WO2019171833A1 - 微生物発電装置及び方法 - Google Patents
微生物発電装置及び方法 Download PDFInfo
- Publication number
- WO2019171833A1 WO2019171833A1 PCT/JP2019/003094 JP2019003094W WO2019171833A1 WO 2019171833 A1 WO2019171833 A1 WO 2019171833A1 JP 2019003094 W JP2019003094 W JP 2019003094W WO 2019171833 A1 WO2019171833 A1 WO 2019171833A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- negative electrode
- electrode chamber
- power generation
- positive electrode
- gas
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/34—Biological treatment of water, waste water, or sewage characterised by the microorganisms used
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04746—Pressure; Flow
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/16—Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to a power generation device that utilizes a metabolic reaction of a microorganism.
- the present invention relates to a microbial power generation apparatus and method for extracting, as electric energy, a reducing power obtained when an organic substance is oxidatively decomposed into microorganisms.
- Patent Document 1 discloses that a porous body is installed as a positive electrode plate so as to be in contact with an electrolyte membrane partitioning a positive electrode chamber and a negative electrode chamber, and air is circulated through the positive electrode chamber. It describes what makes air and liquid contact in the voids of the body.
- a positive electrode that circulates an oxygen-containing gas such as air in the positive electrode chamber and uses oxygen as an electron acceptor may be referred to as an “air cathode”.
- a microbial power generation apparatus using an air cathode has the advantage that no catholyte is required, and only an oxygen-containing gas needs to be circulated in the positive electrode chamber, and there is no need for aeration into the catholyte.
- Patent Document 2 discloses a microbial power generation apparatus that uses paper, woven fabric, non-woven fabric, honeycomb formed body, or lattice-shaped formed body made of a non-conductive material as an ion permeable film that separates a positive electrode chamber and a negative electrode chamber. Have been described. Such a porous non-conductive membrane is less expensive than an ion exchange membrane.
- Patent Document 3 carbon dioxide gas is introduced into the oxygen-containing gas supplied to the positive electrode chamber, and the movement of Na + and K + ions is promoted by the pH neutralizing action of the ion-permeable non-conductive film by the acid gas. Thus, it is described that power generation efficiency is improved.
- An object of the present invention is to provide a microbial power generation apparatus using an air cathode, which can suppress a decrease in performance caused by oxygen permeating from a positive electrode chamber to a negative electrode chamber and obtain a higher power generation amount.
- the microbial power generation device of the present invention has a negative electrode and holds a negative electrode chamber for holding a liquid containing microorganisms and an electron donor, and is separated from the negative electrode chamber via a porous nonconductive film.
- a microbial power generation apparatus including a positive electrode chamber having an air cathode in contact with the oxidative membrane is characterized by comprising non-oxidizing gas supply means for supplying a non-oxidizing gas to the negative electrode chamber.
- the non-oxidizing gas is nitrogen gas.
- a nitrogen gas generating means for generating the nitrogen gas from air is provided.
- negative gas exhaust gas transfer means for supplying at least part of the exhaust gas in the negative electrode chamber to the positive electrode chamber.
- the operation method of the microbial power generation device of the present invention has a negative electrode, and holds a liquid containing a microorganism and an electron donor, and is separated from the negative electrode chamber through a porous non-conductive film,
- a non-oxidizing gas is supplied to the negative electrode chamber continuously or intermittently.
- FIG. 1 is a schematic cross-sectional view showing a schematic configuration of a microbial power generation apparatus of the present invention.
- the inside of the tank body 1 is partitioned into a positive electrode chamber 3 and a negative electrode chamber 4 by a porous non-conductive film 2.
- a positive electrode 5 is disposed in the positive electrode chamber 3 so as to be in contact with the porous non-conductive film 2.
- a negative electrode 6 made of a conductive porous material is disposed in the negative electrode chamber 4.
- the negative electrode 6 is in contact with the porous non-conductive film 2 directly or through a membrane of about 1 to 2 layers of microorganisms.
- the inside of the positive electrode chamber 3 is an empty chamber, and an oxygen-containing gas (air in the present embodiment) is introduced from the gas supply pipe 23 and the gas inlet 7, and the exhaust gas passes through the exhaust pipe 25 from the gas outlet 8. leak.
- an oxygen-containing gas air in the present embodiment
- the gas inlet 7 is illustrated on the lower side and the gas outlet 8 is illustrated on the upper side.
- the present invention is not limited to this, and the gas inlet 7 is on the upper side and the gas outlet 8 is on the lower side. It may be.
- Microorganisms are supported on the negative electrode 6 made of a porous material.
- the negative electrode solution L is introduced into the negative electrode chamber 4 from the injection pipe 30 and the inlet 4 a, and the drainage is discharged from the outlet 4 b and the outlet pipe 31.
- the inside of the negative electrode chamber 4 is anaerobic.
- the negative electrode drainage liquid flowing out to the outflow pipe 31 is introduced into the gas-liquid separator 32, and the separated liquid flows out into the drainage pipe 33.
- Part or all of the separated gas (negative electrode chamber exhaust gas) is supplied to the oxygen-containing gas supply pipe 23 via the pipe 34.
- a nitrogen gas generator 40 such as a PSA, VPSA, gas separation membrane device or the like is installed, and the nitrogen gas generated by being separated from the air by the nitrogen gas generator 40 is connected via a pipe 41.
- the negative electrode solution is supplied to the inflow pipe 30.
- the pipe 41 may be connected to the lower part of the negative electrode chamber 4 so as to supply nitrogen gas directly to the negative electrode chamber 4.
- the nitrogen gas is preferably supplied continuously to the negative electrode chamber 4, but may be supplied intermittently.
- the oxygen-enriched gas generated by the nitrogen gas generator 40 is supplied to the oxygen-containing gas supply pipe 23 via the pipe 42.
- the pipe 42 may be connected to the positive electrode chamber 3.
- the negative electrode solution L in the negative electrode chamber 4 is circulated through the circulation outlet 9, the circulation pipe 10, the circulation pump 11, and the circulation return port 12.
- the circulation pipe 10 is provided with a pH meter 14 for measuring the pH of the liquid flowing out from the negative electrode chamber 4 and is connected with a chemical solution addition pipe 13 so that the pH of the negative electrode solution L becomes 7-9.
- an alkali such as a sodium hydroxide aqueous solution or an acid such as hydrochloric acid or sulfuric acid aqueous solution is added as necessary.
- the condensed water generated in the positive electrode chamber 3 is drained from a condensed water outlet (not shown).
- an oxygen-containing gas such as air is vented to the positive electrode chamber 3 and the negative electrode solution L is circulated by operating the pump 11 as necessary.
- the reaction proceeds.
- This electron e ⁇ flows to the positive electrode 5 through the negative electrode 6, the terminal 22, the external resistor 21, and the terminal 20.
- alkali and / or acid is added to the negative electrode solution L so that the pH detected by the pH meter 14 is preferably 7-9.
- the alkali and / or acid may be added directly to the negative electrode chamber 4, but by adding to the circulating water, the entire area in the negative electrode chamber 4 can be maintained at a pH of 7 to 9 without partial bias. .
- the flow rate of nitrogen gas is preferably 0.5 to 80 m / hr, particularly 8 to 30 m / hr as the gas LV of the negative electrode chamber 4. If the amount is too small, the effect of removing dissolved oxygen is poor. If the amount is too large, the bacterial cells are excessively detached, and the power generation amount is reduced.
- the nitrogen gas for aeration of the negative electrode chamber 4 is preferably generated from air using a nitrogen gas generator 40 such as PSA, VPSA, or a gas separation membrane device.
- a nitrogen gas generator 40 such as PSA, VPSA, or a gas separation membrane device.
- part or all of the oxygen-enriched gas generated at this time is supplied to the positive electrode chamber 3 to increase the oxygen concentration in the positive electrode chamber, thereby increasing the oxygen reduction reaction rate in the positive electrode chamber 3.
- the power generation amount can be further increased.
- the gas discharged when the negative electrode chamber 4 is aerated with nitrogen gas contains carbonic acid produced as a result of the oxidation of the organic matter, a part or all of this exhaust gas is passed through the positive electrode chamber to make it alkaline.
- the pH of the positive electrode chamber 3 is neutralized. Thereby, the movement of Na + and K + ions in the porous non-conductive film 2 is promoted, and the power generation efficiency is further improved.
- nitrogen gas is used as the non-oxidizing gas, but non-oxidizing gas other than nitrogen gas may be used, or a mixed gas of nitrogen and non-oxidizing gas other than nitrogen may be used. .
- the porous membrane is in contact with a liquid containing microorganisms and an electron donor held in the negative electrode chamber, and efficiently transmits ions in the liquid to the air cathode. Therefore, the porous film is hydrophilic (is easily wetted with water and does not form water droplets). It is desirable to have for example, paper, woven fabric, or non-woven fabric made of a material having a water contact angle of 90 ° or less, such as polyolefin, glass, or silica, or a film (paper, woven fabric, or non-woven fabric) surface-treated with the above material is preferable.
- non-conductive materials constituting paper, woven fabric, and non-woven fabric include polyethylene, polypropylene, polycarbonate, polyethersulfone (PES), polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), Polyvinyl alcohol (PVA), cellulose, cellulose acetate and the like are suitable.
- the porous non-conductive membrane is preferably a thin one having a thickness of 10 ⁇ m to 1000 ⁇ m, particularly about 25 to 100 ⁇ m.
- the microorganism that produces electric energy by being contained in the negative electrode solution L is not particularly limited as long as it has a function as an electron donor.
- yeasts include bacteria, filamentous fungi and yeasts belonging to each genus of Gluconobacter, Pseudomonas, Xanthomonas, Vibrio, Comamonas and Proteus (Proteus vulgaris).
- sludge containing such microorganisms activated sludge obtained from biological treatment tanks that treat organic matter-containing water such as sewage, microorganisms contained in effluent from the first sedimentation basin of sewage, anaerobic digested sludge, etc.
- the microorganism can be held in the negative electrode by supplying to the chamber.
- the amount of microorganisms retained in the negative electrode chamber is preferably high, and for example, the microorganism concentration is preferably 1 to 50 g / L.
- the negative electrode solution L a solution that holds microorganisms or cells and has a composition necessary for power generation is used.
- the negative electrode side solution includes energy required for respiratory system metabolism such as bouillon medium, M9 medium, L medium, Malt Extract, MY medium, and nitrifying bacteria selection medium.
- a medium having a composition such as a source and nutrients can be used.
- organic waste such as sewage, organic industrial wastewater, and garbage can be used.
- the negative electrode solution L may contain an electron mediator in order to make it easier to extract electrons from microorganisms or cells.
- the electron mediator include compounds having a thionin skeleton such as thionine, dimethyldisulfonated thionine, new methylene blue and toluidine blue-O, and 2-hydroxy-1,4-naphthoquinone such as 2-hydroxy-1,4-naphthoquinone.
- Examples include compounds having a skeleton, brilliant cresyl blue, garocyanine, resorufin, alizarin brilliant blue, phenothiazinone, phenazine esosulphate, safranin-O, dichlorophenolindophenol, ferrocene, benzoquinone, phthalocyanine, or benzyl viologen and their derivatives. be able to.
- Electricity can be obtained more efficiently by dissolving materials that increase the power generation function of microorganisms, such as antioxidants such as vitamin C, or materials that increase the function of only specific electron or substance transfer systems in microorganisms. This is preferable.
- the negative electrode solution L may contain a phosphate buffer as necessary.
- the negative electrode solution L contains an organic substance.
- the organic substance is not particularly limited as long as it can be decomposed by microorganisms. For example, water-soluble organic substances, organic fine particles dispersed in water, and the like are used.
- the negative electrode solution may be organic wastewater such as sewage and food factory effluent.
- the organic substance concentration in the negative electrode solution L is preferably as high as about 100 to 10,000 mg / L in order to increase the power generation efficiency.
- the negative electrode is preferably a porous body having a large surface area, a large number of voids, and water permeability so that many microorganisms can be retained.
- Specific examples include a conductive material sheet having a roughened surface and a porous conductor (for example, graphite felt, expanded titanium, expanded stainless steel, etc.) in which the conductive material is made into a felt-like porous sheet. .
- a plurality of sheet-like conductors may be laminated to form a negative electrode.
- the same kind of conductor sheets may be laminated, or different kinds of conductor sheets (for example, a graphite sheet having a rough surface and a graphite felt) may be laminated.
- the total thickness of the negative electrode is preferably 3 mm or more and 40 mm or less, particularly about 5 to 20 mm.
- a negative electrode is constituted by a laminated sheet, it is preferable to orient the laminated surface in a direction connecting the liquid inlet and outlet so that the liquid flows along a mating surface (laminated surface) between the sheets.
- the positive electrode preferably has a conductive base material and an oxygen reduction catalyst supported on the conductive base material.
- any material may be used as long as it has high electrical conductivity, high corrosion resistance, sufficient electrical conductivity and corrosion resistance even when the thickness is small, and further has mechanical strength as the conductive base material.
- graphite paper, graphite felt, graphite cloth, stainless mesh, titanium mesh, etc. can be used. Of these, graphite paper, graphite felt, graphite cloth, etc., particularly in terms of durability and ease of processing.
- a graphite-based substrate such as graphite is preferable, and graphite paper is particularly preferable.
- These graphite base materials may be those made hydrophobic by a fluororesin such as polytetrafluoroethylene (PTFE).
- the thickness of the conductive base material of the positive electrode is about 20 to 3000 ⁇ m because oxygen permeation deteriorates if it is too thick, and if it is too thin, required properties such as strength required for the base material cannot be satisfied. Is preferred.
- oxygen reduction catalyst in addition to noble metals such as platinum, inexpensive and good catalytic activity, metal oxides such as manganese dioxide, and carbon-based materials such as activated carbon are suitable, and the supported amount is 0 It is preferably about 0.01 to 2.0 mg / cm 2 .
- a negative electrode was formed by stacking and filling two 1 cm thick graphite felts into a 7 cm ⁇ 25 cm ⁇ 2 cm (thickness) negative electrode chamber.
- a positive electrode chamber was formed on the negative electrode through a 30 ⁇ m thick nonwoven fabric (Gurley value 1,200 sec / 100 mL).
- the positive electrode chamber has a size of 7 cm ⁇ 25 cm ⁇ 0.5 cm (thickness).
- Pt content 50 wt%, 5 wt% Nafion (Registered Trademark)
- a solution dispersed in a solution was applied so that the amount of adhesion was 0.4 mg / cm 2, and dried at 50 ° C., and the resulting mixture was used as a positive electrode to adhere to the above film I let you.
- a stainless steel wire was adhered to the negative electrode graphite felt and the positive electrode carbon paper with a conductive paste to form an electrical lead wire and connected with a resistance of 5 ⁇ .
- the pH of the negative electrode chamber was maintained at 7.5, and a negative electrode solution containing 1,000 mg / L of acetic acid, phosphoric acid and ammonia was passed therethrough.
- This negative electrode solution was previously heated to 35 ° C. in a separate water tank, and then passed through the negative electrode chamber at 10 mL / min, whereby the temperature of the negative electrode chamber was heated to 35 ° C.
- the effluent of another microbial power generation device was passed as an inoculum. Room temperature air was vented to the positive electrode chamber at a flow rate of 0.2 L / min.
- the amount of power generation reached 150 W / m 3 -the negative electrode chamber volume one week after the start of liquid flow, and remained at 140 to 160 W / m 3 for 5 days thereafter, but then decreased to 20 W / m 3 for 5 days thereafter.
- the current efficiency decreased from 60% on the 7th day to 23% on the 15th day, and it was considered that the amount of power generation decreased with priority given to the decomposition of aerobic acetic acid that does not participate in power generation at the negative electrode.
- Example 1 In the same configuration as Comparative Example 1, nitrogen gas (purity 99%) generated by a PSA nitrogen gas generator was further vented to the negative electrode chamber at 0.2 L / min (venting LV 17 m / hr). The amount of power generation reached 180 W / m 3 in one week after the start of liquid flow, and remained at 180 to 200 W / m 3 over the next three weeks. The current efficiency was in the 70% range, and performance degradation due to oxygen mixing into the negative electrode was suppressed.
- Example 2 In the same configuration as in Example 1, the exhaust gas (oxygen concentration 30%) of the PSA nitrogen gas generator was vented at 0.2 L / min instead of the air vented to the positive electrode chamber. The amount of power generation reached 200 W / m 3 in one week after the start of liquid flow, and remained at 200 to 220 W / m 3 over the next three weeks.
- Example 3 In the same configuration as in Example 1, a part of the exhaust gas from the negative electrode chamber was vented at 0.05 L / min together with air 0.2 L / min in the positive electrode chamber. The amount of power generation reached 320 W / m 3 in one week after the start of liquid flow, and remained at 280 to 320 W / m 3 over the next three weeks.
- Example 4 In the same configuration as in Example 1, the nitrogen gas was vented to the negative electrode chamber every 6 hours for 10 minutes and 0.6 L / min (air flow LV 50 m / hr). The amount of power generation reached 180 W / m 3 in one week after the start of liquid flow, and remained at 170 to 200 W / m 3 over the next three weeks.
- the performance degradation caused by the permeation of oxygen from the positive electrode chamber to the negative electrode chamber is suppressed, and a higher power generation amount can be achieved over a long period of time. It was recognized that it would be obtained across.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Manufacturing & Machinery (AREA)
- Microbiology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Biochemistry (AREA)
- Fuel Cell (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
負極6を有し、微生物及び電子供与体を含む液を保持する負極室4と、該負極室4に対し多孔性非導電性膜2を介して隔てられており、該多孔性非導電性膜2に接するエアーカソードを有する正極室3とを備えた微生物発電装置において、負極室4に窒素ガスを供給する手段を備えたことを特徴とする微生物発電装置。
Description
本発明は、微生物の代謝反応を利用する発電装置に関する。本発明は特に、有機物を微生物に酸化分解させる際に得られる還元力を電気エネルギーとして取り出す微生物発電装置及び方法に関する。
微生物を用いた発電装置として、特許文献1には、正極室と負極室とを区画する電解質膜に接するように、正極板として多孔質体を設置し、正極室に空気を流通させ、多孔質体の空隙中で空気と液とを接触させるものが記載されている。なお、以下、このように正極室内に空気等の酸素含有ガスを流通させ、酸素を電子受容体として利用する正極を「エアーカソード」と称す場合がある。
エアーカソードを用いる微生物発電装置であれば、カソード液が不要で、また、正極室に単に酸素含有ガスを流通させるのみで良く、カソード液中への曝気の必要がないといった利点がある。
特許文献2には、正極室と負極室を区隔するイオン透過性膜として、非導電性物質よりなる紙、織布、不織布、ハニカム成形体、または格子状成形体を用いた微生物発電装置が記載されている。このような多孔性の非導電性膜は、イオン交換膜に比べて安価である。
特許文献3には、正極室に供給される酸素含有ガスに炭酸ガスを導入し、酸性ガスによるイオン透過性非導電性膜のpH中和作用でNa+,K+イオンの移動を促進し、これにより、発電効率を向上させることが記載されている。
多孔性の非導電性膜ではガスの透過を完全には抑制できないため、エアカソードを用いた微生物発電装置では、正極室から酸素の一部が多孔性非導電性膜を透過する。これにより、負極の絶対電位が上昇して起電力が低下してしまうとともに、負極室で有機物の好気分解が起こり、膜および負極表面に好気性スライムが増殖することで内部抵抗が増加して、取り出せる電気エネルギーがさらに減少してしまうという問題があった。
本発明は、エアカソードを用いた微生物発電装置において、正極室から負極室に酸素が浸透することにより生ずる性能低下を抑制して、より高い発電量が得られる微生物発電装置を提供することを目的とする。
本発明の微生物発電装置は、負極を有し、微生物及び電子供与体を含む液を保持する負極室と、該負極室に対し多孔性の非導電性膜を介して隔てられており、該非導電性膜に接するエアーカソードを有する正極室とを備えた微生物発電装置において、前記負極室に非酸化性ガスを供給する非酸化性ガス供給手段を備えたことを特徴とする。
本発明の一態様では、前記非酸化性ガスは窒素ガスである。
本発明の一態様では、前記窒素ガスを空気より生成させる窒素ガス生成手段を備えている。
本発明の一態様では、前記窒素ガス生成手段により空気より窒素ガスを生成した際に発生する酸素富化ガスの少なくとも一部を前記正極室に供給する手段を備えている。
本発明の一態様では、前記負極室の排ガスの少なくとも一部を前記正極室に供給する負極排ガス移送手段を備えている。
本発明の微生物発電装置の運転方法は、負極を有し、微生物及び電子供与体を含む液を保持する負極室と、該負極室に対し多孔性非導電性膜を介して隔てられており、該多孔性非導電性膜に接するエアーカソードを有する正極室とを備えた微生物発電装置を運転する方法において、前記負極室に連続的に又は間欠的に非酸化性ガスを供給することを特徴とする。
本発明では、負極室に非酸化性ガスを供給することにより、正極室から負極室に浸透した酸素を除去することができ、負極の絶対電位の上昇、好気性スライムの増殖を抑制することができる。また、負極室を曝気することで、負極表面への過剰な菌体付着(基質との接触効率低下や負極室の閉塞に繋がる)の防止、電子供与体である有機物の酸化に伴い生成する炭酸によるpH低下の防止(脱炭酸)等の効果も奏される。
以下、図1を参照して本発明の微生物発電装置の実施の形態を詳細に説明する。図1は本発明の微生物発電装置の概略的な構成を示す模式的断面図である。
この微生物発電装置にあっては、槽体1内が多孔性非導電性膜2によって正極室3と負極室4とに区画されている。正極室3内には、多孔性非導電性膜2に接するように正極5が配置されている。
負極室4内には、導電性多孔質材料よりなる負極6が配置されている。この負極6は、多孔性非導電性膜2に、直に、又は1~2層程度の微生物の膜を介して接している。
正極室3内は、空室であり、ガス供給配管23及びガス流入口7から酸素含有ガス(本実施の形態においては、空気)が導入され、ガス流出口8から排出配管25を経て排ガスが流出する。なお、図1ではガス流入口7が下側に図示され、ガス流出口8が上側に図示されているが、これに限定されず、ガス流入口7を上側にし、ガス流出口8を下側にしてもよい。
多孔質材料よりなる負極6に微生物が担持されている。負極室4には注入管30及び流入口4aから負極溶液Lを導入し、流出口4b及び流出管31から排液を排出させる。なお、負極室4内は嫌気性とされる。
この実施の形態では、流出管31へ流出した負極排液は、気液分離器32に導入され、分離された液は排液管33へ流出する。分離されたガス(負極室排ガス)の一部又は全部は、配管34を介して酸素含有ガス供給配管23に供給される。
また、この実施の形態では、PSA、VPSA、ガス分離膜装置などの窒素ガス生成器40が設置されており、窒素ガス生成器40で空気から分離されて生成した窒素ガスが配管41を介して負極溶液の流入管30に供給される。なお配管41は窒素ガスを負極室4に直に供給するように負極室4の下部に接続されてもよい。窒素ガスは、負極室4に連続的に供給されるのが好ましいが、間欠的に供給されてもよい。
窒素ガス生成器40で生成した酸素富化ガスは、配管42を介して酸素含有ガス供給配管23に供給される。なお、配管42は正極室3に接続されてもよい。
この微生物発電装置においては、負極室4内の負極溶液Lは循環往口9、循環配管10、循環用ポンプ11及び循環戻口12を介して循環される。この循環配管10には、負極室4から流出してきた液のpHを測定するpH計14が設けられると共に、薬液添加配管13が接続されており、負極溶液LのpHが7~9となるように、必要に応じて水酸化ナトリウム水溶液などのアルカリや、塩酸、硫酸水溶液などの酸が添加される。
正極室3内で生じた凝縮水は、図示しない凝縮水流出口から排水される。
正極5と負極6との間に生じた起電力により、端子20,22を介して外部抵抗21に電流が流れる。
正極室3に、空気などの酸素含有ガスを通気すると共に、必要に応じポンプ11を作動させて負極溶液Lを循環させることにより、負極室4内では、
(有機物)+H2O→CO2+H++e-
なる反応が進行する。この電子e-が負極6、端子22、外部抵抗21、端子20を経て正極5へ流れる。
(有機物)+H2O→CO2+H++e-
なる反応が進行する。この電子e-が負極6、端子22、外部抵抗21、端子20を経て正極5へ流れる。
上記反応で生じたプロトンH+は、多孔性非導電性膜2を通って正極5に移動する。正極5では、
O2+4H++4e-→2H2O
なる反応が進行する。
O2+4H++4e-→2H2O
なる反応が進行する。
負極室4では、微生物による有機物の分解反応によりCO2が生成することにより、pHが変化しようとする。そこで、pH計14の検出pHが好ましくは7~9となるようにアルカリおよび/または酸が負極溶液Lに添加される。このアルカリおよび/または酸は、負極室4に直接に添加されてもよいが、循環水に添加することにより、負極室4内の全域を部分的な偏りなしにpH7~9に保つことができる。
この実施の形態では負極室4に窒素ガスを下部から供給することにより、正極室3から負極室4に浸透した酸素を除去することができ、負極6の絶対電位の上昇、好気性スライムの増殖を抑制することができる。また、負極室4を曝気することで、負極6表面への過剰な菌体付着(基質との接触効率低下や負極室の閉塞に繋がる)の防止、電子供与体である有機物の酸化に伴い生成する炭酸によるpH低下の防止(脱炭酸)等の効果も奏される。
窒素ガスの通気量は負極室4のガスLVとして0.5~80m/hr、特に8~30m/hrが好ましい。少なすぎると、溶存酸素の除去効果が乏しく、多すぎると菌体が過剰に剥離してしまい、発電量が低下する。
負極室4を曝気する窒素ガスは、PSA、VPSA、ガス分離膜装置などの窒素ガス生成器40を用いて空気から生成させるのが好ましい。この実施の形態では、その際発生する酸素富化ガスの一部または全部を正極室3に供給して正極室の酸素濃度を高めることにより、正極室3での酸素還元反応速度が上昇して、発電量をさらに高めることができる。
負極室4を窒素ガスで曝気した際に排出されるガスには、有機物の酸化に伴い生成した炭酸が含まれているため、この排ガスの一部または全部を正極室に通気することで、アルカリ性となる正極室3のpHが中和される。これにより、多孔性非導電性膜2のNa+,K+イオンの移動が促進され、発電効率がさらに向上する。
この実施の形態では非酸化性ガスとして窒素ガスを用いているが、窒素ガス以外の非酸化性ガスを用いてもよく、窒素と窒素以外の非酸化性ガスとの混合ガスを用いてもよい。
多孔性膜は、負極室に保持される微生物及び電子供与体を含む液と接しており、液中のイオンを効率よくエアカソードに透過させるため、親水性(水に濡れやすい、水滴をつくらない、はじかない)を有することが望ましい。例えば、ポリオレフィン、ガラス、シリカなどの水の接触角90°以下の物質でつくられた紙、織布又は不織布や、上記物質で表面加工された膜(紙、織布又は不織布)が好ましい。
紙、織布、不織布を構成する非導電性材料としては、具体的には、ポリエチレン、ポリプロピレン、ポリカーボネイト、ポリエーテルサルホン(PES)、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリビニルアルコール(PVA)、セルロース、酢酸セルロース等が好適である。プロトンを透過させ易くするために、多孔性非導電性膜は厚さが10μm~1000μm特に25~100μm程度の薄いものが好ましい。
次に、この微生物発電装置の微生物、負極溶液などのほか、負極及び正極の好適な材料等について説明する。
負極溶液L中に含有させることで電気エネルギーを産生させる微生物は、電子供与体としての機能を有するものであれば特に制限されない。例えば、Saccharomyces、Hansenula、Candida、Micrococcus、Staphylococcus、Streptococcus、Leuconostoa、Lactobacillus、Corynebacterium、Arthrobacter、Bacillus、Clostridium、Neisseria、Escherichia、Enterobacter、Serratia、Achromobacter、Alcaligenes、Flavobacterium、Acetobacter、Moraxella、Nitrosomonas、Nitorobacter、Thiobacillus、Gluconobacter、Pseudomonas、Xanthomonas、Vibrio、Comamonas及びProteus(Proteus vulgaris)の各属に属する細菌、糸状菌、酵母などを挙げることができる。このような微生物を含む汚泥として下水等の有機物含有水を処理する生物処理槽から得られる活性汚泥、下水の最初沈澱池からの流出水に含まれる微生物、嫌気性消化汚泥等を植種として負極室に供給し、微生物を負極に保持させることができる。発電効率を高くするためには、負極室内に保持される微生物量は高濃度であることが好ましく、例えば微生物濃度は1~50g/Lであることが好ましい。
負極溶液Lとしては、微生物又は細胞を保持し、かつ発電に必要な組成を有する溶液が用いられる。例えば、呼吸系の発電を行う場合は、負極側の溶液としては、ブイヨン培地、M9培地、L培地、Malt Extract、MY培地、硝化菌選択培地などの呼吸系の代謝を行うのに必要なエネルギー源や栄養素などの組成を有する培地が利用できる。また、下水、有機性産業排水、生ごみ等の有機性廃棄物を用いることができる。
負極溶液L中には、微生物又は細胞からの電子の引き抜きをより容易とするために電子メディエーターを含有させてもよい。この電子メディエーターとしては、例えば、チオニン、ジメチルジスルホン化チオニン、ニューメチレンブルー、トルイジンブルー-O等のチオニン骨格を有する化合物、2-ヒドロキシ-1,4-ナフトキノン等の2-ヒドロキシ-1,4-ナフトキノン骨格を有する化合物、ブリリアントクレジルブルー、ガロシアニン、レソルフィン、アリザリンブリリアントブルー、フェノチアジノン、フェナジンエソスルフェート、サフラニン-O、ジクロロフェノールインドフェノール、フェロセン、ベンゾキノン、フタロシアニン、あるいはベンジルビオローゲン及びこれらの誘導体などを挙げることができる。
微生物の発電機能を増大させるような材料、例えばビタミンCのような抗酸化剤や、微生物中の特定の電子伝達系や物質伝達系のみを働かせる機能増大材料を溶解すると、さらに効率よく電力を得ることができるので好ましい。
負極溶液Lは、必要に応じ、リン酸バッファを含有していてもよい。
負極溶液Lは有機物を含むものである。この有機物としては、微生物によって分解されるものであれば特に制限はなく、例えば水溶性の有機物、水中に分散する有機物微粒子などが用いられる。負極溶液は、下水、食品工場排水などの有機性廃水であってもよい。負極溶液L中の有機物濃度は、発電効率を高くするために100~10000mg/L程度の高濃度であることが好ましい。
負極は、多くの微生物を保持できるよう、表面積が大きく空隙が多く形成され通水性を有する多孔体が好ましい。具体的には、少なくとも表面が粗とされた導電性物質のシートや導電性物質をフェルト状その他の多孔性シートにした多孔性導電体(例えばグラファイトフェルト、発泡チタン、発泡ステンレス等)が挙げられる。
このような多孔質の負極を直接に又は微生物層を介して多孔性非導電性膜に当接させた場合、電子メディエータを用いることなく、微生物反応で生じた電子が負極に渡るようになり、電子メディエータを不要とすることができる。
複数のシート状導電体を積層して負極としてもよい。この場合、同種の導電体シートを積層してもよく、異なる種類の導電体シート同士(例えばグラファイトフェルトと粗面を有するグラファイトシート)を積層してもよい。
負極は全体の厚さが3mm以上40mm以下、特に5~20mm程度であることが好ましい。積層シートによって負極を構成した場合、シート同士の合わせ面(積層面)に沿って液が流れるように、積層面を液の流入口と流出口とを結ぶ方向に配向させるのが好ましい。
正極は、導電性基材と、該導電性基材に担持された酸素還元触媒とを有することが好ましい。
導電性基材としては、導電性が高く、耐食性が高く、厚みが薄くても十分な導電性と耐食性、更には導電性基材としての機械的強度を有するものであれば良く、特に制限はないが、グラファイトペーパー、グラファイトフェルト、グラファイトクロス、ステンレスメッシュ、チタンメッシュ等を用いることができ、これらのうち、特に耐久性と加工のしやすさ等の点から、グラファイトペーパー、グラファイトフェルト、グラファイトクロス等のグラファイト系基材が好ましく、とりわけグラファイトペーパーが好ましい。なお、これらのグラファイト系基材はポリテトラフルオロエチレン(PTFE)等のフッ素樹脂によって疎水化されたものであっても良い。
正極の導電性基材の厚さは、厚過ぎると酸素の透過が悪くなり、薄過ぎると、基材に必要な強度等の要求特性を満たすことができないことから、20~3000μm程度であることが好ましい。
酸素還元触媒としては、白金等の貴金属のほか、安価で且つ触媒活性が良好であるところから、二酸化マンガン等の金属酸化物、活性炭などのカーボン系材料が好適であり、その担持量は、0.01~2.0mg/cm2程度とすることが好ましい。
以下、比較例及び実施例について説明する。
[比較例1]
7cm×25cm×2cm(厚さ)の負極室に、厚さ1cmのグラファイトフェルトを2枚重ねて充填して負極を形成した。この負極に対して、厚さ30μmの不織布(ガーレ値1,200sec/100mL)を介して正極室を形成した。正極室は7cm×25cm×0.5cm(厚さ)であり、PTFEで撥水処理した厚さ160μmのカーボンペーパーに、Pt触媒担持カーボンブラック(Pt含有量50重量%)を5重量%ナフィオン(登録商標)溶液(デュポン社製)に分散させた液を、付着量が0.4mg/cm2となるように塗布し、50℃で乾燥させて得られたものを正極として、上記膜と密着させた。負極のグラファイトフェルトと正極のカーボンペーパーには、ステンレス線を導電性ペーストで接着して電気引出し線とし、5Ωの抵抗で接続した。
7cm×25cm×2cm(厚さ)の負極室に、厚さ1cmのグラファイトフェルトを2枚重ねて充填して負極を形成した。この負極に対して、厚さ30μmの不織布(ガーレ値1,200sec/100mL)を介して正極室を形成した。正極室は7cm×25cm×0.5cm(厚さ)であり、PTFEで撥水処理した厚さ160μmのカーボンペーパーに、Pt触媒担持カーボンブラック(Pt含有量50重量%)を5重量%ナフィオン(登録商標)溶液(デュポン社製)に分散させた液を、付着量が0.4mg/cm2となるように塗布し、50℃で乾燥させて得られたものを正極として、上記膜と密着させた。負極のグラファイトフェルトと正極のカーボンペーパーには、ステンレス線を導電性ペーストで接着して電気引出し線とし、5Ωの抵抗で接続した。
負極室には、pHを7.5に維持し、酢酸1,000mg/Lとリン酸及びアンモニアを含む負極溶液を通液した。この負極溶液は予め、別水槽で35℃に加温してから負極室へ10mL/minで通液することにより、負極室の温度を35℃に加温した。なお、負極溶液の通液に先立って、他の微生物発電装置の流出液を植菌として通液した。正極室には、常温の空気を0.2L/minの流量で通気した。
発電量は、通液開始後1週間で150W/m3-負極室容積に達し、以後5日間140~160W/m3で推移したが、その後5日間で20W/m3まで低下した。電流効率が7日目の60%から15日目には23%に低下しており、負極で発電に関与しない好気的な酢酸の分解が優先して発電量が低下したと考えられた。
[実施例1]
比較例1と同じ構成で、さらにPSA式窒素ガス生成装置により生成した窒素ガス(純度99%)を負極室に0.2L/min(通気LV17m/hr)で通気した。発電量は、通液開始後1週間で180W/m3に達し、以後3週間に渡り180~200W/m3で推移した。電流効率は70%台で推移しており、負極への酸素混入による性能低下が抑制された。
比較例1と同じ構成で、さらにPSA式窒素ガス生成装置により生成した窒素ガス(純度99%)を負極室に0.2L/min(通気LV17m/hr)で通気した。発電量は、通液開始後1週間で180W/m3に達し、以後3週間に渡り180~200W/m3で推移した。電流効率は70%台で推移しており、負極への酸素混入による性能低下が抑制された。
[実施例2]
実施例1と同じ構成において、正極室に通気する空気の代わりにPSA式窒素ガス生成装置の排気ガス(酸素濃度30%)を0.2L/minで通気した。発電量は、通液開始後1週間で200W/m3に達し、以後3週間に渡り200~220W/m3で推移した。
実施例1と同じ構成において、正極室に通気する空気の代わりにPSA式窒素ガス生成装置の排気ガス(酸素濃度30%)を0.2L/minで通気した。発電量は、通液開始後1週間で200W/m3に達し、以後3週間に渡り200~220W/m3で推移した。
[実施例3]
実施例1と同じ構成において、正極室に空気0.2L/minとともに、負極室からの排気の一部を0.05L/minで通気した。発電量は、通液開始後1週間で320W/m3に達し、以後3週間に渡り280~320W/m3で推移した。
実施例1と同じ構成において、正極室に空気0.2L/minとともに、負極室からの排気の一部を0.05L/minで通気した。発電量は、通液開始後1週間で320W/m3に達し、以後3週間に渡り280~320W/m3で推移した。
[実施例4]
実施例1と同じ構成で、窒素ガスの負極室への通気を6時間おきに10分間、0.6L/min(通気LV50m/hr)とした。発電量は、通液開始後1週間で180W/m3に達し、以後3週間に渡り170~200W/m3で推移した。
実施例1と同じ構成で、窒素ガスの負極室への通気を6時間おきに10分間、0.6L/min(通気LV50m/hr)とした。発電量は、通液開始後1週間で180W/m3に達し、以後3週間に渡り170~200W/m3で推移した。
以上の比較例及び実施例より、本発明によって、エアーカソードを用いた微生物発電装置において、正極室から負極室に酸素が浸透することにより生ずる性能低下を抑制し、より高い発電量を長期間に渡って得られるようになることが認められた。
本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
本出願は、2018年3月8日付で出願された日本特許出願2018-041999に基づいており、その全体が引用により援用される。
本出願は、2018年3月8日付で出願された日本特許出願2018-041999に基づいており、その全体が引用により援用される。
1 槽体
2 多孔性非導電性膜
3 正極室
4 負極室
5 正極
6 負極
40 窒素ガス生成器
2 多孔性非導電性膜
3 正極室
4 負極室
5 正極
6 負極
40 窒素ガス生成器
Claims (8)
- 負極を有し、微生物及び電子供与体を含む液を保持する負極室と、該負極室に対し多孔性非導電性膜を介して隔てられており、該多孔性非導電性膜に接するエアーカソードを有する正極室とを備えた微生物発電装置において、前記負極室に非酸化性ガスを供給する非酸化性ガス供給手段を備えたことを特徴とする微生物発電装置。
- 前記非酸化性ガスは窒素ガスであることを特徴とする請求項1の微生物発電装置。
- 前記窒素ガスを空気より生成させる窒素ガス生成手段を備えていることを特徴とする請求項2記載の微生物発電装置。
- 前記窒素ガス生成手段により空気より窒素ガスを生成した際に発生する酸素富化ガスの少なくとも一部を前記正極室に供給する手段を備えていることを特徴とする請求項3記載のいずれかの微生物発電装置。
- 前記負極室の排ガスの少なくとも一部を前記正極室に供給する負極排ガス移送手段を備えていることを特徴とする請求項1~4のいずれかの微生物発電装置。
- 負極を有し、微生物及び電子供与体を含む液を保持する負極室と、該負極室に対し多孔性非導電性膜を介して隔てられており、該多孔性非導電性膜に接するエアーカソードを有する正極室とを備えた微生物発電装置を運転する方法において、前記負極室に連続的に又は間欠的に非酸化性ガスを供給することを特徴とする微生物発電装置の運転方法。
- 前記負極室に前記非酸化性ガスをLV(線速度)0.5~80m/hrで供給することを特徴とする微生物発電装置の運転方法。
- 前記多孔性非導電性膜が紙、織布、不織布のいずれかであることを特徴とする請求項1~5のいずれかの微生物発電装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-041999 | 2018-03-08 | ||
JP2018041999A JP6890560B2 (ja) | 2018-03-08 | 2018-03-08 | 微生物発電装置及び方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019171833A1 true WO2019171833A1 (ja) | 2019-09-12 |
Family
ID=67846093
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/003094 WO2019171833A1 (ja) | 2018-03-08 | 2019-01-30 | 微生物発電装置及び方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6890560B2 (ja) |
TW (1) | TW201939801A (ja) |
WO (1) | WO2019171833A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021109125A (ja) * | 2020-01-08 | 2021-08-02 | 住友重機械工業株式会社 | 排水処理装置、電極及び排水処理方法 |
JP7404080B2 (ja) * | 2020-01-17 | 2023-12-25 | 住友重機械工業株式会社 | 排水処理装置及び排水処理方法並びに処理システム |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000067891A (ja) * | 1998-08-24 | 2000-03-03 | Tokyo Gas Co Ltd | 燃料電池発電システム |
JP2008288198A (ja) * | 2007-05-18 | 2008-11-27 | Toyota Motor Engineering & Manufacturing North America Inc | 微生物燃料電池 |
JP2010153115A (ja) * | 2008-12-24 | 2010-07-08 | Kurita Water Ind Ltd | 微生物発電方法及び微生物発電装置 |
JP2016122615A (ja) * | 2014-12-25 | 2016-07-07 | 国立大学法人 熊本大学 | 微生物燃料電池 |
-
2018
- 2018-03-08 JP JP2018041999A patent/JP6890560B2/ja active Active
-
2019
- 2019-01-30 WO PCT/JP2019/003094 patent/WO2019171833A1/ja active Application Filing
- 2019-02-13 TW TW108104678A patent/TW201939801A/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000067891A (ja) * | 1998-08-24 | 2000-03-03 | Tokyo Gas Co Ltd | 燃料電池発電システム |
JP2008288198A (ja) * | 2007-05-18 | 2008-11-27 | Toyota Motor Engineering & Manufacturing North America Inc | 微生物燃料電池 |
JP2010153115A (ja) * | 2008-12-24 | 2010-07-08 | Kurita Water Ind Ltd | 微生物発電方法及び微生物発電装置 |
JP2016122615A (ja) * | 2014-12-25 | 2016-07-07 | 国立大学法人 熊本大学 | 微生物燃料電池 |
Also Published As
Publication number | Publication date |
---|---|
JP6890560B2 (ja) | 2021-06-18 |
TW201939801A (zh) | 2019-10-01 |
JP2019160458A (ja) | 2019-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5298589B2 (ja) | 微生物発電装置 | |
JP5428328B2 (ja) | 微生物発電方法及び微生物発電装置 | |
JP5407156B2 (ja) | 微生物発電方法および微生物発電装置 | |
JP5526505B2 (ja) | 微生物発電装置 | |
JP2011065875A (ja) | 微生物発電装置 | |
WO2019181281A1 (ja) | 微生物発電装置及びその運転方法 | |
JP2009295488A (ja) | 微生物発電装置及び微生物発電装置用正極 | |
WO2019171833A1 (ja) | 微生物発電装置及び方法 | |
JP2010033824A (ja) | 微生物発電装置 | |
JP6252702B1 (ja) | 微生物発電方法及び装置 | |
JP5359725B2 (ja) | 微生物発電方法及び微生物発電装置 | |
WO2010071059A1 (ja) | 微生物発電方法及び微生物発電装置 | |
JP6358352B1 (ja) | 微生物発電装置及び微生物発電方法 | |
JP5287149B2 (ja) | 微生物発電方法及び微生物発電装置 | |
JP2011065822A (ja) | 微生物発電装置及びその作製方法 | |
JP2010102953A (ja) | 微生物発電装置及び微生物発電装置用正極 | |
JP5369700B2 (ja) | 微生物発電方法及び微生物発電装置 | |
JP2019160459A (ja) | 微生物発電装置の運転方法 | |
WO2019181280A1 (ja) | 殺菌剤を用いる微生物発電装置及び微生物発電装置の運転方法 | |
JP2010009772A (ja) | 微生物発電装置及びその製作方法 | |
JP2020163328A (ja) | 有機性排水の生物処理システム及び生物処理方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19764503 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19764503 Country of ref document: EP Kind code of ref document: A1 |