WO2018159758A1 - 光硬化性組成物、樹脂、ブロックイソシアネート、および、立体物の製造方法 - Google Patents

光硬化性組成物、樹脂、ブロックイソシアネート、および、立体物の製造方法 Download PDF

Info

Publication number
WO2018159758A1
WO2018159758A1 PCT/JP2018/007768 JP2018007768W WO2018159758A1 WO 2018159758 A1 WO2018159758 A1 WO 2018159758A1 JP 2018007768 W JP2018007768 W JP 2018007768W WO 2018159758 A1 WO2018159758 A1 WO 2018159758A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
photocurable composition
carbon atoms
meth
Prior art date
Application number
PCT/JP2018/007768
Other languages
English (en)
French (fr)
Inventor
岡田 誠司
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017140152A external-priority patent/JP7005200B2/ja
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2018159758A1 publication Critical patent/WO2018159758A1/ja
Priority to US16/554,434 priority Critical patent/US20200048404A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes

Definitions

  • the present invention relates to a photocurable composition, a resin, a blocked isocyanate, and a method for producing a three-dimensional object.
  • An optical three-dimensional modeling method for producing a desired three-dimensional object by curing a liquid photocurable composition for each layer with light such as ultraviolet rays and sequentially laminating them has been intensively studied.
  • the use of stereolithography is not limited to prototype modeling for rapid shape confirmation (rapid prototyping), but has expanded to include modeling of working models for functional verification and modeling of models (rapid tooling).
  • the use of stereolithography is spreading to real product modeling (rapid manufacturing).
  • modeling is performed by stereolithography using a photocurable composition containing an acrylic group-containing blocked isocyanate and a chain extender.
  • a method of modeling a three-dimensional object by further heat treatment is described. According to the method described in Patent Document 1, a three-dimensional object in which rigidity, strength, toughness and the like are balanced can be obtained.
  • the tensile strength (strength) is increased by applying a heat treatment after photocuring to a conventional photocurable composition such as a urethane acrylate photocurable composition.
  • a conventional photocurable composition such as a urethane acrylate photocurable composition.
  • improvement in elastic modulus (rigidity) was insufficient.
  • the present invention aims to provide a photocurable composition that can form a three-dimensional object having a large tensile strength and elastic modulus.
  • the photocurable composition as one aspect of the present invention is a photocurable composition containing a blocked isocyanate, a chain extender, and a photoradical generator, wherein the blocked isocyanate has the following general formula ( 1) ABC (1)
  • a and C each independently represent a group represented by the following formula (2), and B represents a group represented by the following formula (3).
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents an optionally substituted hydrocarbon group having 1 to 10 carbon atoms
  • L 1 represents a carbon atom.
  • the divalent hydrocarbon group of the formula 1 to 10 is represented.
  • R 3 , R 4 , and R 5 each independently represent a divalent hydrocarbon group having 1 to 20 carbon atoms that may have a substituent
  • a and b Is an integer satisfying 1 ⁇ a + b ⁇ 50. ) It is represented by.
  • the photocurable composition according to this embodiment contains a blocked isocyanate (a), a chain extender (b), and a photoradical generator (c).
  • a and C each independently represent a group represented by the following formula (2), and B represents a group represented by the following formula (3).
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents an optionally substituted hydrocarbon group having 1 to 10 carbon atoms
  • L 1 represents a substituent.
  • R 3 , R 4 , and R 5 each independently represent a divalent hydrocarbon group having 1 to 20 carbon atoms that may have a substituent
  • a and Either one of b may be 0 and is an integer that satisfies 1 ⁇ a + b ⁇ 50.
  • Block isocyanate (a) is a (meth) acrylic compound containing at least two (meth) acryloyl groups as described above.
  • (meth) acryloyl group means an acryloyl group or methacryloyl group
  • (meth) acrylic compound means an acrylic compound or a methacrylic compound.
  • the (meth) acryloyl group is a polymerizable functional group, and the blocked isocyanate (a) undergoes a polymerization reaction with radicals generated by the photoradical generator (c) described later.
  • the substituent when any of L 1 , R 2 , R 3 , R 4 , and R 5 has a substituent, the substituent is a substituent containing a carbon atom. May be. However, in that case, the atom to which the substituent is bonded to each of L 1 , R 2 , R 3 , R 4 , and R 5 is an atom other than a carbon atom. In that case, the number of carbon atoms contained in the substituent is not included in the number of carbon atoms of the “hydrocarbon group”.
  • R 2 is preferably a group selected from a ter-butyl group, a ter-pentyl group, and a ter-hexyl group. This is preferable because the temperature (deblocking temperature) when the photocurable composition is photocured and then subjected to a heat treatment for deblocking can be reduced. Further, by adopting any one group of the R 2, it is possible to facilitate the synthesis of blocked isocyanate (a). Further, by adopting any one group of the R 2, to obtain the synthesis of blocked isocyanate (a) a low cost.
  • L 1 is preferably an ethylene group or a propylene group from the viewpoint of availability and ease of synthesis.
  • R 3 and R 4 are each independently any one of the following formulas (A-1) to (A-9).
  • e is an integer of 1 to 10
  • f or g may be 0, and is an integer satisfying 1 ⁇ f + g ⁇ 10 is there.
  • h or i may be 0, and is an integer that satisfies 1 ⁇ h + i ⁇ 10.
  • a and C are preferably the same. That is, the blocked isocyanate (a) is preferably represented by the following general formula (4). Thereby, the synthesis
  • block isocyanate (a) include the following structures.
  • the blocked isocyanate (a) contained in the photocurable composition may be one type of compound or a plurality of types of compounds.
  • the blending ratio in the photocurable composition of the blocked isocyanate (a) is calculated based on the total mass of the multiple types of compounds.
  • the blending ratio of the blocked isocyanate (a) in the photocurable composition is preferably 10% by mass or more and 90% by mass or less, and preferably 30% by mass or more and 70% by mass when the entire photocurable composition is 100% by mass. It is more preferable that the amount is not more than mass%.
  • the blending ratio is less than 10% by mass, the toughness of a cured product obtained by curing the photocurable composition becomes low, and when the blending ratio exceeds 90% by mass, the viscosity of the photocurable composition is high. It becomes difficult to handle.
  • This step is a step of reacting polycarbonate diol and diisocyanate. Thereby, the diisocyanate which has a polycarbonate skeleton is obtained.
  • the polycarbonate diol used in this step can be synthesized by, for example, a transesterification reaction between a carbonate compound and a diol.
  • carbonate compounds used to synthesize polycarbonate diol include dialkyl carbonates such as dimethyl carbonate and diethyl carbonate, alkylene carbonates such as ethylene carbonate and propylene carbonate, diphenyl carbonate, dinaphthyl carbonate, dianthryl carbonate, and diphenanthryl.
  • dialkyl carbonates such as dimethyl carbonate and diethyl carbonate
  • alkylene carbonates such as ethylene carbonate and propylene carbonate
  • diphenyl carbonate, dinaphthyl carbonate, dianthryl carbonate, and diphenanthryl examples include diaryl carbonates such as carbonate, diindanyl carbonate, and tetrahydronaphthyl carbonate, but are not limited thereto. Two or more of these carbonate compounds may be mixed and used.
  • diol used for synthesizing the polycarbonate diol examples include ethylene glycol, diethylene glycol, propylene glycol, 1,4-butanediol, 1,3-butanediol, 1,5-pentanediol, neopentyl glycol, 3-methyl-1 , 5-pentanediol, 1,6-hexanediol, 1,4-cyclohexanedimethanol, 2-methyl-1,8-octanediol, 1,9-nonanediol and other aliphatic diols, cyclohexanediol, hydrogenated bisphenol -A, hydrogenated bisphenol-F, hydrogenated xylylene cholole, and other alicyclic diols, bisphenol-A, bisphenol-F, 4,4'-biphenol, xylylene glycol, and other aromatic diols, etc. But only It is not. Two or more of these dio
  • the number average molecular weight M n of the polycarbonate diol is preferably 100 or more and 5000 or less.
  • the number average molecular weight Mn of the polycarbonate diol is less than 100, the molecular weight of the finally obtained blocked isocyanate is decreased, and the elastic modulus and tensile strength of the three-dimensional product obtained by curing the photocurable composition are decreased. There is a case.
  • the number average molecular weight Mn of polycarbonate diol exceeds 5000, the molecular weight of the finally obtained blocked isocyanate will become large, the viscosity of a photocurable composition may become high, and workability
  • diisocyanates used in this step include aliphatic diisocyanates such as trimethylene diisocyanate, 1,2-propylene diisocyanate, butylene diisocyanate, hexamethylene diisocyanate, pentamethylene diisocyanate, trimethylhexamethylene diisocyanate, cyclohexane diisocyanate, methylcyclohexane diisocyanate, 3- Cycloaliphatic diisocyanates such as isocyanate methyl-3,5,5-trimethylcyclohexyl isocyanate (isophorodiisocyanate), methylene bis (cyclohexyl isocyanate) or dicyclohexylmethane diisocyanate, bis (isocyanate methyl) cyclohexane, norbornane diisocyanate, phenylene diisocyanate, Li diisocyanate, 4,4'-diphenyl diisocyanate, 1,5-naphthalen
  • the polycarbonate diol and the diisocyanate are preferably reacted in a solvent.
  • the said solvent will not be specifically limited if a polycarbonate diol and diisocyanate melt
  • dialkyl ethers such as diethyl ether and dipropyl ether, cyclic ethers such as 1,4-dioxane and tetrahydrofuran, ketones such as acetone, methyl ethyl ketone, diisopropyl ketone and isobutyl methyl ketone, methyl acetate and ethyl acetate
  • esters such as butyl acetate
  • hydrocarbons such as toluene, xylene and ethylbenzene
  • halogen solvents such as methylene chloride, chloroform, carbon tetrachloride, tetrachloroethane, trichloroethane and chlorobenzene, and
  • the ratio of the number of moles of diisocyanate to the number of moles of polycarbonate diol to be reacted in this step is preferably 1 or more and 20 or less, and more preferably 3 or more and 10 or less.
  • the ratio is less than 1, the ratio of the formation of polyurethane by the polyaddition reaction of diisocyanate and polycarbonate diol, which is a side reaction, increases, and the yield of diisocyanate having the target polycarbonate skeleton decreases. If the ratio is greater than 20, unreacted diisocyanate remains excessively after the reaction, and it may be difficult to remove the unreacted diisocyanate.
  • This step is preferably performed in an inert atmosphere such as nitrogen, helium or argon. Further, this step is preferably performed at 0 ° C. or higher and 150 ° C. or lower, and more preferably performed at 30 ° C. or higher and 100 ° C. or lower. Moreover, you may perform this process under recirculation
  • an inert atmosphere such as nitrogen, helium or argon.
  • this step may be performed in the presence of a catalyst.
  • the catalyst include, for example, organic tin compounds such as tin octylate, dibutyltin diacetate, dibutyltin dilaurate and 2-ethylhexanetin, naphthenic acid metal salts such as copper naphthenate, zinc naphthenate and cobalt naphthenate, triethylamine, benzyl And tertiary amines such as dimethylamine, pyridine, N, N-dimethylpiperazine, and triethylenediamine.
  • These catalysts may be used alone or in combination of two or more.
  • the catalyst may be used in an amount of 0.001% by mass to 1% by mass with respect to 100% by mass of the total amount of polycarbonate diol.
  • the diisocyanate having a polycarbonate skeleton obtained in this step can be separated and purified by a conventional separation method, for example, separation means such as reprecipitation with a poor solvent, concentration and filtration, or a separation means combining these.
  • Step (II) a step of reacting a blocking agent with a diisocyanate having a polycarbonate skeleton obtained in step (I)
  • This step is a step of reacting the blocking agent with the diisocyanate having the polycarbonate skeleton obtained in step (I).
  • the blocked isocyanate (a) according to the present embodiment is obtained.
  • the blocking agent is a compound capable of protecting an active isocyanate group by reacting with an isocyanate group (—NCO) of diisocyanate.
  • Isocyanate groups protected by a blocking agent are called blocked isocyanate groups or blocked isocyanate groups. Since the blocked isocyanate group is protected by the blocking agent, it can be kept stable in a normal state.
  • the blocking agent is dissociated (deblocked) from the blocked isocyanate group, and the original isocyanate group can be regenerated.
  • the blocking agent used in this step is not particularly limited as long as it is a (meth) acrylic compound having an amino group, but ter-butylaminoethyl (meth) acrylate, ter-pentylaminoethyl (meth) acrylate, ter-hexyl.
  • a compound selected from aminoethyl (meth) acrylate and ter-butylaminopropyl (meth) acrylate is preferable. Thereby, the deblocking temperature of blocked isocyanate can be lowered.
  • this step it is preferable to react a blocking agent and a diisocyanate having a polycarbonate diol skeleton in a solvent.
  • the solvent is not particularly limited as long as the blocking agent and the diisocyanate having a polycarbonate skeleton are dissolved. Specifically, those described in the description of the step (I) can be used.
  • This step is preferably performed in an inert atmosphere such as nitrogen, helium or argon. Further, this step is preferably performed at 0 ° C. or higher and 150 ° C. or lower, more preferably 30 ° C. or higher and 80 ° C. or lower. Moreover, you may perform this process under recirculation
  • this step may be performed in the presence of a catalyst.
  • a catalyst those described in the description of the step (I) can be used.
  • a polymerization inhibitor may be used for the purpose of suppressing the polymerization reaction of the (meth) acryloyl group of the blocking agent.
  • Specific examples include benzoquinone, hydroquinone, catechol, diphenylbenzoquinone, hydroquinone monomethyl ether, naphthoquinone, t-butylcatechol, t-butylphenol, dimethyl-t-butylphenol, t-butylcresol, dibutylhydroxytoluene and phenothiazine.
  • the blocked isocyanate obtained in this step can be separated and purified by the same method as in step (I).
  • the chain extender (b) is a compound having at least two active hydrogens that react with an isocyanate group formed by deblocking the blocked isocyanate group of the blocked isocyanate (a).
  • the chain extender (b) preferably contains a compound having at least two functional groups selected from the group consisting of a hydroxyl group, an amino group, and a thiol group in one molecule.
  • the chain extender (b) is at least selected from the group consisting of a polyol having at least two hydroxyl groups, a polyamine having at least two amino groups, and a polythiol having at least two thiol groups. It is more preferable to contain one.
  • the chain extender (b) is preferably a low molecular compound.
  • the molecular weight of the chain extender (b) is preferably 500 or less, and more preferably 300 or less.
  • an isocyanate group and a chain extender generated by deblocking when the photocurable composition is photocured and then heat-treated as will be described later. (B) can be reacted efficiently.
  • chain extender (b) examples include ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, Linear diols such as 1,9-nonanediol and 1,10-decanediol; 2-methyl-1,3-propanediol, 2,2-dimethyl-1,3-propanediol, 2,2-diethyl- 1,3-propanediol, 2-methyl-2-propyl-1,3-propanediol, 2,4-heptanediol, 1,4-dimethylolhexane, 2-ethyl-1,3-hexanediol, 2, 2,4-trimethyl-1,3-pentanediol, 2-methyl-1,8-octanediol, 2-butyl
  • 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol are preferable in that the balance of the physical properties of the cured product described later is preferable, and a large amount can be obtained industrially at low cost.
  • the ratio of the number of moles of chain extender (b) to the number of moles of blocked isocyanate (a) is 0.1 or more and 5 or less. It is preferably 0.5 or more and 3 or less.
  • the ratio is less than 0.1, the efficiency of the reaction between the isocyanate group and the chain extender (b) is low, and various three-dimensional machines finally obtained by heat treatment after photocuring There is a tendency for the characteristics to deteriorate.
  • the ratio is greater than 5, unreacted excess chain extender (b) remains inside the three-dimensional object, and various mechanical properties of the three-dimensional object finally obtained by heat treatment after photocuring are deteriorated. Tend to.
  • the photoradical generator (c) is a compound that generates a radical that is a polymerization factor by receiving active energy rays such as light having a predetermined wavelength.
  • the photo radical generator (c) may be a compound that decomposes by receiving active energy rays to generate radicals.
  • the photoradical generator is a photopolymerization initiator that generates radicals by active energy rays such as light (infrared rays, visible rays, ultraviolet rays, far ultraviolet rays, charged particle rays such as X-rays, electron beams, radiation, etc.). It is an agent.
  • the photoradical generator (c) include benzoin, benzoin monomethyl ether, benzoin isopropyl ether, acetoin, benzyl, benzophenone, p-methoxybenzophenone, diethoxyacetophenone, benzyldimethylketal, Carbonyl such as 2,2-diethoxyacetophenone, 1-hydroxycyclohexyl phenyl ketone, methylphenylglyoxylate, ethylphenylglyoxylate, 2-hydroxy-2-methyl-1-phenylpropan-1-one Compounds, sulfur compounds such as tetramethylthiuram monosulfide and tetramethylthiuram disulfide, and acylphosphine oxides such as 2,4,6-trimethylbenzoyldiphenylphosphine oxide. To but are not limited to.
  • IRGACURE series such as IRGACURE 184 and IRGACURE 819
  • DAROCUR series such as DAROCUR 1173 and DAROCUR TPO (above, manufactured by BASF)
  • KAYACURE DETX-S KAYACURE CTX
  • KAYACURE CTX KAYACURE CTX
  • KAYACURE CTX KAYACURE CTX
  • the addition amount of the photo radical generator is preferably 0.05% by mass or more and 20% by mass or less, and 0.1% by mass or more and 5% by mass when the entire photocurable composition is 100% by mass. The following is more preferable.
  • the addition amount is less than 0.05% by mass, the radicals to be generated are insufficient, and the polymerization conversion rate of the photocurable composition is reduced.
  • the photocurable composition is obtained by photocuring and then heat-treating.
  • the strength of the three-dimensional object is insufficient.
  • the added amount exceeds 30% by mass, most of the light irradiated to the photocurable composition is absorbed by the excessive photoradical generator (c), and light does not reach the inside of the curable composition. Sometimes. Therefore, there exists a possibility that the polymerization conversion rate of the photocurable composition inside a photocurable composition may fall.
  • the photocurable composition according to this embodiment may further contain a reactive diluent (d).
  • a reactive diluent (d) By including the reactive diluent (d) in the photocurable composition, the viscosity of the photocurable composition can be reduced. Moreover, the mechanical characteristic and thermal characteristic of the hardened
  • the reactive diluent (d) is preferably a monomer and / or oligomer having a radical and / or cationic polymerizable group.
  • Monomers having radical polymerizable groups include (meth) acrylate monomers, styrene monomers, acrylonitrile, vinyl ester monomers, N-vinyl pyrrolidone, acrylamide monomers, conjugated diene monomers, vinyl ketone monomers, vinyl halides, And vinylidene halide monomers.
  • Examples of the monomer having a cationic polymerizable group include epoxy monomers, oxetane monomers, vinyl ether monomers, and the like.
  • (meth) acrylate monomers having the same (meth) acryloyl group as the blocked isocyanate (a) are preferable.
  • examples of the (meth) acrylate monomer include monofunctional (meth) acrylate, bifunctional (meth) acrylate, trifunctional or higher (meth) acrylate, urethane (meth) acrylate oligomer, polyester (meth) acrylate oligomer, and the like. be able to.
  • (Meth) acrylate monomers include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, (meth ) Isobutyl acrylate, tert-butyl (meth) acrylate, n-pentyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, n-heptyl (meth) acrylate, (meth ) N-octyl acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, isodecyl
  • urethane (meth) acrylate oligomers examples include polycarbonate urethane (meth) acrylate, polyester urethane (meth) acrylate, polyether urethane (meth) acrylate, caprolactone urethane (meth) acrylate, and the like. Not done.
  • the urethane (meth) acrylate oligomer can be obtained, for example, by a reaction between an isocyanate compound obtained by reacting a polyol and diisocyanate and a (meth) acrylate monomer having a hydroxyl group.
  • the polyol examples include polycarbonate diol, polyester polyol, polyether polyol, and polycaprolactone polyol.
  • the polyester acrylate oligomer is obtained, for example, by obtaining a polyester oligomer having hydroxyl groups at both ends by condensation of polycarboxylic acid and polyol, and then esterifying the hydroxyl groups at both ends with acrylic acid.
  • the reactive diluent (d) may be added in any amount so that the viscosity and curing speed of the photocurable composition and the mechanical and thermal properties of the cured product become desired values. May be added.
  • Photoacid generator (e) When the photocurable composition according to this embodiment contains a monomer or oligomer having a cationic polymerizable group as the reactive diluent (d), it further contains a photoacid generator (e). It may be.
  • photoacid generator (e) examples include trichloromethyl-s-triazines, sulfonium salts and iodonium salts, quaternary ammonium salts, diazomethane compounds, imide sulfonate compounds, oxime sulfonate compounds, and the like. However, it is not limited to these.
  • the photocurable composition according to the present embodiment if necessary, colorants such as pigments and dyes, antifoaming agents, leveling agents, thickeners, flame retardants, as long as the effects of the present invention are not impaired.
  • colorants such as pigments and dyes, antifoaming agents, leveling agents, thickeners, flame retardants, as long as the effects of the present invention are not impaired.
  • 1 type of additives such as antioxidants, inorganic fillers (crosslinked polymer particles, silica, glass powder, ceramics powder, metal powders, etc.) and modifying resins (thermoplastic resins, thermoplastic resin particles, rubber particles, etc.) Or you may contain 2 or more types in an appropriate amount.
  • the photocurable composition according to this embodiment may contain a photoinitiator or a sensitizer in addition to the photoradical generator (c) as necessary.
  • a photoinitiator or a sensitizer in addition to the photoradical generator (c) as necessary.
  • the photoinitiator aid or sensitizer include, but are not limited to, benzoin compounds, acetophenone compounds, anthraquinone compounds, thioxanthone compounds, ketal compounds, benzophenone compounds, tertiary amine compounds, and xanthone compounds.
  • FIG. 1 is a diagram schematically showing a reaction scheme when the photocurable composition according to this embodiment is cured by irradiating light and then subjected to heat treatment.
  • the photoradical generator (c) in the photocurable composition When the photocurable composition according to this embodiment is irradiated with light having a predetermined wavelength (for example, ultraviolet rays), the photoradical generator (c) in the photocurable composition generates radicals. Then, the (meth) acryloyl group possessed by the blocked isocyanate (a) undergoes a polymerization reaction and solidifies.
  • the photocurable composition further contains a reactive diluent (d) described later, not only the polymerization reaction between the blocked isocyanates (a) but also the blocked isocyanate (a) and the reactive diluent. The polymerization reaction with (d) also proceeds. Thereby, a photocured material as schematically shown in FIG. 1B is generated.
  • a cured product obtained by a polymerization reaction of a (meth) acryloyl group generally has a high crosslinking density and tends to have a low tensile strength.
  • the crosslinking density is reduced due to deblocking as described above.
  • a urethane bond or a urea bond produces
  • the tensile strength can be increased as compared with the conventional cured product.
  • the photocurable composition according to this embodiment contains a blocked isocyanate (a).
  • the blocked isocyanate (a) has a polycarbonate structure containing a plurality of carbonate groups (—O— (C ⁇ O) —O—) in the molecular structure as represented by the above formula (3). Therefore, the cured product obtained by heat-curing the photocurable composition according to the present embodiment after the photocurable composition also contains the above-described polycarbonate structure therein. For this reason, according to the photocurable composition which concerns on this embodiment, the solid thing which has high tensile strength and elastic modulus can be modeled by the optical modeling method.
  • the photocurable composition which concerns on this embodiment can be used suitably for the manufacturing method of the solid thing by the optical three-dimensional modeling method (optical modeling method).
  • optical modeling method optical modeling method
  • the manufacturing method of the three-dimensional object which concerns on this embodiment has the process of modeling a modeling object by the optical modeling method, and the process of heat-processing the said modeling object.
  • This step includes a step of selectively irradiating the photocurable composition with active energy rays based on slice data of a three-dimensional object to be created to cure the photocurable composition layer by layer.
  • an active energy ray irradiated to a photocurable composition in this process if it is an active energy ray which can harden the photocurable composition which concerns on this embodiment.
  • Specific examples of the active energy rays include electromagnetic waves such as ultraviolet rays, visible rays, infrared rays, X rays, gamma rays and laser rays, and particle rays such as alpha rays, beta rays and electron rays.
  • ultraviolet rays are most preferable from the viewpoint of the absorption wavelength of the photoradical generator (c) to be used and the cost of equipment installation.
  • the exposure amount is not particularly limited, preferably not 0.001J / cm 2 or more 10J / cm 2 or less. If it is less than 0.001 J / cm 2 , the photocurable composition may not be sufficiently cured, and if it exceeds 10 J / cm 2 , the irradiation time becomes longer and the productivity is lowered.
  • the method of irradiating the photocurable composition with active energy rays is not particularly limited.
  • the following method can be employed.
  • As a first method there is a method of using two-dimensionally scanning light with respect to the photocurable composition using light condensed in a spot shape like laser light.
  • the two-dimensional scanning may be a point drawing method or a line drawing method.
  • As the second method there is a surface exposure method in which light is applied to the shape of the cross-sectional data using a projector or the like.
  • the active energy rays may be irradiated in a planar manner through a planar drawing mask formed by arranging a plurality of micro light shutters such as a liquid crystal shutter or a digital micromirror shutter.
  • the surface of the obtained shaped object may be washed with a cleaning agent such as an organic solvent.
  • a cleaning agent such as an organic solvent.
  • heat treatment is performed on a modeled object obtained by the optical modeling method to advance deblocking as described above to reduce the crosslink density and to generate a urethane bond or a urea bond. Thereby, a three-dimensional object with large tensile strength and elastic modulus is formed.
  • the heat treatment temperature in this step is not particularly limited as long as it is a temperature at which deblocking of the block portion in the molded article proceeds, but is preferably 50 ° C. or higher and 200 ° C. or lower. More preferably, it is 100 degreeC or more and 150 degrees C or less. If it is lower than 50 ° C., deblocking does not proceed, and the effect of improving toughness may not be sufficiently obtained. When it exceeds 200 ° C., the resin is deteriorated, and various mechanical properties of the three-dimensional object may be lowered.
  • the heat treatment time in this step is not particularly limited as long as the deblocking of the block part in the shaped article proceeds sufficiently, but is preferably 0.5 hours or more and 10 hours or less. If it is shorter than 0.5 hour, deblocking does not proceed, and the effect of improving toughness may not be sufficiently obtained. If it is longer than 10 hours, it is disadvantageous from the viewpoints of reduction in various mechanical properties of the three-dimensional object due to deterioration of the resin and productivity.
  • the resin (photocured product) according to the present embodiment is a solid resin obtained by irradiating the above-mentioned photocurable composition with active energy rays such as light having a predetermined wavelength.
  • the resin (photocured product) according to this embodiment includes a repeating structural unit represented by the following general formula (5).
  • R 11 represents a hydrogen atom or a methyl group
  • R 12 represents an optionally substituted hydrocarbon group having 1 to 10 carbon atoms
  • L 1 represents 1 carbon atom.
  • R 13 , R 14 , and R 15 each independently represents a divalent hydrocarbon group having 1 to 20 carbon atoms that may have a substituent.
  • a and b may be 0, and are integers satisfying 1 ⁇ a + b ⁇ 50.
  • R 12 is preferably a group selected from a ter-butyl group, a ter-pentyl group, and a ter-hexyl group. This is preferable because the temperature (deblocking temperature) when the photocurable composition is photocured and then subjected to a heat treatment for deblocking can be reduced.
  • L 1 is preferably an ethylene group or a propylene group from the viewpoint of availability and ease of synthesis.
  • R 13 and R 14 are preferably each independently any one of the following formulas (A-1) to (A-9).
  • e is an integer of 1 to 10
  • f or g may be 0, and is an integer satisfying 1 ⁇ f + g ⁇ 10 is there.
  • h or i may be 0, and is an integer that satisfies 1 ⁇ h + i ⁇ 10.
  • the resin (photocured product) according to this embodiment preferably contains a chain extender (b).
  • the resin (photocured product) according to this embodiment can be subjected to heat treatment to be deblocked to reduce the crosslinking density.
  • the isocyanate group regenerated by deblocking can react with the chain extender (b) contained in the resin to form a urethane bond or a urea bond.
  • polyurethane or polyurea is produced in the resin.
  • the elastic modulus and tensile strength can be increased.
  • the resin (photo-thermoset) according to the present embodiment is a solid resin obtained by heat-treating the resin (photocured product) according to the second embodiment.
  • the resin (photo-thermoset) according to this embodiment contains a repeating structural unit represented by the following general formula (6) and a repeating structural unit represented by the following general formula (7).
  • R 21 represents a hydrogen atom or a methyl group
  • R 22 represents a hydrocarbon group having 1 to 10 carbon atoms
  • L 1 is a divalent hydrocarbon group having 1 to 10 carbon atoms. Represents.
  • R 23 , R 24 , R 25 , and R 26 each independently represents a divalent hydrocarbon group having 1 to 20 carbon atoms that may have a substituent, And b may be either 0 or an integer satisfying 1 ⁇ a + b ⁇ 50, X 1 and X 2 are each independently O (oxygen atom), S (sulfur atom), and NH (imino group). Represents one of these.)
  • the use of the blocked isocyanate, the photocurable resin, and the cured product according to the present embodiment is not limited, but includes optical three-dimensional modeling resin, sports equipment, medical / nursing goods, industrial machinery / equipment, precision equipment, electricity -It can be used for various applications such as electronic equipment, electrical / electronic parts, building materials.
  • the sample was measured by the ATR method (total reflection measurement method) using a Fourier transform infrared spectrometer (Spectrum One manufactured by Perkin Elmer), and the vertical axis was the absorbance, and the presence or absence of a peak near 2260 cm ⁇ 1 derived from the isocyanate group was confirmed. did.
  • a cured product having a thickness of about 300 ⁇ m was punched out into a No. 8 type dumbbell to prepare a test piece.
  • This test piece was measured according to JIS K 7127 using a tensile tester (trade name “Strograph EII” manufactured by Toyo Seiki Seisakusho) at a test temperature of 23 ° C. and a tensile speed of 10 mm / min. Tensile strength and tensile modulus were measured.
  • the photocurable composition 1 was poured between two quartz glasses having a gap formed by a 300 ⁇ m spacer.
  • ultraviolet rays 7 mW / cm 2 for 120 seconds (total energy 840 mJ / cm 2 ) with an ultraviolet irradiation machine (trade name, UV LIGHT SOURCE EX250, manufactured by HOYA-SCHOTT)
  • total energy 840 mJ / cm 2 total energy 840 mJ / cm 2
  • an ultraviolet irradiation machine trade name, UV LIGHT SOURCE EX250, manufactured by HOYA-SCHOTT
  • the obtained photocured product was placed in an oven at 125 ° C. and heat-treated for 4 hours to obtain a photo-thermoset 1.
  • Example 2 ⁇ Preparation of photocurable composition 2> A photocurable composition 2 of Example 2 was prepared according to the following formulation.
  • the photocurable composition 2 was poured between two quartz glasses having a gap formed by a 300 ⁇ m spacer.
  • the photocurable composition 2 was irradiated with ultraviolet rays in the same manner as in Example 1 to obtain a photocured product.
  • the obtained photocured product was put in an oven at 125 ° C. and heat-treated for 4 hours to obtain a photo-thermoset 2.
  • the photocurable composition 3 was poured between two quartz glasses having a gap formed by a 300 ⁇ m spacer.
  • the photocurable composition 3 was irradiated with ultraviolet rays in the same manner as in Example 1 to obtain a photocured product.
  • the obtained photocured product was placed in an oven at 125 ° C. and heat-treated for 4 hours to obtain a photo-thermoset 3.
  • reaction solution was allowed to cool to room temperature, and this solution was added to vigorously stirred hexane (4 L), stirred as it was for 15 minutes, allowed to stand for 15 minutes, and the upper layer (hexane layer) was removed by decantation. This operation was further repeated twice, and the lower layer (intermediate layer) was concentrated to obtain 170 g of polyTHF diisocyanate 2.
  • the photocurable composition 4 was poured between two pieces of quartz glass having a gap formed by a 300 ⁇ m spacer.
  • the photocurable composition 4 was irradiated with ultraviolet rays in the same manner as in Example 1 to obtain a photocured product.
  • the obtained photocured product was placed in an oven at 125 ° C. and heat-treated for 4 hours to obtain a photo-thermoset 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

ブロックイソシアネートと、鎖延長剤と、光ラジカル発生剤と、を含有する光硬化性組成物であって、 前記ブロックイソシアネートが、下記一般式(1) A-B-C・・・(1) (式(1)中、AおよびCは各々独立して、下記式(2)で表される基を表し、Bは下記式(3)で表される基を表す。 ここで、式(2)中、R1は水素原子またはメチル基を表し、R2は置換基を有していてもよい炭素数1から10の炭化水素基を表し、L1は置換基を有していてもよい炭素数1から10の2価の炭化水素基を表す。また、式(3)中、R3、R4、およびR5は各々独立に、置換基を有していてもよい炭素数1から20の2価の炭化水素基を表し、aおよびbはいずれか一方は0でもよい、1≦a+b≦50を満たす整数である。) で表されることを特徴とする。

Description

光硬化性組成物、樹脂、ブロックイソシアネート、および、立体物の製造方法
 本発明は、光硬化性組成物、樹脂、ブロックイソシアネート、および、立体物の製造方法に関する。
 液状の光硬化性組成物を紫外線等の光によって層毎に硬化させ、それを順次積層することにより、所望の立体物を作製する光学的立体造形法(光造形法)が鋭意研究されている。光造形法の用途は形状確認のための試作品の造形(ラピッドプロトタイピング)にとどまらず、機能性検証のためのワーキングモデルの造形や型の造形(ラピッドツーリング)などへと広がってきている。また、光造形法の用途は実製品の造形(ラピッドマニュファクチャリング)にまで広がりつつある。
 このような背景から、光造形法に用いられる光硬化性組成物に対する要求は高度化してきており、汎用のエンジニアリングプラスチックに匹敵するような高い機械特性(剛性や強度など)を有する立体物を造形可能な光硬化性組成物が求められている。
 国際公開第2015/200201号には、アクリル基含有ブロックイソシアネートと鎖延長剤とを含有する光硬化性組成物を用いて光造形法によって造形(光硬化)を行い、得られた光硬化物に対してさらに熱処理を施すことで立体物を造形する方法が記載されている。特許文献1に記載の方法によれば、剛性や強度、靱性などのバランスのとれた立体物が得られる。
国際公開第2015/200201号
 特許文献1に記載の光硬化性組成物では、光硬化後に熱処理を施すことでウレタンアクリレート系光硬化性組成物などの従来の光硬化性組成物よりも引張り強さ(強度)を大きくすることができるものの、弾性率(剛性)の向上が不十分であった。
 そこで本発明では、上述の課題に鑑み、引張り強さと弾性率の大きな立体物を造形可能な光硬化性組成物を提供することを目的とする。
 本発明の一側面としての光硬化性組成物は、ブロックイソシアネートと、鎖延長剤と、光ラジカル発生剤と、を含有する光硬化性組成物であって、前記ブロックイソシアネートが、下記一般式(1)
A-B-C・・・(1)
 (式(1)中、AおよびCは各々独立して、下記式(2)で表される基を表し、Bは下記式(3)で表される基を表す。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
 ここで、式(2)中、Rは水素原子またはメチル基を表し、Rは置換基を有していてもよい炭素原子数1から10の炭化水素基を表し、Lは炭素原子数1から10の2価の炭化水素基を表す。また、式(3)中、R、R、およびRは各々独立に、置換基を有していてもよい炭素原子数1から20の2価の炭化水素基を表し、aおよびbはいずれか一方は0でもよい、1≦a+b≦50を満たす整数である。)
で表されることを特徴とする。
 本発明によれば、引張り強さと弾性率の大きな立体物を造形可能な光硬化性組成物を提供することができる。
本実施形態に係る光硬化性組成物に光を照射して硬化させ、次いで熱処理を施したときの反応スキームを模式的に示す図である。
 以下、本発明の実施の形態について説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施の形態に対して適宜変更、改良等が加えられたものも本発明の範囲に含まれる。
 (第1の実施形態)
 本実施形態に係る光硬化性組成物は、ブロックイソシアネート(a)と、鎖延長剤(b)と、光ラジカル発生剤(c)と、を含有する。
 以下、本実施形態に係る光硬化性組成物に含有される各成分について、詳細に説明する。
 [ブロックイソシアネート(a)]
 ブロックイソシアネート(a)は、下記一般式(1)で表される。
A-B-C・・・(1)
 (式(1)中、AおよびCは各々独立して、下記式(2)で表される基を表し、Bは下記式(3)で表される基を表す。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 ここで、式(2)中、Rは水素原子またはメチル基を表し、Rは置換基を有していてもよい炭素原子数1から10の炭化水素基を表し、Lは置換基を有していてもよい炭素原子数1から10の2価の炭化水素基を表す。また、式(3)中、R、R、およびRは各々独立して、置換基を有していてもよい炭素原子数1から20の2価の炭化水素基を表し、aおよびbは、いずれか一方は0でもよい、1≦a+b≦50を満たす整数である。)
 ブロックイソシアネート(a)は、上記のとおり、(メタ)アクリロイル基を少なくとも2つ含む(メタ)アクリル化合物である。ここで、本明細書において「(メタ)アクリロイル基」とはアクリロイル基またはメタクリロイル基を意味し、「(メタ)アクリル化合物」とはアクリル化合物またはメタクリル化合物を意味する。(メタ)アクリロイル基は重合性官能基であり、ブロックイソシアネート(a)は、後述する光ラジカル発生剤(c)により発生されたラジカルによって重合反応する。
 式(2)および式(3)において、L、R、R、R、およびRのいずれかが置換基を有する場合には、当該置換基は炭素原子を含む置換基であってもよい。ただしその場合、当該置換基がL、R、R、R、およびRのそれぞれと結合する原子は炭素原子以外の原子である。またその場合、置換基に含まれる炭素原子の数は「炭化水素基」の炭素原子数には含めないものとする。
 式(2)中、Rはter‐ブチル基、ter‐ペンチル基、および、ter‐ヘキシル基から選択される基であることが好ましい。これにより、光硬化性組成物を光硬化させた後に熱処理を施して脱ブロック化する際の温度(脱ブロック化温度)を低下させることができるため好ましい。また、Rとして上記のいずれかの基を採用することで、ブロックイソシアネート(a)の合成を容易にすることができる。また、Rとして上記のいずれかの基を採用することで、ブロックイソシアネート(a)の合成を低コストにすることができる。
 式(2)中、Lは入手や合成のし易さの観点からエチレン基またはプロピレン基であることが好ましい。
 式(3)中、RおよびRは各々独立に、下記式(A-1)~(A-9)のいずれかであることが好ましい。これにより、後述するように光硬化性組成物を光硬化させた後に熱処理して得られる硬化物の弾性率と引張り強さをさらに高くすることできる。
Figure JPOXMLDOC01-appb-C000013
 ここで、式(A-1)中、eは1から10の整数であり、式(A-2)中、fおよびgはいずれか一方は0でもよい、1≦f+g≦10を満たす整数である。また、式(A-3)中、hおよびiはいずれか一方は0でもよい、1≦h+i≦10を満たす整数である。
 また、式(1)中、AとCは同一であることが好ましい。すなわち、ブロックイソシアネート(a)は、下記一般式(4)で表されることが好ましい。これにより、ブロックイソシアネート(a)の合成を安価に、かつ容易にすることができる。
A-B-A・・・(4)
 (式(4)中、Aは上記式(2)で表される基を表し、Bは上記式(3)で表される基を表す。)
 ブロックイソシアネート(a)の具体的な構造としては、以下のような構造が挙げられる。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
 光硬化性組成物に含有されるブロックイソシアネート(a)は、一種類の化合物であってもよく、複数種類の化合物であってもよい。なお、ブロックイソシアネート(a)として複数種類の化合物が含有される場合には、ブロックイソシアネート(a)の光硬化性組成物における配合割合は、複数種類の化合物の質量の合計に基づいて計算するものとする。
 ブロックイソシアネート(a)の光硬化性組成物における配合割合は、光硬化性組成物全体を100質量%としたときに、10質量%以上90質量%以下であることが好ましく、30質量%以上70質量%以下であることがより好ましい。前記配合割合が10質量%未満であると、光硬化性組成物を硬化させて得られる硬化物の靭性が低くなり、前記配合割合が90質量%を超えると光硬化性組成物の粘度が高くなり取り扱いが難しくなる。
 <ブロックイソシアネート(a)の合成方法>
 次に、ブロックイソシアネート(a)の合成方法について説明する。ブロックイソシアネート(a)の合成方法は、下記の工程(I)および工程(II)を含む。
工程(I):ポリカーボネートジオールとジイソシアネートとを反応させる工程
工程(II):ブロック剤と工程(I)で得られたポリカーボネート骨格を有するジイソシアネートと反応させる工程
 以下、各工程を説明する。
 (工程(I):ポリカーボネートジオールとジイソシアネートとを反応させる工程)
 本工程は、ポリカーボネートジオールとジイソシアネートとを反応させる工程である。これにより、ポリカーボネート骨格を有するジイソシアネートが得られる。
 本工程で用いられるポリカーボネートジオールは、例えば、カーボネート化合物とジオールとのエステル交換反応によって合成できる。
 ポリカーボネートジオールを合成するために用いるカーボネート化合物としては、ジメチルカーボネート、ジエチルカーボネート等のジアルキルカーボネート類、エチレンカーボネート、プロピレンカーボネート等のアルキレンカーボネート類、ジフェニルカーボネート、ジナフチルカーボネート、ジアントリルカーボネート、ジフェナントリルカーボネート、ジインダニルカーボネート、テトラヒドロナフチルカーボネート等のジアリールカーボネート類などが挙げられるが、これらに限定はされない。これらのカーボネート化合物を二種以上混合して用いてもよい。
 ポリカーボネートジオールを合成するために用いるジオールとしては、エチレングリコール、ジエチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,3-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、1,4-シクロヘキサンジメタノール、2-メチル-1,8-オクタンジオール、1,9-ノナンジオールなどの脂肪族ジオール、シクロヘキサンジオール、水添ビスフェノール-A、水添ビスフェノール-F、水添キシリレングコリール、などの脂環式ジオール、ビスフェノール-A、ビスフェノール-F、4,4’-ビフェノール、キシリレングリコール、などの芳香族ジオールなどが挙げられるが、これらに限定はされない。これらのジオールを二種以上混合して用いてもよい。
 ポリカーボネートジオールの数平均分子量Mは、100以上5000以下であることが好ましい。ポリカーボネートジオールの数平均分子量Mが100未満であると、最終的に得られるブロックイソシアネートの分子量が小さくなり、光硬化性組成物を硬化して得られる立体物の弾性率や引張り強さが低下する場合がある。また、ポリカーボネートジオールの数平均分子量Mが5000を超えると、最終的に得られるブロックイソシアネートの分子量が大きくなり、光硬化性組成物の粘度が高くなり、作業性が低下する場合がある。
 ポリカーボネートジオールの市販品としては、例えば、ETERNACOLL UM-90(3/1)(M=900)、ETERNACOLL UM-90(1/1)(M=900)、ETERNACOLL UM-90(1/3)(M=900)、ETERNACOLL UC-100(M=1000)、ETERNACOLL UH-200(M=2000)、ETERNACOLL UH-100(M=1000)、ETERNACOLL PH-200(M=2000)及びETERNACOLL PH-100(M=1000)(以上、いずれも宇部興産(株)製)が挙げられるが、これらに限定はされない。
 本工程で用いられるジイソシアネートとしては、トリメチレンジイソシアネート、1,2-プロピレンジイソシアネート、ブチレンジイソシアネート、ヘキサメチレンジイソシアネート、ペンタメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネートなどの脂肪族ジイソシアネート、シクロヘキサンジイソシアネート、メチルシクロヘキサンジイソシアネート、3-イソシアネートメチル-3,5,5-トリメチルシクロヘキシルイソシアネート(イソホロジイソシアネート)、メチレンビス(シクロヘキシルイソシアネート)又はジシクロヘキシルメタンジイソシアネート、ビス(イソシアネートメチル)シクロヘキサン、ノルボルナンジイソシアネートなどの脂環式ジイソシアネート、フェニレンジイソシアネート、トリレンジイソシアネート、4,4’-ジフェニルジイソシアネート、1,5-ナフタレンジイソシアネート、ジフェニルメタンジイソシネート、4,4’-トルイジンジイソシアネートなどの芳香族ジイソシアネートなどが挙げられるが、これらに限定はされない。
 本工程は、上記ポリカーボネートジオールと上記ジイソシアネートとを溶媒中で反応させることが好ましい。当該溶媒は、ポリカーボネートジオールおよびジイソシアネートが溶解するものならば特に限定されない。具体的には、ジエチルエーテル、ジプロピルエーテルなどのジアルキルエーテル類、1,4-ジオキサン、テトラヒドロフランなどの環状エーテル類、アセトン、メチルエチルケトン、ジイソプロピルケトン、イソブチルメチルケトンなどのケトン類、酢酸メチル、酢酸エチル、酢酸ブチルなどのエステル類、トルエン、キシレン、エチルベンゼンなどの炭化水素類、塩化メチレン、クロロホルム、四塩化炭素、テトラクロロエタン、トリクロロエタン、クロロベンゼンなどのハロゲン系溶媒、アセトニトリルなどニトリル類などが挙げられる。これらの溶媒は単独で又は2種以上組み合わせてもよい。また、使用する溶媒は、水分によってジイソシアネート化合物のイソシアネート基が分解することを抑制するという観点から、脱水溶媒を用いることが好ましい。
 本工程で反応させるポリカーボネートジオールのモル数に対するジイソシアネートのモル数の比(ジイソシアネートのモル数/ポリカーボネートジオールのモル数)は、1以上20以下が好ましく、3以上10以下がより好ましい。前記比が1より小さいと、副反応であるジイソシアネートとポリカーボネートジオールの重付加反応によりポリウレタンが生成する割合が高くなり、目的のポリカーボネート骨格を有するジイソシアネートの収率が低下する。前記比が20より大きいと、反応後に未反応のジイソシアネートが過剰に残存し、この未反応のジイソシアネートを除去することが困難になることがあるからである。
 本工程は、窒素、ヘリウム、アルゴンなどの不活性雰囲気中で行うことが好ましい。また本工程は、0℃以上150℃以下で行うことが好ましく、30℃以上100℃以下で行うことがより好ましい。また本工程は、還流下で行ってもよい。本工程を150℃より高い反応温度で行うと副反応を起こす可能性が高くなる。本工程を0℃未満の反応温度で行うと反応速度が低下するため、反応時間が長くなったり、収率が低下したりする。
 なお、本工程は、触媒の存在下で行ってもよい。触媒としては、例えば、オクチル酸スズ、ジブチルスズジアセテート、ジブチルスズジラウレート、2-エチルヘキサンスズなどの有機スズ系化合物、ナフテン酸銅、ナフテン酸亜鉛、ナフテン酸コバルトなどのナフテン酸金属塩、トリエチルアミン、ベンジルジメチルアミン、ピリジン、N,N-ジメチルピペラジン、トリエチレンジアミンなどの第3級アミン類などが挙げられる。これらの触媒は、単独で又は2種以上組み合わせてもよい。触媒の使用量は、ポリカーボネートジオールの総量100質量%に対して、0.001質量%以上1質量%以下であってもよい。
 本工程により得られるポリカーボネート骨格を有するジイソシアネートは、慣用の分離方法、例えば、貧溶媒での再沈殿、濃縮、濾過などの分離手段や、これらを組み合わせた分離手段により、分離精製できる。
 (工程(II):ブロック剤と工程(I)で得られたポリカーボネート骨格を有するジイソシアネートとを反応させる工程)
 本工程は、ブロック剤と工程(I)で得られたポリカーボネート骨格を有するジイソシアネートとを反応させる工程である。これより、本実施形態に係るブロックイソシアネート(a)が得られる。
 ここでいうブロック剤とは、ジイソシアネートが有するイソシアネート基(-NCO)と反応して、活性なイソシアネート基を保護することのできる化合物である。ブロック剤によって保護されたイソシアネート基は、ブロックイソシアネート基またはブロック化イソシアネート基と呼ばれる。ブロックイソシアネート基はブロック剤によって保護されているため通常の状態では安定を保つことができる。
 ブロックイソシアネート基を有するブロックイソシアネート化合物を加熱すると、ブロックイソシアネート基からブロック剤が解離(脱ブロック化)し、元のイソシアネート基を再生することができる。
 本工程で用いられるブロック剤は、アミノ基を有する(メタ)アクリル化合物であれば特に限定はされないが、ter‐ブチルアミノエチル(メタ)アクリレート、ter‐ペンチルアミノエチル(メタ)アクリレート、ter‐ヘキシルアミノエチル(メタ)アクリレート、および、ter‐ブチルアミノプロピル(メタ)アクリレートから選択される化合物であることが好ましい。これにより、ブロックイソシアネートの脱ブロック化温度を低下させることができる。
 本工程は、ブロック剤とポリカーボネートジオール骨格を有するジイソシアネートとを溶媒中で反応させることが好ましい。当該溶媒は、ブロック剤とポリカーボネート骨格を有するジイソシアネートとが溶解するものならば特に限定されず、具体的には、工程(I)の説明で述べたものを用いることができる。
 本工程は、窒素、ヘリウム、アルゴンなどの不活性雰囲気中で行うことが好ましい。また本工程は、0℃以上150℃以下で行うことが好ましく、30℃以上80℃以下で行うことがより好ましい。また本工程は、還流下で行ってもよい。本工程を0℃未満の反応温度で行うと反応が進行しにくくなる。また、本工程を150℃より高い反応温度で行うとブロック剤同士が(メタ)アクリロイル基の重合反応によって重合する恐れがある。
 なお、本工程は、触媒の存在下で行ってもよい。触媒の具体例としては、工程(I)の説明で述べたものを用いることができる。
 また、本工程では、ブロック剤の(メタ)アクリロイル基の重合反応を抑制する目的で重合禁止剤を用いてもよい。具体的には、ベンゾキノン、ハイドロキノン、カテコール、ジフェニルベンゾキノン、ハイドロキノンモノメチルエーテル、ナフトキノン、t-ブチルカテコール、t-ブチルフェノール、ジメチル-t-ブチルフェノール、t-ブチルクレゾール、ジブチルヒドロキシトルエン及びフェノチアジンなどが挙げられる。
 本工程により得られるブロックイソシアネートは、工程(I)と同様の手法で、分離精製できる。
 [鎖延長剤(b)]
 鎖延長剤(b)は、ブロックイソシアネート(a)の有するブロックイソシアネート基が脱ブロック化して生成するイソシアネート基と反応する活性水素を少なくとも2つ有する化合物である。
 イソシアネート基と反応する活性水素としては、ヒドロキシル基中の水素原子や、アミノ基中の水素原子、チオール基中の水素原子が挙げられる。したがって、鎖延長剤(b)は、ヒドロキシル基、アミノ基、およびチオール基からなる群から選択される官能基を1分子中に少なくとも2つ有する化合物を含有することが好ましい。また反応性の観点から、鎖延長剤(b)は、ヒドロキシル基を少なくとも2つ有するポリオール、アミノ基を少なくとも2つ有するポリアミン、およびチオール基を少なくとも2つ有するポリチオールからなる群から選択される少なくとも1つを含有することがより好ましい。
 また、鎖延長剤(b)は低分子化合物であることが好ましい。鎖延長剤(b)の分子量は500以下であることが好ましく、300以下であることがより好ましい。鎖延長剤(b)の分子量が500以下であることにより、後述するように光硬化性組成物を光硬化させた後に熱処理を施した際に、脱ブロック化により生成するイソシアネート基と鎖延長剤(b)とを効率良く反応させることができる。
 鎖延長剤(b)の具体例としては、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール等の直鎖ジオール類;2-メチル-1,3-プロパンジオール、2,2-ジメチル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、2-メチル-2-プロピル-1,3-プロパンジオール、2,4-ヘプタンジオール、1,4-ジメチロールヘキサン、2-エチル-1,3-ヘキサンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、2-メチル-1,8-オクタンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、ダイマージオール等の分岐鎖を有するジオール類;ジエチレングリコール、プロピレングリコール等のエーテル基を有するジオール類;1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、1,4-ジヒドロキシエチルシクロヘキサン等の脂環構造を有するジオール類、キシリレングリコール、1,4-ジヒドロキシエチルベンゼン、4,4’-メチレンビス(ヒドロキシエチルベンゼン)等の芳香族基を有するジオール類;グリセリン、トリメチロールプロパン、ペンタエリスリトール等のポリオール類;N-メチルエタノールアミン、N-エチルエタノールアミン等のヒドロキシアミン類;エチレンジアミン、1,3-ジアミノプロパン、ヘキサメチレンジアミン、トリエチレンテトラミン、ジエチレントリアミン、イソホロンジアミン、4,4’-ジアミノジシクロヘキシルメタン、2-ヒドロキシエチルプロピレンジアミン、ジ-2-ヒドロキシエチルエチレンジアミン、ジ-2-ヒドロキシエチルプロピレンジアミン、2-ヒドロキシプロピルエチレンジアミン、ジ-2-ヒドロキシプロピルエチレンジアミン、4,4’-ジフェニルメタンジアミン、メチレンビス(o-クロロアニリン)、キシリレンジアミン、ジフェニルジアミン、トリレンジアミン、ヒドラジン、ピペラジン、N,N’-ジアミノピペラジン等のポリアミン類;1,2-エタンジチオール、1,2,3-プロパントリチオール、1,2-シクロヘキサンジチオール、ビス(2-メルカプトエチル)エーテル、テトラキス(メルカプトメチル)メタン、ジエチレングリコールビス(2-メルカプトアセテート)、トリメチロールプロパントリス(3-メルカプトプロピオネート)、トリメチロールプロパントリス(2-メルカプトアセテート)、ペンタエリスリトールテトラキス(2-メルカプトアセテート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ヒドロキシメチルスルフィドビス(2-メルカプトアセテート)、ヒドロキシメチルスルフィドビス(3-メルカプトプロピオネート)、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、トリス(メルカプトエチルチオ)メタン等の脂肪族ポリチオール類;1,2-ジメルカプトベンゼン、1,3-ジメルカプトベンゼン、1,4-ジメルカプトベンゼン、1,2-ビス(メルカプトメチル)ベンゼン、1,3-ビス(メルカプトメチル)ベンゼン、1,4-ビス(メルカプトメチル)ベンゼン、1,2-ビス(メルカプトエチル)ベンゼン、1,3-ビス(メルカプトエチル)ベンゼン、1,4-ビス(メルカプトエチル)ベンゼン、1,3,5-トリメルカプトベンゼン、1,3,5-トリス(メルカプトメチル)ベンゼン、1,3,5-トリス(メルカプトメチレンオキシ)ベンゼン、1,3,5-トリス(メルカプトエチレンオキシ)ベンゼン、2,5-トルエンジチオール、3,4-トルエンジチオール、1,5-ナフタレンジチオール、2,6-ナフタレンジチオール等の芳香族ポリチオール化合物類;及び水等を挙げることができる。これらの鎖延長剤は単独で用いてもよく、2種以上を併用してもよい。
 これらの中でも、後述する硬化物の物性のバランスが好ましい点、工業的に安価に多量に入手が可能な点で、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,4-シクロヘキサンジメタノール、1,4-ジヒドロキシエチルシクロヘキサン、エチレンジアミン、1,3-ジアミノプロパン、イソホロンジアミン、4,4’-ジアミノジシクロヘキシルメタンが好ましい。
 ブロックイソシアネート(a)のモル数に対する鎖延長剤(b)のモル数の比(鎖延長剤(b)のモル数/ブロックイソシアネート(a)のモル数)は、0.1以上5以下であることが好ましく、0.5以上3以下であることがより好ましい。後述するように、本実施形態に係る光硬化性組成物を光硬化させた後に熱処理するとイソシアネート基が再生し、当該イソシアネート基と鎖延長剤(b)との間でウレタン結合等の結合が生成する反応が生じる。しかし、前記比が0.1より小さいと、当該イソシアネート基と鎖延長剤(b)との間の反応の効率が低くなり、光硬化した後に熱処理して最終的に得られる立体物の各種機械特性が低下する傾向にある。また、前記比が5より大きいと、未反応の過剰な鎖延長剤(b)が立体物の内部に残留し、光硬化した後に熱処理して最終的に得られる立体物の各種機械特性が低下する傾向にある。
 [光ラジカル発生剤(c)]
 光ラジカル発生剤(c)は、所定の波長の光等の活性エネルギー線を受けることにより重合因子であるラジカルを発生させる化合物である。光ラジカル発生剤(c)は、活性エネルギー線を受けることにより分解して、ラジカルを発生させる化合物であってもよい。具体的には、光ラジカル発生剤は、光などの活性エネルギー線(赤外線、可視光線、紫外線、遠紫外線、X線、電子線等の荷電粒子線、放射線等)によりラジカルを発生する光重合開始剤である。
 光ラジカル発生剤(c)の具体的な例としては、ベンゾイン、ベンゾインモノメチルエ-テル、ベンゾインイソプロピルエ-テル、アセトイン、ベンジル、ベンゾフェノン、p-メトキシベンゾフェノン、ジエトキシアセトフェノン、ベンジルジメチルケタ-ル、2,2-ジエトキシアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、メチルフェニルグリオキシレ-ト、エチルフェニルグリオキシレ-ト、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン等のカルボニル化合物、テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィドなどの硫黄化合物、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイドなどのアシルフォスフィンオキサイド等が挙げられるが、これらに限定はされない。
 上記光ラジカル発生剤の市販品としては、IRGACURE184やIRGACURE819などのIRGACUREシリーズや、DAROCUR1173やDAROCUR TPOなどのDAROCURシリーズ(以上、BASF社製)、KAYACURE DETX-S、KAYACURE CTXなどのKAYACUREシリーズ(以上、日本化薬社製)等が挙げられるが、これらに限定はされない。
 光ラジカル発生剤の添加量は、光硬化性組成物の全体を100質量%としたときに、0.05質量%以上20質量%以下であることが好ましく、0.1質量%以上5質量%以下であることがより好ましい。当該添加量が0.05質量%未満であると、生成するラジカルが不足し、光硬化性組成物の重合転化率が低下する結果、光硬化性組成物を光硬化させた後に熱処理して得られる立体物の強度が不足する。当該添加量が30質量%を越えると、光硬化性組成物に照射した光の大部分が過剰に存在する光ラジカル発生剤(c)によって吸収され、硬化性組成物の内部まで光が届かないことがある。そのため、光硬化性組成物の内部の光硬化性組成物の重合転化率が低下する恐れがある。
 [その他の成分]
 (反応性希釈剤(d))
 本実施形態に係る光硬化性組成物は、さらに、反応性希釈剤(d)を含有していてもよい。光硬化性組成物に反応性希釈剤(d)を含有させることで、光硬化性組成物の粘度を低減させることができる。また、光硬化性組成物を硬化させて得られる硬化物の機械特性や熱特性を調整することができる。
 反応性希釈剤(d)は、ラジカルおよび/またはカチオン重合性基を有するモノマーおよび/またはオリゴマーであることが好ましい。
 ラジカル重合性基を有するモノマーとしては、(メタ)アクリレート系モノマー、スチレン系モノマー、アクリロニトリル、ビニルエステル系モノマー、N-ビニルピロリドン、アクリルアミド系モノマー、共役ジエン系モノマー、ビニルケトン系モノマー、ハロゲン化ビニル・ハロゲン化ビニリデン系モノマー等が挙げられる。
 カチオン重合性基を有するモノマーとしては、エポキシ系モノマー、オキセタン系モノマー、ビニルエーテル系モノマー等が挙げられる。
 中でも、ラジカル重合性基を有するモノマーの内、ブロックイソシアネート(a)と同様の(メタ)アクリロイル基を有する、(メタ)アクリレート系モノマーが好ましい。(メタ)アクリレート系モノマーとしては、例えば、単官能(メタ)アクリレート、2官能(メタ)アクリレート、3官能以上の(メタ)アクリレート、ウレタン(メタ)アクリレートオリゴマー、ポリエステル(メタ)アクリレートオリゴマー等を挙げることができる。
 (メタ)アクリレート系モノマーとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸n-ペンチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸n-ヘプチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸イソデシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸トリデシル、(メタ)アクリル酸トリデシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸アダマンチル、(メタ)アクリル酸フェニル、(メタ)アクリル酸トルイル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸3-メトキシブチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸ステアリル等の単官能(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、トリシクロデカンジメタノール(メタ)アクリレート、ビスフェノールA(ポリ)エトキシジ(メタ)アクリレート、ビスフェノールA(ポリ)プロポキシジ(メタ)アクリレート、ビスフェノールF(ポリ)エトキシジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート等の2官能(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールオクタントリ(メタ)アクリレート、トリメチロールプロパンポリエトキシトリ(メタ)アクリレート、トリメチロールプロパン(ポリ)プロポキシトリ(メタ)アクリレート、トリメチロールプロパン(ポリ)エトキシ(ポリ)プロポキシトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールポリエトキシテトラ(メタ)アクリレート、ペンタエリスリトール(ポリ)プロポキシテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリス[(メタ)アクリロイルオキシエチル]イソシアヌレート、カプロラクトン変性トリス[(メタ)アクリロイルオキシエチル]イソシアヌレート等3官能以上の(メタ)アクリレートなどが挙げられる。
 ウレタン(メタ)アクリレートオリゴマーとしては、ポリカーボネート系ウレタン(メタ)アクリレート、ポリエステル系ウレタン(メタ)アクリレート、ポリエーテル系ウレタン(メタ)アクリレート、カプロラクトン系ウレタン(メタ)アクリレート等が挙げられるが、これらに限定はされない。ウレタン(メタ)アクリレートオリゴマーは、例えば、ポリオールとジイソシアネートとを反応させて得られるイソシアネート化合物と、水酸基を有する(メタ)アクリレートモノマーとの反応により得ることができる。上記ポリオールとしては、ポリカーボネートジオール、ポリエステルポリオール、ポリエーテルポリオール、ポリカプロラクトンポリオールが挙げられる。
 ポリエステルアクリレートオリゴマーは、例えば、ポリカルボン酸とポリオールの縮合によって両末端に水酸基を有するポリエステルオリゴマーを得、次いで、その両末端の水酸基をアクリル酸でエステル化することにより得られる。
 反応性希釈剤(d)の添加量は、本発明の効果を損なわない限り、光硬化性組成物の粘度や硬化速度、硬化物の機械・熱特性を所望の値になるよう任意の量を添加して良い。
 (光酸発生剤(e))
 本実施形態に係る光硬化性組成物は、反応性希釈剤(d)として、カチオン重合性基を有するモノマーまたはオリゴマー等を含有する場合には、さらに、光酸発生剤(e)を含有していてもよい。
 光酸発生剤(e)の具体的な例としては、トリクロロメチル-s-トリアジン類、スルホニウム塩やヨードニウム塩、第四級アンモニウム塩類、ジアゾメタン化合物、イミドスルホネート化合物、オキシムスルホネート化合物などが挙げられるが、これらに限定はされない。
 (その他の添加剤)
 また、本実施形態に係る光硬化性組成物は、本発明の効果を損なわない限り、必要に応じて、顔料や染料などの着色剤、消泡剤、レベリング剤、増粘剤、難燃剤、酸化防止剤、無機充填剤(架橋ポリマー粒子、シリカ、ガラス粉、セラミックス粉、金属粉など)、改質用樹脂(熱可塑性樹脂、熱可塑性樹脂粒子、ゴム粒子など)などの添加剤を1種または2種以上を適量含有していてもよい。
 また、本実施形態に係る光硬化性組成物は、必要に応じて、光ラジカル発生剤(c)の他、光開始助剤または増感剤を含有していてもよい。光開始助剤または増感剤としては、ベンゾイン化合物、アセトフェノン化合物、アントラキノン化合物、チオキサントン化合物、ケタール化合物、ベンゾフェノン化合物、3級アミン化合物、及びキサントン化合物などが挙げられるが、これらに限定はされない。
 [光硬化性組成物の機能]
 本実施形態に係る光硬化性組成物に光を照射して硬化(光硬化)させ、次いで熱処理を施したときの反応スキームについて、図1を用いて説明する。図1は、本実施形態に係る光硬化性組成物に光を照射して硬化させ、次いで熱処理を施したときの反応スキームを模式的に示す図である。
 本実施形態に係る光硬化性組成物に対して所定の波長の光(例えば紫外線)を照射すると、光硬化性組成物中の光ラジカル発生剤(c)がラジカルを発生させる。すると、ブロックイソシアネート(a)の有する(メタ)アクリロイル基が重合反応し、固体化する。なお、光硬化性組成物が後述する反応性希釈剤(d)をさらに含有する場合には、ブロックイソシアネート(a)同士の間の重合反応のみならず、ブロックイソシアネート(a)と反応性希釈剤(d)との間の重合反応も進行する。これにより、図1(b)に模式的に示されるような光硬化物が生成される。
 次に、得られた光硬化物に対して熱処理を施すと、図1(c)に模式的に示すように、ブロック剤由来のブロック部(BL)が脱離する脱ブロック化が進行し、イソシアネート基(-NCO)が再生される。すると、再生されたイソシアネート基が直ちに鎖延長剤(b)と反応する。これにより、鎖延長剤(b)がヒドロキシル基を有していた場合にはウレタン結合が生成し、鎖延長剤(b)がアミノ基を有していた場合にはウレア結合が生成される。この結果、図1(d)に模式的に示される硬化物が得られる。
 (メタ)アクリロイル基の重合反応によって得られる硬化物は、一般に架橋密度が高く、引張り強さが低くなる傾向にある。しかし、本実施形態に係る光硬化性組成物では、光硬化させた後に熱処理を行うことで、上述のように脱ブロック化が生じることで架橋密度が低下する。そして、ウレタン結合またはウレア結合が生成し、ポリウレタン構造またはポリウレア構造、それらの混合構造を有する硬化物が生成する。この結果、従来の硬化物に比べて引張り強さを大きくすることができる。
 さらに、本実施形態に係る光硬化性組成物は、ブロックイソシアネート(a)を含有する。ブロックイソシアネート(a)は上記式(3)で表されるように、分子構造中に複数のカーボネート基(-O-(C=O)-O-)を含むポリカーボネート構造を有する。したがって、本実施形態に係る光硬化性組成物を光硬化した後に熱処理して得られる硬化物もその内部に上述のポリカーボネート構造を含む。このため、本実施形態に係る光硬化性組成物によれば、高い引張り強さと弾性率を有する立体物を光造形法によって造形することができる。
 [立体物の製造方法]
 本実施形態に係る光硬化性組成物は、光学的立体造形法(光造形法)による立体物の製造方法に好適に用いることができる。以下、本実施形態に係る光硬化性組成物を用いた立体物の製造方法について説明する。
 本実施形態に係る立体物の製造方法は、光造形法によって造形物を造形する工程と、前記造形物に熱処理を施す工程と、を有する。
 <光造形法によって造形物を造形する工程>
 光造形法としては、従来公知の方法を用いることができる。本工程は、作成したい立体物のスライスデータに基づいて光硬化性組成物に活性エネルギー線を選択的に照射して、当該光硬化性組成物を層毎に硬化させる工程を含む。
 本工程において光硬化性組成物に照射する活性エネルギー線としては、本実施形態に係る光硬化性組成物を硬化させることができる活性エネルギー線であれば特に制限はない。活性エネルギー線の具体例としては、紫外線、可視光線、赤外線、X線、ガンマー線、レーザー光線等の電磁波、アルファー線、ベータ線、電子線等の粒子線等が挙げられる。これらのうち、使用する光ラジカル発生剤(c)の吸収波長や設備導入のコストの点から、紫外線が最も好ましい。露光量としては、特に限定されないが、好ましくは0.001J/cm以上10J/cm以下である。0.001J/cm未満であると、光硬化性組成物が十分に硬化しない恐れがあり、10J/cmを超えると照射時間が長くなり生産性が落ちる。
 光硬化性組成物に対して活性エネルギー線を照射する方法は特に限定はされず、例えば活性エネルギー線として光を照射する場合には、以下の方法を採用することができる。第1の方法としては、レーザー光のように点状に集光した光を使用して、この光を光硬化性組成物に対して二次元的に走査する方法が挙げられる。このとき、二次元的な走査は点描方式でもよいし、線描方式でもよい。第2の方法としては、プロジェクターなどを用いて断面データの形状に光を照射する面露光方式が挙げられる。この場合、液晶シャッターまたはデジタルマイクロミラーシャッターなどのような微小光シャッターを複数配列して形成した面状描画マスクを通して、活性エネルギー線を面状に照射してもよい。
 本工程では、光造形法によって造形物を得た後に、得られた造形物の表面を有機溶剤などの洗浄剤によって洗浄してもよい。また、得られた造形物に対して光や熱を照射することで、造形物の表面や内部に残存することのある未反応の残存成分を硬化させるポストキュアーを行ってもよい。なお、熱照射によってポストキュアーを行う場合には、後述する造形物に熱処理を施す工程を兼ねてもよい。
 <造形物に熱処理を施す工程>
 本実施形態では、光造形法によって得られた造形物に対して熱処理を施すことにより、上述のように脱ブロック化を進行させて架橋密度を低下させるとともに、ウレタン結合またはウレア結合を生成させる。これにより、引張り強さおよび弾性率の大きな立体物を形成する。
 本工程における熱処理温度は、造形物中のブロック部の脱ブロック化が進行する温度であれば特に限定されないが、50℃以上200℃以下が好ましい。更に好ましくは、100℃以上150℃以下である。50℃より低いと脱ブロック化が進行せず、靱性を向上させる効果が十分に得られない可能性がある。200℃を超えると、樹脂が劣化し、立体物の各種機械特性が低下する恐れがある。
 本工程における熱処理時間は、造形物中のブロック部の脱ブロック化が十分に進行すれば特に限定されないが、0.5時間以上10時間以下が好ましい。0.5時間より短いと、脱ブロックが進行せず、靱性を向上させる効果が十分に得られない可能性がある。10時間より長いと、樹脂の劣化による立体物の各種機械特性の低下や、生産性の観点から不利である。
 (第2の実施形態)
 第2の実施形態では、樹脂(光硬化物)について説明する。
 (光硬化物)
 本実施形態に係る樹脂(光硬化物)は、上述の光硬化性組成物に所定の波長の光などの活性エネルギー線を照射することにより得られる固体状の樹脂である。本実施形態に係る樹脂(光硬化物)は、下記一般式(5)で表される繰り返し構造単位を含むことを特徴とする。
Figure JPOXMLDOC01-appb-C000017
 (式(5)中、R11は水素原子またはメチル基を表し、R12は置換基を有していてもよい炭素原子数1から10の炭化水素基を表し、Lは炭素原子数1から10の2価の炭化水素基を表す。R13、R14、およびR15は各々独立に、置換基を有していてもよい炭素原子数1から20の2価の炭化水素基を表し、aおよびbはいずれか一方は0でもよい、1≦a+b≦50を満たす整数である。)
 式(5)中、R12はter‐ブチル基、ter‐ペンチル基、および、ter‐ヘキシル基から選択される基であることが好ましい。これにより、光硬化性組成物を光硬化させた後に熱処理を施して脱ブロック化する際の温度(脱ブロック化温度)を低下させることができるため好ましい。
 式(5)中、Lは入手や合成のし易さの観点からエチレン基またはプロピレン基であることが好ましい。
 式(5)中、R13およびR14は各々独立に、下記式(A-1)~(A-9)のいずれかであることが好ましい。これにより、本実施形態に係る樹脂(光硬化物)を熱処理することで得られる樹脂(光-熱硬化物)の弾性率および引張り強さを高めることができる。
Figure JPOXMLDOC01-appb-C000018
 ここで、式(A-1)中、eは1から10の整数であり、式(A-2)中、fおよびgはいずれか一方は0でもよい、1≦f+g≦10を満たす整数である。また、式(A-3)中、hおよびiはいずれか一方は0でもよい、1≦h+i≦10を満たす整数である。
 さらに、本実施形態に係る樹脂(光硬化物)は、鎖延長剤(b)を含有することが好ましい。
 本実施形態に係る樹脂(光硬化物)は、熱処理を施して脱ブロック化することによって架橋密度を低下させることができる。そして、脱ブロック化によって再生されたイソシアネート基は、樹脂中に含まれる鎖延長剤(b)と反応してウレタン結合やウレア結合を形成することができる。そして、樹脂中にポリウレタンまたはポリウレアが生成する。これらの結果、弾性率や引張り強さを大きくすることができる。
 (第3の実施形態)
 第3の実施形態では、樹脂(光-熱硬化物)について説明する。
 (光-熱硬化物)
 本実施形態に係る樹脂(光-熱硬化物)は、第2の実施形態に係る樹脂(光硬化物)を熱処理することにより得られる固体状の樹脂である。本実施形態に係る樹脂(光-熱硬化物)は、下記一般式(6)で表される繰り返し構造単位と、下記一般式(7)で表される繰り返し構造単位と、を含有することを特徴とする。
Figure JPOXMLDOC01-appb-C000019
 (式(6)中、R21は水素原子またはメチル基を表し、R22は炭素原子数1から10の炭化水素基を表し、Lは炭素原子数1から10の2価の炭化水素基を表す。)
Figure JPOXMLDOC01-appb-C000020
 (式(7)中、R23、R24、R25、およびR26は各々独立に、置換基を有していてもよい炭素原子数1から20の2価の炭化水素基を表し、aおよびbはいずれか一方は0でもよい、1≦a+b≦50を満たす整数である。XおよびXは各々独立に、О(酸素原子)、S(硫黄原子)、およびNH(イミノ基)のいずれかを表す。)
 (用途)
 本実施形態に係るブロックイソシアネート、光硬化性樹脂および硬化物の用途としては、限定はされないが、光学的立体造形用樹脂、スポーツ用品、医療・介護用品、産業用機械・機器、精密機器、電気・電子機器、電気・電子部品、建材用品等の様々な用途に利用可能である。
 以下に本発明を詳しく説明するために実施例を挙げるが、本発明はこれらの実施例に限定されるものではない。なお、実施例、比較例で行った化合物の同定、反応の追跡、機械特性の測定は、次に述べる方法で測定した。
 (化合物の同定)
 試料15mgを重クロロホルム(CDCl)1.1gに溶解させ、核磁気共鳴装置JNM-ECA-400(日本電子製)を用いてH-NMR測定を行った。
 (反応の追跡(イソシアネート基の消失確認))
 試料をフーリエ変換赤外分光装置(パーキンエルマー社製Spectrum One)によりATR法(全反射測定法)で測定を行い、縦軸を吸光度とし、イソシアネート基由来の2260cm-1付近のピークの有無を確認した。
 (機械特性の評価)
 厚さ約300μmの硬化物を8号型ダンベル状に打ち抜いて試験片を作製した。この試験片について、JIS K 7127に準じて、引張試験機(商品名「ストログラフEII」、東洋精機製作所製)を用い、試験温度23℃、引張速度10mm/minで測定を行い、試験片の引張り強さと引張り弾性率を測定した。
 (実施例1)
 <ブロックイソシアネート1の合成>
Figure JPOXMLDOC01-appb-C000021
 上記スキームに基づいて、ブロックイソシアネート1を合成した。まず、300mL反応器にアルゴン雰囲気下、室温でヘキサメチレンジイソシアネート(168g,0.1mol,10eq.)、ポリカーボネートジオール(eternacoll um-90 1/1)(90g,0.1mol,1.0eq.(M=900として計算))、2-エチルヘキサンすず(II)(70μL,cat.)を加えた。この溶液を50℃に昇温して同温で3時間撹拌した後、温かいまま激しく撹拌したヘキサン(3L)にゆっくり滴下した。そのまま20分間撹拌した後、静沈させ、上層のヘキサン層を除いた。このヘキサンによる洗浄操作をさらに2回行った後、得られた粘稠な液体を高真空下で濃縮し、無色の粘稠な液体の上記構造を有するポリカーボネートジイシシアネート(151g)を得た。
 得られたポリカーボネートジイソシアネートにジクロロメタン(300mL)とハイドロキノン(20mg)を加えた後、冷却バスを用いて5℃に保ちながら2-(t-ブチルアミノ)エチルメタクリレート(92.6g,0.5mol,5.0eq.)をゆっくり滴下した。その後、冷却バスを外して室温で14時間撹拌した。この溶液を赤外分光法によって分析し、上記方法によってイソシアネート由来の吸収ピークが無いことを確認した。
 次に、激しく撹拌したヘキサン(3L)中に上記溶液をゆっくり滴下した。滴下終了後、30分間撹拌し、この混合液を静置した。その後、上層のヘキサン層をデカンテーションで除き、もう一度同様の操作を行った。得られた粘稠な液体を高真空下で40℃で6時間乾燥し、無色の非常に粘稠な液体であるブロックイソシアネート1(215g)を得た。
 <光硬化性組成物1の調製>
 以下の処方に従い、実施例1の光硬化性組成物1を調製した。
・ブロックイソシアネート(a):
<a-1>ブロックイソシアネート1 53.3質量%
・鎖延長剤(b):
<b-1>4,4’-メチレン-ビス(シクロヘキシルアミン) 6.3質量%
・反応性希釈剤(d):
<d-1>イソボルニルメタクリレート 39.7質量%
・光ラジカル発生剤(c):
<c-1>ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド 0.7質量%
 <光-熱硬化物1の作製>
 300μmのスペーサーでギャップを作った2枚の石英ガラスの間に光硬化性組成物1を流し込んだ。この光硬化性組成物1に対して紫外線照射機(HOYA-SCHOTT製、商品名、UV LIGHT SOURCE EX250)で7mW/cmの紫外線を120秒照射(総エネルギーとして840mJ/cm)することにより、光硬化物を得た。
 得られた光硬化物を125℃のオーブン内に入れて4時間加熱処理することにより、光-熱硬化物1を得た。
 <光-熱硬化物1の機械特性評価>
 得られた光-熱硬化物1について、上記方法によって引張り強さおよび引張り弾性率を測定した。結果を表1に示す。
 (実施例2)
 <光硬化性組成物2の調製>
 以下の処方に従い、実施例2の光硬化性組成物2を調製した。
・ブロックイソシアネート(a):
<a-1>ブロックイソシアネート1 53.3質量%
・鎖延長剤(b):
<b-2>4,4’-ジアミノジフェニルメタン 6.3質量%
・反応性希釈剤(d):
<d-1>イソボルニルメタクリレート 39.7質量%
・光ラジカル発生剤(c):
<c-1>ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド 0.7質量%
 <光-熱硬化物2の作製>
 300μmのスペーサーでギャップを作った2枚の石英ガラスの間に光硬化性組成物2を流し込んだ。この光硬化性組成物2に対して実施例1と同様に紫外線を照射して、光硬化物を得た。
 得られた光硬化物を125℃のオーブン内に入れて4時間加熱処理することにより、光-熱硬化物2を得た。
 <硬化物2の機械特性評価>
 実施例1と同様に、得られた光-熱硬化物2の引張り強さと弾性率を測定した。結果を表1に示す。
 (比較例1)
 <ブロックイソシアネート2の合成>
Figure JPOXMLDOC01-appb-C000022
 500mL反応器にアルゴン雰囲気下、室温でヘキサメチレンジイソシアネート(122g,720mmol,8.0eq.)、2-エチルヘキサンすず(II)(60μL,cat.)を加えた。この溶液を50℃に昇温しポリテトラヒドロフラン(ポリTHF、M=1000)(90g,90mmol,1.0eq)を約15分かけて滴下した。この溶液を同温で2時間撹拌した後、放冷し、激しく撹拌したヘキサン(3L)にゆっくり滴下、そのまま15分間撹拌後、静沈させ上層のヘキサン層を除いた。このヘキサンによる洗浄操作を再度行った後、得られた粘稠な液体を高真空下濃縮し、中間体である無色の粘稠な液体ポリTHFジイソシアネート1(121g,90.5mmol)を得た。
 これにジクロロメタン(100mL)、ハイドロキノン(0.6mg)を加えた後、2-(t-ブチルアミノ)エチルメタクリレート(66.6g,360mmol,4.0eq.)をゆっくり滴下し、50℃で14時間撹拌した。この溶液のIRを測定し、イソシアネート由来の吸収ピークの消失を確認した。この溶液を、激しく撹拌したヘキサン(3L)中にゆっくり滴下した。滴下終了後30分間撹拌し、この混合液を静置、上層のヘキサン層をデカンテーションで除き、もう一度同様の操作を行った。得られた粘稠な液体を高真空下40℃で6時間乾燥し、無色の粘帖な液体であるブロックイソシアネート2(150g)を得た。
 <光硬化性組成物3の調製>
 以下の処方に従い、比較例1の光硬化性組成物3を調製した。
・ブロックイソシアネート(a):
<a-1>ブロックイソシアネート2 53.3質量%
・鎖延長剤(b):
<b-1>4,4’-メチレン-ビス(シクロヘキシルアミン) 6.3質量%
・反応性希釈剤(d):
<d-1>イソボルニルメタクリレート 39.7質量%
・光ラジカル発生剤(c):
<c-1>ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド 0.7質量%
 <光-熱硬化物3の作製>
 300μmのスペーサーでギャップを作った2枚の石英ガラスの間に光硬化性組成物3を流し込んだ。この光硬化性組成物3に対して実施例1と同様に紫外線を照射して、光硬化物を得た。
 得られた光硬化物を125℃のオーブン内に入れて4時間加熱処理することにより、光-熱硬化物3を得た。
 <光-熱硬化物3の機械特性評価>
 実施例1と同様に、得られた光-熱硬化物3の引張り強さと弾性率を測定した。結果を表1に示す。
 (比較例2)
 <ブロックイソシアネート3の合成>
Figure JPOXMLDOC01-appb-C000023
 500mL反応器にアルゴン雰囲気下、室温でポリTHF(M=650)(100g,154mmol,1.0eq.)、ヘキサメチレンジイソシアネート(207g,1.23mol,1.0eq.)を加え撹拌した。この溶液に2-エチルヘキサンすず(II)(80μL,cat.)を加え、バス温50℃迄昇温し、同温で5時間撹拌した。反応液を室温まで放冷し、この溶液を、激しく撹拌したヘキサン(4L)中に加え、そのまま15分攪拌し、15分静置して上層(ヘキサン層)をデカンテーションで取り除いた。この操作をさらに2回繰り返し、下層(中間体層)を濃縮して、170gのポリTHFジイソシアネート2を得た。
 この中間体にジクロロメタンを300mL加え、攪拌しながら氷冷した。そこに、ハイドロキノン(10mg)、2-(t-ブチルアミノ)エチルメタクリレート(142g,769mmol,5.0eq.)をゆっくり加え、室温で12時間攪拌した。IRでイソシアネート基の消失を確認し、反応液を攪拌しながらヘキサン(4L)にゆっくり加え、そのまま20分攪拌し、20分静置して上層のヘキサン層をデカンテーションで取り除いた。この操作をさらに3回繰り返し、目的物である下層をセライトろ過後、高真空化で濃縮し、無色粘調液のブロックイソシアネート3(184g)を得た。
 <光硬化性組成物4の調製>
 以下の処方に従い、比較例2の光硬化性組成物4を調製した。
・ブロックイソシアネート(a):
<a-3>ブロックイソシアネート3 53.3質量%
・鎖延長剤(b):
<b-1>4,4’-メチレン-ビス(シクロヘキシルアミン) 6.3質量%
・反応性希釈剤(d):
<d-1>イソボルニルメタクリレート 39.7質量%
・光ラジカル発生剤(c):
<c-1>ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド 0.7質量%
 <光-熱硬化物4の作製>
 300μmのスペーサーでギャップを作った2枚の石英ガラスの間に光硬化性組成物4を流し込んだ。この光硬化性組成物4に対して実施例1と同様に紫外線を照射して、光硬化物を得た。
 得られた光硬化物を125℃のオーブン内に入れて4時間加熱処理することにより、光-熱硬化物4を得た。
 <光-熱硬化物4の機械特性評価>
 実施例1と同様に、得られた光-熱硬化物4の引張り強さと弾性率を測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000024
 <結果のまとめ>
 表1に示すように、実施例1~2の光硬化性組成物によれば、比較例1~2の光硬化性組成物よりも、弾性率、引張り強さともに高い光-熱硬化物を形成することができた。
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。
 本願は、2017年3月3日提出の日本国特許出願特願2017-040856と2017年7月19日提出の日本国特許出願特願2017-140152とを基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。

Claims (13)

  1.  ブロックイソシアネートと、鎖延長剤と、光ラジカル発生剤と、を含有する光硬化性組成物であって、
     前記ブロックイソシアネートが、下記一般式(1)
     A-B-C・・・(1)
     (式(1)中、AおよびCは各々独立して、下記式(2)で表される基を表し、Bは下記式(3)で表される基を表す。
    Figure JPOXMLDOC01-appb-C000001

    Figure JPOXMLDOC01-appb-C000002

     ここで、式(2)中、Rは水素原子またはメチル基を表し、Rは置換基を有していてもよい炭素原子数1から10の炭化水素基を表し、Lは置換基を有していてもよい炭素原子数1から10の2価の炭化水素基を表す。また、式(3)中、R、R、およびRは各々独立に、置換基を有していてもよい炭素原子数1から20の2価の炭化水素基を表し、aおよびbはいずれか一方は0でもよい、1≦a+b≦50を満たす整数である。)
     で表されることを特徴とする光硬化性組成物。
  2.  式(2)中、Rがter‐ブチル基、ter‐ペンチル基、および、ter‐ヘキシル基から選択される基であることを特徴とする請求項1に記載の光硬化性組成物。
  3.  式(2)中、Lがエチレン基またはプロピレン基であることを特徴とする請求項1または請求項2に記載の光硬化性組成物。
  4.  式(3)中、RおよびRは各々独立に、下記式(A-1)~(A-9)のいずれかであることを特徴とする請求項1乃至請求項3のいずれか一項に記載の光硬化性組成物。
    Figure JPOXMLDOC01-appb-C000003

     (式(A-1)中、eは1から10の整数であり、式(A-2)中、fおよびgはいずれか一方は0でもよい、1≦f+g≦10を満たす整数であり、式(A-3)中、hおよびiはいずれか一方は0でもよい、1≦h+i≦10を満たす整数である。)
  5.  前記ブロックイソシアネートが、下記一般式(4)
     A-B-A・・・(4)
     で表されることを特徴とする請求項1乃至請求項4のいずれか一項に記載の光硬化性組成物。
  6.  前記鎖延長剤が、ヒドロキシル基、アミノ基、およびチオール基からなる群から選択される官能基を1分子中に少なくとも2つ有する化合物を含有することを特徴とする請求項1乃至請求項5のいずれか一項に記載の光硬化性組成物。
  7.  反応性希釈剤をさらに含有することを特徴とする請求項1乃至請求項6のいずれか一項に記載の光硬化性組成物。
  8.  前記反応性希釈剤が、アクリロイル基またはメタクリロイル基を有する化合物を含有することを特徴とする請求項7に記載の光硬化性組成物。
  9.  立体造形用の光硬化性組成物であることを特徴とする請求項1乃至請求項8のいずれか一項に記載の光硬化性組成物。
  10.  下記一般式(5)
    Figure JPOXMLDOC01-appb-C000004

     (式(5)中、R11は水素原子またはメチル基を表し、R12は置換基を有していてもよい炭素原子数1から10の炭化水素基を表し、Lは置換基を有していてもよい炭素原子数1から10の2価の炭化水素基を表す。R13、R14、およびR15は各々独立に、置換基を有していてもよい炭素原子数1から20の2価の炭化水素基を表し、aおよびbはいずれか一方は0でもよい、1≦a+b≦50を満たす整数である。)
     で表される繰り返し構造単位を含むことを特徴とする樹脂。
  11.  下記一般式(6)
    Figure JPOXMLDOC01-appb-C000005

     (式(6)中、R21は水素原子またはメチル基を表し、R22は置換基を有していてもよい炭素原子数1から10の炭化水素基を表し、Lは置換基を有していてもよい炭素原子数1から10の2価の炭化水素基を表す。)
     で表される繰り返し構造単位と、下記一般式(7)
    Figure JPOXMLDOC01-appb-C000006

     (式(7)中、R23、R24、R25、およびR26は各々独立に、置換基を有していてもよい炭素原子数1から20の2価の炭化水素基を表し、aおよびbはいずれか一方は0でもよい、1≦a+b≦50を満たす整数である。XおよびXは各々独立に、О(酸素原子)、S(硫黄原子)、およびNH(イミノ基)のいずれかを表す。)
     で表される繰り返し構造単位と、を含有する樹脂。
  12.  下記式(1)
     A-B-C・・・(1)
     (式(1)中、AおよびCは各々独立して、下記式(2)で表される基を表し、Bは下記式(3)で表される基を表す。
    Figure JPOXMLDOC01-appb-C000007

    Figure JPOXMLDOC01-appb-C000008

     ここで、式(2)中、Rは水素原子またはメチル基を表し、Rは置換基を有していてもよい炭素原子数1から10の炭化水素基を表し、Lは置換基を有していてもよい炭素原子数1から10の2価の炭化水素基を表す。また、式(3)中、R、R、およびRは各々独立に、置換基を有していてもよい炭素原子数1から20の2価の炭化水素基を表し、aおよびbは、いずれか一方は0でもよい、1≦a+b≦50を満たす整数である。)
     で表されることを特徴とするブロックイソシアネート。
  13.  スライスデータに基づいて光硬化性組成物を層毎に光硬化させて造形物を造形する工程と、
     前記造形物に熱処理を施して立体物を得る工程と、を有する立体物の製造方法であって、
     前記光硬化性組成物が、請求項1乃至請求項8のいずれか一項に記載の光硬化性組成物であることを特徴とする立体物の製造方法。
PCT/JP2018/007768 2017-03-03 2018-03-01 光硬化性組成物、樹脂、ブロックイソシアネート、および、立体物の製造方法 WO2018159758A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/554,434 US20200048404A1 (en) 2017-03-03 2019-08-28 Photo-curable composition, resin, blocked isocyanate, and method for manufacturing three-dimensional object

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-040856 2017-03-03
JP2017040856 2017-03-03
JP2017-140152 2017-07-19
JP2017140152A JP7005200B2 (ja) 2017-03-03 2017-07-19 光硬化性組成物、樹脂、ブロックイソシアネート、および、立体物の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/554,434 Continuation US20200048404A1 (en) 2017-03-03 2019-08-28 Photo-curable composition, resin, blocked isocyanate, and method for manufacturing three-dimensional object

Publications (1)

Publication Number Publication Date
WO2018159758A1 true WO2018159758A1 (ja) 2018-09-07

Family

ID=63371337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007768 WO2018159758A1 (ja) 2017-03-03 2018-03-01 光硬化性組成物、樹脂、ブロックイソシアネート、および、立体物の製造方法

Country Status (1)

Country Link
WO (1) WO2018159758A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022508827A (ja) * 2018-10-17 2022-01-19 インクビット, エルエルシー インクジェット3d印刷用チオール-エン印刷可能樹脂
US20220089800A1 (en) * 2018-12-13 2022-03-24 Henkel IP & Holding GmbH (meth)acrylate-functionalized waxes and curable compositions made therewith

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524598A (en) * 1975-07-01 1977-01-13 Kansai Paint Co Ltd Photosetting urethane resin composition
JPS54132633A (en) * 1978-04-06 1979-10-15 Nippon Oil & Fats Co Ltd Photo-setting coating composition
JPS5863760A (ja) * 1981-10-09 1983-04-15 Nippon Paint Co Ltd 光硬化性被覆組成物
JPH05117974A (ja) * 1991-10-22 1993-05-14 Takemoto Oil & Fat Co Ltd 合成繊維処理用組成物及び合成繊維の処理方法
JP2000007641A (ja) * 1998-06-17 2000-01-11 Takemoto Oil & Fat Co Ltd 光学的立体造形用樹脂及び光学的立体造形用樹脂組成物
JP2002145983A (ja) * 2000-11-14 2002-05-22 Yokohama Rubber Co Ltd:The ポリウレタン組成物
JP2007148394A (ja) * 2005-10-31 2007-06-14 Nippon Paint Co Ltd 感光性樹脂組成物、画像形成材料及びそれを用いた画像形成方法
WO2013146706A1 (ja) * 2012-03-30 2013-10-03 太陽ホールディングス株式会社 光硬化性熱硬化性組成物、その硬化物の製造方法、硬化物およびこれを有するプリント配線板
JP2016505648A (ja) * 2012-11-16 2016-02-25 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se ポリウレタン、その分散液、それらの製造及び使用
JP2016121346A (ja) * 2014-12-25 2016-07-07 日本合成化学工業株式会社 ウレタン(メタ)アクリレートの製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524598A (en) * 1975-07-01 1977-01-13 Kansai Paint Co Ltd Photosetting urethane resin composition
JPS54132633A (en) * 1978-04-06 1979-10-15 Nippon Oil & Fats Co Ltd Photo-setting coating composition
JPS5863760A (ja) * 1981-10-09 1983-04-15 Nippon Paint Co Ltd 光硬化性被覆組成物
JPH05117974A (ja) * 1991-10-22 1993-05-14 Takemoto Oil & Fat Co Ltd 合成繊維処理用組成物及び合成繊維の処理方法
JP2000007641A (ja) * 1998-06-17 2000-01-11 Takemoto Oil & Fat Co Ltd 光学的立体造形用樹脂及び光学的立体造形用樹脂組成物
JP2002145983A (ja) * 2000-11-14 2002-05-22 Yokohama Rubber Co Ltd:The ポリウレタン組成物
JP2007148394A (ja) * 2005-10-31 2007-06-14 Nippon Paint Co Ltd 感光性樹脂組成物、画像形成材料及びそれを用いた画像形成方法
WO2013146706A1 (ja) * 2012-03-30 2013-10-03 太陽ホールディングス株式会社 光硬化性熱硬化性組成物、その硬化物の製造方法、硬化物およびこれを有するプリント配線板
JP2016505648A (ja) * 2012-11-16 2016-02-25 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se ポリウレタン、その分散液、それらの製造及び使用
JP2016121346A (ja) * 2014-12-25 2016-07-07 日本合成化学工業株式会社 ウレタン(メタ)アクリレートの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022508827A (ja) * 2018-10-17 2022-01-19 インクビット, エルエルシー インクジェット3d印刷用チオール-エン印刷可能樹脂
US20220089800A1 (en) * 2018-12-13 2022-03-24 Henkel IP & Holding GmbH (meth)acrylate-functionalized waxes and curable compositions made therewith

Similar Documents

Publication Publication Date Title
JP6946095B2 (ja) 立体造形用の光硬化性組成物、それを用いた立体物の製造方法、および樹脂
US6200732B1 (en) Photocurable resin composition
KR20170010299A (ko) 저점도 올리고머 및 이를 포함하는 sla 3d 프린트용 수지 조성물
JP6468355B2 (ja) 樹脂組成物及びそれを用いた立体造形物
US20130296503A1 (en) Post polymerization cure shape memory polymers
WO2018159758A1 (ja) 光硬化性組成物、樹脂、ブロックイソシアネート、および、立体物の製造方法
TW202132363A (zh) 光聚合起始劑及光硬化性樹脂組成物
JP2009040955A (ja) 重合用樹脂組成物およびその賦型物
JP7066384B2 (ja) ブロックイソシアネート、光硬化性組成物、樹脂、および立体物の製造方法
JP7351474B2 (ja) 活性エネルギー線硬化性樹脂組成物
JP7005200B2 (ja) 光硬化性組成物、樹脂、ブロックイソシアネート、および、立体物の製造方法
JP2017538801A (ja) 自己復元特性を有するコーティング層形成用組成物、コーティング層およびコーティングフィルム
WO2018159493A1 (ja) 立体造形用の光硬化性組成物、それを用いた立体物の製造方法、および樹脂
JP5534606B2 (ja) 活性エネルギー線硬化型樹脂組成物
JP2012116999A (ja) 硬化性樹脂組成物
KR102124853B1 (ko) 폴리에스테르 폴리올의 혼합물을 이용한 광경화 우레탄 아크릴레이트 중합체 및 이의 제조방법
KR102470021B1 (ko) 수용화도가 우수하여 미반응물의 제거가 용이한 아미노 술폰산 변성 1,6-헥사메틸렌디이소시아네이트-이소시아누레이트-아크릴레이트화합물을 포함하는 3d 광경화수지 조성물
KR101919214B1 (ko) 광학 부재용 폴리이소시아네이트 모노머 조성물, 광학 부재 및 그 제조 방법
WO1997000276A1 (en) Active energy ray-curable resin compositions, a cured article and an optical lens obtained therefrom, and novel (meth)acrylate compounds therefor
TW201940534A (zh) 硬化性組成物、硬化物、硬化物的製造方法、硬化物損傷的修復方法
KR102569223B1 (ko) 1,6-헥사메틸렌디이소시아네이트와 2,4-톨루엔디이소시아네이트의 이소시아누레이트형 삼량체 구조를 가지는 우레탄아크릴레이트 화합물 및 이를 이용한 고강도 및 고내열성 3d 광경화 조성물
KR0178036B1 (ko) 폴리부틸렌 글리콜 디메타크릴레이트 및 이를 함유하는 주형중합용 수지조성물
KR20220094798A (ko) 바이오매스 유래 1,5-펜타메틸렌디이소시아네이트-이소시아누레이트-아크릴레이트화합물을 포함하는 3d 광경화수지 조성물
WO2024099798A1 (en) Radiation curable compositions for additive manufacturing of high toughness articles
JP2022090898A (ja) ウレタン(メタ)アクリレート系化合物、活性エネルギー線硬化性樹脂組成物、硬化膜、積層体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761235

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18761235

Country of ref document: EP

Kind code of ref document: A1