうち絶縁性フィルム2の一対の長辺の近傍まで伝熱膜37の一部が延びており、その端部が外縁近傍結合部C3となっている。
 このように第3実施形態の赤外線センサ31では、熱結合部Cが、前記近傍領域の赤外線反射膜8の一部に近接した外縁近傍結合部C3を有しているので、外縁近傍結合部C3によって絶縁性フィルム2外縁の近傍領域からも熱を伝えることができる。
 また、熱結合部Cが、一対の補償側近傍結合部C1と一対の外縁近傍結合部C3とを有していることで、第1実施形態よりも多くの箇所で熱結合を図ることができる。
 なお、補償側近傍結合部C1及び外縁近傍結合部C3を、第2実施形態のように、さらに延ばして赤外線反射膜8の一部に対向して形成しても構わない。
 なお、本発明の技術範囲は上記各実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば、上記各実施形態では、第1の感熱素子が赤外線を直接吸収した絶縁性フィルムから伝導される熱を検出しているが、第1の感熱素子の直上であって絶縁性フィルムの一方の面上に絶縁性フィルムよりも赤外線吸収性が高い赤外線吸収膜を形成しても構わない。この場合、さらに第1の感熱素子における赤外線吸収効果が向上して、第1の感熱素子と第2の感熱素子とのより良好な温度差分を得ることができる。すなわち、この赤外線吸収膜によって測定対象物からの輻射による赤外線を吸収するようにし、赤外線を吸収し発熱した赤外線吸収膜から絶縁性フィルムを介した熱伝導によって、直下の第1の感熱素子の温度が変化するようにしてもよい。
 1,21,31…赤外線センサ、2…絶縁性フィルム、3A…第1の接着電極、3B…第2の接着電極、4A…第1の端子電極、4B…第2の端子電極、5A…第1の感熱素子、5B…第2の感熱素子、6A…第1の配線、6B…第2の配線、7,27,37…伝熱膜、8…赤外線反射膜、C…熱結合部、C1,C2…補償側近傍結合部、C3…外縁近傍結合部、D…受光領域

 

Claims (5)

  1.  絶縁性フィルムと、
     前記絶縁性フィルムの一方の面に設けられた第1の感熱素子及び第2の感熱素子と、
     前記第1の感熱素子に一端が接続され前記絶縁性フィルムの一方の面に形成された一対の第1の配線と、
     前記第2の感熱素子に一端が接続され前記絶縁性フィルムの一方の面に形成された一対の第2の配線と、
     前記絶縁性フィルムの他方の面に設けられ前記第1の感熱素子に対向した受光領域と、
     前記絶縁性フィルムの他方の面に形成され前記受光領域を避けて少なくとも前記第2の感熱素子の直上を覆う赤外線反射膜と、
     前記第1の感熱素子に接続され前記絶縁性フィルムの一方の面にパターン形成された伝熱膜と、を備え、
     前記伝熱膜が、前記赤外線反射膜の一部に近接した熱結合部を有していることを特徴とする赤外線センサ。
  2.  請求項1に記載の赤外線センサにおいて、
     前記熱結合部が、前記赤外線反射膜の一部に対向して形成されていることを特徴とする赤外線センサ。
  3.  請求項1に記載の赤外線センサにおいて、
     前記熱結合部が、前記第2の感熱素子の近傍に配された補償側近傍結合部を有していることを特徴とする赤外線センサ。
  4.  請求項1に記載の赤外線センサにおいて、
     前記赤外線反射膜が、前記絶縁性フィルムの外縁の近傍領域にまで延在し、
     前記熱結合部が、前記近傍領域の前記赤外線反射膜の一部に近接した外縁近傍結合部を有していることを特徴とする赤外線センサ。
  5.  請求項1に記載の赤外線センサにおいて、
     前記赤外線反射膜が、前記受光領域の周囲も覆って形成されていることを特徴とする赤外線センサ。

     
PCT/JP2018/010586 2017-03-24 2018-03-16 赤外線センサ WO2018173973A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020197027164A KR102596590B1 (ko) 2017-03-24 2018-03-16 적외선 센서
EP18772667.4A EP3605040B1 (en) 2017-03-24 2018-03-16 Infrared sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-059006 2017-03-24
JP2017059006A JP6743737B2 (ja) 2017-03-24 2017-03-24 赤外線センサ

Publications (1)

Publication Number Publication Date
WO2018173973A1 true WO2018173973A1 (ja) 2018-09-27

Family

ID=63586505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010586 WO2018173973A1 (ja) 2017-03-24 2018-03-16 赤外線センサ

Country Status (5)

Country Link
EP (1) EP3605040B1 (ja)
JP (1) JP6743737B2 (ja)
KR (1) KR102596590B1 (ja)
TW (1) TW201903367A (ja)
WO (1) WO2018173973A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020067348A (ja) * 2018-10-24 2020-04-30 三菱マテリアル株式会社 赤外線センサ

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012068115A (ja) * 2010-09-23 2012-04-05 Mitsubishi Materials Corp 赤外線センサ
JP2013113732A (ja) * 2011-11-29 2013-06-10 Mitsubishi Materials Corp 赤外線センサ及びこれを備えた誘導加熱調理器
JP2013156235A (ja) * 2012-02-01 2013-08-15 Mitsubishi Materials Corp 赤外線センサ
JP2013160635A (ja) 2012-02-06 2013-08-19 Mitsubishi Materials Corp 赤外線センサ及び赤外線センサ装置
JP2015224964A (ja) * 2014-05-28 2015-12-14 Tdk株式会社 温度センサ
US20150369669A1 (en) * 2014-06-19 2015-12-24 Melexis Technologies Nv Infrared sensor with sensor temperature compensation
JP2017134033A (ja) * 2016-01-29 2017-08-03 三菱マテリアル株式会社 赤外線センサ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5640529B2 (ja) * 2009-10-17 2014-12-17 三菱マテリアル株式会社 赤外線センサ及びこれを備えた回路基板
JP5736906B2 (ja) * 2011-03-30 2015-06-17 三菱マテリアル株式会社 赤外線センサ
JP2013072821A (ja) * 2011-09-29 2013-04-22 Mitsubishi Materials Corp 赤外線センサ
JP6354465B2 (ja) * 2014-09-01 2018-07-11 三菱マテリアル株式会社 赤外線センサおよび赤外線センサの感度調整方法
US10605651B2 (en) * 2016-01-29 2020-03-31 Mitsubishi Materials Corporation Infrared sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012068115A (ja) * 2010-09-23 2012-04-05 Mitsubishi Materials Corp 赤外線センサ
JP2013113732A (ja) * 2011-11-29 2013-06-10 Mitsubishi Materials Corp 赤外線センサ及びこれを備えた誘導加熱調理器
JP2013156235A (ja) * 2012-02-01 2013-08-15 Mitsubishi Materials Corp 赤外線センサ
JP2013160635A (ja) 2012-02-06 2013-08-19 Mitsubishi Materials Corp 赤外線センサ及び赤外線センサ装置
JP2015224964A (ja) * 2014-05-28 2015-12-14 Tdk株式会社 温度センサ
US20150369669A1 (en) * 2014-06-19 2015-12-24 Melexis Technologies Nv Infrared sensor with sensor temperature compensation
JP2017134033A (ja) * 2016-01-29 2017-08-03 三菱マテリアル株式会社 赤外線センサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3605040A4

Also Published As

Publication number Publication date
JP6743737B2 (ja) 2020-08-19
KR20190132999A (ko) 2019-11-29
TW201903367A (zh) 2019-01-16
JP2018162982A (ja) 2018-10-18
EP3605040A1 (en) 2020-02-05
EP3605040A4 (en) 2020-12-16
KR102596590B1 (ko) 2023-10-31
EP3605040B1 (en) 2023-12-06

Similar Documents

Publication Publication Date Title
WO2011078004A1 (ja) 赤外線センサ
TWI568997B (zh) Infrared sensor
WO2017131151A1 (ja) 赤外線センサ
JP5696831B2 (ja) 赤外線センサ
WO2018173973A1 (ja) 赤外線センサ
WO2017131166A1 (ja) 赤外線センサ
JP6860812B2 (ja) 赤外線センサ
WO2018180471A1 (ja) 赤外線センサ
JP2018169191A (ja) 赤外線センサ
JP2018169192A (ja) 赤外線センサ
JP2020148469A (ja) 赤外線センサ
JP6477058B2 (ja) 赤外線センサ
JP2013072821A (ja) 赤外線センサ
JP7124725B2 (ja) 温度センサ及びその製造方法
JP2019158784A (ja) 赤外線センサ及びこれを備えた赤外線センサ装置
JP2019148449A (ja) 赤外線センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18772667

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197027164

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018772667

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018772667

Country of ref document: EP

Effective date: 20191024