WO2017131151A1 - 赤外線センサ - Google Patents

赤外線センサ Download PDF

Info

Publication number
WO2017131151A1
WO2017131151A1 PCT/JP2017/002914 JP2017002914W WO2017131151A1 WO 2017131151 A1 WO2017131151 A1 WO 2017131151A1 JP 2017002914 W JP2017002914 W JP 2017002914W WO 2017131151 A1 WO2017131151 A1 WO 2017131151A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating film
infrared sensor
thermal
film
pair
Prior art date
Application number
PCT/JP2017/002914
Other languages
English (en)
French (fr)
Inventor
中村 健治
田里 和義
平野 晋吾
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016016512A external-priority patent/JP6677925B2/ja
Priority claimed from JP2017000401A external-priority patent/JP6860812B2/ja
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to EP17744381.9A priority Critical patent/EP3410083A4/en
Priority to KR1020187020021A priority patent/KR20180103894A/ko
Priority to CN201780004387.XA priority patent/CN108369134B/zh
Priority to US16/072,282 priority patent/US10605651B2/en
Publication of WO2017131151A1 publication Critical patent/WO2017131151A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0252Constructional arrangements for compensating for fluctuations caused by, e.g. temperature, or using cooling or temperature stabilization of parts of the device; Controlling the atmosphere inside a photometer; Purge systems, cleaning devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/046Materials; Selection of thermal materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • G01J5/064Ambient temperature sensor; Housing temperature sensor; Constructional details thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/20Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0271Arrangements for reducing stress or warp in rigid printed circuit boards, e.g. caused by loads, vibrations or differences in thermal expansion

Definitions

  • the present invention relates to an infrared sensor that is suitable for measuring the temperature of a heating roller of a copying machine, a printer or the like and has excellent responsiveness.
  • an infrared sensor is disposed opposite the object to be measured and receives the radiant heat to measure the temperature. Is installed.
  • an infrared sensor in recent years, a film-type infrared sensor in which a thin film thermistor is formed on an insulating film that is excellent in flexibility and can be thinned as a whole has been developed.
  • Patent Document 1 an insulating film, a first thermal element and a second thermal element provided on one surface of the insulating film, and a first surface of the insulating film are provided on one surface of the insulating film.
  • Conductive first wiring film formed and connected to the first thermal element, and conductive second wiring film connected to the second thermal element, and insulative facing the second thermal element An infrared sensor comprising an infrared reflective film provided on the other surface of the film is described.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide an infrared sensor that can quickly converge the heat balance and improve the thermal response.
  • the infrared sensor according to the first invention includes an insulating film, a pair of first terminal electrodes and a pair of second terminal electrodes patterned on one surface of the insulating film, and the insulating property.
  • One end of the first and second thermosensitive elements provided on one surface of the film is connected to the first thermosensitive element, and the other end is connected to the pair of first terminal electrodes.
  • One end of the pair of first pattern wirings patterned on one surface of the insulating film and the second thermosensitive element are connected to the other end of the pair of second terminal electrodes.
  • the infrared reflecting film since the infrared reflecting film has a thermal coupling part close to a part of the first pattern wiring, the thermal coupling part is thermally coupled to a part of the first pattern wiring to receive light.
  • the change in the environmental temperature can be efficiently transmitted between the compensation side and the compensation side, the convergence of the thermal balance between the light receiving side and the compensation side is accelerated, and the thermal response is improved.
  • the insulating film is thin, heat on one side is quickly transferred to the infrared reflecting film on the other side via the thermal coupling part, and particularly when the infrared reflecting film is a metal film, it has high thermal conductivity. Thus, heat can be transferred between the light receiving side and the compensating side to quickly converge the heat balance.
  • An infrared sensor is characterized in that, in the first invention, the thermal coupling portion is formed so as to face a part of the first pattern wiring. That is, in this infrared sensor, since the thermal coupling portion is formed to face a part of the first pattern wiring, the thermal coupling portion is formed on a part of the first pattern wiring via a thin insulating film. The closest and high thermal bondability can be obtained.
  • An infrared sensor is the infrared sensor according to the first or second invention, wherein the first pattern wiring extends to a region in the vicinity of an outer edge of the insulating film, and the thermal coupling portion is in the vicinity.
  • An outer edge vicinity coupling portion facing the first pattern wiring in the region is provided. That is, in this infrared sensor, since the thermal coupling portion has the outer edge vicinity coupling portion facing the first pattern wiring in the vicinity region, the outer edge vicinity coupling portion also causes heat from the vicinity region of the insulating film outer edge. Can be communicated.
  • An infrared sensor is the infrared sensor according to any one of the first to third aspects, wherein the first pattern wiring extends to the vicinity of the second thermal element, and the thermal coupling portion is The first pattern wiring has a compensation side vicinity coupling portion facing a portion extending in the vicinity of the second thermal element. That is, in this infrared sensor, the thermal coupling portion has a compensation side neighboring coupling portion facing a portion extending in the vicinity of the second thermal element in the first pattern wiring. Is transmitted to the compensation side via the first pattern wiring, and the compensation side vicinity coupling portion is thermally coupled to the first pattern wiring in the vicinity of the second thermal element to transmit heat to the entire infrared reflection film on the compensation side. As a result, the heat balance can be converged more quickly.
  • An infrared sensor is the infrared sensor according to any one of the first to fourth inventions, wherein the first pattern wiring extends in the vicinity of an end of the insulating film on the first thermal element side.
  • the thermal coupling portion includes a light receiving side end coupling portion facing a portion of the first pattern wiring that extends in the vicinity of an end portion of the insulating film on the first thermal element side. It is characterized by that. That is, in this infrared sensor, the thermal coupling portion has a light receiving side end coupling portion facing a portion of the first pattern wiring that extends in the vicinity of the end portion on the first thermal element side of the insulating film. Therefore, heat can be easily transferred from the end portion farthest from the compensation side, and the thermal response can be further improved.
  • an infrared reflective film is formed only in a region facing the second heat sensitive element, when air flows from the second heat sensitive element side by convection of the surrounding air, it is located above the second heat sensitive element.
  • the infrared reflective film is cooled and the temperature of the insulating film changes locally.
  • the infrared sensor of the present invention since the infrared reflecting film is formed so as to cover the periphery of the light receiving region facing the first thermal element, the region on the second thermal element side is cooled by the air flow.
  • the temperature around the light receiving region also decreases due to the thermal conductivity of the infrared reflecting film, and the difference in temperature hardly occurs as a whole, and it is difficult to be affected by the convection of the surrounding air.
  • region above the 1st thermal element is not covered with an infrared reflective film, it does not prevent the infrared light reception from a measuring object.
  • the present invention has the following effects. That is, according to the infrared sensor according to the present invention, since the infrared reflective film has the thermal coupling part close to a part of the first pattern wiring, the light receiving side and the compensation side via the thermal coupling part. Therefore, the temperature balance between the light receiving side and the compensation side can be quickly converged, and the thermal response can be improved. Therefore, the infrared sensor of the present invention has a high thermal response and is suitable for measuring the temperature of a heating roller such as a copying machine or a printer.
  • FIGS. 1 and 2 a first embodiment of an infrared sensor according to the present invention will be described with reference to FIGS. 1 and 2.
  • the infrared sensor 1 of the present embodiment is connected to the pair of first adhesive electrodes 3A separately from the first pattern wiring 6A, and has a thermal conductivity higher than that of the insulating film 2 on one surface of the insulating film 2.
  • a pair of heat transfer films 7 which are high-thin and patterned in the vicinity of the first adhesive electrode 3A are provided.
  • the infrared reflection film 8 has a thermal coupling portion C close to a part of the first pattern wiring 6A.
  • the thermal coupling portion C is a portion for thermally coupling with a part of the first pattern wiring 6A, and is formed to face a part of the first pattern wiring 6A.
  • the pair of first pattern wirings 6A has a pair of first adhesive electrodes 3A connected to the first thermal element 5A at one end.
  • the pair of second pattern wirings 6B has a pair of second adhesive electrodes 3B connected to the second heat sensitive element 5B at one end.
  • the first pattern wiring 6A extends to the vicinity of the second thermal element 5B.
  • the thermal coupling portion C has a compensation side neighboring coupling portion C1 that faces a portion of the first pattern wiring 6A that extends in the vicinity of the second thermal element 5B.
  • the first pattern wiring 6 ⁇ / b> A further extends to a region near the outer edge of the insulating film 2.
  • the thermal coupling portion C has an outer edge neighboring coupling portion C2 facing the first pattern wiring 6A in the neighboring region.
  • the infrared reflection film 8 is formed to cover the periphery of the light receiving region D.
  • the pair of first pattern wirings 6A extends from the pair of first adhesive electrodes 3A toward the side opposite to the pair of first terminal electrodes 4A, and further the pair of heat transfer films 7.
  • Each of the first terminal electrodes 4A reaches the corresponding first terminal electrode 4A. That is, the first pattern wiring 6A first extends between the pair of heat transfer films 7 from the first adhesive electrode 3A toward the second heat sensitive element 5B, and ends of the pair of heat transfer films 7 In the vicinity, it extends in the direction along the short side of the insulating film 2 and toward the long side.
  • a part of the infrared reflecting film 8 on the compensation side is formed so as to face the extending portion, and is a compensation side vicinity coupling portion C1.
  • the first pattern wiring 6 ⁇ / b> A extends outside the heat transfer film 7 along the long side of the insulating film 2 to the first terminal electrode 4 ⁇ / b> A.
  • the infrared reflecting film 8 extends in the vicinity of the outer edge of the insulating film 2 so as to face this extending portion, and this portion is the outer edge connecting portion C2.
  • the second pattern wiring 6B extends at a shorter distance than the first pattern wiring 6A and reaches the second terminal electrode 4B.
  • the first pattern wiring 6A and the heat transfer film 7 are not in direct contact with each other, but are indirectly connected through the first adhesive electrode 3A.
  • the heat transfer film 7 is formed in a larger area than the first pattern wiring 6A.
  • the connection width of the heat transfer film 7 to the first adhesive electrode 3A is set wider than the connection width of the first pattern wiring 6A to the first adhesive electrode 3A. That is, among the four sides of the first adhesive electrode 3A having a square shape, the heat transfer film 7 is connected to the entire two sides, whereas the first adhesive electrode 3A has four corners.
  • the first pattern wiring 6A is connected to one.
  • the connection part of the heat transfer film 7 to the first adhesive electrode 3A and the connection part of the first pattern wiring 6A to the first adhesive electrode 3A are set separately.
  • the corresponding terminal electrodes of the first thermal element 5A and the second thermal element 5B are bonded to the first adhesive electrode 3A and the second adhesive electrode 3B, respectively, with a conductive adhesive such as solder.
  • the infrared reflection film 8 is formed so as to avoid a position directly above the pair of heat transfer films 7. That is, in the present embodiment, the first heat sensitive element 5A disposed immediately below the infrared light receiving surface is used as an infrared detecting element, and the second heat sensitive element 5B disposed directly below the infrared reflecting film 8 is a compensating element. It is said that.
  • the infrared reflective film 8 on the back surface side is shown by a broken line. 2A and 2B, each terminal electrode, each pattern wiring, the heat transfer film 7, and the infrared reflection film 8 are hatched.
  • the insulating film 2 is formed of a polyimide resin sheet in a substantially rectangular shape, and the infrared reflection film 8, each pattern wiring, each terminal electrode, each adhesive electrode, and the heat transfer film 7 are formed of copper foil. That is, these are double-sided flexible substrates in which an infrared reflecting film 8, each pattern wiring, each terminal electrode, each adhesive electrode, and a heat transfer film 7 are patterned with copper foil on both surfaces of a polyimide substrate to be an insulating film 2. It was produced by.
  • the pair of first terminal electrodes 4 ⁇ / b> A and the pair of second terminal electrodes 4 ⁇ / b> B are disposed in the vicinity of the corners of the insulating film 2.
  • the infrared reflection film 8 is composed of the copper foil described above and a gold plating film laminated on the copper foil.
  • the infrared reflecting film 8 is formed of a material having an infrared reflectance higher than that of the insulating film 2 and is formed by applying a gold plating film on the copper foil as described above.
  • a mirror-deposited aluminum vapor deposition film or an aluminum foil may be used.
  • the first thermal element 5A and the second thermal element 5B are chip thermistors in which terminal electrodes (not shown) are formed at both ends.
  • this thermistor there are thermistors of NTC type, PTC type, CTR type and the like.
  • NTC type thermistors are employed as the first thermal element 5A and the second thermal element 5B.
  • This thermistor is made of a thermistor material such as a Mn—Co—Cu-based material or a Mn—Co—Fe-based material.
  • the thermal coupling part C is the first pattern.
  • a change in environmental temperature can be efficiently transmitted between the light receiving side and the compensation side, and the convergence of the heat balance between the light receiving side and the compensation side is accelerated.
  • Thermal responsiveness is improved.
  • the thermal coupling portion C is formed so as to face a part of the first pattern wiring 6A, the thermal coupling portion C is most exposed to a part of the first pattern wiring 6A via the thin insulating film 2. Adjacent and high thermal bondability can be obtained.
  • the thermal coupling portion C has the outer edge vicinity coupling portion C2 facing the first pattern wiring 6A in the vicinity region, the outer edge vicinity coupling portion C2 also heats from the vicinity region of the insulating film 2 outer edge. Can be communicated.
  • the infrared reflective film 8 is formed so as to cover the periphery of the light receiving region D, the change in the environmental temperature transmitted through the outer edge vicinity coupling portion C2 is also transmitted to the entire periphery of the light receiving region D, and further the heat balance. It is possible to accelerate the convergence of. Therefore, the temperature gradient due to air convection between the first thermal element 5A side and the second thermal element 5B side is reduced, and the response speeds of the two thermal elements can be made equal.
  • the thermal coupling portion C has the compensation side neighboring coupling portion C1 facing the portion extending in the vicinity of the second thermal element 5B in the first pattern wiring 6A, the heat on the light receiving side is reduced.
  • the signal is transmitted to the compensation side via the first pattern wiring 6A, and the compensation side vicinity coupling portion C1 is thermally coupled to the first pattern wiring 6A in the vicinity of the second heat sensitive element 5B, so that the entire infrared reflection film 8 on the compensation side.
  • the pair of first pattern wirings 6 ⁇ / b> A is located on the short side of the insulating film 2 in the vicinity of the ends of the pair of heat transfer films 7.
  • a pair of first pattern wirings 26 ⁇ / b> A are linearly extending in the direction along the long side.
  • the insulating film 2 extends in a crank shape toward the long side in the direction along the short side of the insulating film 2. That is, the infrared reflection film 28 is also formed corresponding to the extending portion, and the compensation side neighboring coupling portions C3 and C4 are formed in a crank shape.
  • the heat transfer film 7 is connected to the entire two sides of the four sides of the square-shaped first adhesive electrode 3A, whereas the infrared ray of the second embodiment is not connected.
  • the heat transfer film 27 is partially connected to two sides of the four sides of the first adhesive electrode 3A having a square shape via a constricted portion 27a. Is different.
  • the pair of first pattern wirings 26 ⁇ / b> A are cranked toward the long side in the direction along the short side of the insulating film 2 in the vicinity of the ends of the pair of heat transfer films 27.
  • the infrared reflection film 28 is also formed corresponding to the extended portion, so that the compensation side neighboring coupling portions C3 and C4 having the same length as that of the linear shape are formed. Can be secured, and sufficient thermal coupling can be obtained. Since the constricted portion 27a is formed in the connection portion of the heat transfer film 27 to the first terminal electrode 4A, the constricted portion 27a functions as a thermal land, and heat escapes to the surroundings more than necessary during soldering. It is possible to prevent the solder from becoming melted and causing poor solder.
  • the difference between the third embodiment and the second embodiment is that in the second embodiment, the first pattern wiring 6A extends from the first adhesive electrode 3A toward the second thermal element 5B. Further, the outer edge vicinity coupling part C2 and the compensation side vicinity coupling parts C3 and C4 are provided by reaching the first terminal electrode 4A via the outside of the heat transfer film 27, whereas the third embodiment In the infrared sensor 31, as shown in FIG. 4, a pair of first pattern wirings 36 ⁇ / b> A extends from the pair of first adhesive electrodes 3 ⁇ / b> A in the direction opposite to that of the first embodiment, and folds and snakes multiple times. Respective first terminal electrodes 4A are reached via the portions 36a, and the light receiving side end coupling portion C5 is provided in the vicinity of the end of the insulating film 2 on the first heat sensitive element 5A side. .
  • the thermal coupling portion C is a light receiving side end portion facing a portion of the first pattern wiring 36A extending in the vicinity of the end portion of the insulating film 2 on the first heat sensitive element 5A side. It has a coupling portion C5.
  • the thermal coupling portion C faces the portion of the first pattern wiring 36A that extends in the vicinity of the end portion of the insulating film 2 on the first thermal element 5A side. Since the light receiving side end coupling portion C5 is provided, heat can be easily transmitted from the end portion farthest from the compensation side, and thermal response can be further improved.
  • the first pattern wiring 36A has the meandering portion 36a, it is possible to increase the thermal resistance to the first terminal electrode 4A. Therefore, as in the second embodiment, the first pattern wiring 6A is once extended toward the second heat sensitive element 5B side and extended long without being detoured outside the heat transfer film 37. The heat flowing to the first terminal electrode 4A can be suppressed.
  • the first heat sensitive element detects heat conducted from the insulating film that directly absorbs infrared rays, but is directly above the first heat sensitive element and is one of the insulating films.
  • An infrared absorption film having higher infrared absorption than the insulating film may be formed on the surface. In this case, the infrared absorption effect in the first thermal element is further improved, and a better temperature difference between the first thermal element and the second thermal element can be obtained.
  • the infrared absorption film absorbs infrared rays due to radiation from the object to be measured, and the temperature of the first thermosensitive element immediately below is obtained by heat conduction through the insulating film from the infrared absorption film that absorbs infrared rays and generates heat. May be changed.

Abstract

熱バランスの収束を早め、熱応答性を向上させることができる赤外線センサを提供する。本発明に係る赤外線センサは、絶縁性フィルム2と、一対の第1の端子電極4Aと、一対の第2の端子電極4Bと、第1の感熱素子5Aと、第2の感熱素子5Bと、絶縁性フィルムの一方の面にパターン形成された一対の第1のパターン配線6A及び一対の第2のパターン配線6Bと、絶縁性フィルムの他方の面に設けられ第1の感熱素子に対向した受光領域と、絶縁性フィルムの他方の面に形成され受光領域を避けて少なくとも第2の感熱素子の直上を覆う赤外線反射膜8と、を備え、赤外線反射膜が、第1のパターン配線の一部に近接した熱結合部Cを有している。

Description

赤外線センサ
 本発明は、複写機やプリンタ等の加熱ローラの温度を測定することに好適で応答性に優れた赤外線センサに関する。
 一般に、複写機やプリンタ等の画像形成装置に使用されている定着ローラ等の測定対象物の温度を測定するために、測定対象物に対向配置させ、その輻射熱を受けて温度を測定する赤外線センサが設置されている。
 このような赤外線センサとしては、近年、柔軟性に優れると共に全体を薄くすることができる絶縁性フィルム上に薄膜サーミスタを形成したフィルム型赤外線センサが開発されている。
 例えば、特許文献1には、絶縁性フィルムと、該絶縁性フィルムの一方の面に互いに離間させて設けられた第1の感熱素子及び第2の感熱素子と、絶縁性フィルムの一方の面に形成され第1の感熱素子に接続された導電性の第1の配線膜及び第2の感熱素子に接続された導電性の第2の配線膜と、第2の感熱素子に対向して絶縁性フィルムの他方の面に設けられた赤外線反射膜とを備えた赤外線センサが記載されている。
特開2013-160635号公報
 上記従来の技術には、以下の課題が残されている。
 すなわち、上記従来の赤外線センサの場合、環境温度に変化が生じた場合、例えば周囲空気の対流の影響を受けて受光側及び補償側の一方で温度が変化した場合、温度が変化した一方で熱が配線膜を介して端子電極に逃げ易いため、受光側と補償側との熱バランスの収束が遅くなってしまい熱応答性が低下してしまう不都合があった。
 本発明は、前述の課題に鑑みてなされたもので、熱バランスの収束を早め、熱応答性を向上させることができる赤外線センサを提供することを目的とする。
 本発明は、前記課題を解決するために以下の構成を採用した。すなわち、第1の発明に係る赤外線センサは、絶縁性フィルムと、前記絶縁性フィルムの一方の面にパターン形成された一対の第1の端子電極及び一対の第2の端子電極と、前記絶縁性フィルムの一方の面に設けられた第1の感熱素子及び第2の感熱素子と、前記第1の感熱素子に一端が接続されていると共に一対の前記第1の端子電極に他端が接続され前記絶縁性フィルムの一方の面にパターン形成された一対の第1のパターン配線と、前記第2の感熱素子に一端が接続されていると共に一対の前記第2の端子電極に他端が接続され前記絶縁性フィルムの一方の面にパターン形成された一対の第2のパターン配線と、前記絶縁性フィルムの他方の面に設けられ前記第1の感熱素子に対向した受光領域と、前記絶縁性フィルムの他方の面に形成され前記受光領域を避けて少なくとも前記第2の感熱素子の直上を覆う赤外線反射膜と、を備え、前記赤外線反射膜が、前記第1のパターン配線の一部に近接した熱結合部を有していることを特徴とする。
 この赤外線センサでは、赤外線反射膜が、第1のパターン配線の一部に近接した熱結合部を有しているので、熱結合部が第1のパターン配線の一部と熱結合することによって受光側と補償側との間で相互に環境温度の変化を効率的に伝えることができ、受光側と補償側との熱バランスの収束が早くなり、熱応答性が向上する。なお、絶縁性フィルムが薄いため、熱結合部を介して一方の面の熱が早く他方の面の赤外線反射膜に伝わり、特に赤外線反射膜が金属膜である場合、高い熱伝導性を有して受光側と補償側とで相互に熱を伝えて素早く熱バランスの収束を図ることができる。
 第2の発明に係る赤外線センサは、第1の発明において、前記熱結合部が、前記第1のパターン配線の一部に対向して形成されていることを特徴とする。
 すなわち、この赤外線センサでは、熱結合部が、第1のパターン配線の一部に対向して形成されているので、熱結合部が薄い絶縁性フィルムを介して第1のパターン配線の一部に最も近接し、高い熱結合性を得ることができる。
 第3の発明に係る赤外線センサは、第1又は第2の発明において、前記第1のパターン配線が、前記絶縁性フィルムの外縁の近傍領域にまで延在し、前記熱結合部が、前記近傍領域の前記第1のパターン配線に対向した外縁近傍結合部を有していることを特徴とする。
 すなわち、この赤外線センサでは、熱結合部が、前記近傍領域の第1のパターン配線に対向した外縁近傍結合部を有しているので、外縁近傍結合部によって絶縁性フィルム外縁の近傍領域からも熱を伝えることができる。
 第4の発明に係る赤外線センサは、第1から第3の発明のいずれかにおいて、前記第1のパターン配線が、前記第2の感熱素子の近傍まで延在し、前記熱結合部が、前記第1のパターン配線のうち前記第2の感熱素子の近傍に延在した部分に対向した補償側近傍結合部を有していることを特徴とする。
 すなわち、この赤外線センサでは、熱結合部が、第1のパターン配線のうち第2の感熱素子の近傍に延在した部分に対向した補償側近傍結合部を有しているので、受光側の熱を第1のパターン配線を介して補償側へ伝達すると共に、第2の感熱素子近傍で補償側近傍結合部が第1のパターン配線に熱結合して補償側の赤外線反射膜全体に熱を伝えることで、より熱バランスの収束を早くすることが可能になる。
 第5の発明に係る赤外線センサは、第1から第4の発明のいずれかにおいて、前記第1のパターン配線が、前記絶縁性フィルムの前記第1の感熱素子側の端部近傍に延在し、前記熱結合部が、前記第1のパターン配線のうち前記絶縁性フィルムの前記第1の感熱素子側の端部近傍に延在した部分に対向した受光側端部結合部を有していることを特徴とする。
 すなわち、この赤外線センサでは、熱結合部が、第1のパターン配線のうち絶縁性フィルムの第1の感熱素子側の端部近傍に延在した部分に対向した受光側端部結合部を有しているので、補償側から最も遠い端部からも熱を伝え易くなり、より熱応答性の向上を図ることができる。
 第6の発明に係る赤外線センサは、第1から第5の発明のいずれかにおいて、前記赤外線反射膜が、前記受光領域の周囲も覆って形成されていることを特徴とする。
 すなわち、この赤外線センサでは、赤外線反射膜が、受光領域の周囲も覆って形成されているので、熱結合部を介して伝わった環境温度の変化が受光領域の周囲全体にも伝わり、さらに熱バランスの収束を早くすることが可能になる。したがって、第1の感熱素子側と第2の感熱素子側との間の空気対流による温度勾配が小さくなり、2つの感熱素子の応答速度を同等にすることが可能になる。
 例えば、第2の感熱素子に対向する領域のみに赤外線反射膜が形成されている場合、周囲空気の対流により第2の感熱素子側から空気が流れてきたとき、第2の感熱素子の上方の赤外線反射膜が冷えて絶縁性フィルムの温度が局所的に変化してしまう。これに対し、本発明の赤外線センサでは、赤外線反射膜が第1の感熱素子に対向する受光領域の周囲も覆って形成されているため、空気の流れによって第2の感熱素子側の領域が冷えても赤外線反射膜の熱伝導性によって受光領域の周囲の温度も下がり、全体的に温度の差分が生じ難くなって、周囲空気の対流による影響を受け難くなる。なお、第1の感熱素子の上方の受光領域は赤外線反射膜で覆わないため、測定対象物からの赤外線の受光を妨げない。
 本発明によれば、以下の効果を奏する。
 すなわち、本発明に係る赤外線センサによれば、赤外線反射膜が、第1のパターン配線の一部に近接した熱結合部を有しているので、熱結合部を介して受光側と補償側との相互で環境温度の変化を効率的に伝えることができ、受光側と補償側との熱バランスの収束が早くなり、熱応答性が向上する。
 したがって、本発明の赤外線センサによれば、熱応答性が高く、複写機やプリンタ等の加熱ローラの温度測定用として好適である。
本発明に係る赤外線センサの第1実施形態を示す平面図である。 第1実施形態において、赤外線センサを示す平面図(a)及び裏面図(b)である。 本発明に係る赤外線センサの第2実施形態において、感熱素子を外した状態の平面図である。 本発明に係る赤外線センサの第3実施形態において、感熱素子を外した状態の平面図である。
 以下、本発明に係る赤外線センサにおける第1実施形態を、図1及び図2を参照しながら説明する。
 本実施形態の赤外線センサ1は、図1及び図2に示すように、絶縁性フィルム2と、絶縁性フィルム2の一方の面(表面)にパターン形成された一対の第1の端子電極4A及び一対の第2の端子電極4Bと、絶縁性フィルム2の一方の面に設けられた第1の感熱素子5A及び第2の感熱素子5Bと、第1の感熱素子5Aに一端が接続されていると共に一対の第1の端子電極4Aに他端が接続され絶縁性フィルム2の一方の面にパターン形成された一対の第1のパターン配線6Aと、第2の感熱素子5Bに一端が接続されていると共に一対の第2の端子電極4Bに他端が接続され絶縁性フィルム2の一方の面にパターン形成された一対の第2のパターン配線6Bと、絶縁性フィルム2の他方の面(受光側の面、裏面)に設けられ第1の感熱素子5Aに対向した受光領域Dと、絶縁性フィルム2の他方の面に形成され受光領域Dを避けて少なくとも第2の感熱素子5Bの直上を覆う赤外線反射膜8と、を備えている。
 また、本実施形態の赤外線センサ1は、第1のパターン配線6Aとは別に一対の第1の接着電極3Aに接続され絶縁性フィルム2の一方の面に絶縁性フィルム2よりも熱伝導率が高い薄膜で第1の接着電極3Aの近傍にパターン形成された一対の伝熱膜7を備えている。
 上記赤外線反射膜8は、第1のパターン配線6Aの一部に近接した熱結合部Cを有している。
 この熱結合部Cは、第1のパターン配線6Aの一部と熱結合させるための部分であり、第1のパターン配線6Aの一部に対向して形成されている。
 上記一対の第1のパターン配線6Aは、一端に第1の感熱素子5Aに接続された一対の第1の接着電極3Aを有している。また、上記一対の第2のパターン配線6Bは、一端に第2の感熱素子5Bに接続された一対の第2の接着電極3Bを有している。
 第1のパターン配線6Aは、第2の感熱素子5Bの近傍まで延在している。また、熱結合部Cが、第1のパターン配線6Aのうち第2の感熱素子5Bの近傍に延在した部分に対向した補償側近傍結合部C1を有している。
 また、第1のパターン配線6Aは、さらに絶縁性フィルム2の外縁の近傍領域にまで延在している。また、熱結合部Cが、前記近傍領域の第1のパターン配線6Aに対向した外縁近傍結合部C2を有している。
 さらに、上記赤外線反射膜8は、受光領域Dの周囲も覆って形成されている。
 このように一対の上記第1のパターン配線6Aは、一対の第1の接着電極3Aから一対の第1の端子電極4A側とは反対側に向けて延在し、さらに一対の伝熱膜7の外周の一部に沿って延在してからそれぞれ対応する第1の端子電極4Aに達している。
 すなわち、第1のパターン配線6Aは、まず第1の接着電極3Aから第2の感熱素子5Bに向けて一対の伝熱膜7の間を延在し、そして一対の伝熱膜7の端部近傍で絶縁性フィルム2の短辺に沿った方向であって長辺に向けて延在している。この延在部分に対向するように補償側の赤外線反射膜8の一部が対向して形成され、補償側近傍結合部C1とされている。さらに、第1のパターン配線6Aは、伝熱膜7の外側を絶縁性フィルム2の長辺に沿って第1の端子電極4Aまで延在している。この延在部分に対向して絶縁性フィルム2の外縁の近傍に赤外線反射膜8が延在しており、この部分が外縁近傍結合部C2とされている。
 なお、第2のパターン配線6Bは、第1のパターン配線6Aに比べて短い距離で延在し、第2の端子電極4Bに達している。
 上記第1のパターン配線6Aと伝熱膜7とは、互いに直接的には接触しておらず、第1の接着電極3Aを介して間接的に接続している。
 上記伝熱膜7は、第1のパターン配線6Aよりも広い面積で形成されている。
 伝熱膜7の第1の接着電極3Aに対する接続幅は、第1のパターン配線6Aの第1の接着電極3Aに対する接続幅よりも広く設定されている。すなわち、正方形状とされた第1の接着電極3Aの4辺のうち、2辺全体に伝熱膜7が接続されているのに対し、第1の接着電極3Aに4つある角部のうち1つに第1のパターン配線6Aが接続されている。このように伝熱膜7の第1の接着電極3Aへの接続部と、第1のパターン配線6Aの第1の接着電極3Aへの接続部とは、別々に設定されている。
 上記第1の接着電極3A及び第2の接着電極3Bには、それぞれ対応する第1の感熱素子5A及び第2の感熱素子5Bの端子電極が半田等の導電性接着剤で接着されている。
 上記赤外線反射膜8は、一対の伝熱膜7の直上を避けるようにして形成されている。
 すなわち、本実施形態では、赤外線の受光面直下に配された第1の感熱素子5Aが赤外線の検出用素子とされ、赤外線反射膜8直下に配された第2の感熱素子5Bが補償用素子とされている。
 なお、図1において、裏面側の赤外線反射膜8を破線で図示している。また、図2の(a)(b)において、各端子電極、各パターン配線、伝熱膜7及び赤外線反射膜8をハッチングで図示している。
 上記絶縁性フィルム2は、ポリイミド樹脂シートで略長方形状に形成され、赤外線反射膜8、各パターン配線、各端子電極、各接着電極及び伝熱膜7が銅箔で形成されている。すなわち、これらは、絶縁性フィルム2とされるポリイミド基板の両面に、赤外線反射膜8、各パターン配線、各端子電極、各接着電極及び伝熱膜7が銅箔でパターン形成された両面フレキシブル基板によって作製されたものである。
 上記一対の第1の端子電極4A及び一対の第2の端子電極4Bは、絶縁性フィルム2の角部近傍に配設されている。
 上記赤外線反射膜8は、上述した銅箔と、該銅箔上に積層された金メッキ膜とで構成されている。
 この赤外線反射膜8は、絶縁性フィルム2よりも高い赤外線反射率を有する材料で形成され、上述したように、銅箔上に金メッキ膜が施されて形成されている。なお、金メッキ膜の他に、例えば鏡面のアルミニウム蒸着膜やアルミニウム箔等で形成しても構わない。
 上記第1の感熱素子5A及び第2の感熱素子5Bは、両端部に端子電極(図示略)が形成されたチップサーミスタである。このサーミスタとしては、NTC型、PTC型、CTR型等のサーミスタがあるが、本実施形態では、第1の感熱素子5A及び第2の感熱素子5Bとして、例えばNTC型サーミスタを採用している。このサーミスタは、Mn-Co-Cu系材料、Mn-Co-Fe系材料等のサーミスタ材料で形成されている。
 このように本実施形態の赤外線センサ1では、赤外線反射膜8が、第1のパターン配線6Aの一部に近接した熱結合部Cを有しているので、熱結合部Cが第1のパターン配線6Aの一部と熱結合することによって受光側と補償側との間で相互に環境温度の変化を効率的に伝えることができ、受光側と補償側との熱バランスの収束が早くなり、熱応答性が向上する。
 特に、熱結合部Cが第1のパターン配線6Aの一部に対向して形成されているので、熱結合部Cが薄い絶縁性フィルム2を介して第1のパターン配線6Aの一部に最も近接し、高い熱結合性を得ることができる。
 また、熱結合部Cが、前記近傍領域の第1のパターン配線6Aに対向した外縁近傍結合部C2を有しているので、外縁近傍結合部C2によって絶縁性フィルム2外縁の近傍領域からも熱を伝えることができる。
 特に、赤外線反射膜8が、受光領域Dの周囲も覆って形成されているので、外縁近傍結合部C2を介して伝わった環境温度の変化が受光領域Dの周囲全体にも伝わり、さらに熱バランスの収束を早くすることが可能になる。したがって、第1の感熱素子5A側と第2の感熱素子5B側との間の空気対流による温度勾配が小さくなり、2つの感熱素子の応答速度を同等にすることが可能になる。
 さらに、熱結合部Cが、第1のパターン配線6Aのうち第2の感熱素子5Bの近傍に延在した部分に対向した補償側近傍結合部C1を有しているので、受光側の熱を第1のパターン配線6Aを介して補償側へ伝達すると共に、第2の感熱素子5B近傍で補償側近傍結合部C1が第1のパターン配線6Aに熱結合して補償側の赤外線反射膜8全体に熱を伝えることで、より熱バランスの収束を早くすることが可能になる。
 次に、本発明に係る赤外線センサの第2及び第3実施形態について、図3及び図4を参照して以下に説明する。なお、以下の各実施形態の説明において、上記実施形態において説明した同一の構成要素には同一の符号を付し、その説明は省略する。また、図3及び図4では、絶縁性フィルム2の他方の面に形成した赤外線反射膜8を破線で示している。
 第2実施形態と第1実施形態との異なる点は、第1実施形態では、一対の第1のパターン配線6Aが、一対の伝熱膜7の端部近傍で絶縁性フィルム2の短辺に沿った方向であって長辺に向けて直線状に延在しているのに対し、第2実施形態の赤外線センサ21では、図3に示すように、一対の第1のパターン配線26Aが、一対の伝熱膜27の端部近傍で絶縁性フィルム2の短辺に沿った方向であって長辺に向けてクランク状に折れ曲がって延在している点である。すなわち、この延在部分に対応して赤外線反射膜28も形成されており、クランク状に補償側近傍結合部C3,C4が形成されている。
 また、第1実施形態では、正方形状とされた第1の接着電極3Aの4辺のうち、2辺全体に伝熱膜7が隙間無く接続されているのに対し、第2実施形態の赤外線センサ21では、図2に示すように、正方形状とされた第1の接着電極3Aの4辺のうち、2辺にくびれ部27aを介して部分的に伝熱膜27が接続されている点で異なっている。
 このように第2実施形態では、一対の第1のパターン配線26Aが、一対の伝熱膜27の端部近傍で絶縁性フィルム2の短辺に沿った方向であって長辺に向けてクランク状に折れ曲がって延在している場合でも、この延在部分に対応して赤外線反射膜28も形成されているので、直線状の場合と同等の長さの補償側近傍結合部C3,C4が確保でき、十分な熱結合を得ることができる。
 なお、第1の端子電極4Aへの伝熱膜27の接続部分にくびれ部27aを形成しているので、くびれ部27aがサーマルランドとして機能し、ハンダ時に熱が必要以上に周囲に逃げてハンダが溶け難くなってハンダ不良となることを抑制することができる。
 次に、第3実施形態と第2実施形態との異なる点は、第2実施形態では、第1のパターン配線6Aが第1の接着電極3Aから第2の感熱素子5B側に向けて延在し、さらに伝熱膜27の外側を介して第1の端子電極4Aに達することで、外縁近傍結合部C2及び補償側近傍結合部C3,C4が設けられているのに対し、第3実施形態の赤外線センサ31では、図4に示すように、一対の第1のパターン配線36Aが一対の第1の接着電極3Aから第1実施形態と逆方向に延在し、そして複数回折り返して蛇行した部分36aを介してそれぞれ対応する第1の端子電極4Aに達しており、絶縁性フィルム2の第1の感熱素子5A側の端部近傍に受光側端部結合部C5を設けている点である。
 すなわち、第3実施形態では、熱結合部Cが、第1のパターン配線36Aのうち絶縁性フィルム2の第1の感熱素子5A側の端部近傍に延在した部分に対向した受光側端部結合部C5を有している。
 このように第3実施形態の赤外線センサ31では、熱結合部Cが、第1のパターン配線36Aのうち絶縁性フィルム2の第1の感熱素子5A側の端部近傍に延在した部分に対向した受光側端部結合部C5を有しているので、補償側から最も遠い端部からも熱を伝え易くなり、より熱応答性の向上を図ることができる。
 また、第1のパターン配線36Aが蛇行した部分36aを有しているので、第1の端子電極4Aまでの熱抵抗を大きくすることが可能になる。したがって、第2実施形態のように第1のパターン配線6Aを、一旦、第2の感熱素子5B側に向けて延在させると共に伝熱膜37の外側を迂回して配さなくても長く延在させることができ、第1の端子電極4Aへ流れる熱を抑制することが可能になる。
 なお、本発明の技術範囲は上記各実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば、上記各実施形態では、第1の感熱素子が赤外線を直接吸収した絶縁性フィルムから伝導される熱を検出しているが、第1の感熱素子の直上であって絶縁性フィルムの一方の面上に絶縁性フィルムよりも赤外線吸収性が高い赤外線吸収膜を形成しても構わない。この場合、さらに第1の感熱素子における赤外線吸収効果が向上して、第1の感熱素子と第2の感熱素子とのより良好な温度差分を得ることができる。すなわち、この赤外線吸収膜によって測定対象物からの輻射による赤外線を吸収するようにし、赤外線を吸収し発熱した赤外線吸収膜から絶縁性フィルムを介した熱伝導によって、直下の第1の感熱素子の温度が変化するようにしてもよい。
 1,21,31…赤外線センサ、2…絶縁性フィルム、3A…第1の接着電極、3B…第2の接着電極、4A…第1の端子電極、4B…第2の端子電極、5A…第1の感熱素子、5B…第2の感熱素子、6A,36A…第1のパターン配線、6B…第2のパターン配線、8,28…赤外線反射膜、C…熱結合部、C1,C3,C4…補償側近傍結合部、C2…外縁近傍結合部、C5…受光側端部結合部、D…受光領域

 

Claims (6)

  1.  絶縁性フィルムと、
     前記絶縁性フィルムの一方の面にパターン形成された一対の第1の端子電極及び一対の第2の端子電極と、
     前記絶縁性フィルムの一方の面に設けられた第1の感熱素子及び第2の感熱素子と、
     前記第1の感熱素子に一端が接続されていると共に一対の前記第1の端子電極に他端が接続され前記絶縁性フィルムの一方の面にパターン形成された一対の第1のパターン配線と、
     前記第2の感熱素子に一端が接続されていると共に一対の前記第2の端子電極に他端が接続され前記絶縁性フィルムの一方の面にパターン形成された一対の第2のパターン配線と、
     前記絶縁性フィルムの他方の面に設けられ前記第1の感熱素子に対向した受光領域と、
     前記絶縁性フィルムの他方の面に形成され前記受光領域を避けて少なくとも前記第2の感熱素子の直上を覆う赤外線反射膜と、を備え、
     前記赤外線反射膜が、前記第1のパターン配線の一部に近接した熱結合部を有していることを特徴とする赤外線センサ。
  2.  請求項1に記載の赤外線センサにおいて、
     前記熱結合部が、前記第1のパターン配線の一部に対向して形成されていることを特徴とする赤外線センサ。
  3.  請求項1に記載の赤外線センサにおいて、
     前記第1のパターン配線が、前記絶縁性フィルムの外縁の近傍領域にまで延在し、
     前記熱結合部が、前記近傍領域の前記第1のパターン配線に対向した外縁近傍結合部を有していることを特徴とする赤外線センサ。
  4.  請求項1に記載の赤外線センサにおいて、
     前記第1のパターン配線が、前記第2の感熱素子の近傍まで延在し、
     前記熱結合部が、前記第1のパターン配線のうち前記第2の感熱素子の近傍に延在した部分に対向した補償側近傍結合部を有していることを特徴とする赤外線センサ。
  5.  請求項1に記載の赤外線センサにおいて、
     前記第1のパターン配線が、前記絶縁性フィルムの前記第1の感熱素子側の端部近傍に延在し、
     前記熱結合部が、前記第1のパターン配線のうち前記絶縁性フィルムの前記第1の感熱素子側の端部近傍に延在した部分に対向した受光側端部結合部を有していることを特徴とする赤外線センサ。
  6.  請求項1に記載の赤外線センサにおいて、
     前記赤外線反射膜が、前記受光領域の周囲も覆って形成されていることを特徴とする赤外線センサ。

     
PCT/JP2017/002914 2016-01-29 2017-01-27 赤外線センサ WO2017131151A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17744381.9A EP3410083A4 (en) 2016-01-29 2017-01-27 INFRARED SENSOR
KR1020187020021A KR20180103894A (ko) 2016-01-29 2017-01-27 적외선 센서
CN201780004387.XA CN108369134B (zh) 2016-01-29 2017-01-27 红外线传感器
US16/072,282 US10605651B2 (en) 2016-01-29 2017-01-27 Infrared sensor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-016512 2016-01-29
JP2016016512A JP6677925B2 (ja) 2016-01-29 2016-01-29 赤外線センサ
JP2017000401A JP6860812B2 (ja) 2017-01-05 2017-01-05 赤外線センサ
JP2017-000401 2017-01-05

Publications (1)

Publication Number Publication Date
WO2017131151A1 true WO2017131151A1 (ja) 2017-08-03

Family

ID=59399100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002914 WO2017131151A1 (ja) 2016-01-29 2017-01-27 赤外線センサ

Country Status (5)

Country Link
US (1) US10605651B2 (ja)
EP (1) EP3410083A4 (ja)
KR (1) KR20180103894A (ja)
CN (1) CN108369134B (ja)
WO (1) WO2017131151A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3605040A4 (en) * 2017-03-24 2020-12-16 Mitsubishi Materials Corporation INFRARED SENSOR

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3933357B1 (en) * 2019-02-28 2023-11-01 Panasonic Intellectual Property Management Co., Ltd. Infrared sensor and infrared sensor array
CN110118603B (zh) * 2019-05-15 2021-07-09 Oppo广东移动通信有限公司 目标对象的定位方法、装置、终端及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09329499A (ja) * 1996-06-12 1997-12-22 Ishizuka Denshi Kk 赤外線センサ及び赤外線検出器
JP2012068115A (ja) * 2010-09-23 2012-04-05 Mitsubishi Materials Corp 赤外線センサ
JP2013156235A (ja) * 2012-02-01 2013-08-15 Mitsubishi Materials Corp 赤外線センサ
JP2015172537A (ja) * 2014-03-12 2015-10-01 Semitec株式会社 赤外線温度センサ、赤外線温度センサを用いた装置及び赤外線温度センサの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5962854A (en) 1996-06-12 1999-10-05 Ishizuka Electronics Corporation Infrared sensor and infrared detector
JP5736906B2 (ja) * 2011-03-30 2015-06-17 三菱マテリアル株式会社 赤外線センサ
JP2013072821A (ja) * 2011-09-29 2013-04-22 Mitsubishi Materials Corp 赤外線センサ
JP6131520B2 (ja) 2012-02-06 2017-05-24 三菱マテリアル株式会社 赤外線センサ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09329499A (ja) * 1996-06-12 1997-12-22 Ishizuka Denshi Kk 赤外線センサ及び赤外線検出器
JP2012068115A (ja) * 2010-09-23 2012-04-05 Mitsubishi Materials Corp 赤外線センサ
JP2013156235A (ja) * 2012-02-01 2013-08-15 Mitsubishi Materials Corp 赤外線センサ
JP2015172537A (ja) * 2014-03-12 2015-10-01 Semitec株式会社 赤外線温度センサ、赤外線温度センサを用いた装置及び赤外線温度センサの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3410083A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3605040A4 (en) * 2017-03-24 2020-12-16 Mitsubishi Materials Corporation INFRARED SENSOR

Also Published As

Publication number Publication date
US20190025115A1 (en) 2019-01-24
US10605651B2 (en) 2020-03-31
KR20180103894A (ko) 2018-09-19
CN108369134B (zh) 2020-11-27
EP3410083A4 (en) 2019-09-04
CN108369134A (zh) 2018-08-03
EP3410083A1 (en) 2018-12-05

Similar Documents

Publication Publication Date Title
TWI568997B (zh) Infrared sensor
WO2011078004A1 (ja) 赤外線センサ
WO2017131151A1 (ja) 赤外線センサ
JP6743737B2 (ja) 赤外線センサ
WO2017131166A1 (ja) 赤外線センサ
JP6860812B2 (ja) 赤外線センサ
JP2011033358A (ja) 温度センサ
JP2006118992A (ja) 非接触温度センサ
WO2018180471A1 (ja) 赤外線センサ
JP2018169191A (ja) 赤外線センサ
JP2018169192A (ja) 赤外線センサ
JP2020148469A (ja) 赤外線センサ
JP6128374B2 (ja) 赤外線センサ装置
JP7124725B2 (ja) 温度センサ及びその製造方法
JP2013072821A (ja) 赤外線センサ
JP5641339B2 (ja) 赤外線センサ装置およびこれを備えた誘導加熱調理器
JP2018159559A (ja) 赤外線センサ
JP2019148449A (ja) 赤外線センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17744381

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187020021

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017744381

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017744381

Country of ref document: EP

Effective date: 20180829