WO2018169088A1 - 接触酸化方法及び共役ジエンの製造方法 - Google Patents
接触酸化方法及び共役ジエンの製造方法 Download PDFInfo
- Publication number
- WO2018169088A1 WO2018169088A1 PCT/JP2018/010639 JP2018010639W WO2018169088A1 WO 2018169088 A1 WO2018169088 A1 WO 2018169088A1 JP 2018010639 W JP2018010639 W JP 2018010639W WO 2018169088 A1 WO2018169088 A1 WO 2018169088A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- molybdenum
- composite oxide
- oxide catalyst
- compound
- reaction
- Prior art date
Links
- 238000007254 oxidation reaction Methods 0.000 title claims abstract description 75
- 230000003197 catalytic effect Effects 0.000 title claims abstract description 57
- 238000000034 method Methods 0.000 title claims abstract description 54
- 230000003647 oxidation Effects 0.000 title claims abstract description 32
- 238000004519 manufacturing process Methods 0.000 title claims description 32
- 150000001993 dienes Chemical class 0.000 title claims description 20
- 239000003054 catalyst Substances 0.000 claims abstract description 195
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 179
- 239000011733 molybdenum Substances 0.000 claims abstract description 179
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 179
- 239000002131 composite material Substances 0.000 claims abstract description 122
- 238000006243 chemical reaction Methods 0.000 claims description 117
- 239000005078 molybdenum compound Substances 0.000 claims description 106
- 150000002752 molybdenum compounds Chemical class 0.000 claims description 106
- 239000002994 raw material Substances 0.000 claims description 45
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 36
- 238000005839 oxidative dehydrogenation reaction Methods 0.000 claims description 29
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 claims description 24
- 239000007795 chemical reaction product Substances 0.000 claims description 24
- 125000004432 carbon atom Chemical group C* 0.000 claims description 16
- 150000002894 organic compounds Chemical class 0.000 claims description 13
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims description 13
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 claims description 13
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 11
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 11
- 150000005673 monoalkenes Chemical class 0.000 claims description 10
- 229910000476 molybdenum oxide Inorganic materials 0.000 claims description 7
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 claims description 7
- 239000007789 gas Substances 0.000 abstract description 72
- 150000001875 compounds Chemical class 0.000 abstract description 64
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 abstract description 13
- 229910001882 dioxygen Inorganic materials 0.000 abstract description 13
- 230000015556 catabolic process Effects 0.000 abstract 1
- 239000007805 chemical reaction reactant Substances 0.000 abstract 1
- 238000006731 degradation reaction Methods 0.000 abstract 1
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 36
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 26
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 25
- 230000000694 effects Effects 0.000 description 23
- 239000000047 product Substances 0.000 description 20
- 238000010438 heat treatment Methods 0.000 description 19
- 239000007864 aqueous solution Substances 0.000 description 16
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 13
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 13
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 13
- 230000007423 decrease Effects 0.000 description 13
- 239000000203 mixture Substances 0.000 description 13
- 239000012071 phase Substances 0.000 description 13
- 229910052797 bismuth Inorganic materials 0.000 description 12
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 12
- 239000000377 silicon dioxide Substances 0.000 description 12
- 230000032683 aging Effects 0.000 description 11
- 239000007787 solid Substances 0.000 description 11
- 238000001035 drying Methods 0.000 description 10
- 239000002002 slurry Substances 0.000 description 10
- 239000011734 sodium Substances 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 239000011521 glass Substances 0.000 description 9
- -1 unsaturated aliphatic aldehydes Chemical class 0.000 description 9
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 8
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 8
- 239000012018 catalyst precursor Substances 0.000 description 8
- 239000006185 dispersion Substances 0.000 description 8
- 239000012535 impurity Substances 0.000 description 8
- 150000001336 alkenes Chemical class 0.000 description 7
- 229910052700 potassium Inorganic materials 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 229910052708 sodium Inorganic materials 0.000 description 7
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 6
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 6
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 6
- 229910052792 caesium Inorganic materials 0.000 description 6
- 239000011575 calcium Substances 0.000 description 6
- 229910017052 cobalt Inorganic materials 0.000 description 6
- 239000010941 cobalt Substances 0.000 description 6
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 6
- 229930195733 hydrocarbon Natural products 0.000 description 6
- 150000002430 hydrocarbons Chemical class 0.000 description 6
- 239000011777 magnesium Substances 0.000 description 6
- 239000011591 potassium Substances 0.000 description 6
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 6
- 229910052701 rubidium Inorganic materials 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 5
- 239000003125 aqueous solvent Substances 0.000 description 5
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 5
- 229910052791 calcium Inorganic materials 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- 229910052749 magnesium Inorganic materials 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 4
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 4
- 229910002651 NO3 Inorganic materials 0.000 description 4
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 229910052783 alkali metal Inorganic materials 0.000 description 4
- 150000001340 alkali metals Chemical class 0.000 description 4
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 4
- 150000001342 alkaline earth metals Chemical class 0.000 description 4
- 239000001099 ammonium carbonate Substances 0.000 description 4
- 235000011114 ammonium hydroxide Nutrition 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 229910052785 arsenic Inorganic materials 0.000 description 4
- KDKYADYSIPSCCQ-UHFFFAOYSA-N but-1-yne Chemical group CCC#C KDKYADYSIPSCCQ-UHFFFAOYSA-N 0.000 description 4
- XNMQEEKYCVKGBD-UHFFFAOYSA-N dimethylacetylene Natural products CC#CC XNMQEEKYCVKGBD-UHFFFAOYSA-N 0.000 description 4
- 238000011049 filling Methods 0.000 description 4
- 238000009616 inductively coupled plasma Methods 0.000 description 4
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(3+);trinitrate Chemical compound [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 description 4
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 4
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000001294 propane Substances 0.000 description 4
- 239000012808 vapor phase Substances 0.000 description 4
- 229910052684 Cerium Inorganic materials 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- 229910052772 Samarium Inorganic materials 0.000 description 3
- YVBOZGOAVJZITM-UHFFFAOYSA-P ammonium phosphomolybdate Chemical compound [NH4+].[NH4+].[NH4+].[NH4+].[O-]P([O-])=O.[O-][Mo]([O-])(=O)=O YVBOZGOAVJZITM-UHFFFAOYSA-P 0.000 description 3
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 150000001622 bismuth compounds Chemical class 0.000 description 3
- 238000004939 coking Methods 0.000 description 3
- RXPAJWPEYBDXOG-UHFFFAOYSA-N hydron;methyl 4-methoxypyridine-2-carboxylate;chloride Chemical compound Cl.COC(=O)C1=CC(OC)=CC=N1 RXPAJWPEYBDXOG-UHFFFAOYSA-N 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 239000004323 potassium nitrate Substances 0.000 description 3
- 235000010333 potassium nitrate Nutrition 0.000 description 3
- 238000011069 regeneration method Methods 0.000 description 3
- 229910000029 sodium carbonate Inorganic materials 0.000 description 3
- 235000017550 sodium carbonate Nutrition 0.000 description 3
- 229910052716 thallium Inorganic materials 0.000 description 3
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- BYUANIDVEAKBHT-UHFFFAOYSA-N [Mo].[Bi] Chemical compound [Mo].[Bi] BYUANIDVEAKBHT-UHFFFAOYSA-N 0.000 description 2
- 150000000475 acetylene derivatives Chemical class 0.000 description 2
- 230000003679 aging effect Effects 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 2
- 235000012501 ammonium carbonate Nutrition 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 229910021538 borax Inorganic materials 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- QNRMTGGDHLBXQZ-UHFFFAOYSA-N buta-1,2-diene Chemical compound CC=C=C QNRMTGGDHLBXQZ-UHFFFAOYSA-N 0.000 description 2
- WFYPICNXBKQZGB-UHFFFAOYSA-N butenyne Chemical group C=CC#C WFYPICNXBKQZGB-UHFFFAOYSA-N 0.000 description 2
- NLSCHDZTHVNDCP-UHFFFAOYSA-N caesium nitrate Chemical compound [Cs+].[O-][N+]([O-])=O NLSCHDZTHVNDCP-UHFFFAOYSA-N 0.000 description 2
- FLJPGEWQYJVDPF-UHFFFAOYSA-L caesium sulfate Chemical compound [Cs+].[Cs+].[O-]S([O-])(=O)=O FLJPGEWQYJVDPF-UHFFFAOYSA-L 0.000 description 2
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 2
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium(3+);trinitrate Chemical compound [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 description 2
- 150000001869 cobalt compounds Chemical class 0.000 description 2
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 2
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 238000006356 dehydrogenation reaction Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 229910017053 inorganic salt Inorganic materials 0.000 description 2
- 150000002506 iron compounds Chemical class 0.000 description 2
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- VLAPMBHFAWRUQP-UHFFFAOYSA-L molybdic acid Chemical compound O[Mo](O)(=O)=O VLAPMBHFAWRUQP-UHFFFAOYSA-L 0.000 description 2
- 150000002816 nickel compounds Chemical class 0.000 description 2
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- DHRLEVQXOMLTIM-UHFFFAOYSA-N phosphoric acid;trioxomolybdenum Chemical compound O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.OP(O)(O)=O DHRLEVQXOMLTIM-UHFFFAOYSA-N 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Substances [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- MWWATHDPGQKSAR-UHFFFAOYSA-N propyne Chemical group CC#C MWWATHDPGQKSAR-UHFFFAOYSA-N 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- FGDZQCVHDSGLHJ-UHFFFAOYSA-M rubidium chloride Chemical compound [Cl-].[Rb+] FGDZQCVHDSGLHJ-UHFFFAOYSA-M 0.000 description 2
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 2
- 229930195734 saturated hydrocarbon Natural products 0.000 description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- 235000002639 sodium chloride Nutrition 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- 239000004328 sodium tetraborate Substances 0.000 description 2
- 235000010339 sodium tetraborate Nutrition 0.000 description 2
- 239000011343 solid material Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten trioxide Chemical compound O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 description 2
- PKQYSCBUFZOAPE-UHFFFAOYSA-N 1,2-dibenzyl-3-methylbenzene Chemical compound C=1C=CC=CC=1CC=1C(C)=CC=CC=1CC1=CC=CC=C1 PKQYSCBUFZOAPE-UHFFFAOYSA-N 0.000 description 1
- BKOOMYPCSUNDGP-UHFFFAOYSA-N 2-methylbut-2-ene Chemical compound CC=C(C)C BKOOMYPCSUNDGP-UHFFFAOYSA-N 0.000 description 1
- JMMZCWZIJXAGKW-UHFFFAOYSA-N 2-methylpent-2-ene Chemical compound CCC=C(C)C JMMZCWZIJXAGKW-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 239000004254 Ammonium phosphate Substances 0.000 description 1
- 229910000014 Bismuth subcarbonate Inorganic materials 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- STNJBCKSHOAVAJ-UHFFFAOYSA-N Methacrolein Chemical compound CC(=C)C=O STNJBCKSHOAVAJ-UHFFFAOYSA-N 0.000 description 1
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 1
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- FMRLDPWIRHBCCC-UHFFFAOYSA-L Zinc carbonate Chemical compound [Zn+2].[O-]C([O-])=O FMRLDPWIRHBCCC-UHFFFAOYSA-L 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- MQRWBMAEBQOWAF-UHFFFAOYSA-N acetic acid;nickel Chemical compound [Ni].CC(O)=O.CC(O)=O MQRWBMAEBQOWAF-UHFFFAOYSA-N 0.000 description 1
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 description 1
- 125000005595 acetylacetonate group Chemical group 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000008043 acidic salts Chemical class 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 239000011609 ammonium molybdate Substances 0.000 description 1
- APUPEJJSWDHEBO-UHFFFAOYSA-P ammonium molybdate Chemical compound [NH4+].[NH4+].[O-][Mo]([O-])(=O)=O APUPEJJSWDHEBO-UHFFFAOYSA-P 0.000 description 1
- 235000018660 ammonium molybdate Nutrition 0.000 description 1
- 229940010552 ammonium molybdate Drugs 0.000 description 1
- 229910000148 ammonium phosphate Inorganic materials 0.000 description 1
- 235000019289 ammonium phosphates Nutrition 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 229940036348 bismuth carbonate Drugs 0.000 description 1
- JHXKRIRFYBPWGE-UHFFFAOYSA-K bismuth chloride Chemical compound Cl[Bi](Cl)Cl JHXKRIRFYBPWGE-UHFFFAOYSA-K 0.000 description 1
- 229910000416 bismuth oxide Inorganic materials 0.000 description 1
- MGLUJXPJRXTKJM-UHFFFAOYSA-L bismuth subcarbonate Chemical compound O=[Bi]OC(=O)O[Bi]=O MGLUJXPJRXTKJM-UHFFFAOYSA-L 0.000 description 1
- 229940036358 bismuth subcarbonate Drugs 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- ZOAIGCHJWKDIPJ-UHFFFAOYSA-M caesium acetate Chemical compound [Cs+].CC([O-])=O ZOAIGCHJWKDIPJ-UHFFFAOYSA-M 0.000 description 1
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 description 1
- 229910000024 caesium carbonate Inorganic materials 0.000 description 1
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 1
- VSGNNIFQASZAOI-UHFFFAOYSA-L calcium acetate Chemical compound [Ca+2].CC([O-])=O.CC([O-])=O VSGNNIFQASZAOI-UHFFFAOYSA-L 0.000 description 1
- 239000001639 calcium acetate Substances 0.000 description 1
- 235000011092 calcium acetate Nutrition 0.000 description 1
- 229960005147 calcium acetate Drugs 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- VYLVYHXQOHJDJL-UHFFFAOYSA-K cerium trichloride Chemical compound Cl[Ce](Cl)Cl VYLVYHXQOHJDJL-UHFFFAOYSA-K 0.000 description 1
- VGBWDOLBWVJTRZ-UHFFFAOYSA-K cerium(3+);triacetate Chemical compound [Ce+3].CC([O-])=O.CC([O-])=O.CC([O-])=O VGBWDOLBWVJTRZ-UHFFFAOYSA-K 0.000 description 1
- GHLITDDQOMIBFS-UHFFFAOYSA-H cerium(3+);tricarbonate Chemical compound [Ce+3].[Ce+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O GHLITDDQOMIBFS-UHFFFAOYSA-H 0.000 description 1
- OZECDDHOAMNMQI-UHFFFAOYSA-H cerium(3+);trisulfate Chemical compound [Ce+3].[Ce+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O OZECDDHOAMNMQI-UHFFFAOYSA-H 0.000 description 1
- 238000006757 chemical reactions by type Methods 0.000 description 1
- 229940011182 cobalt acetate Drugs 0.000 description 1
- 229910021446 cobalt carbonate Inorganic materials 0.000 description 1
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 description 1
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 1
- 229940044175 cobalt sulfate Drugs 0.000 description 1
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 1
- ZOTKGJBKKKVBJZ-UHFFFAOYSA-L cobalt(2+);carbonate Chemical compound [Co+2].[O-]C([O-])=O ZOTKGJBKKKVBJZ-UHFFFAOYSA-L 0.000 description 1
- QAHREYKOYSIQPH-UHFFFAOYSA-L cobalt(II) acetate Chemical compound [Co+2].CC([O-])=O.CC([O-])=O QAHREYKOYSIQPH-UHFFFAOYSA-L 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- XAYGUHUYDMLJJV-UHFFFAOYSA-Z decaazanium;dioxido(dioxo)tungsten;hydron;trioxotungsten Chemical compound [H+].[H+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O XAYGUHUYDMLJJV-UHFFFAOYSA-Z 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 description 1
- GMZOPRQQINFLPQ-UHFFFAOYSA-H dibismuth;tricarbonate Chemical compound [Bi+3].[Bi+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O GMZOPRQQINFLPQ-UHFFFAOYSA-H 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- WSSSPWUEQFSQQG-UHFFFAOYSA-N dimethylbutene Natural products CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 1
- YWEUIGNSBFLMFL-UHFFFAOYSA-N diphosphonate Chemical compound O=P(=O)OP(=O)=O YWEUIGNSBFLMFL-UHFFFAOYSA-N 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000000895 extractive distillation Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000004231 fluid catalytic cracking Methods 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- RUTXIHLAWFEWGM-UHFFFAOYSA-H iron(3+) sulfate Chemical compound [Fe+3].[Fe+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RUTXIHLAWFEWGM-UHFFFAOYSA-H 0.000 description 1
- PVFSDGKDKFSOTB-UHFFFAOYSA-K iron(3+);triacetate Chemical compound [Fe+3].CC([O-])=O.CC([O-])=O.CC([O-])=O PVFSDGKDKFSOTB-UHFFFAOYSA-K 0.000 description 1
- 229910000360 iron(III) sulfate Inorganic materials 0.000 description 1
- UEGPKNKPLBYCNK-UHFFFAOYSA-L magnesium acetate Chemical compound [Mg+2].CC([O-])=O.CC([O-])=O UEGPKNKPLBYCNK-UHFFFAOYSA-L 0.000 description 1
- 239000011654 magnesium acetate Substances 0.000 description 1
- 235000011285 magnesium acetate Nutrition 0.000 description 1
- 229940069446 magnesium acetate Drugs 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 235000014380 magnesium carbonate Nutrition 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 235000011147 magnesium chloride Nutrition 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- GDXTWKJNMJAERW-UHFFFAOYSA-J molybdenum(4+);tetrahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[Mo+4] GDXTWKJNMJAERW-UHFFFAOYSA-J 0.000 description 1
- 229940078494 nickel acetate Drugs 0.000 description 1
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 1
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 1
- 229910000008 nickel(II) carbonate Inorganic materials 0.000 description 1
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 1
- ZULUUIKRFGGGTL-UHFFFAOYSA-L nickel(ii) carbonate Chemical compound [Ni+2].[O-]C([O-])=O ZULUUIKRFGGGTL-UHFFFAOYSA-L 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- FYWSTUCDSVYLPV-UHFFFAOYSA-N nitrooxythallium Chemical compound [Tl+].[O-][N+]([O-])=O FYWSTUCDSVYLPV-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000005504 petroleum refining Methods 0.000 description 1
- IYDGMDWEHDFVQI-UHFFFAOYSA-N phosphoric acid;trioxotungsten Chemical compound O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.OP(O)(O)=O IYDGMDWEHDFVQI-UHFFFAOYSA-N 0.000 description 1
- DLYUQMMRRRQYAE-UHFFFAOYSA-N phosphorus pentoxide Inorganic materials O1P(O2)(=O)OP3(=O)OP1(=O)OP2(=O)O3 DLYUQMMRRRQYAE-UHFFFAOYSA-N 0.000 description 1
- 235000011056 potassium acetate Nutrition 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 235000011181 potassium carbonates Nutrition 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 1
- 229910052939 potassium sulfate Inorganic materials 0.000 description 1
- 235000011151 potassium sulphates Nutrition 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- WPFGFHJALYCVMO-UHFFFAOYSA-L rubidium carbonate Chemical compound [Rb+].[Rb+].[O-]C([O-])=O WPFGFHJALYCVMO-UHFFFAOYSA-L 0.000 description 1
- 229910000026 rubidium carbonate Inorganic materials 0.000 description 1
- 229940102127 rubidium chloride Drugs 0.000 description 1
- RTHYXYOJKHGZJT-UHFFFAOYSA-N rubidium nitrate Inorganic materials [Rb+].[O-][N+]([O-])=O RTHYXYOJKHGZJT-UHFFFAOYSA-N 0.000 description 1
- 229910000344 rubidium sulfate Inorganic materials 0.000 description 1
- FOGKDYADEBOSPL-UHFFFAOYSA-M rubidium(1+);acetate Chemical compound [Rb+].CC([O-])=O FOGKDYADEBOSPL-UHFFFAOYSA-M 0.000 description 1
- GANPIEKBSASAOC-UHFFFAOYSA-L rubidium(1+);sulfate Chemical compound [Rb+].[Rb+].[O-]S([O-])(=O)=O GANPIEKBSASAOC-UHFFFAOYSA-L 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- JPDBEEUPLFWHAJ-UHFFFAOYSA-K samarium(3+);triacetate Chemical compound [Sm+3].CC([O-])=O.CC([O-])=O.CC([O-])=O JPDBEEUPLFWHAJ-UHFFFAOYSA-K 0.000 description 1
- QCZFMLDHLOYOQJ-UHFFFAOYSA-H samarium(3+);tricarbonate Chemical compound [Sm+3].[Sm+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O QCZFMLDHLOYOQJ-UHFFFAOYSA-H 0.000 description 1
- YZDZYSPAJSPJQJ-UHFFFAOYSA-N samarium(3+);trinitrate Chemical compound [Sm+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O YZDZYSPAJSPJQJ-UHFFFAOYSA-N 0.000 description 1
- LVSITDBROURTQX-UHFFFAOYSA-H samarium(3+);trisulfate Chemical compound [Sm+3].[Sm+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O LVSITDBROURTQX-UHFFFAOYSA-H 0.000 description 1
- BHXBZLPMVFUQBQ-UHFFFAOYSA-K samarium(iii) chloride Chemical compound Cl[Sm](Cl)Cl BHXBZLPMVFUQBQ-UHFFFAOYSA-K 0.000 description 1
- 239000011265 semifinished product Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000004317 sodium nitrate Substances 0.000 description 1
- 235000010344 sodium nitrate Nutrition 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- GBECUEIQVRDUKB-UHFFFAOYSA-M thallium monochloride Chemical compound [Tl]Cl GBECUEIQVRDUKB-UHFFFAOYSA-M 0.000 description 1
- HQOJMTATBXYHNR-UHFFFAOYSA-M thallium(I) acetate Chemical compound [Tl+].CC([O-])=O HQOJMTATBXYHNR-UHFFFAOYSA-M 0.000 description 1
- DASUJKKKKGHFBF-UHFFFAOYSA-L thallium(i) carbonate Chemical compound [Tl+].[Tl+].[O-]C([O-])=O DASUJKKKKGHFBF-UHFFFAOYSA-L 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- WYXIGTJNYDDFFH-UHFFFAOYSA-Q triazanium;borate Chemical compound [NH4+].[NH4+].[NH4+].[O-]B([O-])[O-] WYXIGTJNYDDFFH-UHFFFAOYSA-Q 0.000 description 1
- KHAUBYTYGDOYRU-IRXASZMISA-N trospectomycin Chemical compound CN[C@H]([C@H]1O2)[C@@H](O)[C@@H](NC)[C@H](O)[C@H]1O[C@H]1[C@]2(O)C(=O)C[C@@H](CCCC)O1 KHAUBYTYGDOYRU-IRXASZMISA-N 0.000 description 1
- PBYZMCDFOULPGH-UHFFFAOYSA-N tungstate Chemical compound [O-][W]([O-])(=O)=O PBYZMCDFOULPGH-UHFFFAOYSA-N 0.000 description 1
- CMPGARWFYBADJI-UHFFFAOYSA-L tungstic acid Chemical compound O[W](O)(=O)=O CMPGARWFYBADJI-UHFFFAOYSA-L 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 239000004246 zinc acetate Substances 0.000 description 1
- 235000013904 zinc acetate Nutrition 0.000 description 1
- 239000011667 zinc carbonate Substances 0.000 description 1
- 235000004416 zinc carbonate Nutrition 0.000 description 1
- 229910000010 zinc carbonate Inorganic materials 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 1
- 229910000368 zinc sulfate Inorganic materials 0.000 description 1
- 229960001763 zinc sulfate Drugs 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/04—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
- B01J8/0492—Feeding reactive fluids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/16—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
- C07C51/21—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
- C07C51/25—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
- C07C51/252—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/002—Mixed oxides other than spinels, e.g. perovskite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/24—Chromium, molybdenum or tungsten
- B01J23/28—Molybdenum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/85—Chromium, molybdenum or tungsten
- B01J23/88—Molybdenum
- B01J23/883—Molybdenum and nickel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/85—Chromium, molybdenum or tungsten
- B01J23/88—Molybdenum
- B01J23/887—Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/19—Catalysts containing parts with different compositions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/06—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/06—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
- B01J8/065—Feeding reactive fluids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C11/00—Aliphatic unsaturated hydrocarbons
- C07C11/12—Alkadienes
- C07C11/16—Alkadienes with four carbon atoms
- C07C11/167—1, 3-Butadiene
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/27—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
- C07C45/28—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation of CHx-moieties
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C47/00—Compounds having —CHO groups
- C07C47/20—Unsaturated compounds having —CHO groups bound to acyclic carbon atoms
- C07C47/21—Unsaturated compounds having —CHO groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
- C07C47/22—Acryaldehyde; Methacryaldehyde
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C5/00—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
- C07C5/32—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
- C07C5/327—Formation of non-aromatic carbon-to-carbon double bonds only
- C07C5/333—Catalytic processes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C5/00—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
- C07C5/42—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor
- C07C5/48—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor with oxygen as an acceptor
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/16—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C57/00—Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
- C07C57/02—Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
- C07C57/03—Monocarboxylic acids
- C07C57/04—Acrylic acid; Methacrylic acid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00548—Flow
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00628—Controlling the composition of the reactive mixture
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/02—Processes carried out in the presence of solid particles; Reactors therefor with stationary particles
- B01J2208/023—Details
- B01J2208/024—Particulate material
- B01J2208/025—Two or more types of catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
- B01J2523/10—Constitutive chemical elements of heterogeneous catalysts of Group I (IA or IB) of the Periodic Table
- B01J2523/12—Sodium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
- B01J2523/10—Constitutive chemical elements of heterogeneous catalysts of Group I (IA or IB) of the Periodic Table
- B01J2523/13—Potassium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
- B01J2523/30—Constitutive chemical elements of heterogeneous catalysts of Group III (IIIA or IIIB) of the Periodic Table
- B01J2523/305—Boron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
- B01J2523/40—Constitutive chemical elements of heterogeneous catalysts of Group IV (IVA or IVB) of the Periodic Table
- B01J2523/41—Silicon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
- B01J2523/50—Constitutive chemical elements of heterogeneous catalysts of Group V (VA or VB) of the Periodic Table
- B01J2523/54—Bismuth
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
- B01J2523/60—Constitutive chemical elements of heterogeneous catalysts of Group VI (VIA or VIB) of the Periodic Table
- B01J2523/68—Molybdenum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
- B01J2523/80—Constitutive chemical elements of heterogeneous catalysts of Group VIII of the Periodic Table
- B01J2523/84—Metals of the iron group
- B01J2523/842—Iron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
- B01J2523/80—Constitutive chemical elements of heterogeneous catalysts of Group VIII of the Periodic Table
- B01J2523/84—Metals of the iron group
- B01J2523/845—Cobalt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
- B01J2523/80—Constitutive chemical elements of heterogeneous catalysts of Group VIII of the Periodic Table
- B01J2523/84—Metals of the iron group
- B01J2523/847—Nickel
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B61/00—Other general methods
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2521/00—Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
- C07C2521/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- C07C2521/08—Silica
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/02—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
- C07C2523/04—Alkali metals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- C07C2523/18—Arsenic, antimony or bismuth
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- C07C2523/24—Chromium, molybdenum or tungsten
- C07C2523/28—Molybdenum
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
- C07C2523/74—Iron group metals
- C07C2523/745—Iron
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
- C07C2523/74—Iron group metals
- C07C2523/75—Cobalt
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
- C07C2523/74—Iron group metals
- C07C2523/755—Nickel
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
- C07C2523/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
- C07C2523/78—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with alkali- or alkaline earth metals or beryllium
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
- C07C2523/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
- C07C2523/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- C07C2523/889—Manganese, technetium or rhenium
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/584—Recycling of catalysts
Definitions
- the present invention uses a composite oxide catalyst containing molybdenum, and in a method of performing gas phase catalytic oxidation with molecular oxygen in a tubular reactor, more specifically, in a fixed bed multitubular reactor, catalyst deterioration due to volatilization of molybdenum is prevented.
- the present invention relates to a method for suppressing contact oxidation.
- Gas phase catalytic oxidation reaction for producing acrolein or methacrolein from propylene, isobutene or tertiary butanol
- gas phase catalytic ammoxidation reaction for producing acrylonitrile or methacrylonitrile from propylene or isobutene
- gas phase contact for producing butadiene from butene
- molybdenum bismuth-based composite oxide catalysts are useful catalysts, and they are widely used industrially.
- a gas phase catalytic oxidative dehydrogenation reaction according to the following reaction formula may be mentioned.
- the production of butadiene by vapor-phase catalytic oxidative dehydrogenation of n-butene is industrially a C4 fraction (a hydrocarbon mixture having 4 carbon atoms, which is by-produced by naphtha cracking, hereinafter sometimes referred to as “BB”).
- a composite oxide catalyst mainly composed of molybdenum (Mo) and bismuth (Bi) is an effective catalyst as a catalyst used for butadiene production by the gas phase catalytic oxidative dehydrogenation reaction of butene.
- Mo molybdenum
- Bi bismuth
- Patent Document 1 as a composite oxide catalyst for producing butadiene by vapor-phase catalytic oxidative dehydrogenation of n-butene with molecular oxygen, at least one of molybdenum, iron, nickel or cobalt and silica are essential components.
- a method for producing a composite oxide catalyst is described.
- Patent Document 2 contains molybdenum (Mo), bismuth (Bi), and iron (Fe) as essential components, and is selected from nickel (Ni) and cobalt (Co) as other essential components.
- Mo molybdenum
- Bi bismuth
- Fe iron
- Ni nickel
- Co cobalt
- One or more elements, one or more elements selected from the group consisting of potassium (K), rubidium (Rb), and cesium (Cs) and silica are contained, and the content of the silica component in the catalyst is 3 to 10 mass.
- % Composite oxide catalyst is described.
- Patent Document 3 describes that molybdenum is moved (supplemented) from the inside of the catalyst to the surface of the catalyst to recover its activity by a method of heat treatment at a temperature of 380 ° C. to 540 ° C. in an atmosphere consisting essentially of air.
- Patent Document 4 describes that the butadiene yield is improved by combining two kinds of molybdenum-bismuth catalysts having different activities.
- Japanese Unexamined Patent Publication No. 2003-220335 Japanese Unexamined Patent Publication No. 2011-178719 Japanese Unexamined Patent Publication No. 61-33234 Korean Published Patent No. 2013-0046458
- Patent Document 4 has no description of supplementing molybdenum.
- an object of the present invention is to suppress performance deterioration of a composite oxide catalyst containing molybdenum, bismuth, iron, etc., when performing gas phase catalytic partial oxidation with molecular oxygen using a fixed bed multitubular reactor. With the goal.
- the present invention uses a composite oxide catalyst containing molybdenum, and in a method of vapor phase catalytic oxidation with molecular oxygen in a fixed bed multitubular reactor, the molybdenum compound filled in the upper part of the catalyst layer is reacted with water to be volatile.
- a catalytic oxidation method that suppresses catalyst deterioration due to volatilization of molybdenum from the active component of the catalyst, a method for producing an oxidative dehydrogenation reaction product such as conjugated diene, and an oxidation reaction product such as acrolein and / or acrylic acid
- the present invention relates to a method for manufacturing a product.
- a catalytic oxidation method in which a catalytic oxidation reaction is performed using a tubular reactor in the presence of a molybdenum composite oxide catalyst In order from the reaction raw material supply port side of the tubular reactor, a molybdenum compound layer containing a molybdenum compound and a composite oxide catalyst layer containing a molybdenum composite oxide catalyst are arranged, Molybdenum volatilization amount ( ⁇ g / NL) of the molybdenum compound under the flow of a mixed gas composed of 440 ° C., 75% by volume of air and 25% by volume of water vapor is the molybdenum volatilization amount of the molybdenum composite oxide catalyst ( ⁇ g / NL).
- a catalytic oxidation process characterized in that it is greater than [2]
- a method for producing an oxidative dehydrogenation reaction product corresponding to an organic compound by an oxidative dehydrogenation reaction from an organic compound using a tubular reactor in the presence of a molybdenum composite oxide catalyst In order from the reaction raw material supply port side of the tubular reactor, a molybdenum compound layer containing a molybdenum compound and a composite oxide catalyst layer containing a molybdenum composite oxide catalyst are arranged, Molybdenum volatilization amount ( ⁇ g / NL) of the molybdenum compound under the flow of a mixed gas composed of 440 ° C., 75% by volume of air and 25% by volume of water vapor is the molybdenum volatilization amount of the molybdenum composite oxide catalyst ( ⁇ g / NL).
- the production method of the oxidative dehydrogenation reaction product characterized in that [6]
- a method for producing an oxidation reaction product corresponding to an organic compound by an oxidation reaction from an organic compound using a tubular reactor in the presence of a molybdenum composite oxide catalyst In order from the reaction raw material supply port side of the tubular reactor, a molybdenum compound layer containing a molybdenum compound and a composite oxide catalyst layer containing a molybdenum composite oxide catalyst are arranged, Molybdenum volatilization amount ( ⁇ g / NL) of the molybdenum compound under the flow of a mixed gas composed of 440 ° C., 75% by volume of air and 25% by volume of water vapor is the molybdenum volatilization amount of the molybdenum composite oxide catalyst ( ⁇ g / NL).
- the production method of the oxidation reaction product which is larger than [8]
- a catalytic oxidation method in which a catalytic oxidation reaction is performed by a tubular reactor in the presence of a composite oxide catalyst containing molybdenum, The composite oxide catalyst is divided into two or more catalyst layers, The molybdenum concentration in the catalyst of the catalyst layer closest to the reaction raw material supply port of the tubular reactor is higher than the molybdenum concentration of the other catalyst layers;
- a catalytic oxidation method in which the temperature of the catalyst layer closest to the reaction raw material supply port during the catalytic oxidation reaction is lower than that of the other catalyst layers; [10] The catalytic oxidation method according to [9], wherein the temperature of the catalyst layer closest to the reaction raw material supply port is lower than the set temperature of the heating medium, [11]
- the molybdenum concentration in the catalyst of the catalyst layer closest to the reaction raw material supply port is 1.2 times or more the molybdenum concentration in the catalyst of the catalyst layer having the catalyst having the highest molybdenum concentration among the remaining catalyst layers.
- the catalytic oxidation method according to [9] or [10], which is 3 times or less [12] A method for performing gas phase catalytic oxidation of olefins using the catalytic oxidation method according to any one of [9] to [11], A method for vapor phase catalytic oxidation of olefins, wherein the amount of molybdenum in the catalyst of the catalyst layer closest to the reaction raw material supply port is 5% by mass or more of the total amount of molybdenum in all the remaining catalyst layers; [13] The gas phase catalytic oxidation method for olefins according to [12], wherein 20% by mass or more of the catalyst in the catalyst layer closest to the reaction raw material supply port is molybdenum oxide, [14] A method for producing a conjugated diene by oxidative dehydrogenation of butenes using a tubular reactor in the presence of a composite oxide catalyst containing molybdenum, The composite oxide catalyst is divided into two or more catalyst layers, The
- the present invention it is possible to suppress the volatilization loss of molybdenum in the catalyst in the catalytic oxidation reaction and to perform the reaction while reducing the decrease in the activity of the catalyst.
- FIG. 1 is a schematic view showing an apparatus used for obtaining the molybdenum volatilization amount of the molybdenum compound or molybdenum composite oxide catalyst used in the present invention.
- the present invention relates to a catalytic oxidation method in which a catalytic oxidation reaction such as a gas phase catalytic oxidation reaction is performed by a tubular reactor in the presence of a catalyst such as a composite oxide catalyst containing molybdenum, and an oxidative dehydrogenation reaction production of a conjugated diene or the like.
- the present invention relates to a method for producing a product and a method for producing an oxidation reaction product such as acrolein and / or acrylic acid.
- the catalytic oxidation method according to the present invention is mainly a gas phase catalytic oxidation method, and is a method used for reaction from a raw organic compound to a corresponding oxidation reaction product or oxidative dehydrogenation product.
- the reaction to the corresponding oxidation reaction product include reaction from ethylene to ethylene oxide, reaction from hydrocarbons having 3 and 4 carbon atoms to unsaturated aliphatic aldehydes having 3 and 4 carbon atoms, tertiary butanol, Examples thereof include a reaction from an unsaturated aliphatic aldehyde having 3 and 4 carbon atoms to an unsaturated fatty acid having 3 and 4 carbon atoms.
- reaction from hydrocarbons having 4 or more carbon atoms, xylene, naphthalene and the like to the corresponding oxidation reaction products for example, the reaction to maleic acid, phthalic acid, butadiene, styrene and the like can be mentioned.
- reaction to the oxidative dehydrogenation reaction product include a reaction from a hydrocarbon having 4 or more carbon atoms to an alkene having 4 or more carbon atoms such as pentene, methylbutene and dimethylbutene.
- a reaction for producing a corresponding conjugated diene by a gas phase catalytic oxidative dehydrogenation reaction of olefins, particularly monoolefins having 4 to 6 carbon atoms such as butenes, and acrolein and / or by oxidizing propylene is preferably used in a reaction for producing acrylic acid.
- the reactor is not particularly limited as long as it is a fixed bed reactor, but a tubular reactor, a tank reactor, a plate reactor and the like are preferable. Of these, a tubular reactor, particularly a multitubular reactor (shell and tube reactor) is more preferred.
- the raw materials used differ depending on the type of reaction described above.
- the raw material in the case of producing conjugated dienes such as butadiene from butenes by the oxidative dehydrogenation reaction of butenes and the raw material in the case of producing acrolein and / or acrylic acid by the oxidation reaction of propylene are described.
- the raw material used for the reaction for producing conjugated dienes such as butadiene by the oxidative dehydrogenation reaction of butenes is a heavy oil fraction obtained by distilling crude oil in an oil refinery plant, etc.
- a gas composed mainly of hydrocarbons having 4 carbon atoms (hereinafter abbreviated as “FCC-C4”) by fluid catalytic cracking, which is decomposed using a catalyst and converted into low boiling point hydrocarbons. Can be used as is as a raw material gas.
- the main component as used herein refers to a component that is usually 40% by volume or more, preferably 60% by volume or more, more preferably 75% by volume or more, and particularly preferably 99% by volume or more with respect to the source gas. .
- the source gas may contain an arbitrary impurity as long as the effects of the present invention are not impaired.
- impurities that may be included, specifically, branched monoolefins such as isobutene; propane, n-butane, i-butane, Examples thereof include saturated hydrocarbons such as pentane; olefins such as propylene and pentene; dienes such as 1,2-butadiene; and acetylenes such as methyl acetylene, vinyl acetylene and ethyl acetylene.
- the amount of these impurities is usually 40% by volume or less, preferably 20% by volume or less, more preferably 10% by volume or less, and particularly preferably 1% by volume or less. If the amount is too large, the concentration of 1-butene or 2-butene as the main raw material will decrease, and the reaction will be slow, or the yield of butadiene as the target product will tend to decrease.
- the concentration of the linear monoolefin having 4 or more carbon atoms in the raw material gas is not particularly limited, but is usually 50 to 99.99% by volume, preferably 55 to It is 99.9% by volume, more preferably 60 to 99.9% by volume.
- Raw material for producing acrolein and / or acrylic acid by propylene oxidation reaction As a raw material gas used in a reaction for producing acrolein and / or acrylic acid by oxidizing propylene, a propylene component produced by a naphtha cracker of a petroleum refining plant, a propylene component produced by dehydrogenation of propane, or the like is used. Can do. This source gas may contain an arbitrary impurity as long as the effects of the present invention are not impaired.
- branched monoolefins such as isobutene; propane Saturated hydrocarbons such as n-butane, i-butane and pentane; olefins such as butene and pentene; dienes such as 1,3-butadiene and 1,2-butadiene; acetylenes such as methylacetylene, vinylacetylene and ethylacetylene Etc.
- the amount of these impurities is usually 40% by volume or less, preferably 20% by volume or less, more preferably 10% by volume or less, and particularly preferably 1% by volume or less. If the amount is too large, the concentration of propylene as the main raw material will decrease, and the reaction will slow down, and the yield of the target product acrolein and / or acrylic acid will tend to decrease.
- the concentration of the linear monoolefin having 4 or more carbon atoms in the raw material gas is not particularly limited, but is usually 50 to 99.99% by volume, preferably 55 to It is 99.9% by volume, more preferably 60 to 99.9% by volume.
- the catalytic oxidation method used in the production method of the present invention includes a molybdenum compound layer containing a molybdenum compound and a composite oxide catalyst layer containing a molybdenum composite oxide catalyst (hereinafter, referred to as the following) in order from the reaction raw material supply port side of the tubular reactor.
- the amount of molybdenum volatilized by the molybdenum compound (hereinafter referred to as “molybdenum compound”) in the presence of a mixed gas consisting of 440 ° C. and 75% by volume of air and 25% by volume of water vapor.
- the amount of molybdenum volatilization of the molybdenum composite oxide catalyst is larger than the amount of molybdenum volatilization of the molybdenum composite oxide catalyst (hereinafter sometimes referred to as “molybdenum volatilization amount of the molybdenum composite oxide catalyst”). To do. ADVANTAGE OF THE INVENTION According to this invention, volatilization of the molybdenum from the molybdenum composite oxide catalyst with a low molybdenum volatilization amount can be suppressed by filling the molybdenum compound oxide catalyst layer with a high molybdenum volatilization amount in the upper part.
- the molecular oxygen-containing gas is usually a gas containing 10% by volume or more of molecular oxygen, preferably 15% by volume or more, more preferably 20% by volume or more, and more preferably air. .
- the upper limit of the molecular oxygen content is usually 50% by volume or less, preferably 30% by volume. Hereinafter, it is more preferably 25% by volume or less.
- the molecular oxygen-containing gas may contain an arbitrary impurity as long as the effects of the present invention are not impaired.
- the raw material gas and the molecular oxygen-containing gas are mixed, and the mixed gas (hereinafter sometimes referred to as “mixed gas”) is supplied to the reactor.
- the ratio of the raw material gas in the mixed gas of the present invention is usually 3% by volume or more, preferably 5% by volume or more, and more preferably 6% by volume or more.
- the upper limit is 25% by volume or less, preferably 20% by volume or less, and more preferably 18% by volume or less. The smaller the upper limit value is, the less the causative substance of coking on the catalyst in the raw material gas is reduced.
- the proportion of linear monoolefin having 4 or more carbon atoms such as n-butene (1-butene and / or 2-butene) in the mixed gas is 1% by volume or more, preferably 3% by volume. It is above, More preferably, it is 5 volume% or more.
- the upper limit is 20% by volume or less, preferably 16% by volume or less, and more preferably 14% by volume or less. If this proportion is less than 1% by volume, the amount of conjugated diene obtained is lowered, which is not preferable. Further, as the proportion increases, the amount of conjugated diene obtained increases, but coking tends to occur, and the upper limit is more preferably 14% by volume or less.
- the catalytic oxidation reaction of the present invention is an exothermic reaction, and the temperature rises due to the reaction.
- the reaction temperature is usually adjusted to a range of 250 to 450 ° C., preferably 320 to 420 ° C. As this temperature increases, the catalytic activity tends to decrease rapidly, and as the temperature decreases, the yield of the target product, such as conjugated diene, tends to decrease.
- the reaction temperature can be controlled using a heat medium such as dibenzyltoluene and inorganic salts such as nitrite, nitrate and mixtures thereof.
- the reaction temperature here is a preset temperature of the heat medium.
- the temperature in the reactor (in the case of a tubular reactor, the temperature in the reaction tube) is not particularly limited, but is usually 250 to 450 ° C., preferably 320 to 420 ° C., more preferably 340 to 410 ° C. .
- the temperature in the reactor referred to here is the temperature of the catalyst layer, and is the temperature when measuring the temperature of an arbitrary part of the catalyst layer, for example, on the axis of the reaction tube and above and below the catalyst layer.
- the temperature of the catalyst layer can be measured by inserting a thermocouple from the top to the bottom of the catalyst layer. If the temperature of the catalyst layer exceeds 450 ° C., the catalytic activity tends to decrease rapidly as the reaction is continued. On the other hand, if the temperature of the catalyst layer is less than 250 ° C., the target product (for example, The yield of conjugated diene) tends to decrease.
- the temperature in the reactor is determined by the reaction conditions, but can be controlled by the dilution rate of the catalyst layer, the flow rate of the mixed gas, and the like.
- the temperature of the molybdenum compound layer during the catalytic oxidation reaction is preferably not more than the temperature of the catalyst layer. As a result, a phenomenon in which molybdenum that reacts with water vapor and volatilizes from the molybdenum compound layer precipitates in the catalyst layer and the reaction tube is blocked is less likely to occur.
- the temperature of the molybdenum compound layer is preferably 3 to 50 ° C lower than the temperature of the catalyst layer, and more preferably 5 to 40 ° C lower.
- the pressure in the reactor is not particularly limited, but the lower limit is usually 0 MPaG or more, preferably 0.001 MPaG or more, and more preferably 0.01 MPaG or more. As this value increases, there is an advantage that a large amount of reaction gas can be supplied to the reactor.
- the upper limit is 0.5 MPaG or less, preferably 0.3 MPaG or less, and more preferably 0.1 MPaG or less. As this value decreases, the explosion range tends to narrow.
- the residence time of the reactor in the present invention is not particularly limited, but the lower limit is usually 0.36 seconds or longer, preferably 0.8 seconds or longer, more preferably 0.9 seconds or longer.
- the higher the value the higher the conversion rate of monoolefin in the raw material gas.
- the upper limit is 3.6 seconds or less, preferably 2.8 seconds or less, and more preferably 2.5 seconds or less. The smaller this value, the smaller the reactor.
- a cooling step, a dehydration step, a solvent absorption step, a purification step, and the like may be provided as necessary in the subsequent stage of the reactor.
- the molybdenum composite oxide catalyst used in the present invention includes a composite oxide catalyst containing molybdenum, more preferably a composite oxide catalyst containing molybdenum and bismuth, more preferably containing molybdenum, bismuth and cobalt. And a composite oxide catalyst.
- a composite oxide catalyst represented by the following general formula (1) may be mentioned.
- X represents at least one element selected from the group consisting of magnesium (Mg), calcium (Ca), zinc (Zn), cerium (Ce), and samarium (Sm)
- Y represents sodium (Na ), Potassium (K), rubidium (Rb), cesium (Cs) and at least one element selected from the group consisting of thallium (Tl)
- Z is boron (B), phosphorus (P), arsenic (As And at least one element selected from the group consisting of tungsten (W).
- a to j represent atomic ratios of the respective elements.
- the molybdenum content of the molybdenum composite oxide catalyst is preferably 15 to 45% by mass, more preferably 20 to 35% by mass, and particularly preferably 25 to 30% by mass.
- the molybdenum composite oxide catalyst of the present invention can be produced through a step of heating the source compounds of the component elements constituting the composite oxide catalyst by integrating them in an aqueous solvent.
- all of the source compounds of the component elements may be integrated and heated in the aqueous system.
- the source compound is a compound containing a predetermined component element, and means a compound that can supply the element as a constituent component of the catalyst during the aging treatment described later.
- a supply source containing at least one selected from the group consisting of a molybdenum compound, an iron compound, a nickel compound, and a cobalt compound and silica.
- a pre-process for producing a catalyst precursor by heat-treating an aqueous solution or dispersion of the compound, or a dried product obtained by drying the catalyst, and integrating the catalyst precursor, the molybdenum compound and the bismuth compound together with an aqueous solvent, It is preferable to manufacture by the method which has the post process of drying and baking.
- the obtained molybdenum composite oxide catalyst exhibits high catalytic activity, so that a conjugated diene such as butadiene can be produced in a high yield, and a reaction product gas having a low aldehyde content can be produced.
- the aqueous solvent refers to water, an organic solvent compatible with water such as methanol and ethanol, or a mixture thereof.
- molybdenum in the catalyst precursor used in the previous step is a partial atomic ratio (a1) of the total atomic ratio (a) of molybdenum in the molybdenum composite oxide catalyst.
- the molybdenum in the molybdenum compound used in the subsequent step is equivalent to the remaining atomic ratio (a2) obtained by subtracting a1 from the total atomic ratio (a) of molybdenum in the molybdenum composite oxide catalyst. It is preferable.
- the a1 is preferably a value satisfying 1 ⁇ a1 / (c + d + e) ⁇ 3, and the a2 is preferably a value satisfying 0 ⁇ a2 / b ⁇ 8.
- c represents the total atomic ratio of cobalt in the molybdenum composite oxide catalyst
- d represents the total atomic ratio of nickel
- e represents the total atomic ratio of iron.
- Source compounds of the component elements include oxides, nitrates, carbonates, ammonium salts, hydroxides, carboxylates, ammonium carboxylates, ammonium halides, hydrogen acids, acetylacetonates and alkoxides of the component elements. The following are mentioned as the specific example.
- Examples of molybdenum source compounds include ammonium paramolybdate, molybdenum trioxide, molybdic acid, ammonium phosphomolybdate, and phosphomolybdic acid.
- Examples of the iron source compound include ferric nitrate, ferric sulfate, ferric chloride, and ferric acetate.
- Examples of cobalt source compounds include cobalt nitrate, cobalt sulfate, cobalt chloride, cobalt carbonate, and cobalt acetate.
- Examples of the nickel source compound include nickel nitrate, nickel sulfate, nickel chloride, nickel carbonate and nickel acetate.
- Examples of the silicon source compound include silica, granular silica, colloidal silica, and fumed silica.
- the bismuth source compound examples include bismuth chloride, bismuth nitrate, bismuth oxide, and bismuth carbonate.
- a complex carbonate compound of bismuth and sodium is obtained by dropping an aqueous solution of a water-soluble bismuth compound such as bismuth nitrate into an aqueous solution of sodium carbonate or sodium bicarbonate. The precipitate can be produced by washing with water and drying.
- the composite carbonate compound of bismuth and the X component is prepared by mixing an aqueous solution of a water-soluble compound such as bismuth nitrate and the nitrate of the X component with an aqueous solution of ammonium carbonate or ammonium bicarbonate, etc. It can be produced by washing with water and drying.
- a complex carbonate compound with bismuth, sodium and the X component can be produced.
- Examples of source compounds of other component elements include the following.
- Examples of the potassium source compound include potassium nitrate, potassium sulfate, potassium chloride, potassium carbonate, and potassium acetate.
- Examples of the source compound for rubidium include rubidium nitrate, rubidium sulfate, rubidium chloride, rubidium carbonate, and rubidium acetate.
- Examples of cesium source compounds include cesium nitrate, cesium sulfate, cesium chloride, cesium carbonate, and cesium acetate.
- Examples of thallium supply source compounds include thallium nitrate, thallium chloride, thallium carbonate, and thallium acetate.
- Examples of the boron source compound include borax, ammonium borate, and boric acid.
- Examples of the phosphorus source compound include ammonium phosphomolybdate, ammonium phosphate, phosphoric acid, and phosphorus pentoxide.
- Examples of arsenic source compounds include dialsenooctammonium ammonium molybdate and dialsenooctammonium tungstate.
- Examples of the tungsten source compound include ammonium paratungstate, tungsten trioxide, tungstic acid, and phosphotungstic acid.
- Examples of magnesium source compounds include magnesium nitrate, magnesium sulfate, magnesium chloride, magnesium carbonate, and magnesium acetate.
- Examples of calcium source compounds include calcium nitrate, calcium sulfate, calcium chloride, calcium carbonate, and calcium acetate.
- Examples of the zinc source compound include zinc nitrate, zinc sulfate, zinc chloride, zinc carbonate, and zinc acetate.
- Examples of the source compound for cerium include cerium nitrate, cerium sulfate, cerium chloride, cerium carbonate, and cerium acetate.
- Examples of samarium source compounds include samarium nitrate, samarium sulfate, samarium chloride, samarium carbonate, and samarium acetate.
- the aqueous solution or aqueous dispersion of the source compound used in the previous step is an aqueous solution, water slurry or cake containing at least one of molybdenum (corresponding to a1 in the total atomic ratio a), iron, nickel and cobalt, and silica. is there.
- Preparation of the aqueous solution or aqueous dispersion of the source compound is performed by integrating the source compound in an aqueous system.
- the integration of the source compound in the aqueous system means that the aqueous solution or aqueous dispersion of the source compound of each component element is subjected to at least one of mixing and aging treatment in a batch or stepwise.
- aging refers to the processing of industrial raw materials or semi-finished products under specific conditions such as constant temperature for a certain period of time to obtain the required physical and chemical properties, increase or advance the prescribed reaction, etc.
- the fixed time is usually in the range of 10 minutes to 24 hours, and the fixed temperature is usually in the range of room temperature to the boiling point of the aqueous solution or aqueous dispersion.
- Specific examples of the integration include, for example, an aqueous solution obtained by mixing an acidic salt selected from catalyst components, and an aqueous solution obtained by mixing a basic salt selected from catalyst components, And the like.
- Specific examples include, for example, a method of adding a mixture of at least one of an iron compound, a nickel compound, and a cobalt compound to an aqueous solution of a molybdenum compound while heating, and further mixing silica.
- the aqueous solution or aqueous dispersion of the source compound containing silica thus obtained is heated to 60 to 90 ° C. and aged.
- This aging increases the viscosity of the aqueous solution or dispersion of the source compound, mitigates the settling of the solid components, and is particularly effective in suppressing the heterogeneity of the components in the next drying step.
- the catalytic activity such as the raw material conversion rate and selectivity of the product molybdenum composite oxide catalyst becomes better.
- the aging temperature is preferably 60 to 90 ° C, more preferably 70 to 85 ° C. When the aging temperature is less than 60 ° C., the aging effect is not sufficient, and good activity may not be obtained.
- the aging time is preferably 2 to 12 hours, more preferably 3 to 8 hours. If the aging time is less than 2 hours, the activity and selectivity of the catalyst may not be sufficiently developed. On the other hand, the aging effect does not increase even if it exceeds 12 hours, which is disadvantageous for industrial implementation.
- Any method can be adopted as the stirring method, and examples thereof include a method using a stirrer having a stirring blade and a method using external circulation using a pump.
- the slurry obtained after aging is subjected to heat treatment as it is or after drying. There is no particular limitation on the drying method in the case of drying and the state of the obtained dried product, and for example, a powdery dried product may be obtained using a normal spray dryer, slurry dryer, drum dryer, etc.
- a block-like or flake-like dried product may be obtained using a normal box-type dryer or a tunnel-type firing furnace.
- the heat treatment is performed in air at a temperature range of 200 to 400 ° C., preferably 250 to 350 ° C.
- the type and method of the furnace at that time and for example, it may be heated with a dry matter fixed using a normal box-type furnace, tunnel-type furnace, etc., or a rotary kiln. It is possible to heat the dried product while flowing it.
- the ignition loss of the catalyst precursor obtained after the heat treatment is preferably 0.5 to 5% by mass, and more preferably 1 to 3% by mass. By setting the ignition loss within this range, a catalyst having a high raw material conversion rate and high selectivity can be obtained.
- the catalyst precursor obtained in the previous step, the molybdenum compound (corresponding to the remaining a2 obtained by subtracting the equivalent of a1 from the total atomic ratio a), and the bismuth compound are integrated in an aqueous solvent.
- ammonia water it is preferable to add ammonia water.
- the addition of the X, Y and Z components is also preferably carried out in this subsequent step.
- the bismuth source compound of the present invention is bismuth which is hardly soluble or insoluble in water. This compound is preferably used in the form of a powder. These compounds as the source compound may be particles larger than the powder, but are preferably smaller particles in view of the heating step in which the thermal diffusion should be performed. Therefore, when these compounds as raw materials are not such particles having a small particle size, it is preferable to perform pulverization before the heating step.
- the obtained slurry is sufficiently stirred and then dried.
- the dried product thus obtained is shaped into an arbitrary shape by a method such as extrusion molding, tableting molding or support molding.
- this is preferably subjected to a final heat treatment for about 1 to 16 hours under a temperature condition of 450 to 650 ° C.
- a molybdenum composite oxide catalyst having a high activity and a desired product in a high yield can be obtained.
- the molybdenum composite oxide catalyst is filled to form a composite oxide catalyst layer.
- the composite oxide catalyst layer may contain a component other than the molybdenum composite oxide catalyst. Examples of such a component include a catalyst not containing molybdenum and a solid material having low reactivity. This low-reactivity solid is stable under the conditions of the catalytic oxidation reaction of the present invention, and includes raw materials such as monoolefins having 3 or more carbon atoms, and products such as conjugated dienes, acrolein and acrylic acid.
- the material is not particularly limited as long as it is made of a material having low reactivity, and specific examples include a solid material made of a ceramic material such as alumina and zirconia, and may be generally called an inert ball.
- the shape is not particularly limited, and may be spherical, cylindrical, ring-shaped, or indefinite.
- size is not limited, For example, the thing of the magnitude
- the content of the molybdenum composite oxide catalyst in the composite oxide catalyst layer is usually 1 to 99% by mass, preferably 10 to 90% by mass, and particularly preferably 20 to 80% by mass. Further, the composite oxide catalyst layer may be composed of two or more layers, and is preferably 1 to 3 layers.
- the single composite oxide catalyst layer means a continuous layer containing a molybdenum composite oxide catalyst and having the same layer composition.
- the molybdenum compound used in the present invention is a compound containing molybdenum.
- the molybdenum compound include compounds containing oxygen such as ammonium paramolybdate, molybdenum oxide, molybdic acid, ammonium phosphomolybdate, and phosphomolybdic acid, and mixtures thereof. It is necessary to use a molybdenum compound having a molybdenum volatilization amount ( ⁇ g / NL) larger than the molybdenum volatilization amount ( ⁇ g / NL) of the molybdenum composite oxide catalyst used in the composite oxide catalyst layer.
- the difference between the molybdenum volatilization amount ( ⁇ g / NL) of the molybdenum compound and the molybdenum volatilization amount ( ⁇ g / NL) of the molybdenum composite oxide catalyst is based on the balance between the amount of molybdenum replenished in the catalyst layer and the amount of volatilization. 0.1 to 10 ⁇ g / NL is preferable, and 0.2 to 6 ⁇ g / NL is more preferable.
- molybdenum compound those containing 20% by mass or more of molybdenum oxide (MoO 3 ) are preferable, those containing 30% by mass or more are more preferable, those containing less than 100% by mass are preferable, and those containing 90% by mass or less are included. Is more preferable.
- the molybdenum volatilization amount referred to in the present invention is the amount ( ⁇ g / NL) of molybdenum (Mo) volatilized under the flow of a mixed gas having a composition of 440 ° C. air 75% by volume and water vapor 25% by volume. The amount of molybdenum (Mo) volatilized ( ⁇ g / NL) determined by the method described below.
- a glass reaction tube 4 having an inner diameter of 6 mm is filled with a molybdenum compound or a molybdenum composite oxide catalyst (also simply referred to as a composite oxide catalyst) 5, and the reaction tube is connected to an electric heater 3.
- a mixed gas composed of 75% by volume of air and 25% by volume of water vapor was continuously supplied to the reaction tube at 1.0 ⁇ 10 3 NL / hr for 10 hours, and then deposited on the lower part 6 made of glass. The deposited deposit is dissolved in an aqueous ammonia solution to obtain a solution.
- the solution was placed in a beaker and gently evaporated to dryness at 250 ° C. Then, 0.2 mL of sulfuric acid and ion-exchanged water were added to the obtained solid and dissolved by heating, and the solution was dissolved in ion-exchanged water. Dilute to 25 mL.
- the amount of Mo (g) in the diluted solution is analyzed using an inductively coupled plasma emission spectrometer. The Mo amount (g) obtained by the analysis was divided by the amount of gas (1.0 ⁇ 10 3 NL / hr ⁇ 10 hours) flowing to obtain the molybdenum amount (g / NL) per unit gas flow rate. Let it be the volatilization amount.
- Mo in MoO 2 (OH) 2 becomes MoO 3 and precipitates at the bottom of the reaction tube.
- Mo was not detected, so that all the Mo in MoO 2 (OH) 2 was deposited as MoO 3, and thus volatilized from the amount of the deposited MoO 3 .
- the amount of Mo (g / NL) can be determined.
- the molybdenum compound preferably contains an alkali metal or alkaline earth metal in order to reduce its activity.
- the activity of the molybdenum compound is preferably lowered so as not to react with components contained in the source gas.
- the alkali metal include sodium, potassium, rubidium and cesium.
- the alkaline earth metal include magnesium and calcium.
- Examples of the sodium source compound include sodium nitrate, sodium sulfate, sodium chloride, sodium carbonate and sodium acetate.
- Examples of the potassium source compound, the rubidium source compound, the cesium source compound, the magnesium source compound, and the calcium source compound include those described above.
- molybdenum in the molybdenum compound reacts with water vapor and volatilizes in the gas phase, it is preferable to use the molybdenum compound supported on a carrier such as silica, alumina, titania or the like so that the contact efficiency with water vapor is improved.
- the carrier and the carrier are regarded as molybdenum compounds.
- a molybdenum compound containing an alkali metal or an alkaline earth metal, or a molybdenum compound supported on a carrier is a source compound of each component element constituting the molybdenum compound, as in the production of the molybdenum composite oxide catalyst described above. Can be manufactured through a step of heating them integrally in an aqueous solvent.
- the molybdenum compound content of the molybdenum compound is preferably 20% by mass or more, more preferably 25% by mass or more, and particularly preferably 30% by mass or more. If the molybdenum compound contains a large amount of molybdenum, molybdenum can be supplied to the composite oxide catalyst layer over a long period of time. Moreover, it is preferable that the molybdenum content of the molybdenum compound is larger than the molybdenum content of the molybdenum composite oxide catalyst in the composite oxide catalyst layer. In particular, the molybdenum content of the molybdenum composite oxide catalyst having the highest molybdenum content is preferably 1.2 times or more, and more preferably 1.5 times or more.
- molybdenum can be supplied to the molybdenum composite oxide catalyst layer over a long period of time, and the catalytic oxidation reaction can be continued over a long period of time.
- the upper limit is preferably 3.0 times, and more preferably 2.0 times.
- the molybdenum compound layer may contain other compounds such as the inert ball described above in addition to the molybdenum compound having a larger molybdenum volatilization amount than the molybdenum volatilization amount of the molybdenum composite oxide catalyst.
- the content of the molybdenum compound in the molybdenum compound layer is 20% by mass or more, preferably 60% by mass or more, more preferably 80% by mass or more, still more preferably 95% by mass or more, and particularly preferably 100% by mass.
- the molybdenum content in the molybdenum compound layer is preferably 5% by mass or more, and more preferably 20% by mass or more of the total amount of molybdenum content in each composite oxide catalyst layer.
- the content is 5% by mass or more, the effect of reducing the activity decrease due to Mo volatilization of the molybdenum composite oxide catalyst can be sufficiently exhibited.
- the upper limit is preferably 100% by mass or less, and more preferably 50% by mass or less. If it exceeds 100 mass%, the molybdenum compound layer becomes too long and the reactor becomes large, which is not preferable.
- the temperature of the molybdenum compound layer during the catalytic oxidation reaction is preferably not more than the above reaction temperature.
- molybdenum When the temperature of the molybdenum compound layer is higher than the reaction temperature, molybdenum is volatilized from the molybdenum compound layer as molybdenum hydroxide (MoO 2 (OH) 2 ), and is downstream from the molybdenum compound layer (the raw material inlet side is upstream). Then, it is precipitated by cooling at, and becomes molybdenum oxide (MoO 3 ). Further, the phenomenon that carbon content accumulates (coking) starting from the molybdenum oxide and clogs the reaction tube is less likely to occur.
- the temperature of the molybdenum compound layer is preferably 0 to 40 ° C. lower than the reaction temperature, more preferably 0 to 20 ° C.
- the catalytic oxidation reaction of the present invention is an exothermic reaction
- the temperature of the molybdenum compound layer is usually higher than the reaction temperature. Therefore, as the molybdenum compound, a compound having low activity, preferably having no activity for the catalytic oxidation reaction of the present invention, should be used.
- a means for reducing the activity of the molybdenum compound as described above, there is a method in which the molybdenum compound contains an alkali metal or an alkaline earth metal.
- the temperature of a molybdenum compound layer is a temperature at the time of measuring the temperature of the arbitrary places of a molybdenum compound layer, for example, can measure the location of the lowest part of a molybdenum compound layer on a reaction tube axis
- the temperature of the molybdenum compound layer can be measured by inserting a thermocouple from the top to the bottom of the molybdenum compound layer.
- an inert layer mainly composed of the above-described inert ball or the like may be provided in the reaction tube.
- an inert layer here is a layer which is inactive to the contact oxidation reaction of this invention as mentioned above, and does not react with a raw material, oxygen, water vapor
- the slurry was heated and dried, and then subjected to a heat treatment at 300 ° C. for 1 hour in an air atmosphere.
- the obtained granular solid (ignition loss: 1.4% by mass) of the catalyst precursor is pulverized, and 40.1 g of ammonium paramolybdate is dispersed in a solution obtained by adding 10 ml of ammonia water to 150 ml of pure water to obtain a slurry. It was.
- 0.85 g of borax and 0.36 g of potassium nitrate were dissolved in 40 ml of pure water under heating at 25 ° C., and the slurry was added.
- 58.1 g of bismuth subcarbonate in which 0.45% of Na was dissolved was added and mixed with stirring.
- the catalyst calculated from the charged raw materials was a molybdenum composite oxide having the following atomic ratio.
- Mo: Bi: Co: Ni: Fe: Na: B: K: Si 12: 5: 2.5: 2.5: 0.4: 0.35: 0.2: 0.08: 24
- molybdenum concentration of the obtained molybdenum composite oxide was analyzed, it was 27.8 mass%.
- the solution was placed in a beaker and gently evaporated to dryness at 250 ° C. Then, 0.2 mL of sulfuric acid and ion-exchanged water were added to the obtained solid and dissolved by heating, and the solution was dissolved in ion-exchanged water. Dilute to 25 mL.
- the amount of Mo (g) in the diluted solution was analyzed using an inductively coupled plasma emission spectrometer. The Mo amount (g) obtained by the analysis was divided by the amount of gas (1.0 ⁇ 10 3 NL / hr ⁇ 10 hours) flowing to obtain the molybdenum amount (g / NL) per unit gas flow rate. Volatilized amount.
- molybdenum volatilization amount of molybdenum compound When the molybdenum volatilization amount of the molybdenum compound prepared above was determined in the same manner as in the case of the molybdenum composite oxide catalyst, it was 7.0 ⁇ g / NL.
- Example 1 A stainless steel reaction tube having an inner diameter of 10 mm and a height of 500 mm is filled with an inert ball (spherical shape with a diameter of 2 mm) in advance (packed layer length: 140 mm), and the oxidative dehydration is performed on the packed layer of the inert ball according to Reference 1. After the elementary reaction, 1 g of the molybdenum composite oxide catalyst after 3700 hours of reaction extracted from the multi-tube fixed bed reactor was filled to form a composite oxide catalyst layer.
- the pressure in the reaction tube was set to 0.05 MPaG, nitrogen was previously supplied to 2.00 NL / hr, air was 3.36 NL / hr, and steam was supplied to the preheater at 2.00 NL / hr.
- BBSS shown in Table 1 was supplied at 0.64 NL / hr, mixed in a preheater and heated to 345 ° C. as a mixed gas. Thereafter, this mixed gas was continuously supplied at 8.00 NL / hr from the top of the reaction tube to carry out an oxidative dehydrogenation reaction. The product gas was extracted from the bottom of the reaction tube.
- the temperature of the catalyst layer during the reaction (the temperature at the center of the reaction tube axis and between the upper and lower sides of the catalyst layer) by a sheathed thermocouple in the insertion tube having an outer diameter of 2.0 mm installed in the center of the reaction tube. It was 409 degreeC when measured. Further, the temperature of the molybdenum compound layer measured in the same manner (the temperature of the lowermost portion of the molybdenum compound layer on the reaction tube axis) was 377 ° C. The conversion of n-butene after 120 hours from the start of the reaction was 85.7%, and the conversion of n-butene after 1968 hours was 75.4%. When the molybdenum residual rate of the molybdenum composite oxide catalyst extracted after the reaction was measured by XRF, it was 92.2%.
- Example 2 A reaction tube made of stainless steel having an inner diameter of 10 mm and a height of 500 mm is filled with an inert ball (spherical shape with a diameter of 2 mm) in advance (packing layer length: 140 mm), and the above-described ⁇ molybdenum composite is placed on the packing layer of the inert ball.
- the temperature of the molybdenum compound layer measured in the same manner was 376 ° C.
- the conversion of n-butene after 336 hours from the start of the reaction was 88.9%, and the conversion of n-butene after 2544 hours was 87.4%.
- the molybdenum residual ratio of the molybdenum composite oxide catalyst extracted after the reaction was measured by XRF, it was 96.1%.
- Example 1 In Example 1, it carried out similarly except not having filled a molybdenum compound as a molybdenum compound layer.
- the conversion of n-butene after 120 hours from the start of the reaction was 85.3%, and the conversion of n-butene after 1968 hours was 72.7%.
- the molybdenum residual rate of the molybdenum composite oxide catalyst extracted after the reaction was measured by XRF, it was 88.7%.
- Example 2 In Example 2, the same operation was performed except that the molybdenum compound layer was not filled with a molybdenum compound layer. The conversion of n-butene after 336 hours from the start of the reaction was 88.9%, and the conversion of n-butene after 2544 hours was 85.0%. When the molybdenum residual ratio of the molybdenum composite oxide catalyst extracted after the reaction was measured by XRF, it was 94.2%.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
C4H8+1/2O2→C4H6+H2O
n-ブテンの気相接触酸化脱水素反応によるブタジエンの製造は、工業的にはナフサ分解で副生するC4留分(炭素数が4の炭化水素混合物。以下、「BB」と称す場合がある。)からのブタジエンの抽出分離プロセスにおいて、抽出蒸留塔でブタジエンを分離して得られた、1-ブテンの他、2-ブテン、ブタン等を含む混合物(以下、この混合物を「BBSS」と称す場合がある。)中に含まれるブテンからブタジエンを製造する方法が行われている。
前記特許文献3に記載の熱処理による再生法は、還元状態の金属イオンを再酸化する効果またはモリブデン等の成分の揮散によって変化した触媒表面組成を固体内部からの拡散によって修復する効果によると説明されているが、これによる再生の効果は十分ではなく、ガス入り口部分のように劣化の程度の大きい部分は完全に再生することはできず、また何回も繰り返し再生することは困難である。
また、特許文献4には、モリブデンを補充する旨の記載はない。
前記管式反応器の反応原料供給口側から順に、モリブデン化合物を含有するモリブデン化合物層及びモリブデン複合酸化物触媒を含有する複合酸化物触媒層が配され、
440℃かつ空気75体積%及び水蒸気25体積%の組成からなる混合気体の流通下における前記モリブデン化合物のモリブデン揮散量(μg/NL)が同前記モリブデン複合酸化物触媒のモリブデン揮散量(μg/NL)よりも大きいことを特徴とする接触酸化方法、
[2]前記接触酸化反応における前記モリブデン化合物層の温度が、反応温度以下である前記[1]に記載の接触酸化方法、
[3]前記モリブデン化合物のモリブデン揮散量と前記モリブデン複合酸化物触媒のモリブデン揮散量との差が0.2~6μg/NLである前記[1]または[2]に記載の接触酸化方法、
[4]前記モリブデン化合物のうち、20質量%以上が酸化モリブデンである前記[1]~[3]のいずれか1に記載の接触酸化方法、
[5]モリブデン複合酸化物触媒存在下、管式反応器を用いて有機化合物から酸化脱水素反応により前記有機化合物に対応する酸化脱水素反応生成物を製造する方法であって、
前記管式反応器の反応原料供給口側から順に、モリブデン化合物を含有するモリブデン化合物層及びモリブデン複合酸化物触媒を含有する複合酸化物触媒層が配され、
440℃かつ空気75体積%及び水蒸気25体積%の組成からなる混合気体の流通下における前記モリブデン化合物のモリブデン揮散量(μg/NL)が同前記モリブデン複合酸化物触媒のモリブデン揮散量(μg/NL)よりも大きいことを特徴とする酸化脱水素反応生成物の製造方法、
[6]前記有機化合物が炭素原子数4~6のモノオレフィン類であり、前記酸化脱水素反応生成物が共役ジエンである前記[5]に記載の酸化脱水素反応生成物の製造方法、
[7]モリブデン複合酸化物触媒存在下、管式反応器を用いて有機化合物から酸化反応により前記有機化合物に対応する酸化反応生成物を製造する方法であって、
前記管式反応器の反応原料供給口側から順に、モリブデン化合物を含有するモリブデン化合物層及びモリブデン複合酸化物触媒を含有する複合酸化物触媒層が配され、
440℃かつ空気75体積%及び水蒸気25体積%の組成からなる混合気体の流通下における前記モリブデン化合物のモリブデン揮散量(μg/NL)が同前記モリブデン複合酸化物触媒のモリブデン揮散量(μg/NL)よりも大きいことを特徴とする酸化反応生成物の製造方法、
[8]前記有機化合物がプロピレンであり、前記酸化反応生成物がアクロレイン及びアクリル酸の少なくともいずれか一方である前記[7]に記載の酸化反応生成物の製造方法、
[9]モリブデンを含有する複合酸化物触媒存在下、管式反応器により接触酸化反応を行う接触酸化方法であって、
前記複合酸化物触媒は2層以上の触媒層に分画されており、
前記管式反応器の反応原料供給口に最も近い触媒層の触媒中のモリブデン濃度が他の触媒層のモリブデン濃度よりも高く、
接触酸化反応時における前記反応原料供給口に最も近い触媒層の温度が他の触媒層より低い接触酸化方法、
[10]前記反応原料供給口に最も近い触媒層の温度が、加熱媒体の設定温度よりも低い前記[9]に記載の接触酸化方法、
[11]前記反応原料供給口に最も近い触媒層の触媒中のモリブデン濃度が、残りの触媒層中のうち最もモリブデン濃度の高い触媒を有する触媒層の触媒中のモリブデン濃度の1.2倍以上、3倍以下である前記[9]または[10]に記載の接触酸化方法、
[12]前記[9]~[11]のいずれか1に記載の接触酸化方法を用いてオレフィン類の気相接触酸化を行う方法であって、
前記反応原料供給口に最も近い触媒層の触媒中のモリブデン量は、残りの全ての触媒層中のモリブデン量の合計量の5質量%以上であるオレフィン類の気相接触酸化方法、
[13]前記反応原料供給口に最も近い触媒層の触媒のうち、20質量%以上が酸化モリブデンである前記[12]に記載のオレフィン類の気相接触酸化方法、
[14]モリブデンを含有する複合酸化物触媒存在下、管式反応器を用いてブテン類を酸化脱水素反応することによって共役ジエンを製造する方法であって、
前記複合酸化物触媒は2層以上の触媒層に分画されており、
前記管式反応器の反応原料供給口に最も近い触媒層の触媒中のモリブデン濃度が他の触媒層のモリブデン濃度よりも高く、
接触酸化反応時における前記反応原料供給口に最も近い触媒層の温度が他の触媒層より低い共役ジエンの製造方法。
(反応の種類)
本発明にかかる接触酸化方法は、主として気相接触酸化方法であり、原料の有機化合物から対応する酸化反応生成物や酸化脱水素化生成物への反応に使用される方法である。対応する酸化反応生成物への反応の例としては、エチレンから酸化エチレンへの反応、炭素数3及び4の炭化水素から炭素数3及び4の不飽和脂肪族アルデヒドへの反応、ターシャリーブタノールや炭素数3及び4の不飽和脂肪族アルデヒドから炭素数3及び4の不飽和脂肪酸への反応等が挙げられる。さらに、炭素数4以上の炭化水素やキシレン、ナフタレン等から、それに相当する酸化反応生成物への反応、例えば、マレイン酸、フタル酸、ブタジエン、スチレン等への反応が挙げられる。また、酸化脱水素反応生成物への反応の例としては、炭素数4以上の炭化水素から、ペンテン、メチルブテン、ジメチルブテン等の炭素原子数4以上のアルケン類への反応が挙げられる。
これらの中でも、オレフィン類、特にブテン類等の炭素原子数4~6のモノオレフィン類の気相接触酸化脱水素反応により対応する共役ジエンを製造する反応や、プロピレンを酸化してアクロレイン及び/またはアクリル酸を製造する反応により好適に用いられる。
前記反応器は固定床の反応器であれば特に限定されないが、管式反応器、槽型反応器、プレート式反応器等が好ましい。これらのうち管式反応器、特に多管式反応器(シェルアンドチューブ型反応器)がより好ましい。
前記した反応の種類によって使用する原料は異なる。ここでは、ブテン類の酸化脱水素反応によりブテン類からブタジエン等の共役ジエンを製造する場合における原料、及びプロピレンの酸化反応によりアクロレイン及び/またはアクリル酸を製造する場合における原料について記載する。
ブテン類の酸化脱水素反応によるブタジエン等の共役ジエンを製造する反応に使用する原料としては、石油精製プラント等で原油を蒸留した際に得られる重油留分を、流動層状態で粉末状の固体触媒を使って分解し、低沸点の炭化水素に変換する流動接触分解(Fluid Catalytic Cracking)によって、炭素原子数4の炭化水素類を主成分とするガス(以下、「FCC-C4」と略記することがある。)を製造し、これをそのまま原料ガスとすることができる。また、このFCC-C4からリンやヒ素等の不純物を除去したものを原料ガスとして使用してもよい。なお、ここでいう、主成分とは、原料ガスに対して、通常40体積%以上、好ましくは60体積%以上、より好ましくは75体積%以上、特に好ましくは99体積%以上含まれる成分を示す。
n-ブテン(1-ブテン及び2-ブテン)からブタジエンを製造する場合、含んでいてもよい不純物として、具体的には、イソブテン等の分岐型モノオレフィン;プロパン、n-ブタン、i-ブタン、ペンタン等の飽和炭化水素;プロピレン、ペンテン等のオレフィン;1,2-ブタジエン等のジエン;メチルアセチレン、ビニルアセチレン、エチルアセチレン等のアセチレン類等が挙げられる。これらの不純物の量は、通常40体積%以下、好ましくは20体積%以下、より好ましくは10体積%以下、特に好ましくは1体積%以下である。この量が多すぎると、主原料である1-ブテンや2-ブテンの濃度が下がって反応が遅くなったり、目的生成物であるブタジエンの収率が低下する傾向にある。また、前記の反応においては、原料ガス中の炭素原子数4以上の直鎖型モノオレフィンの濃度は、特に限定されないが、通常は、50~99.99体積%であり、好ましくは、55~99.9体積%、更に好ましくは、60~99.9体積%である。
プロピレンを酸化してアクロレイン及び/またはアクリル酸を製造する反応に使用する原料ガスとしては、石油精製プラントのナフサクラッカーで製造されるプロピレン成分、プロパンの脱水素によって製造されるプロピレン成分等を用いることができる。
この原料ガス中には、本発明の効果を阻害しない範囲で、任意の不純物を含んでいてもよい。
ナフサクラッカーやプロパンの脱水素等によって製造されるプロピレンを原料としてアクロレイン及び/またはアクリル酸を製造する場合、含んでいてもよい不純物としては、具体的には、イソブテン等の分岐型モノオレフィン;プロパン、n-ブタン、i-ブタン、ペンタン等の飽和炭化水素;ブテン、ペンテン等のオレフィン;1,3-ブタジエン、1,2-ブタジエン等のジエン;メチルアセチレン、ビニルアセチレン、エチルアセチレン等のアセチレン類等が挙げられる。これらの不純物の量は、通常40体積%以下、好ましくは20体積%以下、より好ましくは10体積%以下、特に好ましくは1体積%以下である。この量が多すぎると、主原料であるプロピレンの濃度が下がって反応が遅くなったり、目的生成物であるアクロレイン及び/またはアクリル酸の収率が低下する傾向にある。また、前記の反応においては、原料ガス中の炭素原子数4以上の直鎖型モノオレフィンの濃度は、特に限定されないが、通常は、50~99.99体積%であり、好ましくは、55~99.9体積%、更に好ましくは、60~99.9体積%である。
本発明によれば、モリブデン揮散量が高いモリブデン化合物をモリブデン複合酸化物触媒層の上部に充填することにより、モリブデン揮散量が低いモリブデン複合酸化物触媒からのモリブデンの揮散を抑制することができる。
本発明の製造方法で用いられる接触酸化方法においては、分子状酸素含有ガスを用いることが好ましい。分子状酸素含有ガスとは、通常、分子状酸素が10体積%以上、好ましくは、15体積%以上、更に好ましくは20体積%以上含まれるガスのことであり、具体的に好ましくは空気である。なお、分子状酸素含有ガスを工業的に用意するのに必要なコストが増加するという観点から、分子状酸素の含有量の上限としては、通常50体積%以下であり、好ましくは、30体積%以下、更に好ましくは25体積%以下である。また、本発明の効果を阻害しない範囲で、分子状酸素含有ガスには、任意の不純物を含んでいてもよい。
本発明では、反応器に原料ガスを供給するにあたり、原料ガスと分子状酸素含有ガスとを混合し、その混合されたガス(以下、「混合ガス」と称することがある)を反応器に供給する必要がある。なお、本発明の混合ガス中の、原料ガスの割合としては、通常、3体積%以上であり、好ましくは5体積%以上、更に好ましくは6体積%以上である。この下限値が大きくなるほど、反応器のサイズを小さくでき、建設費および運転に要するコストが低減する傾向にある。また、一方、上限は、25体積%以下であり、好ましくは、20体積%以下、更に好ましくは、18体積%以下である。この上限値が小さくなるほど、原料ガス中の触媒上へのコーキングの起因物質も低減するため、触媒のコーキングが発生しにくく好ましい。
本発明の接触酸化反応は発熱反応であり、反応により温度が上昇するが、本発明では、通常、反応温度は250~450℃、好ましくは、320~420℃の範囲に調整される。この温度が大きくなるほど、触媒活性が急激に低下しやすい傾向にあり、小さくなるほど、目的生成物である共役ジエン等の収率が低下する傾向にある。
また、反応器内温度(管式反応器の場合は反応管内温度)は、特に限定されないが、通常、250~450℃、好ましくは、320~420℃、更に好ましくは、340~410℃である。なお、ここでいう反応器内温度とは、触媒層の温度のことであり、該触媒層の任意の箇所の温度を測定した際の温度であり、例えば、反応管軸上かつ触媒層の上下間の中央の箇所を測ることができる。触媒層の温度は、触媒層の上から下に向かって熱電対を挿入して測定することができる。
触媒層の温度が450℃を超えると、反応を継続するに従って、急激に触媒活性が低下する恐れがある傾向にあり、一方、触媒層の温度が250℃を下回ると、目的生成物(例えば、共役ジエン)の収率が低下する傾向にある。反応器内温度は、反応条件によって決定されるが、触媒層の希釈率や混合ガスの流量等で制御することができる。
本発明における反応器の滞留時間は、特に限定されないが、下限は、通常0.36秒以上、好ましくは、0.8秒以上、更に好ましくは0.9秒以上である。この値が大きくなるほど、原料ガス中のモノオレフィンの転化率が高くなるというメリットがある。一方、上限は、3.6秒以下であり、好ましくは2.8秒以下、更に好ましくは2.5秒以下である。この値が小さくなるほど、反応器が小さくなる傾向にある。
なお、本発明では、反応器の後段に後工程として、冷却工程、脱水工程、溶媒吸収工程、精製工程等も必要に応じて設けてもよい。
(モリブデン複合酸化物触媒の種類)
本発明において用いるモリブデン複合酸化物触媒としては、モリブデンを含有する複合酸化物触媒が挙げられ、更に好ましくはモリブデン及びビスマスを含む複合酸化物触媒が挙げられ、より好ましくはモリブデン、ビスマス及びコバルトを含有する複合酸化物触媒が挙げられる。このような例としては、下記一般式(1)で表される複合酸化物触媒が挙げられる。
MoaBibCocNidFeeXfYgZhSiiOj (1)
なお、式中、Xはマグネシウム(Mg)、カルシウム(Ca)、亜鉛(Zn)、セリウム(Ce)及びサマリウム(Sm)からなる群から選ばれる少なくとも1種の元素を示し、Yはナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)及びタリウム(Tl)からなる群から選ばれる少なくとも1種の元素を示し、Zはホウ素(B)、リン(P)、ヒ素(As)及びタングステン(W)からなる群から選ばれる少なくとも1種の元素を示す。また、a~jはそれぞれの元素の原子比を示し、a=12のとき、b=0.5~7、c=0~10、d=0~10(但しc+d=1~10)、e=0.05~3、f=0~2、g=0.04~2、h=0~3、i=5~48の範囲にあり、またjは他の元素の酸化状態を満足させる数値を示す。
モリブデン複合酸化物触媒のモリブデン含有量は、好ましくは15~45質量%、更に好ましくは20~35質量%、特に好ましくは25~30質量%である。
本発明のモリブデン複合酸化物触媒は、この複合酸化物触媒を構成する各成分元素の供給源化合物を水性溶媒下で一体化して加熱する工程を経て製造することができる。例えば、前記各成分元素の供給源化合物の全部を水系内で一体化して加熱してもよい。なお、供給源化合物とは、所定の成分元素を含む化合物であり、後述する熟成処理の際に、触媒の構成成分としてその元素を供給できる化合物をいう。
まず、この複合酸化物触媒の製造方法においては、前記前工程で用いられる触媒前駆体におけるモリブデンが、モリブデン複合酸化物触媒におけるモリブデンの全原子比(a)の内の一部の原子比(a1)相当のモリブデンであり、前記後工程で用いられるモリブデン化合物におけるモリブデンが、モリブデン複合酸化物触媒におけるモリブデンの全原子比(a)からa1を差し引いた残りの原子比(a2)相当のモリブデンであることが好ましい。そして、前記a1が1<a1/(c+d+e)<3を満足する値であることが好ましく、さらに、前記a2が0<a2/b<8を満足する値であることが好ましい。なお、cはモリブデン複合酸化物触媒におけるコバルトの全原子比、dはニッケルの全原子比、eは鉄の全原子比を示す。
鉄の供給源化合物としては、硝酸第二鉄、硫酸第二鉄、塩化第二鉄及び酢酸第二鉄等が挙げられる。
コバルトの供給源化合物としては、硝酸コバルト、硫酸コバルト、塩化コバルト、炭酸コバルト及び酢酸コバルト等が挙げられる。
ニッケルの供給源化合物としては、硝酸ニッケル、硫酸ニッケル、塩化ニッケル、炭酸ニッケル及び酢酸ニッケル等が挙げられる。
ケイ素の供給源化合物としては、シリカ、粒状シリカ、コロイダルシリカ及びヒュームドシリカ等が挙げられる。
例えば、Y成分としてナトリウムを用いた場合、ビスマスとナトリウムとの複合炭酸塩化合物は、炭酸ナトリウムまたは重炭酸ナトリウムの水溶液等に、硝酸ビスマス等の水溶性ビスマス化合物の水溶液を滴下混合し、得られた沈殿を水洗及び乾燥することによって製造することができる。
前記炭酸アンモニウムまたは重炭酸アンモニウムの代わりに、炭酸ナトリウムまたは重炭酸ナトリウムを用いると、ビスマス、ナトリウム及びX成分との複合炭酸塩化合物を製造することができる。
カリウムの供給源化合物としては、硝酸カリウム、硫酸カリウム、塩化カリウム、炭酸カリウム及び酢酸カリウム等を挙げることができる。
ルビジウムの供給源化合物としては、硝酸ルビジウム、硫酸ルビジウム、塩化ルビジウム、炭酸ルビジウム及び酢酸ルビジウム等を挙げることができる。
セシウムの供給源化合物としては、硝酸セシウム、硫酸セシウム、塩化セシウム、炭酸セシウム及び酢酸セシウム等を挙げることができる。
タリウムの供給源化合物としては、硝酸第一タリウム、塩化第一タリウム、炭酸タリウム及び酢酸第一タリウム等を挙げることができる。
ホウ素の供給源化合物としては、ホウ砂、ホウ酸アンモニウム及びホウ酸等を挙げることができる。
リンの供給源化合物としては、リンモリブデン酸アンモニウム、リン酸アンモニウム、リン酸及び五酸化リン等を挙げることができる。
ヒ素の供給源化合物としては、ジアルセノ十八モリブデン酸アンモニウム及びジアルセノ十八タングステン酸アンモニウム等を挙げることができる。
マグネシウムの供給源化合物としては、硝酸マグネシウム、硫酸マグネシウム、塩化マグネシウム、炭酸マグネシウム及び酢酸マグネシウム等が挙げられる。
カルシウムの供給源化合物としては、硝酸カルシウム、硫酸カルシウム、塩化カルシウム、炭酸カルシウム及び酢酸カルシウム等が挙げられる。
亜鉛の供給源化合物としては、硝酸亜鉛、硫酸亜鉛、塩化亜鉛、炭酸亜鉛及び酢酸亜鉛等が挙げられる。
セリウムの供給源化合物としては、硝酸セリウム、硫酸セリウム、塩化セリウム、炭酸セリウム及び酢酸セリウム等が挙げられる。
サマリウムの供給源化合物としては、硝酸サマリウム、硫酸サマリウム、塩化サマリウム、炭酸サマリウム及び酢酸サマリウム等が挙げられる。
このようにして得られたシリカを含む供給源化合物の水溶液または水分散液を60~90℃に加温し、熟成する。
前記撹拌方法としては、任意の方法を採用することができ、例えば、撹拌翼を有する撹拌機による方法や、ポンプによる外部循環による方法等が挙げられる。
熟成され、得られたスラリーは、そのままで、または乾燥した後、加熱処理を行う。乾燥する場合の乾燥方法及び得られる乾燥物の状態については特に限定はなく、例えば、通常のスプレードライヤー、スラリードライヤーまたはドラムドライヤー等を用いて粉体状の乾燥物を得てもよいし、また、通常の箱型乾燥器またはトンネル型焼成炉を用いてブロック状またはフレーク状の乾燥物を得てもよい。加熱処理は、例えば、空気中で200~400℃、好ましくは250~350℃の温度域で行う。その際の炉の形式及びその方法については特に限定はなく、例えば、通常の箱型加熱炉、トンネル型加熱炉等を用いて乾燥物を固定した状態で加熱してもよいし、また、ロータリーキルン等を用いて乾燥物を流動させながら加熱してもよい。
灼熱減量(%)=[(W0-W1)/W0]×100
W0:触媒前駆体を150℃で3時間乾燥して付着水分を除いたものの重量(g)。
W1:付着水分を除いた前記触媒前駆体を更に500℃で2時間熱処理した後の重量(g)。
本発明においては、管式反応器を用いて接触酸化反応を行う際に、前記モリブデン複合酸化物触媒を充填して、複合酸化物触媒層を形成する。該複合酸化物触媒層は、モリブデン複合酸化物触媒以外の成分を含んでいてもよく、このような成分としては、モリブデンを含まない触媒や反応性の低い固形物等が挙げられる。この反応性の低い固形物としては、本発明の接触酸化反応の条件下で安定であり、炭素原子数3以上のモノオレフィン等の原料物質や、共役ジエン、アクロレイン及びアクリル酸等の生成物と反応性が低い材質からなるものであれば特に限定されず、具体的には、アルミナ及びジルコニア等のセラミック材等からなる固形物が挙げられ、一般的に、イナートボールとも呼ばれることがある。またその形状は、特に限定されず、球状、円柱状、リング状、不定形のいずれでもよい。更に、その大きさは限定されず、例えば本発明で使用する触媒等と同等の大きさのもの等が挙げられる。複合酸化物触媒層のモリブデン複合酸化物触媒の含有量は、通常1~99質量%、好ましくは10~90質量%、特に好ましくは20~80質量%である。
更に、複合酸化物触媒層は、2層以上からなっていてもよく、1~3層であるのが好ましい。ここで、1層の複合酸化物触媒層とは、モリブデン複合酸化物触媒を含み、かつ層の組成が同じである連続する層を意味する。
(モリブデン化合物の種類)
本発明において用いるモリブデン化合物は、モリブデンを含有する化合物である。モリブデン化合物としてはパラモリブデン酸アンモニウム、酸化モリブデン、モリブデン酸、リンモリブデン酸アンモニウムまたはリンモリブデン酸等の酸素を含む化合物及びこれらの混合物等が挙げられ、市販されているものを用いることができるが、複合酸化物触媒層で用いるモリブデン複合酸化物触媒のモリブデン揮散量(μg/NL)より大きいモリブデン揮散量(μg/NL)を有するモリブデン化合物を用いる必要がある。モリブデン化合物のモリブデン揮散量(μg/NL)と前記モリブデン複合酸化物触媒のモリブデン揮散量(μg/NL)との差は触媒層におけるモリブデンの補充量と揮散量との量とのバランスの点から、0.1~10μg/NLが好ましく、0.2~6μg/NLであることがより好ましい。
上記モリブデン化合物としては、酸化モリブデン(MoO3)を20質量%以上の含むものが好ましく、30質量%以上含むものがより好ましく、また、100質量%未満含むものが好ましく、90質量%以下含むものがより好ましい。
なお、本発明でいうモリブデン揮散量とは、440℃空気75体積%及び水蒸気25体積%の組成からなる混合気体の流通下で揮散したモリブデン(Mo)の量(μg/NL)であり、例えば以下に記載の方法で求めた、揮散したモリブデン(Mo)量(μg/NL)のことである。
室温25℃で、図1に示す装置において、内径6mmのガラス製反応管4にモリブデン化合物またはモリブデン複合酸化物触媒(単に複合酸化物触媒とも称する)5を充填し、該反応管を電気ヒーター3で加熱し、該反応管内の温度を440℃に保つ。次に、空気75体積%及び水蒸気25体積%の組成からなる混合気体を1.0×103NL/hrで該反応管に10時間連続して供給した後、ガラス製反応管下部6に析出して付着した析出物をアンモニア水溶液で溶解して溶解液とする。この溶解液をビーカーに入れ、250℃で静かに蒸発乾固させた後、得られた固体に硫酸0.2mLとイオン交換水を添加し加温溶解した後、この溶解液をイオン交換水で25mLに希釈する。この希釈した溶解液中のMo量(g)を誘導結合プラズマ発光分光装置を用いて分析する。分析によって得られたMo量(g)を流したガス量(1.0×103NL/hr×10時間)で割り、単位気体流量当たりのモリブデン量(g/NL)を求め、これをモリブデン揮散量とする。
装置:サーモフィッシャーサイエンティフィック製 iCAP6500Duo型
分析線:Mo 202.030nm
プラズマ出力 :1150W
プラズマ:アキシャル
なお、モリブデン化合物及びモリブデン複合酸化物触媒5中のモリブデンは電気ヒーター3で温められた混合気体(ガス)中の水蒸気と反応し、MoO2(OH)2となってガラス製反応管4内で揮散する。該揮散したMoO2(OH)2はガラス製反応管下部6から系外へ流出するが、該反応管下部は電気ヒーターで加熱されておらず、室温において自然冷却されているため、該揮散したMoO2(OH)2中のMoはMoO3となって該反応管下部に析出する。廃ガスの成分を調べたところ、Moが検出されなかったことから、MoO2(OH)2中のMoは全てMoO3となって析出したとみなせるため、該析出したMoO3の量から揮散したMoの量(g/NL)を求めることができる。
カリウムの供給源化合物及びルビジウムの供給源化合物、セシウムの供給源化合物、マグネシウムの供給源化合物及びカルシウムの供給源化合物としては、前記ししたものを挙げることができる。
アルカリ金属またはアルカリ土類金属を含有するモリブデン化合物や、更に担体に担持されたモリブデン化合物は、前記したモリブデン複合酸化物触媒の製造と同様に、該モリブデン化合物を構成する各成分元素の供給源化合物を水性溶媒下で一体化して加熱する工程を経て製造することができる。
モリブデン化合物のモリブンデン含有量は20質量%以上であることが好ましく、更に好ましくは25質量%以上、特に好ましくは30質量%以上である。モリブデン化合物がモリブデンを多く含有していると長期間にわたってモリブデンを複合酸化物触媒層に供給できる。
また、前記モリブデン化合物のモリブデン含有量は、複合酸化物触媒層中のモリブデン複合酸化物触媒のモリブデン含有量よりも多いことが好ましい。特に、最もモリブデン含有量が多いモリブデン複合酸化物触媒のモリブデン含有量の1.2倍以上であることが好ましく、1.5倍以上であることがより好ましい。1.2倍以上であると、モリブデンを長期に渡ってモリブデン複合酸化物触媒層に供給出来るため、接触酸化反応を長期に渡って持続することが出来る。一方、上限は3.0倍が好ましく、2.0倍がより好ましい。
モリブデン化合物層は、モリブデン複合酸化物触媒のモリブデン揮散量よりモリブデン揮散量が大きいモリブデン化合物以外に、前述したイナートボール等他の化合物を含有していてもよい。
モリブデン化合物層のモリブデン化合物の含有量は20質量%以上、好ましくは60質量%以上、より好ましくは80質量%以上、更に好ましくは95質量%以上、特に好ましくは100質量%である。
一方、上限は100質量%以下が好ましく、50質量%以下がより好ましい。100質量%を超えると、モリブデン化合物層が長くなりすぎて、反応器が大きくなってしまうため好ましくない。
接触酸化反応時におけるモリブデン化合物層の温度は、前記した反応温度以下であることが好ましい。モリブデン化合物層の温度が反応温度より高いと、モリブデン化合物層からモリブデンが水酸化モリブデン(MoO2(OH)2)となって揮散し、該モリブデン化合物層より下流(原料入口側を上流とする)で冷却されて析出し、酸化モリブデン(MoO3)となり、更に該酸化モリブデンを起点として炭素分が蓄積し(コーキング)、反応管を詰まらせる、という現象がより起こりにくくなる。モリブデン化合物層の温度は反応温度より0~40℃低いことが好ましく、0~20℃低いことがより好ましい。
なお、本発明の接触酸化反応は発熱反応であるため、モリブデン化合物層に該接触酸化反応に対し活性が高い物質が含まれていると、反応温度よりモリブデン化合物層の温度は通常高くなる。従って、モリブデン化合物としては、活性が低い、好ましくは本発明の接触酸化反応に対し活性を有さない化合物を使用するのがよい。モリブデン化合物の活性を低くする手段としては、上述したように、モリブデン化合物にアルカリ金属やアルカリ土類金属を含有させる方法が挙げられる。同様の理由で、モリブデン化合物層がモリブデン含化合物以外の化合物を含む場合、該化合物としては活性が低い、好ましくは本発明の接触酸化反応に活性を有さず、更には原料物質、酸素及び水蒸気との反応性が低い、好ましく反応しない化合物が挙げられ、このような化合物としては、前述したイナートボール等が挙げられる。
なお、モリブデン化合物層の温度は、モリブデン化合物層の任意の箇所の温度を測定した際の温度であり、例えば、反応管軸上かつモリブデン化合物層の最下部の箇所を測定することができる。モリブデン化合物層の温度は、モリブデン化合物層の上から下に向かって熱電対を挿入して測定することができる。
本発明においては、反応管内に、複合酸化物触媒層及びモリブデン化合物層以外に主として前述したイナートボール等からなる不活性層を有していてもよい。なお、ここでいう不活性層とは、上記したように、本発明の接触酸化反応に否活性で、原料物質、酸素、水蒸気及び生成ガス等と反応しない層のことである。
<モリブデン複合酸化物触媒の調製>
パラモリブデン酸アンモニウム54gを純水250mlを70℃に加温して溶解させた。次に、硝酸第二鉄7.18g、硝酸コバルト31.8g及び硝酸ニッケル31.8gを純水60mlに70℃に加温して溶解させた。これらの溶液を、充分に攪拌しながら徐々に混合した。
次に、シリカ64gを加えて、充分に攪拌しスラリーを得た。該スラリーを75℃に加温し、5時間熟成した。その後、該スラリーを加熱乾燥した後、空気雰囲気で300℃、1時間の熱処理に付した。
得られた触媒前駆体の粒状固体(灼熱減量:1.4質量%)を粉砕し、パラモリブデン酸アンモニウム40.1gを純水150mlにアンモニア水10mlを加え溶解した溶液に分散し、スラリーを得た。次に、純水40mlにホウ砂0.85g及び硝酸カリウム0.36gを25℃の加温下に溶解させて、前記スラリーを加えた。
更に、Naを0.45%固溶した次炭酸ビスマス58.1gを加えて、攪拌混合した。得られたスラリーを130℃、12時間加熱乾燥した後、得られた粒状固体を、小型成型機にて径5mm、高さ4mmの錠剤に打錠成型し、次に500℃、4時間の焼成を行って、触媒を得た。仕込み原料から計算される触媒は、次の原子比を有するモリブデン複合酸化物であった。
Mo:Bi:Co:Ni:Fe:Na:B:K:Si=12:5:2.5:2.5:0.4:0.35:0.2:0.08:24
なお、得られたモリブデン複合酸化物のモリブデン濃度を分析した所、27.8質量%であった。
室温25℃で、図1に示す装置において、内径6mmのガラス製反応管に上記で調製したモリブデン複合酸化物触媒を0.8g充填し、該反応管を電気ヒータで加熱し、該反応管内の温度を440℃に保った。次に、空気75体積%及び水蒸気25体積%の組成からなる混合気体を1.0×103NL/hrで該反応管に10時間連続して供給した後、反応管下部に析出して付着した析出物をアンモニア水溶液で溶解して溶解液とした。この溶解液をビーカーに入れ、250℃で静かに蒸発乾固させた後、得られた固体に硫酸0.2mLとイオン交換水を添加し加温溶解した後、この溶解液をイオン交換水で25mLに希釈した。この希釈した溶解液中のMo量(g)を誘導結合プラズマ発光分光装置を用いて分析した。分析によって得られたMo量(g)を流したガス量(1.0×103NL/hr×10時間)で割り、単位気体流量当たりのモリブデン量(g/NL)を求め、これをモリブデン揮散量とした。
装置:サーモフィッシャーサイエンティフィック製 iCAP6500Duo型
分析線:Mo 202.030nm
プラズマ出力 :1150W
プラズマ:アキシャル
なお、モリブデン複合酸化物触媒中のモリブデンは電気ヒータで温められた混合ガス中の水蒸気と反応し、MoO2(OH)2となってガラス製反応管内で揮散する。該揮散したMoO2(OH)2はガラス製反応管下部から系外へ流出するが、該反応管下部は電気ヒーターで加熱されておらず、室温において自然冷却されているため、該揮散したMoO2(OH)2中のMoはMoO3となって該反応管下部に析出する。排ガスの成分を調べたところ、Moが検出されなかったことから、MoO2(OH)2中のMoは全てMoO3となって析出したとみなせるため、該析出したMoO3の量から揮散したMoの量(g/NL)を求めることができる。
上記で調製したモリブデン複合酸化物触媒を多管式の固定床反応器反応管113本(長さ:3,500mm、内径:27mm、材質:SUS304)に充填してブテンの酸化脱水素反応によるブタジエンの製造を行った。反応管内の圧力を0.05MPaGとし、原料ガスとして表1に示される成分組成のBBSS、空気、窒素及び水蒸気をそれぞれ15.7×103NL/hr、81.7×103NL/hr、62.5×103NL/hr及び17.7×103NL/hrの流量で供給し、予熱器で214℃に加熱した後、原料ガス入口から多管式反応器に供給した。反応器の胴側には温度380℃の熱媒体を流して、反応管内の最高温度が415~420℃となるように調整した。
生成ガス出口から得られる表2の組成のブタジエンを含む生成ガスを抜き出しながら、3700時間の連続運転を行った後、反応を停止し、モリブデン複合酸化物触媒を抜き出した。
3700時間酸化脱水素反応(接触酸化反応)を行った後のモリブデン複合酸化物触媒のモリブデン揮散量を上記の調製後のモリブデン複合酸化物触媒のモリブデン揮散量と同様にして求めたところ、1.2μg/NLであった。
パラモリブデン酸アンモニウム85.57g及び硝酸カリウム2.44gを200gの水に溶解させ、更にシリカ29.1gを混合し更に加熱乾燥させ、酸化モリブデン、カリウム及びシリカを含むモリブデン化合物からなる固体を得た。加熱乾燥により得られた固体40gを小型成型機にて径5mm、高さ4mmの錠剤に打錠成型した。なお、得られた固形物のモリブデン濃度を分析した所、46.5質量%であった。また、得られた固形物中の酸化モリブデンの含有割合は、69.7質量%であった。
上記で調製したモリブデン化合物のモリブデン揮散量をモリブデン複合酸化物触媒の場合と同様にして求めたところ、7.0μg/NLであった。
内径10mm、高さ500mmのステンレス製反応管に、予めイナートボール(直径2mmの球状)を充填(充填層長:140mm)しておき、そのイナートボールの充填層の上に、参考1において酸化脱水素反応後に多管式の固定床反応器から抜き出した3700時間反応後のモリブデン複合酸化物触媒1gを充填し複合酸化物触媒層とした。該複合酸化物触媒層の上にイナートボールを充填した後、前記した<モリブデン化合物層に用いるモリブデン化合物の調製>において調製したモリブデン化合物1gを充填し、モリブデン化合物層とした。なお、3700時間反応後の前記複合酸化物触媒におけるモリブデン残存率をXRF(日本サーモニクス社製、NT-210型)で測定としたところ90.1%であった。
次に、熱媒体としては亜硝酸塩及び硝酸塩を含む無機塩を使用し、熱媒体の温度を390℃に設定した。
反応管内の圧力を0.05MPaGとし、予め窒素を2.00NL/hr、空気を3.36NL/hr、及び水蒸気を2.00NL/hrで予熱器に供給しておき、その後、原料ガスである表1に示すBBSSを0.64NL/hrで供給し、予熱器内で混合して混合ガスとして345℃に昇温した。その後、この混合ガスを8.00NL/hrで上記反応管の頂部から連続的に供給し、酸化脱水素反応を行った。生成ガスは反応管の底部から抜き出した。
なお、反応管の中央に設置した外径2.0mmの挿入管中のシース型熱電対により反応中の触媒層の温度(反応管軸上かつ触媒層の上下間の中央の箇所の温度)を測定したところ、409℃であった。また同様にして測定したモリブデン化合物層の温度(反応管軸上かつモリブデン化合物層の最下部の箇所の温度)は377℃であった。反応開始120時間後のn-ブテンの転化率は85.7%、1968時間経過後のn-ブテンの転化率は75.4%であった。反応後に抜き出したモリブデン複合酸化物触媒のモリブデン残存率をXRFにより測定した所、92.2%であった。
内径10mm、高さ500mmのステンレス製反応管に、予めイナートボール(直径2mmの球状)を充填(充填層長:140mm)しておき、そのイナートボールの充填層の上に、前記した<モリブデン複合酸化物触媒の調製>において調整したモリブデン複合酸化物触媒1gを充填し、複合酸化物触媒層とした。次に、該触媒層の上にイナートボールを充填した後、前記した<モリブデン化合物層に用いるモリブデン化合物の調製>において調製したモリブデン化合物1gを充填し、モリブデン化合物層とした。
熱媒体としては亜硝酸塩及び硝酸塩を含む無機塩を使用し、熱媒体の温度を390℃に設定した。
反応管内の圧力を0.05MPaGとし、予め窒素を2.16LN/hr、空気を3.25NL/hr、及び水蒸気を2.00NL/hrで予熱器に供給しておき、その後、原料ガスである表3に示すガスを0.67NL/hrで供給し、予熱器内で混合して混合ガスとして345℃に昇温した。
その後、この混合ガスを8.00NL/hrで上記反応管の頂部から連続的に供給し、酸化脱水素反応を行った。生成ガスは反応管の底部から抜き出した。
なお、反応管の中央に設置した外径2.0mmの挿入管中のシース型熱電対により反応中の触媒層の温度(反応管軸上かつ触媒層の上下間の中央の箇所の温度)を測定したところ、401℃であった。また同様にして測定したモリブデン化合物層の温度(反応管軸上かつモリブデン化合物層の最下部の箇所の温度)は376℃であった。
反応開始336時間後のn-ブテンの転化率は88.9%、2544時間経過後のn-ブテンの転化率は87.4%であった。反応後に抜き出したモリブデン複合酸化物触媒のモリブデン残存率をXRFにより測定した所、96.1%であった。
実施例1においてモリブデン化合物層として、モリブデン化合物を充填しなかった以外は全て同様に実施した。反応開始120時間後のn-ブテンの転化率は85.3%、1968時間経過後のn-ブテンの転化率は72.7%であった。反応後に抜き出したモリブデン複合酸化物触媒のモリブデン残存率をXRFにより測定した所、88.7%であった。
実施例2においてモリブデン化合物層として、モリブデン化合物を充填しなかった以外は全て同様に実施した。反応開始336時間後のn-ブテンの転化率は88.9%、2544時間経過後のn-ブテンの転化率は85.0%であった。反応後に抜き出したモリブデン複合酸化物触媒のモリブデン残存率をXRFにより測定したところ、94.2%であった。
2.温度指示計挿入管
3.電気ヒーター
4.ガラス製反応管
5.モリブデン化合物または複合酸化物触媒
6.ガラス製反応管下部
Claims (8)
- モリブデン複合酸化物触媒存在下、管式反応器を用いて接触酸化反応を行う接触酸化方法であって、
前記管式反応器の反応原料供給口側から順に、モリブデン化合物を含有するモリブデン化合物層及びモリブデン複合酸化物触媒を含有する複合酸化物触媒層が配され、
440℃かつ空気75体積%及び水蒸気25体積%の組成からなる混合気体の流通下における前記モリブデン化合物のモリブデン揮散量(μg/NL)が同前記モリブデン複合酸化物触媒のモリブデン揮散量(μg/NL)よりも大きいことを特徴とする接触酸化方法。 - 前記接触酸化反応における前記モリブデン化合物層の温度が、反応温度以下である請求項1に記載の接触酸化方法。
- 前記モリブデン化合物のモリブデン揮散量と前記モリブデン複合酸化物触媒のモリブデン揮散量との差が0.2~6μg/NLである請求項1または2に記載の接触酸化方法。
- 前記モリブデン化合物のうち、20質量%以上が酸化モリブデンである請求項1~3のいずれか1項に記載の接触酸化方法。
- モリブデン複合酸化物触媒存在下、管式反応器を用いて有機化合物から酸化脱水素反応により前記有機化合物に対応する酸化脱水素反応生成物を製造する方法であって、
前記管式反応器の反応原料供給口側から順に、モリブデン化合物を含有するモリブデン化合物層及びモリブデン複合酸化物触媒を含有する複合酸化物触媒層が配され、
440℃かつ空気75体積%及び水蒸気25体積%の組成からなる混合気体の流通下における前記モリブデン化合物のモリブデン揮散量(μg/NL)が同前記モリブデン複合酸化物触媒のモリブデン揮散量(μg/NL)よりも大きいことを特徴とする酸化脱水素反応生成物の製造方法。 - 前記有機化合物が炭素原子数4~6のモノオレフィン類であり、前記酸化脱水素反応生成物が共役ジエンである請求項5に記載の酸化脱水素反応生成物の製造方法。
- モリブデン複合酸化物触媒存在下、管式反応器を用いて有機化合物から酸化反応により前記有機化合物に対応する酸化反応生成物を製造する方法であって、
前記管式反応器の反応原料供給口側から順に、モリブデン化合物を含有するモリブデン化合物層及びモリブデン複合酸化物触媒を含有する複合酸化物触媒層が配され、
440℃かつ空気75体積%及び水蒸気25体積%の組成からなる混合気体の流通下における前記モリブデン化合物のモリブデン揮散量(μg/NL)が同前記モリブデン複合酸化物触媒のモリブデン揮散量(μg/NL)よりも大きいことを特徴とする酸化反応生成物の製造方法。 - 前記有機化合物がプロピレンであり、前記酸化反応生成物がアクロレイン及びアクリル酸の少なくともいずれか一方である請求項7に記載の酸化反応生成物の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020197026936A KR102472468B1 (ko) | 2017-03-17 | 2018-03-16 | 접촉 산화 방법 및 공역 디엔의 제조 방법 |
RU2019129096A RU2753508C2 (ru) | 2017-03-17 | 2018-03-16 | Способ каталитического окисления и способ получения сопряженного диена |
CN201880018569.7A CN110430938B (zh) | 2017-03-17 | 2018-03-16 | 催化氧化方法和共轭二烯的制造方法 |
JP2019506324A JP7207295B2 (ja) | 2017-03-17 | 2018-03-16 | 接触酸化方法、酸化脱水素反応生成物の製造方法、及び酸化反応生成物の製造方法 |
EP18768102.8A EP3597291A4 (en) | 2017-03-17 | 2018-03-16 | CATALYTIC OXIDATION PROCESS AND MANUFACTURING METHOD OF CONJUGATED DIENE |
US16/570,706 US11452978B2 (en) | 2017-03-17 | 2019-09-13 | Catalytic oxidation method and method for producing conjugated diene |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-053106 | 2017-03-17 | ||
JP2017053106 | 2017-03-17 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/570,706 Continuation US11452978B2 (en) | 2017-03-17 | 2019-09-13 | Catalytic oxidation method and method for producing conjugated diene |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018169088A1 true WO2018169088A1 (ja) | 2018-09-20 |
Family
ID=63522262
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/010639 WO2018169088A1 (ja) | 2017-03-17 | 2018-03-16 | 接触酸化方法及び共役ジエンの製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11452978B2 (ja) |
EP (1) | EP3597291A4 (ja) |
JP (1) | JP7207295B2 (ja) |
KR (1) | KR102472468B1 (ja) |
CN (1) | CN110430938B (ja) |
RU (1) | RU2753508C2 (ja) |
WO (1) | WO2018169088A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114656360A (zh) * | 2022-03-03 | 2022-06-24 | 常州大学 | 一种利用乙醇酸甲酯连续氧化制备乙醛酸甲酯/乙醛酸的方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3236782A (en) * | 1962-09-26 | 1966-02-22 | Du Pont | Process regeneration of mixed metallic oxide catalysts by contacting with metal compound vapor |
JPS6133234A (ja) | 1984-07-23 | 1986-02-17 | Mitsubishi Petrochem Co Ltd | 触媒の再生法 |
JPH0710799A (ja) * | 1993-06-25 | 1995-01-13 | Sumitomo Chem Co Ltd | 不飽和アルデヒド及び不飽和カルボン酸の製造方法 |
JPH07165663A (ja) * | 1993-12-13 | 1995-06-27 | Sumitomo Chem Co Ltd | 不飽和アルデヒド及び不飽和カルボン酸の製造法 |
JP2003220335A (ja) | 2001-11-21 | 2003-08-05 | Mitsubishi Chemicals Corp | 複合酸化物触媒の製造方法 |
JP2011148765A (ja) * | 2009-12-21 | 2011-08-04 | Mitsubishi Chemicals Corp | 共役ジエンの製造方法 |
JP2011178719A (ja) | 2010-03-01 | 2011-09-15 | Mitsui Chemicals Inc | ブタジエンの製造方法 |
KR20130046458A (ko) | 2011-10-28 | 2013-05-08 | 주식회사 엘지화학 | 연속 반응기를 이용한 1,3-부타디엔의 제조방법 |
JP2017053106A (ja) | 2015-09-07 | 2017-03-16 | コベルコ建機株式会社 | シリンダの保護構造及び作業機械 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3882159A (en) * | 1973-08-20 | 1975-05-06 | Standard Oil Co | Reactivation of molybdenum containing oxidation catalysts in fluid bed reactors |
JPS55113730A (en) * | 1979-02-26 | 1980-09-02 | Mitsubishi Petrochem Co Ltd | Preparation of acrolein and acrylic acid |
JPS58119346A (ja) * | 1982-01-06 | 1983-07-15 | Nippon Shokubai Kagaku Kogyo Co Ltd | プロピレン酸化用触媒 |
JPS58188823A (ja) * | 1982-04-27 | 1983-11-04 | Japan Synthetic Rubber Co Ltd | 1,3−ブタジエンの製造法 |
JPS59193136A (ja) * | 1983-04-19 | 1984-11-01 | Ube Ind Ltd | モリブデン含有酸化触媒の活性持続方法 |
CN1062550C (zh) * | 1993-06-25 | 2001-02-28 | 住友化学工业株式会社 | 不饱和醛和不饱和羧酸的制备方法 |
JP3943284B2 (ja) | 1999-05-27 | 2007-07-11 | 株式会社日本触媒 | アクリル酸の製造方法 |
JP2003146920A (ja) | 2001-11-07 | 2003-05-21 | Mitsubishi Chemicals Corp | アクロレインおよびアクリル酸の製造方法 |
WO2003039744A1 (fr) | 2001-11-08 | 2003-05-15 | Mitsubishi Chemical Corporation | Catalyseur a base d'oxyde composite et son procede de preparation |
WO2005058496A1 (ja) * | 2003-12-17 | 2005-06-30 | Mitsubishi Chemical Corporation | 複合酸化物触媒の製造方法 |
NZ727755A (en) | 2006-01-23 | 2023-01-27 | Abt Holding Co | Mapc therapeutics without adjunctive immunosuppressive treatment |
RU2400298C2 (ru) * | 2008-11-01 | 2010-09-27 | Леонид Модестович Кустов | Катализатор окисления |
KR20120026049A (ko) * | 2009-05-29 | 2012-03-16 | 미쓰비시 가가꾸 가부시키가이샤 | 공액 디엔의 제조 방법 |
-
2018
- 2018-03-16 RU RU2019129096A patent/RU2753508C2/ru active
- 2018-03-16 KR KR1020197026936A patent/KR102472468B1/ko not_active Application Discontinuation
- 2018-03-16 CN CN201880018569.7A patent/CN110430938B/zh active Active
- 2018-03-16 WO PCT/JP2018/010639 patent/WO2018169088A1/ja active Application Filing
- 2018-03-16 EP EP18768102.8A patent/EP3597291A4/en active Pending
- 2018-03-16 JP JP2019506324A patent/JP7207295B2/ja active Active
-
2019
- 2019-09-13 US US16/570,706 patent/US11452978B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3236782A (en) * | 1962-09-26 | 1966-02-22 | Du Pont | Process regeneration of mixed metallic oxide catalysts by contacting with metal compound vapor |
JPS6133234A (ja) | 1984-07-23 | 1986-02-17 | Mitsubishi Petrochem Co Ltd | 触媒の再生法 |
JPH0710799A (ja) * | 1993-06-25 | 1995-01-13 | Sumitomo Chem Co Ltd | 不飽和アルデヒド及び不飽和カルボン酸の製造方法 |
JPH07165663A (ja) * | 1993-12-13 | 1995-06-27 | Sumitomo Chem Co Ltd | 不飽和アルデヒド及び不飽和カルボン酸の製造法 |
JP2003220335A (ja) | 2001-11-21 | 2003-08-05 | Mitsubishi Chemicals Corp | 複合酸化物触媒の製造方法 |
JP2011148765A (ja) * | 2009-12-21 | 2011-08-04 | Mitsubishi Chemicals Corp | 共役ジエンの製造方法 |
JP2011178719A (ja) | 2010-03-01 | 2011-09-15 | Mitsui Chemicals Inc | ブタジエンの製造方法 |
KR20130046458A (ko) | 2011-10-28 | 2013-05-08 | 주식회사 엘지화학 | 연속 반응기를 이용한 1,3-부타디엔의 제조방법 |
JP2017053106A (ja) | 2015-09-07 | 2017-03-16 | コベルコ建機株式会社 | シリンダの保護構造及び作業機械 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114656360A (zh) * | 2022-03-03 | 2022-06-24 | 常州大学 | 一种利用乙醇酸甲酯连续氧化制备乙醛酸甲酯/乙醛酸的方法 |
CN114656360B (zh) * | 2022-03-03 | 2024-03-29 | 常州大学 | 一种利用乙醇酸甲酯连续氧化制备乙醛酸甲酯/乙醛酸的方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3597291A1 (en) | 2020-01-22 |
EP3597291A4 (en) | 2020-01-22 |
CN110430938A (zh) | 2019-11-08 |
KR20190128053A (ko) | 2019-11-14 |
KR102472468B1 (ko) | 2022-12-01 |
CN110430938B (zh) | 2023-09-08 |
RU2019129096A3 (ja) | 2021-04-19 |
US11452978B2 (en) | 2022-09-27 |
RU2753508C2 (ru) | 2021-08-17 |
US20200001262A1 (en) | 2020-01-02 |
JPWO2018169088A1 (ja) | 2020-01-23 |
RU2019129096A (ru) | 2021-04-19 |
JP7207295B2 (ja) | 2023-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2763317C (en) | Production process of conjugated diene | |
JP5895546B2 (ja) | 複合酸化物触媒及び共役ジエンの製造方法 | |
JP2010090082A (ja) | 共役ジエンの製造方法 | |
EP3233272B1 (en) | Improved mixed metal oxide ammoxidation catalysts | |
JP5780072B2 (ja) | 共役ジエンの製造方法 | |
JP2013177380A (ja) | 共役ジエンの製造方法 | |
JP5874488B2 (ja) | 複合金属酸化物触媒及び共役ジエンの製造方法 | |
JP2013119530A (ja) | 共役ジエンの製造方法 | |
JP6229201B2 (ja) | 複合金属酸化物触媒及び共役ジエンの製造方法 | |
JP2010280653A (ja) | 共役ジエンの製造方法 | |
TWI541229B (zh) | 共軛二烯之製造方法 | |
JP4456862B2 (ja) | イソ−ブタンからメタクリル酸を製造する方法 | |
WO2018169088A1 (ja) | 接触酸化方法及び共役ジエンの製造方法 | |
JP2013213028A (ja) | 共役ジエンの製造方法 | |
KR101726113B1 (ko) | 부타디엔의 제조 방법 | |
JP6405857B2 (ja) | 共役ジエンの製造方法 | |
JP7210262B2 (ja) | ブタジエンの製造方法 | |
JP5020514B2 (ja) | 流動層用触媒の製造方法およびニトリル類の製造方法 | |
JP2012197272A (ja) | 共役ジエンの製造方法 | |
JP6443074B2 (ja) | 複合金属酸化物触媒及び共役ジエンの製造方法 | |
JP2014189543A (ja) | 共役ジエンの製造方法 | |
JP6716237B2 (ja) | ブタジエンの製造方法 | |
JP6540422B2 (ja) | 複合酸化物触媒 | |
JP2022124634A (ja) | イソプレン製造用触媒及びその用途 | |
JP2014181222A (ja) | 共役ジエンの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18768102 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019506324 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20197026936 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2018768102 Country of ref document: EP Ref document number: 2019129096 Country of ref document: RU |
|
ENP | Entry into the national phase |
Ref document number: 2018768102 Country of ref document: EP Effective date: 20191017 |