WO2018164182A1 - アンモニア合成用触媒、及びその利用 - Google Patents

アンモニア合成用触媒、及びその利用 Download PDF

Info

Publication number
WO2018164182A1
WO2018164182A1 PCT/JP2018/008764 JP2018008764W WO2018164182A1 WO 2018164182 A1 WO2018164182 A1 WO 2018164182A1 JP 2018008764 W JP2018008764 W JP 2018008764W WO 2018164182 A1 WO2018164182 A1 WO 2018164182A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
cluster
carrier
group
atom
Prior art date
Application number
PCT/JP2018/008764
Other languages
English (en)
French (fr)
Inventor
上口 賢
侯 召民
澄達 杜
Original Assignee
国立研究開発法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人理化学研究所 filed Critical 国立研究開発法人理化学研究所
Priority to JP2019504636A priority Critical patent/JP7099722B2/ja
Publication of WO2018164182A1 publication Critical patent/WO2018164182A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/16Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing arsenic, antimony, bismuth, vanadium, niobium tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to an ammonia synthesis catalyst and use thereof.
  • the technology for fixing nitrogen atoms and using them is extremely important in the industrial field including the agricultural field.
  • the fixation of nitrogen atoms is known in nature as, for example, nitrogen fixation by rhizobia, but industrially, it is performed exclusively by the Harbor Bosch method and used for ammonia synthesis.
  • the Harbor Bosch method is a technology that can only be performed efficiently under very high temperature and high pressure environments. Therefore, a technique for performing ammonia synthesis in a more relaxed environment is desired.
  • Non-Patent Documents 1 to 6 etc. ammonia synthesis using transition metals other than Fe
  • Non-Patent Documents 7 to 10 As an ammonia synthesis Ru catalyst exhibiting high activity, ammonia synthesis using a support in which an Ru metal complex is supported on electride, calcium amide or the like has been reported (Non-Patent Documents 7 to 10), but it is rare compared to Ru. There is a demand for a novel catalyst for synthesizing ammonia that is low in stability and excellent in stability in air.
  • Halide clusters are rarely used as catalysts, and since 2002, they have been used as catalysts for organic synthesis reactions centering on halide clusters that are not supported on a carrier. However, their usefulness as ammonia synthesis catalysts has yet to be found. (Non-Patent Document 11).
  • the present invention has been made in view of the above problems, and is a novel catalyst for synthesizing ammonia that can synthesize ammonia in a relatively mild environment and can be stably stored in air. And its related technology.
  • an ammonia synthesis catalyst includes a metal cluster including a metal cluster having three or more metal atoms as nuclei and a carrier supporting the metal cluster.
  • the metal atom is a metal atom belonging to Group V, Group VI, or Group VII in the periodic table, and each of the metal atoms is directly bonded to each other.
  • the catalyst for ammonia synthesis according to the present invention includes a metal cluster carrier in which metal clusters are supported by a carrier.
  • a carrier or “A carrier” means a composition comprising A and a carrier, and means that A is supported by the carrier.
  • the term “supported” is interpreted in the broadest sense. A chemical bond may or may not be formed between A and the carrier.
  • metal cluster refers to a metal material having a nanocluster structure formed by bonding metal atoms as nuclei directly to each other.
  • Such a metal cluster can be formed, for example, by desorbing a ligand from a molecular polynuclear metal complex having a bond between metal atoms on a support. By removing the ligand from the molecular polynuclear metal complex, a nanocluster structure influenced by the structure of the molecular polynuclear metal complex can be formed. In the present invention, nanoclusters are generated by this method. On the other hand, there are also known methods for preparing nanoclusters on a carrier by carrying various substances on the carrier, which originally have metal atoms that do not have a direct bond with each other. In such a method, clusters can be prepared. There is a possibility that the type of support is limited, or some metal atoms do not form metal clusters and exist alone.
  • the metal atom which is the nucleus in the metal cluster can form a molecular polynuclear metal complex.
  • various metal atoms can be adopted, and among these, in the periodic table Transition metal atoms belonging to Group V, Group VI, or Group VII are preferred.
  • Transition metal atoms belonging to Group V, Group VI, or Group VII high thermal stability and relatively high catalytic activity can be obtained.
  • transition metal atoms belonging to Group V include V (vanadium atom), Nb (niobium atom), and Ta (tantalum atom).
  • Transition metal atoms belonging to Group VI include Cr ( Chromium atoms), Mo (molybdenum atoms), and W (tungsten atoms).
  • transition metal atoms belonging to Group VII As transition metal atoms belonging to Group VII, Re (rhenium atoms) can be mentioned. Of these metal atoms, Nb, Ta, Mo, and W are more preferable from the viewpoint that a high catalytic activity can be maintained and a complex that can be stably stored in the air can be formed. And W are most preferred.
  • the number of nuclei constituting the metal cluster is influenced by the structure of the molecular polynuclear metal complex used to generate the metal cluster and the number of metal atoms contained in the molecular polynuclear metal complex.
  • the number of nuclei constituting the metal cluster that is, the number of metal atoms is preferably 3 or more and 200 or less, more preferably 3 or more and 20 or less.
  • a nanocluster structure consisting only of metal atoms can be suitably formed.
  • the number of metal atoms contained in the metal cluster depends on the type of molecular polynuclear metal complex used to form the metal cluster and the type of carrier carrying the molecular polynuclear metal complex.
  • the metal atom which is a nucleus in these metal clusters may be bonded to a nitrogen atom.
  • the metal atom as the nucleus may be a metal nitride.
  • a metal cluster structure containing nitrogen can be obtained by adding a nitrogen atom to a metal atom constituting a nucleus of a metal cluster generated by detaching a ligand from a molecular polynuclear metal complex. it can.
  • the catalyst for synthesizing ammonia means a support of a molecular polynuclear metal complex (meaning a catalyst composition comprising a molecular polynuclear metal complex and a carrier, wherein the molecular polynuclear metal complex is supported on the carrier. .).
  • a molecular polynuclear metal complex meaning a catalyst composition comprising a molecular polynuclear metal complex and a carrier, wherein the molecular polynuclear metal complex is supported on the carrier. .
  • carrier of the molecular polynuclear metal complex for obtaining the catalyst for ammonia synthesis which concerns on one Embodiment is also the category of this invention.
  • the “molecular polynuclear metal complex” refers to a metal complex having a nucleus of a plurality of metal atoms in a single molecule.
  • the “molecular polynuclear metal complex” is distinguished from a “mononuclear” metal complex having one transition metal atom as a nucleus. “Molecular” means that a metal complex molecule is formed. Thereby, the “molecular metal complex molecule” is distinguished from a “non-molecular” metal oxide that does not form a “metal complex molecule”.
  • a molecular polynuclear metal complex is, for example, a molecule that can suitably desorb a ligand possessed by a molecular polynuclear metal complex by supplying hydrogen under a temperature condition of 400 ° C. to 700 ° C. It is preferable that it is a property polynuclear metal complex.
  • Examples of such molecular polynuclear metal complexes include molecular polynuclear metal complexes represented by the following formulas (I) to (VI).
  • M 1 is a Group V metal atom, preferably an Nb atom or a Ta atom, X 1 represents Cl or Br, X 2 represents H 2 O, C 5 H 5 N (pyridine), represented by R 1 OH, or PR 1 3, wherein, R 1 is each independently hydrogen, an alkyl group having 1 to 4 carbon atoms, or an aryl group.
  • M 1 6 X 1 12 X 3 6 M 2 4-n (II)
  • n is 0, 1, or 2
  • M 1 is a Group V metal atom, preferably an Nb atom or a Ta atom
  • X 1 is Cl
  • X 3 is Cl, Br, OH, H 2 O, CN, R 1 2 O, R 1 OH, OCHO, C 5 H 5 N (pyridine), NCS, R 1 2 S, or R 1 CN
  • R 1 is independently hydrogen, an alkyl group having 1 to 4 carbon atoms, or an aryl group
  • M 2 is an alkali metal, a crown ether compound containing an alkali metal, an alkaline earth, or the like.
  • Transition metal belonging to group V to other than group VII, pyridinium, ammonium, oxonium, phosphonium, R 1 O, Cl, or Br, wherein the alkali metal is Li (lithium atom), K ( Potassium atom), Na ( Sodium atom), Rb (rubidium atom), or Cs (cesium atom), and the alkaline earth metal is Mg (magnesium atom), Ca (calcium atom), Sr (strontium atom), or Ba (barium atom).
  • transition metals other than Group V to Group VII are Fe (iron atom), Ni (nickel atom), Co (cobalt atom), Rh (rhodium atom), Ir (iridium atom), or Ce (cerium).
  • NR 1 4 an atom
  • R 1 is each independently hydrogen, an alkyl group, or aryl group having 1 to 4 carbon atoms, phosphonium, N (PPh 3) 2, or represented by PR 1 4, wherein, R 1 is each independently hydrogen, an alkyl group having 1 to 4 carbon atoms, or an aryl group.
  • M 3 is a Group VI metal atom, preferably a Mo atom or a W atom, X 5 represents Cl, Br, or I, and X 6 represents H 2.
  • R 1 OH, (CH 3 ) 2 CO (acetone), C 5 H 5 N (pyridine), CH 3 C 5 H 4 N ( ⁇ -picoline), C 9 H 7 N (quinoline), C 4 H 4 N 2 (pyrazine), (CH 3 ) 2 NCHO (N, N-dimethylformamide), (CH 3 ) 2 SO (dimethyl sulfoxide), R 1 CN, NR 1 3 , OPR 1 3 , or PR 1 3 Where R 1 is independently hydrogen, an alkyl group having 1 to 4 carbon atoms, or an aryl group.)
  • M 3 6-n X 7 8-n X 8 6 M 4 3-m (IV)
  • n is 0 or 1
  • m is 1, 2, or 3
  • M 3 is a Group VI metal atom, preferably a Mo atom or a W atom
  • X 7 represents Cl, Br, I, or OCH 3
  • X 8 represents Cl, Br, I, F, Ph 3 O, CN, NCS, NCO, R 2 O, R 2 S, or R 2 OCO.
  • R 2 is hydrogen, an alkyl group having 1 to 3 carbon atoms, or an aryl group
  • M 4 is an alkali metal, a crown ether compound containing an alkali metal, an alkaline earth metal, a group V To transition metals other than Group VII, pyridinium, hydroxypyridinium, pyridylpyridinium, ammonium, guanidinium, oxonium, phosphonium, wherein the alkali metal is Li (lithium atom), K (potassium atom) ), Na (sodium atom), Rb (rubidium atom), or Cs (cesium atom), and the alkaline earth metal is Mg (magnesium atom), Ca (calcium atom), Sr (strontium atom), or Ba ( The transition metal belonging to Group V to other than Group VII is Fe (iron atom), Ni (nickel atom), Co (cobalt atom), or Cu (copper atom), and ammonium is NR 1
  • M 5 is a Group VII metal atom, preferably a Re atom
  • X 1 represents Cl, Br, or I
  • X 2 represents H 2 O, (CH 3 ) 2 CO (acetone), C 4 H 8 O (tetrahydrofuran), (CH 3 ) 2 NCHO (N, N-dimethylformamide), CH 3 S (O) CH 3 (dimethyl sulfoxide), NR 1 3 , PR 1 3 or R 1 CN, wherein each R 1 is independently hydrogen, an alkyl group having 1 to 4 carbon atoms, or an aryl group.
  • M 5 is a Group VII metal atom, preferably represents a Re atom
  • X 1 represents Cl, Br, or I
  • M 6 represents an alkali metal, ammonium, Or phosphonium, wherein the alkali metal is Li (lithium atom), K (potassium atom), Na (sodium atom), Rb (rubidium atom), or Cs (cesium atom), and ammonium is NR 1 indicated by 4, wherein, R 1 is each independently hydrogen, an alkyl group, or aryl group having 1 to 4 carbon atoms, phosphonium is indicated by PR 1 4, wherein, R 1 is Each independently represents hydrogen, an alkyl group having 1 to 4 carbon atoms, or an aryl group.)
  • the most preferred molecular polynuclear metal complex is a halide cluster in which X 1 , X 3 and X 7 are halogen atoms,
  • the halogen atom contained in the halide cluster is preferably Cl (chlorine atom), Br (bromine atom), and I (iodine atom).
  • the halide cluster has only a halogen atom or a halogen atom and water as a ligand.
  • the halide cluster is suitably desorbed from halogen atoms by heating in an environment supplied with hydrogen.
  • the carrier is a carrier that supports a molecular polynuclear metal complex, and is a carrier that supports a metal cluster during the synthesis of ammonia.
  • the support is preferably a porous body of an inorganic material or a layered compound, more preferably a porous body of an inorganic material.
  • the zeolite may be a naturally occurring zeolite or a synthetic zeolite.
  • One type of carrier may be used alone, or two or more types may be mixed and used. The same applies to any of the embodiments described below.
  • the cluster and the metal or metal compound (additional component) described later may be supported on the same type of carrier, or may be supported on different carriers.
  • the SiO 2 / Al 2 O 3 in the zeolite is preferably 5 to 2500.
  • a metal cluster carrier having high catalytic activity can be obtained.
  • the porous body has an OH bond derived from, for example, a silanol group.
  • the pore diameter in the porous structure of the carrier is preferably in the range of 0.5 nm or more and 10 nm or less, and more preferably in the range of 0.7 nm or more and 3 nm or less.
  • the pore size of the porous structure of the support is in the range of 0.7 nm or more and 3 nm or less, a metal cluster support having high catalytic activity can be obtained.
  • the specific surface area of the support is preferably in the range of 10 m 2 / g or more and 1200 m 2 / g or less, and in the range of 30 m 2 / g or more and 1000 m 2 / g or less. Is more preferable.
  • the specific surface area of the support is in the range of 30 m 2 / g or more and 1000 m 2 / g or less, a metal cluster support having high catalytic activity can be obtained.
  • examples of the layered compound of an inorganic material used as a carrier include clay such as montmorillonite and kaolinite.
  • the catalyst for ammonia synthesis of the present invention may contain additional components other than metal clusters.
  • the carrier may contain an additional component as a component other than the metal cluster formed from the molecular polynuclear metal complex to be supported.
  • examples of the additive component include alkali metals, alkaline earth metals, transition metals belonging to groups other than Group V to Group VII in the periodic table, and the alkali metals include Li (lithium atom), Examples include K (potassium atom), Na (sodium atom), Rb (rubidium atom), and Cs (cesium atom), and alkaline earth metals include Mg (magnesium atom), Ca (calcium atom), and Sr (strontium). Atom) or Ba (barium atom), and transition metals include Fe (iron atom), Co (cobalt atom), Ir (iridium atom), Rh (rhodium atom), Ni (nickel atom), Cu ( Copper atom) and Ce (cerium atom).
  • the alkali metal, alkaline earth metal, and transition metal can be derived from metal atoms other than the Group V to Group VII transition metals contained in the molecular polynuclear metal complex described above.
  • the additive component includes nitrogen.
  • nitrogen can be added to the metal cluster carrier as a metal nitride by directly bonding to a metal atom forming a nucleus in the metal cluster.
  • the ratio of each component is not particularly limited, but the metal cluster content is 0.05 wt% to 50 wt%, more preferably 0.1 wt% to 40 wt%, 0.5 wt% to 30 wt%, or 0.5 wt% to 25 wt%.
  • the content of the additive component is preferably 0.5 to 55% by weight, more preferably 1 to 40% by weight.
  • a halide cluster is supported on a carrier to generate a halide cluster support.
  • a halide cluster solution is prepared by dissolving the halide clusters in water or an organic solvent, and the halide clusters are dispersed by suspending the carrier in the halide cluster solution.
  • carrier is mentioned.
  • the organic solvent for dissolving the halide cluster may be appropriately selected depending on the compatibility of the halide cluster, and examples thereof include alcohol solvents, ester solvents, ketone solvents, ether solvents, and hydrocarbon solvents.
  • Examples of the alcohol solvent include methanol, ethanol, 1-propyl alcohol, and 2-propyl alcohol.
  • Examples of the ester solvent include ethyl acetate and 2-propyl acetate.
  • Examples of the system solvent include acetone, methyl ethyl ketone, and cyclohexane.
  • Examples of the ether solvent include diethyl ether, tetrahydrofuran, and dioxane.
  • Examples of the hydrocarbon solvent include pentane, hexane, and hexane. Pentane, cyclopentane, cyclohexane, Zen, and toluene, and the like.
  • the halide cluster solution may be prepared by diluting 1 part by weight of the halide cluster with 500 to 4000 parts by weight of water or an organic solvent. As a result, the halide cluster can be successfully supported on the carrier. Adsorption of the halide cluster to the carrier is performed by putting the halide cluster solution into the carrier and shaking the solution. The shaking may be performed manually or by a known dispersion device or stirring device. Examples of the dispersing device include an ultrasonic cleaning device.
  • the halide cluster content in the halide cluster carrier can be appropriately selected according to the type of halide cluster and the type of carrier, but is 0.5% by weight or more with respect to the halide cluster carrier. It is preferably in the range of 25% by weight or less, and more preferably in the range of 1.0% by weight or more and 10% by weight or less.
  • the content of the metal cluster in the metal cluster carrier can be determined from the content of the halide cluster with respect to the halide cluster carrier.
  • the halide cluster carrier is preferably stored in a state where water and organic solvent are removed by drying under reduced pressure or the like.
  • the halide clusters thus obtained can be suitably stored in a state where they are supported on a carrier because the metal atom and the halogen atom form a strong bond. For this reason, the halide cluster carrier is easy to handle.
  • the metal cluster carrier is generated by a flow reaction (activation reaction with hydrogen) in which hydrogen is continuously supplied to the halide cluster carrier.
  • the halogen atoms desorbed from the halide cluster are discharged out of the reaction system together with hydrogen gas as an acid such as hydrochloric acid or odorous acid.
  • the bond distance between metal atoms constituting the core of the metal cluster is 0.3 nm or less, more Preferably, it can be 0.25 to 0.3 nm.
  • a plurality of metal atoms at a distance close to each other can work cooperatively to successfully perform catalytic generation of ammonia.
  • the flow reaction can be performed by using a known apparatus, but from the viewpoint of high resistance to acids, the flow reaction tube is made of stainless steel 316, inconel or the like, more preferably corrosion resistant formed by inconel or the like. It is preferable to use a highly reactive tube.
  • Hydrogen is supplied by circulating hydrogen through a reaction tube filled with a halide cluster support.
  • the halide cluster carrier is reacted with hydrogen (hydrogen gas) while heating the halide cluster support at a temperature of 400 ° C. to 700 ° C. in the reaction tube.
  • the flow reaction for desorbing halogen atoms from the halide cluster support is preferably performed within a range of about 1 to 24 hours, although it depends on the amount of the halide cluster support used.
  • the flow reaction can be suitably performed when the absolute pressure of the gas is in the range of 0.1 to 0.2 MPa. After the flow reaction, the outlet of the reaction tube may be closed and left for about 18 hours.
  • the metal cluster support formed by this reaction has a dense nanocluster structure formed by metal atoms on the surface of the support.
  • the synthesis of ammonia can be carried out continuously in the reaction tube in which the metal cluster support is generated. Specifically, ammonia is synthesized by heating the metal cluster carrier under temperature conditions suitable for ammonia synthesis and circulating nitrogen and hydrogen in the reaction tube. The flow reaction is started from a state in which the metal cluster carrier is heated within a temperature range of 50 ° C to 700 ° C.
  • ammonia is continuously synthesized by bringing hydrogen and nitrogen into contact with the metal cluster support.
  • the mixing ratio of nitrogen molecules (nitrogen gas) and hydrogen molecules (hydrogen gas) is preferably such that nitrogen: hydrogen is within a range of 1: 3 to 3: 1.
  • the total flow rate of nitrogen molecules (nitrogen gas) and hydrogen molecules (hydrogen gas) is preferably, for example, 30 to 500 ml / min (converted at 25 ° C. and 1 atm), and the space velocity (unit catalyst weight, unit).
  • the volume of gas that contacts the catalyst per hour (25 ° C., converted to 1 atm) is preferably 9 to 150 l / h g-cat.
  • the contact time is not particularly limited, but is, for example, in the range of 1 hour to 24 hours.
  • the ammonia synthesis is preferably performed by a halide cluster carrier (hereinafter also referred to as a metal addition-halide cluster carrier) to which a metal is added among the additive components described in [1.4: Additive component] above. Can be implemented.
  • a metal addition-halide cluster carrier hereinafter also referred to as a metal addition-halide cluster carrier
  • the addition of the metal is carried out by supporting the metal compound (addition compound) on the carrier and desorbing the anion and the ligand from the metal compound by circulating air, nitrogen, or hydrogen under vacuum.
  • the metal in the metal compound is an alkali metal, an alkaline earth metal, and a transition metal other than Group V, Group VI, and Group VII as described above, and nitrates, carbonates of these metals, Hydroxide (eg, Co (OH) 2 ), metal oxide (eg, Co 3 O 4 , Fe 2 O 3 , NiO), fluoride, chloride, bromide, iodide, metal chloride, bromide Metal salts, metal iodides, carbonyl complexes, acetylacetonate complexes (for example, Co (acac) 2 ), ammine complexes, acetates, and the like, and hydrates of these salts and complex salts are listed as metal compounds. It is done.
  • a solution of the metal compound is prepared by dissolving the metal compound in water or an organic solvent, and the solution is added to the carrier before the halide cluster is supported or the halide cluster carrier.
  • the organic solvent for dissolving the metal compound may be appropriately selected depending on the compatibility of the metal compound, and examples thereof include alcohol solvents, ester solvents, ketone solvents, ether solvents, and hydrocarbon solvents.
  • alcohol solvents include methanol, ethanol, 1-propyl alcohol, and 2-propyl alcohol.
  • ester solvents include ethyl acetate and 2-propyl acetate.
  • Examples of the solvent include acetone, methyl ethyl ketone, and cyclohexane.
  • Examples of the ether solvent include diethyl ether, tetrahydrofuran, and dioxane.
  • Examples of the hydrocarbon solvent include pentane, hexane, and heptane. , Cyclopentane, cyclohexane, benzene, and tolue Etc. The.
  • the metal compound solution may be prepared by diluting 1 part by weight of the metal compound with 1 to 200 parts by weight of water or an organic solvent. This allows the metal compound to be successfully added to the support.
  • the addition of the metal compound is performed by adding a carrier to the solution of the metal compound, preparing a suspension, filtering the suspension, or removing the solvent from the suspension.
  • the carrier before carrying the halide clusters is added to the solution of the metal compound, and the suspension is stirred at room temperature, manually or by a stirring device, or stirred by a stirring device under a heating condition of 35 to 100 ° C. To prepare.
  • the carrier to which the metal compound is added is filtered from the suspension or, as it is, by removing the remaining water or the organic solvent by drying under reduced pressure, etc.
  • Metal compound addition also referred to as support).
  • this metal compound-added carrier When this metal compound-added carrier is heated at 50 to 700 ° C. for 4 to 30 hours in a vacuum, in a nitrogen stream or in a hydrogen stream, a carrier to which a metal has been added (hereinafter also referred to as a metal added carrier) is obtained. It is done. If a halide cluster is supported thereon, a metal-added halide cluster support (hereinafter also referred to as a metal addition-halide cluster support) can be obtained. Next, if hydrogen is supplied to this and activated, a metal-added-metal cluster carrier can be obtained and used as an ammonia synthesis catalyst.
  • a metal added carrier hereinafter also referred to as a metal added carrier
  • the metal compound addition-support may be treated under an air stream to form a support to which a metal oxide is added, and the support may be loaded with halide clusters.
  • the carrier before carrying the halide cluster is added to the solution of the metal compound, and after stirring manually or by a stirring device at room temperature, the carrier to which the metal compound is added is filtered from the suspension or left as it is. In this state, by removing water or an organic solvent from the suspension by drying under reduced pressure or the like, a metal compound addition-support is obtained, which is heated at 100 to 700 ° C. for 4 to 30 hours under an air stream.
  • a carrier to which a metal oxide is added (hereinafter also referred to as a metal oxide addition-support) is obtained. If a halide cluster is supported thereon, a metal halide-added halide cluster support (hereinafter also referred to as metal oxide-added halide cluster support) is obtained. Next, if hydrogen is supplied to this and activated, a metal cluster-supported body, which is a metal cluster-supported body to which a metal as an additive component is added, can be obtained and used as an ammonia synthesis catalyst. In other words, in the present embodiment, oxygen desorption from the metal oxide and ligand desorption from the halide cluster are simultaneously performed in the carrier.
  • a metal compound solution may be added to the halide cluster carrier.
  • a metal compound added which is a halide cluster carrier to which a metal compound is added, is obtained by stirring manually or by a stirring device at room temperature and removing the water or the organic solvent by drying the suspension under reduced pressure or the like.
  • a halide cluster carrier is obtained.
  • hydrogen is supplied to this and activated, a metal cluster-supported body, which is a metal cluster-supported body to which a metal as an additive component is added, can be obtained and used as an ammonia synthesis catalyst.
  • the ligand (anion) of the metal compound is desorbed and the ligand is desorbed from the halide cluster simultaneously in the carrier.
  • a metal-added-metal cluster carrier can be obtained and used as an ammonia synthesis catalyst.
  • the content of the added metal in the metal cluster carrier can be appropriately selected according to the type of metal compound and the type of carrier, but it is 0.5% by weight or more, 50% with respect to the metal cluster carrier. It is preferably in the range of not more than wt%, more preferably in the range of not less than 1.0 wt% and not more than 20 wt%.
  • the content of the added metal added to the metal cluster support can be determined from the content of the metal compound added to the support.
  • the synthesis of ammonia can be carried out under the same conditions as described in [2.3: Synthesis of ammonia] after forming the metal addition-metal cluster support.
  • the preparation of the catalyst of the present invention is not limited to the methods described in 2.4.1, 2.4.2 and 2.4.3.
  • additional components such as metal clusters (or molecular polynuclear metal complexes such as halide clusters), carriers, metals, or metal compounds.
  • the composition may be prepared by mixing a wet or dry composition (which may be subjected to post-treatment such as heating if necessary) in a wet or dry manner. it can.
  • ammonia synthesis using metal cluster carrier with nitrogen added is performed after adding nitrogen to the metal cluster support and / or metal addition-metal cluster support.
  • the ligand is desorbed from the halide cluster support or the metal addition-halide cluster support in accordance with the flow reaction described in the section of [2.2: Formation of metal cluster support] above. Thereafter, nitrogen addition is performed on the obtained metal cluster carrier or metal addition-metal cluster carrier. The same flow reaction was performed for the metal oxide added-halide cluster support or the metal compound added-halide cluster support to remove the ligand from the metal oxide, metal compound, and halide cluster support, Nitrogen is added to the obtained metal addition-metal cluster support.
  • Nitrogen is added to these metal cluster support and / or metal addition-metal cluster support at 0.1 to 10 MPa (absolute pressure), more preferably at atmospheric pressure in the range of 0.1 to 1 MPa, 500 ° C. or more, Hydrogen and nitrogen are brought into contact with each other under a temperature condition of 700 ° C. or lower, more preferably 600 ° C. or higher and 700 ° C. or lower.
  • the mixing ratio of nitrogen molecules (nitrogen gas) and hydrogen molecules (hydrogen gas) is preferably such that nitrogen: hydrogen is within a range of 1: 3 to 3: 1.
  • the total flow rate of nitrogen molecules (nitrogen gas) and hydrogen molecules (hydrogen gas) is preferably, for example, 30 to 500 ml / min (converted at 25 ° C.
  • the volume of gas that contacts the catalyst per hour is preferably 9 to 150 l / h g-cat.
  • the contact time is not particularly limited, but is, for example, in the range of 1 hour to 24 hours. Thereby, nitrogen can be suitably added to the metal cluster carrier and / or the metal addition-metal cluster carrier.
  • the metal nitride cluster support is formed by adding nitrogen to the metal cluster support.
  • the metal component When nitrogen is added to the metal-added-metal cluster carrier, depending on the type of the added metal, the metal component also binds to nitrogen, and a metal nitride, that is, a nitride of the added metal can be formed. That is, a metal addition-metal nitride cluster support or a metal nitride-metal nitride cluster support can be formed.
  • the metal of the additive metal is the metal nitride described in [1.4: Additive component].
  • a metal compound addition that does not carry a halide cluster-support was obtained by adding nitrogen to the support under the same conditions as the metal addition and / or metal addition-nitrogen addition to the metal cluster support.
  • a metal nitride added-halide cluster support may be formed by supporting a halide cluster on a support to which metal nitride is added (hereinafter also referred to as metal nitride addition-support) to be used for ammonia synthesis. In this case, depending on the conditions of flow reaction, ammonia synthesis is performed by a metal cluster carrier to which metal nitride is added (hereinafter also referred to as metal nitride-metal cluster carrier).
  • ammonia is suitably synthesized under temperature conditions in the range of 50 ° C. or higher and 700 ° C. or lower, more preferably in the range of 100 ° C. or higher and 600 ° C. or lower. be able to.
  • the present invention also relates to a catalyst precursor for ammonia synthesis before activation.
  • the catalyst precursor of the present invention includes a molecular polynuclear metal complex (preferably a halide cluster) of a metal belonging to Group V, Group VI, or Group VII in the periodic table, and the support.
  • molecular polynuclear metal complexes include molecular polynuclear metal complexes represented by any of the above general formulas (I) to (VI).
  • Preferred examples of the carrier are the same as described above.
  • the content of the molecular polynuclear metal complex in the catalyst precursor is 0.05 wt% to 50 wt%, more preferably 0.1 wt% to 40 wt%, 0.5 wt% to 30 wt%. Or 0.5 to 25% by weight.
  • the catalyst precursor of the present invention can be converted to the ammonia synthesis catalyst of the present invention having catalytic activity by performing a pretreatment such as heating.
  • a pretreatment such as heating.
  • hydrogen is supplied to the catalyst precursor, which converts the molecular polynuclear metal complex into a metal cluster having three or more core metal atoms.
  • Hydrogen may be supplied under heating. Heating is preferably 200 to 800 ° C, more preferably 300 to 700 ° C.
  • One embodiment of the catalyst precursor for ammonia synthesis of the present invention comprises a molecular polynuclear metal complex (preferably a halide cluster) of a metal belonging to Group V, Group VI, or Group VII in the periodic table, and the molecular property.
  • a carrier supporting a polynuclear metal complex, and further, an alkali metal, an alkaline earth metal, and a transition metal belonging to groups other than Group V to Group VII in the periodic table (provided that the transition metal is included in the molecular polynuclear metal complex) At least one selected from the group of metals of group V to group VII, and / or a metal compound selected from the group of metals. And at least one kind.
  • the metal compound examples include nitrate, carbonate, hydroxide (eg, Co (OH) 2 ), metal oxide (eg, Co 3 O 4 , Fe 2 O 3 ), fluoride, chloride, bromide. , Iodides, metal chlorides, metal bromides, metal iodides, carbonyl complexes, acetylacetonate complexes (eg, Co (acac) 2 ), ammine complexes, and acetates, and their salts And hydrates of complex salts are mentioned as metal compounds.
  • the metal compound may be added in a state of being supported on a carrier (which may be the same as or different from the above carrier).
  • the said metal compound may have activity as an ammonia synthesis catalyst by being carry
  • metal compounds of Co and Fe are preferable.
  • the content of the metal compound in the present embodiment is preferably 0.5 to 55% by weight, more preferably 1 to 40% by weight.
  • a metal compound and a metal may be referred to as a metal source.
  • the metal atom of the metal source is, for example, an alkali metal or an alkaline earth. It can be a metal and a metal atom such as a transition metal belonging to other than group V to group VII in the periodic table.
  • the “metal” means “metal simple substance”.
  • the present invention also relates to an ammonia synthesizer using the ammonia synthesis catalyst of the present invention.
  • An example of the synthesis apparatus includes a reaction tube including at least a part of the catalyst for ammonia synthesis of the present invention.
  • the reaction tube may have a plurality of layers containing the catalyst for ammonia synthesis of the present invention.
  • the reaction tube may be connected to a gas supply tube for circulating H 2 , N 2 or the like and / or a recovery tube for recovering the synthesized ammonia.
  • the ammonia synthesizer may include a heater for heating the gas supplied from the gas supply pipe and / or a pressurizer for pressurizing.
  • a metal cluster carrier including a metal cluster having three or more metal atoms as nuclei and a carrier supporting the metal cluster, wherein the metal atom is a group V or group VI in the periodic table. Or a metal atom belonging to Group VII, wherein each of the metal atoms is directly bonded to each other.
  • the metal atom is one metal atom selected from the group consisting of molybdenum (Mo), niobium (Nb), tungsten (W), tantalum (Ta), and rhenium (Re). Catalyst for ammonia synthesis.
  • the carrier is a porous body of inorganic material or a layered compound, and the inorganic material includes carbon, boron nitride, carbon nitride, silica, alumina, aluminosilicate, sodium aluminosilicate, aluminum hydroxide magnesium carbonate
  • the catalyst for ammonia synthesis according to 1) or 2), which is at least one inorganic material selected from the group consisting of a salt, titania, titanosilicate, zirconia, zirconosilicate, zinc oxide, and ceria.
  • An additional component is further included, and the additional component is at least one additional component selected from the group consisting of alkali metals, alkaline earth metals, transition metals, and nitrides of these metals. Is at least one transition metal selected from the group consisting of iron (Fe), cobalt (Co), rhodium (Rh), iridium (Ir), nickel (Ni), copper (Cu), and cerium (Ce).
  • the catalyst for ammonia synthesis according to any one of 1) to 3).
  • a molecular polynuclear metal complex having 3 or more core metal atoms is supported on a carrier to generate a molecular polynuclear metal complex carrier, and hydrogen is supplied to the molecular polynuclear metal complex carrier.
  • a method for synthesizing ammonia which is a metal atom belonging to Group V, Group VI, or Group VII in the Table, and each of the metal atoms is directly bonded to each other.
  • the metal atom is one metal atom selected from the group consisting of molybdenum (Mo), niobium (Nb), tungsten (W), tantalum (Ta), and rhenium (Re). Of ammonia synthesis.
  • the carrier is a porous body or a layered compound of an inorganic material, and the inorganic material is carbon, boron nitride, carbon nitride, silica, alumina, aluminosilicate, sodium aluminosilicate, aluminum hydroxide magnesium carbonate
  • the carrier further includes an additive component, and the additive component is at least one additive component selected from the group consisting of alkali metals, alkaline earth metals, transition metals, and nitrides of these metals.
  • the transition metal is at least one selected from the group consisting of iron (Fe), cobalt (Co), rhodium (Rh), iridium (Ir), nickel (Ni), copper (Cu), and cerium (Ce).
  • the method for synthesizing ammonia according to any one of 8) to 10), which is one transition metal.
  • the molecular polynuclear metal complex is a halide cluster having one halogen atom selected from the group consisting of Cl, Br, and I as a ligand, and removing the halogen atom from the metal atom.
  • a molecular polynuclear metal complex having three or more metal atoms that are nuclei, and a carrier carrying the molecular polynuclear metal complex, wherein the metal atoms are group V, group VI, Or a catalyst precursor for ammonia synthesis, which is a metal atom belonging to Group VII.
  • alkali metals, alkaline earth metals, and transition metals belonging to groups other than Group V to Group VII in the periodic table (provided that transition metals are Group V to Group VII included in the molecular polynuclear metal complex)
  • a catalyst precursor for ammonia synthesis comprising a compound. 16) The catalyst precursor for ammonia synthesis according to 15), wherein the at least one metal and / or the at least one metal compound is supported on a carrier.
  • methanol was distilled off from the suspension under reduced pressure, and the cluster carrier was dried to obtain a powder sample of a halide cluster carrier.
  • the obtained powder sample was ground in a mortar to be uniform and then stored in the atmosphere.
  • Metal oxide addition-Synthesis of the halide cluster support is carried out by first supporting an additive compound for supporting the additive component on the support, and then adding the metal oxide by generating metal on the support by an air flow reaction. -A carrier was obtained. Subsequently, a metal oxide addition-halide cluster carrier was obtained by carrying a halide cluster on the metal oxide addition-carrier.
  • the metal compound (addition compound) used for the Example is as follows.
  • a reaction tube made of quartz glass was filled with a metal compound addition-support as sample A, attached to a flow reactor, and reacted at normal pressure under the following reaction conditions.
  • Air flow rate 100 mL / min (converted at 25 ° C. and 1 atm)
  • First temperature raising condition / temperature raising time From 20 ° C. to 110 ° C./90 minutes (that is, the temperature raising rate is 1 K / min.)
  • First holding temperature / holding time 110 ° C./12 hours
  • Second heating condition / heating time 110 ° C. to 450 ° C./5 hours 40 minutes (that is, the temperature rising rate is 1 K / min)
  • Second holding temperature / holding time 450 ° C./12 hours
  • Co oxide addition-support was stored in air.
  • the formation of Co oxide on the support was confirmed by detecting Co 3 O 4 by powder X-ray diffraction measurement (XRD).
  • Air flow rate 110 mL / min (converted at 25 ° C. and 1 atm)
  • Temperature increase condition / temperature increase time From 20 ° C. to 500 ° C./1 hour (that is, the temperature increase rate is 8 K / min.)
  • Fe oxide and Ni oxide on the support was confirmed by detecting Fe 2 O 3 and NiO, respectively, by powder X-ray diffraction measurement (XRD).
  • the halide cluster carrier (H 3 O) 2 [(Mo 6 Cl 8 ) Cl 6 ] ⁇ 6H 2 O / HY obtained by the method described in the column of [2: Synthesis of halide cluster carrier] above ( High Si / Al) is weighed to a predetermined content, and (H 3 O) 2 [(Mo 6 Cl 8 ) Cl 6 ] ⁇ 6H 2 O / HY (High Si / Al) is added thereto. Then, an aqueous solution of CoCl 2 was added and stirred at room temperature for 2 hours to obtain a suspension of a metal compound (CoCl 2 ) -halide cluster carrier.
  • the obtained suspension was evaporated under reduced pressure to remove ethanol from the suspension and dried to obtain a powder sample of a metal compound (CoCl 2 ) -halide cluster carrier.
  • the obtained powder sample was ground in a mortar to be uniform and then stored in the atmosphere.
  • the metal compound (CoCl 2 ) -halide cluster support was changed to a Co-added-metal cluster support by the subsequent catalyst activation under hydrogen flow, and was used as it was as an ammonia synthesis catalyst.
  • the halide cluster carrier (H 3 O) 2 [(Mo 6 Cl 8 ) Cl 6 ] ⁇ 6H 2 O / HY obtained by the method described in the column of [2: Synthesis of halide cluster carrier] above ( High Si / Al) is weighed so as to have a predetermined content, and an ethanol solution of Cs 2 CO 3 is added thereto and stirred at room temperature for 2 hours, whereby a metal compound (Cs 2 CO 3 ) -halide is obtained. A suspension of cluster support was obtained.
  • the obtained suspension was evaporated under reduced pressure to remove ethanol from the suspension and dried to obtain a powder sample of a metal compound (Cs 2 CO 3 ) -halide cluster carrier.
  • the obtained powder sample was ground in a mortar to be uniform and then stored in the atmosphere.
  • the metal compound (Cs 2 CO 3 ) -halide cluster support was changed to a Cs-added-metal cluster support by the catalyst activation under the next hydrogen flow, and used as it was as an ammonia synthesis catalyst.
  • a reaction tube made of metal made of stainless steel 316 was filled with 200.0 mg of a halide cluster carrier, and attached to a flow reactor for reaction.
  • the cluster carrier was activated at normal pressure by flowing hydrogen (purity 99.99999% or more) in the reaction tube under the activation conditions shown below.
  • activation conditions by supplying hydrogen are as follows.
  • solution A obtained by dissolving 25.8 mg of sodium nitroprusside and 5 g of phenol in 500 mL of ion-exchanged water (hereinafter referred to as solution A), 2.47 g of sodium hydroxide and 4.2 mL of 8% aqueous hypochlorous acid solution were added to 500 mL of ion-exchanged water.
  • solution B A solution dissolved in (hereinafter referred to as solution B) was prepared.
  • a gas containing ammonia coming out from the outlet was bubbled into the solution A, which is a trapping solution, and the solution B was added and mixed. After mixing, the mixture was diluted as appropriate, and the resulting color developing solution was analyzed by absorbance visible ultraviolet spectroscopy at a wavelength of 635 nm to determine the concentration of ammonia.
  • each cluster carrier was used and evaluated as a catalyst for synthesis of ammonia.
  • the carrier is preferably a porous body.
  • Sample 4 using a porous carbon material also had high catalytic activity (TOF).
  • Sample 7 carrying a mononuclear halide complex that is not a cluster had almost no catalytic activity, indicating that the cluster structure is essential for high activity.
  • FIG. 3 shows a transmission electron microscope (TEM) photograph of the cluster carrier after Sample 1 and Sample 5 were supported on the carrier, immediately after catalyst activation, and after completion of the catalytic reaction for 24 hours.
  • TEM transmission electron microscope
  • Sample 1 and Sample 5 hold the cluster-supported nanocluster structure from the time when the cluster is supported on the support until the end of the catalytic reaction. It was confirmed. In particular, it was confirmed that the cluster carrier of sample 1 showing high catalytic activity in the graph of FIG. 2 has a denser nanocluster structure than the cluster carrier of sample 5.
  • the zeolite HY (Low Si / Al) used as the sample 1 has a porous structure with a pore size of 0.9 nm
  • the MCM-41 used as the sample 5 has a porous structure.
  • the pore diameter was 2.1 to 2.7 nm. From the results of these samples 1 and 5, it was confirmed that high catalytic activity can be obtained by using a carrier having a pore size of the order of nm.
  • TEM transmission electron microscope
  • Table 3 shows the results of elemental analysis of the cluster support for sample 12 and sample 13 immediately after the catalyst was activated after supporting the cluster on the support and after 4 hours of catalytic reaction.
  • the halide cluster carrier having Nb or Ta as a nucleus is a catalyst under the condition that the temperature in the catalytic reaction is 600 ° C. It was confirmed to show activity. Further, it was confirmed that the halide cluster carrier having W as a nucleus exhibits catalytic activity even when the temperature of the catalytic reaction is 400 ° C.
  • sample 30 using a molecular mononuclear halide complex resulted in lower catalytic activity.
  • the molecular mononuclear complex having an organic amine as a ligand used in the sample 31 is known as a substance that cleaves nitrogen molecules in a solution below normal pressure freezing point when not supported on a carrier. (Ref. Science, 1995, 268, pp.861-863).
  • the catalytic activity of the carrier of the complex used for Sample 31 was low.
  • the complex of samples 30 and 31 is unstable in the air.
  • samples 33 to 34 using non-molecular molybdenum oxide (unsupported) as a precursor require a high temperature and a gas other than hydrogen for catalyst activation.
  • sample 29 which is an embodiment of the present invention, carries molybdenum oxide that has been activated at a higher temperature (700 ° C.) on HZSM 5 even though the catalyst activation temperature was performed at a lower temperature (600 ° C.).
  • sample 35 Compared with the sample 35 of the comparative example, high catalytic activity was shown.
  • sample 35 required treatment with oxygen, ammonia and nitrogen, whereas catalyst activation was sufficiently achieved only with treatment with hydrogen. Note that the reproducibility of the sample 35 was also confirmed in the experiments of the present inventors (see the result of the sample 35a in the above table).
  • the catalyst can be activated under relatively low temperature conditions, and a good catalytic activity can be obtained.
  • a carrier carrying such a halide cluster can be stably stored in the air.
  • the sample 40 showed higher catalytic activity than the sample 39
  • the sample 42 showed a higher catalytic activity than the sample 41
  • the sample 44 showed a higher catalytic activity than the sample 43. It was confirmed that the catalyst activity was higher when the nitrogen addition operation was performed regardless of the support.
  • Reaction tube Amount of unsupported cluster made of stainless steel 316: 120 mg Hydrogen flow rate during activation: 150 ml / min (converted at 25 ° C. and 1 atm) Hydrogen pressure during activation: 0.1 MPa (absolute pressure) Activation temperature: 700 ° C Activation time (activation temperature maintenance time): 60 minutes (conditions for adding nitrogen) N 2 / H 2 ratio: 1/3 Total flow rate of N 2 / H 2 : 60 ml / min. (Converted at 25 ° C and 1 atmosphere) Gas pressure: 1.0 MPa (absolute pressure) Temperature: 400 ° C. (Sample 45), 600 ° C. (Sample 46), or 700 ° C. (Sample 47) Time: 60 minutes
  • H 2 flow rate in the quartz tube 120 ml / min (converted at 25 ° C. and 1 atm), gas pressure: 0.1 MPa (absolute pressure),
  • the catalyst was preliminarily activated under the condition of time: 60 min.
  • the sample was refilled from the quartz tube to the reaction tube, and then the catalyst activation and nitrogen addition operation were performed. Thereby, it was avoided that excessive HCl was generated inside the reaction tube.
  • the cobalt addition-cluster support As shown in Table 8, compared to the cluster support without addition of cobalt (sample 52) and the cobalt addition-support alone without support of cluster (sample 53), the cobalt addition-cluster support (sample 51) The ammonia yield was confirmed to be high. Thereby, it was confirmed that the catalytic activity was improved by the cooperative effect of the metal cluster and cobalt.
  • Non-Patent Document 4 discloses Co 3 Mo 3 N and Cs—Co 3 Mo 3 N as ammonia synthesis catalysts containing cobalt-molybdenum, but is an unsupported catalyst that is not supported on a carrier. The morphology is different from the additive-halide cluster carrier.
  • the TOF h ⁇ 1 , per Mo ⁇ atom
  • the yield of ammonia is higher than that in the case where the reaction with only argon / hydrogen gas is performed at 200 ° C. after the nitrogen addition operation (sample 56). It was confirmed that most of the nitrogen of ammonia generated during the reaction with the nitrogen / hydrogen mixed gas at °C was derived from the nitrogen supplied at 200 °C. In addition, it was confirmed that the difference in TON between the sample 54 and the sample 56 after 40 hours from the start of the reaction exceeded 1. That is, it was confirmed that the generation of ammonia at 200 ° C. in the sample 54 proceeded catalytically.
  • Non-Patent Document 6 reports a sodium naphthalenide reduced cobalt-molybdenum ceria support as an ammonia synthesis catalyst containing a cobalt-molybdenum support. However, it is synthesized from MoCl 5 which is a molecular mononuclear complex, and is handled in an inert gas atmosphere. In Non-Patent Document 6, there is no report that this catalyst synthesized ammonia at 200 ° C.
  • Sample 57 (H 3 O) 2 [(Mo 6 Cl 8 ) Cl 6 ] .6H 2 O / Fe 2 O 3 / HY (High Si / Al)
  • Sample 58 (H 3 O) 2 [(Mo 6 Cl 8 ) Cl 6 ] .6H 2 O / NiO / HY (High Si / Al)
  • Sample 59 (H 3 O) 2 [(Mo 6 Cl 8 ) Cl 6 ] ⁇ 6H 2 O / Cs 2 CO 3 / HY (High Si / Al)
  • Sample 60 (H 3 O) 2 [(Mo 6 Cl 8 ) Cl 6 ] .6H 2 O / CoCl 2 .6H 2 O / HY (High Si / Al)
  • ammonia synthesis was subsequently performed using a nitrogen / hydrogen mixed gas at 200 ° C., and the change in catalyst activity with time was evaluated.
  • Hydrogen pressure during activation 0.1 MPa (absolute pressure)
  • Activation temperature 700 ° C
  • Activation time activation temperature maintenance time: 60 minutes (Nitrogen addition condition)
  • N 2 / H 2 ratio 1/3
  • N 2 / H 2 total flow rate 500 ml / min (converted at 25 ° C.
  • Gas pressure 1.0 MPa (absolute pressure) Temperature: 200 ° C Time: 1 hour (catalytic reaction conditions) N 2 / H 2 ratio: 1/3, N 2 / H 2 total flow rate: 500 ml / min (converted at 25 ° C., 1 atm) (but only sample 58 is 240 ml / min (at 25 ° C., 1 atm) Conversion)) Gas pressure: 1.0 MPa (absolute pressure) Temperature: 200 ° C The ion chromatograph method was used for the trap. The gas containing ammonia coming out from the outlet was continuously bubbled for 4 hours from immediately after the start of the reaction.
  • samples 57, 58, 59 and 60 produced ammonia. Further, it was confirmed that the amount of ammonia produced in these samples was larger than that of sample 61. That is, it was confirmed that the catalytic activity for ammonia production was improved by the addition of metal. From the result of the sample 60, it was confirmed that the catalytic activity for ammonia generation was improved even when cobalt was added as a chloride.
  • Non-Patent Document 12 is synthesized from a non-molecular composite oxide, and its activity per molybdenum atom is very low.
  • ammonia was synthesized at 200 ° C.
  • Non-Patent Document 7 Non-Patent Document 8
  • these are unstable in the air.
  • N 2 gas and H 2 gas were supplied to the reaction tube at a rate of 15 mL / h and 45 mL / h, respectively, under predetermined conditions (400 ° C., 10 atm) to advance the catalytic reaction.
  • TOF was calculated from the amount of ammonia gas produced. The results are shown in Table 9 below.
  • sample 101 For samples 101 and 102, catalytic activity at a lower temperature was confirmed. Specifically, 100 mg of each sample (for sample 101, the total weight of (H 3 O) 2 [(Mo 6 Cl 8 ) Cl 6 ] ⁇ 6H 2 O + Co + HY was set to 100 mg. The same applies to sample 102. .) Are filled into reaction tubes (made by Inconel), and hydrogen gas is supplied into the reaction tubes for activation (activation conditions are H 2 150 mL / h, 700 ° C., 1 atm, 1 h), Next, the N 2 / H 2 mixed gas was supplied to the reaction tube at 500 mL / h under predetermined conditions (700 ° C., 10 atm, 1.5 h) and pretreated.
  • activation conditions are H 2 150 mL / h, 700 ° C., 1 atm, 1 h
  • the N 2 / H 2 mixed gas was supplied to the reaction tube at 500 mL / h under predetermined conditions (700 ° C.
  • N 2 gas and H 2 gas were supplied to the reaction tube at a rate of 125 mL / h and 375 mL / h, respectively, at low temperature conditions (200 ° C., 10 atm) to advance the catalytic reaction.
  • the TON turnover number was calculated from the amount of ammonia gas produced. The results are shown in FIG. From the results of FIG. 9, it can be seen that Samples 101 and 102 of the example of the present invention show catalytic activity even at a low temperature (200 ° C.), and ammonia can be produced from N 2 gas and H 2 gas.
  • Catalyst precursor samples 106 and 107 were prepared with the following compositions, respectively. Specifically, Co (Co 3 O 4 / CeO 2 ; sample 106a) and Fe (Fe 2 O 3 / CeO 2 ; sample 107a) supported on ceria (CeO 2 ) were prepared, and each was prepared in a solid state. Samples 106 and 107 were prepared by mixing with (H 3 O) 2 [(Mo 6 Cl 8 ) Cl 6 ] .6H 2 O / HY (High Si / Al). Co 3 O 4 / CeO 2 (sample 106a) was obtained using cobalt nitrate as a raw material. In addition, Fe 2 O 3 / CeO 2 (sample 107a) was prepared in the same manner.
  • the amount of ammonia synthesized per unit time was measured. Specifically, 200 mg ((H 3 O) 2 [(Mo 6 Cl 8 ) Cl 6 ] ⁇ 6H 2 O + HY + Co + CeO 2 and (H 3 O) 2 [(Mo 6 Cl 8 ) Cl 6 ] ⁇ 6H of each sample 2 O + HY + Fe + CeO 2 was added to a reaction tube (manufactured by Inconel), and hydrogen gas was supplied into the reaction tube for activation (activation conditions were H 2 300 mL). / H, 600 ° C., 1 atm, 3 h).
  • N 2 gas and H 2 gas were supplied to the reaction tube at a rate of 15 mL / h and 45 mL / h, respectively, under predetermined conditions (400 ° C., 10 atm) to advance the catalytic reaction.
  • the amount of ammonia gas produced is shown in Table 10 below.
  • the synthesis amount of ammonia obtained by advancing the catalytic reaction in the same manner using Co 3 O 4 / CeO 2 (sample 106a) and Fe 2 O 3 / CeO 2 (sample 107a) is also shown in Table 10. Show.
  • the present invention can be used as an ammonia synthesis catalyst.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

比較的緩和な環境下でアンモニアを合成することができ、かつ、空気中において安定に保存することができる新規なアンモニア合成用触媒を提供する。アンモニア合成用触媒は、核である金属原子を3個以上有する金属クラスターと、上記金属クラスターを担持する担体とを備えた金属クラスター担持体を含み、上記金属原子は、周期表における第V族、第VI族、又は第VII族に属する金属原子であり、上記金属原子の夫々は、互いに直接的に結合している。

Description

アンモニア合成用触媒、及びその利用
 本発明は、本発明は、アンモニア合成用触媒、及びその利用に関する。
 窒素原子を固定しそれを利用する技術は、農業分野を含む工業分野においてきわめて重要である。窒素原子の固定は、自然界では、例えば根粒菌による窒素固定などとして知られているが、工業的には、専らハーバーボッシュ法によって行われており、アンモニア合成に利用されている。
D. McKay,Ph. D. Thesis, Glasgow University, 2008. N. Liu et al.,ChemCatChem,2010, 2, pp.167 - 174. N. Bion et al., Applied Catalysis A: General, 2015, 504, p44 - 50. R. Kojima et al., Applied Catalysis A: General, 2001, 219, pp.157 - 170. R. Kojima et al., Applied Catalysis A: General, 2001, 219, pp.141 - 147. Y. Tsuji et al., Chemical Communications, 2016, 52, pp.14369 - 14372. M. Kitano et al., Nature Chemistry, 2012, 4, pp.934 - 940. Y. Inoue et al., ACS Catalysis, 2016, 6, pp.7577 - 7584. M. Kitano et al., Chemical Science, 2016, 7, pp.4036 - 4043. K. Sato et al., Chemical Science, 2017, 8, pp.674 - 679. S. Kamiguchi et al., Metals, 2014, 4, pp.84 - 107. D. Mckay et al., Journal of Solid-State Chemistry, 2008, 181, pp.325 - 333.
 しかしながら、ハーバーボッシュ法は、非常に高温、高圧環境下でなければ効率的に行えない技術である。そのため、より緩和な環境下でアンモニア合成を行う技術が切望されている。
 なお、アンモニア合成の分野においては、Fe以外の遷移金属を用いたアンモニア合成(非特許文献1~6等)の報告もなされているが、工業的な応用のためには、さらなる提案が切望されている。
 高活性を示すアンモニア合成Ru触媒として、Ru金属錯体をエレクトライドやカルシウムアミド等に担持した担持体を用いたアンモニア合成(非特許文献7~10)の報告もなされているが、Ruに比べ希少性が低く空気中における安定性により優れた新規なアンモニア合成用触媒が求められている。
 ハライドクラスターが触媒として用いられることは少なく、2002年以降、担体に担持されていないハライドクラスターを中心に有機合成反応の触媒として用いられているが、アンモニア合成触媒としての有用性は未だ見出されていない(非特許文献11)。
 本発明は上記の課題に鑑みてなされたものであって、比較的緩和な環境下でアンモニアを合成することができ、かつ、空気中において安定に保存することができる新規なアンモニア合成用触媒、及びその関連技術を提供することをその目的とする。
 上記の課題を解決するために、本発明の一態様に係るアンモニア合成用触媒は、核である金属原子を3個以上有する金属クラスターと、上記金属クラスターを担持する担体と、を備えた金属クラスター担持体を含み、上記金属原子は、周期表における第V族、第VI族、又は第VII族に属する金属原子であり、上記金属原子の夫々は、互いに直接的に結合している。
 本発明の一態様によれば比較的緩和な環境下でアンモニアを合成することができ、高い触媒効果を持続させることができる新規なアンモニア合成用触媒を提供することができるという効果を奏する。
本発明の一実施形態に係る、アンモニア合成用触媒、及びアンモニアの合成方法の一例を説明する図である。 本発明の一実施形態に係る、アンモニア合成における触媒活性の持続性の評価結果を示すグラフである。 本発明の一実施形態に係るアンモニア合成用触媒の表面を撮影した透過型電子顕微鏡(TEM)写真である。 本発明の一実施形態に係るアンモニア合成用触媒の表面を撮影したTEM写真である。 本発明の一実施形態に係る、アンモニア合成における触媒活性に対する窒素添加の効果の評価結果を示すグラフである。 本発明の一実施形態に係る、非担持モリブデンクラスターの粉末X線回折(XRD)パターンに対する窒素添加の効果の評価結果を示すグラフである。 本発明の一実施形態に係る、アンモニア合成における触媒活性に対する窒素添加の効果の評価結果を示すグラフである。 本発明の一実施形態に係る、アンモニア合成における触媒活性に対する金属添加の効果の評価結果を示すグラフである。 本発明の一実施形態に係る、アンモニア合成における触媒活性に対する金属添加の効果の評価結果を示すグラフである。
 〔1:アンモニア合成用触媒〕
 本発明に係るアンモニア合成用触媒は、金属クラスターを担体によって担持している金属クラスター担持体を含んでいる。なお、本明細書において「A担持体」又は「Aの担持体」とは、Aと担体とを含む組成物であって、Aが担体によって担持された状態であることを意味する。本明細書において、「担持」の用語は最も広義に解釈される。Aと担体との間に化学結合が形成されていても形成されていなくてもよい。
 〔1.1:金属クラスター〕
 本明細書中において、「金属クラスター」とは、核である金属原子が互いに直接的に結合していることにより形成されるナノクラスター構造を有している金属材料のことをいう。
 このような、金属クラスターは、例えば、担体上で、金属原子間に結合を有する分子性多核金属錯体から配位子を脱離させることにより形成することができる。分子性多核金属錯体から配位子を脱離することによって、分子性多核金属錯体の構造に影響を受けたナノクラスター構造を形成することができる。本発明ではこの方法によりナノクラスターを生成させている。一方、元々金属原子同士が、互いに直接結合を持たない物質を担体に担持させ種々の処理により担体上でナノクラスターを調製する方法も知られているが、そのような方法ではクラスターを調製可能な担体の種類が限られたり、一部の金属原子が金属クラスター化せず単独のまま存在する可能性がある。
 金属クラスターにおける核である金属原子は、分子性多核金属錯体を形成することができることが好ましく、このような観点からは、種々の金属原子を採用することができるが、これらのうち、周期表における第V族、第VI族、又は第VII族に属する遷移金属原子が好ましい。第V族、第VI族、又は第VII族に属する遷移金属原子を用いることによって、高い熱安定性と比較的高い触媒活性とを得ることができる。また、第V族に属する遷移金属原子としては、V(バナジウム原子)、Nb(ニオブ原子)、及びTa(タンタル原子)を挙げることができ、第VI族に属する遷移金属原子としては、Cr(クロム原子)、Mo(モリブデン原子)、及びW(タングステン原子)を挙げることができ、第VII族に属する遷移金属原子としてはRe(レニウム原子)を挙げることができる。これらの金属原子のうち、高い触媒活性を維持することができ、空気中において安定に保存することができる錯体を形成し得るという観点から、Nb、Ta、Mo、及びWがより好ましく、Mo、及びWが最も好ましい。
 なお、金属クラスターを構成する核の数は、金属クラスターを生成するために用いられる分子性多核金属錯体の構造、及び分子性多核金属錯体に含まれる金属原子の数に影響される。ここで、金属クラスターを構成する核の数、つまり、金属原子の数は、3個以上、200個以下、より好ましくは3個以上、20個以下であることが好ましい。金属原子の数が上記の範囲であれば、金属原子のみからなるナノクラスター構造を好適に形成することができる。なお、金属クラスターに含まれる金属原子の数は、当該金属クラスターを形成するために使用される分子性多核金属錯体の種類、及び分子性多核金属錯体を担持する担体の種類に依存する。
 また、これらの金属クラスターにおける核である金属原子は、窒素原子と結合していてもよい。言い換えれば、核である金属原子は、金属窒化物であってもよい。後述するように、窒素を含む金属クラスター構造は、分子性多核金属錯体から配位子を脱離することにより生成した金属クラスターの核を構成する金属原子に窒素原子を添加することにより得ることができる。
 〔1.2:分子性多核金属錯体〕
 一実施形態に係るアンモニア合成用触媒は、分子性多核金属錯体の担持体(分子性多核金属錯体と、担体とを含み、分子性多核金属錯体が担体に担持されている触媒組成物を意味する。)から好適に形成される。このため、一実施形態に係るアンモニア合成用触媒を得るための分子性多核金属錯体の担持体も、本発明の範疇である。なお、「分子性多核金属錯体」とは、単分子内に複数の金属原子の核を有する金属錯体のことをいう。すなわち、「分子性多核金属錯体」とは、核として1つの遷移金属原子を有している「単核」の金属錯体とは区別される。また、「分子性」とは、金属錯体分子を形成していることを意味する。これにより、「分子性金属錯体分子」は、「金属錯体分子」を形成していない「非分子性」である金属酸化物等と区別される。
 分子性多核金属錯体は、例えば、400℃~700℃の温度条件下において、水素を供給することで、分子性多核金属錯体が有している配位子を好適に脱離することができる分子性多核金属錯体であることが好ましい。このような、分子性多核金属錯体には、一例として、以下に示す、式(I)~(VI)の分子性多核金属錯体が挙げられる。
 [M 14 ] ・・・(I)
 (一般式(I)において、Mは、第V族の金属原子であり、好ましくは、Nb原子、又はTa原子を示し、XはCl、又はBrを示し、XはHO、CN(ピリジン)、ROH、又はPR で示され、ここで、Rは、夫々独立して、水素、炭素数1~4のアルキル基、又はアリール基である。)
 [M 12 ]M 4-n ・・・(II)
 (一般式(II)において、nは0、1、又は2であり、Mは、第V族の金属原子であり、好ましくは、Nb原子、又はTa原子を示し、XはCl、又はBrを示し、XはCl、Br、OH、HO、CN、R O、ROH、OCHO、CN(ピリジン)、NCS、R S、又はRCNを示し、ここで、Rは、夫々独立して、水素、炭素数1~4のアルキル基、又はアリール基であり、Mは、アルカリ金属、アルカリ金属を包蔵したクラウンエーテル化合物、アルカリ土類金属、第V族から第VII族以外に属する遷移金属、ピリジニウム、アンモニウム、オキソニウム、ホスホニウム、RO、Cl、又はBrを示し、ここで、アルカリ金属は、Li(リチウム原子)、K(カリウム原子)、Na(ナトリウム原子)、Rb(ルビジウム原子)、又はCs(セシウム原子)であり、アルカリ土類金属は、Mg(マグネシウム原子)、Ca(カルシウム原子)、Sr(ストロンチウム原子)、又はBa(バリウム原子)であり、第V族から第VII族以外に属する遷移金属は、Fe(鉄原子)、Ni(ニッケル原子)、Co(コバルト原子)、Rh(ロジウム原子)、Ir(イリジウム原子)、又はCe(セリウム原子)であり、アンモニウムは、NR で示され、ここで、Rは、夫々独立して、水素、炭素数1~4のアルキル基、又はアリール基であり、ホスホニウムは、N(PPh、又はPR で示され、ここで、Rは、夫々独立して、水素、炭素数1~4のアルキル基、又はアリール基である。)
 [M 12 ] ・・・(III)
 (一般式(III)において、Mは、第VI族の金属原子であり、好ましくはMo原子、又はW原子を示し、XはCl、Br、又はIを示し、Xは、HO、ROH、(CHCO(アセトン)、CN(ピリジン)、CHN(γ-ピコリン)、CN(キノリン)、C(ピラジン)、(CHNCHO(N,N-ジメチルホルムアミド)、(CHSO(ジメチルスルホキシド)、RCN、NR 3、OPR 、又はPR で示され、ここで、Rは、夫々独立して、水素、炭素数1~4のアルキル基、又はアリール基である。)
 [M 6-n 8-n ]M 3-m ・・・(IV)
 (一般式(IV)において、nは0又は1であり、mは1、2、又は3であり、Mは、第VI族の金属原子であり、好ましくはMo原子又はW原子を示し、XはCl、Br、I、又はOCHを示し、Xは、Cl、Br、I、F、PhO、CN、NCS、NCO、RO、RS、又はROCOを示し、ここで、Rは、水素、炭素数1~3のアルキル基、又はアリール基であり、Mは、アルカリ金属、アルカリ金属を包蔵したクラウンエーテル化合物、アルカリ土類金属、第V族から第VII族以外に属する遷移金属、ピリジニウム、ヒドロキシピリジニウム、ピリジルピリジニウム、アンモニウム、グアジニウム、オキソニウム、ホスホニウムを示し、ここで、アルカリ金属は、Li(リチウム原子)、K(カリウム原子)、Na(ナトリウム原子)、Rb(ルビジウム原子)、又はCs(セシウム原子)であり、アルカリ土類金属は、Mg(マグネシウム原子)、Ca(カルシウム原子)、Sr(ストロンチウム原子)、又はBa(バリウム原子)であり、第V族から第VII族以外に属する遷移金属は、Fe(鉄原子)、Ni(ニッケル原子)、Co(コバルト原子)、又はCu(銅原子)であり、アンモニウムは、NR で示され、ここで、Rは、夫々独立して、水素、炭素数1~4のアルキル基、又はアリール基であり、ホスホニウムは、N(PPh、又はPR で示され、ここで、Rは、夫々独立して、水素、炭素数1~4のアルキル基、又はアリール基である。)
 [M ] ・・・(V)
 (一般式(V)において、Mは、第VII族の金属原子であり、好ましくは、Re原子を示し、XはCl、Br,又はIを示し、XはHO、(CHCO(アセトン)、CO(テトラヒドロフラン)、(CHNCHO(N,N-ジメチルホルムアミド)、CHS(O)CH(ジメチルスルホキシド)、NR 、PR 、又はRCNで示され、ここで、Rは、夫々独立して、水素、炭素数1~4のアルキル基、又はアリール基である。)
 [M 12]M  ・・・(VI)
 (一般式(VI)において、Mは、第VII族の金属原子であり、好ましくは、Re原子を示し、XはCl、Br、又はIを示し、Mは、アルカリ金属、アンモニウム、又はホスホニウムを示し、ここで、アルカリ金属は、Li(リチウム原子)、K(カリウム原子)、Na(ナトリウム原子)、Rb(ルビジウム原子)、又はCs(セシウム原子)であり、アンモニウムは、NR で示され、ここで、Rは、夫々独立して、水素、炭素数1~4のアルキル基、又はアリール基であり、ホスホニウムは、PR で示され、ここで、Rは、夫々独立して、水素、炭素数1~4のアルキル基、又はアリール基である。)
 これら、一般式(I)~(VI)に示す、分子性多核金属錯体のうち、最も好ましい分子性多核金属錯体は、X、X及びXがハロゲン原子であるハライドクラスターであり、当該ハライドクラスターが有しているハロゲン原子は、Cl(塩素原子)、Br(臭素原子)、及びI(ヨウ素原子)であることが好ましい。また、ハライドクラスターは、ハロゲン原子のみ、又はハロゲン原子と水とを配位子として有していることがより好ましい。ハライドクラスターは、水素が供給された環境下において加熱することで、好適にハロゲン原子を脱離する。よって、担体の表面に吸着した状態において、首尾よく金属クラスターを形成することができる。
 〔1.3:担体〕
 担体は、分子性多核金属錯体を担持する担体であり、アンモニアの合成時においては、金属クラスターを担持する担体である。担体は、無機材料の多孔質体、又は層状化合物であることが好ましく、より好ましくは無機材料の多孔質体であり、例えば、活性炭、グラファイト、グラフェン、窒化ホウ素、窒化炭素、シリカ(酸化ケイ素)、アルミナ(酸化アルミニウム)、ゼオライト(アルミノケイ酸塩又はナトリウムアルミノケイ酸塩)、水酸化アルミニウムマグネシウム炭酸塩、チタニア(酸化チタン)、チタノケイ酸塩、ジルコニア(酸化ジルコニウム)、ジルコノケイ酸塩、酸化亜鉛、及びセリア(酸化セリウム)などが挙げられる。ゼオライトは、天然由来のゼオライトであってもよく、合成ゼオライトであってもよい。担体は、1種を単独で用いても、2種以上を混合して用いてもよい。以下に説明するいずれの実施形態においても同様である。また、前記クラスターと、後述する金属ないし金属化合物(添加成分)とは、同一種の担体に担持されていてもよいし、それぞれ異なる担体に担持されていてもよい。
 例えば、ゼオライトにおけるSiO/Alは、5~2500であることが好ましい。ゼオライトにおけるSiO/Alが、5~2500であれば、高い触媒活性を備えた金属クラスター担持体を得ることができる。
 なお、これら、分子性多核金属錯体を好適に吸着させるという観点からは、多孔質体は、例えば、シラノール基等に由来するようなOH結合を有していることがより好ましい。このようなOH結合に分子性多核金属錯体を化学吸着させることによって、より好適に金属クラスターを担体上に固定(担持)することができる。
 また、担体が有する多孔質構造における孔径は、0.5nm以上、10nm以下の範囲内であることが好ましく、0.7nm以上、3nm以下の範囲内であることがより好ましい。担体の多孔質構造の孔径が、0.7nm以上、3nm以下の範囲内であれば、高い触媒活性を備えた金属クラスター担体を得ることができる。
 また、別の観点から、担体の比表面積は、10m/g以上、1200m/g以下の範囲内であることが好ましく、30m/g以上、1000m/g以下の範囲内であることがより好ましい。担体の比表面積が、30m/g以上、1000m/g以下の範囲内であれば、高い触媒活性を備えた金属クラスター担体を得ることができる。
 また、担体として使用される無機材料の層状化合物としては、例えば、モンモリロナイト、及びカオリナイトなどのクレイが挙げられる。
 〔1.4:添加成分〕
 本発明のアンモニア合成用触媒は、金属クラスター以外の添加成分を含んでいてもよい。本発明の一実施形態では、担体が、担持すべき分子性多核金属錯体から形成される金属クラスター以外の成分として添加成分を含んでいてもよい。ここで、添加成分には、アルカリ金属、アルカリ土類金属、及び周期表における第V族から第VII族以外に属する遷移金属等を挙げることができ、アルカリ金属には、Li(リチウム原子)、K(カリウム原子)、Na(ナトリウム原子)、Rb(ルビジウム原子)、及びCs(セシウム原子)が挙げられ、アルカリ土類金属には、Mg(マグネシウム原子)、Ca(カルシウム原子)、Sr(ストロンチウム原子)、又はBa(バリウム原子)が挙げられ、遷移金属には、Fe(鉄原子)、Co(コバルト原子)、Ir(イリジウム原子)、Rh(ロジウム原子)、Ni(ニッケル原子)、Cu(銅原子)、及びCe(セリウム原子)が挙げられる。これらの例は、後述するアンモニア合成用触媒前駆体の添加成分についても同様である。すなわち、アルカリ金属、アルカリ土類金属、及び遷移金属は、上述の分子性多核金属錯体に含まれる第V族から第VII族の遷移金属以外の金属原子に由来し得る。
 また、添加成分には、アルカリ金属、アルカリ土類金属、及び遷移金属以外に、窒素が挙げられる。なお、後述するように、窒素は金属クラスターにおいて核を成す金属原子に直接的に結合することにより、金属窒化物として金属クラスター担持体に添加され得る。
 〔1.5:割合〕
 本発明のアンモニア合成用触媒において、各成分の割合については特に制限はないが、金属クラスターの含有量は、0.05重量%~50重量%であり、より好ましくは、0.1重量%~40重量%、0.5重量%~30重量%、又は0.5重量%~25重量%である。前記添加成分を含む態様では、前記添加成分の含有量は、0.5~55重量%、より好ましくは1~40重量%が好ましい。
 〔2:アンモニアの合成方法〕
 図1に示すように、一実施形態に係るアンモニアの合成方法としてハライドクラスターを使用したアンモニアの合成方法の概略を詳細に説明する。
 〔2.1:ハライドクラスター担持体の生成〕
 アンモニアの合成方法では、ハライドクラスターを担体に担持させて、ハライドクラスターの担持体を生成する。ハライドクラスターの担体への担持は、例えば、水や有機溶媒にハライドクラスターを溶解することにより、ハライドクラスター溶液を調製し、当該ハライドクラスター溶液中に、担体を分散、懸濁させることによってハライドクラスターを担体に担持する方法が挙げられる。なお、ハライドクラスターを溶解する有機溶媒は、ハライドクラスターの相溶性によって適宜選択すればよく、例えば、アルコール系溶媒、エステル系溶媒、ケトン系溶媒、エーテル系溶媒、及び炭化水素系溶媒等が挙げられ、アルコール系溶媒には、例えば、メタノール、エタノール、1-プロピルアルコール、及び2-プロピルアルコール等が挙げられ、エステル系溶媒には、例えば、酢酸エチル、及び酢酸2-プロピル等が挙げられ、ケトン系溶媒には、例えば、アセトン、メチルエチルケトン、及びシクロヘキサン等が挙げられ、エーテル系溶媒は、例えば、ジエチルエーテル、テトラヒドロフラン、及びジオキサン等が挙げられ、炭化水素系溶媒は、例えば、ペンタン、ヘキサン、へプタン、シクロペンタン、シクロヘキサン、ベンゼン、及びトルエン等が挙げられる。
 なお、ハライドクラスター溶液は、1重量部のハライドクラスターを500~4000重量部の水、又は有機溶媒によって希釈するようにして調製するとよい。これによって、ハライドクラスターを首尾よく担体に担持させることができる。担体へのハライドクラスターの吸着は、ハライドクラスター溶液を担体に投入し、当該溶液を振盪することにより行う。振盪は、人手によって、若しくは、公知の分散装置、又は撹拌装置によって行うとよい。分散装置には、例えば、超音波洗浄装置が挙げられる。
 なお、ハライドクラスター担持体における、ハライドクラスターの含有量は、ハライドクラスターの種類、及び担体の種類に応じて適宜選択することができるが、ハライドクラスター担持体に対して、0.5重量%以上、25重量%以下の範囲内であることが好ましく、1.0重量%以上、10重量%以下の範囲内であることがより好ましい。なお、ハライドクラスター担持体に対するハライドクラスターの含有量から、金属クラスター担持体における金属クラスターの含有量を求めることができる。
 なお、ハライドクラスターの担持体は、減圧乾燥等によって水や有機溶媒を除去した状態にて保存することが好ましい。このようにして得られたハライドクラスターは、金属原子とハロゲン原子とが強固に結合を形成しているため、担体に担持した状態にて好適に保存することができる。このため、ハライドクラスター担持体は取扱いが容易である。
 〔2.2:金属クラスター担持体の生成〕
 金属クラスター担持体の生成は、一例として、ハライドクラスター担持体に対して水素を連続的に供給する流通反応(水素による活性化反応)にて行う。
 これにより、ハライドクラスター担持体からハロゲン原子を脱離させ、併せて金属原子を還元する。ハライドクラスターから脱離したハロゲン原子は、例えば、塩酸、臭酸等の酸として水素ガスと共に反応系外に排出される。
 このように、ハライドクラスター担持体に水素ガスを供給し、ハライドクラスターからハロゲン原子を脱離することによって、特に、金属クラスターの核を構成する金属原子同士の結合距離を、0.3nm以下、より好ましくは、0.25~0.3nmにすることができる。これにより、互いに近い距離にある複数の金属原子が協同的に働きアンモニアの触媒的生成を首尾よく行うことができる。
 流通反応は公知の装置を用いることによって行うことができるが、酸に対する耐性が高いという観点から、流通反応の反応管には、ステンレス316、インコネル等によって、より好ましくはインコネル等によって形成された耐蝕性の高い反応管を用いることが好ましい。
 水素の供給は、ハライドクラスター担持体を充填した反応管内に水素を流通させることにより行う。流通反応は、反応管内においてハライドクラスター担持体を400℃~700℃の温度で加熱しつつ、水素(水素ガス)と反応させる。ハライドクラスター担持体からハロゲン原子を脱離させるための流通反応は、ハライドクラスター担持体の使用量にもよるが、およそ1~24時間の範囲内において行うとよい。なお、当該流通反応は、ガスの絶対圧力が、0.1~0.2MPaの範囲内において好適に行うことができる。流通反応後に反応管の出口を閉じ、18時間程度おいてもよい。
 このように流通反応を行うことで、ハライドクラスター担持体からハロゲン原子を脱離し、金属クラスター担持体を生成する。この反応によって形成された金属クラスター担持体は、担体の表面に金属原子によって形成される緻密なナノクラスター構造を有している。
 〔2.3:アンモニアの合成〕
 アンモニアの合成は、金属クラスター担持体を生成した反応管内において連続的に行うことができる。具体的には、金属クラスター担持体をアンモニア合成に適した温度条件にて加熱し、反応管内に窒素と水素とを流通させることによってアンモニアを合成する。流通反応は、金属クラスター担持体を、50℃~700℃の温度範囲内に加熱した状態から開始される。
 流通反応では、金属クラスター担持体に水素と窒素とを接触させることにより、連続的にアンモニアを合成する。窒素分子(窒素ガス)及び水素分子(水素ガス)の混合比は、窒素:水素が、1:3~3:1の範囲内であることが好ましい。また、窒素分子(窒素ガス)及び水素分子(水素ガス)の総流量は、例えば、30~500ml/min(25℃、1気圧で換算)であることが好ましく、空間速度(単位触媒重量、単位時間あたりに触媒に接触する気体の体積(25℃、1気圧で換算))は9~150l/h g-catであることが好ましい。
 接触時間(反応時間)は特に限定されないが、例えば、1時間~24時間の範囲内である。
 〔2.4.1:金属添加-ハライドクラスター担持体の生成〕
 一実施形態として、アンモニア合成は、上述の〔1.4:添加成分〕に記載した添加成分のうち金属を添加したハライドクラスター担持体(以下、金属添加-ハライドクラスター担持体とも称する)によって好適に実施することができる。
 金属の添加は、金属化合物(添加化合物)を担体に担持し、真空下、若しくは空気、窒素、又は水素を流通させることで金属化合物からアニオンや配位子を脱離するようにして行われる。ここで、金属化合物における金属は、上述のようにアルカリ金属、アルカリ土類金属、並びに、第V族、第VI族、及び第VII族以外の遷移金属であり、これら金属の硝酸塩、炭酸塩、水酸化物(例えば、Co(OH))、金属酸化物(例えば、Co、Fe,NiO)、フッ化物、塩化物、臭化物、ヨウ化物、塩化金属酸塩、臭化金属酸塩、ヨウ化金属酸塩、カルボニル錯体、アセチルアセトナート錯体(例えば、Co(acac))、アンミン錯体、及び酢酸塩など、並びにこれらの塩及び錯塩の水和物が金属化合物として挙げられる。
 金属化合物を担体に担持する場合、当該金属化合物を水や有機溶媒に溶解することにより、金属化合物の溶液を調製し、当該溶液をハライドクラスター担持する前の担体又はハライドクラスター担持体に加えることにより行う。金属化合物を溶解する有機溶媒は、上記金属化合物の相溶性によって適宜選択すればよく、例えば、アルコール系溶媒、エステル系溶媒、ケトン系溶媒、エーテル系溶媒、及び炭化水素系溶媒等が挙げられ、アルコール系溶媒には、例えば、メタノール、エタノール、1-プロピルアルコール、及び2-プロピルアルコール等が挙げられ、エステル系溶媒には、例えば、酢酸エチル、及び酢酸2-プロピル等が挙げられ、ケトン系溶媒には、例えば、アセトン、メチルエチルケトン、及びシクロヘキサン等が挙げられ、エーテル系溶媒は、例えば、ジエチルエーテル、テトラヒドロフラン、及びジオキサン等が挙げられ、炭化水素系溶媒は、例えば、ペンタン、ヘキサン、へプタン、シクロペンタン、シクロヘキサン、ベンゼン、及びトルエン等が挙げられる。
 金属化合物の溶液は、1重量部の金属化合物を1~200重量部の水又は有機溶媒によって希釈するようにして調製するとよい。これによって、金属化合物を首尾よく担体に添加することができる。
 金属化合物の添加は、一例として、当該金属化合物の溶液に担体を加え、懸濁液を調製し、当該懸濁液を濾過するか、又は当該懸濁液から溶媒を除去することにより行われる。より詳細には、金属化合物の溶液にハライドクラスター担持する前の担体を加え、室温下、人手、又は撹拌装置によって、若しくは35~100℃の加熱条件下、撹拌装置によって撹拌することで懸濁液を調製する。次いで、当該懸濁液から金属化合物を添加した担体を濾過するか、又はそのままの状態で、減圧乾燥等によって残存する水、又は有機溶媒を除去することで、金属化合物を添加した担体(以下、金属化合物添加-担体とも称する)が得られる。
 この金属化合物添加-担体を真空下、若しくは窒素気流下、又は水素気流下で50~700℃で4~30時間加熱すれば金属が添加された担体(以下、金属添加-担体とも称する)が得られる。これにハライドクラスターを担持すれば、金属添加したハライドクラスター担持体(以下、金属添加-ハライドクラスター担持体とも称する)が得られる。次いで、これに水素を供給し活性化すれば、金属添加-金属クラスター担持体が得られ、アンモニア合成触媒として供することができる。
 〔2.4.2:金属化合物添加-ハライドクラスター担持体の生成〕
 別の実施形態では、金属化合物添加-担体を空気気流下にて処理することにより、金属酸化物が添加された担体を形成し、当該担体にハライドクラスターを担持させてもよい。この場合、金属化合物の溶液にハライドクラスター担持する前の担体を加え、室温下、人手、又は撹拌装置によって撹拌を行った後、懸濁液から金属化合物を添加した担体を濾過するか、又はそのままの状態で、減圧乾燥等によって懸濁液から水、又は有機溶媒を除去することにより、金属化合物添加-担体が得られ、これを空気気流下で100~700℃で4~30時間加熱すれば金属酸化物が添加された担体(以下、金属酸化物添加-担体とも称する)が得られる。これにハライドクラスターを担持すれば、金属酸化物添加したハライドクラスター担持体(以下、金属酸化物添加-ハライドクラスター担持体とも称する)が得られる。次いで、これに水素を供給し活性化すれば、添加成分としての金属が添加された金属クラスター担持体である、金属添加-金属クラスター担持体が得られ、アンモニア合成触媒として供することができる。つまり、本実施形態では、担持体において、金属酸化物の酸素の脱離、及びハライドクラスターにおける、配位子の脱離を同時に行う。
 〔2.4.3:ハライドクラスター担持体への金属化合物の添加〕
 また、別の実施形態では、金属化合物の溶液をハライドクラスター担持体に加えてもよい。この場合、室温下、人手、又は撹拌装置によって撹拌を行い、懸濁液を減圧乾燥等によって水、又は有機溶媒を除去すれば、金属化合物を添加したハライドクラスター担持体である、金属化合物添加-ハライドクラスター担持体が得られる。次いで、これに水素を供給し活性化すれば、添加成分としての金属が添加された金属クラスター担持体である、金属添加-金属クラスター担持体が得られ、アンモニア合成触媒として供することができる。つまり、本実施形態では、担持体において、金属化合物の配位子(アニオン)の脱離、及びハライドクラスターにおける、配位子の脱離を同時に行う。次いで、これに水素を供給し活性化すれば、金属添加-金属クラスター担持体が得られ、アンモニア合成触媒として供することができる。
 なお、金属クラスター担持体における添加金属の含有量は、金属化合物の種類、及び担体の種類に応じて適宜選択することができるが、金属クラスター担持体に対して、0.5重量%以上、50重量%以下の範囲内であることが好ましく、1.0重量%以上、20重量%以下の範囲内であることがより好ましい。なお、担持体に対して添加した金属化合物の含有量から、金属クラスター担持体に対して添加した添加金属の含有量を求めることができる。
 アンモニアの合成は、金属添加-金属クラスター担持体を形成した後、上述の〔2.3:アンモニアの合成〕の欄の記載と同様の条件にて行うことができる。
 なお、本発明の触媒(ないし活性化前の触媒前駆体)の調製は、上記2.4.1、2.4.2及び2.4.3に記載の方法に限定されない。金属クラスター(ないしハライドクラスター等の分子性多核金属錯体)、担体、金属ないし金属化合物等の添加成分を添加する順序について特に制限されるものではない。例えば、担体と金属クラスター(ないしハライドクラスター等の分子性多核金属錯体)とを湿式ないし乾式で混合した組成物(必要により加熱等の後処理を施してもよい)と、担体(前記担体と同一でも異なっていてもよい)と添加成分とを湿式ないし乾式で混合した組成物(必要により加熱等の後処理を施してもよい)とを、湿式ないし乾式で混合することによっても調製することができる。
 〔2.5:窒素添加した金属クラスター担持体等によるアンモニア合成〕
 一実施形態として、アンモニア合成は、金属クラスター担持体、及び/又は、金属添加-金属クラスター担持体に対して窒素を添加した後に実施する。
 具体的には、上述の〔2.2:金属クラスター担持体の生成〕の欄に記載の流通反応に準じて、ハライドクラスター担持体、又は金属添加-ハライドクラスター担持体から配位子を脱離した後、得られた金属クラスター担持体、又は金属添加-金属クラスター担持体に対して窒素添加を行う。なお、金属酸化物添加-ハライドクラスター担持体、又は金属化合物添加-ハライドクラスター担持体についても同様の流通反応を行い、金属酸化物、金属化合物、及びハライドクラスター担持体から配位子を脱離し、得られた金属添加-金属クラスター担持体に対して窒素添加を行う。
 窒素添加は、これら金属クラスター担持体、及び/又は金属添加-金属クラスター担持体に0.1~10MPa(絶対圧力)より好ましくは、0.1~1MPaの範囲内の気圧条件、500℃以上、700℃以下の範囲内、より好ましくは、600℃以上、700℃以下の範囲内の温度条件にて、水素と窒素とを接触させる。ここで、窒素分子(窒素ガス)及び水素分子(水素ガス)の混合比は、窒素:水素が、1:3~3:1の範囲内であることが好ましい。また、窒素分子(窒素ガス)及び水素分子(水素ガス)の総流量は、例えば、30~500ml/min(25℃、1気圧で換算)であることが好ましく、空間速度(単位触媒重量、単位時間あたりに触媒に接触する気体の体積(25℃、1気圧で換算))は9~150l/h g-catであることが好ましい。接触時間(反応時間)は特に限定されないが、例えば、1時間~24時間の範囲内である。これにより、金属クラスター担持体、及び/又は、金属添加-金属クラスター担持体に好適に窒素を添加することができる。
 なお、金属クラスターに窒素を添加することによって、金属原子に窒素原子が結合することが確認されている。このことから、金属クラスター担持体に窒素を添加することによって、窒化金属クラスター担持体が形成されていると判断される。なお、金属添加-金属クラスター担持体に窒素を添加した場合、添加金属の種類によっては当該金属成分も窒素が結合し、窒化金属、つまり、添加金属の窒化物を形成し得る。すなわち、金属添加-窒化金属クラスター担持体、又は、窒化金属添加-窒化金属クラスター担持体が形成され得る。なお、添加金属の金属は、上述の〔1.4:添加成分〕に記載の金属の窒化物である。
 その他、ハライドクラスターを担持していない、金属化合物添加-担体に、金属クラスター担持体、及び/又は金属添加-金属クラスター担持体に窒素添加する条件と同様の条件にて窒素添加し、得られた金属窒化物を添加した担体(以下、窒化金属添加-担体とも称する)にハライドクラスターを担持することにより、窒化金属添加-ハライドクラスター担持体を形成しアンモニア合成に供してもよい。この場合、流通反応の条件によっては、金属窒化物が添加された金属クラスター担持体(以下、窒化金属添加-金属クラスター担持体とも称する)によってアンモニア合成がなされる。
 なお、アンモニアの合成は、金属添加-窒化金属クラスター担持体、又は、窒化金属添加-窒化金属クラスター担持体を形成した後、上述の〔2.3:アンモニアの合成〕の欄の記載と同様の条件にて行うことができるが、本実施形態においては、50℃以上、700℃以下の範囲内、より好ましくは、100℃以上、600℃以下の範囲内の温度条件において好適にアンモニアを合成することができる。
 本発明は、活性化前のアンモニア合成用触媒前駆体にも関する。本発明の触媒前駆体は、周期表における第V族、第VI族、又は第VII族に属する金属の分子性多核金属錯体(好ましくはハライドクラスター)と、上記担体とを含む。分子性多核金属錯体の例には、上記一般式(I)~(VI)のいずれかで表される分子性多核金属錯体が含まれる。担体の好ましい例については、上記と同様である。前記触媒前駆体における分子性多核金属錯体の含有量は、0.05重量%~50重量%であり、より好ましくは、0.1重量%~40重量%、0.5重量%~30重量%、又は0.5重量%~25重量%である。
 本発明の触媒前駆体は、加熱等の前処理を行うことで、触媒活性を有する本発明のアンモニア合成用触媒に変換可能である。活性化の一実施形態では、触媒前駆体に水素が供給され、それにより分子性多核金属錯体が、核である金属原子を3個以上有する金属クラスターに変換する。水素の供給は、加熱下で行ってもよい。加熱は200~800℃、より好ましくは300~700℃が好ましい。
 本発明のアンモニア合成用触媒前駆体の一実施形態は、周期表における第V族、第VI族、又は第VII族に属する金属の分子性多核金属錯体(好ましくはハライドクラスター)と、前記分子性多核金属錯体を担持する担体と、さらに、アルカリ金属、アルカリ土類金属、及び周期表における第V族から第VII族以外に属する遷移金属(但し、遷移金属は、分子性多核金属錯体に含まれる第V族から第VII族の遷移金属以外の金属原子である)の金属の群から選択される少なくとも1種、及び/又は、前記金属の群から選ばれる金属の金属化合物からなる群から選ばれる少なくとも1種と、を含む。前記金属化合物の例には、硝酸塩、炭酸塩、水酸化物(例えば、Co(OH))、金属酸化物(例えば、Co、Fe)、フッ化物、塩化物、臭化物、ヨウ化物、塩化金属酸塩、臭化金属酸塩、ヨウ化金属酸塩、カルボニル錯体、アセチルアセトナート錯体(例えば、Co(acac))、アンミン錯体、及び酢酸塩など、並びにこれらの塩及び錯塩の水和物が金属化合物として挙げられる。なお、金属化合物は、担体(上記担体と同一でも異なっていてもよい)に担持された状態で添加されていてもよい。また、前記金属化合物は、単独で及び/又は担持体に担持されることにより、アンモニア合成触媒としての活性を有していてもよい。中でも、Co、及びFeの金属化合物が好ましい。本実施形態における金属化合物の含有量は、0.5~55重量%、より好ましくは1~40重量%が好ましい。
 なお、本明細書中において、金属化合物、及び金属(金属単体)のことを金属源と称することもあり、ここで、金属源が有している金属原子は、例えば、アルカリ金属、アルカリ土類金属、及び周期表における第V族から第VII族以外に属する遷移金属等の金属原子であり得る。また、本明細書中において、単に「金属」と記載している場合、当該「金属」とは「金属単体」のことを意味している。
 また、本発明は、本発明のアンモニア合成用触媒を利用したアンモニア合成装置にも関する。当該合成装置の一例は、少なくとも一部に本発明のアンモニア合成用触媒の層を含む反応管を備える。前記反応管は、本発明のアンモニア合成用触媒を含む層を複数有することも可能である。前記反応管は、H、N等を流通させるためのガス供給管、及び/又は合成されるアンモニアを回収する回収管と連結していてもよい。また、前記アンモニア合成装置は、ガス供給管から供給されるガスを加熱するための加熱器、及び/又は加圧するための加圧器を備えていてもよい。
 <まとめ>
 上記の課題を解決するために、本発明は以下の何れかのものを提供する。
1)核である金属原子を3個以上有する金属クラスターと、上記金属クラスターを担持する担体と、を備えた金属クラスター担持体を含み、上記金属原子は、周期表における第V族、第VI族、又は第VII族に属する金属原子であり、上記金属原子の夫々は、互いに直接的に結合している、アンモニア合成用触媒。
2)上記金属原子は、モリブデン(Mo)、ニオブ(Nb)、タングステン(W)、タンタル(Ta)、及びレニウム(Re)からなる群から選択される1つの金属原子である、1)に記載のアンモニア合成用触媒。
3)上記担体は、無機材料の多孔質体、又は層状化合物であり、上記無機材料は、炭素、窒化ホウ素、窒化炭素、シリカ、アルミナ、アルミノケイ酸塩、ナトリウムアルミノケイ酸塩、水酸化アルミニウムマグネシウム炭酸塩、チタニア、チタノケイ酸塩、ジルコニア、ジルコノケイ酸塩、酸化亜鉛、及びセリアからなる群から選択される少なくとも1つの無機材料である、1)又は2)に記載のアンモニア合成用触媒。
4)さらに添加成分を含んでおり、当該添加成分は、アルカリ金属、アルカリ土類金属、遷移金属、及びこれら金属の窒化物からなる群から選択される少なくとも1つの添加成分であり、当該遷移金属は、鉄(Fe)、コバルト(Co)、ロジウム(Rh)、イリジウム(Ir)、ニッケル(Ni)、銅(Cu)、及びセリウム(Ce)からなる群から選択される少なくとも1つの遷移金属である、1)~3)の何れかに記載のアンモニア合成用触媒。
5)上記金属クラスターが有している上記核である上記金属原子には、窒素原子が結合している、1~4)の何れかに記載のアンモニア合成用触媒。
6)1)~5)の何れかに記載のアンモニア合成用触媒を製造するための、分子性多核金属錯体の担持体。
7)上記分子性多核金属錯体は、ハライドクラスターであって、配位子として、Cl、Br、及びIからなる群から選択される1つのハロゲン原子を有している、6)に記載の分子性多核金属錯体の担持体。
8)核である金属原子を3個以上有する分子性多核金属錯体を担体に担持することで、分子性多核金属錯体の担持体を生成し、上記分子性多核金属錯体の担持体に水素を供給することによって、上記核である上記金属原子を3個以上有する金属クラスター担持体を生成し、上記金属クラスター担持体に水素及び窒素を供給することにより、アンモニアを合成し、上記金属原子は、周期表における第V族、第VI族、又は第VII族に属する金属原子であり、上記金属原子の夫々は、互いに直接的に結合している、アンモニアの合成方法。
9)上記金属原子は、モリブデン(Mo)、ニオブ(Nb)、タングステン(W)、タンタル(Ta)、及びレニウム(Re)からなる群から選択される1つの金属原子である、8)に記載のアンモニアの合成方法。
10)上記担体は、無機材料の多孔質体又は層状化合物であり、上記無機材料は、炭素、窒化ホウ素、窒化炭素、シリカ、アルミナ、アルミノケイ酸塩、ナトリウムアルミノケイ酸塩、水酸化アルミニウムマグネシウム炭酸塩、チタニア、チタノケイ酸塩、ジルコニア、ジルコノケイ酸塩、酸化亜鉛、及びセリアからなる群から選択される少なくとも1つの無機材料である、8)又は9)に記載のアンモニアの合成方法。
11)上記担体は、さらに添加成分を含んでおり、当該添加成分は、アルカリ金属、アルカリ土類金属、遷移金属、及びこれら金属の窒化物からなる群から選択される少なくとも1つの添加成分であり、当該遷移金属は、鉄(Fe)、コバルト(Co)、ロジウム(Rh)、イリジウム(Ir)、ニッケル(Ni)、銅(Cu)、及びセリウム(Ce)からなる群から選択される少なくとも1つの遷移金属である、8)~10)の何れかに記載のアンモニアの合成方法。
12)上記分子性多核金属錯体は、ハライドクラスターであり、配位子として、Cl、Br、及びIからなる群から選択される1つのハロゲン原子を有し、当該ハロゲン原子を上記金属原子から脱離することで、上記金属クラスター担持体を生成する、8)~11)の何れかに記載のアンモニアの合成方法。
13)上記金属クラスター担持体を生成した後、アンモニアを合成する前に、当該金属クラスター担持体に水素及び窒素を供給し、当該金属クラスター担持体における金属クラスターが有している核である金属原子に窒素原子を結合させる、8)~12)の何れかに記載のアンモニアの合成方法。
14)核である金属原子を3個以上有する分子性多核金属錯体と、前記分子性多核金属錯体を担持する担体と、を含み、上記金属原子は、周期表における第V族、第VI族、又は第VII族に属する金属原子である、アンモニア合成用触媒前駆体。
15)さらに、アルカリ金属、アルカリ土類金属、及び周期表における第V族から第VII族以外に属する遷移金属(但し、遷移金属は、分子性多核金属錯体に含まれる第V族から第VII族の遷移金属以外の金属原子である)の金属の群から選択される少なくとも1種の金属、及び/又は、前記金属の群から選ばれる金属の金属化合物からなる群から選ばれる少なくとも1種の金属化合物を含む14)のアンモニア合成用触媒前駆体。
16)前記少なくとも1種の金属、及び/又は前記少なくとも1種の金属化合物が、担体に担持されている15)のアンモニア合成用触媒前駆体。
 <アンモニア合成用触媒の評価>
 〔1:ハライドクラスターの準備〕
 以下に示すように、実施例に使用したハライドクラスターは以下の通りである。
 (1)(HO)[(MoCl)Cl]・6H
 (2)[(NbCl12)Cl(HO)]・4H
 (3)[(TaCl12)Cl(HO)]・4H
 (4)(HO)[(WCl)Cl(HO)]・6H
 実施例に使用したハライドクラスターは、(1)についてはInorganic Synthesis, 1970, 12, p.170に記載された方法に従って合成した。(2)及び(3)についてはInorganic Chemistry, 1974, 13, p.1699に記載された方法に従って合成した。(4)についてはInorganic Chemistry, 1998, 37, p.3660に記載された方法に従って合成した。
 又、ハライドクラスター以外の評価対象として使用した、単核の金属錯体は以下の通りである。
 (1)[(CMe)MoCl
 (2)Mo(NBuAr) (Ar=3,5-C(CH
 (3)MoCl
 〔2:ハライドクラスター担持体の合成〕
 以下に示す手順に沿って、クラスター担持体として、(HO)[(MoCl)Cl]・6HO/HY(Low Si/Al)の合成を行った。
 まず、ハライドクラスターとして(HO)[(MoCl)Cl]・6HOを、40mg秤量し、ハライドクラスターの重量に対して800倍の重量のメタノールを加え、手によって振盪することにより、(HO)[(MoCl)Cl]・6HOをメタノールに溶解した。これにより、(HO)[(MoCl)Cl]・6HOのメタノール溶液を得た。
 続いて、担体としてHY(Low Si/Al)を所定の担持率となるよう秤量し、これに(HO)[(MoCl)Cl]・6HOのメタノール溶液を投入し、室温にて撹拌することによって、(HO)[(MoCl)Cl]・6HOをHY(Low Si/Al)に担持させた。これにより、クラスター担体の懸濁液を得た。
 得られた懸濁液について、減圧条件下、懸濁液からメタノールを留去し、クラスター担持体を乾燥することで、ハライドクラスター担持体の粉末試料を得た。得られた粉末試料を乳鉢により、均一になるようにしてすりつぶした後、大気中で保存した。
 〔2.1:他のハライドクラスター担持体の合成〕
 クラスター及び担体の種類が異なる以外は、上述のハライドクラスター担持体の粉末試料と同様の条件にて、他のクラスター担持体を合成した。なお、各クラスターを担持するために用いた担体は、以下に示す通りである。なお、実施例において、金属が添加されているか否かによらず、ハライドクラスター担持体、及びハライドクラスター担持体から生成した金属クラスター担持体を便宜上、単にクラスター担持体と称することもある。
 (1)HY(Low Si/Al[1]),Zeolite,孔径0.9nm
         [1]SiO/Al=5.6
 (2)HY(High Si/Al[2]),Zeolite,孔径0.9nm
         [2]SiO/Al=810
 (3)MCM-41(SiO2 ,Mesoporous),孔径2.1-2.7nm
 (4)NaY(SiO/Al=5.6),Zeolite,孔径0.9nm
 (5)HZSM5(SiO/Al=90),Zeolite,孔径0.58nm
 (6)C(Mesoporous Graphite),孔径6.4nm
 (7)MgO(非多孔質体)
 (8)SiO-Al(Al=28.61wt%,非多孔質体)
 (9)Montmorillonite(SiO/Al)(層状化合物)
 〔2.1.1:金属酸化物添加-ハライドクラスター担持体の合成〕
 添加成分として、Fe、Co、又はNiを添加した金属酸化物添加-ハライドクラスター担持体を合成した。
 金属酸化物添加-ハライドクラスター担持体の合成は、まず、添加成分を担持させるための添加化合物を担体に担持し、その後、空気流通反応により、担体上において金属を生成することによって金属酸化物添加-担体を得た。続いて、当該金属酸化物添加-担体にハライドクラスターを担持することにより、金属酸化物添加-ハライドクラスター担持体を得た。なお、実施例に使用した金属化合物(添加化合物)は以下の通りである。
 (1)Co(NO・6H
 (2)Fe(NO・6H
 (3)Ni(NO・6H
 まず、一例として、金属化合物(添加化合物)としてCo(NO・6HOを1880mg秤量し、添加化合物に対して2.5倍の重量の水を加え、振盪することにより、Co(NO・6HOを水に溶解した。これにより、Co(NO・6HOの水溶液を得た。
 続いて、担体としてHY(High Si/Al)を所定の含有率となるように秤量し、これにCo(NO・6HOの水溶液を投入し、手によって振盪することによって、Co(NO・6HOをHY(High Si/Al)に添加した。これにより、金属化合物添加-担体の懸濁液を得た。
 60℃前後、減圧条件下、懸濁液から水を留去し、乾燥することで、金属化合物添加-担体の粉末試料を得た。得られた粉末試料を乳鉢により、均一になるようにしてすりつぶした後、大気中で保存した。
 石英ガラス製の反応管に試料Aとして金属化合物添加-担体を充填し、流通系反応装置に取り付けて、以下に示す反応条件にて常圧にて反応を行った。
 空気の流速:100mL/min(25℃、1気圧で換算)
 1回目昇温条件/昇温時間:20℃から110℃まで/90分
           (つまり昇温速度は、1K/分である。)
 1回目保持温度/保持時間:110℃/12時間
 2回目昇温条件/昇温時間:110℃から450℃まで/5時間40分
           (つまり昇温速度は、1K/分である。)
 2回目保持温度/保持時間:450℃/12時間
 これにより、金属化合物添加-担体から、硝酸イオンを脱離し、酸化物を形成することにより、Co(コバルト)酸化物添加-担体を得た。得られたCo酸化物添加-担体を大気中で保存した。なお、担体上のCo酸化物の形成は、粉末X線回折測定(XRD)でCoが検出されたことにより確認された。
 ついで、得られたCo酸化物添加-担体、990mgに対してさらに(HO)[(MoCl)Cl]・6HOを10mg担持した。担持方法は上記ハライドクラスター担持体の合成と同様の手法である。これによりCo(コバルト)酸化物添加-ハライドクラスター担持体を得た後、当該Co酸化物添加-ハライドクラスター担持体を大気中で保存した。
 Fe(NO・6HO、Ni(NO・6HOから金属酸化物添加-ハライドクラスター担持体を得る際も、Co(NO・6HOと同様の方法により合成した。
乾燥条件:
 昇温条件:20℃から80℃まで4K/分の速度で昇温
 保持温度/保持時間:80℃/24時間
 また、Ni(NO・6HOを用いた、Ni酸化物添加-担体の合成では、流通空気を用いた反応の際の反応条件を以下の通りとした。
 空気の流速:110mL/min(25℃、1気圧で換算)
 昇温条件/昇温時間:20℃から500℃まで/1時間
           (つまり昇温速度は、8K/分である。)
 保持温度/保持時間:500℃/4時間
 なお、担体上のFe酸化物、及びNi酸化物の形成は粉末X線回折測定(XRD)により各々Fe、及びNiOが検出されたことにより確認された。
 〔2.1.2:Co(コバルト)化合物添加-ハライドクラスター担持体の合成〕
 添加成分として、Coを添加した金属化合物添加-ハライドクラスター担持体については、以下の方法による合成も行った。実施例に使用した金属化合物は以下の通りである。
 (1)CoCl・6H
 まず、CoCl・6HOを155mg秤量し、ついで、80倍の重量の水を加え、振盪させることによりCoClを水に溶解した。
 ついで、上述の〔2:ハライドクラスター担持体の合成〕の欄に記載の方法で得たハライドクラスター担持体(HO)[(MoCl)Cl]・6HO/HY(High Si/Al)を所定の含有率となるように秤量し、これに(HO)[(MoCl)Cl]・6HO/HY(High Si/Al)を投入し、CoClの水溶液を投入し、室温にて2時間撹拌することによって、金属化合物(CoCl)-ハライドクラスター担持体の懸濁液を得た。
 得られた懸濁液について、減圧条件下、懸濁液からエタノールを留去し、乾燥することで、金属化合物(CoCl)-ハライドクラスター担持体の粉末試料を得た。得られた粉末試料を乳鉢により、均一になるようにしてすりつぶした後、大気中で保存した。
 なお、当該金属化合物(CoCl)-ハライドクラスター担持体については、次の水素流通下での触媒活性化により、Co添加-金属クラスター担持体に変わり、そのままアンモニア合成触媒として利用した。
 〔2.1.3:Cs(セシウム)化合物添加-ハライドクラスター担持体の合成〕
 続いて、Cs(セシウム)化合物添加-ハライドクラスター担持体の合成を行った。実施例に使用した金属化合物は以下の通りである。
 (1)CsCO
 まず、CsCOを8mg秤量し、これに1500倍の重量のエタノールを加え、超音波洗浄装置を用いた超音波振動により振盪させることによりCsCOをエタノールに溶解した。
 ついで、上述の〔2:ハライドクラスター担持体の合成〕の欄に記載の方法で得たハライドクラスター担持体(HO)[(MoCl)Cl]・6HO/HY(High Si/Al)を所定の含有率となるように秤量し、これにCsCOのエタノール溶液を投入し、室温にて2時間撹拌することによって、金属化合物(CsCO)-ハライドクラスター担持体の懸濁液を得た。
 得られた懸濁液について、減圧条件下、懸濁液からエタノールを留去し、乾燥することで、金属化合物(CsCO)-ハライドクラスター担持体の粉末試料を得た。得られた粉末試料を乳鉢により、均一になるようにしてすりつぶした後、大気中で保存した。
 なお、当該金属化合物(CsCO)-ハライドクラスター担持体については、次の水素流通下での触媒活性化により、Cs添加-金属クラスター担持体に変わり、そのままアンモニア合成触媒として利用した。
 〔3:ハライドクラスター担持体を用いたアンモニアの合成〕
 次いで、試料として(HO)[(MoCl)Cl]・6HO/HY(Low Si/Al)を用いてアンモニアの合成を行った。
 〔3.1:流通反応〕
 金属製(ステンレス316製)の反応管に200.0mgのハライドクラスター担持体を充填し、流通系反応装置に取り付けて反応を行った。
 〔3.2:担持体の活性化〕
 一例として、以下に示す活性化条件にて、反応管内に水素(純度99.99999%以上)を流通させ常圧にてクラスター担持体の活性化を行った。
 水素の流速:300mL/min(25℃、1気圧で換算)
 昇温条件/昇温時間:20℃から600℃まで/1時間
           (つまり昇温速度は、9.667K/分である。)
 保持温度/保持時間:600℃/3時間
 〔3.2.1:窒素添加を行う際の担持体の活性化と窒素添加操作〕
 ハライドクラスター担持体、金属添加-ハライドクラスター担持体、又は金属化合物添加-ハライドクラスター担持体を、上述の〔3.1:流通反応〕の欄に記載された方法に準じて、水素を供給することで活性化することで、金属クラスター担持体、又は金属添加-金属クラスター担持体を合成し、その後、得られた金属クラスター担持体、又は金属添加-金属クラスター担持体に対して窒素添加を行った。
 一例として、水素を供給することによる活性化条件は、以下に示す通りである。
 水素の流速:150mL/min(25℃、1気圧で換算)
 昇温条件/昇温時間:20℃から700℃まで/1時間
           (つまり昇温速度は、11.333K/分である。)
 保持温度/保持時間:700℃/1時間
 連続して、金属添加-金属クラスター担持体に対する窒素添加操作を行った。
 以下に示す流通条件にて、水素(99.99999%以上)と窒素(99.99995%以上)とを用い、反応管内の圧力を1MPa(絶対圧力)とし、窒素/水素混合ガス(モル比1/3)を300 mL/min(25℃、1気圧で換算)の流速で90分間流した。
 その後、温度を下降させた後、引き続きアンモニアの合成及びアンモニアの分析を400℃で行った。
 〔3.3:アンモニアの合成〕
 窒素添加操作を行わなかった場合は、〔3.2:担持体の活性化〕の欄に記載の操作を行った後、後述の〔5.1:種類が異なる担体の評価〕における触媒反応の条件に準じ、水素(99.99999%以上)と窒素(99.99995%以上)とを用い、反応管内の圧力を1MPa(絶対圧力)とし、窒素/水素混合ガス(モル比1/3)を60 mL/min(25℃、1気圧で換算)の流速で流し、出口から出てくるアンモニアを含んだガスをトラップ用溶液にバブルさせることにより、アンモニアを捕集した。
 一方、窒素添加操作を行った場合は、〔3.2.1:窒素添加を行う際の担持体の活性化と窒素添加操作〕の欄に記載の操作を行い、次いで、反応温度が400℃に達した後、窒素/水素混合ガス(モル比1/3)の流速を60 mL/min(25℃、1気圧で換算)に下げ、15分経過した後、出口から出てくるアンモニアを含んだガスをトラップ用溶液15にバブルさせることにより、アンモニアを捕集した。
 〔4:アンモニアの分析〕
 合成により得られたアンモニアの分析は、イオンクロマトグラフ法又はインドフェノール法によって行った。
 〔4.1:イオンクロマトグラフ法〕
 アンモニアを捕集するためのトラップ用溶液として、シュウ酸の超純水溶液を用いた。このトラップ用溶液に出口から出てくるアンモニアを含んだガスを捕集し、トラップ用溶液を適宜希釈した後、イオンクロマトグラフ法によってアンモニアの濃度を求めた。
 〔4.2:インドフェノール法〕
 ニトロプルシドナトリウム25.8mg及びフェノール5gをイオン交換水500mLに溶解させた溶液(以後、溶液Aと称す)と、水酸化ナトリウム2.47g及び8%次亜塩素酸水溶液4.2mLをイオン交換水500mLに溶解させた溶液(以後、溶液Bと称す)を調製した。
 まず、トラップ用溶液である溶液Aに出口から出てくるアンモニアを含んだガスをバブルさせ、溶液Bを加え、混合した。混合後、適宜希釈した後、得られた発色液の波長635nmでの吸光度可視紫外分光法により分析しアンモニアの濃度を求めた。
 〔5:各アンモニア合成用触媒の評価〕
 以上の方法に基づき、各クラスター担持体を用い、アンモニアの合成用触媒としての評価を行った。
 〔5.1:種類が異なる担体の評価〕
 以下の表1に、クラスターとして(HO)[(MoCl)Cl]・6HO、を用い、担体の種類を変更してすることによって得た、各クラスター担持体における触媒反応の結果と、クラスターではない単核の分子性金属錯体として、[(CMe)MoCl]を用い、担体としてシリカMCM‐41を用いたクラスター担持体における触媒反応の結果を示す。
 表1に示す触媒反応時における各試料1~7の評価条件は、以下の通りである。
 (水素による触媒活性化条件)
反応管:ステンレス316製
クラスター担持体に対するハライドクラスター含有量:5重量%
クラスター担持体の使用量:10mg
活性化時の水素流量:100mL/min(25℃、1気圧で換算)
活性化時の水素圧:0.1MPa(絶対圧力)
活性化温度:525℃、又は550℃
活性化時間(活性化温度維持時間):15分
 (触媒反応の条件)
/Hの比:1/1
/Hの流量:150/150ml/min(25℃、1気圧で換算)
触媒反応時のガス圧:1.0MPa(絶対圧力)
反応温度:400℃
トラップにはインドフェノール法を用いた。例えば、反応開始1時間後の活性を調べる際には1時間後前後3~5分間、反応管に接続された出口から出てくるアンモニアを含んだガスをバブルさせた。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、試料1~3と、試料6との比較から、担体は、多孔質体であることが好ましいことを確認した。なお、炭素の多孔質体を用いた試料4においても、触媒活性(TOF)が高いことを確認した。
 一方、クラスターではない単核のハライド錯体を担持した試料7では、触媒活性がほとんどなかったことから、クラスター構造が高い活性に必須であることが示された。
 〔5.2:触媒活性の持続性評価〕
 上記表1に示す、試料1、4及び5について、触媒反応の持続性を評価した。評価結果は、図2に示すグラフの通りである。
 図2に示すように、試料1、4及び5の夫々において、触媒反応の開始直後から、高い触媒活性が少なくとも24時間持続することを確認した。特にゼオライトHY(Low Si/Al)を使用した試料1は高い触媒活性が維持されており、図2のグラフに示す24時間の評価において、1mol当たりのモリブデン原子から、およそ100mol程度のアンモニアが合成された。
 試料1及び試料5について、クラスターを担体に担持した後、触媒活性化の直後、24時間の触媒反応終了後における、クラスター担持体の透過型電子顕微鏡(TEM)写真を、図3に示す。
 図3の各TEM写真に示されているように、試料1及び試料5は、クラスターを担体に担持した後から、触媒反応の終了後まで、クラスター担持体のナノクラスター構造が保持されていることを確認した。特に図2のグラフにおいて高い触媒活性を示している試料1のクラスター担持体は、試料5のクラスター担持体よりも、より緻密なナノクラスター構造を備えていることを確認した。
 なお、試料1に使用した担体であるゼオライトHY(Low Si/Al)は、多孔質構造の孔径が、0.9nmであり、試料5に使用した担体であるMCM-41は、多孔質構造の孔径が、2.1~2.7nmであった。これら、試料1及び5の結果から、nmオーダーの孔径を有する担体を用いることによって高い触媒活性を得ることができることを確認した。
 〔5.3:担持体における担体の含有量の評価〕
 以下の表2に、クラスターとして(HO)[(MoCl)Cl]・6HOを用い、夫々、担体としてHY(High Si/Al)の含有量を変更してクラスター担持体を合成し、各クラスター担持体における触媒活性の変化を評価した。
 表2に示す触媒反応の評価時における各クラスター担持体の触媒活性化及び触媒反応の条件は、以下の通りである。
 (水素による触媒活性化条件)
反応管:インコネル製
クラスター担持体の使用量:200mg
活性化時の水素流量:300mL/min(25℃、1気圧で換算)
活性化時の水素圧:0.1MPa(絶対圧力)
活性化時間(活性化温度維持時間):3時間
 (触媒反応の条件)
/Hの比:1/3
/Hの総流量:60ml/min(25℃、1気圧で換算)
触媒反応時のガス圧:1.0MPa(絶対圧力)
反応温度:400℃
トラップにはイオンクロマトグラフ法を用いた。出口から出てくるアンモニアを含んだガスを反応開始直後から4時間後まで連続してバブルさせ続けた。
 なお、表2中、試料15及び16については、触媒活性化に先立ち、石英管中において水素流量:100ml/min(25℃、1気圧で換算)、水素圧:0.1MPa(絶対圧力)、時間:30分の条件にて予備的に触媒活性化を行い、グローブボックス中おいて、試料を石英管から、反応管に詰め替えた後、他の試料11~14と同じ条件に触媒活性化、及び触媒反応を行った。これにより、過剰なHClが反応管の内部に発生することを回避した。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、試料11及び試料15の比較、並びに、試料12、13、又は14と試料16の比較から、クラスターを単独で使用するよりも、担体に担持して触媒反応を行うことによって、高い触媒活性を得ることができることを確認した。また、クラスターの配合量が、1.0重量%~10.0重量%において高い触媒活性を得ることができることを確認した。
 試料12及び試料13について、クラスターを担体に担持した後、触媒活性化の直後、4時間の触媒反応終了後における、クラスター担持体の透過型電子顕微鏡(TEM)写真を、図4に示す。
 図4のTEM写真に示されているように、試料13では担体に担持した後から、触媒反応の終了後まで、クラスター担持体が有しているナノクラスター構造が維持されていることを確認した。一方、試料12では担体に担持した後から、触媒反応の終了後まで、クラスター担持体のナノクラスター構造が維持されていることを、TEM写真からは確認できなかった。しかしながら、広域X線吸収微細構造(EXAFS)の測定から試料12及び13ともMo-Mo結合の存在が確認され、その距離が0.284nm以下であったことからクラスター担持体のナノクラスター構造の維持が確認できた。表2において高い触媒活性を示している(つまり、高いTOFを示している)試料12のクラスター担持体は、より緻密なナノクラスター構造を備えていることを確認した。
 試料12及び試料13について、クラスターを担体に担持した後、触媒活性化の直後、4時間の触媒反応終了後における、クラスター担持体の元素分析の結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 試料12、及び試料13とも、活性化後、反応後では塩素がほとんど含有されていないことを確認した。これにより水素流通による活性化により、ハライドクラスター担持体から塩素配位子を好適に脱離させたことを確認した。
 〔5.4:触媒活性化条件、及び触媒反応の条件の評価〕
 続いて、クラスター担持体の使用量、触媒活性化時の温度、及び触媒反応時の温度等を変化させ、触媒活性の評価を行った。
 表4に示す触媒反応の評価時における各クラスター担持体の触媒活性化の条件は、以下の通りである。
 (水素による触媒活性化条件)
反応管1:インコネル製
クラスター担持体に対するハライドクラスター含有量:1重量%
クラスター担持体の使用量:200mg
活性化時の水素流量:300mL/min(25℃、1気圧で換算)
活性化時の水素圧:0.1MPa(絶対圧力)
活性化時間(活性化温度維持時間):3時間
 (触媒反応の条件)
/Hの比:1/3
触媒反応時のガス圧:1MPa(絶対圧力)
トラップにはイオンクロマトグラフ法を用いた。出口から出てくるアンモニアを含んだガスを反応開始直後から4時間後まで連続してバブルさせ続けた。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、試料17~21の評価では、300℃~400℃という低い触媒反応の温度条件下において触媒活性を示すことを確認した。試料21では、空間速度を速くすることによって、触媒活性を得ることができることを確認した。また、試料22では触媒反応を常圧で行っても、触媒活性を得ることができることを確認した。なお、試料21及び22は、触媒反応を4時間行っている。このため、試料21及び22において、TON(Turnover Number)=TOF×反応時間)は1を超えている。これらのことからも、試料21及び22は、300℃でも又は常圧でも触媒活性を有していると判断される。なお、試料19と試料22Aの比較から、層状化合物の担体を用いた場合も、触媒活性を得ることができ、多孔質体を担体として用いた場合、より高い触媒活性を得ることができることを確認した。
 〔5.5:クラスターの種類の検討〕
 続いて、担体として、HY(High Si/Al)を使用し、各ハライドクラスターにおける触媒活性の評価を行った。
 表5に示す触媒反応の評価時における各クラスター担持体の触媒活性化及び触媒反応の条件は、以下の通りである。
 (水素による触媒活性化条件)
反応管1:インコネル製
クラスター担持体に対するハライドクラスター含有量:1重量%
クラスター担持体の使用量:200mg
活性化時の水素流量:300mL/min(25℃、1気圧で換算)
活性化時の水素圧:0.1MPa(絶対圧力)
活性化温度:600℃
活性化時間(活性化温度維持時間):3時間
 (触媒反応の条件)
/Hの比:1/3
/Hの総流量:60ml/min(25℃、1気圧で換算)
触媒反応時のガス圧:1MPa(絶対圧力)
トラップにはイオンクロマトグラフ法を用いた。出口から出てくるアンモニアを含んだガスを反応開始直後から4時間後まで連続してバブルさせ続けた。
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、試料23及び試料24の比較、並びに、試料26及び試料27の比較から、Nb又はTaを核とするハライドクラスター担持体は、触媒反応における温度が600℃の条件において触媒活性を示すことを確認した。また、Wを核とするハライドクラスター担持体は、触媒反応の温度が、400℃であっても、触媒活性を示すことを確認した。なお、表5中に示す試料23~28は、触媒反応を4時間行っている。このため、試料24、27、及び28において、TON(Turnover Number)=TOF×反応時間)は1を超えている。これらのことからも、Nb、Ta、及びWは、触媒活性を有していると判断される。
 〔5.6:他の触媒との比較〕
 続いて、他の触媒として、モリブデン酸化物、及び他の金属を用いた触媒等についても、触媒活性の比較を行った。
 表6に示す触媒反応の評価時における各クラスター担持体の触媒活性化及び触媒反応の条件は、以下の通りである。
・試料29~31の評価条件
 (水素による触媒活性化条件)
反応管:インコネル製
クラスター担持体に対するハライドクラスター含有量:1重量%
クラスター担持体の使用量:200mg
活性化時の水素流量:300mL/min(25℃、1気圧で換算)
活性化時の水素圧:0.1MPa(絶対圧力)
活性化温度:600℃
活性化時間(活性化温度維持時間):3時間
 (触媒反応の条件)
/Hの比:1/3
/Hの総流量:60ml/min(25℃、1気圧で換算)
触媒反応時のガス圧:1MPa(絶対圧力)
反応温度:400℃
トラップにはイオンクロマトグラフ法を用いた。出口から出てくるアンモニアを含んだガスを反応開始直後から4時間後まで連続してバブルさせ続けた。
Figure JPOXMLDOC01-appb-T000006
 また、表6中、試料33~35は、文献から引用したデータである。各文献は、以下に示す通りである。試料35aの結果は、ref.2に記載の方法に沿って、本発明者らが、実際に触媒反応実験を行った結果である。
ref.1: Applied Catalysis A: General,2001, 219, pp.141 - 147.
ref.2: ChemCatChem.,2010, 2, pp.167 - 174
 試料29と比較して、分子性の単核ハライド錯体を使用した試料30では触媒活性が低い結果となった。また、試料31で使用した有機アミンを配位子として有する分子性の単核錯体は、担体に担持していない状態において、常圧氷点下の溶液中で窒素分子を切断する物質として知られている(Ref. Science, 1995, 268, pp.861 - 863)。しかしながら、試料31に使用した錯体の担持体の触媒活性は低い結果となった。なお、試料30及び31の錯体は、空気中において不安定である。また、試料29と比較して、非分子性の酸化モリブデン(無担持)を前駆体とする試料33~34では、触媒活性化に高い温度と水素以外のガスを必要とするにもかかわらず、触媒活性(TOF)が低い結果となった。また、本発明の実施例である試料29は、触媒活性化温度を低温(600℃)で実施したにも関わらず、より高温(700℃)で触媒活性化を実施した酸化モリブデンをHZSM5に担持した比較例の試料35と比較して、高い触媒活性を示した。しかも、試料29では、試料35が酸素、アンモニア及び窒素による処理を必要としたのに対して、水素による処理のみで十分に触媒活性化を達成した。なお、試料35については、本発明者らの実験でも再現性を確認した(上記表の試料35aの結果参照のこと)。また、酸化モリブデンをHYに担持した試料32について試料29と同一条件下で反応を行った結果、試料29に比べ活性は低かった。つまり、ハライドクラスターを使用することによって、金属酸化物を用いるよりも、穏やかな条件にて触媒活性化を達成することを確認した。
 これらのことから、ハライドクラスターをアンモニア合成用触媒として活用することで、比較的低温条件にて触媒活性化することができ、良好な触媒活性を得ることができることを確認した。なお、このようなハライドクラスターを担持した担持体は、空気中にて安定に保存することができる。
 〔6:窒素添加による効果の評価〕
 〔6.1:クラスター担持体への窒素添加による効果の確認〕
 添加成分として金属を含んでいないハライドクラスター担持体に窒素添加を行い、窒化金属クラスター担持体を合成し、その効果を評価した。
 図5に、ハライドクラスター担持体として(HO)[(MoCl)Cl]・6HO/HY(Low Si/Al)を用い、700℃での窒素添加操作後、引き続き400℃での窒素/水素混合ガスによるアンモニア合成を行った場合(試料36)、700℃での窒素添加操作後、引き続き400℃での反応をアルゴン/水素混合ガスにより行った場合(試料37)、700℃での窒素添加操作を行わずに400℃での窒素/水素混合ガスによるアンモニア合成を行った場合(試料38)の触媒活性の時間変化を評価した。
 図5に示す触媒反応の評価時における各クラスター担持体の触媒活性化及び触媒反応の条件は、以下の通りである。
 (水素による触媒活性化条件)
反応管:ステンレス316製
クラスター担持体に対するハライドクラスター含有量:1重量%
クラスター担持体の使用量:200mg
クラスター担持体の活性化:525℃
活性化時の水素流量:100ml/min(25℃、1気圧で換算)
活性化時の水素圧:0.1MPa(絶対圧力)
活性化時間(活性化温度維持時間):60分
その後、30分間かけて700℃まで温度を上昇させた。
 (窒素添加条件)
/Hの比:1/3
/Hの総流量:300ml/min.(25℃、1気圧で換算)
ガス圧:1 MPa(絶対圧力)
温度:700℃
時間:90分
 (触媒反応の条件)
/H(又はAr/H)の比:1/3
/H(又はAr/H)の総流量:60ml/min.(25℃、1気圧で換算)
ガス圧:1 MPa(絶対圧力)
温度:400℃
トラップにはイオンクロマトグラフ法を用いた。出口から出てくるアンモニアを含んだガスを反応開始直後から4時間後まで連続してバブルさせ続けた。
 図5に示すように、窒素添加操作後400℃で窒素/水素混合ガスによる反応を行った場合(試料36)、窒素添加操作後400℃でアルゴン/水素混合ガスによる反応を行った場合(試料37)に比べ、アンモニアの収量がはるかに多いことから、試料36において400℃で窒素/水素混合ガスによる反応の際に生成するアンモニアの窒素のほとんどは400℃で供給された窒素に由来することを確認した。
 また、図5に示すように、窒素添加操作を行わずに400℃での窒素/水素混合ガスによるアンモニア合成を行った場合(試料38)では、窒素添加操作後400℃で窒素/水素混合ガスによる反応を行った場合(試料36)に比べ、アンモニアの収量が少ないことから、窒素添加操作により触媒活性種が変化したことが示唆された。
 次に種々の触媒について、窒素添加操作による触媒活性の変化を評価した。
 表7に示す触媒反応の評価時における各クラスター担持体の触媒活性化、窒素添加操作、及び触媒反応の条件は、以下の通りである。
 (水素による触媒活性化条件)
反応管:ステンレス316製
クラスター担持体に対するハライドクラスター含有量:1重量%
クラスター担持体の使用量:200mg
クラスター担持体の活性化:525℃
活性化時の水素流量:100ml/min(25℃、1気圧で換算)
活性化時の水素圧:0.1MPa(絶対圧力)
活性化時間(活性化温度維持時間):60分
その後、30分間かけて700℃まで温度を上昇させた。
 (窒素添加条件)
/Hの比:1/3
/Hの流量:300ml/min.(25℃、1気圧で換算)
ガス圧:1 MPa(絶対圧力)
温度:700℃
時間:90分
 (触媒反応の条件)
/Hの比:1/3
/Hの流量:60ml/min.(25℃、1気圧で換算)
ガス圧:1 MPa(絶対圧力)
温度:400℃
トラップにはイオンクロマトグラフ法を用いた。出口から出てくるアンモニアを含んだガスを反応開始直後から4時間後まで連続してバブルさせ続けた。
Figure JPOXMLDOC01-appb-T000007
 試料39に比べ試料40の方が、試料41に比べ試料42の方が、また試料43に比べ試料44の方が高い触媒活性を示すことを確認した。担体の違いによらず窒素添加操作を行った方が、触媒活性が高くなることを確認した。
 〔6.2:窒素添加-クラスターのX線回析〕
 図6に、担体に担持していないハライドクラスター(HO)[(MoCl)Cl]・6HO/を用い、525℃で水素流通により活性化した後、400℃(試料45)、600℃(試料46)、又は700℃(試料47)で窒素添加操作した試料の粉末X線回折パターン(XRD)の結果を評価した。
 図6に示す評価時における非担持クラスターの触媒活性化及び窒素添加の条件は、以下の通りである。
 (水素による触媒活性化条件)
反応管:ステンレス316製
非担持クラスターの使用量:120mg
活性化時の水素流量:150ml/min(25℃、1気圧で換算)
活性化時の水素圧:0.1MPa(絶対圧力)
活性化温度:700℃
活性化時間(活性化温度維持時間):60分
 (窒素添加の条件)
/Hの比:1/3
/Hの総流量:60ml/min.(25℃、1気圧で換算)
ガス圧:1.0 MPa(絶対圧力)
温度:400℃(試料45)、600℃(試料46)、又は700℃(試料47)
時間:60分
 なお、試料45、46及び47いずれについても、触媒活性化に先立ち、石英管中においてH流量:120ml/min(25℃、1気圧で換算)、ガス圧:0.1MPa(絶対圧力)、時間:60minの条件にて予備的に触媒活性化を行い、グローブボックス中おいて、試料を石英管から、反応管に詰め替えた後、触媒活性化、及び窒素添加操作を行った。これにより、過剰なHClが反応管の内部に発生することを回避した。
 図6に示すように、試料46及び試料47ではγ―MoNと同じXRDパターンが観測された。このことから、担体に担持していない状態において、ハライドクラスターは水素による活性化後、600℃以上で窒素/水素混合ガスとの反応により、窒素が金属に添加されて結合することを確認した。
 一方、図6に示すように、試料45ではMoバルク金属と同じXRDパターンが観測された。非担持ハライドクラスターを水素により活性化後、400℃で窒素/水素混合ガスを流通させても窒素は添加されないことを確認した。
 これらのことから、クラスター担持体の場合において、水素による活性化後、400℃で窒素/水素混合ガスを流通させても(すなわちアンモニア合成反応操作を行っても)、金属クラスター担持体への窒素添加は起こらないが、600℃以上で窒素/水素混合ガスを流通させると、金属クラスター担持体に対して窒素が添加されるものと推察される。すなわち、600℃以上で窒素添加操作により窒素添加-金属クラスター担持体が生成し、これが高い触媒活性を示していると推察される。
 〔6.3:金属添加-クラスター担持体への窒素添加による効果の確認(1)〕
 表6に、コバルト酸化物を添加したハライドクラスター担持体として(HO)[(MoCl)Cl]・6HO/Co/HY(High Si/Al)を用い、600℃、又は700℃での窒素添加操作による400℃での触媒反応への効果を評価した。
 表8に示す触媒反応の評価時における各クラスター担持体の触媒活性化、窒素添加操作、及び触媒反応の条件は、以下の通りである。
 (水素による触媒活性化条件)
反応管:ステンレス316製
コバルト酸化物添加ハライドクラスター担持体に対するハライドクラスター含有量:1重量%
コバルト酸化物添加ハライドクラスター担持体に対するコバルト含有量:14重量%
クラスター担持体の使用量:200mg
活性化時の水素流量:300ml/min(25℃、1気圧で換算)
活性化時のガス圧:0.1MPa(絶対圧力)
活性化温度:600℃又は700℃
活性化時間(活性化温度維持時間):60分
 (窒素添加条件)
/Hの比:1/3
/Hの総流量:300ml/min.(25℃、1気圧で換算)
ガス圧:1.0 MPa(絶対圧力)
温度:700℃
時間:2時間
 (触媒反応の条件)
/Hの比:1/3
/Hの総流量:60ml/min(25℃、1気圧で換算)
ガス圧:1.0 MPa(絶対圧力)
温度400℃
トラップにはイオンクロマトグラフ法を用いた。出口から出てくるアンモニアを含んだガスを反応開始直後から4時間後まで連続してバブルさせ続けた。
Figure JPOXMLDOC01-appb-T000008
 表8に示すように、窒素添加操作後400℃で窒素/水素混合ガスによる反応を行った場合(試料48)、窒素添加操作後400℃で水素ガスのみによる反応を行った場合(試料49)に比べ、アンモニアの収量がはるかに多いことから、試料48において400℃で窒素/水素混合ガスによる反応の際に生成するアンモニアの窒素のほとんどは400℃で供給された窒素に由来することを確認した。
 表8に示すように、窒素添加操作を行わずに400℃での窒素/水素混合ガスによるアンモニア合成を行った場合(試料50)では、窒素添加操作後400℃で窒素/水素混合ガスによる反応を行った場合(試料48)に比べ、アンモニアの収量が少ないことを確認した。このことから、コバルト添加-クラスター担持体についても、窒素添加操作により触媒活性種が変化しているものと推察される。
 また、表8に示すように、水素供給による活性化、及び窒素添加操作を700℃で行うと(試料51)、アンモニアの収量が増加することが確認された。
 表8に示すように、コバルトを添加していないクラスター担持体(試料52)やクラスターを担持していないコバルト添加-担体のみ(試料53)に比べ、コバルト添加-クラスター担持体(試料51)では、アンモニアの収量が高いことが確認された。これにより、金属クラスターとコバルトとの協同効果により触媒活性が向上することを確認した。
 非特許文献4には、コバルト-モリブデンを含むアンモニア合成触媒としてCoMoN及びCs-CoMoNが開示されているが、担体には担持されていない非担持触媒であり、コバルト添加-ハライドクラスター担持体とは形態が異なる。また、CoMoN及びCs-CoMoNについて、表6と同一のアンモニア合成反応条件で反応を行った場合、TOF(h-1, per Mo - atom)は各々0.64、及び1.47であり、試料48や51はこれらの値よりもはるかに高いことを確認し、モリブデン原子あたりのアンモニア合成効率が高い触媒であることを確認した。
 〔6.4:金属添加-クラスター担持体への窒素添加による効果の確認(2)〕
 コバルト酸化物添加-ハライドクラスター担持体として(HO)[(MoCl)Cl]・6HO/Co/HY(High Si/Al)を用い、700℃にて窒素添加操作を行い、その後、200℃での窒素/水素混合ガスによるアンモニア合成を行った(試料54)。また、再現性の確認のため試料55として、試料54と全く同じ操作過程を経てアンモニア合成を行った。また、700℃での窒素添加操作後、200℃での反応をアルゴン/水素混合ガスにより行った(試料56)。これら、試料54~56の触媒活性の時間変化を評価した。結果を図7のグラフに示す。
 図7に示す触媒反応の評価時における各クラスター担持体の触媒活性化、窒素添加操作、及び触媒反応の条件は、以下の通りである。
 (水素による触媒活性化条件)
反応管:ステンレス316製
コバルト酸化物添加-クラスター担持体に対するハライドクラスター含有量:1重量%
コバルト酸化物添加-クラスター担持体に対するコバルト含有量:14重量%
クラスター担持体の使用量:100mg
活性化時の水素流量:150ml/min(25℃、1気圧で換算)
活性化時の水素圧:0.1MPa(絶対圧力)
活性化温度:700℃
活性化時間(活性化温度維持時間):60分
 (窒素添加条件)
/Hの比:1/3
/Hの総流量:500ml/min.(25℃、1気圧で換算)
ガス圧:1.0 MPa(絶対圧力)
温度:700℃
時間:60分     
 (触媒反応の条件)
/H(又はAr/H)の比:1/3
/H(又はAr/H)の流量:500ml/min(25℃、1気圧で換算)
ガス圧:1.0 MPa(絶対圧力)
温度:200℃
トラップにはイオンクロマトグラフ法を用いた。出口から出てくるアンモニアを含んだガスを反応開始直後から4時間後まで連続してバブルさせ続けた。
 図7に示すように、試料54ではアンモニアが生成したことを確認した。反応開始6時間後から40時間後までTONが直線的に増加したことから、アンモニアは持続的に失活することなく生成したことを確認した。また、試料55でも試料54とほぼ同じ速度でアンモニアが生成したことから、試料54、55におけるアンモニアの生成は再現性があることを確認した。
 また、図7に示すように、試料54では、窒素添加操作後、200℃でアルゴン/水素ガスのみによる反応を行った場合(試料56)に比べアンモニアの収量が多いことから、試料54において200℃で窒素/水素混合ガスによる反応の際に生成するアンモニアの窒素の大半は200℃で供給された窒素に由来することを確認した。また、反応開始40時間後における試料54と試料56のTONの差は1を超えていることを確認した。すなわち、試料54において200℃におけるアンモニアの生成は触媒的に進んだことを確認した。
 非特許文献6には、コバルト-モリブデン担持体を含むアンモニア合成触媒として、ナトリウムナフタレニド還元型コバルト-モリブデンセリア担持体が報告されている。しかしながら、分子性単核錯体であるMoClから合成されており、取り扱いが不活性ガス雰囲気下で行われている。なお、非特許文献6には、この触媒が200℃でアンモニアを合成したとの報告はない。
 〔6.5:添加金属が異なるハライドクラスター担持体への窒素添加の評価〕
 図8に、種類の異なる添加成分として、Fe、Ni、又はCsを添加したハライドクラスター担持体の評価を行った。また、CoClから得られたCo添加-ハライドクラスター担持体の評価も行った。評価に使用した、金属酸化物添加-ハライドクラスター担持体、又は金属化合物添加-ハライドクラスター担持体は、以下に示す通りである。
試料57:(HO)[(MoCl)Cl]・6HO/Fe/HY(High Si/Al)
試料58:(HO)[(MoCl)Cl]・6HO/NiO/HY(High Si/Al)
試料59:(HO)[(MoCl)Cl]・6HO/CsCO/HY(High Si/Al)
試料60:(HO)[(MoCl)Cl]・6HO/CoCl・6HO/HY(High Si/Al)
 試料57~60の評価では、700℃での窒素添加操作した後、引き続き200℃で窒素/水素混合ガスによるアンモニア合成を行い、触媒活性の時間変化を評価した。比較のため、金属を添加していないハライドクラスター担持体として(HO)[(MoCl)Cl]・6HO/HY(High Si/Al)(試料61)についても同様の評価を行った。
 図8に示す触媒反応の評価時における各クラスター担持体の触媒活性化、窒素添加操作、及び触媒反応の条件は、以下の通りである。
 (水素による触媒活性化条件)
反応管:ステンレス316製
鉄酸化物添加-クラスター担持体(試料57)に対するハライドクラスター含有量:1重量%
鉄酸化物添加-クラスター担持体(試料57)に対する鉄含有量:14重量%
ニッケル酸化物添加-クラスター担持体(試料58)に対するハライドクラスター含有量:1重量%
ニッケル酸化物添加-クラスター担持体(試料58)に対するニッケル含有量:14重量%
炭酸セシウム添加-クラスター担持体(試料59)に対するハライドクラスター含有量:1重量%
炭酸セシウム添加クラスター担持体(試料59)に対するセシウム含有量:2.5重量%
塩化コバルト添加-クラスター担持体(試料60)に対するハライドクラスター含有量:1重量%
塩化コバルト添加クラスター担持体(試料60)に対するコバルト含有量:14重量%
クラスター担持体の使用量:100mg
活性化時の水素流量:150ml/min(25℃、1気圧で換算)
活性化時の水素圧:0.1MPa(絶対圧力)
活性化温度:700℃
活性化時間(活性化温度維持時間):60分
 (窒素添加条件)
/Hの比:1/3,N/Hの総流量:500ml/min(25℃、1気圧で換算)
ガス圧:1.0 MPa(絶対圧力)
温度:200℃
時間:1時間
 (触媒反応の条件)
/Hの比:1/3,N/Hの総流量:500ml/min(25℃、1気圧で換算)(だだし、試料58のみ240ml/min(25℃、1気圧で換算))
ガス圧:1.0 MPa(絶対圧力)
温度:200℃
トラップにはイオンクロマトグラフ法を用いた。出口から出てくるアンモニアを含んだガスを反応開始直後から4時間後まで連続してバブルさせ続けた。
 図8に示すように、試料57、58、59、60ともアンモニアが生成したことを確認した。また、これらの試料におけるアンモニア生成量は試料61に比べ多いことを確認した。すなわち、金属添加によりアンモニア生成に対する触媒活性が向上することを確認した。試料60の結果からはコバルトを塩化物として添加した場合でもアンモニア生成に対する触媒活性が向上することを確認した。
 鉄-モリブデンやニッケル-モリブデンから構成され、アンモニアを合成する担持触媒については報告例がない。一方、非担持触媒については非特許文献12に開示されているが、非分子性の複合酸化物から合成されており、モリブデン原子1個あたりの活性は非常に低い。また、200℃でアンモニアを合成したとの報告はない。
 200℃あるいはそれ以下の温度で、窒素と水素からアンモニアを触媒的に合成する触媒として報告されている例は少なく、例えば、非特許文献7や非特許文献8で報告されているルテニウム触媒があるが、これらは空気中不安定である。
 [試料100~105のTOF評価]
 触媒前駆体試料100~105を、それぞれ以下の組成で、上記実施例と同様にして調製し、それぞれについてアンモニア合成におけるTOFを測定した。具体的には、各試料の200mg(例えば、試料101では、(HO)[(MoCl)Cl]・6HO+Co+HYの合計重量を200mgとした。他の試料についても同様である。)をそれぞれ、反応管(インコネル製)に充填し、当該反応管中に、水素ガスを供給して活性化(活性化条件は、H 300mL/h、600℃、1atm、3h)させた。その後、反応管にNガス及びHガスをそれぞれ15mL/h及び45mL/hの割合で、所定の条件(400℃、10atm)で供給し、触媒反応を進行させた。生成したアンモニアガスの量からTOFを算出した。結果を下記表9に示す。
Figure JPOXMLDOC01-appb-T000009
 上記表9に示した通り、触媒前駆体に、金属化合物、特にコバルト化合物を添加することにより、高いTOF値、即ち、高い触媒活性を示すことが確認された。中でも、アセチルアセトナート(acac)化合物の添加により、触媒活性が向上することが確認された。なお、Coのみならず、Ni及びCuのアセチルアセトナート化合物を添加した触媒前駆体でも、触媒活性を確認した。
 試料101及び102について、さらに低温における触媒活性を確認した。具体的には、各試料の100mg(試料101については、(HO)[(MoCl)Cl]・6HO+Co+HYの合計重量を100mgとした。試料102についても同様である。)をそれぞれ、反応管(インコネル製)に充填し、当該反応管中に、水素ガスを供給して活性化(活性化条件は、H 150mL/h、700℃、1atm、1h)し、次に、反応管にN/H混合ガスを500mL/hで、所定の条件(700℃、10atm、1.5h)で供給し、前処理した。その後、反応管にNガス及びHガスをそれぞれ125mL/h及び375mL/hの割合で、低温条件(200℃、10atm)で供給し、触媒反応を進行させた。生成したアンモニアガスの量からTON(turnover number)を算出した。結果を図9に示す。図9の結果から、本発明の実施例の試料101及び102は、低温度(200℃)でも触媒活性を示し、Nガス及びHガスから、アンモニアを製造可能であることがわかる。
 [試料106~107の評価]
 触媒前駆体試料106及び107を、それぞれ以下の組成で調製した。具体的には、セリア(CeO)に担持されたCo(Co/CeO;試料106a)及びFe(Fe/CeO;試料107a)を準備し、それぞれを、固体状態で、(HO)[(MoCl)Cl]・6HO/HY(High Si/Al)と混合することで、試料106及び107を調製した。なお、Co/CeO(試料106a)は、硝酸コバルトを原料として得た。また、Fe/CeO(試料107a)も同様にして調製した。
 上記試料106及び107について、単位時間当たりのアンモニア合成量を測定した。具体的には、各試料の200mg((HO)[(MoCl)Cl]・6HO+HY+Co+CeO2及び(HO)[(MoCl)Cl]・6HO+HY+Fe+CeO2のそれぞれの合計重量を200mgとした。)をそれぞれ、反応管(インコネル製)に充填し、当該反応管中に、水素ガスを供給して活性化(活性化条件は、H 300mL/h、600℃、1atm、3h)した。その後、反応管にNガス及びHガスをそれぞれ15mL/h及び45mL/hの割合で、所定の条件(400℃、10atm)で供給し、触媒反応を進行させた。生成したアンモニアガスの量を下記表10に示す。参考に、Co/CeO(試料106a)及びFe/CeO(試料107a)を用いて同様に触媒反応を進行させて得られたアンモニアの合成量も併せて表10に示す。
Figure JPOXMLDOC01-appb-T000010
 上記表10に示す結果から、本発明のアンモニア合成用触媒は、セリアに担持された状態のCo及びFe等の金属元素と混合することにより、互いの活性がより改善することが実証された。
 本発明は、アンモニア合成用触媒に利用することができる。

Claims (15)

  1.  核である金属原子を3個以上有する金属クラスターと、
     上記金属クラスターを担持する担体と、
    を備えた金属クラスター担持体を含み、
     上記金属原子は、周期表における第V族、第VI族、又は第VII族に属する金属原子であり、
     上記金属原子の夫々は、互いに直接的に結合している、アンモニア合成用触媒。
  2.  上記金属原子は、モリブデン(Mo)、ニオブ(Nb)、タングステン(W)、タンタル(Ta)、及びレニウム(Re)からなる群から選択される1つの金属原子である、請求項1に記載のアンモニア合成用触媒。
  3.  上記担体は、無機材料の多孔質体、又は層状化合物であり、
     上記無機材料は、炭素、窒化ホウ素、窒化炭素、シリカ、アルミナ、アルミノケイ酸塩、ナトリウムアルミノケイ酸塩、水酸化アルミニウムマグネシウム炭酸塩、チタニア、チタノケイ酸塩、ジルコニア、ジルコノケイ酸塩、酸化亜鉛、及びセリアからなる群から選択される少なくとも1つの無機材料である、請求項1又は2に記載のアンモニア合成用触媒。
  4.  さらに添加成分を含んでおり、
     当該添加成分は、アルカリ金属、アルカリ土類金属、遷移金属、及びこれら金属の窒化物からなる群から選択される少なくとも1つの添加成分であり、当該遷移金属は、鉄(Fe)、コバルト(Co)、ロジウム(Rh)、イリジウム(Ir)、ニッケル(Ni)、銅(Cu)、及びセリウム(Ce)からなる群から選択される少なくとも1つの遷移金属である、請求項1~3の何れか1項に記載のアンモニア合成用触媒。
  5.  上記金属クラスターが有している上記核である上記金属原子には、窒素原子が結合している、請求項1~4の何れか1項に記載のアンモニア合成用触媒。
  6.  請求項1~5の何れか1項に記載のアンモニア合成用触媒を製造するための、分子性多核金属錯体の担持体。
  7.  上記分子性多核金属錯体は、ハライドクラスターであって、配位子として、Cl、Br、及びIからなる群から選択される1つのハロゲン原子を有している、請求項6に記載の分子性多核金属錯体の担持体。
  8.  核である金属原子を3個以上有する分子性多核金属錯体を担体に担持することで、分子性多核金属錯体の担持体を生成し、
     上記分子性多核金属錯体の担持体に水素を供給することによって、上記核である上記金属原子を3個以上有する金属クラスター担持体を生成し、
     上記金属クラスター担持体に水素及び窒素を供給することにより、アンモニアを合成し、
     上記金属原子は、周期表における第V族、第VI族、又は第VII族に属する金属原子であり、
     上記金属原子の夫々は、互いに直接的に結合している、アンモニアの合成方法。
  9.  上記金属原子は、モリブデン(Mo)、ニオブ(Nb)、タングステン(W)、タンタル(Ta)、及びレニウム(Re)からなる群から選択される1つの金属原子である、請求項8に記載のアンモニアの合成方法。
  10.  上記担体は、無機材料の多孔質体、又は層状化合物であり、
     上記無機材料は、炭素、窒化ホウ素、窒化炭素、シリカ、アルミナ、アルミノケイ酸塩、ナトリウムアルミノケイ酸塩、水酸化アルミニウムマグネシウム炭酸塩、チタニア、チタノケイ酸塩、ジルコニア、ジルコノケイ酸塩、酸化亜鉛、及びセリアからなる群から選択される少なくとも1つの無機材料である、請求項8又は9に記載のアンモニアの合成方法。
  11.  上記担体は、さらに添加成分を含んでおり、
     当該添加成分は、アルカリ金属、アルカリ土類金属、遷移金属、及びこれら金属の窒化物からなる群から選択される少なくとも1つの添加成分であり、当該遷移金属は、鉄(Fe)、コバルト(Co)、ロジウム(Rh)、イリジウム(Ir)、ニッケル(Ni)、銅(Cu)、及びセリウム(Ce)からなる群から選択される少なくとも1つの遷移金属である、請求項8~10の何れか1項に記載のアンモニアの合成方法。
  12.  上記分子性多核金属錯体は、ハライドクラスターであり、配位子として、Cl、Br、及びIからなる群から選択される1つのハロゲン原子を有し、
     当該ハロゲン原子を上記金属原子から脱離することで、上記金属クラスター担持体を生成する、請求項8~11の何れか1項に記載のアンモニアの合成方法。
  13.  上記金属クラスター担持体を生成した後、アンモニアを合成する前に、当該金属クラスター担持体に水素及び窒素を供給し、当該金属クラスター担持体における金属クラスターが有している核である金属原子に、窒素原子を結合させる、請求項8~12の何れか1項に記載のアンモニアの合成方法。
  14.  核である金属原子を3個以上有する分子性多核金属錯体と、
     前記分子性多核金属錯体を担持する担体と、
    を含み、
     上記金属原子は、周期表における第V族、第VI族、又は第VII族に属する金属原子である、アンモニア合成用触媒前駆体。
  15.  さらに、アルカリ金属、アルカリ土類金属、及び周期表における第V族から第VII族以外に属する遷移金属(但し、遷移金属は、分子性多核金属錯体に含まれる第V族から第VII族の遷移金属以外の金属原子である)の金属の群から選択される少なくとも1種の金属単体、及び/又は、前記金属の群から選ばれる金属の金属化合物からなる群から選ばれる少なくとも1種の金属化合物を含む、請求項14に記載のアンモニア合成用触媒前駆体。

     
PCT/JP2018/008764 2017-03-07 2018-03-07 アンモニア合成用触媒、及びその利用 WO2018164182A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019504636A JP7099722B2 (ja) 2017-03-07 2018-03-07 アンモニア合成用触媒、及びその利用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017043268 2017-03-07
JP2017-043268 2017-03-07

Publications (1)

Publication Number Publication Date
WO2018164182A1 true WO2018164182A1 (ja) 2018-09-13

Family

ID=63448931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008764 WO2018164182A1 (ja) 2017-03-07 2018-03-07 アンモニア合成用触媒、及びその利用

Country Status (2)

Country Link
JP (1) JP7099722B2 (ja)
WO (1) WO2018164182A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110721658A (zh) * 2019-10-15 2020-01-24 江苏索普(集团)有限公司 一种六方氮化硼-石墨相氮化碳插层复合材料的制备方法及其应用
US20200168300A1 (en) * 2018-11-27 2020-05-28 California Institute Of Technology Screening methods and related catalysts, materials, compositions, methods and systems
CN111545234A (zh) * 2020-04-20 2020-08-18 西安交通大学 一种锌掺杂类石墨烯催化剂及其制备方法和应用
CN111632617A (zh) * 2020-05-07 2020-09-08 浙江大学 一种骨架缺陷的介孔锆-氮化碳材料的制备方法及其应用
WO2022025046A1 (ja) * 2020-07-27 2022-02-03 国立大学法人東京大学 アンモニアの製造方法
WO2022025050A1 (ja) * 2020-07-27 2022-02-03 国立大学法人東京大学 アンモニアの製造方法
CN115052838A (zh) * 2020-01-31 2022-09-13 国立研究开发法人科学技术振兴机构 氨合成催化剂
CN115518669A (zh) * 2022-11-02 2022-12-27 苏州大学 一种用于氨合成的负载型钴团簇催化剂及其制法和应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4944873B1 (ja) * 1974-02-14 1974-11-30
JPS4944872B1 (ja) * 1974-02-14 1974-11-30
EP0018307A1 (de) * 1979-01-24 1980-10-29 Manfred Dipl.-Chem. Hornscheidt Verfahren zur Herstellung von Molybdänoberflächenverbindungen und ihre Verwendungen
JP2000264625A (ja) * 1999-03-15 2000-09-26 Haldor Topsoe As アンモニアの製造法及びアンモニア合成触媒
JP2001096163A (ja) * 1999-09-30 2001-04-10 Nkk Corp アンモニア合成触媒及びアンモニア合成方法
JP2004083534A (ja) * 2002-08-29 2004-03-18 Japan Science & Technology Corp 新規な金属ヒドリドクラスターアニオン
JP2004091447A (ja) * 2002-09-04 2004-03-25 Ube Ind Ltd クラスタ−触媒を用いる環状ケトンの反応方法
JP2005289978A (ja) * 2004-03-10 2005-10-20 Institute Of Physical & Chemical Research アレンの製造方法
JP2013159568A (ja) * 2012-02-02 2013-08-19 Toyota Motor Corp 二核モリブデン錯体及びその合成方法、並びにアンモニア合成方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4944873B1 (ja) * 1974-02-14 1974-11-30
JPS4944872B1 (ja) * 1974-02-14 1974-11-30
EP0018307A1 (de) * 1979-01-24 1980-10-29 Manfred Dipl.-Chem. Hornscheidt Verfahren zur Herstellung von Molybdänoberflächenverbindungen und ihre Verwendungen
JP2000264625A (ja) * 1999-03-15 2000-09-26 Haldor Topsoe As アンモニアの製造法及びアンモニア合成触媒
JP2001096163A (ja) * 1999-09-30 2001-04-10 Nkk Corp アンモニア合成触媒及びアンモニア合成方法
JP2004083534A (ja) * 2002-08-29 2004-03-18 Japan Science & Technology Corp 新規な金属ヒドリドクラスターアニオン
JP2004091447A (ja) * 2002-09-04 2004-03-25 Ube Ind Ltd クラスタ−触媒を用いる環状ケトンの反応方法
JP2005289978A (ja) * 2004-03-10 2005-10-20 Institute Of Physical & Chemical Research アレンの製造方法
JP2013159568A (ja) * 2012-02-02 2013-08-19 Toyota Motor Corp 二核モリブデン錯体及びその合成方法、並びにアンモニア合成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KUSTOV, A. L. ET AL.: "Supported Re and Mo oxides prepared using binuclear precursors: synthesis and characterization", JOURNAL OF MOLECULAR CATALYSIS A: CHEMICAL, vol. 216, no. 1, 1 July 2004 (2004-07-01), pages 101 - 106, XP055555148, ISSN: 1381-1169, Retrieved from the Internet <URL:https://doi.org/10.1016/j.molcata.2004.02.009> *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200168300A1 (en) * 2018-11-27 2020-05-28 California Institute Of Technology Screening methods and related catalysts, materials, compositions, methods and systems
CN110721658A (zh) * 2019-10-15 2020-01-24 江苏索普(集团)有限公司 一种六方氮化硼-石墨相氮化碳插层复合材料的制备方法及其应用
CN110721658B (zh) * 2019-10-15 2022-06-10 江苏索普(集团)有限公司 一种六方氮化硼-石墨相氮化碳插层复合材料的制备方法及其应用
CN115052838A (zh) * 2020-01-31 2022-09-13 国立研究开发法人科学技术振兴机构 氨合成催化剂
CN111545234A (zh) * 2020-04-20 2020-08-18 西安交通大学 一种锌掺杂类石墨烯催化剂及其制备方法和应用
CN111632617A (zh) * 2020-05-07 2020-09-08 浙江大学 一种骨架缺陷的介孔锆-氮化碳材料的制备方法及其应用
CN111632617B (zh) * 2020-05-07 2021-07-27 浙江大学 一种骨架缺陷的介孔锆-氮化碳材料的制备方法及其应用
WO2022025046A1 (ja) * 2020-07-27 2022-02-03 国立大学法人東京大学 アンモニアの製造方法
WO2022025050A1 (ja) * 2020-07-27 2022-02-03 国立大学法人東京大学 アンモニアの製造方法
CN115518669A (zh) * 2022-11-02 2022-12-27 苏州大学 一种用于氨合成的负载型钴团簇催化剂及其制法和应用

Also Published As

Publication number Publication date
JP7099722B2 (ja) 2022-07-12
JPWO2018164182A1 (ja) 2020-01-09

Similar Documents

Publication Publication Date Title
WO2018164182A1 (ja) アンモニア合成用触媒、及びその利用
JP6143761B2 (ja) 水素生成触媒及び水素の製造法
RU2292238C2 (ru) Катализатор для процесса фишера-тропша (варианты) и способ его получения
KR102026498B1 (ko) 제올라이트 및 그의 제조 방법, 및 파라핀의 접촉 분해 촉매
Peng et al. Application of metal organic frameworks M (bdc)(ted) 0.5 (M= Co, Zn, Ni, Cu) in the oxidation of benzyl alcohol
JP2011126775A (ja) ハイブリッド多孔性物質及びその製造方法
CN111225743B (zh) 用于选择性和稳定地生产烯烃的复合催化剂
CN107754794A (zh) 用于直接合成过氧化氢的催化剂
CN103476737A (zh) 使用非均相催化剂进行烃的选择性氧化
JP2009254981A (ja) アンモニア分解触媒及びアンモニア分解方法
JP2016533263A (ja) ゼオライトコーティング層を有するビスマスモリブデート系触媒、この製造方法、及びこれを利用した1,3−ブタジエンの製造方法
JP7442142B2 (ja) 化合物、及びその製造方法
JP6736073B2 (ja) アンモニア合成触媒
WO2020059889A1 (ja) 触媒、及びこれを用いた1,3-ブタジエンの製造方法
JPH09168740A (ja) 二酸化炭素改質化触媒及びこれを用いた改質化法
JP3897830B2 (ja) シクロオレフインの製造方法
CN117651610A (zh) 用于甲烷干重整的二维硅酸镍分子筛催化剂的制备方法及该方法制备的用于甲烷干重整的二维硅酸镍分子筛催化剂
JP5774180B1 (ja) メタノール製造用複合触媒及びその製造方法、並びにメタノールの製造方法
CN105498847B (zh) 负载型铜催化剂及其制备方法和应用以及丙烯氧化制备环氧丙烷的方法
JP5257973B2 (ja) 多孔性金属錯体及びその製造方法、並びに多孔性金属錯体を含むガス吸蔵材
JP2012223768A (ja) アンモニア分解触媒及びアンモニア分解方法
WO2021132239A1 (ja) インデンの製造方法
JP2021181417A (ja) プロリノールの製造方法、複合金属化合物およびその製造方法
JP4656049B2 (ja) 触媒の再生方法
JP2001205089A (ja) メタノール合成用触媒およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18764550

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019504636

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18764550

Country of ref document: EP

Kind code of ref document: A1