WO2018168055A1 - 鋳造設備の作動方法及び作動装置 - Google Patents

鋳造設備の作動方法及び作動装置 Download PDF

Info

Publication number
WO2018168055A1
WO2018168055A1 PCT/JP2017/039042 JP2017039042W WO2018168055A1 WO 2018168055 A1 WO2018168055 A1 WO 2018168055A1 JP 2017039042 W JP2017039042 W JP 2017039042W WO 2018168055 A1 WO2018168055 A1 WO 2018168055A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
casting
lower molds
casting equipment
acceleration
Prior art date
Application number
PCT/JP2017/039042
Other languages
English (en)
French (fr)
Inventor
道太 佐藤
和弘 太田
崇 花井
剛大 杉野
Original Assignee
新東工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新東工業株式会社 filed Critical 新東工業株式会社
Priority to JP2019505697A priority Critical patent/JP6863449B2/ja
Priority to CN201780077955.9A priority patent/CN110072652B/zh
Priority to DE112017006995.5T priority patent/DE112017006995T5/de
Publication of WO2018168055A1 publication Critical patent/WO2018168055A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C25/00Foundry moulding plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D33/00Equipment for handling moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D46/00Controlling, supervising, not restricted to casting covered by a single main group, e.g. for safety reasons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D47/00Casting plants
    • B22D47/02Casting plants for both moulding and casting

Definitions

  • the present invention relates to an operation method and an operation device of a casting facility for producing a casting by pouring a molten metal into a mold formed by a mold making line.
  • Patent Document 1 Conventionally, in a mold making line as a casting facility, it is publicly known to collect various data from the mold making line and to monitor the mold making line during casting production (see, for example, Patent Document 1). .
  • Patent Document 1 does not specifically and in detail examine how various data collected from the mold making line can be used to prevent the occurrence of defective castings. For this reason, there is a problem in that it is impossible to promptly deal with the occurrence of defective castings and disturb the casting production plan.
  • the present invention has been made in view of the above problems, and provides an operation method and an operation apparatus for a casting facility capable of promptly responding to the occurrence of defective castings and suppressing disturbances in a casting production plan.
  • the purpose is to provide.
  • a method for operating a casting equipment includes a step of measuring at least one unique data in at least one device constituting the casting equipment and storing the measured data in a database, and the stored unique data. And a step of determining the occurrence of at least one defect based on the data, and a step of urging a measure relating to the operation of the casting equipment to eliminate the occurrence of the defect.
  • the step of determining the occurrence of the defect includes a step of determining whether the specific data is outside a preset threshold value or outside an allowable range. .
  • the operating method of the casting equipment of the present invention is characterized in that a plurality of the unique data in the plurality of devices constituting the casting equipment are measured and collected for each lot and stored in the database.
  • the operation method of the casting equipment of the present invention is characterized in that the defect is misalignment of the upper and lower molds molded and matched with a mold making line constituting a part of the casting equipment.
  • the operating method of the casting equipment of the present invention is characterized in that it has a step of estimating the generation source of the defect during the operation of the casting equipment.
  • the operation method of the casting equipment of the present invention is characterized in that the defect is a misalignment of the upper and lower molds molded and matched by a frame making machine constituting a part of the casting equipment.
  • the step of estimating the generation source of the mold misalignment during operation of the casting facility is performed in a direction in which the upper and lower molds are extruded when the upper and lower molds are extruded from the frame forming machine.
  • a threshold value or an allowable range is set in advance for the first acceleration and the second acceleration, and the threshold value or the allowable range is changed during the operation of the casting facility. It is characterized by.
  • the operating method of the casting equipment of the present invention is characterized in that the vertical acceleration of the upper and lower molds is further measured by the first acceleration sensor.
  • the casting equipment operating device of the present invention comprises at least one unique data in at least one device constituting the casting equipment, and stores the measured unique data. And a control means for determining the occurrence of at least one defect based on the stored unique data.
  • the defect is a misalignment between upper and lower molds molded and matched in a mold making line constituting a part of the casting equipment.
  • the defect is a misalignment of the upper and lower molds molded and matched by a frame making machine constituting a part of the casting facility, and the misalignment is detected.
  • the present invention is characterized in that a misalignment detecting device is provided.
  • the operating device of the casting equipment of the present invention includes a first acceleration sensor mounted on a mold extrusion member in a mold extrusion apparatus for extruding the upper and lower molds outside the frame forming machine, and a frame extraction in the frame forming machine. And a second acceleration sensor mounted on a mold receiving member for receiving the upper and lower molds.
  • the present invention includes a step of measuring at least one unique data in at least one apparatus constituting a casting facility and storing it in a database, and a step of determining the occurrence of at least one defect based on the stored unique data And a step of urging a measure related to the operation of the casting facility to eliminate the occurrence of the defect, so that an immediate response to the occurrence of the defective casting is possible, and the production plan of the casting is disturbed.
  • the casting equipment is equipment for producing a casting by casting.
  • the casting equipment referred to here includes a sand processing line for preparing molding sand to be molded, a mold molding line for molding a mold, a pouring line for pouring molten metal into the molded mold, and a molten metal for pouring molten metal. Even if it is only one of a molten metal conveyance line to be prepared, a post-processing line for performing a predetermined process (for example, weir folding) on the produced casting, and an inspection line for inspecting the produced casting. include.
  • the mold making line includes a cooling line for cooling a casting (product) in the mold.
  • the casting equipment of this embodiment is equipment for producing a casting by casting a casting mold using casting sand (green sand in this embodiment) and pouring a molten metal into the casting mold.
  • the casting equipment includes a sand treatment line 100, and a mold making line 200 is disposed downstream of the sand treatment line 100.
  • a pouring line 300 is disposed at a position adjacent to the mold making line 200, and a molten metal conveyance line 400 is disposed upstream of the pouring line 300. Further, a post-processing line 500 is disposed downstream of the mold making line 200, and an inspection line 600 is disposed downstream of the post-processing line 500.
  • the casting equipment configured in this way is configured to measure and collect a plurality of unique data in a plurality of devices constituting the casting equipment for each lot and store them in a database.
  • each lot means, for example, every mold or every product.
  • one mold as used herein means each upper and lower mold to be matched, and “each product” means every product.
  • the unique data refers to data that can be measured by the apparatus.
  • a plurality of unique data in a plurality of apparatuses are measured and collected for each mold and stored in a database.
  • the squeeze pressure of the upper and lower molds is measured as specific data.
  • the squeeze pressure is measured by a pressure sensor as a measuring means.
  • the pressure of the aeration air for filling the casting sand into the casting frame is measured.
  • the pressure of the aeration air is measured by a pressure sensor as a measuring means different from the pressure sensor as the squeeze pressure measuring means.
  • the compression strength, tensile strength, shear strength, moisture content, ventilation of the foundry sand on the molding machine upper belt feeder 202 are provided.
  • the sand properties of these foundry sands are measured by a sand property measuring device as a measuring means adjacent to the molding machine upper belt feeder 202.
  • the plurality of unique data in the plurality of apparatuses measured and collected in this way are stored in the database 701 in the control means 700 (control panel in this embodiment) for each mold.
  • the sand processing line 100, the mold making line 200, the pouring line 300, the molten metal conveyance line 400, the post-processing line 500, the inspection line 600, and the control means 700 constituting the casting equipment are electrically connected. (The connection status is not shown)
  • the mold making line 200 described above not only the mold making line 200 described above, but also the sand processing line 100, the pouring line 300, the molten metal transfer line 400, the post-processing line 500, and the inspection line 600 are provided for each mold as necessary.
  • a plurality of unique data in a plurality of devices are measured and collected and stored in the database 701. (Specific illustrations omitted)
  • a plurality of apparatuses are provided for each mold in the sand processing line 100, the mold making line 200, the pouring line 300, the molten metal conveying line 400, the post-processing line 500, and the inspection line 600 constituting the casting facility.
  • a plurality of unique data are measured and collected and stored in the database 701. For this reason, a plurality of unique data in a plurality of apparatuses constituting the casting facility is associated with each mold and stored in the database 701.
  • the term “defective” refers to a factor that causes defective casting.
  • the defect for example, “mold misalignment”, which is a mold defect due to misalignment of the upper and lower molds matched with each other, can be cited.
  • FIG. 2 is a plan view showing the upper and lower molds 1 and 2 that are intermittently conveyed by one pitch (one mold) by a conveying means (a pusher device and a cushion device) (not shown) in a blank mold making line.
  • the transport direction of the upper and lower molds 1 and 2 is the Y-axis direction, and the direction orthogonal to the transport direction of the upper and lower molds 1 and 2 is the X-axis direction.
  • a mold deviation detecting device 3 that can be moved up and down is disposed.
  • Reference numeral 7 denotes a support frame for the first distance measuring means 4, the second distance measuring means 5, and the third distance measuring means 6. These three distance measuring means use laser displacement sensors in this embodiment.
  • the measured distances S1, S2, and S3 are stored in the database 701, and the calculation unit 702 calculates the horizontal center position and rotation angle of the upper mold 1.
  • the mold deviation detecting device 3 is lowered by a lifting cylinder (not shown). Thereafter, in the lower mold 2, the distance S 4 to the point 2 a by the first distance measuring means 4, the distance S 5 to the point 2 b by the second distance measuring means 5, and the distance S 6 to the point 2 c by the third distance measuring means 6. Measure. This measurement is performed while the upper and lower molds 1 and 2 are stopped by intermittent conveyance. The measured distances S4, S5, and S6 are stored in the database 701, and the horizontal center position and rotation angle of the lower mold 2 are calculated by the calculation unit 702.
  • the computing means 702 calculates the position coordinates of the four corners of the rectangle from the center position and rotation angle of the upper mold 1 and the lower mold 2. Then, the distance between the horizontal coordinates of the four corners of the upper mold 1 and the lower mold 2 facing each other is calculated. Based on the distance between the horizontal coordinates of the four opposite corners of the upper mold 1 and the lower mold 2 calculated by the computing means 702, the mold deviation is determined.
  • the allowable range of the distance between the horizontal coordinates is set to 0.5 mm or less. In this case, the allowable range is 0 to 0.5 mm. It is determined whether the four corner shifts are within the allowable range, and the mold shift is determined.
  • This determination may be performed by the calculation unit 702 or may be performed by a calculation unit (not shown) dedicated to the misalignment detection device 3. In the present embodiment, if any one of the four corners exceeds the allowable range, it is determined that there is a die shift.
  • the control means 700 may transmit a signal for performing the operation, display to perform the operation, or generate an alarm sound to perform the operation.
  • the initial speed setting is automatically or manually corrected. Such a treatment is performed to eliminate the occurrence of mold misalignment from the next cycle.
  • the above-described measures are taken to eliminate the occurrence of misalignment from the next cycle.
  • FIG. 3 is a front view showing a part of the blank frame mold making line.
  • reference numeral 8 denotes a mold extrusion device disposed on the base 9 of the frame making machine 201.
  • FIG. 4 is a plan view showing a part of the blank mold making line, and shows a state in which the upper and lower molds 1 and 2 are pushed out.
  • the mold extruding device 8 includes two first cylinders 8a arranged at intervals. An intermediate member 8b is connected to the tip of the piston rod of the first cylinder 8a. A second cylinder 8c is mounted at the center of the intermediate member 8b, and a mold extruding member 8d is connected to the tip of the piston rod of the second cylinder 8c.
  • the mold extruding device 8 is configured to extrude the upper and lower molds 1 and 2 onto the surface plate carriage 10 outside the machine by extending the first cylinder 8a and the second cylinder 8c in this order. Yes.
  • the first acceleration sensor 11 is mounted on the back surface of the mold extruding member 8d.
  • the first acceleration sensor 11 is a sensor that can measure acceleration in three directions of X, Y, and Z (see FIGS. 3 and 4).
  • a mold receiving member 12 that receives the upper and lower molds 1 and 2 to be removed is disposed at the upper center of the base 9.
  • the mold receiving member 12 can be moved up and down by a lifting cylinder (not shown).
  • FIG. 3 shows a state in which the upper and lower molds 1 and 2 are lowered after the punching is finished.
  • the second acceleration sensor 13 is mounted on the back surface of the mold receiving member 12.
  • the second acceleration sensor 13 is a sensor that can measure accelerations in three directions of X, Y, and Z.
  • Reference numeral 14 denotes a transfer plate disposed on the base 9 in order to push the upper and lower molds 1 and 2 from the mold receiving member 12 to the surface plate carriage 10. Note that the upper and lower molds 1 and 2 pushed out to the surface plate carriage 10 are placed on the surface plate carriage 10 for one pitch (one mold) by a conveying means (a pusher device and a cushion device) (not shown). It is intermittently conveyed one by one. The surface plate carriage 10 travels on the rail 15.
  • the operation of this example will be described based on the flowchart of FIG.
  • the first acceleration sensor 11 measuring a first acceleration G 1 in the extrusion direction (X direction) of the upper and lower molds 1 and 2 when pushing the upper and lower molds 1 and 2 from the mold stripping equipment molding machine 201.
  • a threshold value G 01 is set in advance for the first acceleration. In this embodiment, the threshold value G 01 is set to 2 G or less (G is gravitational acceleration).
  • the measured first acceleration G 1 was is stored in the database 701, determines whether the G 1 ⁇ G 01. That is, it is determined whether the first acceleration G 1 is is 2G or less. When the first acceleration G 1 is is 2G or less, to confirm the determination result of the type shift of the type displacement detecting device 3 described above. If the result is "not shift type", the first acceleration G 1 is and falls within the threshold, since no even mold deviation abnormality determines that there is no, as usual in the vertical mold 2 Pouring To do.
  • the result is “out of shape”, select whether to pour hot water or not automatically.
  • the selection is “pour hot water”, the finished product is dealt with by the inspection line 600 and the like.
  • the inspection result of the finished product may be stored in the database 701. If the selection is “do not pour”, a command is issued to the control means 700 to change the molding plan so as to mold the upper and lower molds 1 and 2 one more time.
  • the second acceleration sensor 13 in this example to measure the removal direction second acceleration G 2 of (Z direction) of the upper and lower molds 1 and 2 at the time of being mold stripping equipment in mold stripping equipment molding machine 201.
  • a threshold value G02 is set in advance for the second acceleration, and in this embodiment, the threshold value G02 is set to 2G or less.
  • Second acceleration G 2 which is measured are stored in a database 701, determines whether the G 2 ⁇ G 02. That is, it is determined whether the second acceleration G 2 is 2G or less.
  • the first threshold value G 01 of the acceleration G 1 When the second acceleration G 2 is 2G or less, the first threshold value G 01 of the acceleration G 1, and to reset the second threshold value G 02 of the acceleration G 2.
  • a numerical value obtained by subtracting 0.1 from the current threshold G 01 is set as a new threshold G 01 .
  • Threshold G 02 similarly to the numerical value obtained by subtracting 0.1 from the threshold G 02 the current and new threshold G 02.
  • the measured first acceleration G 1 and second acceleration G 2 are within the threshold value G 01 and the threshold value G 02 , but are “out of shape”. In such a state, it may be considered that the setting of the numerical values of the threshold G 01 and the threshold G 02 is not good. Therefore, the current threshold value G 01 and threshold value G 02 are each slightly reduced to optimize the threshold value G 01 and threshold value G 02 .
  • FIG. 6 is a partial schematic diagram for explaining the frame removal operation.
  • a mold receiving member 12 that is moved up and down by a first lifting cylinder 16 is disposed below the upper and lower molds 1 and 2, and a mold extrusion plate 18 that is lifted and lowered by a second lifting cylinder 17 is disposed above. It is arranged.
  • Reference numeral 19 denotes an upper casting frame
  • reference numeral 20 denotes a lower casting frame.
  • the state in which the upper and lower molds 1 and 2 are dropped onto the mold receiving member 12 when the frame is removed means that, as shown in FIG. 6A, before the upper surface of the mold receiving member 12 contacts the lower surface of the lower mold 2, In this state, the lower surface of the extrusion plate 18 is in contact with the upper surface of the upper mold 1 and the upper and lower molds 1 and 2 are pushed out. In this case, the upper and lower molds 1 and 2 fall by the gap between the upper surface of the mold receiving member 12 and the lower surface of the lower mold 2, and the upper and lower molds 1 and 2 are impacted to cause mold misalignment.
  • the threshold value of the count number (number of times) of this treatment is set to 3 times. Note that the set number of times of 3 shows an example and is not limited to this. The set number can be set to any number.
  • the operation of the equipment is continued, that is, the cycle is continued.
  • the threshold value G 01 of the first acceleration G 1 is appropriate. Specifically, a numerical value obtained by subtracting 0.1 from the current threshold G 01 is set as a new threshold G 01 .
  • the first acceleration G 1 is to determine the threshold value G 01
  • the determination result of the mold deviation in the above-described mold deviation detection device 3 is confirmed. If the result is “not out of shape”, the threshold G 01 of the first acceleration G 1 is reset. Even if the first acceleration G 1 exceeds the threshold value G 01 , it is in a state where there is no type shift, and therefore the threshold value G 01 is reset in a direction that slightly increases. That is, I'll just spread the first permissible range of the acceleration G 1. Specifically, a numerical value obtained by adding 0.1 to the current threshold G 01 is set as a new threshold G 01 .
  • the threshold value G 01 2.1G, successively spread as 2.2G, when it becomes 2.3G, If it has a state that is shifted type, the appropriate value of the threshold G 01 is 2.2G It can be said that In this case, setting the threshold G 01 below 2.2G. In this way, the threshold G 01 can be optimized.
  • the threshold value for the reset count (number of times) is set to 3 times. Note that the set number of times of 3 shows an example and is not limited to this. The set number can be set to any number.
  • the upper and lower molds 1 and 2 are poured as usual. If the count is more than three times, the threshold value G 02 of the second acceleration G 2 is review whether it is appropriate. Specifically, a numerical value obtained by adding 0.1 to the current threshold G 02 is set as a new threshold G 02 .
  • the threshold value G 01 is increased by three times by 0.1 while the “out of shape” state continues.
  • the count number becomes 3 times or more, the count number is reset once here. Further, even when the count number is 3 times or more, the upper and lower molds 1 and 2 are poured as usual.
  • the initial speed of the mold extrusion device 8 is slowed down. Prompt to correct the initial speed setting. The initial speed setting is corrected automatically or manually.
  • the finished product is dealt with by the inspection line 600 and the like.
  • the inspection result of the finished product may be stored in the database 701. If the selection is “do not pour”, a command is issued to the control means 700 to change the molding plan so as to mold the upper and lower molds 1 and 2 one more time.
  • the generation source is on the side where the second acceleration sensor 13 is mounted. That is, it can be estimated that there is a high possibility that the upper and lower molds 1 and 2 are dropped on the mold receiving member 12 when the frame is removed.
  • the first acceleration G in the pushing direction (X direction) of the upper and lower molds 1 and 2 when the upper and lower molds 1 and 2 are pushed out from the frame making machine 201 by the first acceleration sensor 11. 1 is measured.
  • the first acceleration sensor 11 may measure the acceleration in the vertical direction (Z direction) of the upper and lower molds 1 and 2.
  • the acceleration in the Z direction is measured in order to detect vibrations of the upper and lower molds 1 and 2 due to foundry sand (attached sand), foreign matter, etc. That is, the vibrations of the upper and lower molds 1 and 2 are detected as acceleration.
  • a threshold value is set in advance for the acceleration in the Z direction. In the present embodiment, the threshold value is set to 0.5 G or less.
  • Measured acceleration in the Z direction is stored in the database 701.
  • a threshold value that is, 0.5 G
  • a check instruction screen for prompting confirmation and cleaning on the surface plate carriage 10 is displayed on a display panel (not shown) to prompt the operator to check.
  • the contact condition (contact allowance) between the upper surface of the surface plate carriage 10 and the cleaning member is automatically or manually corrected. .
  • threshold values are shown, but the threshold values may be an allowable range with a predetermined range.
  • numerical values of the various threshold values described above are merely examples, and are not limited to the numerical values described above.
  • Various threshold values can be set arbitrarily.
  • the step of determining the occurrence of a defect includes the step of determining whether the unique data is outside a preset threshold value or an allowable range. More specifically, the step of determining the mold misalignment between the upper and lower molds 1 and 2 includes the step of determining whether or not the distance between the horizontal coordinates of the four opposite corners of the upper mold 1 and the lower mold 2 is outside the allowable range. Yes. According to this configuration, there is an advantage that the occurrence of a defect can be reliably determined based on numerical data instead of abstract determination.
  • a plurality of unique data in a plurality of apparatuses constituting the casting facility are measured and collected for each lot and stored in the database 701. According to this configuration, there is an advantage that traceability of the produced product can be ensured.
  • the step of estimating the generation source of the mold misalignment during the operation of the casting equipment is the first in the extrusion direction of the upper and lower molds 1 and 2 when the upper and lower molds 1 and 2 are extruded from the frame making machine 201. measured and measuring the acceleration G 1 of the first acceleration sensor 11, a second acceleration G 2 direction withdrawal of the upper and lower molds 1 and 2 at the time of being mold stripping equipment in mold stripping equipment molding machine 201 by the second acceleration sensor 13 And a process.
  • this configuration it is possible to grasp the state of the device or the upper and lower molds 1 and 2 by measuring the acceleration at a location that is highly likely to be a source of mold misalignment.
  • a step of measuring a first acceleration G 1 by the first acceleration sensor 11 the order of the step of measuring the second acceleration G 2 by the second acceleration sensor 13 is not limited to the above, it may be performed in the reverse .
  • threshold values G 01 , G 02 or an allowable range are set in advance for the first acceleration G 1 and the second acceleration G 2 , and the threshold value or the allowable range is changed during operation of the casting equipment. (Re-set). According to this configuration, there is an advantage that the threshold value or the allowable range can be optimized during the operation of the casting equipment.
  • the first acceleration sensor 11 mounted on the mold extrusion member 8d in the mold extrusion apparatus 8 for extruding the upper and lower molds 1 and 2 to the outside of the frame making machine 201, and the frame making machine 201 performs the frame removal.
  • a second acceleration sensor 13 mounted on a mold receiving member 12 that receives the upper and lower molds 1 and 2.
  • a plurality of unique data in a plurality of apparatuses constituting the casting equipment are measured and collected and stored in the database 701.
  • the present invention is not limited to this.
  • at least one unique data in at least one apparatus constituting the casting facility may be measured and stored in the database 701.
  • the occurrence of at least one defect may be determined based on the stored unique data.
  • the mold making line 200 is a blank mold making line, but the present invention is not limited to this.
  • the present invention can also be applied when the mold making line 200 is a framed mold making line.
  • the displacement between the horizontal coordinates of the four corners of the upper mold 1 and the lower mold 2 facing each other is any one of the four corners. If it exceeds the allowable range, it is determined that there is a misalignment.
  • the present invention is not limited to this. For example, when two, three, or all four deviations exceed an allowable range, it may be determined that there is a mold deviation.
  • the average value of the deviation at the four corners, the mean square value, or the like exceeds the allowable range, it may be determined as the type deviation.
  • the misalignment may be determined using the deviation of the center positions of the upper mold 1 and the lower mold 2 and the deviation of the rotation angle.
  • the operation of the casting equipment includes not only automatic operation of the equipment in the casting equipment but also manual operation of the equipment by the worker, maintenance work or adjustment work of the equipment by the worker, and the like.
  • the operation method and the operation device of the casting equipment can be said to be the management method and the management device of the casting equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Casting Devices For Molds (AREA)

Abstract

不良鋳物の発生への早急な対応が可能で、鋳物の生産計画の乱れを抑制することができる鋳造設備の作動方法及び作動装置を提供する。鋳造設備を構成する少なくとも一つの装置における少なくとも一つの固有データを測定してデータベースに保存する工程と、該保存された前記固有データに基づいて少なくとも一つの不良の発生を判定する工程と、該不良の発生を解消するために前記鋳造設備の作動に係る処置を促す工程と、

Description

鋳造設備の作動方法及び作動装置
 本発明は、鋳型造型ラインで造型された鋳型へ溶湯を注湯して鋳物を生産する鋳造設備の作動方法及び作動装置に関する。
 従来、鋳造設備としての鋳型造型ラインにおいて、鋳物生産の際に鋳型造型ラインから各種データを収集すること、及び、鋳型造型ラインをモニタすることは公知にされている(例えば、特許文献1参照)。
 鋳造設備による鋳物生産では、何らかの理由で不良鋳物を生産してしまうことが多々ある。しかし、特許文献1では、鋳型造型ラインから収集した各種データをどのように利用して、不良鋳物の発生防止に繋げるかという点については、具体的、且つ、詳細に検討されていない。このため、不良鋳物の発生への早急な対応ができず、鋳物の生産計画を乱してしまうという問題があった。
 本発明は、上記の問題に鑑みて成されたもので、不良鋳物の発生への早急な対応が可能で、鋳物の生産計画の乱れを抑制することができる鋳造設備の作動方法及び作動装置を提供することを目的とする。
特開2001-321927号公報
 上記の目的を達成するために本発明の鋳造設備の作動方法は、鋳造設備を構成する少なくとも一つの装置における少なくとも一つの固有データを測定してデータベースに保存する工程と、該保存された前記固有データに基づいて少なくとも一つの不良の発生を判定する工程と、該不良の発生を解消するために前記鋳造設備の作動に係る処置を促す工程と、を有することを特徴とする。
 また本発明の鋳造設備の作動方法は、前記不良の発生を判定する工程が、前記固有データが予め設定された閾値外又は許容範囲外であるかどうかを判定する工程を含むことを特徴とする。
 さらに本発明の鋳造設備の作動方法は、前記鋳造設備を構成する複数の前記装置における複数の前記固有データを、1ロット毎に測定して収集し、前記データベースに保存することを特徴とする。
 さらに本発明の鋳造設備の作動方法は、前記不良が、前記鋳造設備の一部を構成する鋳型造型ラインで造型されて型合せされた上下鋳型の型ずれであることを特徴とする。
 さらに本発明の鋳造設備の作動方法は、前記鋳造設備の作動中に前記不良の発生源を推定する工程を有することを特徴とする。
 さらに本発明の鋳造設備の作動方法は、前記不良が、前記鋳造設備の一部を構成する抜枠造型機で造型されて型合せされた上下鋳型の型ずれであることを特徴とする。
 さらに本発明の鋳造設備の作動方法は、前記鋳造設備の作動中に前記型ずれの発生源を推定する工程が、前記抜枠造型機から前記上下鋳型を押し出す際の該上下鋳型の押し出し方向の第1加速度を第1加速度センサにより測定する工程と、前記抜枠造型機において抜枠される際の前記上下鋳型の抜き出し方向の第2加速度を第2加速度センサにより測定する工程と、を含むことを特徴とする。
 さらに本発明の鋳造設備の作動方法は、前記第1加速度及び前記第2加速度は、予め閾値又は許容範囲が設定されており、該閾値又は許容範囲が前記鋳造設備の作動中に変更されることを特徴とする。
 さらに本発明の鋳造設備の作動方法は、前記第1加速度センサにより、さらに、前記上下鋳型の上下方向の加速度を測定することを特徴とする。
 また上記の目的を達成するために本発明の鋳造設備の作動装置は、鋳造設備を構成する少なくとも一つの装置における少なくとも一つの固有データを測定する測定手段と、該測定された前記固有データを保存するデータベースと、該保存された前記固有データに基づいて少なくとも一つの不良の発生を判定するための制御手段と、を具備することを特徴とする。
 また本発明の鋳造設備の作動装置は、前記不良が、前記鋳造設備の一部を構成する鋳型造型ラインで造型されて型合せされた上下鋳型の型ずれであることを特徴とする。
 さらに本発明の鋳造設備の作動装置は、前記不良が、前記鋳造設備の一部を構成する抜枠造型機で造型されて型合せされた上下鋳型の型ずれであって、該型ずれを検知する型ずれ検知装置を備えたことを特徴とする。
 さらに本発明の鋳造設備の作動装置は、前記抜枠造型機の機外に前記上下鋳型を押し出す鋳型押し出し装置における鋳型押し出し部材に装着された第1加速度センサと、前記抜枠造型機において抜枠される際に前記上下鋳型を受ける鋳型受け部材に装着された第2加速度センサと、を備えたことを特徴とする。
 本発明は、鋳造設備を構成する少なくとも一つの装置における少なくとも一つの固有データを測定してデータベースに保存する工程と、該保存された前記固有データに基づいて少なくとも一つの不良の発生を判定する工程と、該不良の発生を解消するために前記鋳造設備の作動に係る処置を促す工程と、を有するようにしたから、不良鋳物の発生への早急な対応が可能で、鋳物の生産計画の乱れを抑制することができる等種々の効果がある。
 この出願は、日本国で2017年3月13日に出願された特願2017-047517号に基づいており、その内容は本出願の内容として、その一部を形成する。
 また、本発明は以下の詳細な説明により更に完全に理解できるであろう。しかしながら、詳細な説明および特定の実施例は、本発明の望ましい実施の形態であり、説明の目的のためにのみ記載されているものである。この詳細な説明から、種々の変更、改変が、当業者にとって明らかだからである。
 出願人は、記載された実施の形態のいずれをも公衆に献上する意図はなく、開示された改変、代替案のうち、特許請求の範囲内に文言上含まれないかもしれないものも、均等論下での発明の一部とする。
 本明細書あるいは請求の範囲の記載において、名詞及び同様な指示語の使用は、特に指示されない限り、または文脈によって明瞭に否定されない限り、単数および複数の両方を含むものと解釈すべきである。本明細書中で提供されたいずれの例示または例示的な用語(例えば、「等」)の使用も、単に本発明を説明し易くするという意図であるに過ぎず、特に請求の範囲に記載しない限り本発明の範囲に制限を加えるものではない。
本発明の鋳造設備の実施形態を示す概要構成図である。 型ずれ検知装置を示す概要構成平面図である。 抜枠鋳型造型ラインの一部分を示す正面図である。 抜枠鋳型造型ラインの一部分を示す平面図であって、上下鋳型を押し出した状態を示す図である。 型ずれの発生源を推定する例を説明するためのフローチャートである。 抜枠動作を説明するための部分概要図である。
 以下、本発明の実施の形態を図面に基づいて詳しく説明する。本発明において鋳造設備とは、鋳物を鋳造により生産する設備のことである。なお、ここで言う鋳造設備には、造型する鋳物砂を準備する砂処理ライン、鋳型を造型する鋳型造型ライン、造型された鋳型に溶湯を注湯する注湯ライン、注湯するための溶湯を準備する溶湯搬送ライン、生産された鋳物に所定の処理(例えば、堰折り)を施す後処理ライン、生産された鋳物の検査を行う検査ラインのうち、いずれかのみの場合であっても、これに含まれる。また、砂処理ライン、鋳型造型ライン、注湯ライン、溶湯搬送ライン、後処理ライン、検査ラインの中から選択された複数のラインを組み合わせたものであっても、これに含まれる。なお、鋳型造型ラインには、鋳型内で鋳物(製品)を冷却する冷却ラインも含まれる。
 本実施形態の鋳造設備の概要構成について、図1を用いて説明する。なお、本実施形態の鋳造設備は、鋳物砂(本実施形態では生型砂)を用いて鋳型を造型し、造型された鋳型に溶湯を注湯して鋳物を生産する設備である。図1に示すように、鋳造設備は砂処理ライン100を備えており、砂処理ライン100の下流には鋳型造型ライン200が配置されている。
 鋳型造型ライン200に隣接した位置には注湯ライン300が配置されており、注湯ライン300の上流には溶湯搬送ライン400が配置されている。また、鋳型造型ライン200の下流には後処理ライン500が配置されており、後処理ライン500の下流には検査ライン600が配置されている。
 このように構成された鋳造設備は、鋳造設備を構成する複数の装置における複数の固有データを、1ロット毎に測定して収集し、データベースに保存するようになっている。なお、本発明において1ロット毎とは、例えば、1鋳型毎又は1製品毎のことである。ここでいう1鋳型毎とは、型合わせされる上下鋳型一つ毎の意味であり、1製品毎とは、製品1個毎の意味である。また、本発明において固有データとは、装置によって測定可能なデータのことを言う。
 本実施形態では1鋳型毎に、複数の装置における複数の固有データを測定して収集し、データベースに保存している。この点につき、例示すると、鋳型造型ライン200の一部を構成する抜枠造型機201では、固有データとして、例えば、上下鋳型のスクイズ圧力を測定する。スクイズ圧力は測定手段としての圧力センサで測定する。また、鋳枠内へ鋳物砂を充填するためのエアレーションエアーの圧力を測定する。エアレーションエアーの圧力は、スクイズ圧力測定手段としての圧力センサとは別の、測定手段としての圧力センサで測定する。
 また、鋳型造型ライン200の一部を構成する造型機上部ベルトフィーダ202では、固有データとして、例えば、造型機上部ベルトフィーダ202上の鋳物砂の圧縮強度、引張強度、せん断強度、含水率、通気度、コンパクタビリティ値、砂温度を測定する。これらの鋳物砂の砂性状は、造型機上部ベルトフィーダ202に隣接された測定手段としての砂性状測定装置で測定する。
 このように測定して収集した複数の装置における複数の固有データは、1鋳型毎に、制御手段700(本実施形態では制御盤)内のデータベース701に保存される。なお、鋳造設備を構成する砂処理ライン100、鋳型造型ライン200、注湯ライン300、溶湯搬送ライン400、後処理ライン500、検査ライン600と、制御手段700とは電気的に接続されている。(接続状態は図示省略)
 なお、本実施形態では、上述した鋳型造型ライン200のみならず、砂処理ライン100、注湯ライン300、溶湯搬送ライン400、後処理ライン500、検査ライン600でも、必要に応じて1鋳型毎に複数の装置における複数の固有データを測定して収集し、データベース701に保存している。(具体的な例示は省略)
 このように本実施形態では、鋳造設備を構成する砂処理ライン100、鋳型造型ライン200、注湯ライン300、溶湯搬送ライン400、後処理ライン500、検査ライン600において、1鋳型毎に複数の装置における複数の固有データを測定して収集し、データベース701に保存している。このため、鋳造設備を構成する複数の装置における複数の固有データが1鋳型毎に関連付けられてデータベース701に保存されることになる。
 次に、データベース701に保存された固有データに基づいて不良の発生を判定する一例を説明する。なお、本発明において不良とは、不良鋳物が発生する原因となる因子のことを言う。不良の一例としては例えば、型合せされた上下鋳型のずれによる鋳型不良である「型ずれ」が挙げられる。型ずれした上下鋳型に溶湯を注湯した場合、鋳物の上半部と下半部にずれが生じた不良鋳物になる。
 ここで、データベース701に保存された固有データに基づいて型ずれの発生を判定する一例を説明する。図2は抜枠鋳型造型ラインにおいて、図示されない搬送手段(プッシャー装置及びクッション装置)により1ピッチ分(1鋳型分)ずつ間欠搬送される上下鋳型1、2を平面視で示している。上下鋳型1、2の搬送方向がY軸方向で、上下鋳型1、2の搬送方向と直交する方向がX軸方向である。上下鋳型1、2に隣接する位置には昇降可能な型ずれ検知装置3が配設されている。符号7は第1距離測定手段4、第2距離測定手段5、第3距離測定手段6の支持フレームで、この三つの距離測定手段は、本実施形態ではレーザー変位センサを用いている。
 まず、上鋳型1において、第1距離測定手段4で点1aまでの距離S1を、第2距離測定手段5で点1bまでの距離S2を、第3距離測定手段6で点1cまでの距離S3を測定する。測定した距離S1、S2、S3は、データベース701に保存され、演算手段702にて、上鋳型1の水平方向の中心位置と回転角が算出される。
 次に、型ずれ検知装置3が図示されない昇降シリンダにより下降される。その後、下鋳型2において、第1距離測定手段4で点2aまでの距離S4を、第2距離測定手段5で点2bまでの距離S5を、第3距離測定手段6で点2cまでの距離S6を測定する。この測定までを間欠搬送で上下鋳型1、2が停止している間に行う。測定した距離S4、S5、S6は、データベース701に保存され、演算手段702にて、下鋳型2の水平方向の中心位置と回転角が算出される。
 演算手段702では、上鋳型1及び下鋳型2の中心位置と回転角から、矩形の4隅の位置座標を算出する。そして、上鋳型1と下鋳型2の相対する4隅の水平座標間距離を算出する。演算手段702で算出した上鋳型1と下鋳型2の相対する4隅の水平座標間距離に基づき、型ずれを判定する。本実施形態では、該水平座標間距離の許容範囲を0.5mm以下としており、この場合、許容される範囲は0~0.5mmとなる。4隅のずれがこの許容範囲内に入っているかを調べて、型ずれを判定する。
 この判定は演算手段702で行ってもよいし、型ずれ検知装置3に専用の演算手段(図示せず)で行ってもよい。本実施形態では、4隅のうちいずれか一つのずれが許容範囲を超えていれば型ずれと判定する。
 上述のようにして型ずれと判定された場合、今後の型ずれの発生を解消するために鋳造設備の作動に係る処置を促す。この一例について説明する。型ずれが発生する原因の一つとしては、抜枠造型機201から機外の定盤台車10上に上下鋳型1、2を押し出す鋳型押し出し装置8(図3参照)の鋳型を押し出す際の初速が速すぎることが挙げられる。したがって、鋳型押し出し装置8の初速が遅くなるように促す。例えば、制御手段700でその動作をさせるための信号を送信しても、その動作をさせるように表示しても、その動作をさせるようにアラーム音を発してもよい。鋳型押し出し装置8の初速を遅くするように促されると、該初速の設定を自動又は手動で修正する。このような処置を施して、次のサイクルからの型ずれの発生を解消する。
 型ずれと判定された場合、上述のような処置を施して、次のサイクルからの型ずれの発生を解消すれば、事実上、問題は生じない。だが、これに加えて、鋳造設備の作動中に型ずれの発生源を推定すると、より好ましい。次に、この鋳造設備の作動中に型ずれの発生源を推定することを加えた一例について、抜枠鋳型造型ラインを例にとって説明する。
 図3は抜枠鋳型造型ラインの一部分を示す正面図である。図3において、符号8は抜枠造型機201の基台9上に配設された鋳型押し出し装置である。ここで鋳型押し出し装置8の構成について図4も用いて説明する。図4は抜枠鋳型造型ラインの一部分を示す平面図であって、上下鋳型1、2を押し出した状態を示す図である。
 鋳型押し出し装置8は、間隔をおいて配置された2本の第1シリンダ8aを備えている。第1シリンダ8aのピストンロッドの先端には中間部材8bが連結されている。中間部材8bの中央には第2シリンダ8cが装着されており、第2シリンダ8cのピストンロッドの先端には鋳型押し出し部材8dが連結されている。鋳型押し出し装置8は、第1シリンダ8a、第2シリンダ8cの順に伸長作動されることにより、抜枠造型機201から機外の定盤台車10上に上下鋳型1、2を押し出すようになっている。
 鋳型押し出し部材8dの裏面には第1加速度センサ11が装着されている。この第1加速度センサ11は、X、Y、Zの3方向(図3、図4参照)の加速度を測定できるセンサである。また、基台9の中央上部には、抜枠される上下鋳型1、2を受ける鋳型受け部材12が配設されている。鋳型受け部材12は図示されない昇降シリンダにより昇降可能にされている。図3は抜枠が終了して上下鋳型1、2が下降された状態である。
 鋳型受け部材12の裏面には第2加速度センサ13が装着されている。この第2加速度センサ13は、X、Y、Zの3方向の加速度を測定できるセンサである。符号14は、鋳型受け部材12から定盤台車10まで上下鋳型1、2を押し出すために、基台9上に配設された受け渡し板である。なお、定盤台車10まで押し出された上下鋳型1、2は、定盤台車10上に載置された状態で、図示されない搬送手段(プッシャー装置及びクッション装置)により1ピッチ分(1鋳型分)ずつ間欠搬送される。定盤台車10はレール15上を走行する。
 本例の作動について、図5のフローチャートに基づき説明する。本例では第1加速度センサ11により、抜枠造型機201から上下鋳型1、2を押し出す際の該上下鋳型1、2の押し出し方向(X方向)の第1加速度Gを測定する。この第1加速度は予め閾値G01が設定されており、本実施形態では閾値G01は2G以下(Gは重力加速度)と設定されている。
 測定された第1加速度Gはデータベース701に保存され、G≦G01であるかを判定する。即ち、第1加速度Gが2G以下であるかを判定する。第1加速度Gが2G以下である場合、上述した型ずれ検知装置3での型ずれの判定結果を確認する。該結果が「型ずれしていない」場合、第1加速度Gが閾値内に納まっており、型ずれもしていないので、異常はないと判断し、上下鋳型1、2には通常通り注湯する。
 該結果が「型ずれしている」場合、注湯するかしないかを自動又は手動で選択する。該選択が「注湯する」場合、できあがった製品を検査ライン600で精密に検査する等の対応をする。なお、できあがった製品の検査結果をデータベース701に保存するようにしてもよい。該選択が「注湯しない」場合、一つ多く上下鋳型1、2を造型するように造型計画を変更する指令を制御手段700に出す。
 また、本例では第2加速度センサ13により、抜枠造型機201において抜枠される際の上下鋳型1、2の抜き出し方向(Z方向)の第2加速度Gを測定する。この第2加速度は予め閾値G02が設定されており、本実施形態では閾値G02は2G以下と設定されている。
 測定された第2加速度Gはデータベース701に保存され、G≦G02であるかを判定する。即ち、第2加速度Gが2G以下であるかを判定する。第2加速度Gが2G以下である場合、第1加速度Gの閾値G01、及び、第2加速度Gの閾値G02を再設定する。具体的には、現状の閾値G01から0.1を減じた数値を新たな閾値G01とする。閾値G02も同様に、現状の閾値G02から0.1を減じた数値を新たな閾値G02とする。
 この再設定をする理由について説明する。この場合、上述から分かる通り、測定された第1加速度G及び第2加速度Gが閾値G01及び閾値G02内に納まっているのに、「型ずれしている」状態である。このような状態だと、閾値G01及び閾値G02の数値の設定自体が良くないことが考えられる。したがって、現状の閾値G01及び閾値G02を各々、僅かに狭める処置を施し、閾値G01及び閾値G02の最適化を図る。
 また、第2加速度Gが2Gを超えた場合、抜枠造型機201において抜枠される際に上下鋳型1、2を鋳型受け部材12上に落としている可能性がある。したがって、次のような処置を促す。図6は抜枠動作を説明するための部分概要図である。図6において、上下鋳型1、2の下方には第1昇降シリンダ16により昇降される鋳型受け部材12が配設されており、上方には第2昇降シリンダ17により昇降される鋳型押し出し板18が配設されている。符号19は上鋳枠で、符号20は下鋳枠である。
 抜枠される際に上下鋳型1、2を鋳型受け部材12上に落とす状態とは、図6(a)に示すように、鋳型受け部材12上面が下鋳型2下面に接触する前に、鋳型押し出し板18下面が上鋳型1上面に接触して上下鋳型1、2を押し出す状態のことである。これだと、鋳型受け部材12上面と下鋳型2下面の隙間分だけ上下鋳型1、2が落下することになり、上下鋳型1、2に衝撃がかかって型ずれの原因となる。
 この状態を解消するために、図6(b)に示すように、鋳型受け部材12上面が下鋳型2下面に確実に接触してから、鋳型押し出し板18下面を上鋳型1上面に接触させて上下鋳型1、2を押し出すように第2昇降シリンダ17及び第1昇降シリンダ16の作動のタイミングを自動又は手動で修正する。即ち、抜枠動作を調整する。このような処置を施す。
 処置を促したら、あるいは、施したら、その回数を自動又は手動でカウントする。なお、この処置を何回も繰り返した場合、処置を施す毎にカウント数は+1される。
 本例では、この処置のカウント数(回数)の閾値を3回と設定している。なお、設定回数である3回は一例を示すものであり、これに限定されるものではない。設定回数は任意の回数に設定できる。
 カウント数が2回までは、設備の作動を続行、即ち、サイクルを続行する。カウント数が3回以上の場合は、第1加速度Gの閾値G01が適切か否かを見直す。具体的には、現状の閾値G01から0.1を減じた数値を新たな閾値G01とする。
 その理由について説明する。この場合、「型ずれしている」状態が続いたまま、上述の第2昇降シリンダ17及び第1昇降シリンダ16の作動のタイミングの修正を3回も試みた状態である。このような状態だと、型ずれの原因が、第2加速度センサ13が装着されている側ではなく、第1加速度センサ11が装着されている側にあるのではないかと推定できる。この場合、そもそも第1加速度Gの閾値G01の設定が広すぎるのではないかということも考えられる。したがって、現状の閾値G01を僅かに狭める処置を施す。
 なお、カウント数が3回以上になった場合は、カウント数は、ここで一度、リセットされる。
 次に、第1加速度Gが閾値G01以下であるかを判定する際、第1加速度Gが閾値G01を超えていた場合について説明する。該第1加速度Gが閾値G01を超えていた場合、上述した型ずれ検知装置3での型ずれの判定結果を確認する。該結果が「型ずれしていない」場合、第1加速度Gの閾値G01を再設定する。第1加速度Gが閾値G01を超えていても、型ずれしていない状態であるから、閾値G01を僅かに広げる方向で再設定する。即ち、第1加速度Gの許容範囲を僅かに広げてやる。具体的には、現状の閾値G01に0.1を加えた数値を新たな閾値G01とする。
 そして、閾値G01を再設定(修正)した回数を自動又は手動でカウントする。なお、この再設定を何回も繰り返した場合、再設定をする毎にカウント数は+1される。例えば、閾値G01を2.1G、2.2Gと順次広げて、2.3Gになったときに、型ずれしている状態になったのであれば、閾値G01の適正値は2.2G以下であると言える。この場合、閾値G01を2.2G以下に設定する。このようにすれば、閾値G01の最適化が図れる。
 本例では、この再設定のカウント数(回数)の閾値を3回と設定している。なお、設定回数である3回は一例を示すものであり、これに限定されるものではない。設定回数は任意の回数に設定できる。
 カウント数が2回までは、上下鋳型1、2には通常通り注湯する。カウント数が3回以上の場合は、第2加速度Gの閾値G02が適切か否かを見直す。具体的には、現状の閾値G02に0.1を加えた数値を新たな閾値G02とする。
 その理由について説明する。この場合、「型ずれしていない」状態が続いたまま、閾値G01を0.1ずつ3回増加させた状態である。このような状態だと、第2加速度Gの閾値G02も僅かに広げて閾値G01とのバランスをとる必要がある。したがって、現状の閾値G02を僅かに広げる処置を施す。
 なお、カウント数が3回以上になった場合は、カウント数は、ここで一度、リセットされる。また、カウント数が3回以上になった場合でも、上下鋳型1、2には通常通り注湯する。
 また、上述した型ずれ検知装置3での型ずれの判定結果を確認する際、該結果が「型ずれしている」場合は、上述した通り、鋳型押し出し装置8の初速が遅くなるように、該初速の設定を修正するように促す。該初速の設定は、自動又は手動で修正する。
 そして、注湯するかしないかを自動又は手動で選択する。該選択が「注湯する」場合、できあがった製品を検査ライン600で精密に検査する等の対応をする。なお、できあがった製品の検査結果をデータベース701に保存するようにしてもよい。該選択が「注湯しない」場合、一つ多く上下鋳型1、2を造型するように造型計画を変更する指令を制御手段700に出す。
 上述した本例の説明に基づき考察すると、例えば、第1加速度Gが閾値G01内に納まっているにも関わらず、型ずれの判定結果が「型ずれしている」場合、型ずれの発生源が、第2加速度センサ13が装着されている側ではないかと推定できる。即ち、抜枠される際に上下鋳型1、2を鋳型受け部材12上に落としている可能性が高いと推定できる。
 なお、本例では上述したように、第1加速度センサ11により、抜枠造型機201から上下鋳型1、2を押し出す際の該上下鋳型1、2の押し出し方向(X方向)の第1加速度Gを測定している。これに加え、第1加速度センサ11により、上下鋳型1、2の上下方向(Z方向)の加速度を測定するようにしてもよい。
 該Z方向の加速度は、定盤台車10上の鋳物砂(付着砂)、異物等による上下鋳型1、2の振動を検出するために測定する。即ち、上下鋳型1、2の振動を加速度として検出する。該Z方向の加速度は予め閾値が設定されており、本実施形態では閾値は0.5G以下と設定されている。
 測定されたZ方向の加速度はデータベース701に保存される。測定されたZ方向の加速度が閾値、即ち、0.5Gを超えている場合、例えば、定盤台車10上に鋳物砂、異物等が付着していることが考えられる。この場合、例えば、定盤台車10上の確認、清掃を促す点検指示画面を図示されない表示パネルに表示して作業者へ点検を促す。また、抜枠鋳型造型ラインが定盤台車清掃装置を備えている場合は、定盤台車10上面と清掃部材(例えば、スクレーパ、ブラシ等)の接触具合(接触代)を自動又は手動で修正する。
 このように、第1加速度センサ11により、上下鋳型1、2の上下方向の加速度を測定すると、定盤台車10上に鋳物砂、異物等が付着していること等の推定が可能になり、より高度な不良対策を実現できるという利点がある。
 本実施形態では、各種閾値を示しているが、該閾値は、所定の範囲をもたせた許容範囲であってもよい。また、上述の各種閾値の数値は一例を示しただけであり、上述の数値に限定されるものではない。各種閾値の数値は、任意に設定できる。
 なお本実施形態では、不良の発生を判定する工程が、固有データが予め設定された閾値外又は許容範囲外であるかどうかを判定する工程を含んでいる。より詳しくは、上下鋳型1、2の型ずれを判定する工程が、上鋳型1と下鋳型2の相対する4隅の水平座標間距離が許容範囲外であるかどうかを判定する工程を含んでいる。本構成によれば、不良の発生を、抽象的な判定ではなく、数値データに基づいて確実に判定することができるという利点がある。
 また本実施形態では、鋳造設備を構成する複数の装置における複数の固有データを、1ロット毎に測定して収集し、データベース701に保存している。本構成によれば、生産された製品のトレーサビリティを確保できるという利点がある。
 さらに本実施形態では、鋳造設備の作動中に不良の発生源を推定する工程を有している。本構成によれば、不良の発生の判定、及び、不良の発生を解消するために鋳造設備の作動に係る処置を促すこと、のみならず、鋳造設備の作動中に設備を停止させることなく不良の発生源を推定することができるため、間違った箇所での無駄な不良対策を講じることが減少し、生産性が向上するという利点がある。
 さらに本実施形態では、鋳造設備の作動中に型ずれの発生源を推定する工程が、抜枠造型機201から上下鋳型1、2を押し出す際の該上下鋳型1、2の押し出し方向の第1加速度Gを第1加速度センサ11により測定する工程と、抜枠造型機201において抜枠される際の上下鋳型1、2の抜き出し方向の第2加速度Gを第2加速度センサ13により測定する工程と、を含んでいる。本構成によれば、型ずれの発生源となる可能性が高い箇所の加速度を測定することにより、該箇所の装置又は上下鋳型1、2の状態を把握できるため、不良発生の真因究明に、より近い対応がとれるという利点がある。なお、第1加速度Gを第1加速度センサ11により測定する工程と、第2加速度Gを第2加速度センサ13により測定する工程との順序は、上記に限られず、逆に行ってもよい。
 さらに本実施形態では、第1加速度G及び第2加速度Gに対して、予め閾値G01、G02又は許容範囲が設定されており、該閾値又は許容範囲を鋳造設備の作動中に変更(再設定)するようにしている。本構成によれば、鋳造設備の作動中に閾値又は許容範囲の最適化が図れるという利点がある。
 さらに本実施形態では、抜枠造型機201の機外に上下鋳型1、2を押し出す鋳型押し出し装置8における鋳型押し出し部材8dに装着された第1加速度センサ11と、抜枠造型機201において抜枠される際に上下鋳型1、2を受ける鋳型受け部材12に装着された第2加速度センサ13と、備えている。本構成によれば、型ずれの発生源となる可能性が高い箇所の加速度を測定することができ、該箇所の装置又は上下鋳型1、2の状態を把握できるため、不良発生の真因究明に、より近い対応がとれるという利点がある。
 なお本発明の実施形態では、鋳造設備を構成する複数の装置における複数の固有データを測定して収集し、データベース701に保存しているが、これに限定されるものではない。例えば、鋳造設備を構成する少なくとも一つの装置における少なくとも一つの固有データを測定してデータベース701に保存するようにしてもよい。また、該保存された固有データに基づいて少なくとも一つの不良の発生を判定するようにしてもよい。
 また本発明の実施形態では、鋳型造型ライン200が抜枠鋳型造型ラインである場合の例を示したが、これに限定されるものではない。本発明は鋳型造型ライン200が枠付鋳型造型ラインの場合にも適用することができる。
 さらに本発明の実施形態では、型ずれ検知装置3による型ずれ検知において、上鋳型1と下鋳型2の相対する4隅の水平座標間距離のずれが、4隅のうちいずれか一つのずれが許容範囲を超えていれば型ずれと判定するようにしたが、これに限定されるものではない。例えば、二つ、三つ、あるいは四つ全てのずれが許容範囲を超えたときに型ずれと判定してもよい。あるいは、4隅のずれの平均値、二乗和平均値などが許容範囲を超えたときに型ずれと判定してもよい。あるいは、上鋳型1及び下鋳型2の中心位置のずれと回転角のずれを用いて型ずれを判定してもよい。
 なお本発明において、鋳造設備の作動とは、鋳造設備における装置の自動的な作動のみならず、作業者による装置の手動操作、作業者による装置のメンテナンス作業もしくは調整作業等も、これに含まれる。また、鋳造設備の作動方法及び作動装置とは、換言すれば、鋳造設備の管理方法及び管理装置と言うこともできる。
 以下、本明細書および図面で用いた主な符号を列挙する。
1 上鋳型
2 下鋳型
3 型ずれ検知装置
8 鋳型押し出し装置
8d 鋳型押し出し部材
11 第1加速度センサ
12 鋳型受け部材
13 第2加速度センサ
200 鋳型造型ライン
201 抜枠造型機
700 制御手段
701 データベース

Claims (13)

  1.  鋳造設備を構成する少なくとも一つの装置における少なくとも一つの固有データを測定してデータベースに保存する工程と、該保存された前記固有データに基づいて少なくとも一つの不良の発生を判定する工程と、該不良の発生を解消するために前記鋳造設備の作動に係る処置を促す工程と、を有することを特徴とする鋳造設備の作動方法。
  2.  前記不良の発生を判定する工程が、前記固有データが予め設定された閾値外又は許容範囲外であるかどうかを判定する工程を含むことを特徴とする請求項1記載の鋳造設備の作動方法。
  3.  前記鋳造設備を構成する複数の前記装置における複数の前記固有データを、1ロット毎に測定して収集し、前記データベースに保存することを特徴とする請求項1又は2のいずれかに記載の鋳造設備の作動方法。
  4.  前記不良が、前記鋳造設備の一部を構成する鋳型造型ラインで造型されて型合せされた上下鋳型の型ずれであることを特徴とする請求項1又は2のいずれかに記載の鋳造設備の作動方法。
  5.  前記鋳造設備の作動中に前記不良の発生源を推定する工程を有することを特徴とする請求項1記載の鋳造設備の作動方法。
  6.  前記不良が、前記鋳造設備の一部を構成する抜枠造型機で造型されて型合せされた上下鋳型の型ずれであることを特徴とする請求項5記載の鋳造設備の作動方法。
  7.  前記鋳造設備の作動中に前記型ずれの発生源を推定する工程が、前記抜枠造型機から前記上下鋳型を押し出す際の該上下鋳型の押し出し方向の第1加速度を第1加速度センサにより測定する工程と、前記抜枠造型機において抜枠される際の前記上下鋳型の抜き出し方向の第2加速度を第2加速度センサにより測定する工程と、を含むことを特徴とする請求項6記載の鋳造設備の作動方法。
  8.  前記第1加速度及び前記第2加速度は、予め閾値又は許容範囲が設定されており、該閾値又は許容範囲が前記鋳造設備の作動中に変更されることを特徴とする請求項7記載の鋳造設備の作動方法。
  9.  前記第1加速度センサにより、さらに、前記上下鋳型の上下方向の加速度を測定することを特徴とする請求項7又は8のいずれかに記載の鋳造設備の作動方法。
  10.  鋳造設備を構成する少なくとも一つの装置における少なくとも一つの固有データを測定する測定手段と、該測定された前記固有データを保存するデータベースと、該保存された前記固有データに基づいて少なくとも一つの不良の発生を判定するための制御手段と、を具備することを特徴とする鋳造設備の作動装置。
  11.  前記不良が、前記鋳造設備の一部を構成する鋳型造型ラインで造型されて型合せされた上下鋳型の型ずれであることを特徴とする請求項10記載の鋳造設備の作動装置。
  12.  前記不良が、前記鋳造設備の一部を構成する抜枠造型機で造型されて型合せされた上下鋳型の型ずれであって、該型ずれを検知する型ずれ検知装置を備えたことを特徴とする請求項10記載の鋳造設備の作動装置。
  13.  前記抜枠造型機の機外に前記上下鋳型を押し出す鋳型押し出し装置における鋳型押し出し部材に装着された第1加速度センサと、前記抜枠造型機において抜枠される際に前記上下鋳型を受ける鋳型受け部材に装着された第2加速度センサと、を備えたことを特徴とする請求項12記載の鋳造設備の作動装置。
PCT/JP2017/039042 2017-03-13 2017-10-30 鋳造設備の作動方法及び作動装置 WO2018168055A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019505697A JP6863449B2 (ja) 2017-03-13 2017-10-30 鋳造設備の作動方法及び作動装置
CN201780077955.9A CN110072652B (zh) 2017-03-13 2017-10-30 铸造设备的工作方法以及工作装置
DE112017006995.5T DE112017006995T5 (de) 2017-03-13 2017-10-30 Verfahren und System zum Betreiben einer Gießeinrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-047517 2017-03-13
JP2017047517 2017-03-13

Publications (1)

Publication Number Publication Date
WO2018168055A1 true WO2018168055A1 (ja) 2018-09-20

Family

ID=63523944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039042 WO2018168055A1 (ja) 2017-03-13 2017-10-30 鋳造設備の作動方法及び作動装置

Country Status (5)

Country Link
JP (1) JP6863449B2 (ja)
CN (1) CN110072652B (ja)
DE (1) DE112017006995T5 (ja)
TW (1) TW201832846A (ja)
WO (1) WO2018168055A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI681856B (zh) * 2019-04-01 2020-01-11 達詳自動化股份有限公司 可檢測模具斷損的自動澆鑄檢測方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50141823U (ja) * 1974-05-09 1975-11-21
JPH0394970A (ja) * 1989-05-19 1991-04-19 Dansk Ind Syndikat As 自動鋳造装置
JPH0530837Y2 (ja) * 1989-03-24 1993-08-06
JP2001191174A (ja) * 2000-01-05 2001-07-17 Sintokogio Ltd 砂型鋳造設備運転監視方法並びに監視装置
WO2005068107A1 (ja) * 2004-01-20 2005-07-28 Sintokogio, Ltd. 造型機のための鋳枠及びそれを用いた造型方法
US20070246184A1 (en) * 2006-04-19 2007-10-25 Thyssenkrupp--Waupaca Division Apparatus for verifying the treatment of ductile cast iron and method thereof
JP2012200739A (ja) * 2011-03-24 2012-10-22 Aisin Takaoka Ltd 鋳枠の検査方法及びその検査に用いられる検査ユニット
JP2016529111A (ja) * 2013-09-06 2016-09-23 ディサ インダストリーズ アクツイエセルスカプ 金属鋳物工場を操作する方法、その方法を実施するためのシステム、及びそのシステムを含む金属鋳物工場
WO2017122510A1 (ja) * 2016-01-12 2017-07-20 新東工業株式会社 上下鋳型の型ずれ検知装置及び型ずれ検知方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5256010U (ja) * 1975-10-20 1977-04-22
JP2001321927A (ja) 2000-05-17 2001-11-20 Sintokogio Ltd 造型ラインモニタシステム
JP4410816B2 (ja) * 2007-10-02 2010-02-03 日精樹脂工業株式会社 射出成形機の制御装置
JP6244165B2 (ja) * 2013-10-25 2017-12-06 東洋機械金属株式会社 成形条件診断装置
JP2017047517A (ja) 2015-09-04 2017-03-09 株式会社大東精工 アーバおよびアーバ用締結具

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50141823U (ja) * 1974-05-09 1975-11-21
JPH0530837Y2 (ja) * 1989-03-24 1993-08-06
JPH0394970A (ja) * 1989-05-19 1991-04-19 Dansk Ind Syndikat As 自動鋳造装置
JP2001191174A (ja) * 2000-01-05 2001-07-17 Sintokogio Ltd 砂型鋳造設備運転監視方法並びに監視装置
WO2005068107A1 (ja) * 2004-01-20 2005-07-28 Sintokogio, Ltd. 造型機のための鋳枠及びそれを用いた造型方法
US20070246184A1 (en) * 2006-04-19 2007-10-25 Thyssenkrupp--Waupaca Division Apparatus for verifying the treatment of ductile cast iron and method thereof
JP2012200739A (ja) * 2011-03-24 2012-10-22 Aisin Takaoka Ltd 鋳枠の検査方法及びその検査に用いられる検査ユニット
JP2016529111A (ja) * 2013-09-06 2016-09-23 ディサ インダストリーズ アクツイエセルスカプ 金属鋳物工場を操作する方法、その方法を実施するためのシステム、及びそのシステムを含む金属鋳物工場
WO2017122510A1 (ja) * 2016-01-12 2017-07-20 新東工業株式会社 上下鋳型の型ずれ検知装置及び型ずれ検知方法

Also Published As

Publication number Publication date
TW201832846A (zh) 2018-09-16
JPWO2018168055A1 (ja) 2020-01-23
JP6863449B2 (ja) 2021-04-21
CN110072652B (zh) 2022-01-11
DE112017006995T5 (de) 2019-10-17
CN110072652A (zh) 2019-07-30

Similar Documents

Publication Publication Date Title
JP7183632B2 (ja) 連続鋳造装置および連続鋳造方法
JP6589997B2 (ja) 上下鋳型の型ずれ検知装置及び型ずれ検知方法
KR20110017896A (ko) 연속 주조에서 길이방향 크랙의 발생을 예측하기 위한 방법
WO2018168055A1 (ja) 鋳造設備の作動方法及び作動装置
CN104972086B (zh) 拉矫机检测方法及装置
JP2020197912A (ja) 生産監視装置、生産監視システム、生産監視方法及びプログラム
KR101799652B1 (ko) 래들 안착시 충격량 제어 방법 및 시스템
JP6477541B2 (ja) 鋼板形状矯正方法および鋼板製造方法
WO2019159506A1 (ja) 上下鋳型の型ずれ検知装置、及び、上下鋳型の型ずれ検知方法
EP3498396B1 (en) Flask mating misalignment detection method and detection device for molds with flasks
JP5817677B2 (ja) 連続鋳造機の設定状態の検知装置および検知方法
US11045866B2 (en) Method for preventing defect caused by shift in cavity parts
WO2019077818A1 (ja) 抜枠造型機で造型され、型合せされた上下鋳型の型ずれの発生を低減する方法および抜枠造型ライン
JP6347236B2 (ja) ブレークアウト予知方法、ブレークアウト予知装置および連続鋳造方法
KR101141013B1 (ko) 압연기의 오차측정 장치
JP6718942B2 (ja) 故障予防装置、プレスシステム、故障予防装置の制御方法、制御プログラム、および記録媒体
JP2013052431A (ja) 連続鋳造用鋳型の鋳型内温度測定方法
KR101443081B1 (ko) 냉각장치의 주수밸브 제어장치 및 그 방법
JP5571442B2 (ja) 鉛蓄電池用格子体鋳造装置の異常判定方法
JP2018202474A (ja) 連続鋳造機のロール間隔計測計の異常検知装置および異常検知方法
JPH1133681A (ja) サンドカッタ−の形状不良を検出する方法及びその装置
KR20160032499A (ko) 정렬상태 측정장치 및 측정방법
KR19990027102A (ko) 프레스의 금형파손 방지장치

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019505697

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17900492

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17900492

Country of ref document: EP

Kind code of ref document: A1