WO2018159756A1 - 配列制御オリゴシロキサン、それらの製造方法及びオリゴシロキサン合成機 - Google Patents

配列制御オリゴシロキサン、それらの製造方法及びオリゴシロキサン合成機 Download PDF

Info

Publication number
WO2018159756A1
WO2018159756A1 PCT/JP2018/007759 JP2018007759W WO2018159756A1 WO 2018159756 A1 WO2018159756 A1 WO 2018159756A1 JP 2018007759 W JP2018007759 W JP 2018007759W WO 2018159756 A1 WO2018159756 A1 WO 2018159756A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
structure represented
hydrosilane
oligosiloxane
represented
Prior art date
Application number
PCT/JP2018/007759
Other languages
English (en)
French (fr)
Inventor
松本 和弘
佐藤 一彦
島田 茂
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to US16/490,761 priority Critical patent/US10975107B2/en
Priority to JP2019503108A priority patent/JP6900064B2/ja
Priority to DE112018001105.4T priority patent/DE112018001105T5/de
Publication of WO2018159756A1 publication Critical patent/WO2018159756A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0834Compounds having one or more O-Si linkage
    • C07F7/0838Compounds with one or more Si-O-Si sequences
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • C07F7/1872Preparation; Treatments not provided for in C07F7/20
    • C07F7/188Preparation; Treatments not provided for in C07F7/20 by reactions involving the formation of Si-O linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0896Compounds with a Si-H linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/21Cyclic compounds having at least one ring containing silicon, but no carbon in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/045Polysiloxanes containing less than 25 silicon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/08Preparatory processes characterised by the catalysts used

Definitions

  • the present invention relates to oligosiloxanes, methods for producing them, and oligosiloxane synthesizers, and more particularly to oligosiloxanes in which the arrangement of substituents of oligosiloxane is precisely controlled, methods for producing them, and oligosiloxane synthesizers.
  • the siloxane bond is a bond constituting the basic skeleton of a silicone polymer or a functional siloxane compound, and the development of a siloxane bond forming method has been actively conducted since ancient times. However, methods for synthesizing oligosiloxanes by controlling the arrangement of siloxanes are limited.
  • the present invention provides an oligosiloxane production method and oligosiloxane synthesizer capable of efficiently producing oligosiloxane, and in particular, an oligosiloxane production method capable of precisely controlling the arrangement of the substituents of oligosiloxane. And an oligosiloxane synthesizer.
  • the present inventors have conducted a condensation reaction of alkoxysilane and dihydrosilane using a boron compound having Lewis acidity as a catalyst, and hydrosiloxane catalyzing a boron compound having Lewis acidity.
  • the oligosiloxane can be efficiently produced by combining the hydrosilylation reaction of the carbonyl compound with the carbonyl compound, and the arrangement of the substituents of the oligosiloxane is precisely controlled by alternately repeating the condensation reaction and the hydrosilylation reaction.
  • the present invention has been completed. That is, the present invention is as follows.
  • R is a hydrocarbon group having 1 to 20 carbon atoms or a group represented by —CHR ′ 2
  • R ′ is independently a hydrogen atom or a group having 1 to 8 carbon atoms.
  • It represents a hydrocarbon group.
  • the structure represented by formula (b) and the structure represented by formula (c) may be contained in different compounds, respectively, or may be contained in one molecule.
  • R ′ independently represents a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, provided that two R ′ in the formula (E) and the formula ( The two R's in f) are the same combination.
  • the alkoxysilane having a structure represented by the formula (b) is an alkoxysilane having a structure represented by the following formula (b ′).
  • An alkoxysilane having a structure represented by the following formula (b ′) is represented by a hydrosilane having a structure represented by the following formula (a) and the following formula (E) in the presence of a boron compound having Lewis acidity.
  • R ′ each independently represents a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms.
  • R ′ each independently represents a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, provided that two R ′ in the formula (E) and the formula (The two R ′ in (b ′) are the same combination.
  • a hydrosilane having a structure represented by the following formula (a) is reacted with a carbonyl compound represented by the following formula (E) to represent the following formula (b ′).
  • the manufacturing method of the oligosiloxane characterized by including the condensation process which makes the hydrosilane which has a structure represented by (c) react, and produces
  • R ′ each independently represents a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, provided that two R ′ in the formula (E) and the formula (The two R ′ in (b ′) are the same combination.
  • the structure represented by the formula (b ′) and the structure represented by the formula (c) may be included in different compounds, respectively, or may be included in one molecule.
  • ⁇ 4> The method for producing an oligosiloxane according to any one of ⁇ 1> to ⁇ 3>, wherein the condensation step and the hydrosilylation step are performed in one reactor.
  • ⁇ 5> The method for producing an oligosiloxane according to any one of ⁇ 1>, ⁇ 2>, and ⁇ 4>, wherein the boron compound having Lewis acidity used in the condensation step is used in the hydrosilylation step.
  • ⁇ 6> The method for producing an oligosiloxane according to ⁇ 3> or ⁇ 4>, wherein the boron compound having Lewis acidity used in the hydrosilylation step is used in the condensation step.
  • ⁇ 7> The method for producing an oligosiloxane according to any one of ⁇ 1> to ⁇ 6>, wherein the oligosiloxane is represented by any of the following formulas (G-1) to (G-14).
  • each R 1 independently contains at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom, a sulfur atom, and a halogen atom.
  • ⁇ 8> The oligosiloxane according to any one of ⁇ 1> to ⁇ 7>, comprising two or more condensation steps and two or more hydrosilylation steps, wherein the condensation step and the hydrosilylation step are alternately performed.
  • An oligosiloxane synthesizer comprising a control device that performs control including: (In the formula (b), R is a hydrocarbon group having 1 to 20 carbon atoms or a group represented by —CHR ′ 2 , and R ′ is independently a hydrogen atom or a group having 1 to 8 carbon atoms. (It represents a hydrocarbon group.
  • the structure represented by formula (b) and the structure represented by formula (c) may be contained in different compounds, respectively, or may be contained in one molecule.
  • R ′ independently represents a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, provided that two R ′ in the formula (E) and the formula ( The two R's in f) are the same combination.
  • a hydrosilane having a structure represented by the following formula (a) is reacted with a carbonyl compound represented by the following formula (E) to represent the following formula (b ′).
  • An oligosiloxane synthesizer comprising a control device that performs control including: (In the formula (E) and the formula (b ′), R ′ each independently represents a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, provided that two R ′ in the formula (E) and the formula (The two R ′ in (b ′) are the same combination.) (The structure represented by the formula (b ′) and the structure represented by the formula (c) may be included in different compounds, respectively, or may be included in one molecule.) ⁇ 11> An oligosiloxane represented by any one of the following formulas (G-1) to (G-14).
  • each R 1 independently contains at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom, a sulfur atom, and a halogen atom.
  • a hydrocarbon group having 1 to 20 carbon atoms wherein R ′ is independently a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, R x is each independently a nitrogen atom, an oxygen atom, A hydrocarbon group having 1 to 20 carbon atoms which may contain at least one atom selected from the group consisting of a sulfur atom and a halogen atom, i is an integer of 2 to 20, and j is 1 to 20 And k represents an integer of 1 to 20.
  • oligosiloxane can be produced efficiently. Moreover, the oligosiloxane which has arbitrary substituent group sequences can be manufactured.
  • the oligosiloxane production method according to one embodiment of the present invention (hereinafter sometimes abbreviated as “production method of the present invention”) is represented by the following formula (b) in the presence of a boron compound having Lewis acidity.
  • a condensation step in which an alkoxysilane having a structure and a hydrosilane having a structure represented by the following formula (c) are reacted to form a hydrosiloxane having a structure represented by the following formula (d): And a hydrosiloxane having a structure represented by the formula (d) produced in the condensation step and a carbonyl compound represented by the following formula (E) in the presence of a boron compound having Lewis acidity. And a hydrosilylation step for producing an alkoxysiloxane having a structure represented by the following formula (f) (hereinafter sometimes abbreviated as “hydrosilylation step”). To.
  • R is a hydrocarbon group having 1 to 20 carbon atoms or a group represented by —CHR ′ 2
  • R ′ is independently a hydrogen atom or a group having 1 to 8 carbon atoms.
  • It represents a hydrocarbon group.
  • the structure represented by formula (b) and the structure represented by formula (c) may be contained in different compounds, respectively, or may be contained in one molecule.
  • R ′ independently represents a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, provided that two R ′ in the formula (E) and the formula ( The two R's in f) are the same combination.
  • hydrosilane having a structure represented by the following formula (a) is reacted with a carbonyl compound represented by the following formula (E) in the presence of a boron compound having Lewis acidity.
  • the hydrosilylation step for producing an alkoxysilane having a structure represented by the following formula (b ′) and the following formula (b ′) produced in the hydrosilylation step in the presence of a boron compound having Lewis acidity It includes a condensation step of reacting an alkoxysilane having a structure with a hydrosilane having a structure represented by the following formula (c) to produce a hydrosiloxane having a structure represented by the following formula (d).
  • R ′ each independently represents a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, provided that two R ′ in the formula (E) and the formula (The two R ′ in (b ′) are the same combination.
  • the structure represented by the formula (b ′) and the structure represented by the formula (c) may be included in different compounds, respectively, or may be included in one molecule.
  • siloxane bond formation method by hydrolysis / condensation of alkoxysilane or chlorosilane, it is impossible in principle to precisely control the arrangement of substituents of the generated siloxane.
  • One aspect of the present invention is characterized in that both the “condensation step” and the “hydrosilylation step” are carried out continuously, and any one of the “condensation step” and the “hydrosilylation step” depends on the starting material. You may carry out from a process.
  • the wavy line in Formula (a), (b), (b '), (c), (d), and (f) means that the structure ahead is arbitrary.
  • the “condensation step” includes an alkoxysilane having a structure represented by the formula (b) or (b ′) and a hydrosilane having a structure represented by the formula (c).
  • the “hydrosilylation step” represents the formula (d).
  • the hydrosiloxane having the structure represented by (a) and the carbonyl compound represented by the formula (E) are not limited to reacting 1: 1 (substance amount).
  • 1 substance amount
  • an alkoxysilane having a structure represented by the formula (b) has two or more alkoxy groups (—OR)
  • the “condensation step” and the “hydrosilylation step” are as shown in the reaction represented by the following formula: It can progress.
  • the oligosiloxane may have a branched structure or a cyclic structure.
  • the “condensation step”, the “hydrosilylation step”, and the like will be described in detail, taking as an example the case where the “hydrosilylation step” is performed following at least the “condensation step”.
  • the condensation step is represented by the formula (d) by reacting an alkoxysilane having a structure represented by the formula (b) with a hydrosilane having a structure represented by the formula (c) in the presence of a boron compound having Lewis acidity.
  • the specific type of the alkoxysilane having the structure represented by the formula (b) is not particularly limited, and is appropriately selected according to the oligosiloxane that is the production purpose. It should be.
  • the “alkoxy silane having the structure represented by the formula (b)” is changed to the “alkoxy silane having the structure represented by the formula (b ′)”.
  • R in the formula (b) is “a hydrocarbon group having 1 to 20 carbon atoms” or “a group represented by —CHR ′ 2 ”, and R ′ is independently “hydrogen atom” or “ Represents a "hydrocarbon group having 1 to 8 carbon atoms", the "hydrocarbon group” may have a branched structure or a cyclic structure, and may be a saturated hydrocarbon group, an unsaturated hydrocarbon group, Any aromatic hydrocarbon group or the like may be used.
  • the number of carbon atoms when R is a hydrocarbon group is preferably 12 or less, more preferably 10 or less, still more preferably 8 or less, and the number of carbon atoms when R is an aromatic hydrocarbon group is usually 6 or more.
  • the number of carbon atoms when R ′ is a hydrocarbon group is preferably 7 or less, more preferably 6 or less, and even more preferably 4 or less.
  • the number of carbon atoms when R ′ is an aromatic hydrocarbon group is Usually, it is 6 or more.
  • the alkoxysilane having a structure represented by the formula (b) is an alkoxysilane having a structure represented by the following formula (b ′):
  • the alkoxysilane having a structure represented by the formula (b ′) is a hydrosilane having a structure represented by the following formula (a) and a carbonyl represented by the following formula (E) in the presence of a boron compound having Lewis acidity. It may be produced by reacting a compound.
  • R ′ each independently represents a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms.
  • R ′ each independently represents a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, provided that two R ′ in the formula (E) and the formula (The two R ′ in (b ′) are the same combination.
  • alkoxysilane having the structure represented by the formula (b) examples include alkoxymonosilane and alkoxyoligosiloxane having 2 to 20 silicon atoms.
  • alkoxymonosilane and “alkoxyoligosiloxane having 2 to 20 silicon atoms” will be described in detail.
  • alkoxymonosilane examples include alkoxysilanes represented by any of the following formulas (B-1) to (B-4). (In the formulas (B-1) to (B-4), each R 1 independently contains at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom, a sulfur atom, and a halogen atom.
  • R is a hydrocarbon group having 1 to 20 carbon atoms, or a group represented by —CHR ′ 2 , and R ′ is independently a hydrogen atom, or (Represents a hydrocarbon group having 1 to 8 carbon atoms.)
  • R 1 in formulas (B-1) to (B-4) each independently contains “at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom, a sulfur atom, and a halogen atom.
  • “Good” means that a hydrogen atom of a hydrocarbon group may be substituted with a monovalent functional group containing a nitrogen atom, an oxygen atom, a sulfur atom, a halogen atom, etc., or a carbon atom inside the carbon skeleton of the hydrocarbon group May be substituted with a divalent or higher functional group (linking group) containing a nitrogen atom, an oxygen atom, a sulfur atom, or the like.
  • the “hydrocarbon group” may have a branched structure or a cyclic structure, and may be any of a saturated hydrocarbon group, an unsaturated hydrocarbon group, an aromatic hydrocarbon group, and the like. To do.
  • the number of carbon atoms in the hydrocarbon group of R 1 is preferably 12 or less, more preferably 10 or less, further preferably 8 or less carbon atoms when R 1 is an aromatic hydrocarbon group is usually 6 That's it.
  • the functional group contained in the hydrocarbon group of R 1 includes an ether group (oxa group, —O—), a thioether group (thia group, —S—), a fluoro group (—F), a chloro group (—Cl), Examples include a bromo group (—Br), an iodo group (—I), an alkenyl group, an alkynyl group, and the like.
  • a functional group contains carbon atoms, such as an alkenyl group and an alkynyl group, it includes in carbon number of a hydrocarbon group.
  • the hydrocarbon group having 1 to 20 carbon atoms “may contain at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom, a sulfur atom, and a halogen atom” includes, for example, —CH A hydrocarbon group having 2 carbon atoms containing halogen such as 2- CH 2 —Br, and a hydrocarbon group having 2 carbon atoms containing an ether group in the carbon skeleton such as —CH 2 —O—CH 3. And a hydrocarbon group having 4 carbon atoms containing a thia group inside the carbon skeleton, such as —CH 2 —CH 2 —S—CH 2 —CH 3 .
  • R 1 examples include a methyl group (—CH 3 , —Me), an ethyl group (—C 2 H 5 , —Et), an n-propyl group ( —n C 3 H 7 , —n Pr), i -Propyl group ( -i C 3 H 7 , -i Pr), n-butyl group ( -n C 4 H 9 , -n Bu), t-butyl group ( -t C 4 H 9 , -t Bu), n-pentyl group ( -n C 5 H 11 ), n-hexyl group ( -n C 6 H 13 , -n Hex), cyclohexyl group ( -c C 6 H 11 , -Cy), phenyl group (-C 6 H 5 , -Ph) and the like.
  • Examples of the alkoxysilane represented by any one of the formulas (B-1) to (B-4) include those represented by the following formula.
  • Alkoxy oligosiloxane having 2 to 20 silicon atoms means an oligosiloxane having an alkoxy group (—OR) and may have a branched structure or a cyclic structure.
  • the number of silicon atoms in the alkoxyoligosiloxane having 2 to 20 silicon atoms is preferably 16 or less, more preferably 12 or less, and still more preferably 8 or less.
  • the number of alkoxy groups (—OR) in the alkoxyoligosiloxane having 2 to 20 silicon atoms is usually 1 or more, usually 4 or less, preferably 3 or less, more preferably 2 or less.
  • the substituent contained in the alkoxyoligosiloxane having 2 to 20 silicon atoms may contain at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom, a sulfur atom, and a halogen atom.
  • Examples thereof include hydrocarbon groups of 1 to 20.
  • the “hydrocarbon group having 1 to 20 carbon atoms which may contain at least one atom selected from the group consisting of nitrogen atom, oxygen atom, sulfur atom and halogen atom” is the case of R 1 It is synonymous with.
  • Examples of the alkoxy oligosiloxane having 2 to 20 silicon atoms include alkoxy oligosiloxanes represented by any of the following formulas (B-5) to (B-6).
  • R 1 are each independently a nitrogen atom, an oxygen atom, a sulfur atom, and include at least one atom selected from the group consisting of halogen atoms
  • a hydrocarbon group having 1 to 20 carbon atoms R is a hydrocarbon group having 1 to 20 carbon atoms, or a group represented by —CHR ′ 2
  • R ′ is independently a hydrogen atom, or (C represents a hydrocarbon group having 1 to 8 carbon atoms, and n represents an integer of 0 to 18)
  • R 1 in the formula (B-5) ⁇ (B -6) include the same as R 1 in the formula (B-1) ⁇ (B -4).
  • Examples of the alkoxyoligosiloxane represented by any one of the formulas (B-5) to (B-6) include those represented by the following formulae.
  • hydrosilane having the structure represented by the formula (c) is not particularly limited, and should be appropriately selected according to the oligosiloxane to be produced.
  • examples of the hydrosilane having a structure represented by the formula (c) include hydrosilanes represented by any of the following formulas (C-1) to (C-3).
  • each R 2 independently contains at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom, a sulfur atom, and a halogen atom.
  • R 2 in formulas (C-1) to (C-2) each independently contains “at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom, a sulfur atom, and a halogen atom.
  • R 2 in formulas (C-1) to (C-2) each independently contains “at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom, a sulfur atom, and a halogen atom.
  • the “good hydrocarbon group” has the same meaning as in the case of R 1 .
  • the number of carbon atoms of the hydrocarbon group of R 2 is preferably 12 or less, more preferably 10 or less, and even more preferably 8 or less.
  • R 1 is an aromatic hydrocarbon group
  • the functional group contained in the hydrocarbon group of R 2 includes an ether group (oxa group, —O—), a thioether group (thia group, —S—), a fluoro group (—F), a chloro group (—Cl), Examples include a bromo group (—Br), an iodo group (—I), an alkenyl group, an alkynyl group, and the like.
  • R 2 includes a methyl group (—CH 3 , —Me), an ethyl group (—C 2 H 5 , —Et), an n-propyl group ( —n C 3 H 7 , —n Pr), and an i-propyl group.
  • the amount of use (charge) of hydrosilane having the structure represented by formula (c) in the condensation step is based on the amount of the alkoxy group (—OR) of the alkoxysilane having the structure represented by formula (b).
  • the specific kind of the boron compound having Lewis acidity in the condensation step is not particularly limited, and can be appropriately selected according to the purpose.
  • the boron compound having Lewis acidity is not limited to one type, and two or more types may be used in combination.
  • Examples of boron compounds having Lewis acidity include tris (pentafluorophenyl) borane (B (C 6 F 5 ) 3 ), tris (pentachlorophenyl) borane (B (C 6 Cl 5 ) 3 ), triphenylborane (BPh 3 And tris (pentafluorophenyl) borane is particularly preferable.
  • An oligosiloxane can be produced more efficiently when it is as described above.
  • the use amount (charge amount) of the boron compound having Lewis acidity in the condensation step is usually 0.01 mol% or more, preferably 0. 0%, in terms of the amount of the substance based on the alkoxysilane having the structure represented by the formula (b). 1 mol% or more, more preferably 1 mol% or more, and usually 20 mol% or less, preferably 10 mol% or less, more preferably 5 mol% or less. When it is within the above range, oligosiloxane can be produced more efficiently.
  • a solvent In the condensation step, it is preferable to use a solvent.
  • the type of the solvent is not particularly limited and can be appropriately selected according to the purpose. Specific examples include hydrocarbon solvents such as hexane, benzene and toluene; halogen solvents such as methylene chloride and chloroform. It is done. Of these, toluene is particularly preferred. An oligosiloxane can be produced more efficiently when it is as described above.
  • the reaction temperature in the condensation step is usually 0 ° C. or higher, preferably 10 ° C. or higher, more preferably 20 ° C. or higher, and usually 80 ° C. or lower, preferably 60 ° C. or lower, more preferably 40 ° C. or lower.
  • the reaction time of the condensation step is usually 1 minute or longer, preferably 5 minutes or longer, more preferably 10 minutes or longer, and is usually 12 hours or shorter, preferably 6 hours or shorter, more preferably 1 hour or shorter.
  • the condensation step is preferably performed under an inert atmosphere such as nitrogen or argon. When it is within the above range, oligosiloxane can be produced more efficiently.
  • Hydrosilylation step In the hydrosilylation step, a hydrosiloxane having a structure represented by the formula (d) generated in the condensation step and a carbonyl compound represented by the formula (E) are reacted with each other in the presence of a boron compound having Lewis acidity.
  • This is a step for producing an alkoxysiloxane having a structure represented by f), but the specific type of the carbonyl compound represented by the formula (E) is not particularly limited and can be appropriately selected according to the purpose. .
  • R ′ each independently represents “hydrogen atom” or “hydrocarbon group having 1 to 8 carbon atoms”, but “hydrocarbon group” has the same meaning as R. It is.
  • R ′ is a hydrocarbon group, the number of carbon atoms is preferably 7 or less, more preferably 6 or less, and when R ′ is an aromatic hydrocarbon group, the number of carbon atoms is usually 6 or more. .
  • Examples of the carbonyl compound represented by the formula (E) include formaldehyde, acetaldehyde, benzaldehyde, acetone, 3-pentanone, acetophenone, and benzophenone represented by the following formula.
  • the amount of carbonyl compound represented by formula (E) in the hydrosilylation step is based on the amount of hydrogen atom (Si—H) of the hydrosiloxane having the structure represented by formula (d).
  • charge amount is based on the amount of hydrogen atom (Si—H) of the hydrosiloxane having the structure represented by formula (d).
  • 0.5 equivalents or more preferably 0.9 equivalents or more, more preferably 0.95 equivalents or more, usually 1.5 equivalents or less, preferably 1.1 equivalents or less, more preferably 1.05 equivalents or less. It is. When it is within the above range, oligosiloxane can be produced more efficiently.
  • the specific kind of the boron compound having Lewis acidity in the hydrosilylation step is not particularly limited and can be appropriately selected depending on the purpose.
  • the boron compound having Lewis acidity is not limited to one type, and two or more types may be used in combination.
  • Examples of boron compounds having Lewis acidity include tris (pentafluorophenyl) borane (B (C 6 F 5 ) 3 ), tris (pentachlorophenyl) borane (B (C 6 Cl 5 ) 3 ), triphenylborane (BPh 3 And tris (pentafluorophenyl) borane is particularly preferable.
  • An oligosiloxane can be produced more efficiently when it is as described above.
  • the boron compound having Lewis acidity used in the hydrosilylation step may be the one used in the condensation step.
  • the boron compound having Lewis acidity used in the condensation step as it is, purification after the condensation step can be omitted, and the oligosiloxane can be produced more efficiently.
  • the condensation step and the hydrosilylation step are performed in one reactor, the condensation step and the hydrosilylation step can be performed continuously, and an oligosiloxane can be produced very efficiently.
  • the boron compound having Lewis acidity used in the hydrosilylation step may be used in the condensation step.
  • the use amount (charge amount) of the boron compound having Lewis acidity in the hydrosilylation step is usually 0.01 mol% or more, preferably 0, in terms of the amount of substance with respect to the hydrosiloxane having the structure represented by the formula (d). 0.1 mol% or more, more preferably 1 mol% or more, and usually 20 mol% or less, preferably 10 mol% or less, more preferably 5 mol% or less. When it is within the above range, oligosiloxane can be produced more efficiently.
  • the hydrosilylation step preferably uses a solvent.
  • the type of the solvent is not particularly limited and can be appropriately selected according to the purpose. Specific examples include hydrocarbon solvents such as hexane, benzene and toluene; halogen solvents such as methylene chloride and chloroform. It is done. Of these, toluene is particularly preferred.
  • An oligosiloxane can be produced more efficiently if it is the above.
  • the solvent used in the hydrosilylation step may be the one used in the condensation step. By using the Lewis acid boron compound and the solvent used in the condensation step as they are, purification after the condensation step can be omitted, and the oligosiloxane can be produced more efficiently. In particular, when the condensation step and the hydrosilylation step are performed in one reactor, the condensation step and the hydrosilylation step can be performed continuously, and an oligosiloxane can be produced very efficiently.
  • the reaction temperature in the hydrosilylation step is usually 0 ° C. or higher, preferably 10 ° C. or higher, more preferably 20 ° C. or higher, and usually 80 ° C. or lower, preferably 60 ° C. or lower, more preferably 40 ° C. or lower.
  • the reaction time of the hydrosilylation step is usually 1 minute or more, preferably 5 minutes or more, more preferably 10 minutes or more, and usually 12 hours or less, preferably 6 hours or less, more preferably 1 hour or less.
  • the hydrosilylation step is preferably performed under an inert atmosphere such as nitrogen or argon. When it is within the above range, oligosiloxane can be produced more efficiently.
  • the production method of the present invention is characterized by including a condensation step and a hydrosilylation step.
  • the production method includes two or more condensation steps and two or more hydrosilylation steps, The aspect by which a hydrosilylation process is performed alternately is mentioned.
  • “including two or more condensation steps and two or more hydrosilylation steps, and the condensation step and the hydrosilylation step are alternately performed” means that the first condensation step, the first hydrosilylation step, the second condensation step, It means that the condensation step and the hydrosilylation step are alternately repeated, such as a 2 hydrosilylation step, a third condensation step, a third hydrosilylation step,.
  • the alkoxysiloxane having the structure represented by the formula (f) generated in the hydrosilylation step has a “group represented by —CHR ′ 2 ”, as shown by the following formula, a new It can be an alkoxysilane having a structure represented by the formula (b) in the condensation step, and the condensation step and the hydrosilylation step can be alternately repeated.
  • the condensation step serves to introduce a new siloxane structure corresponding to the hydrosilane having the structure represented by the formula (c), and the hydrosilylation step serves to regenerate the alkoxy group, so that these are repeated alternately. As a result, the siloxane structure is elongated.
  • count of a condensation process and a hydrosilylation process is 20 or less normally, Preferably it is 12 or less, More preferably, it is 8 or less.
  • siloxane structure of siloxane can be extended as shown in (i) to (iv) below.
  • (I) Unidirectional type A siloxane structure is extended in one direction to produce a single-chain oligosiloxane (see the following formula).
  • (Ii) Bidirectional type A siloxane structure is extended in two directions to produce a single-chain oligosiloxane (see the following formula).
  • (Iii) Convergence type The elongated siloxane structure is converged to produce a single-chain oligosiloxane.
  • (V) Cyclized type A bifunctional or higher siloxane compound is converged to form a cyclic oligosiloxane. Further, the siloxane structure can be further extended from the cyclized siloxane structure. In addition, a tetrafunctional siloxane compound can be converged to produce spirosiloxane.
  • the production method of the present invention can efficiently produce oligosiloxane, but the following oligosiloxane synthesizer (hereinafter referred to as “the synthesis machine of the present invention”) capable of carrying out the production method of the present invention can be used.
  • the synthesis machine of the present invention capable of carrying out the production method of the present invention can be used.
  • the synthesis machine of the present invention capable of carrying out the production method of the present invention can be used.
  • the synthesis machine of the present invention capable of carrying out the production method of the present invention can be used.
  • the synthesis machine of the present invention capable of carrying out the production method of the present invention can be used.
  • the synthesis machine of the present invention capable of carrying out the production method of the present invention can be used.
  • the synthesis machine of the present invention capable of carrying out the production method of the present invention can be used.
  • alkoxysilane having Lewis acidity
  • alkoxysilane an alkoxysilane having a structure represented by the formula (b
  • hydrosilane having a structure represented by the formula (c) (hereinafter sometimes abbreviated as “hydrosilane”) to produce a hydrosiloxane having a structure represented by the formula (d) ( Hereinafter, it may be abbreviated as “condensation reaction”), and a hydrosiloxane having a structure represented by the formula (d) produced by the condensation reaction in the presence of a boron compound having Lewis acidity and a formula (E).
  • condensation reaction a hydrosiloxane having a structure represented by the formula (d) produced by the condensation reaction in the presence of a boron compound having Lewis acidity and a formula (E).
  • a oligosiloxane synthesizer for synthesizing oligosiloxane A reactor for performing a condensation reaction and a hydrosilylation reaction (hereinafter sometimes abbreviated as “reactor”), A hydrosilane container (hereinafter, may be abbreviated as “hydrosilane container”);
  • a carbonyl compound container hereinafter sometimes abbreviated as “carbonyl compound container”);
  • a hydrosilane transfer mechanism for transferring hydrosilane from the hydrosilane container to the reactor hereinafter, abbreviated as “hydrosilane transfer mechanism”
  • a carbonyl compound transfer mechanism for transferring the carbonyl compound from the carbonyl compound container to the reactor hereinafter sometimes
  • control device that performs control including operating the mechanism and operating the carbonyl compound transfer mechanism so as to transfer the carbonyl compound from the carbonyl compound storage container to the reactor (hereinafter sometimes referred to as “control device”). )
  • An oligosiloxane synthesizer in the presence of a boron compound having Lewis acidity, a structure represented by the formula (b ′) is obtained by reacting a hydrosilane having a structure represented by the formula (a) with a carbonyl compound represented by the formula (E).
  • An example of the synthesizer of the present invention is an oligosiloxane synthesizer having the configuration shown in FIG.
  • the oligosiloxane synthesizer 101 in FIG. 1 includes a reactor 102 that performs a condensation reaction and a hydrosilylation reaction, a plurality of hydrosilane storage containers 103 that store hydrosilane, a carbonyl compound storage container 104 that stores carbonyl compounds, and hydrosilane.
  • the reactor 102 is provided with the hydrosilane container 103 from the hydrosilane container 103, and the controller 106 for controlling the entire oligosiloxane synthesizer 101, and the liquid feeding pipe 105 for transferring the carbonyl compound from the carbonyl compound container 104 to the reactor 102.
  • the hydrosilane container 103 and the carbonyl compound container 104 are connected to a gas cylinder 109 via an air supply pipe 107 to which a solenoid valve 108 is attached, respectively, and using the pressure of the gas supplied from the gas cylinder 109, Hydrosilane and carbonyl compounds can be transferred to the reactor 102, respectively.
  • the electromagnetic valves 108 can be controlled to be opened and closed by the control device 106, respectively.
  • the oligosiloxane synthesizer 101 includes a hydrosilane transfer mechanism and a carbonyl compound transfer mechanism, and the controller 106 can control the transfer of hydrosilane and the transfer of carbonyl compound.
  • the oligosiloxane synthesizer 101 can produce oligosiloxane by performing the following operations (1) to (4), for example. (1) An alkoxysilane, a boron compound, and a solvent are charged into the reactor 102. (2) The hydrosilane is transferred from the hydrosilane container 103 to the reactor 102 to start the condensation reaction. (3) The carbonyl compound is transferred from the carbonyl compound container 104 to the reactor 102 to start the hydrosilylation reaction.
  • Examples of the shape of the reactor include a round bottom, a flat bottom, and a tubular shape.
  • the number of mouths of the reactor is usually 1-10.
  • Examples of the material for the reactor include glass, resin, and metal.
  • the reactor may be a pressure resistant container such as an autoclave.
  • the capacity of the reactor is usually 5 to 500 ml.
  • Examples of the material for the hydrosilane container and the carbonyl compound container include glass, resin, metal, and the like.
  • the number of hydrosilane containing containers is preferably 2 or more, more preferably 3 or more, still more preferably 4 or more, and is usually 50 or less. Since hydrosilane becomes a component of the siloxane structure of oligosiloxane, if the number of hydrosilane containing containers is large, various substituents can be introduced into oligosiloxane according to the number of hydrosilane containers.
  • the number of carbonyl compound storage containers may be one.
  • the hydrosilane transfer mechanism and the carbonyl compound transfer mechanism as in the oligosiloxane synthesizer 101 of FIG.
  • the gas used for the hydrosilane transfer mechanism and the carbonyl compound transfer mechanism include inert gases such as nitrogen gas and argon gas.
  • the hydrosilane transfer mechanism and the carbonyl compound transfer mechanism use a liquid feed pipe like the oligosiloxane synthesizer 101 in FIG. 1, the liquid feed pipe is directly connected to the reactor, as well as an injector, a container, etc. You may connect via.
  • the synthesizer of the present invention includes a heating mechanism (hereinafter referred to as “heating mechanism”) that heats the inside of the reactor.
  • heating mechanism for stirring the reaction solution in the reactor (hereinafter sometimes abbreviated as “stirring mechanism”), a boron compound container for storing the boron compound, and a solvent.
  • Solvent storage container Boron compound transfer mechanism for transferring boron compound from boron compound storage container to reactor, Solvent transfer mechanism for transferring solvent from solvent storage container to reactor, Waste liquid storage container for storing waste liquid, Waste liquid reactor It may include a waste liquid transfer mechanism, a temperature sensor, a remaining amount sensor, and the like that transfer the liquid to the waste liquid storage container.
  • the heating mechanism include a thermostatic bath, an oil bath, a mantle heater, and the like.
  • Examples of the stirring mechanism include a stirrer type, a stirring blade type, and a reactor inversion type.
  • the oligosiloxane synthesizer 101 in FIG. 1 includes a thermostatic chamber 110 as a heating mechanism and a stirrer 111 as a stirring mechanism.
  • control device In the case of an oligosiloxane synthesizer equipped with a heating mechanism, a stirring mechanism, etc., in addition to the transfer of hydrosilane and the transfer of carbonyl compound, the control device is preferably configured to be able to operate each of these mechanisms. Since these mechanisms can be operated, control of the entire oligosiloxane synthesizer can be collectively managed by the control device.
  • the control device include a computer, more preferably a commercially available personal computer. It is preferable to store a program for performing automatic synthesis control (hereinafter sometimes abbreviated as “automatic synthesis control program”) in the control device.
  • the automatic synthesis control program can be set so that each operation such as transfer of hydrosilane, transfer of carbonyl compound, heating in the reactor, stirring of the reaction solution, etc. is automatically performed according to conditions such as time.
  • each operation such as transfer of hydrosilane, transfer of carbonyl compound, heating in the reactor, stirring of the reaction solution, etc. is automatically performed according to conditions such as time.
  • the condensation reaction and the hydrosilylation reaction can be performed automatically and alternately, and an oligosiloxane having an arbitrary substituent group can be efficiently produced.
  • An example of the synthesizer of the present invention is an oligosiloxane synthesizer having the configuration shown in FIG. 2 includes a plurality of reactors 202 that perform a condensation reaction and / or a hydrosilylation reaction, a plurality of hydrosilane storage containers 203 that store hydrosilane, and a carbonyl compound storage container that stores carbonyl compounds.
  • the oligosiloxane synthesizer 201 also includes an alkoxysilane container 212, a liquid feeding pipe 213 for transferring the reaction product from the reactor to another reactor, and a recovery pipe 214 for collecting the generated oligosiloxane.
  • the oligosiloxane synthesizer of FIG. 2 is an alkoxysilane container for storing alkoxysilane, a reaction product transfer mechanism for transferring a reaction product from a reactor to another reactor, and transferring oligosiloxane out of the system. It can be said that it has an oligosiloxane transfer mechanism.
  • the production method of the present invention can precisely control the arrangement of the substituents of the oligosiloxane. ) Is also an embodiment of the present invention.
  • each R 1 independently contains at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom, a sulfur atom, and a halogen atom.
  • a hydrocarbon group having 1 to 20 carbon atoms wherein R ′ is independently a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, R x is each independently a nitrogen atom, an oxygen atom, A hydrocarbon group having 1 to 20 carbon atoms which may contain at least one atom selected from the group consisting of a sulfur atom and a halogen atom, i is an integer of 2 to 20, and j is 1 to 20 And k represents an integer of 1 to 20.
  • the formula (G-1) ⁇ R 1 of (G-14) in the formula (B-1) ⁇ (B -4) are the same as R 1 in the formula (G-2), ( Examples of R ′ in G-4), (G-6) and (G-8) include the same as R ′
  • the following oligosiloxanes are preferred from the viewpoint of ease of ring formation.
  • Example 9 B (C 6 F 5 ) 3 (10.2 mg, 0.02 mmol) was dissolved in toluene (5 mL). To this solution, 3-pentanone (189 ⁇ L, 1.8 mmol) and HMe 2 SiOSiMe 2 OSiMe 2 H (254 ⁇ L, 1.0 mmol) were sequentially added and stirred. After 30 minutes, PhSiH 3 (112 ⁇ L, 0.90 mmol) was added. After 30 minutes, the catalyst was removed by silica gel column chromatography.
  • Oligosiloxane produced by the production method of the present invention can be used as silicone oil, silicone rubber, etc. used in electronic devices, electric machines, automobiles, cosmetics and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Silicon Polymers (AREA)

Abstract

オリゴシロキサンを効率よく製造することができるオリゴシロキサンの製造方法及びオリゴシロキサン合成機を提供することを目的とする。ルイス酸性を有するホウ素化合物の存在下、下記式(b)で表される構造を有するアルコキシシランと下記式(c)で表される構造を有するヒドロシランを反応させて下記式(d)で表される構造を有するヒドロシロキサンを生成する縮合工程、及びルイス酸性を有するホウ素化合物の存在下、前記縮合工程で生成した前記式(d)で表される構造を有するヒドロシロキサンと下記式(E)で表されるカルボニル化合物を反応させて下記式(f)で表される構造を有するアルコキシシロキサンを生成するヒドロシリル化工程を含むオリゴシロキサンの製造方法によって、オリゴシロキサンを効率よく製造することができる。また、任意の置換基配列を有するオリゴシロキサンを製造することができる。

Description

配列制御オリゴシロキサン、それらの製造方法及びオリゴシロキサン合成機
 本発明は、オリゴシロキサン、それらの製造方法及びオリゴシロキサン合成機に関し、より詳しくはオリゴシロキサンの置換基の配列を精密に制御したオリゴシロキサン、それらの製造方法及びオリゴシロキサン合成機に関する。
 シロキサン結合は、シリコーンポリマーや機能性シロキサン化合物の基本骨格を構成する結合であり、シロキサン結合形成法の開発が古くから活発に行われてきた。しかしながら、シロキサンの配列を制御してオリゴシロキサンを合成する手法は限られている。
 正宗らは、ピリジン存在下でのシラノールとクロロシランの縮合反応によるシロキサン結合形成とヒドロシランと水との脱水素縮合を組み合わせることで、シロキサンデンドリマーの逐次的な合成を達成している(非特許文献1参照)。一方、Kungらもシラノールとクロロシランの縮合反応によるシロキサン結合形成を応用して、シランジオールとジクロロシランを順次反応させて配列制御オリゴシロキサンを合成する手法を報告している(非特許文献2参照)。しかしながら、上記の反応で使用するシランモノマー(クロロヒドロシランやシランジオール)の入手には制限がある上、シロキサン結合形成反応後に生じるピリジン塩酸塩を取り除く作業が必要である。そのため、本手法にて多様な配列制御オリゴシロキサンを迅速かつ簡便に合成することは困難である。
 一方、トリス(ペンタフルオロフェニル)ボランはアルコキシシランとヒドロシランの縮合反応を触媒することが知られている(特許文献1、非特許文献2)。また、同触媒は、カルボニル化合物のヒドロシリル化(非特許文献3)にも用いられている。
米国特許出願公開第2004/0127668号明細書
H.Uchida, Y.Kabe, K.Yoshino, A.Kawamata, T.Tsumuraya, S.Masamune, J.Am.Chem.Soc. 1990, 112, 7077-7079. Z.Chang, M.C.Kung, H.H.Kung,Chem.Commun. 2004, 206-207. J.Chojnowski, S.Rubinsztajn, J.A.Cella, W.Fortuniak, M.Cypryk, J.Kurjata, K.Kazmierski, Organometallics 2005, 24, 6077-6084. D.J.Parks, W.E.Piers, J.Am.Chem.Soc. 1996, 118, 9440-9441.
 本発明は、オリゴシロキサンを効率よく製造することができるオリゴシロキサンの製造方法及びオリゴシロキサン合成機を提供すること、特にオリゴシロキサンの置換基の配列を精密に制御することができるオリゴシロキサンの製造方法及びオリゴシロキサン合成機を提供することを目的とする。
 本発明者らは、前記課題を解決すべく鋭意検討を重ねた結果、ルイス酸性を有するホウ素化合物を触媒とするアルコキシシランとジヒドロシランの縮合反応と、ルイス酸性を有するホウ素化合物を触媒するヒドロシロキサンとカルボニル化合物のヒドロシリル化反応を組み合わせることによって、オリゴシロキサンを効率よく製造することができること、さらにこの縮合反応とヒドロシリル化反応を交互に繰り返すことによって、オリゴシロキサンの置換基の配列を精密に制御することができることを見出し、本発明を完成させた。
 即ち、本発明は以下の通りである。
<1> ルイス酸性を有するホウ素化合物の存在下、下記式(b)で表される構造を有するアルコキシシランと下記式(c)で表される構造を有するヒドロシランを反応させて下記式(d)で表される構造を有するヒドロシロキサンを生成する縮合工程、及び
 ルイス酸性を有するホウ素化合物の存在下、前記縮合工程で生成した前記式(d)で表される構造を有するヒドロシロキサンと下記式(E)で表されるカルボニル化合物を反応させて下記式(f)で表される構造を有するアルコキシシロキサンを生成するヒドロシリル化工程を含むことを特徴とするオリゴシロキサンの製造方法。
Figure JPOXMLDOC01-appb-C000015
(式(b)中、Rは炭素原子数1~20の炭化水素基、又は-CHR’で表される基を、R’はそれぞれ独立して水素原子、又は炭素原子数1~8の炭化水素基を表す。式(b)で表される構造と式(c)で表される構造は異なる化合物にそれぞれ含まれていてもよいし、一分子中に含まれていてもよい。)
Figure JPOXMLDOC01-appb-C000016
(式(E)及び式(f)中、R’はそれぞれ独立して水素原子、又は炭素原子数1~8の炭化水素基を表す。但し、式(E)の2つのR’と式(f)の2つのR’は同一の組み合わせとなる。)
<2> 前記式(b)で表される構造を有するアルコキシシランが、下記式(b’)で表される構造を有するアルコキシシランであり、
 下記式(b’)で表される構造を有するアルコキシシランが、ルイス酸性を有するホウ素化合物の存在下、下記式(a)で表される構造を有するヒドロシランと下記式(E)で表されるカルボニル化合物を反応させて生成したものである、<1>に記載のオリゴシロキサンの製造方法。
Figure JPOXMLDOC01-appb-C000017
(式(b’)中、R’はそれぞれ独立して水素原子、又は炭素原子数1~8の炭化水素基
を表す。)
Figure JPOXMLDOC01-appb-C000018
(式(E)及び式(b’)中、R’はそれぞれ独立して水素原子、又は炭素原子数1~8の炭化水素基を表す。但し、式(E)の2つのR’と式(b’)の2つのR’は同一の組み合わせとなる。)
<3> ルイス酸性を有するホウ素化合物の存在下、下記式(a)で表される構造を有するヒドロシランと下記式(E)で表されるカルボニル化合物を反応させて下記式(b’)で表される構造を有するアルコキシシランを生成するヒドロシリル化工程、及び
 ルイス酸性を有するホウ素化合物の存在下、前記ヒドロシリル化工程で生成した下記式(b’)で表される構造を有するアルコキシシランと下記式(c)で表される構造を有するヒドロシランを反応させて下記式(d)で表される構造を有するヒドロシロキサンを生成する縮合工程を含むことを特徴とするオリゴシロキサンの製造方法。
Figure JPOXMLDOC01-appb-C000019
(式(E)及び式(b’)中、R’はそれぞれ独立して水素原子、又は炭素原子数1~8の炭化水素基を表す。但し、式(E)の2つのR’と式(b’)の2つのR’は同一の組み合わせとなる。)
Figure JPOXMLDOC01-appb-C000020
(式(b’)で表される構造と式(c)で表される構造は異なる化合物にそれぞれ含まれていてもよいし、一分子中に含まれていてもよい。)
<4> 前記縮合工程及び前記ヒドロシリル化工程が、1つの反応器内で行われる、<1>~<3>の何れかに記載のオリゴシロキサンの製造方法。
<5> 前記縮合工程において使用した前記ルイス酸性を有するホウ素化合物を、前記ヒドロシリル化工程に使用する、<1>、<2>及び<4>の何れかに記載のオリゴシロキサンの製造方法。
<6> 前記ヒドロシリル化工程において使用した前記ルイス酸性を有するホウ素化合物を、前記縮合工程に使用する、<3>又は<4>に記載のオリゴシロキサンの製造方法。
<7> 前記オリゴシロキサンが下記式(G-1)~(G-14)の何れかで表される、<1>~<6>の何れかに記載のオリゴシロキサンの製造方法。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
(式(G-1)~(G-14)中、Rはそれぞれ独立して窒素原子、酸素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種の原子を含んでいてもよい炭素原子数1~20の炭化水素基を、R’はそれぞれ独立して水素原子、又は炭素原子数1~8の炭化水素基を、Rはそれぞれ独立して窒素原子、酸素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種の原子を含んでいてもよい炭素原子数1~20の炭化水素基を、iは2~20の整数を、jは1~20の整数を、kは1~20の整数を表す。)
<8> 2以上の前記縮合工程及び2以上の前記ヒドロシリル化工程を含み、前記縮合工程と前記ヒドロシリル化工程が交互に行われる、<1>~<7>の何れかに記載のオリゴシロキサンの製造方法。
<9> ルイス酸性を有するホウ素化合物の存在下、下記式(b)で表される構造を有するアルコキシシランと下記式(c)で表される構造を有するヒドロシランを反応させて下記式(d)で表される構造を有するヒドロシロキサンを生成する縮合反応、及びルイス酸性を有するホウ素化合物の存在下、前記縮合反応で生成した前記式(d)で表される構造を有するヒドロシロキサンと下記式(E)で表されるカルボニル化合物を反応させて下記式(f)で表される構造を有するアルコキシシロキサンを生成するヒドロシリル化反応を行って、オリゴシロキサンを合成するオリゴシロキサン合成機であって、
 前記縮合反応及び前記ヒドロシリル化反応を行う反応器、
 前記式(c)で表される構造を有するヒドロシランを収容しておくヒドロシラン収容容器、
 前記式(E)で表されるカルボニル化合物を収容しておくカルボニル化合物収容容器、
 前記式(c)で表される構造を有するヒドロシランを前記ヒドロシラン収容容器から前
記反応器に移送するヒドロシラン移送機構、
 前記式(E)で表されるカルボニル化合物を前記カルボニル化合物収容容器から前記反
応器に移送するカルボニル化合物移送機構、並びに
 前記式(c)で表される構造を有するヒドロシランを前記ヒドロシラン収容容器から前記反応器に移送するように前記ヒドロシラン移送機構を操作すること、及び前記式(E)で表されるカルボニル化合物を前記カルボニル化合物収容容器から前記反応器に移送するように前記カルボニル化合物移送機構を操作することを含む制御を行う制御装置
 を備える、オリゴシロキサン合成機。
Figure JPOXMLDOC01-appb-C000023
(式(b)中、Rは炭素原子数1~20の炭化水素基、又は-CHR’で表される基を、R’はそれぞれ独立して水素原子、又は炭素原子数1~8の炭化水素基を表す。式(b)で表される構造と式(c)で表される構造は異なる化合物にそれぞれ含まれていてもよいし、一分子中に含まれていてもよい。)
Figure JPOXMLDOC01-appb-C000024
(式(E)及び式(f)中、R’はそれぞれ独立して水素原子、又は炭素原子数1~8の炭化水素基を表す。但し、式(E)の2つのR’と式(f)の2つのR’は同一の組み合わせとなる。)
<10> ルイス酸性を有するホウ素化合物の存在下、下記式(a)で表される構造を有するヒドロシランと下記式(E)で表されるカルボニル化合物を反応させて下記式(b’)で表される構造を有するアルコキシシランを生成するヒドロシリル化工程、及びルイス酸性を有するホウ素化合物の存在下、前記ヒドロシリル化工程で生成した下記式(b’)で表される構造を有するアルコキシシランと下記式(c)で表される構造を有するヒドロシランを反応させて下記式(d)で表される構造を有するヒドロシロキサンを生成する縮合工程を行って、オリゴシロキサンを合成するオリゴシロキサン合成機であって、
 前記ヒドロシリル化反応及び前記縮合反応を行う反応器、
 前記式(a)で表される構造を有するヒドロシランを収容しておくヒドロシラン収容容器、
 前記式(E)で表されるカルボニル化合物を収容しておくカルボニル化合物収容容器、
 前記式(a)で表される構造を有するヒドロシランを前記ヒドロシラン収容容器から前記反応器に移送するヒドロシラン移送機構、
 前記式(E)で表されるカルボニル化合物を前記カルボニル化合物収容容器から前記反応器に移送するカルボニル化合物移送機構、並びに
 前記式(a)で表される構造を有するヒドロシランを前記ヒドロシラン収容容器から前記反応器に移送するように前記ヒドロシラン移送機構を操作すること、及び前記式(E)で表されるカルボニル化合物を前記カルボニル化合物収容容器から前記反応器に移送するように前記カルボニル化合物移送機構を操作することを含む制御を行う制御装置
 を備える、オリゴシロキサン合成機。
Figure JPOXMLDOC01-appb-C000025
(式(E)及び式(b’)中、R’はそれぞれ独立して水素原子、又は炭素原子数1~8の炭化水素基を表す。但し、式(E)の2つのR’と式(b’)の2つのR’は同一の組み合わせとなる。)
Figure JPOXMLDOC01-appb-C000026
(式(b’)で表される構造と式(c)で表される構造は異なる化合物にそれぞれ含まれていてもよいし、一分子中に含まれていてもよい。)
<11> 下記式(G-1)~(G-14)の何れかで表されるオリゴシロキサン。
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
(式(G-1)~(G-14)中、Rはそれぞれ独立して窒素原子、酸素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種の原子を含んでいてもよい炭素原子数1~20の炭化水素基を、R’はそれぞれ独立して水素原子、又は炭素原子数1~8の炭化水素基を、Rはそれぞれ独立して窒素原子、酸素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種の原子を含んでいてもよい炭素原子数1~20の炭化水素基を、iは2~20の整数を、jは1~20の整数を、kは1~20の整数を表す。)
 本発明によれば、オリゴシロキサンを効率よく製造することができる。また、任意の置換基配列を有するオリゴシロキサンを製造することができる。
本発明の一態様であるオリゴシロキサン合成機の一形態を表した概念図である。 本発明の一態様であるオリゴシロキサン合成機の別の一形態を表した概念図である。
 本発明の詳細を説明するに当たり、具体例を挙げて説明するが、本発明の趣旨を逸脱しない限り以下の内容に限定されるものではなく、適宜変更して実施することができる。
<オリゴシロキサンの製造方法>
 本発明の一態様であるオリゴシロキサンの製造方法(以下、「本発明の製造方法」と略す場合がある。)は、ルイス酸性を有するホウ素化合物の存在下、下記式(b)で表される構造を有するアルコキシシランと下記式(c)で表される構造を有するヒドロシランを反応させて下記式(d)で表される構造を有するヒドロシロキサンを生成する縮合工程(以下、「縮合工程」と略す場合がある。)、及びルイス酸性を有するホウ素化合物の存在下、縮合工程で生成した式(d)で表される構造を有するヒドロシロキサンと下記式(E)で表されるカルボニル化合物を反応させて下記式(f)で表される構造を有するアルコキシシロキサンを生成するヒドロシリル化工程(以下、「ヒドロシリル化工程」と略す場合がある。)を含むことを特徴とする。
Figure JPOXMLDOC01-appb-C000029
(式(b)中、Rは炭素原子数1~20の炭化水素基、又は-CHR’で表される基を、R’はそれぞれ独立して水素原子、又は炭素原子数1~8の炭化水素基を表す。式(b)で表される構造と式(c)で表される構造は異なる化合物にそれぞれ含まれていてもよいし、一分子中に含まれていてもよい。)
Figure JPOXMLDOC01-appb-C000030
(式(E)及び式(f)中、R’はそれぞれ独立して水素原子、又は炭素原子数1~8の炭化水素基を表す。但し、式(E)の2つのR’と式(f)の2つのR’は同一の組み合わせとなる。)
 また、本発明の他の一態様は、ルイス酸性を有するホウ素化合物の存在下、下記式(a)で表される構造を有するヒドロシランと下記式(E)で表されるカルボニル化合物を反応させて下記式(b’)で表される構造を有するアルコキシシランを生成するヒドロシリル化工程、及びルイス酸性を有するホウ素化合物の存在下、前記ヒドロシリル化工程で生成した下記式(b’)で表される構造を有するアルコキシシランと下記式(c)で表される構造を有するヒドロシランを反応させて下記式(d)で表される構造を有するヒドロシロキサンを生成する縮合工程を含むことを特徴とする。
Figure JPOXMLDOC01-appb-C000031
(式(E)及び式(b’)中、R’はそれぞれ独立して水素原子、又は炭素原子数1~8の炭化水素基を表す。但し、式(E)の2つのR’と式(b’)の2つのR’は同一の組み合わせとなる。)
Figure JPOXMLDOC01-appb-C000032
(式(b’)で表される構造と式(c)で表される構造は異なる化合物にそれぞれ含まれていてもよいし、一分子中に含まれていてもよい。)
 アルコキシシランやクロロシランの加水分解/縮合によるシロキサン結合形成法では、生成するシロキサンの置換基の配列を精密に制御することは原理的に不可能である。また、近年では触媒的なシロキサン結合形成法も開発されてはいるが、シロキサン結合形成を逐次的に反復して行うことで、オリゴシロキサンのシロキサン結合の配列を制御する技術は報告されていないのが現状である。
 本発明者らは、ルイス酸性を有するホウ素化合物を触媒とするアルコキシシランとジヒドロシランの縮合反応と、ルイス酸性を有するホウ素化合物を触媒するヒドロシロキサンとカルボニル化合物のヒドロシリル化反応を組み合わせることによって、オリゴシロキサンを効率よく製造することができること、さらにこの縮合反応とヒドロシリル化反応を交互に繰り返すことによって、オリゴシロキサンの置換基の配列を精密に制御することができることを見出したのである。本発明の一態様においては、「縮合工程」及び「ヒドロシリル化工程」の両方の工程を連続して行うことが特徴であり、出発原料に応じ「縮合工程」及び「ヒドロシリル化工程」のいずれの工程から行ってもよい。 なお、式(a)、(b)、(b’)、(c)、(d)、及び(f)中の波線は、その先の構造が任意であることを意味する。
 また、「縮合工程」は式(b)または(b’)で表される構造を有するアルコキシシランと式(c)で表される構造を有するヒドロシランが、「ヒドロシリル化工程」は式(d)または(a)で表される構造を有するヒドロシロキサンと式(E)で表されるカルボニル化合物が、1:1(物質量)で反応することに限られないものとする。例えば、式(b)で表される構造を有するアルコキシシランが2以上のアルコキシ基(-OR)を有する場合、「縮合工程」と「ヒドロシリル化工程」が下記式で表される反応のように進行することもあり得る。
Figure JPOXMLDOC01-appb-C000033
 また、「オリゴシロキサン」とは、ジシロキサン、トリシロキサン、テトラシロキサン等の-(SiO)-(m=2~20)結合を有する化合物を意味するものとする。オリゴシロキサンは分岐構造を有していてもよいし、環状構造を有していてもよい。
 以下、少なくとも「縮合工程」に続いて「ヒドロシリル化工程」を行う場合を例として、「縮合工程」、「ヒドロシリル化工程」等について詳細に説明する。
(縮合工程)
 縮合工程は、ルイス酸性を有するホウ素化合物の存在下、式(b)で表される構造を有するアルコキシシランと式(c)で表される構造を有するヒドロシランを反応させて式(d)で表される構造を有するヒドロシロキサンを生成する工程であるが、式(b)で表される構造を有するアルコキシシランの具体的種類は、特に限定されず、製造目的であるオリゴシロキサンに応じて適宜選択されるべきである。なお、少なくとも「ヒドロシリル工程」に続いて「縮合化工程」を行う場合、「式(b)で表される構造を有するアルコキシシラン」を「式(b’)で表される構造を有するアルコキシシラン」と読み替える。
Figure JPOXMLDOC01-appb-C000034
 式(b)中のRは、「炭素原子数1~20の炭化水素基」、又は「-CHR’で表される基」を、R’はそれぞれ独立して「水素原子」、又は「炭素原子数1~8の炭化水素基」を表しているが、「炭化水素基」は、分岐構造、環状構造のそれぞれを有していてもよく、飽和炭化水素基、不飽和炭化水素基、芳香族炭化水素基等の何れであってもよいものとする。
 Rが炭化水素基である場合の炭素原子数は、好ましくは12以下、より好ましくは10以下、さらに好ましくは8以下であり、Rが芳香族炭化水素基である場合の炭素原子数は、通常6以上である。
 Rとしては、メチル基(-CH,-Me)、エチル基(-C,-Et)、n-プロピル基(-,-Pr)、i-プロピル基(-,-Pr)、n-ブチル基(-,-Bu)、t-ブチル基(-,-Bu)、n-ペンチル基(-11)、n-ヘキシル基(-13,-Hex)、シクロヘキシル基(-11,-Cy)、アリル基(-CHCH=CH)、フェニルメチル基(-CH)、ビニル基(-CH=CH)、フェニル基(-C,-Ph)等が挙げられる。
 R’が炭化水素基である場合の炭素原子数は、好ましくは7以下、より好ましくは6以下、さらに好ましくは4以下であり、R’が芳香族炭化水素基である場合の炭素原子数は、通常6以上である。
 R’としては、水素原子、メチル基(-CH,-Me)、エチル基(-C,-Et)、n-プロピル基(-,-Pr)、i-プロピル基(-,-Pr)、n-ブチル基(-,-Bu)、t-ブチル基(-,-Bu)、n-ペンチル基(-11)、n-ヘキシル基(-13,-Hex)、シクロヘキシル基(-11,-Cy)、アリル基(-CHCH=CH)、フェニルメチル基(-CH)、ビニル基(-CH=CH)、フェニル基(-C,-Ph)等が挙げられる。
 -O-CHR’で表される基としては、下記式で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000035
 Rが-CHR’で表される基である、即ち、式(b)で表される構造を有するアルコキシシランが、下記式(b’)で表される構造を有するアルコキシシランである場合、式(b’)で表される構造を有するアルコキシシランは、ルイス酸性を有するホウ素化合物の存在下、下記式(a)で表される構造を有するヒドロシランと下記式(E)で表されるカルボニル化合物を反応させて生成したものであってもよい。
Figure JPOXMLDOC01-appb-C000036
(式(b’)中、R’はそれぞれ独立して水素原子、又は炭素原子数1~8の炭化水素基を表す。)
Figure JPOXMLDOC01-appb-C000037
(式(E)及び式(b’)中、R’はそれぞれ独立して水素原子、又は炭素原子数1~8の炭化水素基を表す。但し、式(E)の2つのR’と式(b’)の2つのR’は同一の組み合わせとなる。)
 式(b)で表される構造を有するアルコキシシランとしては、アルコキシモノシラン、ケイ素原子数2~20のアルコキシオリゴシロキサンが挙げられる。以下、「アルコキシモノシラン」、「ケイ素原子数2~20のアルコキシオリゴシロキサン」ついて詳細に説明する。
 アルコキシモノシランとしては、下記式(B-1)~(B-4)の何れかで表されるアルコキシシランが挙げられる。
Figure JPOXMLDOC01-appb-C000038
(式(B-1)~(B-4)中、Rはそれぞれ独立して窒素原子、酸素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種の原子を含んでいてもよい炭素原子数1~20の炭化水素基を、Rは炭素原子数1~20の炭化水素基、又は-CHR’で表される基を、R’はそれぞれ独立して水素原子、又は炭素原子数1~8の炭化水素基を表す。)
 式(B-1)~(B-4)中のRは、それぞれ独立して「窒素原子、酸素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種の原子を含んでいてもよい炭素原子数1~20の炭化水素基」を表しているが、「窒素原子、酸素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種の原子を含んでいてもよい」とは、炭化水素基の水素原子が窒素原子、酸素原子、硫黄原子、ハロゲン原子等を含む1価の官能基で置換されていてもよいほか、炭化水素基の炭素骨格内部の炭素原子が窒素原子、酸素原子、硫黄原子等を含む2価以上の官能基(連結基)で置換されていてもよいことを意味する。また、「炭化水素基」は、分岐構造、環状構造のそれぞれを有していてもよく、飽和炭化水素基、不飽和炭化水素基、芳香族炭化水素基等の何れであってもよいものとする。
 Rの炭化水素基の炭素原子数は、好ましくは12以下、より好ましくは10以下、さらに好ましくは8以下であり、Rが芳香族炭化水素基である場合の炭素原子数は、通常6以上である。
 Rの炭化水素基に含まれる官能基としては、エーテル基(オキサ基,-O-)、チオエーテル基(チア基,-S-)、フルオロ基(-F)、クロロ基(-Cl)、ブロモ基(-Br)、ヨード基(-I)、アルケニル基、アルキニル基等が挙げられる。なお、官能基がアルケニル基、アルキニル基等、炭素原子を含む場合、炭化水素基の炭素数に含める。
 従って、「窒素原子、酸素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種の原子を含んでいてもよい」炭素原子数1~20の炭化水素基には、例えば-CH-CH-Brのようにハロゲンを含んでいる炭素数2の炭化水素基、-CH-O-CHのようにエーテル基を炭素骨格の内部に含んでいる炭素数2の炭化水素基、及び-CH-CH-S-CH-CHのようにチア基を炭素骨格の内部に含んでいる炭素数4の炭化水素基等が含まれる。
 具体的なRとしては、メチル基(-CH,-Me)、エチル基(-C,-Et)、n-プロピル基(-,-Pr)、i-プロピル基(-,-Pr)、n-ブチル基(-,-Bu)、t-ブチル基(-,-Bu)、n-ペンチル基(-11)、n-ヘキシル基(-13,-Hex)、シクロヘキシル基(-11,-Cy)、フェニル基(-C,-Ph)等が挙げられる。
 式(B-1)~(B-4)の何れかで表されるアルコキシシランとしては、下記式で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000039
 「ケイ素原子数2~20のアルコキシオリゴシロキサン」とは、アルコキシ基(-OR)を有するオリゴシロキサンを意味し、分岐構造、環状構造のそれぞれを有していてもよいものとする。
 ケイ素原子数2~20のアルコキシオリゴシロキサンのケイ素原子数は、好ましくは16以下、より好ましくは12以下、さらに好ましくは8以下である。
 ケイ素原子数2~20のアルコキシオリゴシロキサンのアルコキシ基(-OR)の数は、通常1以上であり、通常4以下、好ましくは3以下、より好ましくは2以下である。
 ケイ素原子数2~20のアルコキシオリゴシロキサンに含まれる置換基としては、窒素原子、酸素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種の原子を含んでいてもよい炭素原子数1~20の炭化水素基が挙げられる。なお、「窒素原子、酸素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種の原子を含んでいてもよい炭素原子数1~20の炭化水素基」は、Rの場合と同義である。
 ケイ素原子数2~20のアルコキシオリゴシロキサンとしては、下記式(B-5)~(B-6)の何れかで表されるアルコキシオリゴシロキサンが挙げられる。
Figure JPOXMLDOC01-appb-C000040
(式(B-5)~(B-6)中、Rはそれぞれ独立して窒素原子、酸素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種の原子を含んでいてもよい炭素原子数1~20の炭化水素基を、Rは炭素原子数1~20の炭化水素基、又は-CHR’で表される基を、R’はそれぞれ独立して水素原子、又は炭素原子数1~8の炭化水素基を、nは0~18の整数を表す。)
 なお、式(B-5)~(B-6)中のRは、式(B-1)~(B-4)中のRと同様のものが挙げられる。
 式(B-5)~(B-6)の何れかで表されるアルコキシオリゴシロキサンとしては、下記式で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000041
 式(c)で表される構造を有するヒドロシランの具体的種類は、特に限定されず、製造目的であるオリゴシロキサンに応じて適宜選択されるべきである。
Figure JPOXMLDOC01-appb-C000042
 式(c)で表される構造を有するヒドロシランとしては、下記式(C-1)~(C-3)の何れかで表されるヒドロシランが挙げられる。
Figure JPOXMLDOC01-appb-C000043
(式(C-1)~(C-2)中、Rはそれぞれ独立して窒素原子、酸素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種の原子を含んでいてもよい炭素原子数1~20の炭化水素基を表す。)
 式(C-1)~(C-2)中のRは、それぞれ独立して「窒素原子、酸素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種の原子を含んでいてもよい炭素原子数1~20の炭化水素基」を表しているが、「窒素原子、酸素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種の原子を含んでいてもよい炭化水素基」は、Rの場合と同義である。
 Rの炭化水素基の炭素原子数は、好ましくは12以下、より好ましくは10以下、さらに好ましくは8以下であり、Rが芳香族炭化水素基である場合の炭素原子数は、通常6以上である。
 Rの炭化水素基に含まれる官能基としては、エーテル基(オキサ基,-O-)、チオエーテル基(チア基,-S-)、フルオロ基(-F)、クロロ基(-Cl)、ブロモ基(-Br)、ヨード基(-I)、アルケニル基、アルキニル基等が挙げられる。
 Rとしては、メチル基(-CH,-Me)、エチル基(-C,-Et)、n-プロピル基(-,-Pr)、i-プロピル基(-,-Pr)、n-ブチル基(-,-Bu)、t-ブチル基(-,-Bu)、n-ペンチル基(-11)、n-ヘキシル基(-13,-Hex)、シクロヘキシル基(-11,-Cy)、フェニル基(-C,-Ph)等が挙げられる。
 式(C-1)~(C-2)の何れかで表されるヒドロシランとしては、下記式で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000044
 縮合工程における式(c)で表される構造を有するヒドロシランの使用量(仕込量)は、式(b)で表される構造を有するアルコキシシランのアルコキシ基(-OR)の物質量に対して、通常0.5当量以上、好ましくは0.9当量以上、より好ましくは0.95当量以上であり、通常1.5当量以下、好ましくは1.1当量以下、より好ましくは1.05当量以下である。上記範囲内であると、より効率良くオリゴシロキサンを製造することができる。
 縮合工程におけるルイス酸性を有するホウ素化合物の具体的種類は、特に限定されず、目的に応じて適宜選択することができる。なお、ルイス酸性を有するホウ素化合物は、1種類に限られず、2種以上を組み合わせて使用してもよい。
 ルイス酸性を有するホウ素化合物としては、トリス(ペンタフルオロフェニル)ボラン(B(C)、トリス(ペンタクロロフェニル)ボラン(B(CCl)、トリフェニルボラン(BPh)等が挙げられるが、トリス(ペンタフルオロフェニル)ボランが特に好ましい。上記のものであると、より効率良くオリゴシロキサンを製造することができる。
 縮合工程におけるルイス酸性を有するホウ素化合物の使用量(仕込量)は、式(b)で表される構造を有するアルコキシシランに対して物質量換算で、通常0.01mol%以上、好ましくは0.1mol%以上、より好ましくは1mol%以上であり、通常20mol%以下、好ましくは10mol%以下、より好ましくは5mol%以下である。上記範囲内であると、より効率良くオリゴシロキサンを製造することができる。
 縮合工程は、溶媒を使用することが好ましい。溶媒の種類は、特に限定されず、目的に応じて適宜選択することができるが、具体的にはヘキサン、ベンゼン、トルエン等の炭化水素系溶媒;塩化メチレン、クロロホルム等のハロゲン系溶媒等が挙げられる。この中でもトルエンが特に好ましい。
 上記のものであると、より効率良くオリゴシロキサンを製造することができる。
 縮合工程の反応温度は、通常0℃以上、好ましくは10℃以上、より好ましくは20℃以上であり、通常80℃以下、好ましくは60℃以下、より好ましくは40℃以下である。
 縮合工程の反応時間は、通常1分以上、好ましくは5分以上、より好ましくは10分以上であり、通常12時間以下、好ましくは6時間以下、より好ましくは1時間以下である。
 縮合工程は、窒素、アルゴン等の不活性雰囲気下で行うことが好ましい。
 上記範囲内であると、より効率良くオリゴシロキサンを製造することができる。
(ヒドロシリル化工程)
 ヒドロシリル化工程は、ルイス酸性を有するホウ素化合物の存在下、縮合工程で生成した式(d)で表される構造を有するヒドロシロキサンと式(E)で表されるカルボニル化合物を反応させて式(f)で表される構造を有するアルコキシシロキサンを生成する工程であるが、式(E)で表されるカルボニル化合物の具体的種類は、特に限定されず、目的に応じて適宜選択することができる。なお、少なくとも「ヒドロシリル工程」に続いて「縮合化工程」を行う場合、「式(d)で表される構造を有するアルコキシシラン」を「式(a)で表される構造を有するアルコキシシラン」と読み替える。
Figure JPOXMLDOC01-appb-C000045
 式(E)中のR’は、それぞれ独立して「水素原子」、又は「炭素原子数1~8の炭化水素基」を表しているが、「炭化水素基」は、Rの場合と同義である。
 R’が炭化水素基である場合の炭素原子数は、好ましくは7以下、より好ましくは6以下であり、R’が芳香族炭化水素基である場合の炭素原子数は、通常6以上である。
 R’としては、水素原子、メチル基(-CH,-Me)、エチル基(-C,-Et)、n-プロピル基(-,-Pr)、i-プロピル基(-,-Pr)、n-ブチル基(-,-Bu)、t-ブチル基(-,-Bu)、n-ペンチル基(-11)、n-ヘキシル基(-13,-Hex)、シクロヘキシル基(-11,-Cy)、アリル基(-CHCH=CH)、フェニルメチル基(-CH)、ビニル基(-CH=CH)、フェニル基(-C,-Ph)等が挙げられる。
 式(E)で表されるカルボニル化合物としては、下記式で表されるホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、アセトン、3-ペンタノン、アセトフェノン、ベンゾフェノンが挙げられる。
Figure JPOXMLDOC01-appb-C000046
 ヒドロシリル化工程における式(E)で表されるカルボニル化合物の使用量(仕込量)は、式(d)で表される構造を有するヒドロシロキサンの水素原子(Si-H)の物質量に対して、通常0.5当量以上、好ましくは0.9当量以上、より好ましくは0.95当量以上であり、通常1.5当量以下、好ましくは1.1当量以下、より好ましくは1.05当量以下である。上記範囲内であると、より効率良くオリゴシロキサンを製造することができる。
 ヒドロシリル化工程におけるルイス酸性を有するホウ素化合物の具体的種類は、特に限定されず、目的に応じて適宜選択することができる。なお、ルイス酸性を有するホウ素化合物は、1種類に限られず、2種以上を組み合わせて使用してもよい。
 ルイス酸性を有するホウ素化合物としては、トリス(ペンタフルオロフェニル)ボラン(B(C)、トリス(ペンタクロロフェニル)ボラン(B(CCl)、トリフェニルボラン(BPh)等が挙げられるが、トリス(ペンタフルオロフェニル)ボランが特に好ましい。上記のものであると、より効率良くオリゴシロキサンを製造することができる。
 なお、ヒドロシリル化工程に使用するルイス酸性を有するホウ素化合物は、縮合工程において使用したものであってもよい。縮合工程において使用したルイス酸性を有するホウ素化合物をそのまま使用することによって、縮合工程後の精製等を省略することができ、より効率良くオリゴシロキサンを製造することができる。特に縮合工程とヒドロシリル化工程が、1つの反応器内で行われることによって、縮合工程とヒドロシリル化工程を連続的に行うことができ、非常に効率良くオリゴシロキサンを製造することができる。同様に、少なくとも「ヒドロシリル工程」に続いて「縮合化工程」を行う場合は、ヒドロシリル化工程において使用したルイス酸性を有するホウ素化合物を、縮合工程に使用してもよい。
 ヒドロシリル化工程におけるルイス酸性を有するホウ素化合物の使用量(仕込量)は、式(d)で表される構造を有するヒドロシロキサンに対して物質量換算で、通常0.01mol%以上、好ましくは0.1mol%以上、より好ましくは1mol%以上であり、通常20mol%以下、好ましくは10mol%以下、より好ましくは5mol%以下である。上記範囲内であると、より効率良くオリゴシロキサンを製造することができる。
 ヒドロシリル化工程は、溶媒を使用することが好ましい。溶媒の種類は、特に限定されず、目的に応じて適宜選択することができるが、具体的にはヘキサン、ベンゼン、トルエン等の炭化水素系溶媒;塩化メチレン、クロロホルム等のハロゲン系溶媒等が挙げられる。この中でもトルエンが特に好ましい。
 上記のものであるとより効率良くオリゴシロキサンを製造することができる。
 なお、ヒドロシリル化工程に使用する溶媒は、縮合工程において使用したものであってもよい。縮合工程において使用したルイス酸性を有するホウ素化合物と溶媒をそのまま使用することによって、縮合工程後の精製等を省略することができ、より効率良くオリゴシロキサンを製造することができる。特に縮合工程とヒドロシリル化工程が、1つの反応器内で行われることによって、縮合工程とヒドロシリル化工程を連続的に行うことができ、非常に効率良くオリゴシロキサンを製造することができる。
 ヒドロシリル化工程の反応温度は、通常0℃以上、好ましくは10℃以上、より好ましくは20℃以上であり、通常80℃以下、好ましくは60℃以下、より好ましくは40℃以下である。
 ヒドロシリル化工程の反応時間は、通常1分以上、好ましくは5分以上、より好ましくは10分以上であり、通常12時間以下、好ましくは6時間以下、より好ましくは1時間以下である。
 ヒドロシリル化工程は、窒素、アルゴン等の不活性雰囲気下で行うことが好ましい。
 上記範囲内であると、より効率良くオリゴシロキサンを製造することができる。
 本発明の製造方法は、縮合工程とヒドロシリル化工程を含むことを特徴とするが、本発明の製造方法の好ましい態様として、2以上の縮合工程及び2以上のヒドロシリル化工程を含み、縮合工程とヒドロシリル化工程が交互に行われる態様が挙げられる。なお、「2以上の縮合工程及び2以上のヒドロシリル化工程を含み、縮合工程とヒドロシリル化工程が交互に行われる」とは、第1縮合工程、第1ヒドロシリル化工程、第2縮合工程、第2ヒドロシリル化工程、第3縮合工程、第3ヒドロシリル化工程、・・・のように、縮合工程とヒドロシリル化工程が交互に繰り返されることを意味する。ヒドロシリル化工程で生成した式(f)で表される構造を有するアルコキシシロキサンは、「-CHR’で表される基」を有することになるため、下記式で表されるように、新たな縮合工程における式(b)で表される構造を有するアルコキシシランとなり得、縮合工程とヒドロシリル化工程が交互に繰り返すことができるのである。
Figure JPOXMLDOC01-appb-C000047
 縮合工程は、式(c)で表される構造を有するヒドロシランに応じた新たなシロキサン構造を導入する役割を果たし、ヒドロシリル化工程は、アルコキシ基を再生させる役割を果たすため、これらを交互に繰り返すことによって、シロキサン構造を伸長させることになる。かかる態様では、所望のシロキサン構造をオリゴシロキサンに1つ1つ導入していくことになるため、得られるオリゴシロキサンの置換基の配列を精密に制御することができるのである。
 なお、縮合工程とヒドロシリル化工程の回数は、通常20以下、好ましくは12以下、より好ましくは8以下である。なお、縮合工程及びヒドロシリル化工程の何れの工程から行ってもよいし、縮合工程及びヒドロシリル化工程の何れの工程で反応を終了してもよい。
 本発明の製造方法の好ましい態様として、2以上の縮合工程及び2以上のヒドロシリル化工程を含み、縮合工程とヒドロシリル化工程が交互に行われる態様を前述したが、かかる態様を利用して、オリゴシロキサンのシロキサン構造を下記(i)~(iv)のように伸長させることができる。
(i)単一方向型
 シロキサン構造を一方向に伸長させて、一本鎖状のオリゴシロキサンを生成する(下記式参照。)。
Figure JPOXMLDOC01-appb-C000048
(ii)双方向型
 シロキサン構造を二方向に伸長させて、一本鎖状のオリゴシロキサンを生成する(下記式参照。)。
Figure JPOXMLDOC01-appb-C000049
(iii)収束型
 伸長させたシロキサン構造を収束させて、一本鎖状のオリゴシロキサンを生成する。
Figure JPOXMLDOC01-appb-C000050
(iv)収束-単一方向型
 収束させたシロキサン構造から、さらに一方向にシロキサン構造を伸長させて、分岐状のオリゴシロキサンを生成する。
Figure JPOXMLDOC01-appb-C000051
(v)環化型
 2官能性以上のシロキサン化合物を収束させて、環状のオリゴシロキサンを生成する。また、環化させたシロキサン構造から、さらにシロキサン構造を伸長させることもできる。また、4官能性のシロキサン化合物を収束させて、スピロシロキサンを生成させることもできる。
Figure JPOXMLDOC01-appb-C000052
<オリゴシロキサン合成機>
 本発明の製造方法によって、オリゴシロキサンを効率よく製造することができることを前述したが、本発明の製造方法を実施することができる下記のオリゴシロキサン合成機(以下、「本発明の合成機」と略す場合がある。)も本発明の一態様である。
 ルイス酸性を有するホウ素化合物(以下、「ホウ素化合物」と略す場合がある。)の存在下、式(b)で表される構造を有するアルコキシシラン(以下、「アルコキシシラン」と略す場合がある。)と式(c)で表される構造を有するヒドロシラン(以下、「ヒドロシラン」と略す場合がある。)を反応させて式(d)で表される構造を有するヒドロシロキサンを生成する縮合反応(以下、「縮合反応」と略す場合がある。)、及びルイス酸性を有するホウ素化合物の存在下、縮合反応で生成した式(d)で表される構造を有するヒドロシロキサンと式(E)で表されるカルボニル化合物(以下、「カルボニル化合物」と略す場合がある。)を反応させて式(f)で表される構造を有するアルコキシシロキサンを生成するヒドロシリル化反応(以下、「ヒドロシリル化反応」と略す場合がある。)を行って、オリゴシロキサンを合成するオリゴシロキサン合成機であって、
 縮合反応及びヒドロシリル化反応を行う反応器(以下、「反応器」と略す場合がある。)、
 ヒドロシランを収容しておくヒドロシラン収容容器(以下、「ヒドロシラン収容容器」と略す場合がある。)、
 カルボニル化合物を収容しておくカルボニル化合物収容容器(以下、「カルボニル化合物収容容器」と略す場合がある。)、
 ヒドロシランをヒドロシラン収容容器から反応器に移送するヒドロシラン移送機構(以下、「ヒドロシラン移送機構」と略す場合がある。)、
 カルボニル化合物をカルボニル化合物収容容器から反応器に移送するカルボニル化合物移送機構(以下、「カルボニル化合物移送機構」と略す場合がある。)、並びに
 ヒドロシランをヒドロシラン収容容器から反応器に移送するようにヒドロシラン移送機構を操作すること、及びカルボニル化合物をカルボニル化合物収容容器から反応器に移送するようにカルボニル化合物移送機構を操作することを含む制御を行う制御装置(以下、「制御装置」と略す場合がある。)
 を備える、オリゴシロキサン合成機。
 また、ルイス酸性を有するホウ素化合物の存在下、式(a)で表される構造を有するヒドロシランと式(E)で表されるカルボニル化合物を反応させて式(b’)で表される構造を有するアルコキシシランを生成するヒドロシリル化工程、及びルイス酸性を有するホウ素化合物の存在下、ヒドロシリル化工程で生成した式(b’)で表される構造を有するアルコキシシランと式(c)で表される構造を有するヒドロシランを反応させて式(d)で表される構造を有するヒドロシロキサンを生成する縮合工程を行って、オリゴシロキサンを合成するオリゴシロキサン合成機であって、
 前記ヒドロシリル化反応及び前記縮合反応を行う反応器、
 ヒドロシランを収容しておくヒドロシラン収容容器、
 カルボニル化合物を収容しておくカルボニル化合物収容容器、
 ヒドロシランをヒドロシラン収容容器から反応器に移送するヒドロシラン移送機構、
 カルボニル化合物をカルボニル化合物収容容器から反応器に移送するカルボニル化合物移送機構、並びに
 ヒドロシランをヒドロシラン収容容器から反応器に移送するようにヒドロシラン移送機構を操作すること、及びカルボニル化合物をカルボニル化合物収容容器から反応器に移送するようにカルボニル化合物移送機構を操作することを含む制御を行う制御装置
 を備える、オリゴシロキサン合成機、も本発明の一態様である。
(オリゴシロキサン合成機の第1の実施形態)
 本発明の合成機として、図1の構成を有するオリゴシロキサン合成機が挙げられる。
 図1のオリゴシロキサン合成機101は、縮合反応及びヒドロシリル化反応を行う反応器102、ヒドロシランを収容しておく複数のヒドロシラン収容容器103、カルボニル化合物を収容しておくカルボニル化合物収容容器104、ヒドロシランをヒドロシラン収容容器103から反応器102に、カルボニル化合物をカルボニル化合物収容容器104から反応器102に移送するための送液管105、オリゴシロキサン合成機101全体の制御を行う制御装置106を備えている。また、ヒドロシラン収容容器103とカルボニル化合物収容容器104は、それぞれ電磁弁108が取り付けられた送気管107を介してガスボンベ109に接続しており、ガスボンベ109から供給される気体の圧力を利用して、ヒドロシランとカルボニル化合物をそれぞれ反応器102に移送できるようになっている。なお、電磁弁108は、それぞれ制御装置106によって開閉を制御できるようになっている。即ち、オリゴシロキサン合成機101は、ヒドロシラン移送機構とカルボニル化合物移送機構を備え、制御装置106は、ヒドロシランの移送とカルボニル化合物の移送を制御することができるのである。
 オリゴシロキサン合成機101は、例えば下記(1)~(4)の操作を行うことによって、オリゴシロキサンを製造することができる。
(1)反応器102にアルコキシシランとホウ素化合物と溶媒を投入する。
(2)ヒドロシランをヒドロシラン収容容器103から反応器102に移送して縮合反応を開始する。
(3)カルボニル化合物をカルボニル化合物収容容器104から反応器102に移送してヒドロシリル化反応を開始する。
(4)(2)の操作と(3)の操作を製造目的のオリゴシロキサンに応じて繰り返す。
 (2)の操作と(3)の操作は、制御装置106を利用して自動で行うことができるため、オリゴシロキサン合成機101は、任意の置換基配列を有するオリゴシロキサンを効率よく製造することができるのである。
 以下、「反応器」、「ヒドロシラン収容容器」、「カルボニル化合物収容容器」、「ヒドロシラン移送機構」、「カルボニル化合物移送機構」、「制御装置」等について詳細に説明する。
 反応器の形状としては、丸底、平底、管状等が挙げられる。
 反応器の口部の数は、通常1~10である。
 反応器の素材としては、ガラス、樹脂、金属等が挙げられる。なお、反応器は、オートクレーブ等の耐圧性容器であってもよい。
 反応器の容量は、通常5~500mlである。
 ヒドロシラン収容容器とカルボニル化合物収容容器の素材としては、ガラス、樹脂、金属等が挙げられる。
 ヒドロシラン収容容器の数は、好ましくは2以上、より好ましくは3以上、さらに好ましくは4以上であり、通常50以下である。ヒドロシランは、オリゴシロキサンのシロキサン構造の構成要素となるため、ヒドロシラン収容容器の数が多いと、その数に応じてオリゴシロキサンに多様な置換基を導入することができる。
 カルボニル化合物収容容器の数は、1であってもよい。
 ヒドロシラン移送機構とカルボニル化合物移送機構は、図1のオリゴシロキサン合成機101のように、気体の圧力を利用するもののほか、シリンジ等を用いた自動注入器が挙げられる。
 ヒドロシラン移送機構とカルボニル化合物移送機構に利用される気体としては、窒素ガス、アルゴンガス等の不活性ガスが挙げられる。
 ヒドロシラン移送機構とカルボニル化合物移送機構が、図1のオリゴシロキサン合成機101のように送液管を利用するものである場合、送液管は反応器に直接接続するほか、注入器、収容容器等を介して接続してもよい。
 本発明の合成機は、反応器、ヒドロシラン収容容器、カルボニル化合物収容容器、ヒドロシラン移送機構、カルボニル化合物移送機構、制御装置のほかに、反応器内を加熱する加熱機構(以下、「加熱機構」と略す場合がある。)、反応器内の反応溶液を撹拌する撹拌機構(以下、「撹拌機構」と略す場合がある。)、ホウ素化合物を収容しておくホウ素化合物収容容器、溶媒を収容しておく溶媒収容容器、ホウ素化合物をホウ素化合物収容容器から反応器に移送するホウ素化合物移送機構、溶媒を溶媒収容容器から反応器に移送する溶媒移送機構、廃液を収容する廃液収容容器、廃液を反応器から廃液収容容器に移送する廃液移送機構、温度センサー、残量センサー等を含むものであってもよい。
 加熱機構としては、恒温槽、オイルバス、マントルヒーター等が、撹拌機構としては、スターラー式、撹拌翼式、反応器反転式等が挙げられる。なお、図1のオリゴシロキサン合成機101は、加熱機構として恒温槽110を、撹拌機構としてスターラー111を備えている。
 制御装置は、ヒドロシランの移送とカルボニル化合物の移送のほかに、加熱機構、撹拌機構等を備えるオリゴシロキサン合成機の場合、これらの機構のそれぞれを操作できるようになっていることが好ましい。これらの機構を操作できることによって、制御装置によってオリゴシロキサン合成機全体の制御を一括管理することができる。
 制御装置としては、コンピュータが、より好ましくは市販のパーソナルコンピュータが挙げられる。
 制御装置には、自動合成制御を行うプログラム(以下、「自動合成制御プログラム」と略す場合がある。)を記憶させておくことが好ましい。
 自動合成制御プログラムは、時間等の条件に応じて、ヒドロシランの移送、カルボニル化合物の移送、反応器内の加熱、反応溶液の撹拌等のそれぞれの操作を自動で行うように設定できることが好ましい。このようなプログラムであると、縮合反応とヒドロシリル化反応を自動で交互に行うことができ、任意の置換基配列を有するオリゴシロキサンを効率よく製造することができる。
(オリゴシロキサン合成機の第2の実施形態)
 本発明の合成機として、図2の構成を有するオリゴシロキサン合成機も挙げられる。
 図2のオリゴシロキサン合成機201は、縮合反応及び/又はヒドロシリル化反応を行う複数の反応器202、ヒドロシランを収容しておく複数のヒドロシラン収容容器203、カルボニル化合物を収容しておくカルボニル化合物収容容器204、ヒドロシランをヒドロシラン収容容器203から反応器202に、カルボニル化合物をカルボニル化合物収容容器204から反応器202に移送するための送液管205、オリゴシロキサン合成機201全体の制御を行う制御装置206を備えている。また、オリゴシロキサン合成機201は、アルコキシシラン収容容器212、反応生成物を反応器から別の反応器に移送するための送液管213、生成したオリゴシロキサンを回収する回収管214を備えており、反応器から別の反応器に反応生成物を次々に移送することができる、いわゆるフローシステムであり、連続的により効率良くオリゴシロキサンを製造することができる。
 なお、図2のオリゴシロキサン合成機は、アルコキシシランを収容しておくアルコキシシラン収容容器、反応生成物を反応器から別の反応器に移送する反応生成物移送機構、オリゴシロキサンを系外に移送するオリゴシロキサン移送機構を備えていると言える。
<オリゴシロキサン>
 本発明の製造方法によって、オリゴシロキサンの置換基の配列を精密に制御することができることを前述したが、本発明の製造方法によって製造することができる下記式(G-1)~(G-14)の何れかで表されるオリゴシロキサンも本発明の一態様である。
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
(式(G-1)~(G-14)中、Rはそれぞれ独立して窒素原子、酸素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種の原子を含んでいてもよい炭素原子数1~20の炭化水素基を、R’はそれぞれ独立して水素原子、又は炭素原子数1~8の炭化水素基を、Rはそれぞれ独立して窒素原子、酸素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種の原子を含んでいてもよい炭素原子数1~20の炭化水素基を、iは2~20の整数を、jは1~20の整数を、kは1~20の整数を表す。)
 なお、式(G-1)~(G-14)中のRは、式(B-1)~(B-4)中のRと同様のものが、式(G-2)、(G-4)、(G-6)及び(G-8)中のR’は、式(b)中のR’と同様のものが挙げられる。
 また、式(G-1)~(G-14)中のシロキシ基(-OSR -)の少なくとも1つは、その他のシロキシ基とはRの炭化水素基の組み合わせが異なるものであることが好ましい。
 また、式(G-9)~(G-14)で表される環状のオリゴシロキサンとしては、以下に示すオリゴシロキサンが環形成の容易さの観点から、好ましい。
Figure JPOXMLDOC01-appb-C000055
 以下に実施例を挙げて本発明をさらに具体的に説明するが、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
<実施例1>
 B(C(5.1mg,0.01mmol)をトルエン(1.0mL)に溶解させた。この溶液にMeSiOPr(35.5μL,0.20mmol)、EtSiH(26μL,0.20mmol)を順に加えて撹拌した。30分後、アセトン(15μL,0.20mmol)を加えた。30分後、EtSiH(26μL,0.20mmol)を加えた。30分後、アセトン(15μL,0.20mmol)を加えた。30分後、EtSiH(26μL,0.20mmol)を加えた。30分後、アセトン(15μL,0.20mmol)を加えた。30分後、PhSiH(37μL,0.20mmol)を加えた。30分後、3,3,5,5,7,7-ヘキサエチル-1,1,1-トリメチル-9,9-ジフェニルペンタシロキサンが収率83%で生成していることをH NMR測定によって確認した。
H NMR(C):7.74-7.73(m、4H)、7.22-7.17(m、6H)、5.89(s、1H)、1.08-1.04(m、18H)、0.68(q、J=8.0Hz、4H)、0.64(q、J=8.0Hz、4H)、0.60(q、J=8.0Hz、4H)、0.18(s、9H)ppm.
Figure JPOXMLDOC01-appb-C000056
<実施例2>
 B(C(5.1mg,0.01mmol)をトルエン(1.0mL)に溶解させた。この溶液にMeSiOPr(35.5μL,0.20mmol)、PhSiH(37μL,0.20mmol)を順に加えて撹拌した。30分後、アセトン(15μL,0.20mmol)を加えた。30分後、EtSiH(26μL,0.20mmol)を加えた。30分後、アセトン(15μL,0.20mmol)を加えた。30分後、EtSiH(26μL,0.20mmol)を加えた。30分後、アセトン(15μL,0.20mmol)を加えた。30分後、EtSiH(26μL,0.20mmol)を加えた。30分後、5,5,7,7,9,9-ヘキサエチル-1,1,1-トリメチル-3,3-ジフェニルペンタシロキサンが収率70%で生成していることをH NMR測定によって確認した。
H NMR(C):7.85-7.83(m、4H)、7.26-7.19(m、6H)、4.85(quintet、J=2.4Hz、1H)、1.08(t、J=8.0Hz、6H)、1.05(t、J=8.0Hz、6H)、1.02(t、J=8.0Hz、6H)、0.73-0.59(m、12H)、0.18(s、9H)ppm.
Figure JPOXMLDOC01-appb-C000057
<実施例3>
 B(C(5.1mg,0.01mmol)をトルエン(1.0mL)に溶解させた。この溶液にMeSiOPr(35.5μL,0.20mmol)、PhSiH(37μL,0.20mmol)を順に加えて撹拌した。30分後、アセトン(15μL,0.20mmol)を加えた。30分後、PhSiH(37μL,0.20mmol)を加えた。30分後、アセトン(15μL,0.20mmol)を加えた。30分後、EtSiH(26μL,0.20mmol)を加えた。30分後、アセトン(15μL,0.20mmol)を加えた。30分後、EtSiH(26μL,0.20mmol)を加えた。30分後、7,7,9,9-テトラエチル-1,1,1-トリメチル-3,3,5,5-テトラフェニルペンタシロキサンが収率58%で生成していることをH NMR測定によって確認した。
H NMR(C):7.88-7.86(m、4H)、7.82-7.80(m、4H)、7.21-7.17(m、12H)、4.79(quintet、J=2.3Hz、1H)、0.98(t、J=7.9Hz、6H)、0.96(t、J=7.9Hz、6H)、0.61-0.55(m、8H)、0.09(s、9H)ppm.
Figure JPOXMLDOC01-appb-C000058
<実施例4>
 B(C(12.8mg,0.025mmol)をトルエン(2.5mL)に溶解させた。この溶液にMeSiOPr(88.2μL,0.50mmol)、PhSiH(92.2μL,0.50mmol)を順に加えて撹拌した。15分後、アセトン(36.8μL,0.50mmol)を加えた。15分後、EtSiH(64.9μL,0.50mmol)を加えた。30分後、アセトン(36.8μL,0.50mmol)を加えた。30分後、1,1-ジエチル-1-イソプロポキシ-5,5,5-トリメチル-3,3-ジフェニルトリシロキサンが収率86%で生成していることをHNMR測定によって確認した。
H NMR(C):7.84-7.83(m、4H)、4.13(septet、J=6.1Hz、1H)、1.14(d、J=6.1Hz、6H)、1.05(t、J=7.9Hz、6H)、0.68(q、J=7.9Hz、4H)、0.17(s、9H)ppm.
 次いで、PhSiH(92.2μL,0.50mmol)を加えた。30分後、アセトン(36.8μL,0.50mmol)を加えて、30度に昇温した。30分後、3,3-ジエチル-1-イソプロポキシ-7,7,7-トリメチル-1,1,5,5-テトラフェニルテトラシロキサンが収率74%で生成していることをH NMR測定によって確認した。
H NMR(C):7.84-7.82(m、4H)、7.81-7.79(m、4H)、4.23(septet、J=6.1Hz、1H)、1.17(d、J=6.1Hz、6H)、1.01(t、J=8.0Hz、6H)、0.69(q、J=8.0Hz、4H)、0.15(s、9H)ppm.
 さらに、EtSiH(64.9μL,0.50mmol)を加えた。30分後、シリカゲルカラムクロマトグラフィーにて触媒を除去した。粗生成物をリサイクル分取GPCで精製することにより、目的とする5,5,9,9-テトラエチル-1,1,1-トリメチル-3,3,7,7-テトラフェニルペンタシロキサンを収率70%で得た。
H NMR(C):7.82-7.78(m、8H)、7.20-7.18(m、12H)、4.95(quintet、J=2.3Hz、1H)、1.02(t、J=8.0Hz、6H)、0.94(t、J=8.0Hz、6H)、0.71(q、J=8.0Hz、4H)、0.68-0.61(m、4H)、0.15(s、9H)ppm.
Figure JPOXMLDOC01-appb-C000059
<実施例5>
 B(C(5.1mg,0.01mmol)をトルエン(1.0mL)に溶解させた。この溶液にMeSiOPr(35.5μL,0.20mmol)、MePhSiH(27.5μL,0.20mmol)を順に加えて撹拌した。30分後、アセトン(15μL,0.20mmol)を加えた。30分後、PhSiH(37μL,0.20mmol)を加えた。30分後、アセトン(15μL,0.20mmol)を加えた。30分後、EtSiH(26μL,0.20mmol)を加えた。30分後、エタノール(15μL,0.20mmol)を加えた。30分後、PrSiH(32.8μL,0.20mmol)を加えた。終夜撹拌した後、7,7-ジエチル-9,9-ジイソプロピル-1,1,1,3-テトラメチル-3,5,5-トリフェニルペンタシロキサンが収率64%で生成していることをH NMR測定によって確認した。
H NMR(C):7.89-7.86(m、4H)、7.73-7.72(m、2H)、7.24-7.17(m、9H)、4.55(t、J=1.8Hz、1H)、1.06-1.01(m、18H)、0.93-0.84(m、2H)、0.69-0.64(m、4H)、0.44(s、3H)、0.09(s、9H)ppm.
Figure JPOXMLDOC01-appb-C000060
<実施例6>
 B(C(12.8mg,0.025mmol)をトルエン(2.5mL)に溶解させた。この溶液に3-ペンタノン(94.5μL,0.90mmol)、1,1,3,3,5,5-ヘキサメチルトリシロキサン(127.1μL,0.50mmol)を順に加えて撹拌した。30分後、PhSiH(147.4μL,0.80mmol)を加えた。30分後、アセトン(58.8μL,0.80mmol)を加えた。30分後、EtSiH(103.8μL,0.80mmol)を加えた。30分後、アセトン(58.8μL,0.80mmol)を加えた。30分後、EtSiH(103.8μL,0.80mmol)を加えた。30分後、アセトン(58.8μL,0.80mmol)を加えた。30分後、EtSiH(103.8μL,0.80mmoll)を加えた。30分後、アセトン(58.8μL,0.80mmol)を加えた。30分後、シリカゲルカラムクロマトグラフィーにて触媒を除去した。粗生成物をリサイクル分取GPCで精製することにより、目的とする1,1,3,3,5,5,17,17,19,19,21,21-ドデカエチル-1,21-ジイソプロポキシ-9,9,11,11,13,13-ヘキサメチル-7,7,15,15-テトラフェニルウンデカシロキサンを収率44%で得た。
H NMR(C):7.89-7.88(m、8H)、7.27-7.25(m、8H)、7.23-7.20(m、4H)、4.14(septet、J=6.1Hz、2H)、1.19(d、J=6.1Hz、12H)、1.12-1.09(m、36H)、0.74(q、J=8.0Hz、8H)、0.68-0.63(m、16H)、0.25(s、12H)、0.15(s、6H)ppm.
Figure JPOXMLDOC01-appb-C000061
<実施例7>
 B(C(12.8mg,0.025mmol)をトルエン(2.5
mL)に溶解させた。この溶液にMeSiOPr(88.2μL,0.50mmol)、PhSiH(92.2μL,0.50mmol)を順に加えて撹拌した。30分後、アセトン(36.8μL,0.50mmol)を加えた。30分後、EtSiH(64.9μL,0.50mmol)を加えた。30分後、アセトン(36.8μL,0.50mmol)を加えた。30分後、PhSiH(30.7μL,0.25mmol)を加えた。30分後、シリカゲルカラムクロマトグラフィーにて触媒を除去した。粗生成物をリサイクル分取GPCで精製することにより、目的とする5,5,9,9-テトラエチル-1,1,1,13,13,13-ヘキサメチル-3,3,7,11,11-ペンタフェニルヘプタシロキサンを収率61%で得た。
H NMR(C):7.80-7.78(m、8H)、7.73-7.71(m、2H)、7.21-7.17(m、15H)、5.46(s、1H)、1.05(t、J=8.0Hz、6H)、1.00(t、J=8.0Hz、6H)、0.71(q、J=8.0Hz、4H)、0.67(q、J=8.0Hz、4H)、0.15(s、18H)ppm.
Figure JPOXMLDOC01-appb-C000062
<実施例8>
 B(C(12.8mg,0.025mmol)をトルエン(2.5mL)に溶解させた。この溶液にMeSiOPr(88.2μL,0.50mmol)、EtSiH(64.9μL,0.50mmol)を順に加えて撹拌した。15分後、アセトン(36.8μL,0.50mmol)を加えた。15分後、PhSiH(30.7μL,0.25mmol)を加えた。30分後、アセトン(18.4μL,0.25mmol)を加えて80℃に昇温した。30分後、EtSiH(32.4μL,0.25mmoll)を加えた。3時間後、反応溶液を室温に戻し、シリカゲルカラムクロマトグラフィーにて触媒を除去した。粗生成物をリサイクル分取GPCで精製することにより、目的とする5-{(ジエチルシリル)オキシ}-3,3,7,7-テトラエチル-1,1,1,9,9,9-ヘキサメチル-5-フェニルペンタシロキサンを収率44%で得た。H NMR(C):7.94-7.92(m、2H)、7.28-7.26(m、2H)、7.22-7.19(m、1H)、4.94(quintet、J=2.3Hz、1H)、1.10(t、J=8.0Hz、6H)、1.09(t、J=8.0Hz、6H)、1.05(t、J=8.0Hz、6H)、0.80-0.66(m、12H)、0.18(s、18H)ppm.
Figure JPOXMLDOC01-appb-C000063
<実施例9>
 B(C(10.2mg,0.02mmol)をトルエン(5mL)に溶解させた。この溶液に3-ペンタノン(189μL,1.8mmol)、HMeSiOSiMeOSiMeH(254μL,1.0mmol)を順に加えて撹拌した。30分後、PhSiH(112μL,0.90mmol)を加えた。30分後、シリカゲルカラムクロマトグラフィーにて触媒を除去した。粗生成物をリサイクル分取GPCで精製することにより、目的とする2,2,4,4,6,6-ヘキサメチル-8-フェニル-1,3,5,7,2,4,6,8-テトラオキサテトラシロカンを収率37%で得た。
H NMR(C):7.77-7.75(m、2H)、7.22-7.17(m、3H)、5.45(s、1H)、0.25(s、6H)、0.20(s、3H)、0.16(s、3H)、0.15(s、6H)ppm.
Figure JPOXMLDOC01-appb-C000064
<実施例10>
 B(C(6.3mg,0.013mmol)をトルエン(4mL)に溶解させた。この溶液にアセトン(74μL,1.0mmol)、Si(OSiMeH)(93μL,0.25mmol)を順に加えて撹拌した。30分後、PhSiH(62μL,0.50mmol)を加えた。60分後、アセトン(37μL,0.50mmol)を加えた。90分後、EtSiH(72μL,0.55mmoll)を加えた。60分後、シリカゲルカラムクロマトグラフィーにて触媒を除去した。粗生成物をリサイクル分取GPCで精製することにより、目的とする4,12-ビス((ジエチルシリル)オキシ)-2,2,6,6,10,10,14,14-オクタメチル-4,12-ジフェニル-1,3,5,7,9,11,13,15-オクタオキサ-2,4,6,8,10,12,14-ヘプタシラスピロ[7.7]ペンタデカンを収率44%で得た。
H NMR(C):7.89-7.87(m、4H)、7.24-7.18(m、6H)、4.90(quintet、J=2.3Hz、2H)、1.3(t、J=8.0Hz、12H)、0.74-0.63(m、8H)、0.38(s、6H)、0.32(s、6H)、0.22(s、6H)、0.16(s、6H)ppm.
Figure JPOXMLDOC01-appb-C000065
 本発明の製造方法によって製造されたオリゴシロキサンは、電子機器、電気機械、自動車、化粧品等に利用されるシリコーンオイル、シリコーンゴム等として利用することができる。
 101    オリゴシロキサン合成機
 102    反応器
 103    ヒドロシラン収容容器
 104    カルボニル化合物収容容器
 105    送液管
 106    制御装置
 107    送気管
 108    電磁弁
 109    ガスボンベ
 110    恒温槽
 111    スターラー
 201    オリゴシロキサン合成機
 202    反応器
 203    ヒドロシラン収容容器
 204    カルボニル化合物収容容器
 205    送液管
 206    制御装置
 207    送気管
 208    電磁弁
 209    ガスボンベ
 210    恒温槽
 212    アルコキシシラン収容容器
 213    送液管
 214    回収管

Claims (11)

  1.  ルイス酸性を有するホウ素化合物の存在下、下記式(b)で表される構造を有するアルコキシシランと下記式(c)で表される構造を有するヒドロシランを反応させて下記式(d)で表される構造を有するヒドロシロキサンを生成する縮合工程、及び
     ルイス酸性を有するホウ素化合物の存在下、前記縮合工程で生成した前記式(d)で表される構造を有するヒドロシロキサンと下記式(E)で表されるカルボニル化合物を反応させて下記式(f)で表される構造を有するアルコキシシロキサンを生成するヒドロシリル化工程を含むことを特徴とするオリゴシロキサンの製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (式(b)中、Rは炭素原子数1~20の炭化水素基、又は-CHR’で表される基を、R’はそれぞれ独立して水素原子、又は炭素原子数1~8の炭化水素基を表す。式(b)で表される構造と式(c)で表される構造は異なる化合物にそれぞれ含まれていてもよいし、一分子中に含まれていてもよい。)
    Figure JPOXMLDOC01-appb-C000002
    (式(E)及び式(f)中、R’はそれぞれ独立して水素原子、又は炭素原子数1~8の炭化水素基を表す。但し、式(E)の2つのR’と式(f)の2つのR’は同一の組み合わせとなる。)
  2.  前記式(b)で表される構造を有するアルコキシシランが、下記式(b’)で表される構造を有するアルコキシシランであり、
     前記式(b’)で表される構造を有するアルコキシシランが、ルイス酸性を有するホウ素化合物の存在下、下記式(a)で表される構造を有するヒドロシランと下記式(E)で表されるカルボニル化合物を反応させて生成したものである、請求項1に記載のオリゴシロキサンの製造方法。
    Figure JPOXMLDOC01-appb-C000003
    (式(b’)中、R’はそれぞれ独立して水素原子、又は炭素原子数1~8の炭化水素基を表す。)
    Figure JPOXMLDOC01-appb-C000004
    (式(E)及び式(b’)中、R’はそれぞれ独立して水素原子、又は炭素原子数1~8の炭化水素基を表す。但し、式(E)の2つのR’と式(b’)の2つのR’は同一の組み合わせとなる。)
  3.  ルイス酸性を有するホウ素化合物の存在下、下記式(a)で表される構造を有するヒドロシランと下記式(E)で表されるカルボニル化合物を反応させて下記式(b’)で表される構造を有するアルコキシシランを生成するヒドロシリル化工程、及び
     ルイス酸性を有するホウ素化合物の存在下、前記ヒドロシリル化工程で生成した下記式(b’)で表される構造を有するアルコキシシランと下記式(c)で表される構造を有するヒドロシランを反応させて下記式(d)で表される構造を有するヒドロシロキサンを生成する縮合工程を含むことを特徴とするオリゴシロキサンの製造方法。
    Figure JPOXMLDOC01-appb-C000005
    (式(E)及び式(b’)中、R’はそれぞれ独立して水素原子、又は炭素原子数1~8の炭化水素基を表す。但し、式(E)の2つのR’と式(b’)の2つのR’は同一の組み合わせとなる。)
    Figure JPOXMLDOC01-appb-C000006
    (式(b’)で表される構造と式(c)で表される構造は異なる化合物にそれぞれ含まれていてもよいし、一分子中に含まれていてもよい。)
  4.  前記縮合工程及び前記ヒドロシリル化工程が、1つの反応器内で行われる、請求項1~3の何れか1項に記載のオリゴシロキサンの製造方法。
  5.  前記縮合工程において使用した前記ルイス酸性を有するホウ素化合物を、前記ヒドロシリル化工程に使用する、請求項1、2、及び4の何れか1項に記載のオリゴシロキサンの製造方法。
  6.  前記ヒドロシリル化工程において使用した前記ルイス酸性を有するホウ素化合物を、前記縮合工程に使用する、請求項3又は4に記載のオリゴシロキサンの製造方法。
  7.  前記オリゴシロキサンが下記式(G-1)~(G-14)の何れかで表される、請求項1~6の何れか1項に記載のオリゴシロキサンの製造方法。
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
    (式(G-1)~(G-14)中、Rはそれぞれ独立して窒素原子、酸素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種の原子を含んでいてもよい炭素原子数1~20の炭化水素基を、R’はそれぞれ独立して水素原子、又は炭素原子数1~8の炭化水素基を、Rはそれぞれ独立して窒素原子、酸素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種の原子を含んでいてもよい炭素原子数1~20の炭化水素基を、iは2~20の整数を、jは1~20の整数を、kは1~20の整数を表す。)
  8.  2以上の前記縮合工程及び2以上の前記ヒドロシリル化工程を含み、前記縮合工程と前記ヒドロシリル化工程が交互に行われる、請求項1~7の何れか1項に記載のオリゴシロキサンの製造方法。
  9.  ルイス酸性を有するホウ素化合物の存在下、下記式(b)で表される構造を有するアルコキシシランと下記式(c)で表される構造を有するヒドロシランを反応させて下記式(d)で表される構造を有するヒドロシロキサンを生成する縮合反応、及びルイス酸性を有するホウ素化合物の存在下、前記縮合反応で生成した前記式(d)で表される構造を有するヒドロシロキサンと下記式(E)で表されるカルボニル化合物を反応させて下記式(f)で表される構造を有するアルコキシシロキサンを生成するヒドロシリル化反応を行って、オリゴシロキサンを合成するオリゴシロキサン合成機であって、
     前記縮合反応及び前記ヒドロシリル化反応を行う反応器、
     前記式(c)で表される構造を有するヒドロシランを収容しておくヒドロシラン収容容器、
     前記式(E)で表されるカルボニル化合物を収容しておくカルボニル化合物収容容器、 前記式(c)で表される構造を有するヒドロシランを前記ヒドロシラン収容容器から前記反応器に移送するヒドロシラン移送機構、
     前記式(E)で表されるカルボニル化合物を前記カルボニル化合物収容容器から前記反応器に移送するカルボニル化合物移送機構、並びに
     前記式(c)で表される構造を有するヒドロシランを前記ヒドロシラン収容容器から前記反応器に移送するように前記ヒドロシラン移送機構を操作すること、及び前記式(E)で表されるカルボニル化合物を前記カルボニル化合物収容容器から前記反応器に移送するように前記カルボニル化合物移送機構を操作することを含む制御を行う制御装置
     を備える、オリゴシロキサン合成機。
    Figure JPOXMLDOC01-appb-C000009
    (式(b)中、Rは炭素原子数1~20の炭化水素基、又は-CHR’で表される基を、R’はそれぞれ独立して水素原子、又は炭素原子数1~8の炭化水素基を表す。)
    Figure JPOXMLDOC01-appb-C000010
    (式(E)及び式(f)中、R’はそれぞれ独立して水素原子、又は炭素原子数1~8の炭化水素基を表す。但し、式(E)の2つのR’と式(f)の2つのR’は同一の組み合わせとなる。)
  10.  ルイス酸性を有するホウ素化合物の存在下、下記式(a)で表される構造を有するヒドロシランと下記式(E)で表されるカルボニル化合物を反応させて下記式(b’)で表される構造を有するアルコキシシランを生成するヒドロシリル化工程、及びルイス酸性を有するホウ素化合物の存在下、前記ヒドロシリル化工程で生成した下記式(b’)で表される構造を有するアルコキシシランと下記式(c)で表される構造を有するヒドロシランを反応させて下記式(d)で表される構造を有するヒドロシロキサンを生成する縮合工程を行って、オリゴシロキサンを合成するオリゴシロキサン合成機であって、
     前記ヒドロシリル化反応及び前記縮合反応を行う反応器、
     前記式(a)で表される構造を有するヒドロシランを収容しておくヒドロシラン収容容器、
     前記式(E)で表されるカルボニル化合物を収容しておくカルボニル化合物収容容器、
     前記式(a)で表される構造を有するヒドロシランを前記ヒドロシラン収容容器から前記反応器に移送するヒドロシラン移送機構、
     前記式(E)で表されるカルボニル化合物を前記カルボニル化合物収容容器から前記反応器に移送するカルボニル化合物移送機構、並びに
     前記式(a)で表される構造を有するヒドロシランを前記ヒドロシラン収容容器から前記反応器に移送するように前記ヒドロシラン移送機構を操作すること、及び前記式(E)で表されるカルボニル化合物を前記カルボニル化合物収容容器から前記反応器に移送するように前記カルボニル化合物移送機構を操作することを含む制御を行う制御装置
     を備える、オリゴシロキサン合成機。
    Figure JPOXMLDOC01-appb-C000011
    (式(E)及び式(b’)中、R’はそれぞれ独立して水素原子、又は炭素原子数1~8の炭化水素基を表す。但し、式(E)の2つのR’と式(b’)の2つのR’は同一の組み合わせとなる。)
    Figure JPOXMLDOC01-appb-C000012
    (式(b’)で表される構造と式(c)で表される構造は異なる化合物にそれぞれ含まれていてもよいし、一分子中に含まれていてもよい。)
  11.  下記式(G-1)~(G-14)の何れかで表されるオリゴシロキサン。
    Figure JPOXMLDOC01-appb-C000013
    Figure JPOXMLDOC01-appb-C000014
    (式(G-1)~(G-14)中、Rはそれぞれ独立して窒素原子、酸素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種の原子を含んでいてもよい炭素原子数1~20の炭化水素基を、R’はそれぞれ独立して水素原子、又は炭素原子数1~8の炭化水素基を、Rはそれぞれ独立して窒素原子、酸素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種の原子を含んでいてもよい炭素原子数1~20の炭化水素基を、iは2~20の整数を、jは1~20の整数を、kは1~20の整数を表す。)
PCT/JP2018/007759 2017-03-02 2018-03-01 配列制御オリゴシロキサン、それらの製造方法及びオリゴシロキサン合成機 WO2018159756A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/490,761 US10975107B2 (en) 2017-03-02 2018-03-01 Sequence-controlled oligosiloxane and manufacturing method and oligosiloxane synthesizer therefor
JP2019503108A JP6900064B2 (ja) 2017-03-02 2018-03-01 配列制御オリゴシロキサン、それらの製造方法及びオリゴシロキサン合成機
DE112018001105.4T DE112018001105T5 (de) 2017-03-02 2018-03-01 Sequenzkontrolliertes Oligosiloxan und Herstellungsverfahren und Oligosiloxansynthesevorrichtung dafür

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017039778 2017-03-02
JP2017-039778 2017-03-02
JP2018010706 2018-01-25
JP2018-010706 2018-05-16

Publications (1)

Publication Number Publication Date
WO2018159756A1 true WO2018159756A1 (ja) 2018-09-07

Family

ID=63370436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007759 WO2018159756A1 (ja) 2017-03-02 2018-03-01 配列制御オリゴシロキサン、それらの製造方法及びオリゴシロキサン合成機

Country Status (4)

Country Link
US (1) US10975107B2 (ja)
JP (1) JP6900064B2 (ja)
DE (1) DE112018001105T5 (ja)
WO (1) WO2018159756A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020128348A (ja) * 2019-02-07 2020-08-27 国立研究開発法人産業技術総合研究所 スピロシロキサン化合物、主鎖中にスピロシロキサン構造を有する定序性ポリシロキサン及びそれらの製造方法
WO2023282115A1 (ja) 2021-07-09 2023-01-12 信越化学工業株式会社 オルガノポリシロキサン及びその製造方法
JP7489711B2 (ja) 2020-10-20 2024-05-24 国立研究開発法人産業技術総合研究所 ジメチルシリル基を有する有機ケイ素化合物の製造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4160775A (en) * 1978-03-28 1979-07-10 Union Carbide Corporation Process for the preparation of novel organosilicon compounds
JPH03234768A (ja) * 1990-02-08 1991-10-18 Shin Etsu Chem Co Ltd オルガノポリシロキサンの製造方法
JPH07179480A (ja) * 1993-06-16 1995-07-18 Osi Specialties Inc 表面活性シロキサンコーテイング化合物およびコーテイング中でのそれらの使用
JP2000191791A (ja) * 1998-12-21 2000-07-11 General Electric Co <Ge> オルガノ水素ポリシロキサンの製造方法
JP2002060393A (ja) * 2000-08-17 2002-02-26 Shin Etsu Chem Co Ltd 鎖状低分子シロキサンの製造方法
WO2006020752A1 (en) * 2004-08-12 2006-02-23 General Electric Company Silicone condensation reaction
JP2016155771A (ja) * 2015-02-24 2016-09-01 信越化学工業株式会社 シロキシ基を有するビスシリルエタン化合物及びその製造方法
WO2017047652A1 (ja) * 2015-09-18 2017-03-23 国立研究開発法人産業技術総合研究所 対称性を有するオリゴシロキサンの重縮合による周期ポリシロキサンの製造方法
WO2017154848A1 (ja) * 2016-03-09 2017-09-14 国立研究開発法人産業技術総合研究所 シリルアセタール、オリゴシロキサン、及びそれらの製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5206328A (en) 1990-02-08 1993-04-27 Shin-Etsu Chemical Co., Ltd. Process for the production of an organopolysiloxane
US5188903A (en) * 1991-07-30 1993-02-23 The Dow Chemical Company Siloxane-containing glycidyl esters, curable compositions and cured products
CN100334134C (zh) * 2002-05-01 2007-08-29 陶氏康宁公司 有机氢硅化合物
US7064173B2 (en) 2002-12-30 2006-06-20 General Electric Company Silicone condensation reaction
DE502004000736D1 (de) * 2003-03-21 2006-07-27 Goldschmidt Gmbh Verfahren zur Herstellung von organisch modifizierten Polyorganosiloxanen
DE102004039911A1 (de) * 2004-08-18 2006-02-23 Goldschmidt Gmbh Katalytisches System für die dehydrogenative Kondensation von Polyorganosiloxanen mit Alkoholen und ein Verfahren zur Herstellung von organisch modifizierten Polyorganosiloxanen
JP6311983B2 (ja) * 2014-06-20 2018-04-18 国立研究開発法人産業技術総合研究所 シロキサン化合物の製造方法
US20200001285A1 (en) * 2017-02-28 2020-01-02 Kyushu University, National University Corporation Catalyst for hydrosilylation reaction, hydrogenation reaction, and hydrosilane reduction reaction
KR20180129333A (ko) * 2017-05-26 2018-12-05 기초과학연구원 실릴화 촉매, 이의 제조방법 및 이를 이용하는 실릴화된 화합물의 제조방법
CN108164704B (zh) * 2017-12-23 2021-03-23 广东新翔星科技股份有限公司 高折射率加成型有机硅封装胶用粘结促进剂的制备方法
JP7197829B2 (ja) * 2017-12-27 2022-12-28 国立研究開発法人産業技術総合研究所 テトラアルコキシシランの製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4160775A (en) * 1978-03-28 1979-07-10 Union Carbide Corporation Process for the preparation of novel organosilicon compounds
JPH03234768A (ja) * 1990-02-08 1991-10-18 Shin Etsu Chem Co Ltd オルガノポリシロキサンの製造方法
JPH07179480A (ja) * 1993-06-16 1995-07-18 Osi Specialties Inc 表面活性シロキサンコーテイング化合物およびコーテイング中でのそれらの使用
JP2000191791A (ja) * 1998-12-21 2000-07-11 General Electric Co <Ge> オルガノ水素ポリシロキサンの製造方法
JP2002060393A (ja) * 2000-08-17 2002-02-26 Shin Etsu Chem Co Ltd 鎖状低分子シロキサンの製造方法
WO2006020752A1 (en) * 2004-08-12 2006-02-23 General Electric Company Silicone condensation reaction
JP2016155771A (ja) * 2015-02-24 2016-09-01 信越化学工業株式会社 シロキシ基を有するビスシリルエタン化合物及びその製造方法
WO2017047652A1 (ja) * 2015-09-18 2017-03-23 国立研究開発法人産業技術総合研究所 対称性を有するオリゴシロキサンの重縮合による周期ポリシロキサンの製造方法
WO2017154848A1 (ja) * 2016-03-09 2017-09-14 国立研究開発法人産業技術総合研究所 シリルアセタール、オリゴシロキサン、及びそれらの製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 56, no. 12, 2 February 2017 (2017-02-02), pages 3168 - 3171, XP055414789 *
BERNARD, KANNER ET AL., I & EC PRODUCT RESEARCH AND DEVELOPMENT, vol. 6, no. 2, 1967, pages 88 - 92, XP000654117 *
JULIAN, CHOJNOWSKI ET AL., ORGANOMETALLICS, vol. 24, 2005, pages 6077 - 6084, XP055561206 *
MATSUMOTO, KAZUHIRO ET AL.: "Angew", CHEM. INT. ED., vol. 57, 2018, pages 4637 - 4641, XP055561210 *
THIERRY, FOUQUET ET AL., RAPID COMMUNICATIONS IN MASS SPECTROMETRY, vol. 26, no. 17, 2012, pages 2057 - 2067, XP055561201 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020128348A (ja) * 2019-02-07 2020-08-27 国立研究開発法人産業技術総合研究所 スピロシロキサン化合物、主鎖中にスピロシロキサン構造を有する定序性ポリシロキサン及びそれらの製造方法
JP7153337B2 (ja) 2019-02-07 2022-10-14 国立研究開発法人産業技術総合研究所 スピロシロキサン化合物、主鎖中にスピロシロキサン構造を有する定序性ポリシロキサン及びそれらの製造方法
JP7489711B2 (ja) 2020-10-20 2024-05-24 国立研究開発法人産業技術総合研究所 ジメチルシリル基を有する有機ケイ素化合物の製造方法
WO2023282115A1 (ja) 2021-07-09 2023-01-12 信越化学工業株式会社 オルガノポリシロキサン及びその製造方法

Also Published As

Publication number Publication date
US20200079803A1 (en) 2020-03-12
JP6900064B2 (ja) 2021-07-07
DE112018001105T5 (de) 2019-12-19
US10975107B2 (en) 2021-04-13
JPWO2018159756A1 (ja) 2019-12-19

Similar Documents

Publication Publication Date Title
JP6389220B2 (ja) ヒドロシリル化触媒
US11052383B2 (en) Non-precious metal-based hyrdosilylation catalysts exhibiting improved selectivity
WO2018159756A1 (ja) 配列制御オリゴシロキサン、それらの製造方法及びオリゴシロキサン合成機
JP2012532885A (ja) ヒドロシリル化触媒
WO2012071360A1 (en) Metal - catalyzed mono - hydrosilylation of polyunsaturated compounds
CN103946228A (zh) 含钴硅氢加成催化剂及含有该催化剂的组合物
JP6938048B2 (ja) オリゴシロキサン、及びシリルアセタールからのオリゴシロキサンの製造方法
EP2055708B1 (en) Novel epoxy compound and production process of same
JPWO2017141796A1 (ja) シロキサン及びその製造方法
JP5429745B2 (ja) 脱水素シリル化反応用触媒、及び有機ケイ素化合物の製造方法
JP2017014140A (ja) アミノアルキルアルコキシジシロキサン化合物及びその製造方法
JP5062231B2 (ja) アルコール性水酸基を有する有機ケイ素樹脂及びその製造方法
CN104470935B (zh) 氧杂环硅烷及其制备方法
EP0578185B1 (en) 1-aza-2-silacyclobutane compounds and method for their preparation
KR101631132B1 (ko) 새로운 (트리유기실릴)알킨 및 그 유도체 그리고 새롭고 종래의 치환된 (트리유기실릴)알킨 및 그 유도체를 수득하기 위한 새로운 촉매 방법
JP7023511B2 (ja) 環状シロキサン化合物の製造方法、及び環状シロキサン化合物
PL235670B1 (pl) Nowe trójpodstawione trisiloksysilseskwioksany o strukturze niedomkniętej klatki oraz sposób otrzymywania trójpodstawionych trisiloksysilseskwioksanów o strukturze niedomkniętej klatki
JP2002012597A (ja) 有機ケイ素化合物
JP3592534B2 (ja) 有機けい素化合物
PL235668B1 (pl) Nowe monopodstawione siloksysilseskwioksany oraz sposób otrzymywania monopodstawionych siloksysilseskwioksanów
Miguel Faculty of Chemistry AMU
PL235669B1 (pl) Nowe dwupodstawione disiloksysilseskwioksany o strukturze niedomkniętej klatki oraz sposób otrzymywania dwupodstawionych disiloksysilseskwioksanów o strukturze niedomkniętej klatki
JPS63253091A (ja) トリメチルシロキシ基含有〔(メタ)アクリロキシアルコキシ〕シラン
JP2003277388A (ja) フェニルシランの製造方法
JP2003206292A (ja) ラクトン環を有する有機ケイ素化合物及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761916

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019503108

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18761916

Country of ref document: EP

Kind code of ref document: A1