WO2018163446A1 - 有機ケイ素化合物およびその製造方法 - Google Patents

有機ケイ素化合物およびその製造方法 Download PDF

Info

Publication number
WO2018163446A1
WO2018163446A1 PCT/JP2017/018328 JP2017018328W WO2018163446A1 WO 2018163446 A1 WO2018163446 A1 WO 2018163446A1 JP 2017018328 W JP2017018328 W JP 2017018328W WO 2018163446 A1 WO2018163446 A1 WO 2018163446A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
organosilicon compound
unsubstituted
carbon atoms
compound
Prior art date
Application number
PCT/JP2017/018328
Other languages
English (en)
French (fr)
Inventor
山田 哲郎
宗直 廣神
大樹 片山
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to US16/487,264 priority Critical patent/US20190375769A1/en
Priority to CN201780087998.5A priority patent/CN110382510A/zh
Priority to EP17899368.9A priority patent/EP3594220A4/en
Priority to KR1020197029299A priority patent/KR102430744B1/ko
Publication of WO2018163446A1 publication Critical patent/WO2018163446A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • C08G77/382Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon
    • C08G77/392Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon containing sulfur
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • C07F7/1872Preparation; Treatments not provided for in C07F7/20
    • C07F7/1892Preparation; Treatments not provided for in C07F7/20 by reactions not provided for in C07F7/1876 - C07F7/1888
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/18Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/28Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen sulfur-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/50Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms by carbon linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • C08K5/5465Silicon-containing compounds containing nitrogen containing at least one C=N bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/14Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/14Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • C09J183/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/14Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms

Definitions

  • the present invention relates to an organosilicon compound and a method for producing the same. More specifically, the present invention has a silicon group that can be crosslinked by forming a siloxane bond (hereinafter also referred to as “reactive silicon group”) at the molecular chain end.
  • the present invention also relates to an organosilicon compound in which the molecular chain terminal is bonded to a silicon-containing organic group via a sulfide-methylene bond-containing group and a method for producing the same.
  • the compounds having reactive silicon groups are cured by crosslinking and curing in the presence of moisture or moisture.
  • these compounds those whose main chain is a silicon-containing organic group such as silicone are generally known as terminal-reactive silicones.
  • the curable composition using this is liquid at room temperature and has a characteristic of becoming a rubber elastic body upon curing, and is widely used for coating agents, adhesives, architectural sealants, etc. by utilizing the characteristics. It is used.
  • the room temperature curable composition containing the terminal reactive silicone is known in various types depending on the type of the reactive silicon group, but conventionally, the reactive silicon group is particularly an alkoxysilyl group, In other words, the dealcohol-free type that releases alcohol and cures does not have an unpleasant odor and does not corrode metals.
  • the dealcohol-free type that releases alcohol and cures does not have an unpleasant odor and does not corrode metals.
  • a room temperature curable composition having an alkoxysilyl end-capped silicone oil as a main agent (base polymer) as disclosed in Patent Document 1 is known.
  • the moisture content in the air is less than that of other conventionally known curing types such as deoxime type, deacetic acid type, and deacetone type.
  • Addition of a catalyst such as an organotin compound is generally indispensable to ensure sufficient curability at room temperature due to low reactivity and insufficient curability.
  • Tin-based compounds are concerned about toxicity to the human body and the environment. In recent years, environmental regulations have become stricter and their use has been avoided.
  • Patent Document 2 discloses a room temperature curable composition comprising an alkoxysilyl end-capped silicone oil containing a silethylene group as a linking group between an alkoxysilyl group and a silicone oil main chain for improving storage stability. ing.
  • the compound of Patent Document 2 has good storage stability, it is still insufficient in curability.
  • an amine compound is used as a curing catalyst in order not to contain an organotin compound, which is a concern about toxicity, there is a problem that the compound has a low reactivity and requires a long time for curing.
  • Patent Document 3 discloses an alkoxysilyl end-capped polymer obtained by reacting a polymer having a hydroxyl group at a terminal with isocyanate silane or the like in order to improve reactivity.
  • the compound of Patent Document 3 is excellent in reactivity, but on the other hand, since it contains a urethane or urea bond in the molecule, coloring over time is remarkable, and yellowing resistance and heat resistance are poor. It is enough.
  • Patent Document 4 discloses a room temperature curable composition comprising an alkoxysilyl end-capped silicone oil obtained by reacting a silicone oil having a vinyl group at a terminal and a mercaptosilane in order to improve reactivity and storage stability. Yes.
  • the compound of Patent Document 4 the reactivity and storage stability are improved, but on the other hand, the curability, particularly when using an amine compound as a curing catalyst, is not yet satisfactory.
  • the heat resistance of the compound of Patent Document 4 was actually confirmed, it was found that the heat resistance was worse than that of the conventional alkoxysilyl end-capped silicone oil.
  • Patent Document 4 only examples using 3-mercaptopropyltrimethoxysilane as mercaptosilane are shown, and examples using other mercaptosilanes such as mercaptomethyltrimethoxysilane are shown. not exist.
  • composition of Patent Document 4 only an example using a titanium catalyst as a curing catalyst is shown, and an example using an amine compound such as a compound containing a guanidyl group as a catalyst is shown. not exist.
  • the present invention has been made in view of the above circumstances, and even when an amine compound is used as a curing catalyst, it has good fast curability and is excellent in yellowing resistance, heat resistance, storage stability and safety. Another object is to provide an organosilicon compound and a method for producing the same.
  • a predetermined organosilicon compound having a sulfide-methylene bond as a linking group between a reactive silicon group and a main chain having a silicon-containing organic group is organotin. Even when an amine compound is used as a curing catalyst instead of a compound, it is excellent in fast curability, is excellent in yellowing resistance, and since it does not use isocyanate silane, it can be found to give a cured product that can be less toxic.
  • a composition containing a compound is suitable as a curable composition for forming a material such as a coating agent, an adhesive, and a sealant, thereby completing the present invention.
  • R 1 s independently of each other, represent an unsubstituted or substituted alkyl group having 1 to 10 carbon atoms or an unsubstituted or substituted aryl group having 6 to 10 carbon atoms
  • R 2 represents Each independently represents an unsubstituted or substituted alkyl group having 1 to 10 carbon atoms or an unsubstituted or substituted aryl group having 6 to 10 carbon atoms
  • R 3 independently of each other represents a hydrogen atom, Or an unsubstituted or substituted alkyl group having 1 to 10 carbon atoms, m is a number from 1 to 3, n is an integer of 2 or more, and a broken line represents a bond.
  • organosilicon compound represented by the following structural formula (2) (Wherein R 1 , R 2 , m and n represent the same meaning as described above, and Z represents a divalent silicon-containing organic group.) 3.
  • 2 is an organosilicon compound in which Z is a linear structure; 4).
  • 2 is an organosilicon compound represented by the following formula (3): (Wherein, R 4 s independently represent a hydrogen atom, an unsubstituted or substituted alkyl group having 1 to 10 carbon atoms, or an unsubstituted or substituted aryl group having 6 to 10 carbon atoms, p Is a number greater than or equal to 0. A broken line represents a bond.) 5).
  • organosilicon compound characterized by reacting a silicon-containing compound having at least one alkenyl group in one molecule with a compound having a mercapto group and an alkoxysilyl group represented by the following formula (4): Manufacturing method, (Wherein R 1 , R 2 and m have the same meaning as described above.) 6).
  • the method for producing an organosilicon compound of 5, wherein the silicon-containing compound having at least one alkenyl group in one molecule is represented by the following formula (5): (In the formula, Z represents a divalent silicon-containing organic group. R represents an integer of 0 or more.) 7).
  • the organosilicon compound of the present invention has a specific sulfide-methylene bond as a linking group between a reactive silicon group and a silicon-containing structure, and has faster curability, yellowing resistance, and heat resistance than conventional end-capped silicones. And excellent storage stability. Further, since no isocyanate silane is used, the toxicity can be reduced.
  • the composition containing the organosilicon compound of the present invention having such properties can be used widely and suitably as a curable composition, particularly as a curable composition for forming a material such as a coating agent, an adhesive, or a sealant. .
  • the organosilicon compound according to the present invention is characterized in that it contains at least one group represented by the following structural formula (1) in one molecule and has a main chain composed of a silicon-containing organic group.
  • the main chain of the organosilicon compound of the present invention does not contain a (poly) oxyalkylene structure.
  • R 1 s are unsubstituted or substituted alkyl groups having 1 to 10, preferably 1 to 4 carbon atoms, or unsubstituted or substituted carbon atoms having 6 to Represents an aryl group of 10 and R 2 independently of each other is an unsubstituted or substituted alkyl group having 1 to 10 carbon atoms, preferably 1 to 4 carbon atoms, or an unsubstituted or substituted carbon atom 6 Represents an aryl group having ⁇ 10, and R 3 independently represents an unsubstituted or substituted alkyl group having 1 to 10 carbon atoms, preferably 1 to 3 carbon atoms, or a hydrogen atom, and m represents 1 N is an integer of 2 or more, and a broken line represents a bond.
  • the alkyl group having 1 to 10 carbon atoms may be linear, cyclic or branched, and specific examples thereof include methyl, ethyl, n-propyl, i-propyl, n-butyl, s- Linear or branched alkyl groups such as butyl, t-butyl, n-pentyl, neopentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl And cycloalkyl groups such as cycloheptyl and cyclooctyl groups.
  • aryl group having 6 to 10 carbon atoms include phenyl, tolyl, xylyl, ⁇ -naphthyl, ⁇ -naphthyl group and the like.
  • some or all of the hydrogen atoms of these groups may be substituted with halogen atoms such as F, Cl and Br, cyano groups, and the like.
  • halogen atoms such as F, Cl and Br, cyano groups, and the like.
  • Specific examples thereof include a 3-chloropropyl group, 3, Examples include 3,3-trifluoropropyl group and 2-cyanoethyl group.
  • R ⁇ 1 > and R ⁇ 2 > a methyl group, an ethyl group, and a phenyl group are preferable, and a methyl group is more preferable from the surface of sclerosis
  • R ⁇ 3 > a hydrogen atom, a methyl group, and a phenyl group are preferable, and a hydrogen atom is more preferable from the surface of sclerosis
  • M is a number of 1 to 3, preferably 2 to 3, and more preferably 3 from the viewpoint of reactivity.
  • n is an integer of 2 or more, preferably 2 to 15 from the viewpoint of reactivity, more preferably 2 to 3, and even more preferably 2.
  • the organosilicon compound of the present invention is particularly limited as long as it contains at least one terminal structure represented by the above formula (1) in one molecule and has a main chain skeleton composed of a silicon-containing organic group.
  • the main chain skeleton may have a linear structure, a branched structure, or a crosslinked structure, but the linear structure is obtained from the viewpoint of the mechanical properties of the resulting cured product and the storage stability of the composition. Is preferred.
  • the composition when the average number of reactive groups represented by the structural formula (1) contained in one molecule is less than 1, the composition contains this as a main agent or a curing agent. The curability of the cured product and the mechanical properties of the cured product are insufficient. On the other hand, if the reactive group is too much, the crosslink density becomes too high. There is a risk that the storage stability of the object will deteriorate. Therefore, the number of the reactive groups contained in one molecule is 1 or more, preferably 1.1 to 5, more preferably 2 to 4, and still more preferably 2 (for example, linear One at each end of the molecular chain).
  • the organosilicon compound of the present invention is preferably represented by the following structural formula (2).
  • the mechanical properties of the resulting cured product and the storage stability of the composition are further improved. It becomes good.
  • R 1 , R 2 , m and n represent the same meaning as described above, and Z represents a divalent silicon-containing organic group.
  • organosilicon compound of the present invention those in which Z in the above formula (2) has a repeating unit represented by the following structural formula (3) are preferable, and by using such a compound, a cured product obtained can be obtained. The mechanical properties and the storage stability of the composition are further improved.
  • R 4 s independently of one another are a hydrogen atom, an unsubstituted or substituted alkyl group having 1 to 10, preferably 1 to 3 carbon atoms, or an unsubstituted or substituted carbon atom.
  • p is a number of 0 or more
  • a broken line represents a bond.
  • Examples of the alkyl group having 1 to 10 carbon atoms and the aryl group having 6 to 10 carbon atoms include the same groups as those exemplified above. Among these, as R 4 , a methyl group and a phenyl group are preferable, and a methyl group is more preferable in terms of curability and yellowing resistance.
  • p is a number of 0 or more, but from the viewpoint of mechanical properties of the resulting cured product and workability of the composition, 0 to 2,000 is preferable, 0 to 1,500 is more preferable, and 0 to 1, 000 is even more preferable.
  • the number average molecular weight of the organosilicon compound of the present invention is not particularly limited, but improves the workability within a suitable range of the viscosity of the curable composition containing the compound and imparts sufficient curability.
  • the number average molecular weight is preferably 200 to 100,000, more preferably 500 to 50,000, and even more preferably 1,000 to 20,000.
  • the number average molecular weight in this invention is a polystyrene conversion value in a gel permeation chromatography (GPC) analysis (hereinafter the same).
  • the viscosity of the organosilicon compound of the present invention is not particularly limited, but the workability is improved within the appropriate range of the viscosity of the curable composition containing the compound, and sufficient curability is imparted. Therefore, the viscosity is preferably 2 to 100,000 mPa ⁇ s, more preferably 5 to 50,000 mPa ⁇ s, and particularly preferably 10 to 20,000 mPa ⁇ s.
  • the viscosity is a value measured at 25 ° C. by a B-type rotational viscometer.
  • the organosilicon compound of the present invention includes a silicon-containing compound having at least one alkenyl group in one molecule, a compound having a mercapto group and an alkoxysilyl group represented by the formula (4) (hereinafter referred to as mercaptosilane), Can be obtained by reacting. More specifically, a thiol-ene reaction is performed between the alkenyl group of the silicon-containing compound and the mercapto group of mercaptosilane.
  • mercaptosilane represented by the formula (4) include mercaptomethyltrimethoxysilane, mercaptomethyldimethoxymethylsilane, mercaptomethylmethoxydimethylsilane, mercaptomethyltriethoxysilane, mercaptomethyldiethoxymethylsilane, mercaptomethylethoxy.
  • examples include dimethylsilane.
  • mercaptomethyltrimethoxysilane, mercaptomethyldimethoxymethylsilane, and mercaptomethyltriethoxysilane are preferable, and mercaptomethyltrimethoxysilane is more preferable.
  • the silicon-containing compound having at least one alkenyl group in one molecule is not particularly limited as long as it has a main chain skeleton composed of a silicon-containing organic group, and a linear structure in the main chain skeleton, It may have a branched structure or a crosslinked structure.
  • Specific examples thereof include trimethylvinylsilane, dimethyldivinylsilane, methyltrivinylsilane, tetravinylsilane, vinylpentamethyldisiloxane, 1,1-divinyltetramethyldisiloxane, 1,1,1-trivinyltrimethyldisiloxane, 1, 3-divinyltetramethyldisiloxane, 1,3-divinyltetraphenyldisiloxane, 1,3-diallyltetramethyldisiloxane, 1,1,3,3-tetravinyldimethyldisiloxane, hexavinyldisiloxane, 1,3 , 5,7-tetravinyltetramethylcyclotetrasiloxane, dimethylpolysiloxane containing vinyl groups at both ends, diphenylpolysiloxane containing vinyl groups at both ends, dimethylpolysiloxane /
  • a linear structure is preferable from the viewpoint of mechanical properties of the obtained cured product and storage stability of the composition. Therefore, as a silicon-containing compound having at least one alkenyl group in one molecule, a compound represented by the following structural formula (5) is preferable. By using such a compound, mechanical properties of a cured product obtained are obtained. Further, the storage stability of the composition is further improved.
  • Z represents the same meaning as described above.
  • Z is preferably the structure of formula (3) described above, and a cured product obtained by adopting such a structure.
  • the mechanical properties and the storage stability of the composition are further improved.
  • r is an integer of 0 or more, preferably 0 to 10, more preferably 0 to 3, and still more preferably 0 from the viewpoint of reactivity.
  • the number average molecular weight of the silicon-containing compound having at least one alkenyl group in one molecule is not particularly limited, but the workability is improved by setting the viscosity of the curable composition containing the compound to an appropriate range.
  • the number average molecular weight is preferably 200 to 100,000, more preferably 500 to 50,000, and even more preferably 1,000 to 20,000.
  • silicon-containing compound having at least one alkenyl group in one molecule represented by the above formula (5) include those represented by the following structural formula, but are not limited thereto. It is not a thing.
  • the ratio of the silicon-containing compound having at least one alkenyl group in one molecule represented by the above formula (5) to the mercaptosilane represented by the formula (4) is a by-product during the thiol-ene reaction.
  • the mercapto group of the mercaptosilane represented by the formula (4) is 0.1% relative to 1 mol of the alkenyl group in the silicon-containing compound. A ratio of 8 to 1.5 mol is preferable, and a ratio of 0.9 to 1.2 mol is more preferable.
  • a catalyst may not be used, but a catalyst may be used for improving the reaction rate.
  • the catalyst is not particularly limited, and may be appropriately selected from those generally used in the thiol-ene reaction.
  • a radical polymerization initiator that generates radicals by heat, light, redox reaction, or the like. Is preferred.
  • the amount of the catalyst used may be any catalytic amount, but is usually 0.001 to 10 based on the total of the silicon-containing compound whose molecular chain end is blocked with an alkenyl group and the mercaptosilane represented by the formula (4). % By mass.
  • the thiol-ene reaction proceeds even without solvent, but a solvent that does not adversely influence the reaction can also be used.
  • a solvent that does not adversely influence the reaction can also be used.
  • Specific examples thereof include hydrocarbon solvents such as pentane, hexane, heptane, octane, decane and cyclohexane; aromatic solvents such as benzene, toluene and xylene; formamide, N, N-dimethylformamide, pyrrolidone and N-methyl.
  • Amide solvents such as pyrrolidone; ester solvents such as ethyl acetate, butyl acetate, ⁇ -butyrolactone, propylene glycol-1-monomethyl ether-2-acetate, etc., may be used alone or in combination of two or more May be used.
  • the reaction temperature during the thiol-ene reaction is not particularly limited, but it is preferably 25 to 150 ° C., more preferably 40 to 100 ° C. in consideration of suppressing side reactions while making the reaction rate appropriate.
  • the reaction time is not particularly limited, but is usually 10 minutes to 24 hours.
  • the curable composition, the coating agent composition and the adhesive composition of the present invention include (A) an organosilicon compound represented by the above formula (1), and ( B) It contains a curing catalyst.
  • the curable composition containing the (A) organosilicon compound represented by the above formula (1) is superior in curability during coating treatment or adhesion treatment to conventional compositions and does not use isocyanate silane. This gives a cured product that can be less toxic.
  • the curing catalyst (B) is a component that promotes a reaction in which a hydrolyzable group contained in the (A) organosilicon compound is hydrolyzed and condensed with moisture in the air, and promotes the curing of the composition. Added to cure.
  • the curing catalyst is not particularly limited as long as it is a curing catalyst used for curing a general moisture condensation curable composition.
  • alkyltin compounds such as dibutyltin oxide and dioctyltin oxide
  • alkyltin ester compounds such as dibutyltin diacetate, dibutyltin dilaurate, dioctyltin dilaurate, dibutyltin dioctoate, dioctyltin dioctoate, and dioctyltin diversate
  • Titanic acid such as tetraisopropoxytitanium, tetra-n-butoxytitanium, tetrakis (2-ethylhexoxy) titanium, dipropoxybis (acetylacetonato) titanium, titanium diisopropoxybis (ethylacetoacetate), titanium isopropoxyoctylene glycol Esters and titanium chelates and their partial hydrolysates
  • Silanes and siloxanes containing guanidyl groups N, N, N ′, N ′, N ′′, N ′′ -hexamethyl-N ′ ′′-[3- (trimethoxysilyl) propyl] -phosphorimidic triamide, etc.
  • Examples include silanes and siloxanes containing phosphazene bases, and these may be used alone or in combination of two or more.
  • 3-aminopropyltrimethoxysilane and tetramethylguanidylpropyltrimethoxysilane are more preferable, and the curability of the composition is improved. From the viewpoint, tetramethylguanidylpropyltrimethoxysilane is particularly preferable.
  • the addition amount of the curing catalyst is not particularly limited, but considering that the workability is improved by adjusting the curing rate to an appropriate range, 100 parts by mass of the organosilicon compound represented by the formula (1) Is preferably from 0.01 to 15 parts by mass, more preferably from 0.1 to 5 parts by mass.
  • composition of the present invention may contain a solvent.
  • the solvent is not particularly limited as long as it has the ability to dissolve the organosilicon compound represented by formula (1), which is the main component, but specific examples thereof include pentane, hexane, heptane, and octane.
  • Hydrocarbon solvents such as decane and cyclohexane; aromatic solvents such as benzene, toluene and xylene; amide solvents such as formamide, N, N-dimethylformamide, pyrrolidone and N-methylpyrrolidone; ethyl acetate, butyl acetate, Ester solvents such as ⁇ -butyrolactone, propylene glycol-1-monomethyl ether-2-acetate; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone; diethyl ether, dibutyl ether, cyclopentyl methyl ether, tetrahydrofuran, 1,4- Ether type such as dioxane Are like agents, These may be used alone, or may be used in combination of two or more.
  • aromatic solvents such as toluene and xylene are preferable from the viewpoints of solubility and volatility.
  • the amount of the solvent added is preferably 10 to 20,000 parts by mass, more preferably 100 to 10,000 parts by mass with respect to 100 parts by mass of the organosilicon compound represented by the formula (1).
  • composition of the present invention contains various additives such as an adhesion improver, an inorganic and organic ultraviolet absorber, a storage stability improver, a plasticizer, a filler, a pigment, and a fragrance depending on the purpose of use. Can be added.
  • the coating composition of the present invention described above is applied to the surface of a solid substrate and cured to form a coating layer, whereby a coated solid substrate is obtained, and the adhesive composition of the present invention is applied to the solid substrate. After applying another solid base material on the surface, and then curing the composition to form an adhesive layer, an adhesive laminate can be obtained.
  • the application method of each composition is not particularly limited, and specific examples thereof are appropriately selected from known methods such as spray coating, spin coating, dip coating, roller coating, brush coating, bar coating, and flow coating. Can do.
  • the solid substrate is not particularly limited, and specific examples thereof include epoxy resins, phenol resins, polyimide resins, polycarbonate resins such as polycarbonates and polycarbonate blends, acrylic resins such as poly (methyl methacrylate), poly (ethylene Terephthalate), poly (butylene terephthalate), polyester resins such as unsaturated polyester resin, polyamide resin, acrylonitrile-styrene copolymer resin, styrene-acrylonitrile-butadiene copolymer resin, polyvinyl chloride resin, polystyrene resin, polystyrene and polyphenylene Organic resin base materials such as ether blends, cellulose acetate butyrate, polyethylene resin; metal base materials such as iron plate, copper plate, steel plate; paint application surface; glass; ceramic; concrete; Sheet; textile; wood, stone, tile, inorganic filler such as (hollow) silica, titania, zirconia, alumina; glass fiber including glass fiber, glass tape, glass
  • the hydrolysis condensation reaction of the organosilicon compound represented by the formula (1) proceeds.
  • any humidity of 10 to 100% RH may be used. In general, the higher the humidity, the faster the hydrolysis proceeds. Therefore, moisture may be added to the atmosphere as desired.
  • the curing reaction temperature and time can be appropriately changed according to factors such as the substrate used, the moisture concentration, the catalyst concentration, and the type of hydrolyzable group.
  • the curing reaction temperature is preferably about 25 ° C. from the viewpoint of workability, etc., but in order to accelerate the curing reaction, it is cured by heating within a range not exceeding the heat resistance temperature of the substrate to be used. May be.
  • the curing reaction time is usually about 1 minute to 1 week from the viewpoint of workability and the like.
  • the composition of the present invention cures well even at room temperature, and therefore, even when room temperature curing is indispensable for on-site construction or the like, there is no stickiness (tack) on the surface of the coating film in several minutes to several hours, and curability. Although it is excellent in workability, the heat treatment may be performed within a range not exceeding the heat-resistant temperature of the substrate.
  • a viscosity is a measured value in 25 degreeC by a B-type rotational viscometer
  • molecular weight is the number average molecular weight of polystyrene conversion calculated
  • reaction product was a colorless and transparent liquid, and had a number average molecular weight of 15,200 and a viscosity of 610 mPa ⁇ s.
  • Example 1-2 Synthesis of organosilicon compound 2
  • 100 g (terminal end) of vinyl group-containing dimethylpolysiloxane compound having a number average molecular weight of 13,600 was added.
  • a vinyl group having a functional group equivalent of 0.015 mol) and mercaptomethyldimethoxymethylsilane 2.3 g (mercapto group functional group amount 0.015 mol) were charged and heated to 90 ° C.
  • 0.1 g of 2,2′-azobis-2-methylbutyronitrile was added and stirred at 90 ° C. for 3 hours.
  • reaction product was a colorless and transparent liquid, and had a number average molecular weight of 14,800 and a viscosity of 590 mPa ⁇ s.
  • Example 1-3 Synthesis of organosilicon compound 3
  • 100 g (terminal end) of vinyl group-containing dimethylpolysiloxane compound having a number average molecular weight of 13,600 was added.
  • a vinyl group having a functional group equivalent of 0.015 mol) and 3.2 g of mercaptomethyltriethoxysilane (mercapto group functional group amount 0.015 mol) were charged and heated to 90 ° C.
  • 0.1 g of 2,2′-azobis-2-methylbutyronitrile was added and stirred at 90 ° C. for 3 hours.
  • reaction product was a colorless and transparent liquid, and had a number average molecular weight of 15,900 and a viscosity of 550 mPa ⁇ s.
  • Example 1-4 Synthesis of organosilicon compound 4 In a 200 mL separable flask equipped with a stirrer, a reflux condenser and a thermometer, 100 g of dimethylpolysiloxane compound containing both vinyl groups having a number average molecular weight of 39,900 (terminal group) The vinyl group was converted into a functional group (0.0051 mol) and mercaptomethyltrimethoxysilane (0.86 g) (mercapto group functional group amount: 0.0051 mol), and heated to 90 ° C. Into this, 0.1 g of 2,2′-azobis-2-methylbutyronitrile was added and stirred at 90 ° C. for 3 hours.
  • reaction product was a colorless and transparent liquid, and had a number average molecular weight of 41,900 and a viscosity of 11,100 mPa ⁇ s.
  • Example 1-5 Synthesis of organosilicon compound 5
  • 72 g (0.42 mol) of mercaptomethyltrimethoxysilane and 2,2 0.05 g of '-azobis-2-methylbutyronitrile was charged and heated to 90 ° C.
  • 40 g (0.21 mol) of 1,3-divinyltetramethyldisiloxane was added dropwise and stirred at 90 ° C. for 3 hours.
  • reaction product was a colorless transparent liquid and had a viscosity of 10 mPa ⁇ s.
  • Example 1-6 Synthesis of organosilicon compound 6
  • 72 g (0.42 mol) of mercaptomethyltrimethoxysilane and 2,2 0.05 g of '-azobis-2-methylbutyronitrile was charged and heated to 90 ° C.
  • 23.6 g (0.21 mol) of dimethyldivinylsilane was added dropwise and stirred at 90 ° C. for 3 hours.
  • reaction product was a colorless transparent liquid and had a viscosity of 6 mPa ⁇ s.
  • Example 1-7 Synthesis of organosilicon compound 7 In a 200 mL separable flask equipped with a stirrer, reflux condenser, dropping funnel and thermometer, 72 g (0.42 mol) of mercaptomethyltrimethoxysilane and 2,2 0.05 g of '-azobis-2-methylbutyronitrile was charged and heated to 90 ° C. Into this, 37.9 g (0.11 mol) of 1,3,5,7-tetravinyltetramethylcyclotetrasiloxane was added dropwise and stirred at 90 ° C. for 3 hours.
  • reaction product was a colorless transparent liquid and had a viscosity of 40 mPa ⁇ s.
  • Example 1-8 Synthesis of organosilicon compound 8
  • a 200 mL separable flask equipped with a stirrer, a reflux condenser and a thermometer was charged with 100 g (terminal) of a vinyl group-containing dimethylpolysiloxane compound having both number-average molecular weights of 15,400.
  • a vinyl group functional group equivalent of 0.012 mol) and mercaptomethyltrimethoxysilane 2.0 g (mercapto group functional group amount 0.012 mol) were charged and heated to 90 ° C.
  • 0.1 g of 2,2′-azobis-2-methylbutyronitrile was added and stirred at 90 ° C. for 3 hours.
  • reaction product was a colorless and transparent liquid, and had a number average molecular weight of 15,600 and a viscosity of 1,200 mPa ⁇ s.
  • reaction product was a pale yellow transparent liquid having a number average molecular weight of 8,000, a degree of polymerization of 130, and a viscosity of 3,700 mPa ⁇ s.
  • reaction product was a colorless and transparent liquid, and had a number average molecular weight of 14,600 and a viscosity of 620 mPa ⁇ s.
  • reaction product was a colorless and transparent liquid and had a viscosity of 12 mPa ⁇ s.
  • composition and cured film [Example 2-1] 100 parts by mass of the organosilicon compound 1 obtained in Example 1-1 and 0.5 parts by mass of tetramethylguanidylpropyltrimethoxysilane, which is a curing catalyst, were uniformly removed with moisture blocked using a stirrer. Mix to prepare the composition. The obtained composition was subjected to bar coater No. 5 under air at 25 ° C. and 50% RH. 14 was applied to a glass plate and dried and cured for 1 day in air at 25 ° C. and 50% RH to prepare a cured film.
  • Example 2-2 to 2-8 and Comparative examples 2-1 to 2-4 The organosilicon compound 1 of Example 2-1 was added to the organosilicon compounds 2 to 8 obtained in Examples 1-2 to 1-8 and the organosilicon compounds 9 to 9 obtained in Comparative Examples 1-1 to 1-4. A composition and a cured film were produced in the same manner as in Example 2-1, except that each was changed to 12.
  • Example 2-9 The composition and curing were carried out in the same manner as in Example 2-1, except that 5 parts by mass of 3-aminopropyltrimethoxysilane was used as a curing catalyst instead of 0.5 parts by mass of tetramethylguanidylpropyltrimethoxysilane. A coating was prepared.
  • Example 2-10 A composition and a cured film were prepared in the same manner as in Example 2-1, except that 5 parts by mass of dioctyltin diversate was used as a curing catalyst instead of 0.5 parts by mass of tetramethylguanidylpropyltrimethoxysilane. .
  • Example 2-11 Instead of 0.5 part by mass of tetramethylguanidylpropyltrimethoxysilane, 0.5 part by mass of titanium diisopropoxybis (ethylacetoacetate) was used as a curing catalyst, and the same procedure as in Example 2-1. Thus, a composition and a cured film were prepared.
  • the organosilicon compound 1 of Example 2-1 is a dimethylpolysiloxane compound containing a reactive silicon group represented by the following structural formula (6) at both ends of a molecular chain (number average molecular weight 15,000, viscosity 890 mPa ⁇ s).
  • a composition and a cured film were produced in the same manner as in Example 2-1, except for changing to.
  • the organosilicon compound 1 of Example 2-1 is a dimethylpolysiloxane compound containing a reactive silicon group represented by the following structural formula (7) at both ends of a molecular chain (number average molecular weight 14,000, viscosity 610 mPa ⁇ s).
  • a composition and a cured film were produced in the same manner as in Example 2-1, except for changing to.
  • Comparative Example 2-7 The composition and curing were carried out in the same manner as in Comparative Example 2-3 except that 5 parts by mass of 3-aminopropyltrimethoxysilane was used as a curing catalyst instead of 0.5 parts by mass of tetramethylguanidylpropyltrimethoxysilane. A coating was prepared.
  • Comparative Example 2-8 The composition and curing were carried out in the same manner as in Comparative Example 2-4 except that 5 parts by mass of 3-aminopropyltrimethoxysilane was used as a curing catalyst instead of 0.5 parts by mass of tetramethylguanidylpropyltrimethoxysilane. A coating was prepared.
  • the test piece in which a cured film was formed on the glass plate by the above coating method was subjected to UV irradiation (integrated irradiation amount: 26,000 mJ / cm 3 ) for 2 weeks using a germicidal lamp in air at 25 ° C. and 50% RH. It was.
  • the compositions and cured films produced in Examples 2-1 to 2-11 using the organosilicon compounds 1 to 8 obtained in Examples 1-1 to 1-8 were Compared to the compositions and cured coatings prepared in Comparative Examples 2-1 to 2-8, the curability, yellowing resistance, heat resistance and storage stability were excellent, and it was found that both physical properties were compatible. On the other hand, the compositions and cured coatings prepared in Comparative Examples 2-1 to 2-8 cannot achieve both curability, yellowing resistance, heat resistance and storage stability. In Comparative Examples 2-4 and 2-6 to 2-8, the curability of the coating film was poor and the curing did not proceed at all.
  • the organosilicon compound of the present invention when used, a composition and a cured film excellent in curability, yellowing resistance, heat resistance and storage stability can be obtained, which has been difficult in the prior art. Both physical properties can be achieved. In addition, since it does not use isocyanate silane, it is low toxic. Furthermore, even when an amine compound is used as a curing catalyst to contain no highly toxic organotin compound, the curability is good. A curable composition can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Paints Or Removers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Polymers (AREA)
  • Sealing Material Composition (AREA)

Abstract

下記構造式(1)で示される基を1分子中に少なくとも1個含有し、ケイ素含有有機基からなる主鎖を有することを特徴とする有機ケイ素化合物は、アミン系化合物を硬化触媒として用いた場合であっても速硬化性が良好であり、耐黄変性、耐熱性、保存安定性および安全性に優れている。(式中、R1は、互いに独立して、非置換もしくは置換の炭素原子数1~10のアルキル基、または非置換もしくは置換の炭素原子数6~10のアリール基を表し、R2は、互いに独立して、非置換もしくは置換の炭素原子数1~10のアルキル基、または非置換もしくは置換の炭素原子数6~10のアリール基を表し、R3は、互いに独立して、水素原子、または非置換もしくは置換の炭素原子数1~10のアルキル基を表す。mは、1~3の数であり、nは、2以上の整数である。破線は結合手を表す。)

Description

有機ケイ素化合物およびその製造方法
 本発明は、有機ケイ素化合物およびその製造方法に関し、さらに詳述すると、シロキサン結合を形成することにより架橋し得るケイ素基(以下、「反応性ケイ素基」とも称す。)を分子鎖末端に有し、この分子鎖末端が、スルフィド-メチレン結合含有基を介してケイ素含有有機基に結合した有機ケイ素化合物およびその製造方法に関する。
 反応性ケイ素基、特にアルコキシシリル基は、水分存在下にて加水分解縮合する性質を有していることから、この反応性ケイ素基を有する化合物は、水分または湿気の存在下で架橋硬化する硬化性組成物として用いることができる。
 これらの化合物の中でも、その主鎖がシリコーン等のケイ素含有有機基であるものは、一般的に末端反応性シリコーン等として知られている。また、これを用いた硬化性組成物は、室温では液状であり、硬化によりゴム弾性体となる特徴を有しており、その特徴を利用してコーティング剤、接着剤、建築用シーラント等に広く用いられている。
 末端反応性シリコーンを含有する室温硬化性組成物は、その反応性ケイ素基の種類に応じて種々のタイプのものが公知であるが、従来、特に反応性ケイ素基がアルコキシシリル基であるもの、すなわち、アルコールを放出して硬化する脱アルコールタイプのものは不快臭がせず、また金属類を腐食しないため、上記用途等に好んで使用されている。
 この脱アルコールタイプの代表例としては、特許文献1で開示されているような、アルコキシシリル末端封鎖シリコーンオイルを主剤(ベースポリマー)とする室温硬化性組成物が知られている。
 しかし、特許文献1のような脱アルコールタイプの室温硬化性組成物では、従来公知の他の硬化タイプである脱オキシムタイプ、脱酢酸タイプ、脱アセトンタイプ等と比較して空気中の水分との反応性が低く、硬化性が不十分であることから、室温で十分な硬化性を確保するためには一般に有機スズ系化合物等の触媒の添加が不可欠であるが、通常触媒として使用される有機スズ系化合物は人体や環境への毒性が懸念され、近年環境規制が厳しくなっており、その使用が敬遠されてきている。
 また、脱アルコールタイプの室温硬化性組成物において有機スズ系化合物等の有機金属系触媒を使用した場合、発生するアルコールによってシリコーンオイルの主鎖が切断(クラッキング)され、経時で硬化性が低下したり、増粘したりする等の保存安定性不良を生ずる問題がある。
 そこで、特許文献2では、保存安定性向上のために、アルコキシシリル基とシリコーンオイル主鎖との連結基としてシルエチレン基を含有するアルコキシシリル末端封鎖シリコーンオイルからなる室温硬化性組成物が開示されている。
 しかし、特許文献2の化合物では、保存安定性は良好であるものの、一方でやはり硬化性が不十分である。また、この化合物に対して、毒性の懸念される有機スズ系化合物を非含有とするためにアミン系化合物を硬化触媒として用いた場合、反応性が低く硬化に長時間を要するといった問題もある。
 また、特許文献3では、反応性向上のために、末端に水酸基を有するポリマーとイソシアネートシラン等を反応させたアルコキシシリル末端封鎖ポリマーが開示されている。
 しかし、特許文献3の化合物では、反応性には優れているものの、一方で分子内にウレタンまたはウレア結合を含有しているため経時での着色が顕著であり、耐黄変性および耐熱性が不十分である。また、末端封鎖ポリマーの製造の際、非常に毒性の高い低沸点イソシアネートシランを使用すること、さらには高温下でのウレタンまたはウレア結合の熱分解により同様の低沸点イソシアネートシランを生じ得ることが問題視されている。
 さらに、特許文献4では、反応性および保存安定性向上のために、末端にビニル基を有するシリコーンオイルとメルカプトシランを反応させたアルコキシシリル末端封鎖シリコーンオイルからなる室温硬化性組成物が開示されている。
 しかし、特許文献4の化合物では、反応性および保存安定性は改善されたものの、一方で硬化性、特にアミン系化合物を硬化触媒として用いた際の硬化性は未だ満足のいくものではない。しかも、特許文献4の化合物の耐熱性を実際に確認したところ、従来のアルコキシシリル末端封鎖シリコーンオイルよりも耐熱性が悪化することが判明した。
 また、特許文献4の実施例では、メルカプトシランとして3-メルカプトプロピルトリメトキシシランを使用した例のみが示されており、メルカプトメチルトリメトキシシラン等のその他のメルカプトシランを用いた場合の実施例は存在しない。加えて、特許文献4の組成物の実施例では、硬化触媒としてチタン系触媒を用いた例のみが示されており、グアニジル基を含有する化合物等のアミン系化合物を触媒として用いた実施例は存在しない。
特開昭55-43119号公報 特公平7-39547号公報 特表2004-518801号公報 特開2003-147208号公報
 本発明は、上記事情に鑑みなされたもので、アミン系化合物を硬化触媒として用いた場合であっても速硬化性が良好であり、耐黄変性、耐熱性、保存安定性および安全性に優れた有機ケイ素化合物およびその製造方法を提供することを目的とする。
 本発明者らは、上記課題を解決すべく鋭意検討した結果、反応性ケイ素基とケイ素含有有機基を有する主鎖との連結基としてスルフィド-メチレン結合を有する所定の有機ケイ素化合物が、有機スズ化合物の代わりにアミン系化合物を硬化触媒として用いた場合でも速硬化性に優れるとともに、耐黄変性に優れ、かつイソシアネートシランを使用しないことから低毒性となり得る硬化物を与えることを見出すとともに、この化合物を含む組成物が、コーティング剤、接着剤、シーラント等の材料を形成する硬化性組成物として好適であることを見出し、本発明を完成した。
 すなわち、本発明は、
1. 下記構造式(1)で示される基を1分子中に少なくとも1個含有し、ケイ素含有有機基からなる主鎖を有することを特徴とする有機ケイ素化合物、
Figure JPOXMLDOC01-appb-C000007
(式中、R1は、互いに独立して、非置換もしくは置換の炭素原子数1~10のアルキル基、または非置換もしくは置換の炭素原子数6~10のアリール基を表し、R2は、互いに独立して、非置換もしくは置換の炭素原子数1~10のアルキル基、または非置換もしくは置換の炭素原子数6~10のアリール基を表し、R3は、互いに独立して、水素原子、または非置換もしくは置換の炭素原子数1~10のアルキル基を表す。mは、1~3の数であり、nは、2以上の整数である。破線は結合手を表す。)
2. 下記構造式(2)で表される1の有機ケイ素化合物、
Figure JPOXMLDOC01-appb-C000008
(式中、R1、R2、mおよびnは、前記と同じ意味を表し、Zは、2価のケイ素含有有機基を表す。)
3. 前記Zが、直鎖構造である2の有機ケイ素化合物、
4. 前記Zが、下記式(3)で表される2の有機ケイ素化合物、
Figure JPOXMLDOC01-appb-C000009
(式中、R4は、互いに独立して、水素原子、非置換もしくは置換の炭素原子数1~10のアルキル基、または非置換もしくは置換の炭素原子数6~10のアリール基を表し、pは、0以上の数である。破線は結合手を表す。)
5. 1分子中に少なくとも1個のアルケニル基を有するケイ素含有化合物と、下記式(4)で表される、メルカプト基およびアルコキシシリル基を有する化合物とを反応させることを特徴とする1の有機ケイ素化合物の製造方法、
Figure JPOXMLDOC01-appb-C000010
(式中、R1、R2およびmは、前記と同じ意味を表す。)
6. 前記1分子中に少なくとも1個のアルケニル基を有するケイ素含有化合物が、下記式(5)で表される5の有機ケイ素化合物の製造方法、
Figure JPOXMLDOC01-appb-C000011
(式中、Zは、2価のケイ素含有有機基を表す。rは、0以上の整数を表す。)
7. 前記Zが、下記式(3)で表される6の有機ケイ素化合物の製造方法、
Figure JPOXMLDOC01-appb-C000012
(式中、R4は、互いに独立して、水素原子、非置換もしくは置換の炭素原子数1~10のアルキル基、または非置換もしくは置換の炭素原子数6~10のアリール基を表し、pは、0以上の数である。破線は結合手を表す。)
8. (A)1~4のいずれかの有機ケイ素化合物および(B)硬化触媒を含有する硬化性組成物、
9. 前記(B)硬化触媒が、アミン系化合物である8の硬化性組成物、
10. 8または9の硬化性組成物が硬化してなる硬化物、
11. (A)1~4のいずれかの有機ケイ素化合物および(B)硬化触媒を含有するコーティング剤組成物、
12. 前記(B)硬化触媒が、アミン系化合物である11のコーティング剤組成物、
13. 11または12のコーティング剤組成物が硬化してなる被覆層を有する物品、
14. (A)1~4のいずれかの有機ケイ素化合物および(B)硬化触媒を含有する接着剤組成物、
15. 前記(B)硬化触媒が、アミン系化合物である14の接着剤組成物、
16. 14または15の接着剤組成物が硬化してなる接着層を有する物品
を提供する。
 本発明の有機ケイ素化合物は、反応性ケイ素基とケイ素含有構造との連結基として特定のスルフィド-メチレン結合を有しており、従来の末端封鎖シリコーンに比べ、速硬化性、耐黄変性、耐熱性および保存安定性に優れるという特性を有している。また、イソシアネートシランを使用しないことから低毒性となり得る。
 このような特性を有する本発明の有機ケイ素化合物を含む組成物は、硬化性組成物、特に、コーティング剤、接着剤、シーラント等の材料を形成する硬化性組成物として広く好適に用いることができる。
 以下、本発明について具体的に説明する。
 本発明に係る有機ケイ素化合物は、下記構造式(1)で示される基を1分子中に少なくとも1個含有し、ケイ素含有有機基からなる主鎖を有することを特徴とする。なお、本発明の有機ケイ素化合物の主鎖は、(ポリ)オキシアルキレン構造を含まない。
Figure JPOXMLDOC01-appb-C000013
 式(1)において、R1は、互いに独立して、非置換もしくは置換の炭素原子数1~10、好ましくは炭素原子数1~4のアルキル基、または非置換もしくは置換の炭素原子数6~10のアリール基を表し、R2は、互いに独立して、非置換もしくは置換の炭素原子数1~10、好ましくは炭素原子数1~4のアルキル基、または非置換もしくは置換の炭素原子数6~10のアリール基を表し、R3は、互いに独立して、非置換もしくは置換の炭素原子数1~10、好ましくは炭素原子数1~3のアルキル基または水素原子を表し、mは、1~3の数であり、nは、2以上の整数であり、破線は結合手を表す。
 炭素原子数1~10のアルキル基としては、直鎖状、環状、分枝状のいずれでもよく、その具体例としては、メチル、エチル、n-プロピル、i-プロピル、n-ブチル、s-ブチル、t-ブチル、n-ペンチル、ネオペンチル、n-ヘキシル、n-ヘプチル、n-オクチル、n-ノニル、n-デシル基等の直鎖または分岐鎖アルキル基、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル基等のシクロアルキル基が挙げられる。
 炭素原子数6~10のアリール基の具体例としては、フェニル、トリル、キシリル、α-ナフチル、β-ナフチル基等が挙げられる。
 また、これらの基の水素原子の一部または全部は、F、Cl、Br等のハロゲン原子やシアノ基等で置換されていてもよく、その具体例としては、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、2-シアノエチル基等が挙げられる。
 これらの中でも、R1、R2としては、メチル基、エチル基、フェニル基が好ましく、硬化性や入手の容易さ、生産性、コストの面から、メチル基がより好ましい。
 また、R3としては、水素原子、メチル基、フェニル基が好ましく、硬化性や入手の容易さ、生産性、コストの面から水素原子がより好ましい。
 上記mは1~3の数であるが、反応性の観点から2~3が好ましく、3がより好ましい。
 一方、nは2以上の整数であるが、反応性の観点から2~15が好ましく、2~3がより好ましく、2がより一層好ましい。
 本発明の有機ケイ素化合物は、上記式(1)で示される末端構造を1分子中に少なくとも1個含有するとともに、ケイ素含有有機基からなる主鎖骨格を有する化合物であれば特に限定されるものではなく、主鎖骨格中に直鎖状構造、分岐状構造、または架橋構造を有していてもよいが、得られる硬化物の機械特性および組成物の保存安定性の観点から直鎖状構造が好ましい。
 本発明の有機ケイ素化合物において、1分子中に含まれる上記構造式(1)で示される反応性基の数が平均して1個未満であると、これを主剤または硬化剤として含有する組成物の硬化性およびその硬化物の機械特性が不十分になり、一方で、上記反応性基が多すぎると架橋密度が高くなりすぎるため、得られる硬化物が良好な機械特性を示さなくなったり、組成物の保存安定性が悪化したりするおそれがある。そのため、1分子中に含まれる上記反応性基の数は1個以上であり、好ましくは1.1~5個、より好ましくは2~4個、より一層好ましくは2個(例えば、直鎖状分子鎖両末端にそれぞれ1個ずつ)である。
 したがって、本発明の有機ケイ素化合物としては、下記構造式(2)で表されるものが好ましく、このような化合物を用いることで、得られる硬化物の機械特性および組成物の保存安定性がさらに良好となる。
Figure JPOXMLDOC01-appb-C000014
(式中、R1、R2、mおよびnは、上記と同じ意味を表し、Zは、2価のケイ素含有有機基を表す。)
 本発明の有機ケイ素化合物としては、上記式(2)中のZが下記構造式(3)で表される繰り返し単位を有するものが好ましく、このような化合物を用いることで、得られる硬化物の機械特性および組成物の保存安定性がさらに良好となる。
Figure JPOXMLDOC01-appb-C000015
 式(3)において、R4は、互いに独立して、水素原子、非置換もしくは置換の炭素原子数1~10、好ましくは炭素原子数1~3のアルキル基、または非置換もしくは置換の炭素原子数6~10のアリール基を表し、pは、0以上の数であり、破線は結合手を表す。これら炭素原子数1~10のアルキル基、炭素原子数6~10のアリール基としては上記で例示した基と同様のものが挙げられる。
 これらの中でも、R4としては、メチル基、フェニル基が好ましく、硬化性や耐黄変性の面から、メチル基がより好ましい。
 また、pは0以上の数であるが、得られる硬化物の機械特性や組成物の作業性の観点から、0~2,000が好ましく、0~1,500がより好ましく、0~1,000がより一層好ましい。
 本発明の有機ケイ素化合物の数平均分子量は、特に限定されるものではないが、当該化合物を含む硬化性組成物の粘度等を適切な範囲として作業性を向上させるとともに、十分な硬化性を付与することを考慮すると、数平均分子量200~10万が好ましく、500~5万がより好ましく、1,000~2万がより一層好ましい。なお、本発明における数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)分析におけるポリスチレン換算値である(以下、同様)。
 また、本発明の有機ケイ素化合物の粘度は、特に限定されるものではないが、当該化合物を含む硬化性組成物の粘度等を適切な範囲として作業性を向上させるとともに、十分な硬化性を付与することを考慮すると、粘度が2~100,000mPa・sのものが好ましく、より好ましくは5~50,000mPa・s、特に好ましくは10~20,000mPa・sのものである。ここで、粘度は、B型回転粘度計による25℃における測定値である。
 本発明の有機ケイ素化合物は、1分子中に少なくとも1個のアルケニル基を有するケイ素含有化合物と、式(4)で表されるメルカプト基およびアルコキシシリル基を有する化合物(以下、メルカプトシランという)とを反応させて得ることができる。
 より具体的には、ケイ素含有化合物のアルケニル基と、メルカプトシランのメルカプト基との間でチオール-エン反応を行う。
Figure JPOXMLDOC01-appb-C000016
(式中、R1、R2およびmは、上記と同じ意味を表す。)
 式(4)で表されるメルカプトシランの具体例としては、メルカプトメチルトリメトキシシラン、メルカプトメチルジメトキシメチルシラン、メルカプトメチルメトキシジメチルシラン、メルカプトメチルトリエトキシシラン、メルカプトメチルジエトキシメチルシラン、メルカプトメチルエトキシジメチルシラン等が挙げられる。
 これらの中でも、加水分解性の観点から、メルカプトメチルトリメトキシシラン、メルカプトメチルジメトキシメチルシラン、メルカプトメチルトリエトキシシランが好ましく、メルカプトメチルトリメトキシシランがより好ましい。
 1分子中に少なくとも1個のアルケニル基を有するケイ素含有化合物は、ケイ素含有有機基からなる主鎖骨格を有するものであれば特に限定されるものではなく、主鎖骨格中に直鎖状構造、分岐状構造、または架橋構造を有していてもよい。
 その具体例としては、トリメチルビニルシラン、ジメチルジビニルシラン、メチルトリビニルシラン、テトラビニルシラン、ビニルペンタメチルジシロキサン、1,1-ジビニルテトラメチルジシロキサン、1,1,1-トリビニルトリメチルジシロキサン、1,3-ジビニルテトラメチルジシロキサン、1,3-ジビニルテトラフェニルジシロキサン、1,3-ジアリルテトラメチルジシロキサン、1,1,3,3-テトラビニルジメチルジシロキサン、ヘキサビニルジシロキサン、1,3,5,7-テトラビニルテトラメチルシクロテトラシロキサン、両末端ビニル基含有ジメチルポリシロキサン、両末端ビニル基含有ジフェニルポリシロキサン、両末端ビニル基含有ジメチルポリシロキサン/ジフェニルポリシロキサン共重合体、末端ビニル基含有メチル系シリコーンレジン、末端ビニル基含有フェニル系シリコーンレジン、末端ビニル基含有メチル/フェニル系シリコーンレジン等が挙げられる。
 これらの中でも、得られる硬化物の機械特性および組成物の保存安定性の観点から、直鎖状構造が好ましい。
 したがって、1分子中に少なくとも1個のアルケニル基を有するケイ素含有化合物としては、下記構造式(5)で表されるものが好ましく、このような化合物を用いることで、得られる硬化物の機械特性および組成物の保存安定性がさらに良好となる。
Figure JPOXMLDOC01-appb-C000017
 式(5)において、Zは、上記と同じ意味を表すが、この場合も、Zとしては、上述した式(3)の構造が好ましく、このような構造を採用することで、得られる硬化物の機械特性および組成物の保存安定性がさらに良好となる。
 また、式(5)中、rは0以上の整数であるが、反応性の観点から0~10が好ましく、0~3がより好ましく、0がより一層好ましい。
 1分子中に少なくとも1個のアルケニル基を有するケイ素含有化合物の数平均分子量は、特に限定されるものではないが、当該化合物を含む硬化性組成物の粘度等を適切な範囲として作業性を向上させるとともに、十分な硬化性を付与することを考慮すると、数平均分子量200~10万が好ましく、500~5万がより好ましく、1,000~2万がより一層好ましい。
 上記式(5)で表される、1分子中に少なくとも1個のアルケニル基を有するケイ素含有化合物の具体例としては、下記構造式で表されるもの等が挙げられるが、これに限定されるものではない。
Figure JPOXMLDOC01-appb-C000018
(式中、Meは、メチル基を表し、pは、上記と同じ意味を表す。)
 上記式(5)で表される1分子中に少なくとも1個のアルケニル基を有するケイ素含有化合物と、式(4)で表されるメルカプトシランとの割合は、チオール-エン反応時の副生物を抑制するとともに、得られる有機ケイ素化合物の保存安定性や特性を高めることを考慮すると、上記ケイ素含有化合物中のアルケニル基1molに対し、式(4)で表されるメルカプトシランのメルカプト基が0.8~1.5molとなる割合が好ましく、0.9~1.2molとなる割合がより好ましい。
 また、上記チオール-エン反応時には、触媒を使用しなくてもよいが、反応速度向上のため触媒を使用してもよい。
 触媒としては、特に限定されるものではないが、一般的にチオール-エン反応で使用されているものから適宜選択すればよく、熱、光、あるいはレドックス反応などによりラジカルを発生させるラジカル重合開始剤が好適である。
 その具体例としては、過酸化水素水、tert-ブチルハイドロパーオキサイド、ジtert-ブチルパーオキサイド、(2-エチルヘキサノイル)(tert-ブチル)ペルオキシド、ベンゾイルパーオキサイド、クメンヒドロパーオキサイド、ジクミルパーオキサイド等の有機過酸化物;2,2’-アゾビスプロパン、2,2’-アゾビスイソブタン、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス-2-メチルブチロニトリル、2,2’-アゾビス-2-メチルバレロニトリル、2,2’-アゾビス-2,4-ジメチルバレロニトリル、2,2’-アゾビス-2-メチルプロピオン酸メチル、2,2’-ジクロロ-2,2’-アゾビスプロパン、2,2’-ジクロロ-2,2’-アゾビスブタン、1,1’-アゾ(メチルエチル)ジアセテート、2,2’-アゾビスイソブチルアミド、2,2’-アゾビスイソ酪酸ジメチル、3,5-ジヒドロキシメチルフェニルアゾ-2-メチルマロノジニトリル、4,4’-アゾビス-4-シアノ吉草酸ジメチル等のアゾ化合物;過酸化水素-鉄(II)塩、セリウム(IV)塩-アルコール、有機過酸化物-ジメチルアニリン等のレドックス開始剤;2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-1-ブタノン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルフォリン-4-イルフェニル)ブタン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチルプロピオニル)ベンジル]フェニル}-2-メチルプロパン-1-オン、2,4,6-トリメチルベンゾイル-ジフェニルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイド等の光重合開始剤;テトラアルキルチウラムジスルフィド等のジアルキルジスルフィドなどが挙げられ、これらは単独で用いても、2種以上組み合わせて用いてもよい。
 これらの中でも、チオール-エン反応時の反応速度の観点から、(2-エチルヘキサノイル)(tert-ブチル)ペルオキシド、2,2’-アゾビス-2-メチルブチロニトリルが好ましく、2,2’-アゾビス-2-メチルブチロニトリルがより好ましい。
 触媒の使用量は触媒量であればよいが、通常、分子鎖末端がアルケニル基で封鎖されたケイ素含有化合物と、式(4)で表されるメルカプトシランの合計に対して0.001~10質量%である。
 なお、上記チオール-エン反応は無溶媒でも進行するが、反応に悪影響を及ぼさない溶媒を用いることもできる。
 その具体例としては、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、シクロヘキサン等の炭化水素系溶媒;ベンゼン、トルエン、キシレン等の芳香族系溶媒;ホルムアミド、N,N-ジメチルホルムアミド、ピロリドン、N-メチルピロリドン等のアミド系溶媒;酢酸エチル、酢酸ブチル、γ-ブチロラクトン、プロピレングリコール-1-モノメチルエーテル-2-アセタート等のエステル系溶媒などが挙げられ、これらは単独で用いても、2種以上組み合わせて用いてもよい。
 チオール-エン反応時の反応温度は、特に限定されるものではないが、反応速度を適切にしつつ、副反応を抑制することを考慮すると、25~150℃が好ましく、40~100℃がより好ましい。
 反応時間は特に制限されないが、通常10分~24時間である。
 本発明の硬化性組成物、コーティング剤組成物および接着剤組成物(以下、まとめて組成物という場合もある)は、上述した式(1)で表される(A)有機ケイ素化合物、および(B)硬化触媒を含むものである。
 上記式(1)で表される(A)有機ケイ素化合物を含有する硬化性組成物は、被覆処理や接着処理の際の硬化性が従来の組成物に比べて優れ、なおかつイソシアネートシランを使用しないことから低毒性となり得る硬化物を与える。
 硬化触媒(B)は、(A)有機ケイ素化合物に含まれる加水分解性基が空気中の水分で加水分解縮合される反応を促進し、組成物の硬化を促進させる成分であり、効率的に硬化させるために添加される。
 硬化触媒としては、一般的な湿気縮合硬化型組成物の硬化に用いられる硬化触媒であれば特に限定されない。その具体例としては、ジブチル錫オキシド、ジオクチル錫オキシド等のアルキル錫化合物;ジブチル錫ジアセテート、ジブチル錫ジラウレート、ジオクチル錫ジラウレート、ジブチル錫ジオクトエート、ジオクチル錫ジオクトエート、ジオクチル錫ジバーサテート等のアルキル錫エステル化合物;テトライソプロポキシチタン、テトラn-ブトキシチタン、テトラキス(2-エチルヘキソキシ)チタン、ジプロポキシビス(アセチルアセトナト)チタン、チタンジイソプロポキシビス(エチルアセトアセテート)、チタニウムイソプロポキシオクチレングリコール等のチタン酸エステルおよびチタンキレート化合物並びにそれらの部分加水分解物;ナフテン酸亜鉛、ステアリン酸亜鉛、亜鉛-2-エチルオクトエート、鉄-2-エチルヘキソエート、コバルト-2-エチルヘキソエート、マンガン-2-エチルヘキソエート、ナフテン酸コバルト、三水酸化アルミニウム、アルミニウムアルコラート、アルミニウムアシレート、アルミニウムアシレートの塩、アルミノシロキシ化合物、アルミニウムキレート化合物等の有機金属化合物;3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルメチルジメトキシシラン、3-アミノプロピルメチルジエトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリエトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジエトキシシラン、ビス[3-(トリメトキシシリル)プロピル]アミン、ビス[3-(トリエトキシシリル)プロピル]アミン、N,N’-ビス[3-(トリメトキシシリル)プロピル]エタン-1,2-ジアミン、N,N’-ビス[3-(トリエトキシシリル)プロピル]エタン-1,2-ジアミン、N-フェニル-3-アミノプロピルトリメトキシシラン等のアミノアルキル基置換アルコキシシラン;ヘキシルアミン、リン酸ドデシルアミン等のアミン化合物およびその塩;ベンジルトリエチルアンモニウムアセテート等の第4級アンモニウム塩;酢酸カリウム、酢酸ナトリウム、シュウ酸リチウム等のアルカリ金属の低級脂肪酸塩;ジメチルヒドロキシルアミン、ジエチルヒドロキシルアミン等のジアルキルヒドロキシルアミン;テトラメチルグアニジルプロピルトリメトキシシラン、テトラメチルグアニジルプロピルメチルジメトキシシラン、テトラメチルグアニジルプロピルトリエトキシシラン、テトラメチルグアニジルプロピルメチルジエトキシシラン、テトラメチルグアニジルプロピルトリス(トリメチルシロキシ)シラン等のグアニジル基を含有するシランおよびシロキサン;N,N,N’,N’,N”,N”-ヘキサメチル-N'''-[3-(トリメトキシシリル)プロピル]-ホスホリミディックトリアミド等のホスファゼン塩基を含有するシランおよびシロキサンなどが挙げられ、これらは単独で用いても、2種以上の組み合わせて用いてもよい。
 これらの中でも、より反応性に優れることから、ジオクチル錫ジラウレート、ジオクチル錫ジバーサテート、テトライソプロポキシチタン、テトラn-ブトキシチタン、チタンジイソプロポキシビス(エチルアセトアセテート)、3-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、ビス[3-(トリメトキシシリル)プロピル]アミン、N,N’-ビス[3-(トリメトキシシリル)プロピル]エタン-1,2-ジアミン、テトラメチルグアニジルプロピルトリメトキシシランが好ましく、さらに組成物の硬化性の観点から、ジオクチル錫ジラウレート、ジオクチル錫ジバーサテート、3-アミノプロピルトリメトキシシラン、テトラメチルグアニジルプロピルトリメトキシシランがより好ましく、有機スズ系化合物を非含有とし、より低毒性とすることを考慮すると、3-アミノプロピルトリメトキシシラン、テトラメチルグアニジルプロピルトリメトキシシランがより一層好ましく、組成物の硬化性の観点から、テトラメチルグアニジルプロピルトリメトキシシランが特に好ましい。
 硬化触媒の添加量は、特に限定されるものではないが、硬化速度を適切な範囲に調整して作業性を向上させることを考慮すると、式(1)で表される有機ケイ素化合物100質量部に対して、0.01~15質量部が好ましく、0.1~5質量部がより好ましい。
 さらに、本発明の組成物は、溶剤を含んでいてもよい。溶剤としては、主成分である式(1)で表される有機ケイ素化合物の溶解能を有していれば特に限定されるものではないが、その具体例としては、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、シクロヘキサン等の炭化水素系溶剤;ベンゼン、トルエン、キシレン等の芳香族系溶剤;ホルムアミド、N,N-ジメチルホルムアミド、ピロリドン、N-メチルピロリドン等のアミド系溶剤;酢酸エチル、酢酸ブチル、γ-ブチロラクトン、プロピレングリコール-1-モノメチルエーテル-2-アセタート等のエステル系溶剤;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤;ジエチルエーテル、ジブチルエーテル、シクロペンチルメチルエーテル、テトラヒドロフラン、1,4-ジオキサン等のエーテル系溶剤などが挙げられ、これらは単独で用いても、2種以上組み合わせて用いてもよい。
 これらの中でも、溶解性および揮発性等の観点から、トルエン、キシレン等の芳香族系溶剤が好ましい。
 溶剤の添加量は、式(1)で表される有機ケイ素化合物100質量部に対して、10~20,000質量部が好ましく、100~10,000質量部がより好ましい。
 なお、本発明の組成物には、使用目的に応じて、接着性改良剤、無機および有機の紫外線吸収剤、保存安定性改良剤、可塑剤、充填剤、顔料、香料等の各種添加剤を添加することができる。
 以上説明した本発明のコーティング組成物を固体基材の表面に塗布し、硬化させて被覆層を形成することで被覆固体基材が得られ、また、本発明の接着剤組成物を固体基材の表面に塗布し、さらにその上に他の固体基材を積層した後、組成物を硬化させて接着層を形成することで接着積層体が得られる。
 各組成物の塗布方法は特に限定されず、その具体例としては、スプレーコート、スピンコート、ディップコート、ローラーコート、刷毛塗り、バーコート、フローコート等の公知の方法から適宜選択して用いることができる。
 固体基材としては特に限定されず、その具体例としては、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、ポリカーボネート類およびポリカーボネートブレンド等のポリカーボネート樹脂、ポリ(メタクリル酸メチル)等のアクリル系樹脂、ポリ(エチレンテレフタレート)やポリ(ブチレンテレフタレート)、不飽和ポリエステル樹脂等のポリエステル樹脂、ポリアミド樹脂、アクリロニトリル-スチレン共重合体樹脂、スチレン-アクリロニトリル-ブタジエン共重合体樹脂、ポリ塩化ビニル樹脂、ポリスチレン樹脂、ポリスチレンとポリフェニレンエーテルのブレンド、セルロースアセテートブチレート、ポリエチレン樹脂等の有機樹脂基材;鉄板、銅板、鋼板等の金属基材;塗料塗布面;ガラス;セラミック;コンクリート;スレート板;テキスタイル;木材、石材、瓦、(中空)シリカ、チタニア、ジルコニア、アルミナ等の無機フィラー;ガラス繊維をはじめとしたガラスクロス、ガラステープ、ガラスマット、ガラスペーパー等のガラス繊維製品などが挙げられ、基材の材質および形状については特に限定されるものではない。
 本発明の組成物は、雰囲気中の水分と接触することで、式(1)で表される有機ケイ素化合物の加水分解縮合反応が進行する。雰囲気中の水分の指標としては10~100%RHの任意の湿度でよく、一般に、湿度が高い程速く加水分解が進行するため、所望により雰囲気中に水分を加えてもよい。
 硬化反応温度および時間は、使用する基材、水分濃度、触媒濃度、および加水分解性基の種類等の因子に応じて適宜変更し得る。硬化反応温度は通常、作業性等の観点から25℃付近の常温であることが好ましいが、硬化反応を促進するために、使用する基材の耐熱温度を超えない範囲内に加熱して硬化させてもよい。硬化反応時間は、通常、作業性等の観点から1分から1週間程度である。
 本発明の組成物は、常温でも良好に硬化が進行するため、特に、現場施工などで室温硬化が必須となる場合でも、数分から数時間で塗膜表面のベタツキ(タック)がなくなり、硬化性および作業性に優れているが、基材の耐熱温度を超えない範囲内に加熱処理を行っても構わない。
 以下、実施例および比較例を挙げて本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 なお、下記において、粘度は、B型回転粘度計による25℃における測定値であり、分子量は、GPC(ゲルパーミエーションクロマトグラフ)測定により求めたポリスチレン換算の数平均分子量である。
[1]有機ケイ素化合物の合成
[実施例1-1]有機ケイ素化合物1の合成
 撹拌機、還流冷却器および温度計を備えた200mLセパラブルフラスコに、数平均分子量13,600の両末端ビニル基含有ジメチルポリシロキサン化合物100g(末端ビニル基の官能基換算0.015モル)およびメルカプトメチルトリメトキシシラン2.6g(メルカプト基の官能基量0.015モル)を仕込み、90℃に加熱した。その中に、2,2’-アゾビス-2-メチルブチロニトリル0.1gを投入し、90℃にて3時間撹拌した。1H-NMR測定により原料のビニル基およびメルカプト基由来のピークが完全に消失し、代わりに目的物である有機ケイ素化合物由来のピークを検出したことを確認し、反応終了とした。
 得られた反応生成物は、無色透明液体であり、数平均分子量15,200、粘度610mPa・sであった。
[実施例1-2]有機ケイ素化合物2の合成
 撹拌機、還流冷却器および温度計を備えた200mLセパラブルフラスコに、数平均分子量13,600の両末端ビニル基含有ジメチルポリシロキサン化合物100g(末端ビニル基の官能基換算0.015モル)およびメルカプトメチルジメトキシメチルシラン2.3g(メルカプト基の官能基量0.015モル)を仕込み、90℃に加熱した。その中に、2,2’-アゾビス-2-メチルブチロニトリル0.1gを投入し、90℃にて3時間撹拌した。1H-NMR測定により原料のビニル基およびメルカプト基由来のピークが完全に消失し、代わりに目的物である有機ケイ素化合物由来のピークを検出したことを確認し、反応終了とした。
 得られた反応生成物は、無色透明液体であり、数平均分子量14,800、粘度590mPa・sであった。
[実施例1-3]有機ケイ素化合物3の合成
 撹拌機、還流冷却器および温度計を備えた200mLセパラブルフラスコに、数平均分子量13,600の両末端ビニル基含有ジメチルポリシロキサン化合物100g(末端ビニル基の官能基換算0.015モル)およびメルカプトメチルトリエトキシシラン3.2g(メルカプト基の官能基量0.015モル)を仕込み、90℃に加熱した。その中に、2,2’-アゾビス-2-メチルブチロニトリル0.1gを投入し、90℃にて3時間撹拌した。1H-NMR測定により原料のビニル基およびメルカプト基由来のピークが完全に消失し、代わりに目的物である有機ケイ素化合物由来のピークを検出したことを確認し、反応終了とした。
 得られた反応生成物は、無色透明液体であり、数平均分子量15,900、粘度550mPa・sであった。
[実施例1-4]有機ケイ素化合物4の合成
 撹拌機、還流冷却器および温度計を備えた200mLセパラブルフラスコに、数平均分子量39,900の両末端ビニル基含有ジメチルポリシロキサン化合物100g(末端ビニル基の官能基換算0.0051モル)およびメルカプトメチルトリメトキシシラン0.86g(メルカプト基の官能基量0.0051モル)を仕込み、90℃に加熱した。その中に、2,2’-アゾビス-2-メチルブチロニトリル0.1gを投入し、90℃にて3時間撹拌した。1H-NMR測定により原料のビニル基およびメルカプト基由来のピークが完全に消失し、代わりに目的物である有機ケイ素化合物由来のピークを検出したことを確認し、反応終了とした。
 得られた反応生成物は、無色透明液体であり、数平均分子量41,900、粘度11,100mPa・sであった。
[実施例1-5]有機ケイ素化合物5の合成
 撹拌機、還流冷却器、滴下ロートおよび温度計を備えた200mLセパラブルフラスコに、メルカプトメチルトリメトキシシラン72g(0.42モル)および2,2’-アゾビス-2-メチルブチロニトリル0.05gを仕込み、90℃に加熱した。その中に、1,3-ジビニルテトラメチルジシロキサン40g(0.21モル)を滴下投入し、90℃にて3時間撹拌した。1H-NMR測定により原料のビニル基およびメルカプト基由来のピークが完全に消失し、代わりに目的物である有機ケイ素化合物由来のピークを検出したことを確認し、反応終了とした。
 得られた反応生成物は、無色透明液体であり、粘度10mPa・sであった。
[実施例1-6]有機ケイ素化合物6の合成
 撹拌機、還流冷却器、滴下ロートおよび温度計を備えた200mLセパラブルフラスコに、メルカプトメチルトリメトキシシラン72g(0.42モル)および2,2’-アゾビス-2-メチルブチロニトリル0.05gを仕込み、90℃に加熱した。その中に、ジメチルジビニルシラン23.6g(0.21モル)を滴下投入し、90℃にて3時間撹拌した。1H-NMR測定により原料のビニル基およびメルカプト基由来のピークが完全に消失し、代わりに目的物である有機ケイ素化合物由来のピークを検出したことを確認し、反応終了とした。
 得られた反応生成物は、無色透明液体であり、粘度6mPa・sであった。
[実施例1-7]有機ケイ素化合物7の合成
 撹拌機、還流冷却器、滴下ロートおよび温度計を備えた200mLセパラブルフラスコに、メルカプトメチルトリメトキシシラン72g(0.42モル)および2,2’-アゾビス-2-メチルブチロニトリル0.05gを仕込み、90℃に加熱した。その中に、1,3,5,7-テトラビニルテトラメチルシクロテトラシロキサン37.9g(0.11モル)を滴下投入し、90℃にて3時間撹拌した。1H-NMR測定により原料のビニル基およびメルカプト基由来のピークが完全に消失し、代わりに目的物である有機ケイ素化合物由来のピークを検出したことを確認し、反応終了とした。
 得られた反応生成物は、無色透明液体であり、粘度40mPa・sであった。
[実施例1-8]有機ケイ素化合物8の合成
 撹拌機、還流冷却器および温度計を備えた200mLセパラブルフラスコに、数平均分子量15,400の両末端ビニル基含有ジメチルポリシロキサン化合物100g(末端ビニル基の官能基換算0.012モル)およびメルカプトメチルトリメトキシシラン2.0g(メルカプト基の官能基量0.012モル)を仕込み、90℃に加熱した。その中に、2,2’-アゾビス-2-メチルブチロニトリル0.1gを投入し、90℃にて3時間撹拌した。1H-NMR測定により原料のビニル基およびメルカプト基由来のピークが完全に消失し、代わりに目的物である有機ケイ素化合物由来のピークを検出したことを確認し、反応終了とした。
 得られた反応生成物は、無色透明液体であり、数平均分子量15,600、粘度1,200mPa・sであった。
[比較例1-1]有機ケイ素化合物9の合成
 撹拌機、還流冷却器および温度計を備えた200mLセパラブルフラスコに、数平均分子量7,600の両末端水酸基含有ポリプロピレングリコール100g(末端水酸基の官能基換算0.040モル)およびイソシアネートメチルトリメトキシシラン7.1g(イソシアネート基の官能基量0.040モル)を仕込み、80℃に加熱した。その中に、ジオクチルスズジラウレート0.1gを投入し、80℃にて3時間撹拌した。IR測定により原料のイソシアネート基由来の吸収ピークが完全に消失し、代わりにウレタン結合由来の吸収ピークを検出したことを確認し、反応終了とした。
 得られた反応生成物は、淡黄色透明液体であり、数平均分子量8,000、重合度130、粘度3,700mPa・sであった。
[比較例1-2]有機ケイ素化合物10の合成
 撹拌機、還流冷却器および温度計を備えた200mLセパラブルフラスコに、数平均分子量13,600の両末端ビニル基含有ジメチルポリシロキサン化合物100g(末端ビニル基の官能基換算0.015モル)および3-メルカプトプロピルトリメトキシシラン2.9g(メルカプト基の官能基量0.015モル)を仕込み、90℃に加熱した。その中に、2,2’-アゾビス-2-メチルブチロニトリル0.1gを投入し、90℃にて3時間撹拌した。1H-NMR測定により原料のビニル基およびメルカプト基由来のピークが完全に消失し、代わりに目的物である有機ケイ素化合物由来のピークを検出したことを確認し、反応終了とした。
 得られた反応生成物は、無色透明液体であり、数平均分子量14,600、粘度620mPa・sであった。
[比較例1-3]有機ケイ素化合物11の合成
 撹拌機、還流冷却器、滴下ロートおよび温度計を備えた200mLセパラブルフラスコに、3-メルカプトプロピルトリメトキシシラン100g(0.50モル)および2,2’-アゾビス-2-メチルブチロニトリル0.05gを仕込み、90℃に加熱した。その中に、1,3-ジビニルテトラメチルジシロキサン47.5g(0.25モル)を滴下投入し、90℃にて3時間撹拌した。1H-NMR測定により原料のビニル基およびメルカプト基由来のピークが完全に消失し、代わりに目的物である有機ケイ素化合物由来のピークを検出したことを確認し、反応終了とした。
 得られた反応生成物は、無色透明液体であり、粘度12mPa・sであった。
[比較例1-4]有機ケイ素化合物12の合成
 撹拌機、還流冷却器、滴下ロートおよび温度計を備えた200mLセパラブルフラスコに、1,3-ジビニルテトラメチルジシロキサン76.3g(0.41モル)および白金-1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体のトルエン溶液0.4g(トリメトキシシラン1molに対し白金原子として1.25×10-5mol)を仕込み、80℃に加熱した。その中に、トリメトキシシラン100g(0.82モル)を滴下投入し、80℃にて3時間撹拌した。IR測定により原料のSi-H基由来の吸収ピークが完全に消失したことを確認し、反応終了とした。
 得られた反応生成物は、無色透明液体であり、粘度5mPa・sであった。
[2]組成物および硬化被膜の作製
[実施例2-1]
 上記実施例1-1で得られた有機ケイ素化合物1 100質量部と、硬化触媒であるテトラメチルグアニジルプロピルトリメトキシシラン0.5質量部とを撹拌機を用いて湿気遮断下で均一に混合し、組成物を調製した。
 得られた組成物を、25℃、50%RHの空気下でバーコーターNo.14を用いてガラス板に塗布し、25℃、50%RHの空気下で1日間乾燥・硬化させ、硬化被膜を作製した。
[実施例2-2~2-8および比較例2-1~2-4]
 実施例2-1の有機ケイ素化合物1を、実施例1-2~1-8で得られた有機ケイ素化合物2~8、比較例1-1~1-4で得られた有機ケイ素化合物9~12にそれぞれ変更した以外は、実施例2-1と同様にして組成物および硬化被膜を作製した。
[実施例2-9]
 テトラメチルグアニジルプロピルトリメトキシシラン0.5質量部に代えて、3-アミノプロピルトリメトキシシラン5質量部を硬化触媒として用いた以外は、実施例2-1と同様にして組成物および硬化被膜を作製した。
[実施例2-10]
 テトラメチルグアニジルプロピルトリメトキシシラン0.5質量部に代えて、ジオクチル錫ジバーサテート5質量部を硬化触媒として用いた以外は、実施例2-1と同様にして組成物および硬化被膜を作製した。
[実施例2-11]
 テトラメチルグアニジルプロピルトリメトキシシラン0.5質量部に代えて、チタンジイソプロポキシビス(エチルアセトアセテート)0.5質量部を硬化触媒として用いた以外は、実施例2-1と同様にして組成物および硬化被膜を作製した。
[比較例2-5]
 実施例2-1の有機ケイ素化合物1を、下記構造式(6)で示される反応性ケイ素基を分子鎖両末端に含有するジメチルポリシロキサン化合物(数平均分子量15,000、粘度890mPa・s)に変更した以外は、実施例2-1と同様にして組成物および硬化被膜を作製した。
Figure JPOXMLDOC01-appb-C000019
(破線は結合手を表す。)
[比較例2-6]
 実施例2-1の有機ケイ素化合物1を、下記構造式(7)で示される反応性ケイ素基を分子鎖両末端に含有するジメチルポリシロキサン化合物(数平均分子量14,000、粘度610mPa・s)に変更した以外は、実施例2-1と同様にして組成物および硬化被膜を作製した。
Figure JPOXMLDOC01-appb-C000020
(破線は結合手を表す。)
[比較例2-7]
 テトラメチルグアニジルプロピルトリメトキシシラン0.5質量部に代えて、3-アミノプロピルトリメトキシシラン5質量部を硬化触媒として用いた以外は、比較例2-3と同様にして組成物および硬化被膜を作製した。
[比較例2-8]
 テトラメチルグアニジルプロピルトリメトキシシラン0.5質量部に代えて、3-アミノプロピルトリメトキシシラン5質量部を硬化触媒として用いた以外は、比較例2-4と同様にして組成物および硬化被膜を作製した。
 上記実施例2-1~2-11および比較例2-1~2-8で作製した硬化膜について下記の評価を実施した。それらの結果を表1,2に併せて示す。
〔指触乾燥時間〕
 上記塗布方法にて組成物をガラス板に塗布して得た試験片を25℃、50%RHの空気下に放置し、湿気硬化が進行することによって、塗布表面を指で圧しても塗膜が指に付着しなくなるまでの時間を示した。値が小さいほど硬化性は良好であることを示す。
〔耐黄変性〕
 上記塗布方法にてガラス板に硬化被膜を形成した試験片に対し、25℃、50%RHの空気下で殺菌灯を用いて2週間UV照射(積算照射量26,000mJ/cm3)を行った。その際の硬化被膜の黄変度合をJIS K 7373に基づき、色差計を用いてΔY
I(黄変度=黄色度YIの変化幅)で評価した。値が小さいほど耐黄変性は良好であることを示す。
 ΔYIが0.5未満であった場合には、耐黄変性に優れるものとして「○」と評価
した。ΔYIが0.5以上であった場合には「×」と評価した。
〔耐熱性〕
 上記塗布方法にてガラス板に硬化被膜を形成した試験片に対し、150℃の空気下で500時間加熱試験を行った。その際の硬化被膜の黄変度合を目視で確認した。
 黄変が観測されなかった場合には、耐熱性に優れるものとして「○」と評価した。顕著な黄変が観測された場合には「×」と評価した。
〔保存安定性〕
 各実施例および比較例で調製された調製直後の各組成物を密閉容器に入れ、70℃の温度で7日間加熱試験を行った。その際の加熱試験前後における各組成物の粘度変化率を測定した。値が小さいほど保存安定性は良好であることを示す。
 粘度変化率が1.5未満であった場合には、保存安定性に優れるものとして「○」と評価した。粘度変化率が1.5以上であった場合には「×」と評価した。
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
 表1,2に示されるように、実施例1-1~1-8で得られた有機ケイ素化合物1~8を用いた実施例2-1~2-11で作製した組成物および硬化被膜は、比較例2-1~2-8で作製した組成物および硬化被膜に比べ、硬化性、耐黄変性、耐熱性および保存安定性に優れており、各物性を両立できていることがわかる。
 一方、比較例2-1~2-8で作製した組成物および硬化被膜は、硬化性、耐黄変性、耐熱性および保存安定性の両立を実現することができていない。また、比較例2-4、2-6~2-8では、塗膜の硬化性が悪く、全く硬化が進行しなかった。
 以上説明したとおり、本発明の有機ケイ素化合物を用いれば、硬化性、耐黄変性、耐熱性および保存安定性に優れた組成物および硬化被膜を得ることができ、従来技術では困難であった、各物性の両立を達成できる。
 また、イソシアネートシランを使用しないため低毒性であり、さらには、毒性の高い有機スズ系化合物を非含有とするためにアミン系化合物を硬化触媒として用いた場合であっても、硬化性が良好な硬化性組成物を得ることができる。

Claims (16)

  1.  下記構造式(1)で示される基を1分子中に少なくとも1個含有し、ケイ素含有有機基からなる主鎖を有することを特徴とする有機ケイ素化合物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は、互いに独立して、非置換もしくは置換の炭素原子数1~10のアルキル基、または非置換もしくは置換の炭素原子数6~10のアリール基を表し、R2は、互いに独立して、非置換もしくは置換の炭素原子数1~10のアルキル基、または非置換もしくは置換の炭素原子数6~10のアリール基を表し、R3は、互いに独立して、水素原子、または非置換もしくは置換の炭素原子数1~10のアルキル基を表す。mは、1~3の数であり、nは、2以上の整数である。破線は結合手を表す。)
  2.  下記構造式(2)で表される請求項1記載の有機ケイ素化合物。
    Figure JPOXMLDOC01-appb-C000002
    (式中、R1、R2、mおよびnは、前記と同じ意味を表し、Zは、2価のケイ素含有有機基を表す。)
  3.  前記Zが、直鎖構造である請求項2記載の有機ケイ素化合物。
  4.  前記Zが、下記式(3)で表される請求項2記載の有機ケイ素化合物。
    Figure JPOXMLDOC01-appb-C000003
    (式中、R4は、互いに独立して、水素原子、非置換もしくは置換の炭素原子数1~10のアルキル基、または非置換もしくは置換の炭素原子数6~10のアリール基を表し、pは、0以上の数である。破線は結合手を表す。)
  5.  1分子中に少なくとも1個のアルケニル基を有するケイ素含有化合物と、下記式(4)で表される、メルカプト基およびアルコキシシリル基を有する化合物とを反応させることを特徴とする請求項1記載の有機ケイ素化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000004
    (式中、R1、R2およびmは、前記と同じ意味を表す。)
  6.  前記1分子中に少なくとも1個のアルケニル基を有するケイ素含有化合物が、下記式(5)で表される請求項5記載の有機ケイ素化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000005
    (式中、Zは、2価のケイ素含有有機基を表す。rは、0以上の整数を表す。)
  7.  前記Zが、下記式(3)で表される請求項6記載の有機ケイ素化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000006
    (式中、R4は、互いに独立して、水素原子、非置換もしくは置換の炭素原子数1~10のアルキル基、または非置換もしくは置換の炭素原子数6~10のアリール基を表し、pは、0以上の数である。破線は結合手を表す。)
  8.  (A)請求項1~4のいずれか1項記載の有機ケイ素化合物および(B)硬化触媒を含有する硬化性組成物。
  9.  前記(B)硬化触媒が、アミン系化合物である請求項8記載の硬化性組成物。
  10.  請求項8または9記載の硬化性組成物が硬化してなる硬化物。
  11.  (A)請求項1~4のいずれか1項記載の有機ケイ素化合物および(B)硬化触媒を含有するコーティング剤組成物。
  12.  前記(B)硬化触媒が、アミン系化合物である請求項11記載のコーティング剤組成物。
  13.  請求項11または12記載のコーティング剤組成物が硬化してなる被覆層を有する物品。
  14.  (A)請求項1~4のいずれか1項記載の有機ケイ素化合物および(B)硬化触媒を含有する接着剤組成物。
  15.  前記(B)硬化触媒が、アミン系化合物である請求項14記載の接着剤組成物。
  16.  請求項14または15記載の接着剤組成物が硬化してなる接着層を有する物品。
PCT/JP2017/018328 2017-03-09 2017-05-16 有機ケイ素化合物およびその製造方法 WO2018163446A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/487,264 US20190375769A1 (en) 2017-03-09 2017-05-16 Organosilicon compound and method for producing same
CN201780087998.5A CN110382510A (zh) 2017-03-09 2017-05-16 有机硅化合物及其制造方法
EP17899368.9A EP3594220A4 (en) 2017-03-09 2017-05-16 ORGANOSILIC COMPOUND AND METHOD OF MANUFACTURING THEREOF
KR1020197029299A KR102430744B1 (ko) 2017-03-09 2017-05-16 유기 규소 화합물 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017044933A JP6269875B2 (ja) 2017-03-09 2017-03-09 有機ケイ素化合物およびその製造方法
JP2017-044933 2017-03-09

Publications (1)

Publication Number Publication Date
WO2018163446A1 true WO2018163446A1 (ja) 2018-09-13

Family

ID=60321940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018328 WO2018163446A1 (ja) 2017-03-09 2017-05-16 有機ケイ素化合物およびその製造方法

Country Status (6)

Country Link
US (1) US20190375769A1 (ja)
EP (1) EP3594220A4 (ja)
JP (1) JP6269875B2 (ja)
KR (1) KR102430744B1 (ja)
CN (1) CN110382510A (ja)
WO (1) WO2018163446A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018186167A1 (ja) * 2017-04-07 2018-10-11 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物及び基材
JP7139995B2 (ja) * 2019-02-25 2022-09-21 信越化学工業株式会社 有機ケイ素化合物、その製造方法および硬化性組成物
US11377522B2 (en) 2019-05-14 2022-07-05 Tokyo Ohka Kogyo Co., Ltd. Silicon-containing polymer, film-forming composition, method for forming silicon-containing polymer coating, method for forming silica-based coating, and production method for silicon-containing polymer
JP7371592B2 (ja) * 2019-09-27 2023-10-31 信越化学工業株式会社 アルコキシシリル基を有するポリシロキサザン化合物およびその製造方法、並びにこれを含む組成物および硬化物
CN111269258B (zh) * 2020-03-19 2022-08-19 厦门威亮光学涂层技术有限公司 一种含硫有机硅化合物及其制备方法和用途
CN113801628A (zh) * 2021-10-20 2021-12-17 烟台德邦科技股份有限公司 一种uv固化有机硅披覆胶及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5543119A (en) 1978-09-20 1980-03-26 Sws Silicones Corp Titanium ester contained vulcanizable organopolysiloxane composition and its manufacture
JPS56501650A (ja) * 1979-12-03 1981-11-12
JPH0739547B2 (ja) 1992-01-10 1995-05-01 東レ・ダウコーニング・シリコーン株式会社 室温硬化性オルガノポリシロキサン組成物
JPH08184960A (ja) * 1994-11-02 1996-07-16 Toray Ind Inc 水なし平版印刷版原版
JP2003147208A (ja) 2001-11-14 2003-05-21 Shin Etsu Chem Co Ltd 室温硬化性オルガノポリシロキサン組成物
JP2004518801A (ja) 2001-02-20 2004-06-24 コンゾルテイウム フユール エレクトロケミツシエ インヅストリー ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 高い硬化速度を有するイソシアネート不含の発泡性混合物
JP2004526703A (ja) * 2001-02-06 2004-09-02 バイエル・クロツプサイエンス・アクチエンゲゼルシヤフト フタルアミド
JP2007091677A (ja) * 2005-09-30 2007-04-12 Shin Etsu Chem Co Ltd スルフィド鎖含有有機珪素化合物の製造方法
JP2016121075A (ja) * 2014-12-24 2016-07-07 信越化学工業株式会社 イソシアネート基含有有機ケイ素化合物、その製造方法、接着剤、粘着剤およびコーティング剤

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06293784A (ja) * 1993-02-09 1994-10-21 Cemedine Co Ltd 反応性化合物及びその製造方法
JP2998505B2 (ja) 1993-07-29 2000-01-11 富士写真光機株式会社 ラジアル超音波走査装置
WO2002102812A1 (en) * 2001-06-13 2002-12-27 Konishi Co., Ltd. Unsaturated organic compounds having hydrolyzable silicon-containing groups, process for producing the same, silicon-containing polymers and emulsions thereof
EP1421129B1 (de) * 2001-08-28 2005-06-15 Consortium für elektrochemische Industrie GmbH Einkomponentige alkoxysilanterminierte polymere enthaltende schnell härtende abmischungen
US7414086B2 (en) * 2005-05-13 2008-08-19 Shin-Etsu Chemical Co., Ltd. Room temperature-curable organopolysiloxane compositions
JP4984086B2 (ja) * 2008-05-14 2012-07-25 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物
JP5115729B2 (ja) * 2008-06-20 2013-01-09 信越化学工業株式会社 トリアルキルシリル基で保護されたアセト酢酸エステル基含有有機ケイ素化合物及びその製造方法
JP2010132865A (ja) * 2008-10-31 2010-06-17 Shin-Etsu Chemical Co Ltd 難燃性オルガノポリシロキサン組成物
JP5742421B2 (ja) * 2011-04-21 2015-07-01 公立大学法人首都大学東京 室温硬化性オルガノポリシロキサン組成物及び気体分離膜
CN103044922A (zh) * 2012-12-31 2013-04-17 上海回天化工新材料有限公司 无卤阻燃型、耐高温、快速固化的脱丙酮硅橡胶及其制备方法
JP2015182969A (ja) 2014-03-21 2015-10-22 四国化成工業株式会社 トリアゾールシラン化合物、該化合物の合成方法及びその利用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5543119A (en) 1978-09-20 1980-03-26 Sws Silicones Corp Titanium ester contained vulcanizable organopolysiloxane composition and its manufacture
JPS56501650A (ja) * 1979-12-03 1981-11-12
JPH0739547B2 (ja) 1992-01-10 1995-05-01 東レ・ダウコーニング・シリコーン株式会社 室温硬化性オルガノポリシロキサン組成物
JPH08184960A (ja) * 1994-11-02 1996-07-16 Toray Ind Inc 水なし平版印刷版原版
JP2004526703A (ja) * 2001-02-06 2004-09-02 バイエル・クロツプサイエンス・アクチエンゲゼルシヤフト フタルアミド
JP2004518801A (ja) 2001-02-20 2004-06-24 コンゾルテイウム フユール エレクトロケミツシエ インヅストリー ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 高い硬化速度を有するイソシアネート不含の発泡性混合物
JP2003147208A (ja) 2001-11-14 2003-05-21 Shin Etsu Chem Co Ltd 室温硬化性オルガノポリシロキサン組成物
JP2007091677A (ja) * 2005-09-30 2007-04-12 Shin Etsu Chem Co Ltd スルフィド鎖含有有機珪素化合物の製造方法
JP2016121075A (ja) * 2014-12-24 2016-07-07 信越化学工業株式会社 イソシアネート基含有有機ケイ素化合物、その製造方法、接着剤、粘着剤およびコーティング剤

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
See also references of EP3594220A4
SOROKIN, M. S. ET AL.: "Butylsulfanyl)ethanal and 3-(Organylsulfanyl)butanal 1,1- Dimethylhydrazones", RUSSIAN JOURNAL OF GENERAL CHEMISTRY, vol. 75, no. 6, 2005, pages 891 - 900, XP019301129 *
VORONKOV, M. G. ET AL.: "Divinyl sulfoxide Communication 7. Nucleophilic addition of triorganylsilylalkanethiols and trialkylsilylalkanols to divinyl sulfoxide", IZVESTIYA AKADEMII NAUK SSSR, SERIYA KHIMICHESKAYA, no. 4, April 1985 (1985-04-01), pages 892 - 896, XP055542539 *
VORONKOV, M. G. ET AL.: "Thermochemistry of organosilicon compounds. III. (Organylthioalkyl)trialkoxysilanes and 1- (organylthioalkyl)silatranes", JOURNAL OF ORGANOMETALLIC CHEMISTRY, vol. 359, no. 3, 1989, pages 301 - 313, XP002441460 *

Also Published As

Publication number Publication date
KR20190126846A (ko) 2019-11-12
JP2017203025A (ja) 2017-11-16
CN110382510A (zh) 2019-10-25
US20190375769A1 (en) 2019-12-12
EP3594220A4 (en) 2020-12-23
KR102430744B1 (ko) 2022-08-10
EP3594220A1 (en) 2020-01-15
JP6269875B2 (ja) 2018-01-31

Similar Documents

Publication Publication Date Title
JP6269875B2 (ja) 有機ケイ素化合物およびその製造方法
JP6930917B2 (ja) 硬化性シロキサン組成物
JP6274335B2 (ja) ポリオキシアルキレン基含有有機ケイ素化合物およびその製造方法
WO2019202796A1 (ja) 反応性ケイ素含有基を有するポリマーおよびその製造方法
JP7467891B2 (ja) オルガノポリシロキサンおよびそれを含有するコーティング用組成物
CN111607091B (zh) 有机硅化合物、其制备方法和固化性组合物
JP6642324B2 (ja) オルガノポリシロキサン化合物およびそれを含有するコーティング用組成物
JP7230878B2 (ja) 密着性組成物、被覆基材および硬化物
JP7110722B2 (ja) 含フッ素有機ケイ素化合物及びその製造方法、室温硬化性含フッ素ゴム組成物及びその硬化物並びに物品
JP7377765B2 (ja) オルガノポリシロキサン、およびそれを含有する組成物
JP6597879B2 (ja) 有機ケイ素化合物およびその製造方法
JP2022164290A (ja) オルガノポリシロキサンおよびそれを含有するコーティング用組成物
WO2023234084A1 (ja) 二成分型室温硬化性オルガノポリシロキサン組成物及び該組成物を含有する各種物品
TW201920216A (zh) 有機鈦化合物、濕氣硬化型組成物及成形體

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17899368

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197029299

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017899368

Country of ref document: EP

Effective date: 20191009