WO2018173326A1 - 微生物発電方法及び装置 - Google Patents

微生物発電方法及び装置 Download PDF

Info

Publication number
WO2018173326A1
WO2018173326A1 PCT/JP2017/033290 JP2017033290W WO2018173326A1 WO 2018173326 A1 WO2018173326 A1 WO 2018173326A1 JP 2017033290 W JP2017033290 W JP 2017033290W WO 2018173326 A1 WO2018173326 A1 WO 2018173326A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
power generation
electrode chamber
cleaning
microbial power
Prior art date
Application number
PCT/JP2017/033290
Other languages
English (en)
French (fr)
Inventor
和也 小松
裕昭 狩山
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Publication of WO2018173326A1 publication Critical patent/WO2018173326A1/ja

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a power generation method and apparatus utilizing a metabolic reaction of microorganisms.
  • the present invention relates to a microbial power generation method and apparatus for extracting, as electric energy, a reducing power obtained when an organic substance is oxidatively decomposed into microorganisms.
  • Japanese Patent Application Laid-Open No. 2004-34212 discloses that a positive electrode plate is provided with a porous body so as to be in contact with an electrolyte membrane that partitions the positive electrode chamber and the negative electrode chamber.
  • the air is circulated and the air and the liquid are brought into contact with each other in the gap of the porous body (hereinafter, air is circulated in the positive electrode chamber, and the positive electrode using oxygen in the air as an electron acceptor is referred to as an “air cathode”.
  • air cathode air cathode
  • JP 2010-33823 A comprises a positive electrode chamber having a plate-like positive electrode and a negative electrode chamber having a plate-like negative electrode for the purpose of providing a microbial power generation device having a large amount of power generation per unit volume.
  • a microbial power generation apparatus in which a plurality of unit cells are stacked is described.
  • Japanese Patent Application Laid-Open No. 2011-65821 discloses a microorganism power generation apparatus using an air cathode, in which a cleaning liquid containing acid and alkali is intermittently introduced into the cathode, and the air cathode and a diaphragm in contact with the air cathode are factors that reduce power generation efficiency ( It is described that scale and slime generated in an ion-permeable non-conductive film are removed.
  • An object of the present invention is to provide a microbial power generation method and apparatus capable of preventing a decrease in power generation efficiency over time in a microbial power generation apparatus using an air cathode and maintaining stable high-efficiency power generation for a long period of time.
  • the gist of the present invention is as follows.
  • a negative electrode chamber having a negative electrode and holding a liquid containing a microorganism and an electron donor is separated from the negative electrode chamber via an ion-permeable non-conductive film, and the ion-permeable non-conductive layer
  • a cleaning liquid containing alkali is introduced into the negative electrode chambers of some unit cells to perform cleaning.
  • a microbial power generation method comprising a washing step.
  • a negative electrode chamber having a negative electrode and holding a liquid containing a microorganism and an electron donor is separated from the negative electrode chamber via an ion-permeable non-conductive film, and the ion-permeable non-conductive layer
  • a microbial power generation apparatus in which a plurality of unit cells each having a positive electrode chamber having an air cathode in contact with a membrane are stacked, and has a cleaning means for introducing and cleaning a cleaning liquid containing alkali into the negative electrode chamber of each unit cell. Microbial power generator.
  • microorganism power generation apparatus according to [7] or [8], further comprising aeration means for aeration of the negative electrode chamber.
  • a microbial power generation apparatus in which three or more, preferably 20 or more unit cells each having a negative electrode chamber and a positive electrode chamber having an air cathode separated by an ion-permeable non-conductive membrane are stacked. By washing the negative electrode chamber, it is possible to operate stably over a long period of time without reducing the power generation amount of the entire apparatus.
  • FIG. 1 is a schematic cross-sectional view of the microbial power generation apparatus.
  • a plurality of unit cells two in FIG. 1 are stacked, end plates 30 and 30 are disposed at both ends, and a positive electrode chamber 33 is disposed at both ends in the stacking direction.
  • a negative electrode 34 made of a porous material is disposed so as to be in contact with each anion exchange membrane 31 directly or via a biofilm of about one to two layers.
  • the negative electrode 34 is preferably pressed lightly against the anion exchange membrane 31 (for example, at a pressure of 0.1 kg / cm 2 or less).
  • a positive electrode 35 is disposed in contact with the anion exchange membrane 31.
  • the positive electrode 35 is pressed by the packing 36 and pressed against the anion exchange membrane 31.
  • they may be welded together or bonded with an adhesive.
  • a circulation space for oxygen-containing gas Between the first and fourth positive electrodes 35 and each end plate 30 from the left is a circulation space for oxygen-containing gas. Further, the oxygen-containing gas circulation space is also between the second and third positive electrodes 35, 35 from the left.
  • the positive electrode 35 and the negative electrode 34 are connected in parallel to an external resistor (not shown) via terminals 37 and 39.
  • the negative electrode solution is introduced into the negative electrode chamber 32 from the inflow port 32a through the supply line 61 of the negative electrode solution and the branch line 61A branched from the supply line 61 and continuing to each negative electrode chamber 32, and from the outflow port 32b.
  • the waste liquid flows out to the waste liquid line 62.
  • the inside of the negative electrode chamber 32 is anaerobic.
  • a liquid supply line 81 for the cleaning liquid is connected to each branch liquid supply line 61.
  • the negative electrode solution in each negative electrode chamber 32 is circulated through a circulation outlet 41, a circulation pipe 42, a circulation pump 43 and a circulation return port 44.
  • the circulation pipe 42 is provided with a pH meter 47 and an alkali addition pipe 45 is connected thereto.
  • the pH of the negative electrode solution flowing out from the negative electrode chamber 32 is detected by a pH meter 47, and an alkali such as an aqueous sodium hydroxide solution is added so that this pH is preferably 7-9.
  • each positive electrode chamber 33 air flows from the gas inlet 51 through the air line 71, and exhaust gas flows out from the gas outlet 52 to the waste air line 72.
  • an oxygen-containing gas (air in this embodiment) is circulated through the positive electrode chamber 33, a negative electrode solution is circulated through the negative electrode chamber 32, and preferably the negative electrode solution is circulated, whereby the positive electrode 35 and the negative electrode 34 are circulated. A potential difference is generated between the two and power generation is performed.
  • the number of unit cells is preferably about 3-50.
  • the positive electrode chambers are arranged on both end sides in the stacking direction, but the negative electrode chambers may be arranged on one or both terminal sides.
  • the cleaning liquid is intermittently introduced into the negative electrode chambers 32 in turn from the cleaning liquid line 81, and the scales and slime generated or adhered to the negative electrode 34, the anion exchange membrane 31 as the diaphragm, and the negative electrode chamber 32 are removed by cleaning.
  • each of the negative electrode chambers 32 is sequentially washed with an alkali.
  • the negative electrode chamber 32 is preferably first washed with a cleaning solution containing an acid, and then washed with a cleaning solution containing an alkali.
  • acid cleaning solution As the acid of the cleaning solution containing this acid (hereinafter referred to as “acid cleaning solution”), one or more of sulfuric acid, hydrochloric acid, nitric acid, citric acid, oxalic acid and the like can be used.
  • an acid aqueous solution is usually used.
  • a sufficient cleaning effect cannot be obtained, and if it is too low, the negative electrode may be deteriorated. It is preferable to use an acid cleaning solution having a pH of about 1 to 3.
  • the negative electrode chamber is filled with an acid cleaning solution, or the negative electrode chamber is filled with an acid cleaning solution and then a gas (for example, air or nitrogen) is vented to aerate the acid cleaning solution in the negative electrode chamber.
  • a gas for example, air or nitrogen
  • the time for filling the negative electrode chamber with the acid cleaning solution is preferably 2 hours or longer, particularly 4 hours to 1 day.
  • immersion time is preferably 2 hours or longer, particularly 4 hours to 1 day.
  • the cleaning waste liquid is discharged from the waste liquid line 62.
  • alkali cleaning liquid an alkali-containing cleaning liquid
  • alkali of the alkali cleaning liquid one or more of sodium hydroxide, potassium hydroxide, sodium hypochlorite and the like can be used.
  • the alkaline cleaning liquid an alkaline aqueous solution is usually used.
  • the pH of the alkaline cleaning liquid is low, a sufficient cleaning effect cannot be obtained, and the slime peeling effect is particularly reduced.
  • the pH is too high, there is a possibility that scale generation due to the remaining alkali may occur, and if the ion-permeable non-conductive membrane is an anion exchange membrane, there is a possibility of causing membrane deterioration. It is preferably ⁇ 12.
  • Examples of the cleaning method using an alkali cleaning solution include a method of filling the negative electrode chamber with an alkali cleaning solution, or a method of aeration of the alkaline cleaning solution with the gas after the negative electrode chamber is filled with an alkali cleaning solution.
  • the time for immersion cleaning in an alkali cleaning solution is preferably 2 hours or more, particularly 4 hours to 1 day.
  • the cleaning waste liquid is discharged from the waste liquid line 62.
  • the chemical cleaning interval in the negative electrode chamber of the same cell is preferably 2 weeks to 3 months, particularly 3 weeks to 6 weeks. By washing at this interval, it is possible to prevent the slime other than the power-generating microorganisms from predominating in the negative electrode chamber and the scale from adhering excessively.
  • the microorganism power generation apparatus in which three or more, preferably 20 or more unit cells each including the negative electrode chamber and the positive electrode chamber having the air cathode separated by the ion-permeable non-conductive membrane are stacked, is partially in order. By washing the negative electrode chamber of the unit cell, it is possible to operate stably over a long period of time without reducing the power generation amount of the entire apparatus.
  • the microorganism that produces electric energy by being contained in the negative electrode solution is not particularly limited as long as it has a function as an electron donor.
  • yeasts include bacteria, filamentous fungi and yeasts belonging to each genus of Gluconobacter, Pseudomonas, Xanthomonas, Vibrio, Comamonas and Proteus (Proteus vulgaris).
  • sludge containing such microorganisms activated sludge obtained from biological treatment tanks that treat organic matter-containing water such as sewage, microorganisms contained in effluent from the first sedimentation basin of sewage, anaerobic digested sludge, etc.
  • the microorganism can be held in the negative electrode by supplying to the chamber.
  • the amount of microorganisms retained in the negative electrode chamber is preferably high, and for example, the microorganism concentration is preferably 1 to 50 g / L.
  • the negative electrode solution a solution that holds microorganisms or cells and has a composition necessary for power generation is used.
  • the negative electrode side solution includes energy required for respiratory system metabolism such as bouillon medium, M9 medium, L medium, Malt Extract, MY medium, and nitrifying bacteria selection medium.
  • a medium having a composition such as a source and nutrients can be used.
  • organic waste such as sewage, organic industrial wastewater, and garbage can be used.
  • an electron mediator may be contained in order to make it easier to extract electrons from microorganisms or cells.
  • the electron mediator include compounds having a thionin skeleton such as thionine, dimethyldisulfonated thionine, new methylene blue and toluidine blue-O, and 2-hydroxy-1,4-naphthoquinone such as 2-hydroxy-1,4-naphthoquinone.
  • Examples include compounds having a skeleton, brilliant cresyl blue, garocyanine, resorufin, alizarin brilliant blue, phenothiazinone, phenazine esosulphate, safranin-O, dichlorophenolindophenol, ferrocene, benzoquinone, phthalocyanine, or benzyl viologen and their derivatives. be able to.
  • the negative electrode solution may contain a phosphate buffer as necessary.
  • the negative electrode solution contains an organic substance.
  • the organic substance is not particularly limited as long as it can be decomposed by microorganisms. For example, water-soluble organic substances, organic fine particles dispersed in water, and the like are used.
  • the negative electrode solution may be organic wastewater such as sewage and food factory effluent.
  • the organic substance concentration in the negative electrode solution is preferably a high concentration of about 100 to 10,000 mg / L in order to increase the power generation efficiency.
  • the oxygen-containing gas to be circulated in the positive electrode chamber air is suitable.
  • the exhaust gas from the positive electrode chamber may be deoxygenated as necessary, and then vented to the negative electrode chamber to be used for purging dissolved oxygen from the negative electrode solution L.
  • the ion permeable non-conductive membrane almost any non-conductive and ion permeable membrane can be used, but an anion exchange membrane or a cation exchange membrane is preferred.
  • an anion exchange membrane an anion exchange membrane made by Astom, an anion type electrolyte membrane made by Tokuyama, etc. are suitable.
  • a cation exchange membrane a DuPont cation exchange membrane is suitable.
  • the ion-permeable non-conductive film is preferably thin and strong. Usually, the film thickness is preferably 10 to 300 ⁇ m, particularly preferably about 30 to 200 ⁇ m.
  • the negative electrode is preferably a porous body having a large surface area, a large number of voids, and water permeability so that many microorganisms can be retained.
  • Specific examples include a conductive material sheet having a roughened surface and a porous conductor (for example, graphite felt, expanded titanium, expanded stainless steel, etc.) in which the conductive material is made into a felt-like porous sheet. .
  • a plurality of sheet-like conductors may be laminated to form a negative electrode.
  • the same kind of conductor sheets may be laminated, or different kinds of conductor sheets (for example, a graphite sheet having a rough surface and a graphite felt) may be laminated.
  • the total thickness of the negative electrode is preferably 3 mm or more and 40 mm or less, particularly about 5 to 20 mm.
  • a negative electrode is constituted by a laminated sheet, it is preferable to orient the laminated surface in a direction connecting the liquid inlet and outlet so that the liquid flows along a mating surface (laminated surface) between the sheets.
  • the positive electrode has a conductive base material and an oxygen reduction catalyst supported on the conductive base material.
  • the conductive substrate As the conductive substrate, as long as the conductivity is high, the corrosion resistance is high, even if the thickness is thin, sufficient conductivity and corrosion resistance, and further mechanical strength as the conductive substrate may be obtained, although there is no particular limitation, graphite paper, graphite felt, graphite cloth, stainless steel mesh, titanium mesh, etc. can be used. Of these, graphite paper, graphite felt, etc., particularly in terms of durability and ease of processing. Graphite base materials such as graphite cloth are preferable, and graphite paper is particularly preferable. These graphite base materials may be those made hydrophobic by a fluororesin such as polytetrafluoroethylene (PTFE).
  • PTFE polytetrafluoroethylene
  • the thickness of the conductive substrate is preferably about 20 to 3000 ⁇ m because oxygen permeation is poor when it is too thick, and when it is too thin, required properties such as strength required for the substrate cannot be satisfied. .
  • a metal oxide such as manganese dioxide is preferable because it is inexpensive and has good catalytic activity in addition to a noble metal such as platinum.
  • the negative electrode solution discharged from another microorganism power generation device or the negative electrode chamber of another cell in operation of the same device is 1 to 7 days, preferably 2 to 5 days. Pass water. Since the negative electrode solution contains highly active power-generating microorganisms, it can be quickly restored (within one week) to the original performance.
  • Negative electrode Consists of two sheets of graphite felt (made by Toyo Carbon Co., Ltd.) having a thickness of 250 mm ⁇ 70 mm and a thickness of 10 mm, which are bonded together with a conductive adhesive.
  • the laminate of two graphite felts has the same thickness as the negative electrode chamber, fills the entire negative electrode chamber, and is in contact with the diaphragm.
  • all the liquid supplied to the negative electrode chamber is configured to pass through the porous negative electrode, and is configured not to pass through the negative electrode chamber (short path) without passing through the negative electrode.
  • activated sludge collected from a biological treatment tank of a sewage treatment plant was added as an inoculum and cultured, and microorganisms were attached to the surface of each graphite felt constituting the negative electrode.
  • Positive electrode It was composed of one piece of graphite felt having a thickness of 3 mm, a packing having a thickness of 5 mm was disposed, and the positive electrode was brought into contact with the diaphragm.
  • the graphite felt for the positive electrode was treated with PTFE for water repellency, and Tanaka Kikinzoku Pt catalyst (Pt-supported carbon black, Pt content 50 wt%) was dispersed in a 5 wt% Nafion (registered trademark (DuPont)) solution.
  • the liquid was applied to the negative electrode side surface so that the Pt adhesion amount was 0.5 mg / cm 2 and dried at 50 ° C. for use.
  • the stainless steel wire was bonded to the negative electrode graphite felt of each cell and the positive electrode graphite felt with a conductive paste to form an electrical lead wire and connected with a resistance of 2 ⁇ .
  • each negative electrode chamber contains a negative electrode containing acetic acid at a concentration of 1,000 mg / L, a phosphate buffer at a concentration of 50 mM, and 50 mg / L of ammonium chloride.
  • the solution was supplied at an inflow rate of 70 mL / min, and the same amount of treatment liquid was discharged.
  • the flow rate of each circulating pipe was 50 mL / min, and 2N sodium hydroxide was added to the circulating liquid so that the pH detected by the pH meter was 7.5.
  • the average power generation amount of the entire apparatus reached 200 W / m 3 -negative electrode per negative electrode volume after one week. Thereafter, the power generation amount was maintained in the range of 180 to 230 W / m 3 -negative electrode for one week. However, when the operation was continued further, it gradually decreased, and was lower than 50 W / m 3 -negative electrode 4 weeks after the start of the operation.
  • Example 1 Using the same apparatus as in Comparative Example 1, power was generated under the same operating conditions.
  • the average power generation amount of the entire device reached 200 W / m 3 -negative electrode per negative electrode volume after one week. Thereafter, the power generation amount was maintained in the range of 180 to 230 W / m 3 -negative electrode for one week. Therefore, after two weeks from the start of operation, the supply of the negative electrode solution to the negative electrode chamber of the cell is stopped in order at intervals of one week, the sodium hydroxide aqueous solution of pH 12 is filled in the negative electrode chamber, and aerated with air at 140 mL / min. Then, the washing operation was performed after holding for 4 hours and then discharging. After washing, the negative electrode solution discharged from the negative electrode chamber of another cell was supplied for 3 days, and then the negative electrode solution was supplied. As a result, the average power generation amount of the entire apparatus was maintained at 120 to 150 W / m 3 -negative electrode for 3 months.
  • Example 2 Using the same apparatus as in Comparative Example 1, power was generated under the same operating conditions.
  • the average power generation amount of the entire device reached 200 W / m 3 -negative electrode per negative electrode volume after one week. Thereafter, the power generation amount was maintained in the range of 180 to 230 W / m 3 -negative electrode for one week. Therefore, from two weeks after the start of operation, the supply of the negative electrode solution to the negative electrode chamber of the cell is stopped in order at intervals of one week, the pH 2 sulfuric acid aqueous solution is filled in the negative electrode chamber, and aerated with air at 140 mL / min.
  • a sodium hydroxide aqueous solution having a pH of 12 was filled in the negative electrode chamber, followed by a cleaning operation of discharging after holding for 4 hours while aerated with air at 140 mL / min. After washing, the negative electrode solution discharged from the negative electrode chamber of another cell was supplied for 3 days, and then the negative electrode solution was supplied. As a result, the average power generation amount of the entire apparatus was maintained at 180 to 230 W / m 3 -negative electrode for 3 months.

Landscapes

  • Fuel Cell (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

負極を有し、微生物及び電子供与体を含む液を保持する負極室と、該負極室に対しイオン透過性非導電性膜を介して隔てられており、該イオン透過性非導電性膜に接するエアーカソードを有する正極室とからなる単位セルが複数個積層された微生物発電装置を用いた微生物発電方法において、一部の単位セルの負極室にアルカリを含む洗浄液を導入して洗浄する洗浄工程を有することを特徴とする微生物発電方法。

Description

微生物発電方法及び装置
 本発明は、微生物の代謝反応を利用する発電方法及び装置に関する。本発明は特に、有機物を微生物に酸化分解させる際に得られる還元力を電気エネルギーとして取り出す微生物発電方法及び装置に関する。
 微生物の代謝反応を利用する発電方法及び装置として、特開2004-342412号には、正極室と負極室とを区画する電解質膜に接するように、正極板として多孔質体を設置し、正極室に空気を流通させ、多孔質体の空隙中で空気と液とを接触させる(以下、このように正極室内に空気を流通させ、空気中の酸素を電子受容体として利用する正極を「エアーカソード」と称す。)方法及び装置が記載されている。エアーカソードを用いることで、正極室に単に空気を流通させるのみで良く、カソード液中への曝気の必要がないといった利点がある。
 特開2010-33823号には、単位体積当りの発電量が多い微生物発電装置を提供することを目的として、平板状の正極を有した正極室と平板状の負極を有した負極室とからなる単位セルを複数個積層した微生物発電装置が記載されている。
 特開2011-65821号には、エアーカソードを用いた微生物発電装置で、カソードに酸、アルカリを含む洗浄液を間欠的に導入し、発電効率を低下させる要因であるエアーカソード及びこれに接する隔膜(イオン透過性非導電性膜)に発生したスケール、スライムを除去することが記載されている。
特開2004-342412号公報 特開2010-33823号公報 特開2011-65821号公報
 本発明者らがエアーカソードを用いた微生物発電装置を継続運転したところ、カソードの洗浄を間欠的に行っても経時的に発電量が低下してしまうことが判明した。本発明は、エアーカソードを用いた微生物発電装置における発電効率の経時低下を防止して、長期間安定した高効率発電を維持する微生物発電方法及び装置を提供することを目的とする。
 本発明の要旨は次の通りである。
[1] 負極を有し、微生物及び電子供与体を含む液を保持する負極室と、該負極室に対しイオン透過性非導電性膜を介して隔てられており、該イオン透過性非導電性膜に接するエアーカソードを有する正極室とからなる単位セルが複数個積層された微生物発電装置を用いた微生物発電方法において、一部の単位セルの負極室にアルカリを含む洗浄液を導入して洗浄する洗浄工程を有することを特徴とする微生物発電方法。
[2] [1]において、該アルカリを含む洗浄液のpHが10以上であることを特徴とする微生物発電方法。
[3] [1]または[2]において、該負極室にアルカリを含む洗浄液を導入する前に、酸を含む洗浄液を導入して酸洗浄することを特徴とする微生物発電方法。
[4] [3]において、該酸を含む洗浄液のpHが3以下であることを特徴とする微生物発電方法。
[5] [1]ないし[4]のいずれかにおいて、該負極室内を該洗浄液で満たすと共に、曝気することを特徴とする微生物発電方法。
[6] [1]ないし[5]のいずれかにおいて、該アルカリを含む洗浄液を導入した後、洗浄液を導入していない他の単位セルの負極室から排出される処理液を導入することを特徴とする微生物発電方法。
[7] 負極を有し、微生物及び電子供与体を含む液を保持する負極室と、該負極室に対しイオン透過性非導電性膜を介して隔てられており、該イオン透過性非導電性膜に接するエアーカソードを有する正極室とからなる単位セルが複数個積層された微生物発電装置において、各単位セルの負極室にアルカリを含む洗浄液を導入して洗浄する洗浄手段を有することを特徴とする微生物発電装置。
[8] [7]において、前記洗浄手段は、前記負極室にアルカリを含む洗浄液と、酸を含む洗浄液とを切り替えて供給するよう構成されていることを特徴とする微生物発電装置。
[9] [7]又は[8]において、前記負極室内を、曝気する曝気手段を備えたことを特徴とする微生物発電装置。
 本発明者による研究の結果、発電効率低下の原因は、負極室内で以下の(a)~(c)が発生するためであることが認められた。
(a) エアーカソードから隔膜を透過して負極室内に入り込んだ酸素を消費して好気性スライムが発生する。
(b) 嫌気条件下で、有機物を電極と電子を授受することなしに資化する嫌気性スライム(メタン発酵微生物)が増加する。
(c) 負極に接する隔膜表面にスケール(炭酸カルシウムやリン酸カルシウムなど)付着する。
 これらの原因に対し、スライムはアルカリ洗浄、スケールは酸洗浄で除去することができる。また、アルカリ洗浄によりスライムを除去した際には同時に電極と電子を授受する発電微生物も除去されるものの、他の微生物発電装置の処理液を通水することで速やかに発電微生物を増殖させ、発電効率を回復させることができる。負極室と、イオン透過性非導電性膜により隔てられたエアーカソードを有する正極室からなる単位セルが3個以上、好ましくは20個以上積層された微生物発電装置で、順に一部の単位セルの負極室を洗浄していくことにより、装置全体の発電量を低下させることなく、長期的に安定して運転することができる。
 このようにして、本発明によると、エアーカソードを用いた微生物発電装置における発電効率の経時低下を防止して、長期間安定した高効率発電を維持することができるようになる。
微生物発電装置の模式的な断面図である。
 次に、図1を参照して実施の形態に係る微生物発電装置による発電方法を説明する。図1はこの微生物発電装置の模式的な断面図である。この微生物発電装置は、単位セルを複数個(図1では2個)積層し、両端にエンドプレート30,30を配置し、積層方向の両末端に正極室33を配置したものである。
 1対のエンドプレート30,30の間にイオン透過性非導電性膜として4枚のアニオン交換膜31が互いに平行に配置されることにより、左から1番目及び2番目の該アニオン交換膜31,31同士と左から3番目及び4番目のアニオン交換膜31,31同士の間にそれぞれ負極室32が形成されている。左から1番目のアニオン交換膜と左側エンドプレート30との間、左から4番目のアニオン交換膜と右側エンドプレート30との間、及び、左から2番目及び3番目のアニオン交換膜同士の間にそれぞれ正極室33が形成されている。
 負極室32内には、各アニオン交換膜31と直に、又は1層~2層程度の生物膜を介して接するように、多孔質材料よりなる負極34が配置されている。負極34は、アニオン交換膜31に対し軽く(例えば0.1kg/cm以下の圧力で)押し付けられるのが好ましい。
 正極室33内には、アニオン交換膜31と接して正極35が配置されている。この正極35は、パッキン36に押圧されてアニオン交換膜31に押し付けられている。正極35とアニオン交換膜31との密着性を高めるために、両者を溶着したり、接着剤で接着してもよい。
 左から1番目及び4番目の正極35と各エンドプレート30との間は、酸素含有ガスの流通スペースとなっている。また、左から2番目及び3番目の正極35,35同士の間も酸素含有ガスの流通スペースとなっている。
 この正極35及び負極34は、端子37,39を介して外部抵抗(図示略)に並列に接続されている。
 負極室32には、負極溶液の給液ライン61及び該給液ライン61から分岐して各負極室32に連なる分岐ライン61Aを介して、流入口32aから負極溶液が導入され、流出口32bから廃液が廃液ライン62へ流出する。負極室32内は嫌気性とされる。各分岐給液ライン61にそれぞれ洗浄液の給液ライン81が接続されている。
 各負極室32内の負極溶液は、循環往口41、循環配管42、循環ポンプ43及び循環戻口44を介して循環される。この循環配管42に、pH計47が設けられると共に、アルカリ添加用配管45が接続されている。負極室32から流出する負極溶液のpHをpH計47で検出し、このpHが好ましくは7~9となるように水酸化ナトリウム水溶液などのアルカリが添加される。
 各正極室33には、空気ライン71を介してガス流入口51から空気が流入し、排ガスがガス流出口52から廃空気ライン72へ流出する。
 この微生物発電装置において、正極室33に酸素含有ガス(この実施の形態では空気)を流通させ、負極室32に負極溶液を流通させ、好ましくは負極溶液を循環させることにより、正極35と負極34との間に電位差が生じ、発電が行われる。
 単位セルの数は、3~50程度が好適である。なお、この実施の形態では、積層方向の両端側に正極室が配置されているが、一方又は双方の末端側に負極室を配置してもよい。
 間欠的に各負極室32に順番に洗浄液ライン81から洗浄液が導入されて、負極34や隔膜であるアニオン交換膜31、負極室32に発生ないしは付着したスケールやスライムが洗浄除去される。
 本発明では、各負極室32をアルカリで順番に洗浄するが、この洗浄に際しては、負極室32をまず酸を含む洗浄液で洗浄し、次いでアルカリを含む洗浄液で洗浄することが好ましい。
 この酸を含む洗浄液(以下「酸洗浄液」と称す。)の酸としては、硫酸、塩酸の他、硝酸、クエン酸、シュウ酸等の1種又は2種以上が使用できる。
 上記酸洗浄液としては、通常酸の水溶液が用いられるが、この酸洗浄液のpHが高いと十分な洗浄効果が得られず、低過ぎると負極の劣化を招く恐れがあることから、pH3以下、特にpH1~3程度の酸洗浄液を用いることが好ましい。
 酸洗浄液による洗浄方法としては、負極室内を酸洗浄液で満たすか、或いは、負極室内を酸洗浄液で満たした上でガス(例えば空気や、窒素など)を通気して、負極室内の酸洗浄液を曝気する方法が挙げられる。この場合、負極室内を酸洗浄液で満たす時間(以下「浸漬時間」と称す場合がある。)を2時間以上、特に4時間~1日が好ましい。酸洗浄液とスケールとを接触させ、効率よく除去するため、導入した洗浄液がわずかに動く程度に曝気するのが好ましい。洗浄廃液は廃液ライン62から排出される。
 上述のような酸洗浄液による洗浄操作で、負極やイオン透過性非導電性膜に発生ないし付着したスケールが洗浄除去される。この酸洗浄液による洗浄の後、アルカリを含む洗浄液(以下「アルカリ洗浄液」と称す。)による洗浄操作を行う。これにより、良好なスライムの洗浄除去効果を得ることができると共に、酸洗浄液による負極の劣化を軽減することができる。ただし、本発明では、アルカリ洗浄のみを行ってもよい。
 アルカリ洗浄液のアルカリとしては、水酸化ナトリウム、水酸化カリウム、次亜塩素酸ナトリウム等の1種又は2種以上を用いることができる。
 このアルカリ洗浄液としても、通常アルカリの水溶液が用いられるが、このアルカリ洗浄液のpHが低いと十分な洗浄効果が得られず、特にスライム剥離効果が小さくなる。またpHが高過ぎると残存するアルカリによるスケール発生が生じる可能性があり、また、イオン透過性非導電性膜がアニオン交換膜の場合は膜劣化を招く恐れがあることから、pH10以上、例えばpH10~12であることが好ましい。
 アルカリ洗浄液による洗浄方法としても、負極室内をアルカリ洗浄液で満たすか、或いは、負極室内をアルカリ洗浄液で満たした上でアルカリ洗浄液を前記ガスで曝気する方法が挙げられる。
 アルカリ洗浄液に浸漬洗浄する時間は2時間以上、特に4時間~1日が好ましい。アルカリ洗浄液とスライムとを接触させ、効率よく除去するため、導入した洗浄液がわずかに動く程度に曝気するのが好ましい。洗浄排液は廃液ライン62から排出される。
 同一セルの負極室の薬品洗浄間隔は、2週間~3ヶ月、特に3週間~6週間が好ましい。この間隔で洗浄することで、負極室内で発電微生物以外のスライムが優占したり、スケールが過度に付着したりすることを防止できる。
 前述の通り、酸洗浄によりスケールが除去され、アルカリ洗浄によりスライムが除去される。また、アルカリ洗浄によりスライムを除去した際には同時に電極と電子を授受する発電微生物も除去されるものの、他の微生物発電装置の処理液を通水することで速やかに発電微生物を増殖させ、発電効率を回復させることができる。このように、負極室と、イオン透過性非導電性膜により隔てられたエアーカソードを有する正極室からなる単位セルが3個以上、好ましくは20個以上積層された微生物発電装置で、順に一部の単位セルの負極室を洗浄していくことにより、装置全体の発電量を低下させることなく、長期的に安定して運転することができる。
 次に、この微生物発電装置の微生物、負極溶液などのほか、イオン透過性非導電性膜、負極、正極の好適な材料等について説明する。
 負極溶液中に含有させることで電気エネルギーを産生させる微生物は、電子供与体としての機能を有するものであれば特に制限されない。例えば、Saccharomyces、Hansenula、Candida、Micrococcus、Staphylococcus、Streptococcus、Leuconostoa、Lactobacillus、Corynebacterium、Arthrobacter、Bacillus、Clostridium、Neisseria、Escherichia、Enterobacter、Serratia、Achromobacter、Alcaligenes、Flavobacterium、Acetobacter、Moraxella、Nitrosomonas、Nitorobacter、Thiobacillus、Gluconobacter、Pseudomonas、Xanthomonas、Vibrio、Comamonas及びProteus(Proteus vulgaris)の各属に属する細菌、糸状菌、酵母などを挙げることができる。このような微生物を含む汚泥として下水等の有機物含有水を処理する生物処理槽から得られる活性汚泥、下水の最初沈澱池からの流出水に含まれる微生物、嫌気性消化汚泥等を植種として負極室に供給し、微生物を負極に保持させることができる。発電効率を高くするためには、負極室内に保持される微生物量は高濃度であることが好ましく、例えば微生物濃度は1~50g/Lであることが好ましい。
 負極溶液としては、微生物又は細胞を保持し、かつ発電に必要な組成を有する溶液が用いられる。例えば、呼吸系の発電を行う場合は、負極側の溶液としては、ブイヨン培地、M9培地、L培地、Malt Extract、MY培地、硝化菌選択培地などの呼吸系の代謝を行うのに必要なエネルギー源や栄養素などの組成を有する培地が利用できる。また、下水、有機性産業排水、生ごみ等の有機性廃棄物を用いることができる。
 負極溶液中には、微生物又は細胞からの電子の引き抜きをより容易とするために電子メディエーターを含有させてもよい。この電子メディエーターとしては、例えば、チオニン、ジメチルジスルホン化チオニン、ニューメチレンブルー、トルイジンブルー-O等のチオニン骨格を有する化合物、2-ヒドロキシ-1,4-ナフトキノン等の2-ヒドロキシ-1,4-ナフトキノン骨格を有する化合物、ブリリアントクレジルブルー、ガロシアニン、レソルフィン、アリザリンブリリアントブルー、フェノチアジノン、フェナジンエソスルフェート、サフラニン-O、ジクロロフェノールインドフェノール、フェロセン、ベンゾキノン、フタロシアニン、あるいはベンジルビオローゲン及びこれらの誘導体などを挙げることができる。
 さらに、微生物の発電機能を増大させるような材料、例えばビタミンCのような抗酸化剤や、微生物中の特定の電子伝達系や物質伝達系のみを働かせる機能増大材料を溶解すると、さらに効率よく電力を得ることができるので好ましい。
 負極溶液は、必要に応じ、リン酸バッファを含有していてもよい。
 負極溶液は有機物を含むものである。この有機物としては、微生物によって分解されるものであれば特に制限はなく、例えば水溶性の有機物、水中に分散する有機物微粒子などが用いられる。負極溶液は、下水、食品工場排水などの有機性廃水であってもよい。負極溶液中の有機物濃度は、発電効率を高くするために100~10000mg/L程度の高濃度であることが好ましい。
 正極室に流通させる酸素含有ガスとしては、空気が好適である。正極室からの排ガスを、必要に応じ脱酸素処理した後、負極室に通気し、負極溶液Lからの溶存酸素のパージに用いてもよい。
 イオン透過性非導電性膜としては、非導電性、かつイオン透過性を有するものであればほとんどのものが使用できるが、アニオン交換膜またはカチオン交換膜が好適である。アニオン交換膜としては、アストム製アニオン交換膜やトクヤマ製アニオン型電解質膜などが好適である。一方カチオン交換膜としてはデュポン製カチオン交換膜が好適である。イオン透過性非導電性膜は、薄くて丈夫であることが好ましく、通常、その膜厚は10~300μm、特に30~200μm程度であることが好ましい。
 負極は、多くの微生物を保持できるよう、表面積が大きく空隙が多く形成され通水性を有する多孔体が好ましい。具体的には、少なくとも表面が粗とされた導電性物質のシートや導電性物質をフェルト状その他の多孔性シートにした多孔性導電体(例えばグラファイトフェルト、発泡チタン、発泡ステンレス等)が挙げられる。
 複数のシート状導電体を積層して負極としてもよい。この場合、同種の導電体シートを積層してもよく、異なる種類の導電体シート同士(例えばグラファイトフェルトと粗面を有するグラファイトシート)を積層してもよい。
 負極は全体の厚さが3mm以上40mm以下、特に5~20mm程度であることが好ましい。積層シートによって負極を構成した場合、シート同士の合わせ面(積層面)に沿って液が流れるように、積層面を液の流入口と流出口とを結ぶ方向に配向させるのが好ましい。
 正極は、導電性基材と、該導電性基材に担持された酸素還元触媒とを有する。
 導電性基材としては、導電性が高く、耐食性が高く、厚みが薄くても十分な導電性と耐食性、更には導電性基材としての機械的強度を得ることがあるものであれば良く、特に制限はないが、グラファイトペーパー、グラファイトフェルト、グラファイトクロス、ステンレスメッシュ、チタンメッシュ等を用いることができ、これらのうち、特に耐久性と加工のしやすさ等の点から、グラファイトペーパー、グラファイトフェルト、グラファイトクロス等のグラファイト系基材が好ましく、とりわけグラファイトペーパーが好ましい。なお、これらのグラファイト系基材はポリテトラフルオロエチレン(PTFE)等のフッ素樹脂によって疎水化されたものであっても良い。
 導電性基材の厚さは、厚過ぎると酸素の透過が悪くなり、薄過ぎると、基材に必要な強度等の要求特性を満たすことができないことから、20~3000μm程度であることが好ましい。
 酸素還元触媒としては、白金等の貴金属のほか、安価で且つ触媒活性が良好であるところから、二酸化マンガン等の金属酸化物が好適である。
 一つのセルの負極室の上記アルカリ洗浄後は、他の微生物発電装置や、同じ装置の稼働中の他のセルの負極室から排出された負極溶液を1~7日、好ましくは2~5日間通水する。負極溶液には、活性の高い発電微生物が含まれているため、速やかに(1週間以内に)元の性能まで回復させることができる。
[比較例1]
 5個の単位セルから構成される微生物発電装置を洗浄なしに運転した。セル、隔膜、負極及び正極の構成は次の通りである。
 各セルの負極室の容積:350mL
     正極室の容積:175mL
 隔膜(イオン透過性非導電性膜):カチオン交換膜(デュポン製「ナフィオン115」)
 負極:250mm×70mmで厚さ10mmのグラファイトフェルト(東洋カーボン製)2枚を導電性接着剤で貼り合わせて構成。2枚のグラファイトフェルトの積層体は負極室の厚さと同じ厚さを有し、負極室内全体に充填され、隔膜と接する。従って、負極室に供給された液はすべて多孔性の負極を透過するように構成されており、負極内を通らずに負極室を通過すること(ショートパス)が実質的にないよう構成される。負極室には種菌として下水処理場の生物処理槽から採取した活性汚泥を添加して培養し、負極を構成する各グラファイトフェルトの表面に微生物を付着させた。
 正極:厚さ3mmのグラファイトフェルト1枚で構成し、厚さ5mmのパッキンを配置し、正極を隔膜に接触させた。正極用グラファイトフェルトは、PTFEで撥水処理し、田中貴金属製Pt触媒(Pt担持カーボンブラック,Pt含有量50重量%)を、5重量%ナフィオン(登録商標(デュポン製))溶液に分散させた液を、Pt付着量が0.5mg/cmとなるように負極側表面に塗布し、50℃で乾燥させて用いた。
 各セルの負極のグラファイトフェルトと正極のグラファイトフェルトには、ステンレス製針金を導電性ペーストで接着して電気引出し線とし、2Ωの抵抗で接続した。
 各正極室に空気を700mL/minの流量で通気する一方、各負極室には1,000mg/Lの濃度の酢酸と、50mMの濃度のリン酸バッファ、及び、塩化アンモニウム50mg/Lを含む負極溶液を70mL/minの流入量で供給し、同量の処理液を排出させた。各循環配管の流量は50mL/minとし、pH計の検出pHが7.5となるように2Nの水酸化ナトリウムを循環液に添加した。
 この装置で負極温度を35℃に維持して運転を開始した結果、装置全体平均の発電量は、1週間後には負極体積あたり200W/m-負極に達した。その後、1週間、発電量は180~230W/m-負極の範囲で維持された。しかし、さらに運転を継続すると徐々に低下し、運転開始から4週間後には50W/m-負極を下回った。
[実施例1]
 比較例1と同様の装置を用いて、同様の運転条件で発電を行った。
 装置全体平均の発電量は、1週間後には負極体積あたり200W/m-負極に達した。その後、1週間、発電量は180~230W/m-負極の範囲で維持された。そこで、運転開始から2週間後より、1週間間隔で順に、セルの負極室への負極溶液の供給を停止し、pH12の水酸化ナトリウム水溶液を負極室に満たして、空気で140mL/minで曝気しながら4時間保持した後排出する洗浄操作を行った。洗浄後は他のセルの負極室から排出された負極溶液を3日間供給した後、負極溶液を供給するようにした。その結果、装置全体平均の発電量は、3ヶ月間、120~150W/m-負極で維持された。
[実施例2]
 比較例1と同様の装置を用いて、同様の運転条件で発電を行った。
 装置全体平均の発電量は、1週間後には負極体積あたり200W/m-負極に達した。その後、1週間、発電量は180~230W/m-負極の範囲で維持された。そこで、運転開始から2週間後より、1週間間隔で順に、セルの負極室への負極溶液の供給を停止し、pH2の硫酸水溶液を負極室に満たして、空気で140mL/minで曝気しながら4時間保持した後、pH12の水酸化ナトリウム水溶液を負極室に満たして、空気で140mL/minで曝気しながら4時間保持した後排出する洗浄操作を行った。洗浄後は他のセルの負極室から排出された負極溶液を3日間供給した後、負極溶液を供給するようにした。その結果、装置全体平均の発電量は、3ヶ月間、180~230W/m-負極で維持された。
 以上の実施例及び比較例より、本発明によって、エアーカソードを用いた微生物発電装置における発電効率の経時低下を防止して、長期間安定した高効率発電を維持することができるようになることが認められた。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2017年3月24日付で出願された日本特許出願2017-059217に基づいており、その全体が引用により援用される。
 31 アニオン交換膜
 33 正極室
 32 負極室
 35 正極
 34 負極
 30 エンドプレート

Claims (9)

  1.  負極を有し、微生物及び電子供与体を含む液を保持する負極室と、該負極室に対しイオン透過性非導電性膜を介して隔てられており、該イオン透過性非導電性膜に接するエアーカソードを有する正極室とからなる単位セルが複数個積層された微生物発電装置を用いた微生物発電方法において、一部の単位セルの負極室にアルカリを含む洗浄液を導入して洗浄する洗浄工程を有することを特徴とする微生物発電方法。
  2.  請求項1において、該アルカリを含む洗浄液のpHが10以上であることを特徴とする微生物発電方法。
  3.  請求項1または2において、該負極室にアルカリを含む洗浄液を導入する前に、酸を含む洗浄液を導入して酸洗浄することを特徴とする微生物発電方法。
  4.  請求項3において、該酸を含む洗浄液のpHが3以下であることを特徴とする微生物発電方法。
  5.  請求項1ないし4のいずれか1項において、該負極室内を該洗浄液で満たすと共に、曝気することを特徴とする微生物発電方法。
  6.  請求項1ないし5のいずれかにおいて、該アルカリを含む洗浄液を導入した後、洗浄液を導入していない他の単位セルの負極室から排出される処理液を導入することを特徴とする微生物発電方法。
  7.  負極を有し、微生物及び電子供与体を含む液を保持する負極室と、該負極室に対しイオン透過性非導電性膜を介して隔てられており、該イオン透過性非導電性膜に接するエアーカソードを有する正極室とからなる単位セルが複数個積層された微生物発電装置において、各単位セルの負極室にアルカリを含む洗浄液を導入して洗浄する洗浄手段を有することを特徴とする微生物発電装置。
  8.  請求項7において、前記洗浄手段は、前記負極室にアルカリを含む洗浄液と、酸を含む洗浄液とを切り替えて供給するよう構成されていることを特徴とする微生物発電装置。
  9.  請求項7又は8において、前記負極室内を、曝気する曝気手段を備えたことを特徴とする微生物発電装置。
PCT/JP2017/033290 2017-03-24 2017-09-14 微生物発電方法及び装置 WO2018173326A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017059217A JP6252702B1 (ja) 2017-03-24 2017-03-24 微生物発電方法及び装置
JP2017-059217 2017-03-24

Publications (1)

Publication Number Publication Date
WO2018173326A1 true WO2018173326A1 (ja) 2018-09-27

Family

ID=60860016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033290 WO2018173326A1 (ja) 2017-03-24 2017-09-14 微生物発電方法及び装置

Country Status (3)

Country Link
JP (1) JP6252702B1 (ja)
TW (1) TW201836199A (ja)
WO (1) WO2018173326A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6652149B2 (ja) * 2018-03-22 2020-02-19 栗田工業株式会社 殺菌剤を用いる微生物発電装置及び微生物発電装置の運転方法
JP6652150B2 (ja) * 2018-03-23 2020-02-19 栗田工業株式会社 微生物発電装置及びその運転方法
CN113398523B (zh) * 2021-05-12 2022-06-14 华南理工大学 一种FeSx电极及制备方法、FeSx协同微生物矿化固定Cr(VI)的装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179223A (ja) * 2004-12-21 2006-07-06 Ebara Corp 有機性物質を利用する発電方法及び装置
JP2007280937A (ja) * 2006-02-17 2007-10-25 Nuvera Fuel Cells Inc 燃料電池の洗浄方法
JP2011065821A (ja) * 2009-09-16 2011-03-31 Kurita Water Ind Ltd 微生物発電方法及び微生物発電装置
JP2013145660A (ja) * 2012-01-13 2013-07-25 Maezawa Kasei Ind Co Ltd 微生物燃料電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179223A (ja) * 2004-12-21 2006-07-06 Ebara Corp 有機性物質を利用する発電方法及び装置
JP2007280937A (ja) * 2006-02-17 2007-10-25 Nuvera Fuel Cells Inc 燃料電池の洗浄方法
JP2011065821A (ja) * 2009-09-16 2011-03-31 Kurita Water Ind Ltd 微生物発電方法及び微生物発電装置
JP2013145660A (ja) * 2012-01-13 2013-07-25 Maezawa Kasei Ind Co Ltd 微生物燃料電池

Also Published As

Publication number Publication date
JP2018163749A (ja) 2018-10-18
TW201836199A (zh) 2018-10-01
JP6252702B1 (ja) 2017-12-27

Similar Documents

Publication Publication Date Title
JP5298589B2 (ja) 微生物発電装置
JP5428328B2 (ja) 微生物発電方法及び微生物発電装置
JP5526505B2 (ja) 微生物発電装置
JP5407156B2 (ja) 微生物発電方法および微生物発電装置
WO2019181281A1 (ja) 微生物発電装置及びその運転方法
JP6252702B1 (ja) 微生物発電方法及び装置
JP5359725B2 (ja) 微生物発電方法及び微生物発電装置
JP2010033824A (ja) 微生物発電装置
WO2010071059A1 (ja) 微生物発電方法及び微生物発電装置
JP2009295488A (ja) 微生物発電装置及び微生物発電装置用正極
WO2019171833A1 (ja) 微生物発電装置及び方法
JP6358352B1 (ja) 微生物発電装置及び微生物発電方法
JP5287149B2 (ja) 微生物発電方法及び微生物発電装置
JP2011065822A (ja) 微生物発電装置及びその作製方法
JP5369700B2 (ja) 微生物発電方法及び微生物発電装置
JP6652149B2 (ja) 殺菌剤を用いる微生物発電装置及び微生物発電装置の運転方法
JP7268448B2 (ja) 有機性排水の生物処理システム及び生物処理方法
JP5338588B2 (ja) 微生物発電方法および装置
JP2009231230A (ja) 微生物発電方法および装置
JP2019160459A (ja) 微生物発電装置の運転方法
JP2010009772A (ja) 微生物発電装置及びその製作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17901668

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17901668

Country of ref document: EP

Kind code of ref document: A1